]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/vec.h
PR/20742
[thirdparty/gcc.git] / gcc / vec.h
CommitLineData
190183c5 1/* Vector API for GNU compiler.
2 Copyright (C) 2004 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
21
22#ifndef GCC_VEC_H
23#define GCC_VEC_H
24
25/* The macros here implement a set of templated vector types and
26 associated interfaces. These templates are implemented with
27 macros, as we're not in C++ land. The interface functions are
28 typesafe and use static inline functions, sometimes backed by
29 out-of-line generic functions. The vectors are designed to
30 interoperate with the GTY machinery.
31
c26a6416 32 Because of the different behavior of objects and of pointers to
91275768 33 objects, there are two flavors. One to deal with a vector of
190183c5 34 pointers to objects, and one to deal with a vector of objects
35 themselves. Both of these pass pointers to objects around -- in
36 the former case the pointers are stored into the vector and in the
37 latter case the pointers are dereferenced and the objects copied
38 into the vector. Therefore, when using a vector of pointers, the
39 objects pointed to must be long lived, but when dealing with a
40 vector of objects, the source objects need not be.
41
930bdacf 42 There are both 'index' and 'iterate' accessors. The iterator
43 returns a boolean iteration condition and updates the iteration
44 variable passed by reference. Because the iterator will be
45 inlined, the address-of can be optimized away.
46
190183c5 47 The vectors are implemented using the trailing array idiom, thus
48 they are not resizeable without changing the address of the vector
49 object itself. This means you cannot have variables or fields of
50 vector type -- always use a pointer to a vector. The one exception
51 is the final field of a structure, which could be a vector type.
15f5ee9f 52 You will have to use the embedded_size & embedded_init calls to
53 create such objects, and they will probably not be resizeable (so
54 don't use the 'safe' allocation variants). The trailing array
55 idiom is used (rather than a pointer to an array of data), because,
56 if we allow NULL to also represent an empty vector, empty vectors
57 occupy minimal space in the structure containing them.
190183c5 58
59 Each operation that increases the number of active elements is
60 available in 'quick' and 'safe' variants. The former presumes that
61 there is sufficient allocated space for the operation to succeed
62 (it aborts if there is not). The latter will reallocate the
63 vector, if needed. Reallocation causes an exponential increase in
64 vector size. If you know you will be adding N elements, it would
65 be more efficient to use the reserve operation before adding the
78eb3a28 66 elements with the 'quick' operation. You may also use the reserve
67 operation with a -1 operand, to gain control over exactly when
68 reallocation occurs.
190183c5 69
70 You should prefer the push and pop operations, as they append and
15f5ee9f 71 remove from the end of the vector. If you need to remove several
72 items in one go, use the truncate operation. The insert and remove
190183c5 73 operations allow you to change elements in the middle of the
74 vector. There are two remove operations, one which preserves the
75 element ordering 'ordered_remove', and one which does not
76 'unordered_remove'. The latter function copies the end element
77 into the removed slot, rather than invoke a memmove operation.
145fce5e 78 The 'lower_bound' function will determine where to place an item in the
79 array using insert that will maintain sorted order.
930bdacf 80
07e8c04c 81 Both garbage collected and explicitly managed vector types are
82 creatable. The allocation mechanism is specified when the type is
83 defined, and is therefore part of the type.
84
930bdacf 85 If you need to directly manipulate a vector, then the 'address'
86 accessor will return the address of the start of the vector. Also
87 the 'space' predicate will tell you whether there is spare capacity
88 in the vector. You will not normally need to use these two functions.
190183c5 89
07e8c04c 90 Vector types are defined using a DEF_VEC_{GC,MALLOC}_{O,P}(TYPEDEF)
91 macro, and variables of vector type are declared using a
92 VEC(TYPEDEF) macro. The tags GC and MALLOC specify the allocation
93 method -- garbage collected or explicit malloc/free calls. The
94 characters O and P indicate whether TYPEDEF is a pointer (P) or
95 object (O) type.
190183c5 96
97 An example of their use would be,
98
07e8c04c 99 DEF_VEC_GC_P(tree); // define a gc'd vector of tree pointers. This must
190183c5 100 // appear at file scope.
101
102 struct my_struct {
103 VEC(tree) *v; // A (pointer to) a vector of tree pointers.
104 };
105
106 struct my_struct *s;
107
63ae8594 108 if (VEC_length(tree,s->v)) { we have some contents }
109 VEC_safe_push(tree,s->v,decl); // append some decl onto the end
6c798041 110 for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
111 { do something with elt }
190183c5 112
113*/
114
115/* Macros to invoke API calls. A single macro works for both pointer
116 and object vectors, but the argument and return types might well be
117 different. In each macro, TDEF is the typedef of the vector
118 elements. Some of these macros pass the vector, V, by reference
119 (by taking its address), this is noted in the descriptions. */
120
121/* Length of vector
f85ee61a 122 unsigned VEC_T_length(const VEC(T) *v);
190183c5 123
124 Return the number of active elements in V. V can be NULL, in which
125 case zero is returned. */
930bdacf 126
127#define VEC_length(TDEF,V) (VEC_OP(TDEF,length)(V))
190183c5 128
129/* Get the final element of the vector.
130 T VEC_T_last(VEC(T) *v); // Pointer
131 T *VEC_T_last(VEC(T) *v); // Object
132
133 Return the final element. If V is empty, abort. */
930bdacf 134
135#define VEC_last(TDEF,V) (VEC_OP(TDEF,last)(V VEC_CHECK_INFO))
190183c5 136
137/* Index into vector
f85ee61a 138 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
139 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
190183c5 140
141 Return the IX'th element. If IX is outside the domain of V,
142 abort. */
930bdacf 143
144#define VEC_index(TDEF,V,I) (VEC_OP(TDEF,index)(V,I VEC_CHECK_INFO))
190183c5 145
146/* Iterate over vector
f85ee61a 147 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
148 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
190183c5 149
930bdacf 150 Return iteration condition and update PTR to point to the IX'th
151 element. At the end of iteration, sets PTR to NULL. Use this to
152 iterate over the elements of a vector as follows,
190183c5 153
930bdacf 154 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
190183c5 155 continue; */
930bdacf 156
157#define VEC_iterate(TDEF,V,I,P) (VEC_OP(TDEF,iterate)(V,I,&(P)))
190183c5 158
159/* Allocate new vector.
78eb3a28 160 VEC(T) *VEC_T_alloc(int reserve);
190183c5 161
78eb3a28 162 Allocate a new vector with space for RESERVE objects. If RESERVE
163 is <= 0, a default number of slots are created. */
930bdacf 164
165#define VEC_alloc(TDEF,A) (VEC_OP(TDEF,alloc)(A MEM_STAT_INFO))
190183c5 166
07e8c04c 167/* Free a vector.
168 void VEC_T_alloc(VEC(T) *&);
169
170 Free a vector and set it to NULL. */
171
172#define VEC_free(TDEF,V) (VEC_OP(TDEF,free)(&V))
173
15f5ee9f 174/* Use these to determine the required size and initialization of a
175 vector embedded within another structure (as the final member).
176
78eb3a28 177 size_t VEC_T_embedded_size(int reserve);
178 void VEC_T_embedded_init(VEC(T) *v, int reserve);
15f5ee9f 179
180 These allow the caller to perform the memory allocation. */
930bdacf 181
182#define VEC_embedded_size(TDEF,A) (VEC_OP(TDEF,embedded_size)(A))
183#define VEC_embedded_init(TDEF,O,A) (VEC_OP(TDEF,embedded_init)(O,A))
184
185/* Determine if a vector has additional capacity.
186
187 int VEC_T_space (VEC(T) *v,int reserve)
188
9ee236f3 189 If V has space for RESERVE additional entries, return nonzero. If
930bdacf 190 RESERVE is < 0, ensure there is at least one space slot. You
191 usually only need to use this if you are doing your own vector
192 reallocation, for instance on an embedded vector. This returns
9ee236f3 193 nonzero in exactly the same circumstances that VEC_T_reserve
930bdacf 194 will. */
195
196#define VEC_space(TDEF,V,R) (VEC_OP(TDEF,space)(V,R))
190183c5 197
198/* Reserve space.
78eb3a28 199 int VEC_T_reserve(VEC(T) *&v, int reserve);
190183c5 200
78eb3a28 201 Ensure that V has at least RESERVE slots available, if RESERVE is
202 >= 0. If RESERVE < 0, ensure that there is at least one spare
c26a6416 203 slot. These differ in their reallocation behavior, the first will
d048e12a 204 not create additional headroom, but the second mechanism will
78eb3a28 205 perform the usual exponential headroom increase. Note this can
9ee236f3 206 cause V to be reallocated. Returns nonzero iff reallocation
78eb3a28 207 actually occurred. */
930bdacf 208
78eb3a28 209#define VEC_reserve(TDEF,V,R) (VEC_OP(TDEF,reserve)(&(V),R MEM_STAT_INFO))
190183c5 210
211/* Push object with no reallocation
212 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
213 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
214
215 Push a new element onto the end, returns a pointer to the slot
216 filled in. For object vectors, the new value can be NULL, in which
217 case NO initialization is performed. Aborts if there is
fbf0afd1 218 insufficient space in the vector. */
930bdacf 219
220#define VEC_quick_push(TDEF,V,O) \
221 (VEC_OP(TDEF,quick_push)(V,O VEC_CHECK_INFO))
190183c5 222
223/* Push object with reallocation
224 T *VEC_T_safe_push (VEC(T) *&v, T obj); // Pointer
225 T *VEC_T_safe_push (VEC(T) *&v, T *obj); // Object
226
227 Push a new element onto the end, returns a pointer to the slot
228 filled in. For object vectors, the new value can be NULL, in which
229 case NO initialization is performed. Reallocates V, if needed. */
930bdacf 230
231#define VEC_safe_push(TDEF,V,O) \
232 (VEC_OP(TDEF,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
190183c5 233
234/* Pop element off end
235 T VEC_T_pop (VEC(T) *v); // Pointer
236 void VEC_T_pop (VEC(T) *v); // Object
237
238 Pop the last element off the end. Returns the element popped, for
239 pointer vectors. */
930bdacf 240
241#define VEC_pop(TDEF,V) (VEC_OP(TDEF,pop)(V VEC_CHECK_INFO))
190183c5 242
15f5ee9f 243/* Truncate to specific length
f85ee61a 244 void VEC_T_truncate (VEC(T) *v, unsigned len);
15f5ee9f 245
246 Set the length as specified. This is an O(1) operation. */
930bdacf 247
248#define VEC_truncate(TDEF,V,I) \
249 (VEC_OP(TDEF,truncate)(V,I VEC_CHECK_INFO))
15f5ee9f 250
190183c5 251/* Replace element
f85ee61a 252 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
253 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
190183c5 254
255 Replace the IXth element of V with a new value, VAL. For pointer
256 vectors returns the original value. For object vectors returns a
257 pointer to the new value. For object vectors the new value can be
258 NULL, in which case no overwriting of the slot is actually
259 performed. */
930bdacf 260
261#define VEC_replace(TDEF,V,I,O) \
262 (VEC_OP(TDEF,replace)(V,I,O VEC_CHECK_INFO))
190183c5 263
264/* Insert object with no reallocation
f85ee61a 265 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
266 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
190183c5 267
268 Insert an element, VAL, at the IXth position of V. Return a pointer
269 to the slot created. For vectors of object, the new value can be
270 NULL, in which case no initialization of the inserted slot takes
271 place. Aborts if there is insufficient space. */
930bdacf 272
273#define VEC_quick_insert(TDEF,V,I,O) \
274 (VEC_OP(TDEF,quick_insert)(V,I,O VEC_CHECK_INFO))
190183c5 275
276/* Insert object with reallocation
f85ee61a 277 T *VEC_T_safe_insert (VEC(T) *&v, unsigned ix, T val); // Pointer
278 T *VEC_T_safe_insert (VEC(T) *&v, unsigned ix, T *val); // Object
190183c5 279
280 Insert an element, VAL, at the IXth position of V. Return a pointer
281 to the slot created. For vectors of object, the new value can be
282 NULL, in which case no initialization of the inserted slot takes
283 place. Reallocate V, if necessary. */
930bdacf 284
285#define VEC_safe_insert(TDEF,V,I,O) \
286 (VEC_OP(TDEF,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
190183c5 287
288/* Remove element retaining order
f85ee61a 289 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
290 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
190183c5 291
292 Remove an element from the IXth position of V. Ordering of
91275768 293 remaining elements is preserved. For pointer vectors returns the
190183c5 294 removed object. This is an O(N) operation due to a memmove. */
930bdacf 295
296#define VEC_ordered_remove(TDEF,V,I) \
297 (VEC_OP(TDEF,ordered_remove)(V,I VEC_CHECK_INFO))
190183c5 298
299/* Remove element destroying order
f85ee61a 300 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
301 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
190183c5 302
303 Remove an element from the IXth position of V. Ordering of
304 remaining elements is destroyed. For pointer vectors returns the
305 removed object. This is an O(1) operation. */
930bdacf 306
307#define VEC_unordered_remove(TDEF,V,I) \
308 (VEC_OP(TDEF,unordered_remove)(V,I VEC_CHECK_INFO))
190183c5 309
de5ab3f1 310/* Get the address of the array of elements
311 T *VEC_T_address (VEC(T) v)
312
313 If you need to directly manipulate the array (for instance, you
314 want to feed it to qsort), use this accessor. */
930bdacf 315
de5ab3f1 316#define VEC_address(TDEF,V) (VEC_OP(TDEF,address)(V))
317
145fce5e 318/* Find the first index in the vector not less than the object.
319 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
320 bool (*lessthan) (const T, const T)); // Pointer
321 unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
322 bool (*lessthan) (const T*, const T*)); // Object
323
324 Find the first position in which VAL could be inserted without
325 changing the ordering of V. LESSTHAN is a function that returns
dac49aa5 326 true if the first argument is strictly less than the second. */
145fce5e 327
328#define VEC_lower_bound(TDEF,V,O,LT) \
329 (VEC_OP(TDEF,lower_bound)(V,O,LT VEC_CHECK_INFO))
330
190183c5 331#if !IN_GENGTYPE
190183c5 332/* Reallocate an array of elements with prefix. */
07e8c04c 333extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
334extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
335extern void vec_gc_free (void *);
336extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
337extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
338extern void vec_heap_free (void *);
190183c5 339
340#if ENABLE_CHECKING
930bdacf 341#define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
342#define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
343#define VEC_CHECK_PASS ,file_,line_,function_
190183c5 344
345#define VEC_ASSERT(EXPR,OP,TDEF) \
346 (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(TDEF)), 0))
930bdacf 347
348extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
349 ATTRIBUTE_NORETURN;
350#define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
190183c5 351#else
930bdacf 352#define VEC_CHECK_INFO
353#define VEC_CHECK_DECL
354#define VEC_CHECK_PASS
190183c5 355#define VEC_ASSERT(EXPR,OP,TYPE) (void)(EXPR)
356#endif
357
358#define VEC(TDEF) VEC_##TDEF
359#define VEC_OP(TDEF,OP) VEC_OP_(VEC(TDEF),OP)
360#define VEC_OP_(VEC,OP) VEC_OP__(VEC,OP)
361#define VEC_OP__(VEC,OP) VEC ## _ ## OP
362#else /* IN_GENGTYPE */
363#define VEC(TDEF) VEC_ TDEF
364#define VEC_STRINGIFY(X) VEC_STRINGIFY_(X)
365#define VEC_STRINGIFY_(X) #X
366#undef GTY
367#endif /* IN_GENGTYPE */
368
369#define VEC_TDEF(TDEF) \
370typedef struct VEC (TDEF) GTY(()) \
371{ \
f85ee61a 372 unsigned num; \
373 unsigned alloc; \
190183c5 374 TDEF GTY ((length ("%h.num"))) vec[1]; \
375} VEC (TDEF)
376
377/* Vector of pointer to object. */
378#if IN_GENGTYPE
07e8c04c 379{"DEF_VEC_GC_P", VEC_STRINGIFY (VEC_TDEF (#)) ";", NULL},
380{"DEF_VEC_MALLOC_P", "", NULL},
190183c5 381#else
07e8c04c 382#define DEF_VEC_GC_P(TDEF) DEF_VEC_P(TDEF,gc)
383#define DEF_VEC_MALLOC_P(TDEF) DEF_VEC_P(TDEF,heap)
190183c5 384
07e8c04c 385#define DEF_VEC_P(TDEF,a) \
190183c5 386VEC_TDEF (TDEF); \
387 \
f85ee61a 388static inline unsigned VEC_OP (TDEF,length) \
190183c5 389 (const VEC (TDEF) *vec_) \
390{ \
391 return vec_ ? vec_->num : 0; \
392} \
393 \
394static inline TDEF VEC_OP (TDEF,last) \
930bdacf 395 (const VEC (TDEF) *vec_ VEC_CHECK_DECL) \
190183c5 396{ \
397 VEC_ASSERT (vec_ && vec_->num, "last", TDEF); \
398 \
173975ab 399 return vec_->vec[vec_->num - 1]; \
190183c5 400} \
401 \
402static inline TDEF VEC_OP (TDEF,index) \
f85ee61a 403 (const VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \
190183c5 404{ \
405 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", TDEF); \
406 \
407 return vec_->vec[ix_]; \
408} \
409 \
930bdacf 410static inline int VEC_OP (TDEF,iterate) \
f85ee61a 411 (const VEC (TDEF) *vec_, unsigned ix_, TDEF *ptr) \
190183c5 412{ \
930bdacf 413 if (vec_ && ix_ < vec_->num) \
414 { \
415 *ptr = vec_->vec[ix_]; \
416 return 1; \
417 } \
418 else \
419 { \
420 *ptr = 0; \
421 return 0; \
422 } \
190183c5 423} \
424 \
743e96a9 425static inline VEC (TDEF) *VEC_OP (TDEF,alloc) \
426 (int alloc_ MEM_STAT_DECL) \
190183c5 427{ \
07e8c04c 428 return (VEC (TDEF) *) vec_##a##_p_reserve (NULL, alloc_ - !alloc_ PASS_MEM_STAT);\
429} \
430 \
431static inline void VEC_OP (TDEF,free) \
432 (VEC (TDEF) **vec_) \
433{ \
434 vec_##a##_free (*vec_); \
435 *vec_ = NULL; \
190183c5 436} \
437 \
15f5ee9f 438static inline size_t VEC_OP (TDEF,embedded_size) \
78eb3a28 439 (int alloc_) \
190183c5 440{ \
15f5ee9f 441 return offsetof (VEC(TDEF),vec) + alloc_ * sizeof(TDEF); \
442} \
443 \
444static inline void VEC_OP (TDEF,embedded_init) \
78eb3a28 445 (VEC (TDEF) *vec_, int alloc_) \
15f5ee9f 446{ \
447 vec_->num = 0; \
448 vec_->alloc = alloc_; \
190183c5 449} \
450 \
930bdacf 451static inline int VEC_OP (TDEF,space) \
452 (VEC (TDEF) *vec_, int alloc_) \
453{ \
454 return vec_ ? ((vec_)->alloc - (vec_)->num \
99843b7c 455 >= (unsigned)(alloc_ < 0 ? 1 : alloc_)) : !alloc_; \
930bdacf 456} \
457 \
78eb3a28 458static inline int VEC_OP (TDEF,reserve) \
459 (VEC (TDEF) **vec_, int alloc_ MEM_STAT_DECL) \
190183c5 460{ \
99843b7c 461 int extend = !VEC_OP (TDEF,space) (*vec_, alloc_); \
78eb3a28 462 \
463 if (extend) \
07e8c04c 464 *vec_ = (VEC (TDEF) *) vec_##a##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
78eb3a28 465 \
466 return extend; \
190183c5 467} \
468 \
469static inline TDEF *VEC_OP (TDEF,quick_push) \
930bdacf 470 (VEC (TDEF) *vec_, TDEF obj_ VEC_CHECK_DECL) \
190183c5 471{ \
472 TDEF *slot_; \
473 \
474 VEC_ASSERT (vec_->num < vec_->alloc, "push", TDEF); \
475 slot_ = &vec_->vec[vec_->num++]; \
476 *slot_ = obj_; \
477 \
478 return slot_; \
479} \
480 \
481static inline TDEF *VEC_OP (TDEF,safe_push) \
930bdacf 482 (VEC (TDEF) **vec_, TDEF obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
190183c5 483{ \
78eb3a28 484 VEC_OP (TDEF,reserve) (vec_, -1 PASS_MEM_STAT); \
190183c5 485 \
930bdacf 486 return VEC_OP (TDEF,quick_push) (*vec_, obj_ VEC_CHECK_PASS); \
190183c5 487} \
488 \
489static inline TDEF VEC_OP (TDEF,pop) \
930bdacf 490 (VEC (TDEF) *vec_ VEC_CHECK_DECL) \
190183c5 491{ \
492 TDEF obj_; \
493 \
494 VEC_ASSERT (vec_->num, "pop", TDEF); \
495 obj_ = vec_->vec[--vec_->num]; \
496 \
497 return obj_; \
498} \
499 \
15f5ee9f 500static inline void VEC_OP (TDEF,truncate) \
f85ee61a 501 (VEC (TDEF) *vec_, unsigned size_ VEC_CHECK_DECL) \
15f5ee9f 502{ \
cd973689 503 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", TDEF); \
504 if (vec_) \
505 vec_->num = size_; \
15f5ee9f 506} \
507 \
190183c5 508static inline TDEF VEC_OP (TDEF,replace) \
f85ee61a 509 (VEC (TDEF) *vec_, unsigned ix_, TDEF obj_ VEC_CHECK_DECL) \
190183c5 510{ \
511 TDEF old_obj_; \
512 \
513 VEC_ASSERT (ix_ < vec_->num, "replace", TDEF); \
514 old_obj_ = vec_->vec[ix_]; \
515 vec_->vec[ix_] = obj_; \
516 \
517 return old_obj_; \
518} \
519 \
145fce5e 520static inline unsigned VEC_OP (TDEF,lower_bound) \
521 (VEC (TDEF) *vec_, const TDEF obj_, bool (*lessthan_)(const TDEF, const TDEF) VEC_CHECK_DECL) \
522{ \
523 unsigned int len_ = VEC_OP (TDEF, length) (vec_); \
524 unsigned int half_, middle_; \
525 unsigned int first_ = 0; \
526 while (len_ > 0) \
527 { \
528 TDEF middle_elem_; \
529 half_ = len_ >> 1; \
530 middle_ = first_; \
531 middle_ += half_; \
532 middle_elem_ = VEC_OP (TDEF, index) (vec_, middle_ VEC_CHECK_PASS); \
533 if (lessthan_ (middle_elem_, obj_)) \
534 { \
535 first_ = middle_; \
536 ++first_; \
537 len_ = len_ - half_ - 1; \
538 } \
539 else \
540 len_ = half_; \
541 } \
542 return first_; \
543} \
544 \
545static inline TDEF *VEC_OP (TDEF,quick_insert) \
f85ee61a 546 (VEC (TDEF) *vec_, unsigned ix_, TDEF obj_ VEC_CHECK_DECL) \
190183c5 547{ \
548 TDEF *slot_; \
549 \
550 VEC_ASSERT (vec_->num < vec_->alloc, "insert", TDEF); \
551 VEC_ASSERT (ix_ <= vec_->num, "insert", TDEF); \
552 slot_ = &vec_->vec[ix_]; \
cd973689 553 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (TDEF)); \
190183c5 554 *slot_ = obj_; \
555 \
556 return slot_; \
557} \
558 \
559static inline TDEF *VEC_OP (TDEF,safe_insert) \
f85ee61a 560 (VEC (TDEF) **vec_, unsigned ix_, TDEF obj_ \
561 VEC_CHECK_DECL MEM_STAT_DECL) \
190183c5 562{ \
78eb3a28 563 VEC_OP (TDEF,reserve) (vec_, -1 PASS_MEM_STAT); \
190183c5 564 \
930bdacf 565 return VEC_OP (TDEF,quick_insert) (*vec_, ix_, obj_ VEC_CHECK_PASS); \
190183c5 566} \
567 \
568static inline TDEF VEC_OP (TDEF,ordered_remove) \
f85ee61a 569 (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \
190183c5 570{ \
571 TDEF *slot_; \
572 TDEF obj_; \
573 \
574 VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \
575 slot_ = &vec_->vec[ix_]; \
576 obj_ = *slot_; \
cd973689 577 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (TDEF)); \
190183c5 578 \
579 return obj_; \
580} \
581 \
582static inline TDEF VEC_OP (TDEF,unordered_remove) \
f85ee61a 583 (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \
190183c5 584{ \
585 TDEF *slot_; \
586 TDEF obj_; \
587 \
588 VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \
589 slot_ = &vec_->vec[ix_]; \
590 obj_ = *slot_; \
591 *slot_ = vec_->vec[--vec_->num]; \
592 \
593 return obj_; \
594} \
595 \
de5ab3f1 596static inline TDEF *VEC_OP (TDEF,address) \
597 (VEC (TDEF) *vec_) \
598{ \
599 return vec_ ? vec_->vec : 0; \
600} \
601 \
190183c5 602struct vec_swallow_trailing_semi
603#endif
604
605/* Vector of object. */
606#if IN_GENGTYPE
07e8c04c 607{"DEF_VEC_GC_O", VEC_STRINGIFY (VEC_TDEF (#)) ";", NULL},
608{"DEF_VEC_MALLOC_O", "", NULL},
190183c5 609#else
610
07e8c04c 611#define DEF_VEC_GC_O(TDEF) DEF_VEC_O(TDEF,gc)
612#define DEF_VEC_MALLOC_O(TDEF) DEF_VEC_O(TDEF,heap)
613
614#define DEF_VEC_O(TDEF,a) \
190183c5 615VEC_TDEF (TDEF); \
616 \
f85ee61a 617static inline unsigned VEC_OP (TDEF,length) \
190183c5 618 (const VEC (TDEF) *vec_) \
619{ \
620 return vec_ ? vec_->num : 0; \
621} \
622 \
623static inline TDEF *VEC_OP (TDEF,last) \
930bdacf 624 (VEC (TDEF) *vec_ VEC_CHECK_DECL) \
190183c5 625{ \
626 VEC_ASSERT (vec_ && vec_->num, "last", TDEF); \
627 \
628 return &vec_->vec[vec_->num - 1]; \
629} \
630 \
631static inline TDEF *VEC_OP (TDEF,index) \
f85ee61a 632 (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \
190183c5 633{ \
634 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", TDEF); \
635 \
636 return &vec_->vec[ix_]; \
637} \
638 \
930bdacf 639static inline int VEC_OP (TDEF,iterate) \
f85ee61a 640 (VEC (TDEF) *vec_, unsigned ix_, TDEF **ptr) \
190183c5 641{ \
930bdacf 642 if (vec_ && ix_ < vec_->num) \
643 { \
644 *ptr = &vec_->vec[ix_]; \
645 return 1; \
646 } \
647 else \
648 { \
649 *ptr = 0; \
650 return 0; \
651 } \
190183c5 652} \
653 \
654static inline VEC (TDEF) *VEC_OP (TDEF,alloc) \
78eb3a28 655 (int alloc_ MEM_STAT_DECL) \
190183c5 656{ \
07e8c04c 657 return (VEC (TDEF) *) vec_##a##_o_reserve (NULL, alloc_ - !alloc_, \
8eb0977a 658 offsetof (VEC(TDEF),vec), sizeof (TDEF)\
659 PASS_MEM_STAT); \
15f5ee9f 660} \
661 \
07e8c04c 662static inline void VEC_OP (TDEF,free) \
663 (VEC (TDEF) **vec_) \
664{ \
665 vec_##a##_free (*vec_); \
666 *vec_ = NULL; \
667} \
668 \
15f5ee9f 669static inline size_t VEC_OP (TDEF,embedded_size) \
78eb3a28 670 (int alloc_) \
15f5ee9f 671{ \
672 return offsetof (VEC(TDEF),vec) + alloc_ * sizeof(TDEF); \
190183c5 673} \
674 \
15f5ee9f 675static inline void VEC_OP (TDEF,embedded_init) \
78eb3a28 676 (VEC (TDEF) *vec_, int alloc_) \
190183c5 677{ \
15f5ee9f 678 vec_->num = 0; \
679 vec_->alloc = alloc_; \
190183c5 680} \
681 \
930bdacf 682static inline int VEC_OP (TDEF,space) \
683 (VEC (TDEF) *vec_, int alloc_) \
684{ \
685 return vec_ ? ((vec_)->alloc - (vec_)->num \
99843b7c 686 >= (unsigned)(alloc_ < 0 ? 1 : alloc_)) : !alloc_; \
930bdacf 687} \
688 \
78eb3a28 689static inline int VEC_OP (TDEF,reserve) \
690 (VEC (TDEF) **vec_, int alloc_ MEM_STAT_DECL) \
190183c5 691{ \
99843b7c 692 int extend = !VEC_OP (TDEF,space) (*vec_, alloc_); \
78eb3a28 693 \
694 if (extend) \
07e8c04c 695 *vec_ = (VEC (TDEF) *) vec_##a##_o_reserve (*vec_, alloc_, \
78eb3a28 696 offsetof (VEC(TDEF),vec), sizeof (TDEF) \
697 PASS_MEM_STAT); \
698 \
699 return extend; \
190183c5 700} \
701 \
702static inline TDEF *VEC_OP (TDEF,quick_push) \
930bdacf 703 (VEC (TDEF) *vec_, const TDEF *obj_ VEC_CHECK_DECL) \
190183c5 704{ \
705 TDEF *slot_; \
706 \
707 VEC_ASSERT (vec_->num < vec_->alloc, "push", TDEF); \
708 slot_ = &vec_->vec[vec_->num++]; \
709 if (obj_) \
710 *slot_ = *obj_; \
711 \
712 return slot_; \
713} \
714 \
715static inline TDEF *VEC_OP (TDEF,safe_push) \
930bdacf 716 (VEC (TDEF) **vec_, const TDEF *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
190183c5 717{ \
78eb3a28 718 VEC_OP (TDEF,reserve) (vec_, -1 PASS_MEM_STAT); \
190183c5 719 \
930bdacf 720 return VEC_OP (TDEF,quick_push) (*vec_, obj_ VEC_CHECK_PASS); \
190183c5 721} \
722 \
723static inline void VEC_OP (TDEF,pop) \
930bdacf 724 (VEC (TDEF) *vec_ VEC_CHECK_DECL) \
190183c5 725{ \
726 VEC_ASSERT (vec_->num, "pop", TDEF); \
15f5ee9f 727 --vec_->num; \
728} \
729 \
730static inline void VEC_OP (TDEF,truncate) \
f85ee61a 731 (VEC (TDEF) *vec_, unsigned size_ VEC_CHECK_DECL) \
15f5ee9f 732{ \
cd973689 733 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", TDEF); \
734 if (vec_) \
735 vec_->num = size_; \
190183c5 736} \
737 \
738static inline TDEF *VEC_OP (TDEF,replace) \
f85ee61a 739 (VEC (TDEF) *vec_, unsigned ix_, const TDEF *obj_ VEC_CHECK_DECL) \
190183c5 740{ \
741 TDEF *slot_; \
742 \
743 VEC_ASSERT (ix_ < vec_->num, "replace", TDEF); \
744 slot_ = &vec_->vec[ix_]; \
745 if (obj_) \
746 *slot_ = *obj_; \
747 \
748 return slot_; \
749} \
750 \
145fce5e 751static inline unsigned VEC_OP (TDEF,lower_bound) \
752 (VEC (TDEF) *vec_, const TDEF *obj_, bool (*lessthan_)(const TDEF *, const TDEF *) VEC_CHECK_DECL) \
753{ \
754 unsigned int len_ = VEC_OP (TDEF, length) (vec_); \
755 unsigned int half_, middle_; \
756 unsigned int first_ = 0; \
757 while (len_ > 0) \
758 { \
759 TDEF *middle_elem_; \
760 half_ = len_ >> 1; \
761 middle_ = first_; \
762 middle_ += half_; \
763 middle_elem_ = VEC_OP (TDEF, index) (vec_, middle_ VEC_CHECK_PASS); \
764 if (lessthan_ (middle_elem_, obj_)) \
765 { \
766 first_ = middle_; \
767 ++first_; \
768 len_ = len_ - half_ - 1; \
769 } \
770 else \
771 len_ = half_; \
772 } \
773 return first_; \
774} \
775 \
776static inline TDEF *VEC_OP (TDEF,quick_insert) \
777 (VEC (TDEF) *vec_, unsigned ix_, const TDEF *obj_ VEC_CHECK_DECL) \
190183c5 778{ \
779 TDEF *slot_; \
780 \
781 VEC_ASSERT (vec_->num < vec_->alloc, "insert", TDEF); \
782 VEC_ASSERT (ix_ <= vec_->num, "insert", TDEF); \
783 slot_ = &vec_->vec[ix_]; \
cd973689 784 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (TDEF)); \
190183c5 785 if (obj_) \
786 *slot_ = *obj_; \
787 \
788 return slot_; \
789} \
790 \
791static inline TDEF *VEC_OP (TDEF,safe_insert) \
f85ee61a 792 (VEC (TDEF) **vec_, unsigned ix_, const TDEF *obj_ \
793 VEC_CHECK_DECL MEM_STAT_DECL) \
190183c5 794{ \
78eb3a28 795 VEC_OP (TDEF,reserve) (vec_, -1 PASS_MEM_STAT); \
190183c5 796 \
930bdacf 797 return VEC_OP (TDEF,quick_insert) (*vec_, ix_, obj_ VEC_CHECK_PASS); \
190183c5 798} \
799 \
800static inline void VEC_OP (TDEF,ordered_remove) \
f85ee61a 801 (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \
190183c5 802{ \
803 TDEF *slot_; \
804 \
805 VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \
806 slot_ = &vec_->vec[ix_]; \
cd973689 807 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (TDEF)); \
190183c5 808} \
809 \
810static inline void VEC_OP (TDEF,unordered_remove) \
f85ee61a 811 (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \
190183c5 812{ \
813 VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \
814 vec_->vec[ix_] = vec_->vec[--vec_->num]; \
815} \
816 \
de5ab3f1 817static inline TDEF *VEC_OP (TDEF,address) \
818 (VEC (TDEF) *vec_) \
819{ \
820 return vec_ ? vec_->vec : 0; \
821} \
822 \
190183c5 823struct vec_swallow_trailing_semi
824#endif
825
826#endif /* GCC_VEC_H */