]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/vr-values.c
* config/mips/mips.c (mips_final_postscan_insn): Modify call
[thirdparty/gcc.git] / gcc / vr-values.c
CommitLineData
94d86adc 1/* Support routines for Value Range Propagation (VRP).
fbd26352 2 Copyright (C) 2005-2019 Free Software Foundation, Inc.
94d86adc 3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 3, or (at your option)
9any later version.
10
11GCC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "insn-codes.h"
25#include "tree.h"
26#include "gimple.h"
27#include "ssa.h"
28#include "optabs-tree.h"
29#include "gimple-pretty-print.h"
30#include "diagnostic-core.h"
31#include "flags.h"
32#include "fold-const.h"
33#include "calls.h"
34#include "cfganal.h"
35#include "gimple-fold.h"
36#include "gimple-iterator.h"
37#include "tree-cfg.h"
38#include "tree-ssa-loop-niter.h"
39#include "tree-ssa-loop.h"
40#include "intl.h"
41#include "cfgloop.h"
42#include "tree-scalar-evolution.h"
43#include "tree-ssa-propagate.h"
44#include "tree-chrec.h"
45#include "omp-general.h"
46#include "case-cfn-macros.h"
47#include "alloc-pool.h"
48#include "attribs.h"
49#include "vr-values.h"
d443f534 50#include "cfghooks.h"
94d86adc 51
52/* Set value range VR to a non-negative range of type TYPE. */
53
54static inline void
55set_value_range_to_nonnegative (value_range *vr, tree type)
56{
57 tree zero = build_int_cst (type, 0);
be44111e 58 vr->update (VR_RANGE, zero, vrp_val_max (type));
94d86adc 59}
60
61/* Set value range VR to a range of a truthvalue of type TYPE. */
62
63static inline void
64set_value_range_to_truthvalue (value_range *vr, tree type)
65{
66 if (TYPE_PRECISION (type) == 1)
5a780b31 67 vr->set_varying ();
94d86adc 68 else
be44111e 69 vr->update (VR_RANGE, build_int_cst (type, 0), build_int_cst (type, 1));
94d86adc 70}
71
72
73/* Return value range information for VAR.
74
75 If we have no values ranges recorded (ie, VRP is not running), then
76 return NULL. Otherwise create an empty range if none existed for VAR. */
77
78value_range *
79vr_values::get_value_range (const_tree var)
80{
be44111e 81 static const value_range vr_const_varying (VR_VARYING, NULL, NULL);
94d86adc 82 value_range *vr;
83 tree sym;
84 unsigned ver = SSA_NAME_VERSION (var);
85
86 /* If we have no recorded ranges, then return NULL. */
87 if (! vr_value)
88 return NULL;
89
90 /* If we query the range for a new SSA name return an unmodifiable VARYING.
91 We should get here at most from the substitute-and-fold stage which
92 will never try to change values. */
93 if (ver >= num_vr_values)
94 return CONST_CAST (value_range *, &vr_const_varying);
95
96 vr = vr_value[ver];
97 if (vr)
98 return vr;
99
100 /* After propagation finished do not allocate new value-ranges. */
101 if (values_propagated)
102 return CONST_CAST (value_range *, &vr_const_varying);
103
104 /* Create a default value range. */
105 vr_value[ver] = vr = vrp_value_range_pool.allocate ();
be44111e 106 vr->set_undefined ();
94d86adc 107
108 /* If VAR is a default definition of a parameter, the variable can
109 take any value in VAR's type. */
110 if (SSA_NAME_IS_DEFAULT_DEF (var))
111 {
112 sym = SSA_NAME_VAR (var);
113 if (TREE_CODE (sym) == PARM_DECL)
114 {
115 /* Try to use the "nonnull" attribute to create ~[0, 0]
116 anti-ranges for pointers. Note that this is only valid with
117 default definitions of PARM_DECLs. */
118 if (POINTER_TYPE_P (TREE_TYPE (sym))
119 && (nonnull_arg_p (sym)
120 || get_ptr_nonnull (var)))
a4be7d68 121 {
122 vr->set_nonzero (TREE_TYPE (sym));
123 vr->equiv_clear ();
124 }
94d86adc 125 else if (INTEGRAL_TYPE_P (TREE_TYPE (sym)))
126 {
de506721 127 get_range_info (var, *vr);
128 if (vr->undefined_p ())
129 vr->set_varying ();
94d86adc 130 }
131 else
5a780b31 132 vr->set_varying ();
94d86adc 133 }
134 else if (TREE_CODE (sym) == RESULT_DECL
135 && DECL_BY_REFERENCE (sym))
a4be7d68 136 {
137 vr->set_nonzero (TREE_TYPE (sym));
138 vr->equiv_clear ();
139 }
94d86adc 140 }
141
142 return vr;
143}
144
145/* Set value-ranges of all SSA names defined by STMT to varying. */
146
147void
148vr_values::set_defs_to_varying (gimple *stmt)
149{
150 ssa_op_iter i;
151 tree def;
152 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
153 {
154 value_range *vr = get_value_range (def);
155 /* Avoid writing to vr_const_varying get_value_range may return. */
be44111e 156 if (!vr->varying_p ())
5a780b31 157 vr->set_varying ();
94d86adc 158 }
159}
160
161/* Update the value range and equivalence set for variable VAR to
162 NEW_VR. Return true if NEW_VR is different from VAR's previous
163 value.
164
165 NOTE: This function assumes that NEW_VR is a temporary value range
166 object created for the sole purpose of updating VAR's range. The
167 storage used by the equivalence set from NEW_VR will be freed by
168 this function. Do not call update_value_range when NEW_VR
169 is the range object associated with another SSA name. */
170
171bool
172vr_values::update_value_range (const_tree var, value_range *new_vr)
173{
174 value_range *old_vr;
175 bool is_new;
176
177 /* If there is a value-range on the SSA name from earlier analysis
178 factor that in. */
179 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
180 {
de506721 181 value_range nr;
182 value_range_kind rtype = get_range_info (var, nr);
94d86adc 183 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
de506721 184 new_vr->intersect (&nr);
94d86adc 185 }
186
187 /* Update the value range, if necessary. */
188 old_vr = get_value_range (var);
2d5d5612 189 is_new = !old_vr->equal_p (*new_vr, /*ignore_equivs=*/false);
94d86adc 190
191 if (is_new)
192 {
193 /* Do not allow transitions up the lattice. The following
194 is slightly more awkward than just new_vr->type < old_vr->type
195 because VR_RANGE and VR_ANTI_RANGE need to be considered
196 the same. We may not have is_new when transitioning to
197 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
fc87d978 198 called, if we are anyway, keep it VARYING. */
199 if (old_vr->varying_p ())
200 {
201 new_vr->set_varying ();
202 is_new = false;
203 }
204 else if (new_vr->undefined_p ())
94d86adc 205 {
5a780b31 206 old_vr->set_varying ();
207 new_vr->set_varying ();
94d86adc 208 return true;
209 }
210 else
48625f58 211 old_vr->set (new_vr->kind (),
212 new_vr->min (), new_vr->max (), new_vr->equiv ());
94d86adc 213 }
214
be44111e 215 new_vr->equiv_clear ();
94d86adc 216
217 return is_new;
218}
219
94d86adc 220/* Return true if value range VR involves exactly one symbol SYM. */
221
222static bool
48625f58 223symbolic_range_based_on_p (value_range_base *vr, const_tree sym)
94d86adc 224{
225 bool neg, min_has_symbol, max_has_symbol;
226 tree inv;
227
be44111e 228 if (is_gimple_min_invariant (vr->min ()))
94d86adc 229 min_has_symbol = false;
be44111e 230 else if (get_single_symbol (vr->min (), &neg, &inv) == sym)
94d86adc 231 min_has_symbol = true;
232 else
233 return false;
234
be44111e 235 if (is_gimple_min_invariant (vr->max ()))
94d86adc 236 max_has_symbol = false;
be44111e 237 else if (get_single_symbol (vr->max (), &neg, &inv) == sym)
94d86adc 238 max_has_symbol = true;
239 else
240 return false;
241
242 return (min_has_symbol || max_has_symbol);
243}
244
245/* Return true if the result of assignment STMT is know to be non-zero. */
246
247static bool
248gimple_assign_nonzero_p (gimple *stmt)
249{
250 enum tree_code code = gimple_assign_rhs_code (stmt);
251 bool strict_overflow_p;
252 switch (get_gimple_rhs_class (code))
253 {
254 case GIMPLE_UNARY_RHS:
255 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
256 gimple_expr_type (stmt),
257 gimple_assign_rhs1 (stmt),
258 &strict_overflow_p);
259 case GIMPLE_BINARY_RHS:
260 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
261 gimple_expr_type (stmt),
262 gimple_assign_rhs1 (stmt),
263 gimple_assign_rhs2 (stmt),
264 &strict_overflow_p);
265 case GIMPLE_TERNARY_RHS:
266 return false;
267 case GIMPLE_SINGLE_RHS:
268 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
269 &strict_overflow_p);
270 case GIMPLE_INVALID_RHS:
271 gcc_unreachable ();
272 default:
273 gcc_unreachable ();
274 }
275}
276
277/* Return true if STMT is known to compute a non-zero value. */
278
279static bool
280gimple_stmt_nonzero_p (gimple *stmt)
281{
282 switch (gimple_code (stmt))
283 {
284 case GIMPLE_ASSIGN:
285 return gimple_assign_nonzero_p (stmt);
286 case GIMPLE_CALL:
287 {
21d374ac 288 gcall *call_stmt = as_a<gcall *> (stmt);
289 return (gimple_call_nonnull_result_p (call_stmt)
290 || gimple_call_nonnull_arg (call_stmt));
94d86adc 291 }
292 default:
293 gcc_unreachable ();
294 }
295}
296/* Like tree_expr_nonzero_p, but this function uses value ranges
297 obtained so far. */
298
299bool
300vr_values::vrp_stmt_computes_nonzero (gimple *stmt)
301{
302 if (gimple_stmt_nonzero_p (stmt))
303 return true;
304
305 /* If we have an expression of the form &X->a, then the expression
306 is nonnull if X is nonnull. */
307 if (is_gimple_assign (stmt)
308 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
309 {
310 tree expr = gimple_assign_rhs1 (stmt);
fe115e31 311 poly_int64 bitsize, bitpos;
312 tree offset;
313 machine_mode mode;
314 int unsignedp, reversep, volatilep;
315 tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
316 &bitpos, &offset, &mode, &unsignedp,
317 &reversep, &volatilep);
94d86adc 318
319 if (base != NULL_TREE
320 && TREE_CODE (base) == MEM_REF
321 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
322 {
fe115e31 323 poly_offset_int off = 0;
324 bool off_cst = false;
325 if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
326 {
327 off = mem_ref_offset (base);
328 if (offset)
329 off += poly_offset_int::from (wi::to_poly_wide (offset),
330 SIGNED);
331 off <<= LOG2_BITS_PER_UNIT;
332 off += bitpos;
333 off_cst = true;
334 }
335 /* If &X->a is equal to X and X is ~[0, 0], the result is too.
336 For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
337 allow going from non-NULL pointer to NULL. */
338 if ((off_cst && known_eq (off, 0))
339 || (flag_delete_null_pointer_checks
340 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))))
341 {
342 value_range *vr = get_value_range (TREE_OPERAND (base, 0));
343 if (!range_includes_zero_p (vr))
344 return true;
345 }
346 /* If MEM_REF has a "positive" offset, consider it non-NULL
347 always, for -fdelete-null-pointer-checks also "negative"
348 ones. Punt for unknown offsets (e.g. variable ones). */
349 if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
350 && off_cst
351 && known_ne (off, 0)
352 && (flag_delete_null_pointer_checks || known_gt (off, 0)))
94d86adc 353 return true;
354 }
355 }
356
357 return false;
358}
359
360/* Returns true if EXPR is a valid value (as expected by compare_values) --
361 a gimple invariant, or SSA_NAME +- CST. */
362
363static bool
364valid_value_p (tree expr)
365{
366 if (TREE_CODE (expr) == SSA_NAME)
367 return true;
368
369 if (TREE_CODE (expr) == PLUS_EXPR
370 || TREE_CODE (expr) == MINUS_EXPR)
371 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
372 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
373
374 return is_gimple_min_invariant (expr);
375}
376
377/* If OP has a value range with a single constant value return that,
378 otherwise return NULL_TREE. This returns OP itself if OP is a
379 constant. */
380
381tree
382vr_values::op_with_constant_singleton_value_range (tree op)
383{
384 if (is_gimple_min_invariant (op))
385 return op;
386
387 if (TREE_CODE (op) != SSA_NAME)
388 return NULL_TREE;
389
390 return value_range_constant_singleton (get_value_range (op));
391}
392
393/* Return true if op is in a boolean [0, 1] value-range. */
394
395bool
396vr_values::op_with_boolean_value_range_p (tree op)
397{
398 value_range *vr;
399
400 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
401 return true;
402
403 if (integer_zerop (op)
404 || integer_onep (op))
405 return true;
406
407 if (TREE_CODE (op) != SSA_NAME)
408 return false;
409
410 vr = get_value_range (op);
be44111e 411 return (vr->kind () == VR_RANGE
412 && integer_zerop (vr->min ())
413 && integer_onep (vr->max ()));
94d86adc 414}
415
416/* Extract value range information for VAR when (OP COND_CODE LIMIT) is
417 true and store it in *VR_P. */
418
419void
420vr_values::extract_range_for_var_from_comparison_expr (tree var,
421 enum tree_code cond_code,
422 tree op, tree limit,
423 value_range *vr_p)
424{
425 tree min, max, type;
426 value_range *limit_vr;
427 type = TREE_TYPE (var);
94d86adc 428
429 /* For pointer arithmetic, we only keep track of pointer equality
5ab8299a 430 and inequality. If we arrive here with unfolded conditions like
431 _1 > _1 do not derive anything. */
432 if ((POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
433 || limit == var)
94d86adc 434 {
5a780b31 435 vr_p->set_varying ();
94d86adc 436 return;
437 }
438
439 /* If LIMIT is another SSA name and LIMIT has a range of its own,
440 try to use LIMIT's range to avoid creating symbolic ranges
441 unnecessarily. */
442 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
443
444 /* LIMIT's range is only interesting if it has any useful information. */
445 if (! limit_vr
be44111e 446 || limit_vr->undefined_p ()
447 || limit_vr->varying_p ()
448 || (limit_vr->symbolic_p ()
449 && ! (limit_vr->kind () == VR_RANGE
450 && (limit_vr->min () == limit_vr->max ()
451 || operand_equal_p (limit_vr->min (),
452 limit_vr->max (), 0)))))
94d86adc 453 limit_vr = NULL;
454
455 /* Initially, the new range has the same set of equivalences of
456 VAR's range. This will be revised before returning the final
457 value. Since assertions may be chained via mutually exclusive
458 predicates, we will need to trim the set of equivalences before
459 we are done. */
be44111e 460 gcc_assert (vr_p->equiv () == NULL);
461 vr_p->equiv_add (var, get_value_range (var), &vrp_equiv_obstack);
94d86adc 462
463 /* Extract a new range based on the asserted comparison for VAR and
464 LIMIT's value range. Notice that if LIMIT has an anti-range, we
465 will only use it for equality comparisons (EQ_EXPR). For any
466 other kind of assertion, we cannot derive a range from LIMIT's
467 anti-range that can be used to describe the new range. For
468 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
469 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
470 no single range for x_2 that could describe LE_EXPR, so we might
471 as well build the range [b_4, +INF] for it.
472 One special case we handle is extracting a range from a
473 range test encoded as (unsigned)var + CST <= limit. */
474 if (TREE_CODE (op) == NOP_EXPR
475 || TREE_CODE (op) == PLUS_EXPR)
476 {
477 if (TREE_CODE (op) == PLUS_EXPR)
478 {
479 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (op, 1)),
480 TREE_OPERAND (op, 1));
481 max = int_const_binop (PLUS_EXPR, limit, min);
482 op = TREE_OPERAND (op, 0);
483 }
484 else
485 {
486 min = build_int_cst (TREE_TYPE (var), 0);
487 max = limit;
488 }
489
490 /* Make sure to not set TREE_OVERFLOW on the final type
491 conversion. We are willingly interpreting large positive
492 unsigned values as negative signed values here. */
493 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
494 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
495
496 /* We can transform a max, min range to an anti-range or
be44111e 497 vice-versa. Use set_and_canonicalize which does this for
498 us. */
94d86adc 499 if (cond_code == LE_EXPR)
be44111e 500 vr_p->set_and_canonicalize (VR_RANGE, min, max, vr_p->equiv ());
94d86adc 501 else if (cond_code == GT_EXPR)
be44111e 502 vr_p->set_and_canonicalize (VR_ANTI_RANGE, min, max, vr_p->equiv ());
94d86adc 503 else
504 gcc_unreachable ();
505 }
506 else if (cond_code == EQ_EXPR)
507 {
be44111e 508 enum value_range_kind range_type;
94d86adc 509
510 if (limit_vr)
511 {
be44111e 512 range_type = limit_vr->kind ();
513 min = limit_vr->min ();
514 max = limit_vr->max ();
94d86adc 515 }
516 else
517 {
518 range_type = VR_RANGE;
519 min = limit;
520 max = limit;
521 }
522
be44111e 523 vr_p->update (range_type, min, max);
94d86adc 524
525 /* When asserting the equality VAR == LIMIT and LIMIT is another
526 SSA name, the new range will also inherit the equivalence set
527 from LIMIT. */
528 if (TREE_CODE (limit) == SSA_NAME)
be44111e 529 vr_p->equiv_add (limit, get_value_range (limit), &vrp_equiv_obstack);
94d86adc 530 }
531 else if (cond_code == NE_EXPR)
532 {
533 /* As described above, when LIMIT's range is an anti-range and
534 this assertion is an inequality (NE_EXPR), then we cannot
535 derive anything from the anti-range. For instance, if
536 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
537 not imply that VAR's range is [0, 0]. So, in the case of
538 anti-ranges, we just assert the inequality using LIMIT and
539 not its anti-range.
540
541 If LIMIT_VR is a range, we can only use it to build a new
542 anti-range if LIMIT_VR is a single-valued range. For
543 instance, if LIMIT_VR is [0, 1], the predicate
544 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
545 Rather, it means that for value 0 VAR should be ~[0, 0]
546 and for value 1, VAR should be ~[1, 1]. We cannot
547 represent these ranges.
548
549 The only situation in which we can build a valid
550 anti-range is when LIMIT_VR is a single-valued range
551 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
552 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
553 if (limit_vr
be44111e 554 && limit_vr->kind () == VR_RANGE
555 && compare_values (limit_vr->min (), limit_vr->max ()) == 0)
94d86adc 556 {
be44111e 557 min = limit_vr->min ();
558 max = limit_vr->max ();
94d86adc 559 }
560 else
561 {
562 /* In any other case, we cannot use LIMIT's range to build a
563 valid anti-range. */
564 min = max = limit;
565 }
566
567 /* If MIN and MAX cover the whole range for their type, then
568 just use the original LIMIT. */
569 if (INTEGRAL_TYPE_P (type)
570 && vrp_val_is_min (min)
571 && vrp_val_is_max (max))
572 min = max = limit;
573
be44111e 574 vr_p->set_and_canonicalize (VR_ANTI_RANGE, min, max, vr_p->equiv ());
94d86adc 575 }
576 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
577 {
578 min = TYPE_MIN_VALUE (type);
579
be44111e 580 if (limit_vr == NULL || limit_vr->kind () == VR_ANTI_RANGE)
94d86adc 581 max = limit;
582 else
583 {
584 /* If LIMIT_VR is of the form [N1, N2], we need to build the
585 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
586 LT_EXPR. */
be44111e 587 max = limit_vr->max ();
94d86adc 588 }
589
590 /* If the maximum value forces us to be out of bounds, simply punt.
591 It would be pointless to try and do anything more since this
592 all should be optimized away above us. */
593 if (cond_code == LT_EXPR
594 && compare_values (max, min) == 0)
5a780b31 595 vr_p->set_varying ();
94d86adc 596 else
597 {
598 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
599 if (cond_code == LT_EXPR)
600 {
601 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
602 && !TYPE_UNSIGNED (TREE_TYPE (max)))
603 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
604 build_int_cst (TREE_TYPE (max), -1));
605 else
606 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
607 build_int_cst (TREE_TYPE (max), 1));
608 /* Signal to compare_values_warnv this expr doesn't overflow. */
609 if (EXPR_P (max))
610 TREE_NO_WARNING (max) = 1;
611 }
612
be44111e 613 vr_p->update (VR_RANGE, min, max);
94d86adc 614 }
615 }
616 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
617 {
618 max = TYPE_MAX_VALUE (type);
619
be44111e 620 if (limit_vr == NULL || limit_vr->kind () == VR_ANTI_RANGE)
94d86adc 621 min = limit;
622 else
623 {
624 /* If LIMIT_VR is of the form [N1, N2], we need to build the
625 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
626 GT_EXPR. */
be44111e 627 min = limit_vr->min ();
94d86adc 628 }
629
630 /* If the minimum value forces us to be out of bounds, simply punt.
631 It would be pointless to try and do anything more since this
632 all should be optimized away above us. */
633 if (cond_code == GT_EXPR
634 && compare_values (min, max) == 0)
5a780b31 635 vr_p->set_varying ();
94d86adc 636 else
637 {
638 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
639 if (cond_code == GT_EXPR)
640 {
641 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
642 && !TYPE_UNSIGNED (TREE_TYPE (min)))
643 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
644 build_int_cst (TREE_TYPE (min), -1));
645 else
646 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
647 build_int_cst (TREE_TYPE (min), 1));
648 /* Signal to compare_values_warnv this expr doesn't overflow. */
649 if (EXPR_P (min))
650 TREE_NO_WARNING (min) = 1;
651 }
652
be44111e 653 vr_p->update (VR_RANGE, min, max);
94d86adc 654 }
655 }
656 else
657 gcc_unreachable ();
658
659 /* Finally intersect the new range with what we already know about var. */
be44111e 660 vr_p->intersect (get_value_range (var));
94d86adc 661}
662
663/* Extract value range information from an ASSERT_EXPR EXPR and store
664 it in *VR_P. */
665
666void
667vr_values::extract_range_from_assert (value_range *vr_p, tree expr)
668{
669 tree var = ASSERT_EXPR_VAR (expr);
670 tree cond = ASSERT_EXPR_COND (expr);
671 tree limit, op;
672 enum tree_code cond_code;
673 gcc_assert (COMPARISON_CLASS_P (cond));
674
675 /* Find VAR in the ASSERT_EXPR conditional. */
676 if (var == TREE_OPERAND (cond, 0)
677 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
678 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
679 {
680 /* If the predicate is of the form VAR COMP LIMIT, then we just
681 take LIMIT from the RHS and use the same comparison code. */
682 cond_code = TREE_CODE (cond);
683 limit = TREE_OPERAND (cond, 1);
684 op = TREE_OPERAND (cond, 0);
685 }
686 else
687 {
688 /* If the predicate is of the form LIMIT COMP VAR, then we need
689 to flip around the comparison code to create the proper range
690 for VAR. */
691 cond_code = swap_tree_comparison (TREE_CODE (cond));
692 limit = TREE_OPERAND (cond, 0);
693 op = TREE_OPERAND (cond, 1);
694 }
695 extract_range_for_var_from_comparison_expr (var, cond_code, op,
696 limit, vr_p);
697}
698
699/* Extract range information from SSA name VAR and store it in VR. If
700 VAR has an interesting range, use it. Otherwise, create the
701 range [VAR, VAR] and return it. This is useful in situations where
702 we may have conditionals testing values of VARYING names. For
703 instance,
704
705 x_3 = y_5;
706 if (x_3 > y_5)
707 ...
708
709 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
710 always false. */
711
712void
713vr_values::extract_range_from_ssa_name (value_range *vr, tree var)
714{
715 value_range *var_vr = get_value_range (var);
716
be44111e 717 if (!var_vr->varying_p ())
718 vr->deep_copy (var_vr);
94d86adc 719 else
48625f58 720 vr->set (var);
94d86adc 721
5ebf19e5 722 if (!vr->undefined_p ())
723 vr->equiv_add (var, get_value_range (var), &vrp_equiv_obstack);
94d86adc 724}
725
726/* Extract range information from a binary expression OP0 CODE OP1 based on
727 the ranges of each of its operands with resulting type EXPR_TYPE.
728 The resulting range is stored in *VR. */
729
730void
731vr_values::extract_range_from_binary_expr (value_range *vr,
732 enum tree_code code,
733 tree expr_type, tree op0, tree op1)
734{
94d86adc 735 /* Get value ranges for each operand. For constant operands, create
736 a new value range with the operand to simplify processing. */
48625f58 737 value_range_base vr0, vr1;
94d86adc 738 if (TREE_CODE (op0) == SSA_NAME)
739 vr0 = *(get_value_range (op0));
740 else if (is_gimple_min_invariant (op0))
48625f58 741 vr0.set (op0);
94d86adc 742 else
5a780b31 743 vr0.set_varying ();
94d86adc 744
745 if (TREE_CODE (op1) == SSA_NAME)
746 vr1 = *(get_value_range (op1));
747 else if (is_gimple_min_invariant (op1))
48625f58 748 vr1.set (op1);
94d86adc 749 else
5a780b31 750 vr1.set_varying ();
94d86adc 751
79218abb 752 /* If one argument is varying, we can sometimes still deduce a
753 range for the output: any + [3, +INF] is in [MIN+3, +INF]. */
754 if (INTEGRAL_TYPE_P (TREE_TYPE (op0))
755 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
756 {
be44111e 757 if (vr0.varying_p () && !vr1.varying_p ())
758 vr0 = value_range (VR_RANGE,
759 vrp_val_min (expr_type),
760 vrp_val_max (expr_type));
761 else if (vr1.varying_p () && !vr0.varying_p ())
762 vr1 = value_range (VR_RANGE,
763 vrp_val_min (expr_type),
764 vrp_val_max (expr_type));
79218abb 765 }
766
48625f58 767 ::extract_range_from_binary_expr (vr, code, expr_type, &vr0, &vr1);
94d86adc 768
a4d11b83 769 /* Set value_range for n in following sequence:
770 def = __builtin_memchr (arg, 0, sz)
771 n = def - arg
772 Here the range for n can be set to [0, PTRDIFF_MAX - 1]. */
773
be44111e 774 if (vr->varying_p ()
a4d11b83 775 && code == POINTER_DIFF_EXPR
776 && TREE_CODE (op0) == SSA_NAME
777 && TREE_CODE (op1) == SSA_NAME)
778 {
779 tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
780 tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
781 gcall *call_stmt = NULL;
782
783 if (TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
784 && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
785 && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
786 && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
787 && (call_stmt = dyn_cast<gcall *>(SSA_NAME_DEF_STMT (op0)))
788 && gimple_call_builtin_p (call_stmt, BUILT_IN_MEMCHR)
789 && operand_equal_p (op0, gimple_call_lhs (call_stmt), 0)
790 && operand_equal_p (op1, gimple_call_arg (call_stmt, 0), 0)
791 && integer_zerop (gimple_call_arg (call_stmt, 1)))
792 {
793 tree max = vrp_val_max (ptrdiff_type_node);
794 wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
795 tree range_min = build_zero_cst (expr_type);
796 tree range_max = wide_int_to_tree (expr_type, wmax - 1);
48625f58 797 vr->set (VR_RANGE, range_min, range_max);
a4d11b83 798 return;
799 }
800 }
801
94d86adc 802 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
803 and based on the other operand, for example if it was deduced from a
804 symbolic comparison. When a bound of the range of the first operand
805 is invariant, we set the corresponding bound of the new range to INF
806 in order to avoid recursing on the range of the second operand. */
be44111e 807 if (vr->varying_p ()
94d86adc 808 && (code == PLUS_EXPR || code == MINUS_EXPR)
809 && TREE_CODE (op1) == SSA_NAME
be44111e 810 && vr0.kind () == VR_RANGE
94d86adc 811 && symbolic_range_based_on_p (&vr0, op1))
812 {
813 const bool minus_p = (code == MINUS_EXPR);
be44111e 814 value_range n_vr1;
94d86adc 815
816 /* Try with VR0 and [-INF, OP1]. */
be44111e 817 if (is_gimple_min_invariant (minus_p ? vr0.max () : vr0.min ()))
48625f58 818 n_vr1.set (VR_RANGE, vrp_val_min (expr_type), op1);
94d86adc 819
820 /* Try with VR0 and [OP1, +INF]. */
be44111e 821 else if (is_gimple_min_invariant (minus_p ? vr0.min () : vr0.max ()))
48625f58 822 n_vr1.set (VR_RANGE, op1, vrp_val_max (expr_type));
94d86adc 823
824 /* Try with VR0 and [OP1, OP1]. */
825 else
48625f58 826 n_vr1.set (VR_RANGE, op1, op1);
94d86adc 827
48625f58 828 ::extract_range_from_binary_expr (vr, code, expr_type, &vr0, &n_vr1);
94d86adc 829 }
830
be44111e 831 if (vr->varying_p ()
94d86adc 832 && (code == PLUS_EXPR || code == MINUS_EXPR)
833 && TREE_CODE (op0) == SSA_NAME
be44111e 834 && vr1.kind () == VR_RANGE
94d86adc 835 && symbolic_range_based_on_p (&vr1, op0))
836 {
837 const bool minus_p = (code == MINUS_EXPR);
be44111e 838 value_range n_vr0;
94d86adc 839
840 /* Try with [-INF, OP0] and VR1. */
be44111e 841 if (is_gimple_min_invariant (minus_p ? vr1.max () : vr1.min ()))
48625f58 842 n_vr0.set (VR_RANGE, vrp_val_min (expr_type), op0);
94d86adc 843
844 /* Try with [OP0, +INF] and VR1. */
be44111e 845 else if (is_gimple_min_invariant (minus_p ? vr1.min (): vr1.max ()))
48625f58 846 n_vr0.set (VR_RANGE, op0, vrp_val_max (expr_type));
94d86adc 847
848 /* Try with [OP0, OP0] and VR1. */
849 else
48625f58 850 n_vr0.set (op0);
94d86adc 851
48625f58 852 ::extract_range_from_binary_expr (vr, code, expr_type, &n_vr0, &vr1);
94d86adc 853 }
854
855 /* If we didn't derive a range for MINUS_EXPR, and
856 op1's range is ~[op0,op0] or vice-versa, then we
857 can derive a non-null range. This happens often for
858 pointer subtraction. */
be44111e 859 if (vr->varying_p ()
57e83b58 860 && (code == MINUS_EXPR || code == POINTER_DIFF_EXPR)
94d86adc 861 && TREE_CODE (op0) == SSA_NAME
be44111e 862 && ((vr0.kind () == VR_ANTI_RANGE
863 && vr0.min () == op1
864 && vr0.min () == vr0.max ())
865 || (vr1.kind () == VR_ANTI_RANGE
866 && vr1.min () == op0
867 && vr1.min () == vr1.max ())))
a4be7d68 868 {
869 vr->set_nonzero (expr_type);
870 vr->equiv_clear ();
871 }
94d86adc 872}
873
874/* Extract range information from a unary expression CODE OP0 based on
875 the range of its operand with resulting type TYPE.
876 The resulting range is stored in *VR. */
877
878void
879vr_values::extract_range_from_unary_expr (value_range *vr, enum tree_code code,
880 tree type, tree op0)
881{
48625f58 882 value_range_base vr0;
94d86adc 883
884 /* Get value ranges for the operand. For constant operands, create
885 a new value range with the operand to simplify processing. */
886 if (TREE_CODE (op0) == SSA_NAME)
887 vr0 = *(get_value_range (op0));
888 else if (is_gimple_min_invariant (op0))
48625f58 889 vr0.set (op0);
94d86adc 890 else
5a780b31 891 vr0.set_varying ();
94d86adc 892
893 ::extract_range_from_unary_expr (vr, code, type, &vr0, TREE_TYPE (op0));
894}
895
896
897/* Extract range information from a conditional expression STMT based on
898 the ranges of each of its operands and the expression code. */
899
900void
901vr_values::extract_range_from_cond_expr (value_range *vr, gassign *stmt)
902{
94d86adc 903 /* Get value ranges for each operand. For constant operands, create
904 a new value range with the operand to simplify processing. */
be44111e 905 tree op0 = gimple_assign_rhs2 (stmt);
48625f58 906 value_range tem0;
907 value_range *vr0 = &tem0;
94d86adc 908 if (TREE_CODE (op0) == SSA_NAME)
48625f58 909 vr0 = get_value_range (op0);
94d86adc 910 else if (is_gimple_min_invariant (op0))
48625f58 911 tem0.set (op0);
94d86adc 912 else
48625f58 913 tem0.set_varying ();
94d86adc 914
be44111e 915 tree op1 = gimple_assign_rhs3 (stmt);
48625f58 916 value_range tem1;
917 value_range *vr1 = &tem1;
94d86adc 918 if (TREE_CODE (op1) == SSA_NAME)
48625f58 919 vr1 = get_value_range (op1);
94d86adc 920 else if (is_gimple_min_invariant (op1))
48625f58 921 tem1.set (op1);
94d86adc 922 else
48625f58 923 tem1.set_varying ();
94d86adc 924
925 /* The resulting value range is the union of the operand ranges */
48625f58 926 vr->deep_copy (vr0);
927 vr->union_ (vr1);
94d86adc 928}
929
930
931/* Extract range information from a comparison expression EXPR based
932 on the range of its operand and the expression code. */
933
934void
935vr_values::extract_range_from_comparison (value_range *vr, enum tree_code code,
936 tree type, tree op0, tree op1)
937{
938 bool sop;
939 tree val;
940
941 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
942 NULL);
943 if (val)
944 {
945 /* Since this expression was found on the RHS of an assignment,
946 its type may be different from _Bool. Convert VAL to EXPR's
947 type. */
948 val = fold_convert (type, val);
949 if (is_gimple_min_invariant (val))
48625f58 950 vr->set (val);
94d86adc 951 else
be44111e 952 vr->update (VR_RANGE, val, val);
94d86adc 953 }
954 else
955 /* The result of a comparison is always true or false. */
956 set_value_range_to_truthvalue (vr, type);
957}
958
959/* Helper function for simplify_internal_call_using_ranges and
960 extract_range_basic. Return true if OP0 SUBCODE OP1 for
961 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
962 always overflow. Set *OVF to true if it is known to always
963 overflow. */
964
965bool
966vr_values::check_for_binary_op_overflow (enum tree_code subcode, tree type,
967 tree op0, tree op1, bool *ovf)
968{
48625f58 969 value_range_base vr0, vr1;
94d86adc 970 if (TREE_CODE (op0) == SSA_NAME)
971 vr0 = *get_value_range (op0);
972 else if (TREE_CODE (op0) == INTEGER_CST)
48625f58 973 vr0.set (op0);
94d86adc 974 else
5a780b31 975 vr0.set_varying ();
94d86adc 976
977 if (TREE_CODE (op1) == SSA_NAME)
978 vr1 = *get_value_range (op1);
979 else if (TREE_CODE (op1) == INTEGER_CST)
48625f58 980 vr1.set (op1);
94d86adc 981 else
5a780b31 982 vr1.set_varying ();
94d86adc 983
be44111e 984 tree vr0min = vr0.min (), vr0max = vr0.max ();
985 tree vr1min = vr1.min (), vr1max = vr1.max ();
94d86adc 986 if (!range_int_cst_p (&vr0)
be44111e 987 || TREE_OVERFLOW (vr0min)
988 || TREE_OVERFLOW (vr0max))
94d86adc 989 {
be44111e 990 vr0min = vrp_val_min (TREE_TYPE (op0));
991 vr0max = vrp_val_max (TREE_TYPE (op0));
94d86adc 992 }
993 if (!range_int_cst_p (&vr1)
be44111e 994 || TREE_OVERFLOW (vr1min)
995 || TREE_OVERFLOW (vr1max))
94d86adc 996 {
be44111e 997 vr1min = vrp_val_min (TREE_TYPE (op1));
998 vr1max = vrp_val_max (TREE_TYPE (op1));
94d86adc 999 }
be44111e 1000 *ovf = arith_overflowed_p (subcode, type, vr0min,
1001 subcode == MINUS_EXPR ? vr1max : vr1min);
1002 if (arith_overflowed_p (subcode, type, vr0max,
1003 subcode == MINUS_EXPR ? vr1min : vr1max) != *ovf)
94d86adc 1004 return false;
1005 if (subcode == MULT_EXPR)
1006 {
be44111e 1007 if (arith_overflowed_p (subcode, type, vr0min, vr1max) != *ovf
1008 || arith_overflowed_p (subcode, type, vr0max, vr1min) != *ovf)
94d86adc 1009 return false;
1010 }
1011 if (*ovf)
1012 {
1013 /* So far we found that there is an overflow on the boundaries.
1014 That doesn't prove that there is an overflow even for all values
1015 in between the boundaries. For that compute widest_int range
1016 of the result and see if it doesn't overlap the range of
1017 type. */
1018 widest_int wmin, wmax;
1019 widest_int w[4];
1020 int i;
be44111e 1021 w[0] = wi::to_widest (vr0min);
1022 w[1] = wi::to_widest (vr0max);
1023 w[2] = wi::to_widest (vr1min);
1024 w[3] = wi::to_widest (vr1max);
94d86adc 1025 for (i = 0; i < 4; i++)
1026 {
1027 widest_int wt;
1028 switch (subcode)
1029 {
1030 case PLUS_EXPR:
1031 wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
1032 break;
1033 case MINUS_EXPR:
1034 wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
1035 break;
1036 case MULT_EXPR:
1037 wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
1038 break;
1039 default:
1040 gcc_unreachable ();
1041 }
1042 if (i == 0)
1043 {
1044 wmin = wt;
1045 wmax = wt;
1046 }
1047 else
1048 {
1049 wmin = wi::smin (wmin, wt);
1050 wmax = wi::smax (wmax, wt);
1051 }
1052 }
1053 /* The result of op0 CODE op1 is known to be in range
1054 [wmin, wmax]. */
1055 widest_int wtmin = wi::to_widest (vrp_val_min (type));
1056 widest_int wtmax = wi::to_widest (vrp_val_max (type));
1057 /* If all values in [wmin, wmax] are smaller than
1058 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
1059 the arithmetic operation will always overflow. */
1060 if (wmax < wtmin || wmin > wtmax)
1061 return true;
1062 return false;
1063 }
1064 return true;
1065}
1066
1067/* Try to derive a nonnegative or nonzero range out of STMT relying
1068 primarily on generic routines in fold in conjunction with range data.
1069 Store the result in *VR */
1070
1071void
1072vr_values::extract_range_basic (value_range *vr, gimple *stmt)
1073{
1074 bool sop;
1075 tree type = gimple_expr_type (stmt);
1076
1077 if (is_gimple_call (stmt))
1078 {
1079 tree arg;
1080 int mini, maxi, zerov = 0, prec;
1081 enum tree_code subcode = ERROR_MARK;
1082 combined_fn cfn = gimple_call_combined_fn (stmt);
1083 scalar_int_mode mode;
1084
1085 switch (cfn)
1086 {
1087 case CFN_BUILT_IN_CONSTANT_P:
1088 /* If the call is __builtin_constant_p and the argument is a
1089 function parameter resolve it to false. This avoids bogus
1090 array bound warnings.
1091 ??? We could do this as early as inlining is finished. */
1092 arg = gimple_call_arg (stmt, 0);
1093 if (TREE_CODE (arg) == SSA_NAME
1094 && SSA_NAME_IS_DEFAULT_DEF (arg)
1095 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL
1096 && cfun->after_inlining)
1097 {
a4be7d68 1098 vr->set_zero (type);
1099 vr->equiv_clear ();
94d86adc 1100 return;
1101 }
1102 break;
1103 /* Both __builtin_ffs* and __builtin_popcount return
1104 [0, prec]. */
1105 CASE_CFN_FFS:
1106 CASE_CFN_POPCOUNT:
1107 arg = gimple_call_arg (stmt, 0);
1108 prec = TYPE_PRECISION (TREE_TYPE (arg));
1109 mini = 0;
1110 maxi = prec;
1111 if (TREE_CODE (arg) == SSA_NAME)
1112 {
1113 value_range *vr0 = get_value_range (arg);
6180f4cd 1114 /* If arg is non-zero, then ffs or popcount are non-zero. */
1115 if (range_includes_zero_p (vr0) == 0)
94d86adc 1116 mini = 1;
1117 /* If some high bits are known to be zero,
1118 we can decrease the maximum. */
be44111e 1119 if (vr0->kind () == VR_RANGE
1120 && TREE_CODE (vr0->max ()) == INTEGER_CST
1121 && !operand_less_p (vr0->min (),
1122 build_zero_cst (TREE_TYPE (vr0->min ()))))
1123 maxi = tree_floor_log2 (vr0->max ()) + 1;
94d86adc 1124 }
1125 goto bitop_builtin;
1126 /* __builtin_parity* returns [0, 1]. */
1127 CASE_CFN_PARITY:
1128 mini = 0;
1129 maxi = 1;
1130 goto bitop_builtin;
1131 /* __builtin_c[lt]z* return [0, prec-1], except for
1132 when the argument is 0, but that is undefined behavior.
1133 On many targets where the CLZ RTL or optab value is defined
1134 for 0 the value is prec, so include that in the range
1135 by default. */
1136 CASE_CFN_CLZ:
1137 arg = gimple_call_arg (stmt, 0);
1138 prec = TYPE_PRECISION (TREE_TYPE (arg));
1139 mini = 0;
1140 maxi = prec;
1141 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
1142 if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
1143 && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov)
1144 /* Handle only the single common value. */
1145 && zerov != prec)
1146 /* Magic value to give up, unless vr0 proves
1147 arg is non-zero. */
1148 mini = -2;
1149 if (TREE_CODE (arg) == SSA_NAME)
1150 {
1151 value_range *vr0 = get_value_range (arg);
1152 /* From clz of VR_RANGE minimum we can compute
1153 result maximum. */
be44111e 1154 if (vr0->kind () == VR_RANGE
1155 && TREE_CODE (vr0->min ()) == INTEGER_CST)
94d86adc 1156 {
be44111e 1157 maxi = prec - 1 - tree_floor_log2 (vr0->min ());
94d86adc 1158 if (maxi != prec)
1159 mini = 0;
1160 }
be44111e 1161 else if (vr0->kind () == VR_ANTI_RANGE
1162 && integer_zerop (vr0->min ()))
94d86adc 1163 {
1164 maxi = prec - 1;
1165 mini = 0;
1166 }
1167 if (mini == -2)
1168 break;
1169 /* From clz of VR_RANGE maximum we can compute
1170 result minimum. */
be44111e 1171 if (vr0->kind () == VR_RANGE
1172 && TREE_CODE (vr0->max ()) == INTEGER_CST)
94d86adc 1173 {
be44111e 1174 mini = prec - 1 - tree_floor_log2 (vr0->max ());
94d86adc 1175 if (mini == prec)
1176 break;
1177 }
1178 }
1179 if (mini == -2)
1180 break;
1181 goto bitop_builtin;
1182 /* __builtin_ctz* return [0, prec-1], except for
1183 when the argument is 0, but that is undefined behavior.
1184 If there is a ctz optab for this mode and
1185 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
1186 otherwise just assume 0 won't be seen. */
1187 CASE_CFN_CTZ:
1188 arg = gimple_call_arg (stmt, 0);
1189 prec = TYPE_PRECISION (TREE_TYPE (arg));
1190 mini = 0;
1191 maxi = prec - 1;
1192 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
1193 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
1194 && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov))
1195 {
1196 /* Handle only the two common values. */
1197 if (zerov == -1)
1198 mini = -1;
1199 else if (zerov == prec)
1200 maxi = prec;
1201 else
1202 /* Magic value to give up, unless vr0 proves
1203 arg is non-zero. */
1204 mini = -2;
1205 }
1206 if (TREE_CODE (arg) == SSA_NAME)
1207 {
1208 value_range *vr0 = get_value_range (arg);
1209 /* If arg is non-zero, then use [0, prec - 1]. */
be44111e 1210 if ((vr0->kind () == VR_RANGE
1211 && integer_nonzerop (vr0->min ()))
1212 || (vr0->kind () == VR_ANTI_RANGE
1213 && integer_zerop (vr0->min ())))
94d86adc 1214 {
1215 mini = 0;
1216 maxi = prec - 1;
1217 }
1218 /* If some high bits are known to be zero,
1219 we can decrease the result maximum. */
be44111e 1220 if (vr0->kind () == VR_RANGE
1221 && TREE_CODE (vr0->max ()) == INTEGER_CST)
94d86adc 1222 {
be44111e 1223 maxi = tree_floor_log2 (vr0->max ());
94d86adc 1224 /* For vr0 [0, 0] give up. */
1225 if (maxi == -1)
1226 break;
1227 }
1228 }
1229 if (mini == -2)
1230 break;
1231 goto bitop_builtin;
1232 /* __builtin_clrsb* returns [0, prec-1]. */
1233 CASE_CFN_CLRSB:
1234 arg = gimple_call_arg (stmt, 0);
1235 prec = TYPE_PRECISION (TREE_TYPE (arg));
1236 mini = 0;
1237 maxi = prec - 1;
1238 goto bitop_builtin;
1239 bitop_builtin:
48625f58 1240 vr->set (VR_RANGE, build_int_cst (type, mini),
1241 build_int_cst (type, maxi));
94d86adc 1242 return;
1243 case CFN_UBSAN_CHECK_ADD:
1244 subcode = PLUS_EXPR;
1245 break;
1246 case CFN_UBSAN_CHECK_SUB:
1247 subcode = MINUS_EXPR;
1248 break;
1249 case CFN_UBSAN_CHECK_MUL:
1250 subcode = MULT_EXPR;
1251 break;
1252 case CFN_GOACC_DIM_SIZE:
1253 case CFN_GOACC_DIM_POS:
1254 /* Optimizing these two internal functions helps the loop
1255 optimizer eliminate outer comparisons. Size is [1,N]
1256 and pos is [0,N-1]. */
1257 {
1258 bool is_pos = cfn == CFN_GOACC_DIM_POS;
1259 int axis = oacc_get_ifn_dim_arg (stmt);
1260 int size = oacc_get_fn_dim_size (current_function_decl, axis);
1261
1262 if (!size)
1263 /* If it's dynamic, the backend might know a hardware
1264 limitation. */
1265 size = targetm.goacc.dim_limit (axis);
1266
1267 tree type = TREE_TYPE (gimple_call_lhs (stmt));
48625f58 1268 vr->set(VR_RANGE, build_int_cst (type, is_pos ? 0 : 1),
1269 size
1270 ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
94d86adc 1271 }
1272 return;
1273 case CFN_BUILT_IN_STRLEN:
1274 if (tree lhs = gimple_call_lhs (stmt))
1275 if (ptrdiff_type_node
1276 && (TYPE_PRECISION (ptrdiff_type_node)
1277 == TYPE_PRECISION (TREE_TYPE (lhs))))
1278 {
1279 tree type = TREE_TYPE (lhs);
1280 tree max = vrp_val_max (ptrdiff_type_node);
1281 wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
1282 tree range_min = build_zero_cst (type);
1283 tree range_max = wide_int_to_tree (type, wmax - 1);
48625f58 1284 vr->set (VR_RANGE, range_min, range_max);
94d86adc 1285 return;
1286 }
1287 break;
1288 default:
1289 break;
1290 }
1291 if (subcode != ERROR_MARK)
1292 {
1293 bool saved_flag_wrapv = flag_wrapv;
1294 /* Pretend the arithmetics is wrapping. If there is
1295 any overflow, we'll complain, but will actually do
1296 wrapping operation. */
1297 flag_wrapv = 1;
1298 extract_range_from_binary_expr (vr, subcode, type,
1299 gimple_call_arg (stmt, 0),
1300 gimple_call_arg (stmt, 1));
1301 flag_wrapv = saved_flag_wrapv;
1302
1303 /* If for both arguments vrp_valueize returned non-NULL,
1304 this should have been already folded and if not, it
1305 wasn't folded because of overflow. Avoid removing the
1306 UBSAN_CHECK_* calls in that case. */
be44111e 1307 if (vr->kind () == VR_RANGE
1308 && (vr->min () == vr->max ()
1309 || operand_equal_p (vr->min (), vr->max (), 0)))
5a780b31 1310 vr->set_varying ();
94d86adc 1311 return;
1312 }
1313 }
1314 /* Handle extraction of the two results (result of arithmetics and
1315 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
1316 internal function. Similarly from ATOMIC_COMPARE_EXCHANGE. */
1317 else if (is_gimple_assign (stmt)
1318 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1319 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1320 && INTEGRAL_TYPE_P (type))
1321 {
1322 enum tree_code code = gimple_assign_rhs_code (stmt);
1323 tree op = gimple_assign_rhs1 (stmt);
1324 if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
1325 {
1326 gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
1327 if (is_gimple_call (g) && gimple_call_internal_p (g))
1328 {
1329 enum tree_code subcode = ERROR_MARK;
1330 switch (gimple_call_internal_fn (g))
1331 {
1332 case IFN_ADD_OVERFLOW:
1333 subcode = PLUS_EXPR;
1334 break;
1335 case IFN_SUB_OVERFLOW:
1336 subcode = MINUS_EXPR;
1337 break;
1338 case IFN_MUL_OVERFLOW:
1339 subcode = MULT_EXPR;
1340 break;
1341 case IFN_ATOMIC_COMPARE_EXCHANGE:
1342 if (code == IMAGPART_EXPR)
1343 {
1344 /* This is the boolean return value whether compare and
1345 exchange changed anything or not. */
48625f58 1346 vr->set (VR_RANGE, build_int_cst (type, 0),
1347 build_int_cst (type, 1));
94d86adc 1348 return;
1349 }
1350 break;
1351 default:
1352 break;
1353 }
1354 if (subcode != ERROR_MARK)
1355 {
1356 tree op0 = gimple_call_arg (g, 0);
1357 tree op1 = gimple_call_arg (g, 1);
1358 if (code == IMAGPART_EXPR)
1359 {
1360 bool ovf = false;
1361 if (check_for_binary_op_overflow (subcode, type,
1362 op0, op1, &ovf))
48625f58 1363 vr->set (build_int_cst (type, ovf));
94d86adc 1364 else if (TYPE_PRECISION (type) == 1
1365 && !TYPE_UNSIGNED (type))
5a780b31 1366 vr->set_varying ();
94d86adc 1367 else
48625f58 1368 vr->set (VR_RANGE, build_int_cst (type, 0),
1369 build_int_cst (type, 1));
94d86adc 1370 }
1371 else if (types_compatible_p (type, TREE_TYPE (op0))
1372 && types_compatible_p (type, TREE_TYPE (op1)))
1373 {
1374 bool saved_flag_wrapv = flag_wrapv;
1375 /* Pretend the arithmetics is wrapping. If there is
1376 any overflow, IMAGPART_EXPR will be set. */
1377 flag_wrapv = 1;
1378 extract_range_from_binary_expr (vr, subcode, type,
1379 op0, op1);
1380 flag_wrapv = saved_flag_wrapv;
1381 }
1382 else
1383 {
be44111e 1384 value_range vr0, vr1;
94d86adc 1385 bool saved_flag_wrapv = flag_wrapv;
1386 /* Pretend the arithmetics is wrapping. If there is
1387 any overflow, IMAGPART_EXPR will be set. */
1388 flag_wrapv = 1;
1389 extract_range_from_unary_expr (&vr0, NOP_EXPR,
1390 type, op0);
1391 extract_range_from_unary_expr (&vr1, NOP_EXPR,
1392 type, op1);
48625f58 1393 ::extract_range_from_binary_expr (vr, subcode, type,
94d86adc 1394 &vr0, &vr1);
1395 flag_wrapv = saved_flag_wrapv;
1396 }
1397 return;
1398 }
1399 }
1400 }
1401 }
1402 if (INTEGRAL_TYPE_P (type)
1403 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
1404 set_value_range_to_nonnegative (vr, type);
1405 else if (vrp_stmt_computes_nonzero (stmt))
a4be7d68 1406 {
1407 vr->set_nonzero (type);
1408 vr->equiv_clear ();
1409 }
94d86adc 1410 else
5a780b31 1411 vr->set_varying ();
94d86adc 1412}
1413
1414
1415/* Try to compute a useful range out of assignment STMT and store it
1416 in *VR. */
1417
1418void
1419vr_values::extract_range_from_assignment (value_range *vr, gassign *stmt)
1420{
1421 enum tree_code code = gimple_assign_rhs_code (stmt);
1422
1423 if (code == ASSERT_EXPR)
1424 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
1425 else if (code == SSA_NAME)
1426 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
1427 else if (TREE_CODE_CLASS (code) == tcc_binary)
1428 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
1429 gimple_expr_type (stmt),
1430 gimple_assign_rhs1 (stmt),
1431 gimple_assign_rhs2 (stmt));
1432 else if (TREE_CODE_CLASS (code) == tcc_unary)
1433 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
1434 gimple_expr_type (stmt),
1435 gimple_assign_rhs1 (stmt));
1436 else if (code == COND_EXPR)
1437 extract_range_from_cond_expr (vr, stmt);
1438 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1439 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
1440 gimple_expr_type (stmt),
1441 gimple_assign_rhs1 (stmt),
1442 gimple_assign_rhs2 (stmt));
1443 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
1444 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
48625f58 1445 vr->set (gimple_assign_rhs1 (stmt));
94d86adc 1446 else
5a780b31 1447 vr->set_varying ();
94d86adc 1448
be44111e 1449 if (vr->varying_p ())
94d86adc 1450 extract_range_basic (vr, stmt);
1451}
1452
1453/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
1454
1455 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
1456 all the values in the ranges.
1457
1458 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
1459
1460 - Return NULL_TREE if it is not always possible to determine the
1461 value of the comparison.
1462
1463 Also set *STRICT_OVERFLOW_P to indicate whether comparision evaluation
1464 assumed signed overflow is undefined. */
1465
1466
1467static tree
1468compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1,
1469 bool *strict_overflow_p)
1470{
1471 /* VARYING or UNDEFINED ranges cannot be compared. */
be44111e 1472 if (vr0->varying_p ()
1473 || vr0->undefined_p ()
1474 || vr1->varying_p ()
1475 || vr1->undefined_p ())
94d86adc 1476 return NULL_TREE;
1477
1478 /* Anti-ranges need to be handled separately. */
be44111e 1479 if (vr0->kind () == VR_ANTI_RANGE || vr1->kind () == VR_ANTI_RANGE)
94d86adc 1480 {
1481 /* If both are anti-ranges, then we cannot compute any
1482 comparison. */
be44111e 1483 if (vr0->kind () == VR_ANTI_RANGE && vr1->kind () == VR_ANTI_RANGE)
94d86adc 1484 return NULL_TREE;
1485
1486 /* These comparisons are never statically computable. */
1487 if (comp == GT_EXPR
1488 || comp == GE_EXPR
1489 || comp == LT_EXPR
1490 || comp == LE_EXPR)
1491 return NULL_TREE;
1492
1493 /* Equality can be computed only between a range and an
1494 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
be44111e 1495 if (vr0->kind () == VR_RANGE)
94d86adc 1496 {
1497 /* To simplify processing, make VR0 the anti-range. */
1498 value_range *tmp = vr0;
1499 vr0 = vr1;
1500 vr1 = tmp;
1501 }
1502
1503 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
1504
be44111e 1505 if (compare_values_warnv (vr0->min (), vr1->min (), strict_overflow_p) == 0
1506 && compare_values_warnv (vr0->max (), vr1->max (), strict_overflow_p) == 0)
94d86adc 1507 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
1508
1509 return NULL_TREE;
1510 }
1511
1512 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
1513 operands around and change the comparison code. */
1514 if (comp == GT_EXPR || comp == GE_EXPR)
1515 {
1516 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
1517 std::swap (vr0, vr1);
1518 }
1519
1520 if (comp == EQ_EXPR)
1521 {
1522 /* Equality may only be computed if both ranges represent
1523 exactly one value. */
be44111e 1524 if (compare_values_warnv (vr0->min (), vr0->max (), strict_overflow_p) == 0
1525 && compare_values_warnv (vr1->min (), vr1->max (), strict_overflow_p) == 0)
94d86adc 1526 {
be44111e 1527 int cmp_min = compare_values_warnv (vr0->min (), vr1->min (),
94d86adc 1528 strict_overflow_p);
be44111e 1529 int cmp_max = compare_values_warnv (vr0->max (), vr1->max (),
94d86adc 1530 strict_overflow_p);
1531 if (cmp_min == 0 && cmp_max == 0)
1532 return boolean_true_node;
1533 else if (cmp_min != -2 && cmp_max != -2)
1534 return boolean_false_node;
1535 }
1536 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
be44111e 1537 else if (compare_values_warnv (vr0->min (), vr1->max (),
94d86adc 1538 strict_overflow_p) == 1
be44111e 1539 || compare_values_warnv (vr1->min (), vr0->max (),
94d86adc 1540 strict_overflow_p) == 1)
1541 return boolean_false_node;
1542
1543 return NULL_TREE;
1544 }
1545 else if (comp == NE_EXPR)
1546 {
1547 int cmp1, cmp2;
1548
1549 /* If VR0 is completely to the left or completely to the right
1550 of VR1, they are always different. Notice that we need to
1551 make sure that both comparisons yield similar results to
1552 avoid comparing values that cannot be compared at
1553 compile-time. */
be44111e 1554 cmp1 = compare_values_warnv (vr0->max (), vr1->min (), strict_overflow_p);
1555 cmp2 = compare_values_warnv (vr0->min (), vr1->max (), strict_overflow_p);
94d86adc 1556 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
1557 return boolean_true_node;
1558
1559 /* If VR0 and VR1 represent a single value and are identical,
1560 return false. */
be44111e 1561 else if (compare_values_warnv (vr0->min (), vr0->max (),
94d86adc 1562 strict_overflow_p) == 0
be44111e 1563 && compare_values_warnv (vr1->min (), vr1->max (),
94d86adc 1564 strict_overflow_p) == 0
be44111e 1565 && compare_values_warnv (vr0->min (), vr1->min (),
94d86adc 1566 strict_overflow_p) == 0
be44111e 1567 && compare_values_warnv (vr0->max (), vr1->max (),
94d86adc 1568 strict_overflow_p) == 0)
1569 return boolean_false_node;
1570
1571 /* Otherwise, they may or may not be different. */
1572 else
1573 return NULL_TREE;
1574 }
1575 else if (comp == LT_EXPR || comp == LE_EXPR)
1576 {
1577 int tst;
1578
1579 /* If VR0 is to the left of VR1, return true. */
be44111e 1580 tst = compare_values_warnv (vr0->max (), vr1->min (), strict_overflow_p);
94d86adc 1581 if ((comp == LT_EXPR && tst == -1)
1582 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
1583 return boolean_true_node;
1584
1585 /* If VR0 is to the right of VR1, return false. */
be44111e 1586 tst = compare_values_warnv (vr0->min (), vr1->max (), strict_overflow_p);
94d86adc 1587 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
1588 || (comp == LE_EXPR && tst == 1))
1589 return boolean_false_node;
1590
1591 /* Otherwise, we don't know. */
1592 return NULL_TREE;
1593 }
1594
1595 gcc_unreachable ();
1596}
1597
1598/* Given a value range VR, a value VAL and a comparison code COMP, return
1599 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
1600 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
1601 always returns false. Return NULL_TREE if it is not always
1602 possible to determine the value of the comparison. Also set
1603 *STRICT_OVERFLOW_P to indicate whether comparision evaluation
1604 assumed signed overflow is undefined. */
1605
1606static tree
1607compare_range_with_value (enum tree_code comp, value_range *vr, tree val,
1608 bool *strict_overflow_p)
1609{
be44111e 1610 if (vr->varying_p () || vr->undefined_p ())
94d86adc 1611 return NULL_TREE;
1612
1613 /* Anti-ranges need to be handled separately. */
be44111e 1614 if (vr->kind () == VR_ANTI_RANGE)
94d86adc 1615 {
1616 /* For anti-ranges, the only predicates that we can compute at
1617 compile time are equality and inequality. */
1618 if (comp == GT_EXPR
1619 || comp == GE_EXPR
1620 || comp == LT_EXPR
1621 || comp == LE_EXPR)
1622 return NULL_TREE;
1623
1624 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
be44111e 1625 if (value_inside_range (val, vr->min (), vr->max ()) == 1)
94d86adc 1626 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
1627
1628 return NULL_TREE;
1629 }
1630
1631 if (comp == EQ_EXPR)
1632 {
1633 /* EQ_EXPR may only be computed if VR represents exactly
1634 one value. */
be44111e 1635 if (compare_values_warnv (vr->min (), vr->max (), strict_overflow_p) == 0)
94d86adc 1636 {
be44111e 1637 int cmp = compare_values_warnv (vr->min (), val, strict_overflow_p);
94d86adc 1638 if (cmp == 0)
1639 return boolean_true_node;
1640 else if (cmp == -1 || cmp == 1 || cmp == 2)
1641 return boolean_false_node;
1642 }
be44111e 1643 else if (compare_values_warnv (val, vr->min (), strict_overflow_p) == -1
1644 || compare_values_warnv (vr->max (), val, strict_overflow_p) == -1)
94d86adc 1645 return boolean_false_node;
1646
1647 return NULL_TREE;
1648 }
1649 else if (comp == NE_EXPR)
1650 {
1651 /* If VAL is not inside VR, then they are always different. */
be44111e 1652 if (compare_values_warnv (vr->max (), val, strict_overflow_p) == -1
1653 || compare_values_warnv (vr->min (), val, strict_overflow_p) == 1)
94d86adc 1654 return boolean_true_node;
1655
1656 /* If VR represents exactly one value equal to VAL, then return
1657 false. */
be44111e 1658 if (compare_values_warnv (vr->min (), vr->max (), strict_overflow_p) == 0
1659 && compare_values_warnv (vr->min (), val, strict_overflow_p) == 0)
94d86adc 1660 return boolean_false_node;
1661
1662 /* Otherwise, they may or may not be different. */
1663 return NULL_TREE;
1664 }
1665 else if (comp == LT_EXPR || comp == LE_EXPR)
1666 {
1667 int tst;
1668
1669 /* If VR is to the left of VAL, return true. */
be44111e 1670 tst = compare_values_warnv (vr->max (), val, strict_overflow_p);
94d86adc 1671 if ((comp == LT_EXPR && tst == -1)
1672 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
1673 return boolean_true_node;
1674
1675 /* If VR is to the right of VAL, return false. */
be44111e 1676 tst = compare_values_warnv (vr->min (), val, strict_overflow_p);
94d86adc 1677 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
1678 || (comp == LE_EXPR && tst == 1))
1679 return boolean_false_node;
1680
1681 /* Otherwise, we don't know. */
1682 return NULL_TREE;
1683 }
1684 else if (comp == GT_EXPR || comp == GE_EXPR)
1685 {
1686 int tst;
1687
1688 /* If VR is to the right of VAL, return true. */
be44111e 1689 tst = compare_values_warnv (vr->min (), val, strict_overflow_p);
94d86adc 1690 if ((comp == GT_EXPR && tst == 1)
1691 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
1692 return boolean_true_node;
1693
1694 /* If VR is to the left of VAL, return false. */
be44111e 1695 tst = compare_values_warnv (vr->max (), val, strict_overflow_p);
94d86adc 1696 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
1697 || (comp == GE_EXPR && tst == -1))
1698 return boolean_false_node;
1699
1700 /* Otherwise, we don't know. */
1701 return NULL_TREE;
1702 }
1703
1704 gcc_unreachable ();
1705}
1706/* Given a range VR, a LOOP and a variable VAR, determine whether it
1707 would be profitable to adjust VR using scalar evolution information
1708 for VAR. If so, update VR with the new limits. */
1709
1710void
1711vr_values::adjust_range_with_scev (value_range *vr, struct loop *loop,
1712 gimple *stmt, tree var)
1713{
1714 tree init, step, chrec, tmin, tmax, min, max, type, tem;
1715 enum ev_direction dir;
1716
1717 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1718 better opportunities than a regular range, but I'm not sure. */
be44111e 1719 if (vr->kind () == VR_ANTI_RANGE)
94d86adc 1720 return;
1721
1722 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1723
1724 /* Like in PR19590, scev can return a constant function. */
1725 if (is_gimple_min_invariant (chrec))
1726 {
48625f58 1727 vr->set (chrec);
94d86adc 1728 return;
1729 }
1730
1731 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1732 return;
1733
1734 init = initial_condition_in_loop_num (chrec, loop->num);
1735 tem = op_with_constant_singleton_value_range (init);
1736 if (tem)
1737 init = tem;
1738 step = evolution_part_in_loop_num (chrec, loop->num);
1739 tem = op_with_constant_singleton_value_range (step);
1740 if (tem)
1741 step = tem;
1742
1743 /* If STEP is symbolic, we can't know whether INIT will be the
1744 minimum or maximum value in the range. Also, unless INIT is
1745 a simple expression, compare_values and possibly other functions
1746 in tree-vrp won't be able to handle it. */
1747 if (step == NULL_TREE
1748 || !is_gimple_min_invariant (step)
1749 || !valid_value_p (init))
1750 return;
1751
1752 dir = scev_direction (chrec);
1753 if (/* Do not adjust ranges if we do not know whether the iv increases
1754 or decreases, ... */
1755 dir == EV_DIR_UNKNOWN
1756 /* ... or if it may wrap. */
1757 || scev_probably_wraps_p (NULL_TREE, init, step, stmt,
1758 get_chrec_loop (chrec), true))
1759 return;
1760
1761 type = TREE_TYPE (var);
1762 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
1763 tmin = lower_bound_in_type (type, type);
1764 else
1765 tmin = TYPE_MIN_VALUE (type);
1766 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
1767 tmax = upper_bound_in_type (type, type);
1768 else
1769 tmax = TYPE_MAX_VALUE (type);
1770
1771 /* Try to use estimated number of iterations for the loop to constrain the
1772 final value in the evolution. */
1773 if (TREE_CODE (step) == INTEGER_CST
1774 && is_gimple_val (init)
1775 && (TREE_CODE (init) != SSA_NAME
be44111e 1776 || get_value_range (init)->kind () == VR_RANGE))
94d86adc 1777 {
1778 widest_int nit;
1779
1780 /* We are only entering here for loop header PHI nodes, so using
1781 the number of latch executions is the correct thing to use. */
1782 if (max_loop_iterations (loop, &nit))
1783 {
be44111e 1784 value_range maxvr;
94d86adc 1785 signop sgn = TYPE_SIGN (TREE_TYPE (step));
30b5769f 1786 wi::overflow_type overflow;
94d86adc 1787
1788 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
1789 &overflow);
1790 /* If the multiplication overflowed we can't do a meaningful
1791 adjustment. Likewise if the result doesn't fit in the type
1792 of the induction variable. For a signed type we have to
1793 check whether the result has the expected signedness which
1794 is that of the step as number of iterations is unsigned. */
1795 if (!overflow
1796 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
1797 && (sgn == UNSIGNED
1798 || wi::gts_p (wtmp, 0) == wi::gts_p (wi::to_wide (step), 0)))
1799 {
1800 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
1801 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
1802 TREE_TYPE (init), init, tem);
1803 /* Likewise if the addition did. */
be44111e 1804 if (maxvr.kind () == VR_RANGE)
94d86adc 1805 {
48625f58 1806 value_range_base initvr;
94d86adc 1807
1808 if (TREE_CODE (init) == SSA_NAME)
1809 initvr = *(get_value_range (init));
1810 else if (is_gimple_min_invariant (init))
48625f58 1811 initvr.set (init);
94d86adc 1812 else
1813 return;
1814
1815 /* Check if init + nit * step overflows. Though we checked
1816 scev {init, step}_loop doesn't wrap, it is not enough
1817 because the loop may exit immediately. Overflow could
1818 happen in the plus expression in this case. */
1819 if ((dir == EV_DIR_DECREASES
be44111e 1820 && compare_values (maxvr.min (), initvr.min ()) != -1)
94d86adc 1821 || (dir == EV_DIR_GROWS
be44111e 1822 && compare_values (maxvr.max (), initvr.max ()) != 1))
94d86adc 1823 return;
1824
be44111e 1825 tmin = maxvr.min ();
1826 tmax = maxvr.max ();
94d86adc 1827 }
1828 }
1829 }
1830 }
1831
be44111e 1832 if (vr->varying_p () || vr->undefined_p ())
94d86adc 1833 {
1834 min = tmin;
1835 max = tmax;
1836
1837 /* For VARYING or UNDEFINED ranges, just about anything we get
1838 from scalar evolutions should be better. */
1839
1840 if (dir == EV_DIR_DECREASES)
1841 max = init;
1842 else
1843 min = init;
1844 }
be44111e 1845 else if (vr->kind () == VR_RANGE)
94d86adc 1846 {
be44111e 1847 min = vr->min ();
1848 max = vr->max ();
94d86adc 1849
1850 if (dir == EV_DIR_DECREASES)
1851 {
be44111e 1852 /* INIT is the maximum value. If INIT is lower than VR->MAX ()
1853 but no smaller than VR->MIN (), set VR->MAX () to INIT. */
94d86adc 1854 if (compare_values (init, max) == -1)
1855 max = init;
1856
1857 /* According to the loop information, the variable does not
1858 overflow. */
1859 if (compare_values (min, tmin) == -1)
1860 min = tmin;
1861
1862 }
1863 else
1864 {
be44111e 1865 /* If INIT is bigger than VR->MIN (), set VR->MIN () to INIT. */
94d86adc 1866 if (compare_values (init, min) == 1)
1867 min = init;
1868
1869 if (compare_values (tmax, max) == -1)
1870 max = tmax;
1871 }
1872 }
1873 else
1874 return;
1875
1876 /* If we just created an invalid range with the minimum
1877 greater than the maximum, we fail conservatively.
1878 This should happen only in unreachable
1879 parts of code, or for invalid programs. */
1880 if (compare_values (min, max) == 1)
1881 return;
1882
1883 /* Even for valid range info, sometimes overflow flag will leak in.
1884 As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
1885 drop them. */
1886 if (TREE_OVERFLOW_P (min))
1887 min = drop_tree_overflow (min);
1888 if (TREE_OVERFLOW_P (max))
1889 max = drop_tree_overflow (max);
1890
be44111e 1891 vr->update (VR_RANGE, min, max);
94d86adc 1892}
1893
1894/* Dump value ranges of all SSA_NAMEs to FILE. */
1895
1896void
1897vr_values::dump_all_value_ranges (FILE *file)
1898{
1899 size_t i;
1900
1901 for (i = 0; i < num_vr_values; i++)
1902 {
1903 if (vr_value[i])
1904 {
1905 print_generic_expr (file, ssa_name (i));
1906 fprintf (file, ": ");
1907 dump_value_range (file, vr_value[i]);
1908 fprintf (file, "\n");
1909 }
1910 }
1911
1912 fprintf (file, "\n");
1913}
1914
1915/* Initialize VRP lattice. */
1916
1917vr_values::vr_values () : vrp_value_range_pool ("Tree VRP value ranges")
1918{
1919 values_propagated = false;
1920 num_vr_values = num_ssa_names;
1921 vr_value = XCNEWVEC (value_range *, num_vr_values);
1922 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
1923 bitmap_obstack_initialize (&vrp_equiv_obstack);
5bbce865 1924 to_remove_edges = vNULL;
1925 to_update_switch_stmts = vNULL;
94d86adc 1926}
1927
1928/* Free VRP lattice. */
1929
1930vr_values::~vr_values ()
1931{
1932 /* Free allocated memory. */
1933 free (vr_value);
1934 free (vr_phi_edge_counts);
1935 bitmap_obstack_release (&vrp_equiv_obstack);
1936 vrp_value_range_pool.release ();
1937
1938 /* So that we can distinguish between VRP data being available
1939 and not available. */
1940 vr_value = NULL;
1941 vr_phi_edge_counts = NULL;
d443f534 1942
1943 /* If there are entries left in TO_REMOVE_EDGES or TO_UPDATE_SWITCH_STMTS
1944 then an EVRP client did not clean up properly. Catch it now rather
1945 than seeing something more obscure later. */
1946 gcc_assert (to_remove_edges.is_empty ()
1947 && to_update_switch_stmts.is_empty ());
94d86adc 1948}
1949
1950
1951/* A hack. */
1952static class vr_values *x_vr_values;
1953
1954/* Return the singleton value-range for NAME or NAME. */
1955
1956static inline tree
1957vrp_valueize (tree name)
1958{
1959 if (TREE_CODE (name) == SSA_NAME)
1960 {
1961 value_range *vr = x_vr_values->get_value_range (name);
be44111e 1962 if (vr->kind () == VR_RANGE
1963 && (TREE_CODE (vr->min ()) == SSA_NAME
1964 || is_gimple_min_invariant (vr->min ()))
1965 && vrp_operand_equal_p (vr->min (), vr->max ()))
1966 return vr->min ();
94d86adc 1967 }
1968 return name;
1969}
1970
1971/* Return the singleton value-range for NAME if that is a constant
1972 but signal to not follow SSA edges. */
1973
1974static inline tree
1975vrp_valueize_1 (tree name)
1976{
1977 if (TREE_CODE (name) == SSA_NAME)
1978 {
1979 /* If the definition may be simulated again we cannot follow
1980 this SSA edge as the SSA propagator does not necessarily
1981 re-visit the use. */
1982 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1983 if (!gimple_nop_p (def_stmt)
1984 && prop_simulate_again_p (def_stmt))
1985 return NULL_TREE;
1986 value_range *vr = x_vr_values->get_value_range (name);
be44111e 1987 tree singleton;
1988 if (vr->singleton_p (&singleton))
1989 return singleton;
94d86adc 1990 }
1991 return name;
1992}
94d86adc 1993
46bc42c6 1994/* Given STMT, an assignment or call, return its LHS if the type
1995 of the LHS is suitable for VRP analysis, else return NULL_TREE. */
1996
1997tree
1998get_output_for_vrp (gimple *stmt)
94d86adc 1999{
46bc42c6 2000 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2001 return NULL_TREE;
94d86adc 2002
2003 /* We only keep track of ranges in integral and pointer types. */
46bc42c6 2004 tree lhs = gimple_get_lhs (stmt);
94d86adc 2005 if (TREE_CODE (lhs) == SSA_NAME
2006 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
2007 /* It is valid to have NULL MIN/MAX values on a type. See
2008 build_range_type. */
2009 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
2010 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
2011 || POINTER_TYPE_P (TREE_TYPE (lhs))))
46bc42c6 2012 return lhs;
2013
2014 return NULL_TREE;
2015}
2016
2017/* Visit assignment STMT. If it produces an interesting range, record
2018 the range in VR and set LHS to OUTPUT_P. */
2019
2020void
2021vr_values::vrp_visit_assignment_or_call (gimple *stmt, tree *output_p,
2022 value_range *vr)
2023{
2024 tree lhs = get_output_for_vrp (stmt);
2025 *output_p = lhs;
2026
2027 /* We only keep track of ranges in integral and pointer types. */
2028 if (lhs)
94d86adc 2029 {
46bc42c6 2030 enum gimple_code code = gimple_code (stmt);
94d86adc 2031
2032 /* Try folding the statement to a constant first. */
2033 x_vr_values = this;
2034 tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
2035 vrp_valueize_1);
2036 x_vr_values = NULL;
2037 if (tem)
2038 {
2039 if (TREE_CODE (tem) == SSA_NAME
2040 && (SSA_NAME_IS_DEFAULT_DEF (tem)
2041 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (tem))))
2042 {
2043 extract_range_from_ssa_name (vr, tem);
2044 return;
2045 }
2046 else if (is_gimple_min_invariant (tem))
2047 {
48625f58 2048 vr->set (tem);
94d86adc 2049 return;
2050 }
2051 }
2052 /* Then dispatch to value-range extracting functions. */
2053 if (code == GIMPLE_CALL)
2054 extract_range_basic (vr, stmt);
2055 else
2056 extract_range_from_assignment (vr, as_a <gassign *> (stmt));
2057 }
2058}
2059
2060/* Helper that gets the value range of the SSA_NAME with version I
2061 or a symbolic range containing the SSA_NAME only if the value range
48625f58 2062 is varying or undefined. Uses TEM as storage for the alternate range. */
94d86adc 2063
48625f58 2064value_range *
2065vr_values::get_vr_for_comparison (int i, value_range *tem)
94d86adc 2066{
48625f58 2067 /* Shallow-copy equiv bitmap. */
2068 value_range *vr = get_value_range (ssa_name (i));
94d86adc 2069
2070 /* If name N_i does not have a valid range, use N_i as its own
2071 range. This allows us to compare against names that may
2072 have N_i in their ranges. */
48625f58 2073 if (vr->varying_p () || vr->undefined_p ())
2074 {
2075 tem->set (ssa_name (i));
2076 return tem;
2077 }
94d86adc 2078
2079 return vr;
2080}
2081
2082/* Compare all the value ranges for names equivalent to VAR with VAL
2083 using comparison code COMP. Return the same value returned by
2084 compare_range_with_value, including the setting of
2085 *STRICT_OVERFLOW_P. */
2086
2087tree
2088vr_values::compare_name_with_value (enum tree_code comp, tree var, tree val,
2089 bool *strict_overflow_p, bool use_equiv_p)
2090{
2091 bitmap_iterator bi;
2092 unsigned i;
2093 bitmap e;
2094 tree retval, t;
2095 int used_strict_overflow;
2096 bool sop;
48625f58 2097 value_range *equiv_vr, tem_vr;
94d86adc 2098
2099 /* Get the set of equivalences for VAR. */
be44111e 2100 e = get_value_range (var)->equiv ();
94d86adc 2101
2102 /* Start at -1. Set it to 0 if we do a comparison without relying
2103 on overflow, or 1 if all comparisons rely on overflow. */
2104 used_strict_overflow = -1;
2105
2106 /* Compare vars' value range with val. */
48625f58 2107 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var), &tem_vr);
94d86adc 2108 sop = false;
48625f58 2109 retval = compare_range_with_value (comp, equiv_vr, val, &sop);
94d86adc 2110 if (retval)
2111 used_strict_overflow = sop ? 1 : 0;
2112
2113 /* If the equiv set is empty we have done all work we need to do. */
2114 if (e == NULL)
2115 {
2116 if (retval
2117 && used_strict_overflow > 0)
2118 *strict_overflow_p = true;
2119 return retval;
2120 }
2121
2122 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
2123 {
2124 tree name = ssa_name (i);
2125 if (! name)
2126 continue;
2127
2128 if (! use_equiv_p
2129 && ! SSA_NAME_IS_DEFAULT_DEF (name)
2130 && prop_simulate_again_p (SSA_NAME_DEF_STMT (name)))
2131 continue;
2132
48625f58 2133 equiv_vr = get_vr_for_comparison (i, &tem_vr);
94d86adc 2134 sop = false;
48625f58 2135 t = compare_range_with_value (comp, equiv_vr, val, &sop);
94d86adc 2136 if (t)
2137 {
2138 /* If we get different answers from different members
2139 of the equivalence set this check must be in a dead
2140 code region. Folding it to a trap representation
2141 would be correct here. For now just return don't-know. */
2142 if (retval != NULL
2143 && t != retval)
2144 {
2145 retval = NULL_TREE;
2146 break;
2147 }
2148 retval = t;
2149
2150 if (!sop)
2151 used_strict_overflow = 0;
2152 else if (used_strict_overflow < 0)
2153 used_strict_overflow = 1;
2154 }
2155 }
2156
2157 if (retval
2158 && used_strict_overflow > 0)
2159 *strict_overflow_p = true;
2160
2161 return retval;
2162}
2163
2164
2165/* Given a comparison code COMP and names N1 and N2, compare all the
2166 ranges equivalent to N1 against all the ranges equivalent to N2
2167 to determine the value of N1 COMP N2. Return the same value
2168 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
2169 whether we relied on undefined signed overflow in the comparison. */
2170
2171
2172tree
2173vr_values::compare_names (enum tree_code comp, tree n1, tree n2,
2174 bool *strict_overflow_p)
2175{
2176 tree t, retval;
2177 bitmap e1, e2;
2178 bitmap_iterator bi1, bi2;
2179 unsigned i1, i2;
2180 int used_strict_overflow;
2181 static bitmap_obstack *s_obstack = NULL;
2182 static bitmap s_e1 = NULL, s_e2 = NULL;
2183
2184 /* Compare the ranges of every name equivalent to N1 against the
2185 ranges of every name equivalent to N2. */
be44111e 2186 e1 = get_value_range (n1)->equiv ();
2187 e2 = get_value_range (n2)->equiv ();
94d86adc 2188
2189 /* Use the fake bitmaps if e1 or e2 are not available. */
2190 if (s_obstack == NULL)
2191 {
2192 s_obstack = XNEW (bitmap_obstack);
2193 bitmap_obstack_initialize (s_obstack);
2194 s_e1 = BITMAP_ALLOC (s_obstack);
2195 s_e2 = BITMAP_ALLOC (s_obstack);
2196 }
2197 if (e1 == NULL)
2198 e1 = s_e1;
2199 if (e2 == NULL)
2200 e2 = s_e2;
2201
2202 /* Add N1 and N2 to their own set of equivalences to avoid
2203 duplicating the body of the loop just to check N1 and N2
2204 ranges. */
2205 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
2206 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
2207
2208 /* If the equivalence sets have a common intersection, then the two
2209 names can be compared without checking their ranges. */
2210 if (bitmap_intersect_p (e1, e2))
2211 {
2212 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
2213 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
2214
2215 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
2216 ? boolean_true_node
2217 : boolean_false_node;
2218 }
2219
2220 /* Start at -1. Set it to 0 if we do a comparison without relying
2221 on overflow, or 1 if all comparisons rely on overflow. */
2222 used_strict_overflow = -1;
2223
2224 /* Otherwise, compare all the equivalent ranges. First, add N1 and
2225 N2 to their own set of equivalences to avoid duplicating the body
2226 of the loop just to check N1 and N2 ranges. */
2227 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
2228 {
2229 if (! ssa_name (i1))
2230 continue;
2231
48625f58 2232 value_range tem_vr1;
2233 value_range *vr1 = get_vr_for_comparison (i1, &tem_vr1);
94d86adc 2234
2235 t = retval = NULL_TREE;
2236 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
2237 {
2238 if (! ssa_name (i2))
2239 continue;
2240
2241 bool sop = false;
2242
48625f58 2243 value_range tem_vr2;
2244 value_range *vr2 = get_vr_for_comparison (i2, &tem_vr2);
94d86adc 2245
48625f58 2246 t = compare_ranges (comp, vr1, vr2, &sop);
94d86adc 2247 if (t)
2248 {
2249 /* If we get different answers from different members
2250 of the equivalence set this check must be in a dead
2251 code region. Folding it to a trap representation
2252 would be correct here. For now just return don't-know. */
2253 if (retval != NULL
2254 && t != retval)
2255 {
2256 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
2257 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
2258 return NULL_TREE;
2259 }
2260 retval = t;
2261
2262 if (!sop)
2263 used_strict_overflow = 0;
2264 else if (used_strict_overflow < 0)
2265 used_strict_overflow = 1;
2266 }
2267 }
2268
2269 if (retval)
2270 {
2271 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
2272 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
2273 if (used_strict_overflow > 0)
2274 *strict_overflow_p = true;
2275 return retval;
2276 }
2277 }
2278
2279 /* None of the equivalent ranges are useful in computing this
2280 comparison. */
2281 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
2282 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
2283 return NULL_TREE;
2284}
2285
2286/* Helper function for vrp_evaluate_conditional_warnv & other
2287 optimizers. */
2288
2289tree
2290vr_values::vrp_evaluate_conditional_warnv_with_ops_using_ranges
2291 (enum tree_code code, tree op0, tree op1, bool * strict_overflow_p)
2292{
2293 value_range *vr0, *vr1;
2294
2295 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
2296 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
2297
2298 tree res = NULL_TREE;
2299 if (vr0 && vr1)
2300 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
2301 if (!res && vr0)
2302 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
2303 if (!res && vr1)
2304 res = (compare_range_with_value
2305 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
2306 return res;
2307}
2308
2309/* Helper function for vrp_evaluate_conditional_warnv. */
2310
2311tree
2312vr_values::vrp_evaluate_conditional_warnv_with_ops (enum tree_code code,
2313 tree op0, tree op1,
2314 bool use_equiv_p,
2315 bool *strict_overflow_p,
2316 bool *only_ranges)
2317{
2318 tree ret;
2319 if (only_ranges)
2320 *only_ranges = true;
2321
2322 /* We only deal with integral and pointer types. */
2323 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2324 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2325 return NULL_TREE;
2326
2327 /* If OP0 CODE OP1 is an overflow comparison, if it can be expressed
2328 as a simple equality test, then prefer that over its current form
2329 for evaluation.
2330
2331 An overflow test which collapses to an equality test can always be
2332 expressed as a comparison of one argument against zero. Overflow
2333 occurs when the chosen argument is zero and does not occur if the
2334 chosen argument is not zero. */
2335 tree x;
2336 if (overflow_comparison_p (code, op0, op1, use_equiv_p, &x))
2337 {
2338 wide_int max = wi::max_value (TYPE_PRECISION (TREE_TYPE (op0)), UNSIGNED);
2339 /* B = A - 1; if (A < B) -> B = A - 1; if (A == 0)
2340 B = A - 1; if (A > B) -> B = A - 1; if (A != 0)
2341 B = A + 1; if (B < A) -> B = A + 1; if (B == 0)
2342 B = A + 1; if (B > A) -> B = A + 1; if (B != 0) */
2343 if (integer_zerop (x))
2344 {
2345 op1 = x;
2346 code = (code == LT_EXPR || code == LE_EXPR) ? EQ_EXPR : NE_EXPR;
2347 }
2348 /* B = A + 1; if (A > B) -> B = A + 1; if (B == 0)
2349 B = A + 1; if (A < B) -> B = A + 1; if (B != 0)
2350 B = A - 1; if (B > A) -> B = A - 1; if (A == 0)
2351 B = A - 1; if (B < A) -> B = A - 1; if (A != 0) */
2352 else if (wi::to_wide (x) == max - 1)
2353 {
2354 op0 = op1;
2355 op1 = wide_int_to_tree (TREE_TYPE (op0), 0);
2356 code = (code == GT_EXPR || code == GE_EXPR) ? EQ_EXPR : NE_EXPR;
2357 }
fbf5c6a2 2358 else
2359 {
0f01167a 2360 value_range_base vro, vri;
fbf5c6a2 2361 if (code == GT_EXPR || code == GE_EXPR)
2362 {
2363 vro.set (VR_ANTI_RANGE, TYPE_MIN_VALUE (TREE_TYPE (op0)), x);
2364 vri.set (VR_RANGE, TYPE_MIN_VALUE (TREE_TYPE (op0)), x);
2365 }
2366 else if (code == LT_EXPR || code == LE_EXPR)
2367 {
2368 vro.set (VR_RANGE, TYPE_MIN_VALUE (TREE_TYPE (op0)), x);
2369 vri.set (VR_ANTI_RANGE, TYPE_MIN_VALUE (TREE_TYPE (op0)), x);
2370 }
2371 else
2372 gcc_unreachable ();
2373 value_range *vr0 = get_value_range (op0);
2374 /* If vro, the range for OP0 to pass the overflow test, has
2375 no intersection with *vr0, OP0's known range, then the
2376 overflow test can't pass, so return the node for false.
2377 If it is the inverted range, vri, that has no
2378 intersection, then the overflow test must pass, so return
2379 the node for true. In other cases, we could proceed with
2380 a simplified condition comparing OP0 and X, with LE_EXPR
2381 for previously LE_ or LT_EXPR and GT_EXPR otherwise, but
2382 the comments next to the enclosing if suggest it's not
2383 generally profitable to do so. */
2384 vro.intersect (vr0);
2385 if (vro.undefined_p ())
2386 return boolean_false_node;
2387 vri.intersect (vr0);
2388 if (vri.undefined_p ())
2389 return boolean_true_node;
2390 }
94d86adc 2391 }
2392
2393 if ((ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
2394 (code, op0, op1, strict_overflow_p)))
2395 return ret;
2396 if (only_ranges)
2397 *only_ranges = false;
2398 /* Do not use compare_names during propagation, it's quadratic. */
2399 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME
2400 && use_equiv_p)
2401 return compare_names (code, op0, op1, strict_overflow_p);
2402 else if (TREE_CODE (op0) == SSA_NAME)
2403 return compare_name_with_value (code, op0, op1,
2404 strict_overflow_p, use_equiv_p);
2405 else if (TREE_CODE (op1) == SSA_NAME)
2406 return compare_name_with_value (swap_tree_comparison (code), op1, op0,
2407 strict_overflow_p, use_equiv_p);
2408 return NULL_TREE;
2409}
2410
2411/* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
f4d3c071 2412 information. Return NULL if the conditional cannot be evaluated.
94d86adc 2413 The ranges of all the names equivalent with the operands in COND
2414 will be used when trying to compute the value. If the result is
2415 based on undefined signed overflow, issue a warning if
2416 appropriate. */
2417
2418tree
2419vr_values::vrp_evaluate_conditional (tree_code code, tree op0,
2420 tree op1, gimple *stmt)
2421{
2422 bool sop;
2423 tree ret;
2424 bool only_ranges;
2425
2426 /* Some passes and foldings leak constants with overflow flag set
2427 into the IL. Avoid doing wrong things with these and bail out. */
2428 if ((TREE_CODE (op0) == INTEGER_CST
2429 && TREE_OVERFLOW (op0))
2430 || (TREE_CODE (op1) == INTEGER_CST
2431 && TREE_OVERFLOW (op1)))
2432 return NULL_TREE;
2433
2434 sop = false;
2435 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
2436 &only_ranges);
2437
2438 if (ret && sop)
2439 {
2440 enum warn_strict_overflow_code wc;
2441 const char* warnmsg;
2442
2443 if (is_gimple_min_invariant (ret))
2444 {
2445 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
2446 warnmsg = G_("assuming signed overflow does not occur when "
2447 "simplifying conditional to constant");
2448 }
2449 else
2450 {
2451 wc = WARN_STRICT_OVERFLOW_COMPARISON;
2452 warnmsg = G_("assuming signed overflow does not occur when "
2453 "simplifying conditional");
2454 }
2455
2456 if (issue_strict_overflow_warning (wc))
2457 {
2458 location_t location;
2459
2460 if (!gimple_has_location (stmt))
2461 location = input_location;
2462 else
2463 location = gimple_location (stmt);
2464 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
2465 }
2466 }
2467
2468 if (warn_type_limits
2469 && ret && only_ranges
2470 && TREE_CODE_CLASS (code) == tcc_comparison
2471 && TREE_CODE (op0) == SSA_NAME)
2472 {
2473 /* If the comparison is being folded and the operand on the LHS
2474 is being compared against a constant value that is outside of
2475 the natural range of OP0's type, then the predicate will
2476 always fold regardless of the value of OP0. If -Wtype-limits
2477 was specified, emit a warning. */
2478 tree type = TREE_TYPE (op0);
2479 value_range *vr0 = get_value_range (op0);
2480
be44111e 2481 if (vr0->kind () == VR_RANGE
94d86adc 2482 && INTEGRAL_TYPE_P (type)
be44111e 2483 && vrp_val_is_min (vr0->min ())
2484 && vrp_val_is_max (vr0->max ())
94d86adc 2485 && is_gimple_min_invariant (op1))
2486 {
2487 location_t location;
2488
2489 if (!gimple_has_location (stmt))
2490 location = input_location;
2491 else
2492 location = gimple_location (stmt);
2493
2494 warning_at (location, OPT_Wtype_limits,
2495 integer_zerop (ret)
2496 ? G_("comparison always false "
2497 "due to limited range of data type")
2498 : G_("comparison always true "
2499 "due to limited range of data type"));
2500 }
2501 }
2502
2503 return ret;
2504}
2505
2506
2507/* Visit conditional statement STMT. If we can determine which edge
2508 will be taken out of STMT's basic block, record it in
2509 *TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */
2510
2511void
2512vr_values::vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
2513{
2514 tree val;
2515
2516 *taken_edge_p = NULL;
2517
2518 if (dump_file && (dump_flags & TDF_DETAILS))
2519 {
2520 tree use;
2521 ssa_op_iter i;
2522
2523 fprintf (dump_file, "\nVisiting conditional with predicate: ");
2524 print_gimple_stmt (dump_file, stmt, 0);
2525 fprintf (dump_file, "\nWith known ranges\n");
2526
2527 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
2528 {
2529 fprintf (dump_file, "\t");
2530 print_generic_expr (dump_file, use);
2531 fprintf (dump_file, ": ");
2532 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
2533 }
2534
2535 fprintf (dump_file, "\n");
2536 }
2537
2538 /* Compute the value of the predicate COND by checking the known
2539 ranges of each of its operands.
2540
2541 Note that we cannot evaluate all the equivalent ranges here
2542 because those ranges may not yet be final and with the current
2543 propagation strategy, we cannot determine when the value ranges
2544 of the names in the equivalence set have changed.
2545
2546 For instance, given the following code fragment
2547
2548 i_5 = PHI <8, i_13>
2549 ...
2550 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
2551 if (i_14 == 1)
2552 ...
2553
2554 Assume that on the first visit to i_14, i_5 has the temporary
2555 range [8, 8] because the second argument to the PHI function is
2556 not yet executable. We derive the range ~[0, 0] for i_14 and the
2557 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
2558 the first time, since i_14 is equivalent to the range [8, 8], we
2559 determine that the predicate is always false.
2560
2561 On the next round of propagation, i_13 is determined to be
2562 VARYING, which causes i_5 to drop down to VARYING. So, another
2563 visit to i_14 is scheduled. In this second visit, we compute the
2564 exact same range and equivalence set for i_14, namely ~[0, 0] and
2565 { i_5 }. But we did not have the previous range for i_5
2566 registered, so vrp_visit_assignment thinks that the range for
2567 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
2568 is not visited again, which stops propagation from visiting
2569 statements in the THEN clause of that if().
2570
2571 To properly fix this we would need to keep the previous range
2572 value for the names in the equivalence set. This way we would've
2573 discovered that from one visit to the other i_5 changed from
2574 range [8, 8] to VR_VARYING.
2575
2576 However, fixing this apparent limitation may not be worth the
2577 additional checking. Testing on several code bases (GCC, DLV,
2578 MICO, TRAMP3D and SPEC2000) showed that doing this results in
2579 4 more predicates folded in SPEC. */
2580
2581 bool sop;
2582 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
2583 gimple_cond_lhs (stmt),
2584 gimple_cond_rhs (stmt),
2585 false, &sop, NULL);
2586 if (val)
2587 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
2588
2589 if (dump_file && (dump_flags & TDF_DETAILS))
2590 {
2591 fprintf (dump_file, "\nPredicate evaluates to: ");
2592 if (val == NULL_TREE)
2593 fprintf (dump_file, "DON'T KNOW\n");
2594 else
2595 print_generic_stmt (dump_file, val);
2596 }
2597}
2598
2599/* Searches the case label vector VEC for the ranges of CASE_LABELs that are
2600 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
2601 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
2602 Returns true if the default label is not needed. */
2603
2604static bool
2605find_case_label_ranges (gswitch *stmt, value_range *vr, size_t *min_idx1,
2606 size_t *max_idx1, size_t *min_idx2,
2607 size_t *max_idx2)
2608{
2609 size_t i, j, k, l;
2610 unsigned int n = gimple_switch_num_labels (stmt);
2611 bool take_default;
2612 tree case_low, case_high;
be44111e 2613 tree min = vr->min (), max = vr->max ();
94d86adc 2614
be44111e 2615 gcc_checking_assert (!vr->varying_p () && !vr->undefined_p ());
94d86adc 2616
2617 take_default = !find_case_label_range (stmt, min, max, &i, &j);
2618
89fcfda6 2619 /* Set second range to empty. */
94d86adc 2620 *min_idx2 = 1;
2621 *max_idx2 = 0;
2622
be44111e 2623 if (vr->kind () == VR_RANGE)
94d86adc 2624 {
2625 *min_idx1 = i;
2626 *max_idx1 = j;
2627 return !take_default;
2628 }
2629
2630 /* Set first range to all case labels. */
2631 *min_idx1 = 1;
2632 *max_idx1 = n - 1;
2633
2634 if (i > j)
2635 return false;
2636
2637 /* Make sure all the values of case labels [i , j] are contained in
2638 range [MIN, MAX]. */
2639 case_low = CASE_LOW (gimple_switch_label (stmt, i));
2640 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
2641 if (tree_int_cst_compare (case_low, min) < 0)
2642 i += 1;
2643 if (case_high != NULL_TREE
2644 && tree_int_cst_compare (max, case_high) < 0)
2645 j -= 1;
2646
2647 if (i > j)
2648 return false;
2649
2650 /* If the range spans case labels [i, j], the corresponding anti-range spans
2651 the labels [1, i - 1] and [j + 1, n - 1]. */
2652 k = j + 1;
2653 l = n - 1;
2654 if (k > l)
2655 {
2656 k = 1;
2657 l = 0;
2658 }
2659
2660 j = i - 1;
2661 i = 1;
2662 if (i > j)
2663 {
2664 i = k;
2665 j = l;
2666 k = 1;
2667 l = 0;
2668 }
2669
2670 *min_idx1 = i;
2671 *max_idx1 = j;
2672 *min_idx2 = k;
2673 *max_idx2 = l;
2674 return false;
2675}
2676
2677/* Visit switch statement STMT. If we can determine which edge
2678 will be taken out of STMT's basic block, record it in
2679 *TAKEN_EDGE_P. Otherwise, *TAKEN_EDGE_P set to NULL. */
2680
2681void
2682vr_values::vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
2683{
2684 tree op, val;
2685 value_range *vr;
2686 size_t i = 0, j = 0, k, l;
2687 bool take_default;
2688
2689 *taken_edge_p = NULL;
2690 op = gimple_switch_index (stmt);
2691 if (TREE_CODE (op) != SSA_NAME)
2692 return;
2693
2694 vr = get_value_range (op);
2695 if (dump_file && (dump_flags & TDF_DETAILS))
2696 {
2697 fprintf (dump_file, "\nVisiting switch expression with operand ");
2698 print_generic_expr (dump_file, op);
2699 fprintf (dump_file, " with known range ");
2700 dump_value_range (dump_file, vr);
2701 fprintf (dump_file, "\n");
2702 }
2703
be44111e 2704 if (vr->undefined_p ()
2705 || vr->varying_p ()
2706 || vr->symbolic_p ())
94d86adc 2707 return;
2708
2709 /* Find the single edge that is taken from the switch expression. */
2710 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
2711
2712 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
2713 label */
2714 if (j < i)
2715 {
2716 gcc_assert (take_default);
2717 val = gimple_switch_default_label (stmt);
2718 }
2719 else
2720 {
2721 /* Check if labels with index i to j and maybe the default label
2722 are all reaching the same label. */
2723
2724 val = gimple_switch_label (stmt, i);
2725 if (take_default
2726 && CASE_LABEL (gimple_switch_default_label (stmt))
2727 != CASE_LABEL (val))
2728 {
2729 if (dump_file && (dump_flags & TDF_DETAILS))
2730 fprintf (dump_file, " not a single destination for this "
2731 "range\n");
2732 return;
2733 }
2734 for (++i; i <= j; ++i)
2735 {
2736 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
2737 {
2738 if (dump_file && (dump_flags & TDF_DETAILS))
2739 fprintf (dump_file, " not a single destination for this "
2740 "range\n");
2741 return;
2742 }
2743 }
2744 for (; k <= l; ++k)
2745 {
2746 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
2747 {
2748 if (dump_file && (dump_flags & TDF_DETAILS))
2749 fprintf (dump_file, " not a single destination for this "
2750 "range\n");
2751 return;
2752 }
2753 }
2754 }
2755
2756 *taken_edge_p = find_edge (gimple_bb (stmt),
0fb4f2ce 2757 label_to_block (cfun, CASE_LABEL (val)));
94d86adc 2758
2759 if (dump_file && (dump_flags & TDF_DETAILS))
2760 {
2761 fprintf (dump_file, " will take edge to ");
2762 print_generic_stmt (dump_file, CASE_LABEL (val));
2763 }
2764}
2765
2766
2767/* Evaluate statement STMT. If the statement produces a useful range,
2768 set VR and corepsponding OUTPUT_P.
2769
2770 If STMT is a conditional branch and we can determine its truth
2771 value, the taken edge is recorded in *TAKEN_EDGE_P. */
2772
2773void
2774vr_values::extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
2775 tree *output_p, value_range *vr)
2776{
2777
2778 if (dump_file && (dump_flags & TDF_DETAILS))
2779 {
2780 fprintf (dump_file, "\nVisiting statement:\n");
2781 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2782 }
2783
2784 if (!stmt_interesting_for_vrp (stmt))
2785 gcc_assert (stmt_ends_bb_p (stmt));
2786 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
2787 vrp_visit_assignment_or_call (stmt, output_p, vr);
2788 else if (gimple_code (stmt) == GIMPLE_COND)
2789 vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
2790 else if (gimple_code (stmt) == GIMPLE_SWITCH)
2791 vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
2792}
2793
2794/* Visit all arguments for PHI node PHI that flow through executable
2795 edges. If a valid value range can be derived from all the incoming
2796 value ranges, set a new range in VR_RESULT. */
2797
2798void
2799vr_values::extract_range_from_phi_node (gphi *phi, value_range *vr_result)
2800{
2801 size_t i;
2802 tree lhs = PHI_RESULT (phi);
2803 value_range *lhs_vr = get_value_range (lhs);
2804 bool first = true;
2805 int edges, old_edges;
2806 struct loop *l;
2807
2808 if (dump_file && (dump_flags & TDF_DETAILS))
2809 {
2810 fprintf (dump_file, "\nVisiting PHI node: ");
2811 print_gimple_stmt (dump_file, phi, 0, dump_flags);
2812 }
2813
2814 bool may_simulate_backedge_again = false;
2815 edges = 0;
2816 for (i = 0; i < gimple_phi_num_args (phi); i++)
2817 {
2818 edge e = gimple_phi_arg_edge (phi, i);
2819
2820 if (dump_file && (dump_flags & TDF_DETAILS))
2821 {
2822 fprintf (dump_file,
2823 " Argument #%d (%d -> %d %sexecutable)\n",
2824 (int) i, e->src->index, e->dest->index,
2825 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
2826 }
2827
2828 if (e->flags & EDGE_EXECUTABLE)
2829 {
2830 tree arg = PHI_ARG_DEF (phi, i);
48625f58 2831 value_range vr_arg_tem;
2832 value_range *vr_arg = &vr_arg_tem;
94d86adc 2833
2834 ++edges;
2835
2836 if (TREE_CODE (arg) == SSA_NAME)
2837 {
2838 /* See if we are eventually going to change one of the args. */
2839 gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
2840 if (! gimple_nop_p (def_stmt)
2841 && prop_simulate_again_p (def_stmt)
2842 && e->flags & EDGE_DFS_BACK)
2843 may_simulate_backedge_again = true;
2844
48625f58 2845 value_range *vr_arg_ = get_value_range (arg);
94d86adc 2846 /* Do not allow equivalences or symbolic ranges to leak in from
2847 backedges. That creates invalid equivalencies.
2848 See PR53465 and PR54767. */
2849 if (e->flags & EDGE_DFS_BACK)
2850 {
48625f58 2851 if (!vr_arg_->varying_p () && !vr_arg_->undefined_p ())
94d86adc 2852 {
48625f58 2853 vr_arg_tem.set (vr_arg_->kind (), vr_arg_->min (),
2854 vr_arg_->max (), NULL);
2855 if (vr_arg_tem.symbolic_p ())
2856 vr_arg_tem.set_varying ();
94d86adc 2857 }
48625f58 2858 else
2859 vr_arg = vr_arg_;
94d86adc 2860 }
be44111e 2861 /* If the non-backedge arguments range is VR_VARYING then
2862 we can still try recording a simple equivalence. */
48625f58 2863 else if (vr_arg_->varying_p ())
2864 vr_arg_tem.set (arg);
2865 else
2866 vr_arg = vr_arg_;
94d86adc 2867 }
2868 else
2869 {
2870 if (TREE_OVERFLOW_P (arg))
2871 arg = drop_tree_overflow (arg);
2872
48625f58 2873 vr_arg_tem.set (arg);
94d86adc 2874 }
2875
2876 if (dump_file && (dump_flags & TDF_DETAILS))
2877 {
2878 fprintf (dump_file, "\t");
2879 print_generic_expr (dump_file, arg, dump_flags);
2880 fprintf (dump_file, ": ");
48625f58 2881 dump_value_range (dump_file, vr_arg);
94d86adc 2882 fprintf (dump_file, "\n");
2883 }
2884
2885 if (first)
48625f58 2886 vr_result->deep_copy (vr_arg);
94d86adc 2887 else
48625f58 2888 vr_result->union_ (vr_arg);
94d86adc 2889 first = false;
2890
be44111e 2891 if (vr_result->varying_p ())
94d86adc 2892 break;
2893 }
2894 }
2895
be44111e 2896 if (vr_result->varying_p ())
94d86adc 2897 goto varying;
be44111e 2898 else if (vr_result->undefined_p ())
94d86adc 2899 goto update_range;
2900
2901 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
2902 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
2903
2904 /* To prevent infinite iterations in the algorithm, derive ranges
2905 when the new value is slightly bigger or smaller than the
2906 previous one. We don't do this if we have seen a new executable
2907 edge; this helps us avoid an infinity for conditionals
2908 which are not in a loop. If the old value-range was VR_UNDEFINED
2909 use the updated range and iterate one more time. If we will not
2910 simulate this PHI again via the backedge allow us to iterate. */
2911 if (edges > 0
2912 && gimple_phi_num_args (phi) > 1
2913 && edges == old_edges
be44111e 2914 && !lhs_vr->undefined_p ()
94d86adc 2915 && may_simulate_backedge_again)
2916 {
2917 /* Compare old and new ranges, fall back to varying if the
2918 values are not comparable. */
be44111e 2919 int cmp_min = compare_values (lhs_vr->min (), vr_result->min ());
94d86adc 2920 if (cmp_min == -2)
2921 goto varying;
be44111e 2922 int cmp_max = compare_values (lhs_vr->max (), vr_result->max ());
94d86adc 2923 if (cmp_max == -2)
2924 goto varying;
2925
2926 /* For non VR_RANGE or for pointers fall back to varying if
2927 the range changed. */
be44111e 2928 if ((lhs_vr->kind () != VR_RANGE || vr_result->kind () != VR_RANGE
94d86adc 2929 || POINTER_TYPE_P (TREE_TYPE (lhs)))
2930 && (cmp_min != 0 || cmp_max != 0))
2931 goto varying;
2932
2933 /* If the new minimum is larger than the previous one
2934 retain the old value. If the new minimum value is smaller
2935 than the previous one and not -INF go all the way to -INF + 1.
2936 In the first case, to avoid infinite bouncing between different
2937 minimums, and in the other case to avoid iterating millions of
2938 times to reach -INF. Going to -INF + 1 also lets the following
2939 iteration compute whether there will be any overflow, at the
2940 expense of one additional iteration. */
be44111e 2941 tree new_min = vr_result->min ();
2942 tree new_max = vr_result->max ();
94d86adc 2943 if (cmp_min < 0)
be44111e 2944 new_min = lhs_vr->min ();
94d86adc 2945 else if (cmp_min > 0
ab048141 2946 && (TREE_CODE (vr_result->min ()) != INTEGER_CST
2947 || tree_int_cst_lt (vrp_val_min (vr_result->type ()),
2948 vr_result->min ())))
be44111e 2949 new_min = int_const_binop (PLUS_EXPR,
2950 vrp_val_min (vr_result->type ()),
2951 build_int_cst (vr_result->type (), 1));
94d86adc 2952
2953 /* Similarly for the maximum value. */
2954 if (cmp_max > 0)
be44111e 2955 new_max = lhs_vr->max ();
94d86adc 2956 else if (cmp_max < 0
ab048141 2957 && (TREE_CODE (vr_result->max ()) != INTEGER_CST
2958 || tree_int_cst_lt (vr_result->max (),
2959 vrp_val_max (vr_result->type ()))))
be44111e 2960 new_max = int_const_binop (MINUS_EXPR,
2961 vrp_val_max (vr_result->type ()),
2962 build_int_cst (vr_result->type (), 1));
2963
48625f58 2964 vr_result->update (vr_result->kind (), new_min, new_max);
94d86adc 2965
2966 /* If we dropped either bound to +-INF then if this is a loop
2967 PHI node SCEV may known more about its value-range. */
2968 if (cmp_min > 0 || cmp_min < 0
2969 || cmp_max < 0 || cmp_max > 0)
2970 goto scev_check;
2971
2972 goto infinite_check;
2973 }
2974
2975 goto update_range;
2976
2977varying:
5a780b31 2978 vr_result->set_varying ();
94d86adc 2979
2980scev_check:
2981 /* If this is a loop PHI node SCEV may known more about its value-range.
2982 scev_check can be reached from two paths, one is a fall through from above
2983 "varying" label, the other is direct goto from code block which tries to
2984 avoid infinite simulation. */
891c5e19 2985 if (scev_initialized_p ()
2986 && (l = loop_containing_stmt (phi))
94d86adc 2987 && l->header == gimple_bb (phi))
2988 adjust_range_with_scev (vr_result, l, phi, lhs);
2989
2990infinite_check:
2991 /* If we will end up with a (-INF, +INF) range, set it to
2992 VARYING. Same if the previous max value was invalid for
2993 the type and we end up with vr_result.min > vr_result.max. */
be44111e 2994 if ((!vr_result->varying_p () && !vr_result->undefined_p ())
2995 && !((vrp_val_is_max (vr_result->max ()) && vrp_val_is_min (vr_result->min ()))
2996 || compare_values (vr_result->min (), vr_result->max ()) > 0))
94d86adc 2997 ;
2998 else
5a780b31 2999 vr_result->set_varying ();
94d86adc 3000
3001 /* If the new range is different than the previous value, keep
3002 iterating. */
3003update_range:
3004 return;
3005}
3006
3007/* Simplify boolean operations if the source is known
3008 to be already a boolean. */
3009bool
3010vr_values::simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi,
3011 gimple *stmt)
3012{
3013 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3014 tree lhs, op0, op1;
3015 bool need_conversion;
3016
3017 /* We handle only !=/== case here. */
3018 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
3019
3020 op0 = gimple_assign_rhs1 (stmt);
3021 if (!op_with_boolean_value_range_p (op0))
3022 return false;
3023
3024 op1 = gimple_assign_rhs2 (stmt);
3025 if (!op_with_boolean_value_range_p (op1))
3026 return false;
3027
3028 /* Reduce number of cases to handle to NE_EXPR. As there is no
3029 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
3030 if (rhs_code == EQ_EXPR)
3031 {
3032 if (TREE_CODE (op1) == INTEGER_CST)
3033 op1 = int_const_binop (BIT_XOR_EXPR, op1,
3034 build_int_cst (TREE_TYPE (op1), 1));
3035 else
3036 return false;
3037 }
3038
3039 lhs = gimple_assign_lhs (stmt);
3040 need_conversion
3041 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
3042
3043 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
3044 if (need_conversion
3045 && !TYPE_UNSIGNED (TREE_TYPE (op0))
3046 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
3047 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
3048 return false;
3049
3050 /* For A != 0 we can substitute A itself. */
3051 if (integer_zerop (op1))
3052 gimple_assign_set_rhs_with_ops (gsi,
3053 need_conversion
3054 ? NOP_EXPR : TREE_CODE (op0), op0);
3055 /* For A != B we substitute A ^ B. Either with conversion. */
3056 else if (need_conversion)
3057 {
3058 tree tem = make_ssa_name (TREE_TYPE (op0));
3059 gassign *newop
3060 = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
3061 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
3062 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
3063 && TYPE_PRECISION (TREE_TYPE (tem)) > 1)
3064 set_range_info (tem, VR_RANGE,
3065 wi::zero (TYPE_PRECISION (TREE_TYPE (tem))),
3066 wi::one (TYPE_PRECISION (TREE_TYPE (tem))));
3067 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
3068 }
3069 /* Or without. */
3070 else
3071 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
3072 update_stmt (gsi_stmt (*gsi));
3073 fold_stmt (gsi, follow_single_use_edges);
3074
3075 return true;
3076}
3077
3078/* Simplify a division or modulo operator to a right shift or bitwise and
3079 if the first operand is unsigned or is greater than zero and the second
3080 operand is an exact power of two. For TRUNC_MOD_EXPR op0 % op1 with
3081 constant op1 (op1min = op1) or with op1 in [op1min, op1max] range,
3082 optimize it into just op0 if op0's range is known to be a subset of
3083 [-op1min + 1, op1min - 1] for signed and [0, op1min - 1] for unsigned
3084 modulo. */
3085
3086bool
3087vr_values::simplify_div_or_mod_using_ranges (gimple_stmt_iterator *gsi,
3088 gimple *stmt)
3089{
3090 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3091 tree val = NULL;
3092 tree op0 = gimple_assign_rhs1 (stmt);
3093 tree op1 = gimple_assign_rhs2 (stmt);
3094 tree op0min = NULL_TREE, op0max = NULL_TREE;
3095 tree op1min = op1;
3096 value_range *vr = NULL;
3097
3098 if (TREE_CODE (op0) == INTEGER_CST)
3099 {
3100 op0min = op0;
3101 op0max = op0;
3102 }
3103 else
3104 {
3105 vr = get_value_range (op0);
3106 if (range_int_cst_p (vr))
3107 {
be44111e 3108 op0min = vr->min ();
3109 op0max = vr->max ();
94d86adc 3110 }
3111 }
3112
3113 if (rhs_code == TRUNC_MOD_EXPR
3114 && TREE_CODE (op1) == SSA_NAME)
3115 {
3116 value_range *vr1 = get_value_range (op1);
3117 if (range_int_cst_p (vr1))
be44111e 3118 op1min = vr1->min ();
94d86adc 3119 }
3120 if (rhs_code == TRUNC_MOD_EXPR
3121 && TREE_CODE (op1min) == INTEGER_CST
3122 && tree_int_cst_sgn (op1min) == 1
3123 && op0max
3124 && tree_int_cst_lt (op0max, op1min))
3125 {
3126 if (TYPE_UNSIGNED (TREE_TYPE (op0))
3127 || tree_int_cst_sgn (op0min) >= 0
3128 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1min), op1min),
3129 op0min))
3130 {
3131 /* If op0 already has the range op0 % op1 has,
3132 then TRUNC_MOD_EXPR won't change anything. */
3133 gimple_assign_set_rhs_from_tree (gsi, op0);
3134 return true;
3135 }
3136 }
3137
3138 if (TREE_CODE (op0) != SSA_NAME)
3139 return false;
3140
3141 if (!integer_pow2p (op1))
3142 {
3143 /* X % -Y can be only optimized into X % Y either if
3144 X is not INT_MIN, or Y is not -1. Fold it now, as after
3145 remove_range_assertions the range info might be not available
3146 anymore. */
3147 if (rhs_code == TRUNC_MOD_EXPR
3148 && fold_stmt (gsi, follow_single_use_edges))
3149 return true;
3150 return false;
3151 }
3152
3153 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
3154 val = integer_one_node;
3155 else
3156 {
3157 bool sop = false;
3158
3159 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
3160
3161 if (val
3162 && sop
3163 && integer_onep (val)
3164 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
3165 {
3166 location_t location;
3167
3168 if (!gimple_has_location (stmt))
3169 location = input_location;
3170 else
3171 location = gimple_location (stmt);
3172 warning_at (location, OPT_Wstrict_overflow,
3173 "assuming signed overflow does not occur when "
3174 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
3175 }
3176 }
3177
3178 if (val && integer_onep (val))
3179 {
3180 tree t;
3181
3182 if (rhs_code == TRUNC_DIV_EXPR)
3183 {
3184 t = build_int_cst (integer_type_node, tree_log2 (op1));
3185 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
3186 gimple_assign_set_rhs1 (stmt, op0);
3187 gimple_assign_set_rhs2 (stmt, t);
3188 }
3189 else
3190 {
3191 t = build_int_cst (TREE_TYPE (op1), 1);
3192 t = int_const_binop (MINUS_EXPR, op1, t);
3193 t = fold_convert (TREE_TYPE (op0), t);
3194
3195 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
3196 gimple_assign_set_rhs1 (stmt, op0);
3197 gimple_assign_set_rhs2 (stmt, t);
3198 }
3199
3200 update_stmt (stmt);
3201 fold_stmt (gsi, follow_single_use_edges);
3202 return true;
3203 }
3204
3205 return false;
3206}
3207
3208/* Simplify a min or max if the ranges of the two operands are
3209 disjoint. Return true if we do simplify. */
3210
3211bool
3212vr_values::simplify_min_or_max_using_ranges (gimple_stmt_iterator *gsi,
3213 gimple *stmt)
3214{
3215 tree op0 = gimple_assign_rhs1 (stmt);
3216 tree op1 = gimple_assign_rhs2 (stmt);
3217 bool sop = false;
3218 tree val;
3219
3220 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
3221 (LE_EXPR, op0, op1, &sop));
3222 if (!val)
3223 {
3224 sop = false;
3225 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
3226 (LT_EXPR, op0, op1, &sop));
3227 }
3228
3229 if (val)
3230 {
3231 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
3232 {
3233 location_t location;
3234
3235 if (!gimple_has_location (stmt))
3236 location = input_location;
3237 else
3238 location = gimple_location (stmt);
3239 warning_at (location, OPT_Wstrict_overflow,
3240 "assuming signed overflow does not occur when "
3241 "simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
3242 }
3243
3244 /* VAL == TRUE -> OP0 < or <= op1
3245 VAL == FALSE -> OP0 > or >= op1. */
3246 tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR)
3247 == integer_zerop (val)) ? op0 : op1;
3248 gimple_assign_set_rhs_from_tree (gsi, res);
3249 return true;
3250 }
3251
3252 return false;
3253}
3254
3255/* If the operand to an ABS_EXPR is >= 0, then eliminate the
3256 ABS_EXPR. If the operand is <= 0, then simplify the
3257 ABS_EXPR into a NEGATE_EXPR. */
3258
3259bool
3260vr_values::simplify_abs_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
3261{
3262 tree op = gimple_assign_rhs1 (stmt);
3263 value_range *vr = get_value_range (op);
3264
3265 if (vr)
3266 {
3267 tree val = NULL;
3268 bool sop = false;
3269
3270 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
3271 if (!val)
3272 {
3273 /* The range is neither <= 0 nor > 0. Now see if it is
3274 either < 0 or >= 0. */
3275 sop = false;
3276 val = compare_range_with_value (LT_EXPR, vr, integer_zero_node,
3277 &sop);
3278 }
3279
3280 if (val)
3281 {
3282 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
3283 {
3284 location_t location;
3285
3286 if (!gimple_has_location (stmt))
3287 location = input_location;
3288 else
3289 location = gimple_location (stmt);
3290 warning_at (location, OPT_Wstrict_overflow,
3291 "assuming signed overflow does not occur when "
3292 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
3293 }
3294
3295 gimple_assign_set_rhs1 (stmt, op);
3296 if (integer_zerop (val))
3297 gimple_assign_set_rhs_code (stmt, SSA_NAME);
3298 else
3299 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
3300 update_stmt (stmt);
3301 fold_stmt (gsi, follow_single_use_edges);
3302 return true;
3303 }
3304 }
3305
3306 return false;
3307}
3308
3309/* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
3310 If all the bits that are being cleared by & are already
3311 known to be zero from VR, or all the bits that are being
3312 set by | are already known to be one from VR, the bit
3313 operation is redundant. */
3314
3315bool
3316vr_values::simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi,
3317 gimple *stmt)
3318{
3319 tree op0 = gimple_assign_rhs1 (stmt);
3320 tree op1 = gimple_assign_rhs2 (stmt);
3321 tree op = NULL_TREE;
48625f58 3322 value_range_base vr0, vr1;
94d86adc 3323 wide_int may_be_nonzero0, may_be_nonzero1;
3324 wide_int must_be_nonzero0, must_be_nonzero1;
3325 wide_int mask;
3326
3327 if (TREE_CODE (op0) == SSA_NAME)
3328 vr0 = *(get_value_range (op0));
3329 else if (is_gimple_min_invariant (op0))
48625f58 3330 vr0.set (op0);
94d86adc 3331 else
3332 return false;
3333
3334 if (TREE_CODE (op1) == SSA_NAME)
3335 vr1 = *(get_value_range (op1));
3336 else if (is_gimple_min_invariant (op1))
48625f58 3337 vr1.set (op1);
94d86adc 3338 else
3339 return false;
3340
11822fb2 3341 if (!vrp_set_zero_nonzero_bits (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
94d86adc 3342 &must_be_nonzero0))
3343 return false;
11822fb2 3344 if (!vrp_set_zero_nonzero_bits (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
94d86adc 3345 &must_be_nonzero1))
3346 return false;
3347
3348 switch (gimple_assign_rhs_code (stmt))
3349 {
3350 case BIT_AND_EXPR:
3351 mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1);
3352 if (mask == 0)
3353 {
3354 op = op0;
3355 break;
3356 }
3357 mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0);
3358 if (mask == 0)
3359 {
3360 op = op1;
3361 break;
3362 }
3363 break;
3364 case BIT_IOR_EXPR:
3365 mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1);
3366 if (mask == 0)
3367 {
3368 op = op1;
3369 break;
3370 }
3371 mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0);
3372 if (mask == 0)
3373 {
3374 op = op0;
3375 break;
3376 }
3377 break;
3378 default:
3379 gcc_unreachable ();
3380 }
3381
3382 if (op == NULL_TREE)
3383 return false;
3384
3385 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
3386 update_stmt (gsi_stmt (*gsi));
3387 return true;
3388}
3389
3390/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
3391 a known value range VR.
3392
3393 If there is one and only one value which will satisfy the
3394 conditional, then return that value. Else return NULL.
3395
3396 If signed overflow must be undefined for the value to satisfy
3397 the conditional, then set *STRICT_OVERFLOW_P to true. */
3398
3399static tree
3400test_for_singularity (enum tree_code cond_code, tree op0,
3401 tree op1, value_range *vr)
3402{
3403 tree min = NULL;
3404 tree max = NULL;
3405
3406 /* Extract minimum/maximum values which satisfy the conditional as it was
3407 written. */
3408 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
3409 {
3410 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
3411
3412 max = op1;
3413 if (cond_code == LT_EXPR)
3414 {
3415 tree one = build_int_cst (TREE_TYPE (op0), 1);
3416 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
3417 /* Signal to compare_values_warnv this expr doesn't overflow. */
3418 if (EXPR_P (max))
3419 TREE_NO_WARNING (max) = 1;
3420 }
3421 }
3422 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
3423 {
3424 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
3425
3426 min = op1;
3427 if (cond_code == GT_EXPR)
3428 {
3429 tree one = build_int_cst (TREE_TYPE (op0), 1);
3430 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
3431 /* Signal to compare_values_warnv this expr doesn't overflow. */
3432 if (EXPR_P (min))
3433 TREE_NO_WARNING (min) = 1;
3434 }
3435 }
3436
3437 /* Now refine the minimum and maximum values using any
3438 value range information we have for op0. */
3439 if (min && max)
3440 {
be44111e 3441 if (compare_values (vr->min (), min) == 1)
3442 min = vr->min ();
3443 if (compare_values (vr->max (), max) == -1)
3444 max = vr->max ();
94d86adc 3445
3446 /* If the new min/max values have converged to a single value,
3447 then there is only one value which can satisfy the condition,
3448 return that value. */
3449 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
3450 return min;
3451 }
3452 return NULL;
3453}
3454
3455/* Return whether the value range *VR fits in an integer type specified
3456 by PRECISION and UNSIGNED_P. */
3457
3458static bool
3459range_fits_type_p (value_range *vr, unsigned dest_precision, signop dest_sgn)
3460{
3461 tree src_type;
3462 unsigned src_precision;
3463 widest_int tem;
3464 signop src_sgn;
3465
3466 /* We can only handle integral and pointer types. */
be44111e 3467 src_type = vr->type ();
94d86adc 3468 if (!INTEGRAL_TYPE_P (src_type)
3469 && !POINTER_TYPE_P (src_type))
3470 return false;
3471
3472 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
3473 and so is an identity transform. */
be44111e 3474 src_precision = TYPE_PRECISION (vr->type ());
94d86adc 3475 src_sgn = TYPE_SIGN (src_type);
3476 if ((src_precision < dest_precision
3477 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
3478 || (src_precision == dest_precision && src_sgn == dest_sgn))
3479 return true;
3480
3481 /* Now we can only handle ranges with constant bounds. */
be44111e 3482 if (!range_int_cst_p (vr))
94d86adc 3483 return false;
3484
3485 /* For sign changes, the MSB of the wide_int has to be clear.
3486 An unsigned value with its MSB set cannot be represented by
3487 a signed wide_int, while a negative value cannot be represented
3488 by an unsigned wide_int. */
3489 if (src_sgn != dest_sgn
be44111e 3490 && (wi::lts_p (wi::to_wide (vr->min ()), 0)
3491 || wi::lts_p (wi::to_wide (vr->max ()), 0)))
94d86adc 3492 return false;
3493
3494 /* Then we can perform the conversion on both ends and compare
3495 the result for equality. */
be44111e 3496 tem = wi::ext (wi::to_widest (vr->min ()), dest_precision, dest_sgn);
3497 if (tem != wi::to_widest (vr->min ()))
94d86adc 3498 return false;
be44111e 3499 tem = wi::ext (wi::to_widest (vr->max ()), dest_precision, dest_sgn);
3500 if (tem != wi::to_widest (vr->max ()))
94d86adc 3501 return false;
3502
3503 return true;
3504}
3505
3506/* Simplify a conditional using a relational operator to an equality
3507 test if the range information indicates only one value can satisfy
3508 the original conditional. */
3509
3510bool
3511vr_values::simplify_cond_using_ranges_1 (gcond *stmt)
3512{
3513 tree op0 = gimple_cond_lhs (stmt);
3514 tree op1 = gimple_cond_rhs (stmt);
3515 enum tree_code cond_code = gimple_cond_code (stmt);
3516
3517 if (cond_code != NE_EXPR
3518 && cond_code != EQ_EXPR
3519 && TREE_CODE (op0) == SSA_NAME
3520 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
3521 && is_gimple_min_invariant (op1))
3522 {
3523 value_range *vr = get_value_range (op0);
3524
3525 /* If we have range information for OP0, then we might be
3526 able to simplify this conditional. */
be44111e 3527 if (vr->kind () == VR_RANGE)
94d86adc 3528 {
3529 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
3530 if (new_tree)
3531 {
3532 if (dump_file)
3533 {
3534 fprintf (dump_file, "Simplified relational ");
3535 print_gimple_stmt (dump_file, stmt, 0);
3536 fprintf (dump_file, " into ");
3537 }
3538
3539 gimple_cond_set_code (stmt, EQ_EXPR);
3540 gimple_cond_set_lhs (stmt, op0);
3541 gimple_cond_set_rhs (stmt, new_tree);
3542
3543 update_stmt (stmt);
3544
3545 if (dump_file)
3546 {
3547 print_gimple_stmt (dump_file, stmt, 0);
3548 fprintf (dump_file, "\n");
3549 }
3550
3551 return true;
3552 }
3553
3554 /* Try again after inverting the condition. We only deal
3555 with integral types here, so no need to worry about
3556 issues with inverting FP comparisons. */
3557 new_tree = test_for_singularity
3558 (invert_tree_comparison (cond_code, false),
3559 op0, op1, vr);
3560 if (new_tree)
3561 {
3562 if (dump_file)
3563 {
3564 fprintf (dump_file, "Simplified relational ");
3565 print_gimple_stmt (dump_file, stmt, 0);
3566 fprintf (dump_file, " into ");
3567 }
3568
3569 gimple_cond_set_code (stmt, NE_EXPR);
3570 gimple_cond_set_lhs (stmt, op0);
3571 gimple_cond_set_rhs (stmt, new_tree);
3572
3573 update_stmt (stmt);
3574
3575 if (dump_file)
3576 {
3577 print_gimple_stmt (dump_file, stmt, 0);
3578 fprintf (dump_file, "\n");
3579 }
3580
3581 return true;
3582 }
3583 }
3584 }
3585 return false;
3586}
3587
3588/* STMT is a conditional at the end of a basic block.
3589
3590 If the conditional is of the form SSA_NAME op constant and the SSA_NAME
3591 was set via a type conversion, try to replace the SSA_NAME with the RHS
3592 of the type conversion. Doing so makes the conversion dead which helps
3593 subsequent passes. */
3594
3595void
3596vr_values::simplify_cond_using_ranges_2 (gcond *stmt)
3597{
3598 tree op0 = gimple_cond_lhs (stmt);
3599 tree op1 = gimple_cond_rhs (stmt);
3600
3601 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
3602 see if OP0 was set by a type conversion where the source of
3603 the conversion is another SSA_NAME with a range that fits
3604 into the range of OP0's type.
3605
3606 If so, the conversion is redundant as the earlier SSA_NAME can be
3607 used for the comparison directly if we just massage the constant in the
3608 comparison. */
3609 if (TREE_CODE (op0) == SSA_NAME
3610 && TREE_CODE (op1) == INTEGER_CST)
3611 {
3612 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
3613 tree innerop;
3614
3615 if (!is_gimple_assign (def_stmt)
3616 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
3617 return;
3618
3619 innerop = gimple_assign_rhs1 (def_stmt);
3620
3621 if (TREE_CODE (innerop) == SSA_NAME
3622 && !POINTER_TYPE_P (TREE_TYPE (innerop))
3623 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)
3624 && desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0)))
3625 {
3626 value_range *vr = get_value_range (innerop);
3627
3628 if (range_int_cst_p (vr)
3629 && range_fits_type_p (vr,
3630 TYPE_PRECISION (TREE_TYPE (op0)),
3631 TYPE_SIGN (TREE_TYPE (op0)))
3632 && int_fits_type_p (op1, TREE_TYPE (innerop)))
3633 {
3634 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
3635 gimple_cond_set_lhs (stmt, innerop);
3636 gimple_cond_set_rhs (stmt, newconst);
3637 update_stmt (stmt);
3638 if (dump_file && (dump_flags & TDF_DETAILS))
3639 {
3640 fprintf (dump_file, "Folded into: ");
3641 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
3642 fprintf (dump_file, "\n");
3643 }
3644 }
3645 }
3646 }
3647}
3648
3649/* Simplify a switch statement using the value range of the switch
3650 argument. */
3651
3652bool
3653vr_values::simplify_switch_using_ranges (gswitch *stmt)
3654{
3655 tree op = gimple_switch_index (stmt);
3656 value_range *vr = NULL;
3657 bool take_default;
3658 edge e;
3659 edge_iterator ei;
3660 size_t i = 0, j = 0, n, n2;
3661 tree vec2;
3662 switch_update su;
3663 size_t k = 1, l = 0;
3664
3665 if (TREE_CODE (op) == SSA_NAME)
3666 {
3667 vr = get_value_range (op);
3668
3669 /* We can only handle integer ranges. */
be44111e 3670 if (vr->varying_p ()
3671 || vr->undefined_p ()
3672 || vr->symbolic_p ())
94d86adc 3673 return false;
3674
3675 /* Find case label for min/max of the value range. */
3676 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
3677 }
3678 else if (TREE_CODE (op) == INTEGER_CST)
3679 {
3680 take_default = !find_case_label_index (stmt, 1, op, &i);
3681 if (take_default)
3682 {
3683 i = 1;
3684 j = 0;
3685 }
3686 else
3687 {
3688 j = i;
3689 }
3690 }
3691 else
3692 return false;
3693
3694 n = gimple_switch_num_labels (stmt);
3695
3696 /* We can truncate the case label ranges that partially overlap with OP's
3697 value range. */
3698 size_t min_idx = 1, max_idx = 0;
3699 if (vr != NULL)
be44111e 3700 find_case_label_range (stmt, vr->min (), vr->max (), &min_idx, &max_idx);
94d86adc 3701 if (min_idx <= max_idx)
3702 {
3703 tree min_label = gimple_switch_label (stmt, min_idx);
3704 tree max_label = gimple_switch_label (stmt, max_idx);
3705
3706 /* Avoid changing the type of the case labels when truncating. */
3707 tree case_label_type = TREE_TYPE (CASE_LOW (min_label));
be44111e 3708 tree vr_min = fold_convert (case_label_type, vr->min ());
3709 tree vr_max = fold_convert (case_label_type, vr->max ());
94d86adc 3710
be44111e 3711 if (vr->kind () == VR_RANGE)
94d86adc 3712 {
3713 /* If OP's value range is [2,8] and the low label range is
3714 0 ... 3, truncate the label's range to 2 .. 3. */
3715 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
3716 && CASE_HIGH (min_label) != NULL_TREE
3717 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
3718 CASE_LOW (min_label) = vr_min;
3719
3720 /* If OP's value range is [2,8] and the high label range is
3721 7 ... 10, truncate the label's range to 7 .. 8. */
3722 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
3723 && CASE_HIGH (max_label) != NULL_TREE
3724 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
3725 CASE_HIGH (max_label) = vr_max;
3726 }
be44111e 3727 else if (vr->kind () == VR_ANTI_RANGE)
94d86adc 3728 {
3729 tree one_cst = build_one_cst (case_label_type);
3730
3731 if (min_label == max_label)
3732 {
3733 /* If OP's value range is ~[7,8] and the label's range is
3734 7 ... 10, truncate the label's range to 9 ... 10. */
3735 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0
3736 && CASE_HIGH (min_label) != NULL_TREE
3737 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0)
3738 CASE_LOW (min_label)
3739 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
3740
3741 /* If OP's value range is ~[7,8] and the label's range is
3742 5 ... 8, truncate the label's range to 5 ... 6. */
3743 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
3744 && CASE_HIGH (min_label) != NULL_TREE
3745 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0)
3746 CASE_HIGH (min_label)
3747 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
3748 }
3749 else
3750 {
3751 /* If OP's value range is ~[2,8] and the low label range is
3752 0 ... 3, truncate the label's range to 0 ... 1. */
3753 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
3754 && CASE_HIGH (min_label) != NULL_TREE
3755 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
3756 CASE_HIGH (min_label)
3757 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
3758
3759 /* If OP's value range is ~[2,8] and the high label range is
3760 7 ... 10, truncate the label's range to 9 ... 10. */
3761 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
3762 && CASE_HIGH (max_label) != NULL_TREE
3763 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
3764 CASE_LOW (max_label)
3765 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
3766 }
3767 }
3768
3769 /* Canonicalize singleton case ranges. */
3770 if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label)))
3771 CASE_HIGH (min_label) = NULL_TREE;
3772 if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label)))
3773 CASE_HIGH (max_label) = NULL_TREE;
3774 }
3775
3776 /* We can also eliminate case labels that lie completely outside OP's value
3777 range. */
3778
3779 /* Bail out if this is just all edges taken. */
3780 if (i == 1
3781 && j == n - 1
3782 && take_default)
3783 return false;
3784
3785 /* Build a new vector of taken case labels. */
3786 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
3787 n2 = 0;
3788
3789 /* Add the default edge, if necessary. */
3790 if (take_default)
3791 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
3792
3793 for (; i <= j; ++i, ++n2)
3794 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
3795
3796 for (; k <= l; ++k, ++n2)
3797 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
3798
3799 /* Mark needed edges. */
3800 for (i = 0; i < n2; ++i)
3801 {
3802 e = find_edge (gimple_bb (stmt),
0fb4f2ce 3803 label_to_block (cfun,
3804 CASE_LABEL (TREE_VEC_ELT (vec2, i))));
94d86adc 3805 e->aux = (void *)-1;
3806 }
3807
3808 /* Queue not needed edges for later removal. */
3809 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
3810 {
3811 if (e->aux == (void *)-1)
3812 {
3813 e->aux = NULL;
3814 continue;
3815 }
3816
3817 if (dump_file && (dump_flags & TDF_DETAILS))
3818 {
3819 fprintf (dump_file, "removing unreachable case label\n");
3820 }
3821 to_remove_edges.safe_push (e);
3822 e->flags &= ~EDGE_EXECUTABLE;
d443f534 3823 e->flags |= EDGE_IGNORE;
94d86adc 3824 }
3825
3826 /* And queue an update for the stmt. */
3827 su.stmt = stmt;
3828 su.vec = vec2;
3829 to_update_switch_stmts.safe_push (su);
3830 return false;
3831}
3832
d443f534 3833void
3834vr_values::cleanup_edges_and_switches (void)
3835{
3836 int i;
3837 edge e;
3838 switch_update *su;
3839
3840 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
3841 CFG in a broken state and requires a cfg_cleanup run. */
3842 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
3843 remove_edge (e);
3844
3845 /* Update SWITCH_EXPR case label vector. */
3846 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
3847 {
3848 size_t j;
3849 size_t n = TREE_VEC_LENGTH (su->vec);
3850 tree label;
3851 gimple_switch_set_num_labels (su->stmt, n);
3852 for (j = 0; j < n; j++)
3853 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
3854 /* As we may have replaced the default label with a regular one
3855 make sure to make it a real default label again. This ensures
3856 optimal expansion. */
3857 label = gimple_switch_label (su->stmt, 0);
3858 CASE_LOW (label) = NULL_TREE;
3859 CASE_HIGH (label) = NULL_TREE;
3860 }
3861
3862 if (!to_remove_edges.is_empty ())
3863 {
3864 free_dominance_info (CDI_DOMINATORS);
3865 loops_state_set (LOOPS_NEED_FIXUP);
3866 }
3867
3868 to_remove_edges.release ();
3869 to_update_switch_stmts.release ();
3870}
3871
94d86adc 3872/* Simplify an integral conversion from an SSA name in STMT. */
3873
3874static bool
3875simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
3876{
3877 tree innerop, middleop, finaltype;
3878 gimple *def_stmt;
3879 signop inner_sgn, middle_sgn, final_sgn;
3880 unsigned inner_prec, middle_prec, final_prec;
3881 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
3882
3883 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
3884 if (!INTEGRAL_TYPE_P (finaltype))
3885 return false;
3886 middleop = gimple_assign_rhs1 (stmt);
3887 def_stmt = SSA_NAME_DEF_STMT (middleop);
3888 if (!is_gimple_assign (def_stmt)
3889 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
3890 return false;
3891 innerop = gimple_assign_rhs1 (def_stmt);
3892 if (TREE_CODE (innerop) != SSA_NAME
3893 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
3894 return false;
3895
3896 /* Get the value-range of the inner operand. Use get_range_info in
3897 case innerop was created during substitute-and-fold. */
3898 wide_int imin, imax;
3899 if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop))
3900 || get_range_info (innerop, &imin, &imax) != VR_RANGE)
3901 return false;
3902 innermin = widest_int::from (imin, TYPE_SIGN (TREE_TYPE (innerop)));
3903 innermax = widest_int::from (imax, TYPE_SIGN (TREE_TYPE (innerop)));
3904
3905 /* Simulate the conversion chain to check if the result is equal if
3906 the middle conversion is removed. */
3907 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
3908 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
3909 final_prec = TYPE_PRECISION (finaltype);
3910
3911 /* If the first conversion is not injective, the second must not
3912 be widening. */
3913 if (wi::gtu_p (innermax - innermin,
3914 wi::mask <widest_int> (middle_prec, false))
3915 && middle_prec < final_prec)
3916 return false;
3917 /* We also want a medium value so that we can track the effect that
3918 narrowing conversions with sign change have. */
3919 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
3920 if (inner_sgn == UNSIGNED)
3921 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
3922 else
3923 innermed = 0;
3924 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
3925 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
3926 innermed = innermin;
3927
3928 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
3929 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
3930 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
3931 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
3932
3933 /* Require that the final conversion applied to both the original
3934 and the intermediate range produces the same result. */
3935 final_sgn = TYPE_SIGN (finaltype);
3936 if (wi::ext (middlemin, final_prec, final_sgn)
3937 != wi::ext (innermin, final_prec, final_sgn)
3938 || wi::ext (middlemed, final_prec, final_sgn)
3939 != wi::ext (innermed, final_prec, final_sgn)
3940 || wi::ext (middlemax, final_prec, final_sgn)
3941 != wi::ext (innermax, final_prec, final_sgn))
3942 return false;
3943
3944 gimple_assign_set_rhs1 (stmt, innerop);
3945 fold_stmt (gsi, follow_single_use_edges);
3946 return true;
3947}
3948
3949/* Simplify a conversion from integral SSA name to float in STMT. */
3950
3951bool
3952vr_values::simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi,
3953 gimple *stmt)
3954{
3955 tree rhs1 = gimple_assign_rhs1 (stmt);
3956 value_range *vr = get_value_range (rhs1);
3957 scalar_float_mode fltmode
3958 = SCALAR_FLOAT_TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
3959 scalar_int_mode mode;
3960 tree tem;
3961 gassign *conv;
3962
3963 /* We can only handle constant ranges. */
be44111e 3964 if (!range_int_cst_p (vr))
94d86adc 3965 return false;
3966
3967 /* First check if we can use a signed type in place of an unsigned. */
3968 scalar_int_mode rhs_mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs1));
3969 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
3970 && can_float_p (fltmode, rhs_mode, 0) != CODE_FOR_nothing
3971 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
3972 mode = rhs_mode;
3973 /* If we can do the conversion in the current input mode do nothing. */
3974 else if (can_float_p (fltmode, rhs_mode,
3975 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
3976 return false;
3977 /* Otherwise search for a mode we can use, starting from the narrowest
3978 integer mode available. */
3979 else
3980 {
3981 mode = NARROWEST_INT_MODE;
3982 for (;;)
3983 {
3984 /* If we cannot do a signed conversion to float from mode
3985 or if the value-range does not fit in the signed type
3986 try with a wider mode. */
3987 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
3988 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
3989 break;
3990
3991 /* But do not widen the input. Instead leave that to the
3992 optabs expansion code. */
3993 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
3994 || GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
3995 return false;
3996 }
3997 }
3998
3999 /* It works, insert a truncation or sign-change before the
4000 float conversion. */
4001 tem = make_ssa_name (build_nonstandard_integer_type
4002 (GET_MODE_PRECISION (mode), 0));
4003 conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
4004 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
4005 gimple_assign_set_rhs1 (stmt, tem);
4006 fold_stmt (gsi, follow_single_use_edges);
4007
4008 return true;
4009}
4010
4011/* Simplify an internal fn call using ranges if possible. */
4012
4013bool
4014vr_values::simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi,
4015 gimple *stmt)
4016{
4017 enum tree_code subcode;
4018 bool is_ubsan = false;
4019 bool ovf = false;
4020 switch (gimple_call_internal_fn (stmt))
4021 {
4022 case IFN_UBSAN_CHECK_ADD:
4023 subcode = PLUS_EXPR;
4024 is_ubsan = true;
4025 break;
4026 case IFN_UBSAN_CHECK_SUB:
4027 subcode = MINUS_EXPR;
4028 is_ubsan = true;
4029 break;
4030 case IFN_UBSAN_CHECK_MUL:
4031 subcode = MULT_EXPR;
4032 is_ubsan = true;
4033 break;
4034 case IFN_ADD_OVERFLOW:
4035 subcode = PLUS_EXPR;
4036 break;
4037 case IFN_SUB_OVERFLOW:
4038 subcode = MINUS_EXPR;
4039 break;
4040 case IFN_MUL_OVERFLOW:
4041 subcode = MULT_EXPR;
4042 break;
4043 default:
4044 return false;
4045 }
4046
4047 tree op0 = gimple_call_arg (stmt, 0);
4048 tree op1 = gimple_call_arg (stmt, 1);
4049 tree type;
4050 if (is_ubsan)
4051 {
4052 type = TREE_TYPE (op0);
4053 if (VECTOR_TYPE_P (type))
4054 return false;
4055 }
4056 else if (gimple_call_lhs (stmt) == NULL_TREE)
4057 return false;
4058 else
4059 type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
4060 if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
4061 || (is_ubsan && ovf))
4062 return false;
4063
4064 gimple *g;
4065 location_t loc = gimple_location (stmt);
4066 if (is_ubsan)
4067 g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
4068 else
4069 {
4070 int prec = TYPE_PRECISION (type);
4071 tree utype = type;
4072 if (ovf
4073 || !useless_type_conversion_p (type, TREE_TYPE (op0))
4074 || !useless_type_conversion_p (type, TREE_TYPE (op1)))
4075 utype = build_nonstandard_integer_type (prec, 1);
4076 if (TREE_CODE (op0) == INTEGER_CST)
4077 op0 = fold_convert (utype, op0);
4078 else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
4079 {
4080 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
4081 gimple_set_location (g, loc);
4082 gsi_insert_before (gsi, g, GSI_SAME_STMT);
4083 op0 = gimple_assign_lhs (g);
4084 }
4085 if (TREE_CODE (op1) == INTEGER_CST)
4086 op1 = fold_convert (utype, op1);
4087 else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
4088 {
4089 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
4090 gimple_set_location (g, loc);
4091 gsi_insert_before (gsi, g, GSI_SAME_STMT);
4092 op1 = gimple_assign_lhs (g);
4093 }
4094 g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
4095 gimple_set_location (g, loc);
4096 gsi_insert_before (gsi, g, GSI_SAME_STMT);
4097 if (utype != type)
4098 {
4099 g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
4100 gimple_assign_lhs (g));
4101 gimple_set_location (g, loc);
4102 gsi_insert_before (gsi, g, GSI_SAME_STMT);
4103 }
4104 g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
4105 gimple_assign_lhs (g),
4106 build_int_cst (type, ovf));
4107 }
4108 gimple_set_location (g, loc);
4109 gsi_replace (gsi, g, false);
4110 return true;
4111}
4112
4113/* Return true if VAR is a two-valued variable. Set a and b with the
4114 two-values when it is true. Return false otherwise. */
4115
4116bool
4117vr_values::two_valued_val_range_p (tree var, tree *a, tree *b)
4118{
4119 value_range *vr = get_value_range (var);
be44111e 4120 if (vr->varying_p ()
4121 || vr->undefined_p ()
4122 || TREE_CODE (vr->min ()) != INTEGER_CST
4123 || TREE_CODE (vr->max ()) != INTEGER_CST)
94d86adc 4124 return false;
4125
be44111e 4126 if (vr->kind () == VR_RANGE
4127 && wi::to_wide (vr->max ()) - wi::to_wide (vr->min ()) == 1)
94d86adc 4128 {
be44111e 4129 *a = vr->min ();
4130 *b = vr->max ();
94d86adc 4131 return true;
4132 }
4133
4134 /* ~[TYPE_MIN + 1, TYPE_MAX - 1] */
be44111e 4135 if (vr->kind () == VR_ANTI_RANGE
4136 && (wi::to_wide (vr->min ())
94d86adc 4137 - wi::to_wide (vrp_val_min (TREE_TYPE (var)))) == 1
4138 && (wi::to_wide (vrp_val_max (TREE_TYPE (var)))
be44111e 4139 - wi::to_wide (vr->max ())) == 1)
94d86adc 4140 {
4141 *a = vrp_val_min (TREE_TYPE (var));
4142 *b = vrp_val_max (TREE_TYPE (var));
4143 return true;
4144 }
4145
4146 return false;
4147}
4148
4149/* Simplify STMT using ranges if possible. */
4150
4151bool
4152vr_values::simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
4153{
4154 gimple *stmt = gsi_stmt (*gsi);
4155 if (is_gimple_assign (stmt))
4156 {
4157 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4158 tree rhs1 = gimple_assign_rhs1 (stmt);
4159 tree rhs2 = gimple_assign_rhs2 (stmt);
4160 tree lhs = gimple_assign_lhs (stmt);
4161 tree val1 = NULL_TREE, val2 = NULL_TREE;
4162 use_operand_p use_p;
4163 gimple *use_stmt;
4164
4165 /* Convert:
4166 LHS = CST BINOP VAR
4167 Where VAR is two-valued and LHS is used in GIMPLE_COND only
4168 To:
4169 LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2)
4170
4171 Also handles:
4172 LHS = VAR BINOP CST
4173 Where VAR is two-valued and LHS is used in GIMPLE_COND only
4174 To:
4175 LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */
4176
4177 if (TREE_CODE_CLASS (rhs_code) == tcc_binary
9482b21e 4178 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
94d86adc 4179 && ((TREE_CODE (rhs1) == INTEGER_CST
4180 && TREE_CODE (rhs2) == SSA_NAME)
4181 || (TREE_CODE (rhs2) == INTEGER_CST
4182 && TREE_CODE (rhs1) == SSA_NAME))
4183 && single_imm_use (lhs, &use_p, &use_stmt)
4184 && gimple_code (use_stmt) == GIMPLE_COND)
4185
4186 {
4187 tree new_rhs1 = NULL_TREE;
4188 tree new_rhs2 = NULL_TREE;
4189 tree cmp_var = NULL_TREE;
4190
4191 if (TREE_CODE (rhs2) == SSA_NAME
4192 && two_valued_val_range_p (rhs2, &val1, &val2))
4193 {
4194 /* Optimize RHS1 OP [VAL1, VAL2]. */
4195 new_rhs1 = int_const_binop (rhs_code, rhs1, val1);
4196 new_rhs2 = int_const_binop (rhs_code, rhs1, val2);
4197 cmp_var = rhs2;
4198 }
4199 else if (TREE_CODE (rhs1) == SSA_NAME
4200 && two_valued_val_range_p (rhs1, &val1, &val2))
4201 {
4202 /* Optimize [VAL1, VAL2] OP RHS2. */
4203 new_rhs1 = int_const_binop (rhs_code, val1, rhs2);
4204 new_rhs2 = int_const_binop (rhs_code, val2, rhs2);
4205 cmp_var = rhs1;
4206 }
4207
4208 /* If we could not find two-vals or the optimzation is invalid as
4209 in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */
4210 if (new_rhs1 && new_rhs2)
4211 {
4212 tree cond = build2 (EQ_EXPR, boolean_type_node, cmp_var, val1);
4213 gimple_assign_set_rhs_with_ops (gsi,
4214 COND_EXPR, cond,
4215 new_rhs1,
4216 new_rhs2);
4217 update_stmt (gsi_stmt (*gsi));
4218 fold_stmt (gsi, follow_single_use_edges);
4219 return true;
4220 }
4221 }
4222
4223 switch (rhs_code)
4224 {
4225 case EQ_EXPR:
4226 case NE_EXPR:
4227 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
4228 if the RHS is zero or one, and the LHS are known to be boolean
4229 values. */
4230 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
4231 return simplify_truth_ops_using_ranges (gsi, stmt);
4232 break;
4233
4234 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4235 and BIT_AND_EXPR respectively if the first operand is greater
4236 than zero and the second operand is an exact power of two.
4237 Also optimize TRUNC_MOD_EXPR away if the second operand is
4238 constant and the first operand already has the right value
4239 range. */
4240 case TRUNC_DIV_EXPR:
4241 case TRUNC_MOD_EXPR:
4242 if ((TREE_CODE (rhs1) == SSA_NAME
4243 || TREE_CODE (rhs1) == INTEGER_CST)
4244 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
4245 return simplify_div_or_mod_using_ranges (gsi, stmt);
4246 break;
4247
4248 /* Transform ABS (X) into X or -X as appropriate. */
4249 case ABS_EXPR:
4250 if (TREE_CODE (rhs1) == SSA_NAME
4251 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
4252 return simplify_abs_using_ranges (gsi, stmt);
4253 break;
4254
4255 case BIT_AND_EXPR:
4256 case BIT_IOR_EXPR:
4257 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
4258 if all the bits being cleared are already cleared or
4259 all the bits being set are already set. */
4260 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
4261 return simplify_bit_ops_using_ranges (gsi, stmt);
4262 break;
4263
4264 CASE_CONVERT:
4265 if (TREE_CODE (rhs1) == SSA_NAME
4266 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
4267 return simplify_conversion_using_ranges (gsi, stmt);
4268 break;
4269
4270 case FLOAT_EXPR:
4271 if (TREE_CODE (rhs1) == SSA_NAME
4272 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
4273 return simplify_float_conversion_using_ranges (gsi, stmt);
4274 break;
4275
4276 case MIN_EXPR:
4277 case MAX_EXPR:
4278 return simplify_min_or_max_using_ranges (gsi, stmt);
4279
4280 default:
4281 break;
4282 }
4283 }
4284 else if (gimple_code (stmt) == GIMPLE_COND)
4285 return simplify_cond_using_ranges_1 (as_a <gcond *> (stmt));
4286 else if (gimple_code (stmt) == GIMPLE_SWITCH)
4287 return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
4288 else if (is_gimple_call (stmt)
4289 && gimple_call_internal_p (stmt))
4290 return simplify_internal_call_using_ranges (gsi, stmt);
4291
4292 return false;
4293}
4294
4295void
4296vr_values::set_vr_value (tree var, value_range *vr)
4297{
4298 if (SSA_NAME_VERSION (var) >= num_vr_values)
4299 return;
4300 vr_value[SSA_NAME_VERSION (var)] = vr;
4301}
4302