]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/wide-int.cc
wide-int: Fix up wi::shifted_mask [PR106144]
[thirdparty/gcc.git] / gcc / wide-int.cc
CommitLineData
807e902e 1/* Operations with very long integers.
7adcbafe 2 Copyright (C) 2012-2022 Free Software Foundation, Inc.
807e902e
KZ
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by the
9Free Software Foundation; either version 3, or (at your option) any
10later version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT
13ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
807e902e 25#include "tree.h"
d9b950dd 26#include "selftest.h"
807e902e 27
4c8bd90f
RB
28
29#define HOST_BITS_PER_HALF_WIDE_INT 32
30#if HOST_BITS_PER_HALF_WIDE_INT == HOST_BITS_PER_LONG
31# define HOST_HALF_WIDE_INT long
32#elif HOST_BITS_PER_HALF_WIDE_INT == HOST_BITS_PER_INT
33# define HOST_HALF_WIDE_INT int
34#else
35#error Please add support for HOST_HALF_WIDE_INT
36#endif
37
807e902e 38#define W_TYPE_SIZE HOST_BITS_PER_WIDE_INT
ecc7533a
FXC
39/* Do not include longlong.h when compiler is clang-based. See PR61146. */
40#if GCC_VERSION >= 3000 && (W_TYPE_SIZE == 32 || defined (__SIZEOF_INT128__)) && !defined(__clang__)
807e902e
KZ
41typedef unsigned HOST_HALF_WIDE_INT UHWtype;
42typedef unsigned HOST_WIDE_INT UWtype;
43typedef unsigned int UQItype __attribute__ ((mode (QI)));
44typedef unsigned int USItype __attribute__ ((mode (SI)));
45typedef unsigned int UDItype __attribute__ ((mode (DI)));
60f82c42
RS
46#if W_TYPE_SIZE == 32
47typedef unsigned int UDWtype __attribute__ ((mode (DI)));
48#else
49typedef unsigned int UDWtype __attribute__ ((mode (TI)));
50#endif
807e902e
KZ
51#include "longlong.h"
52#endif
53
54static const HOST_WIDE_INT zeros[WIDE_INT_MAX_ELTS] = {};
55
56/*
57 * Internal utilities.
58 */
59
60/* Quantities to deal with values that hold half of a wide int. Used
61 in multiply and divide. */
fecfbfa4 62#define HALF_INT_MASK ((HOST_WIDE_INT_1 << HOST_BITS_PER_HALF_WIDE_INT) - 1)
807e902e
KZ
63
64#define BLOCK_OF(TARGET) ((TARGET) / HOST_BITS_PER_WIDE_INT)
65#define BLOCKS_NEEDED(PREC) \
66 (PREC ? (((PREC) + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT) : 1)
67#define SIGN_MASK(X) ((HOST_WIDE_INT) (X) < 0 ? -1 : 0)
68
69/* Return the value a VAL[I] if I < LEN, otherwise, return 0 or -1
70 based on the top existing bit of VAL. */
71
72static unsigned HOST_WIDE_INT
73safe_uhwi (const HOST_WIDE_INT *val, unsigned int len, unsigned int i)
74{
fecfbfa4 75 return i < len ? val[i] : val[len - 1] < 0 ? HOST_WIDE_INT_M1 : 0;
807e902e
KZ
76}
77
78/* Convert the integer in VAL to canonical form, returning its new length.
79 LEN is the number of blocks currently in VAL and PRECISION is the number
80 of bits in the integer it represents.
81
82 This function only changes the representation, not the value. */
83static unsigned int
84canonize (HOST_WIDE_INT *val, unsigned int len, unsigned int precision)
85{
86 unsigned int blocks_needed = BLOCKS_NEEDED (precision);
87 HOST_WIDE_INT top;
88 int i;
89
90 if (len > blocks_needed)
91 len = blocks_needed;
92
93 if (len == 1)
94 return len;
95
96 top = val[len - 1];
97 if (len * HOST_BITS_PER_WIDE_INT > precision)
98 val[len - 1] = top = sext_hwi (top, precision % HOST_BITS_PER_WIDE_INT);
99 if (top != 0 && top != (HOST_WIDE_INT)-1)
100 return len;
101
102 /* At this point we know that the top is either 0 or -1. Find the
103 first block that is not a copy of this. */
104 for (i = len - 2; i >= 0; i--)
105 {
106 HOST_WIDE_INT x = val[i];
107 if (x != top)
108 {
109 if (SIGN_MASK (x) == top)
110 return i + 1;
111
112 /* We need an extra block because the top bit block i does
113 not match the extension. */
114 return i + 2;
115 }
116 }
117
118 /* The number is 0 or -1. */
119 return 1;
120}
121
321a2b65
JJ
122/* VAL[0] is the unsigned result of an operation. Canonize it by adding
123 another 0 block if needed, and return number of blocks needed. */
124
125static inline unsigned int
126canonize_uhwi (HOST_WIDE_INT *val, unsigned int precision)
127{
128 if (val[0] < 0 && precision > HOST_BITS_PER_WIDE_INT)
129 {
130 val[1] = 0;
131 return 2;
132 }
133 return 1;
134}
135
807e902e
KZ
136/*
137 * Conversion routines in and out of wide_int.
138 */
139
140/* Copy XLEN elements from XVAL to VAL. If NEED_CANON, canonize the
141 result for an integer with precision PRECISION. Return the length
142 of VAL (after any canonization. */
143unsigned int
144wi::from_array (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
145 unsigned int xlen, unsigned int precision, bool need_canon)
146{
147 for (unsigned i = 0; i < xlen; i++)
148 val[i] = xval[i];
149 return need_canon ? canonize (val, xlen, precision) : xlen;
150}
151
152/* Construct a wide int from a buffer of length LEN. BUFFER will be
bd2c6270 153 read according to byte endianness and word endianness of the target.
807e902e
KZ
154 Only the lower BUFFER_LEN bytes of the result are set; the remaining
155 high bytes are cleared. */
156wide_int
157wi::from_buffer (const unsigned char *buffer, unsigned int buffer_len)
158{
159 unsigned int precision = buffer_len * BITS_PER_UNIT;
160 wide_int result = wide_int::create (precision);
161 unsigned int words = buffer_len / UNITS_PER_WORD;
162
163 /* We have to clear all the bits ourself, as we merely or in values
164 below. */
165 unsigned int len = BLOCKS_NEEDED (precision);
166 HOST_WIDE_INT *val = result.write_val ();
167 for (unsigned int i = 0; i < len; ++i)
168 val[i] = 0;
169
170 for (unsigned int byte = 0; byte < buffer_len; byte++)
171 {
172 unsigned int offset;
173 unsigned int index;
174 unsigned int bitpos = byte * BITS_PER_UNIT;
175 unsigned HOST_WIDE_INT value;
176
177 if (buffer_len > UNITS_PER_WORD)
178 {
179 unsigned int word = byte / UNITS_PER_WORD;
180
181 if (WORDS_BIG_ENDIAN)
182 word = (words - 1) - word;
183
184 offset = word * UNITS_PER_WORD;
185
186 if (BYTES_BIG_ENDIAN)
187 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
188 else
189 offset += byte % UNITS_PER_WORD;
190 }
191 else
192 offset = BYTES_BIG_ENDIAN ? (buffer_len - 1) - byte : byte;
193
194 value = (unsigned HOST_WIDE_INT) buffer[offset];
195
196 index = bitpos / HOST_BITS_PER_WIDE_INT;
197 val[index] |= value << (bitpos % HOST_BITS_PER_WIDE_INT);
198 }
199
200 result.set_len (canonize (val, len, precision));
201
202 return result;
203}
204
205/* Sets RESULT from X, the sign is taken according to SGN. */
206void
207wi::to_mpz (const wide_int_ref &x, mpz_t result, signop sgn)
208{
209 int len = x.get_len ();
210 const HOST_WIDE_INT *v = x.get_val ();
211 int excess = len * HOST_BITS_PER_WIDE_INT - x.get_precision ();
212
213 if (wi::neg_p (x, sgn))
214 {
215 /* We use ones complement to avoid -x80..0 edge case that -
216 won't work on. */
217 HOST_WIDE_INT *t = XALLOCAVEC (HOST_WIDE_INT, len);
218 for (int i = 0; i < len; i++)
219 t[i] = ~v[i];
220 if (excess > 0)
221 t[len - 1] = (unsigned HOST_WIDE_INT) t[len - 1] << excess >> excess;
222 mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, t);
223 mpz_com (result, result);
224 }
225 else if (excess > 0)
226 {
227 HOST_WIDE_INT *t = XALLOCAVEC (HOST_WIDE_INT, len);
228 for (int i = 0; i < len - 1; i++)
229 t[i] = v[i];
230 t[len - 1] = (unsigned HOST_WIDE_INT) v[len - 1] << excess >> excess;
231 mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, t);
232 }
9e603837
JJ
233 else if (excess < 0 && wi::neg_p (x))
234 {
235 int extra
236 = (-excess + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
237 HOST_WIDE_INT *t = XALLOCAVEC (HOST_WIDE_INT, len + extra);
238 for (int i = 0; i < len; i++)
239 t[i] = v[i];
240 for (int i = 0; i < extra; i++)
241 t[len + i] = -1;
242 excess = (-excess) % HOST_BITS_PER_WIDE_INT;
243 if (excess)
244 t[len + extra - 1] = (HOST_WIDE_INT_1U << excess) - 1;
245 mpz_import (result, len + extra, -1, sizeof (HOST_WIDE_INT), 0, 0, t);
246 }
807e902e
KZ
247 else
248 mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, v);
249}
250
251/* Returns X converted to TYPE. If WRAP is true, then out-of-range
252 values of VAL will be wrapped; otherwise, they will be set to the
253 appropriate minimum or maximum TYPE bound. */
254wide_int
255wi::from_mpz (const_tree type, mpz_t x, bool wrap)
256{
257 size_t count, numb;
025e5647 258 unsigned int prec = TYPE_PRECISION (type);
807e902e
KZ
259 wide_int res = wide_int::create (prec);
260
261 if (!wrap)
262 {
263 mpz_t min, max;
264
265 mpz_init (min);
266 mpz_init (max);
267 get_type_static_bounds (type, min, max);
268
269 if (mpz_cmp (x, min) < 0)
270 mpz_set (x, min);
271 else if (mpz_cmp (x, max) > 0)
272 mpz_set (x, max);
273
274 mpz_clear (min);
275 mpz_clear (max);
276 }
277
278 /* Determine the number of unsigned HOST_WIDE_INTs that are required
dcc74ead 279 for representing the absolute value. The code to calculate count is
807e902e
KZ
280 extracted from the GMP manual, section "Integer Import and Export":
281 http://gmplib.org/manual/Integer-Import-and-Export.html */
025e5647 282 numb = CHAR_BIT * sizeof (HOST_WIDE_INT);
807e902e
KZ
283 count = (mpz_sizeinbase (x, 2) + numb - 1) / numb;
284 HOST_WIDE_INT *val = res.write_val ();
dcc74ead
RS
285 /* Read the absolute value.
286
287 Write directly to the wide_int storage if possible, otherwise leave
025e5647
RS
288 GMP to allocate the memory for us. It might be slightly more efficient
289 to use mpz_tdiv_r_2exp for the latter case, but the situation is
290 pathological and it seems safer to operate on the original mpz value
291 in all cases. */
292 void *valres = mpz_export (count <= WIDE_INT_MAX_ELTS ? val : 0,
293 &count, -1, sizeof (HOST_WIDE_INT), 0, 0, x);
807e902e
KZ
294 if (count < 1)
295 {
296 val[0] = 0;
297 count = 1;
298 }
025e5647
RS
299 count = MIN (count, BLOCKS_NEEDED (prec));
300 if (valres != val)
301 {
302 memcpy (val, valres, count * sizeof (HOST_WIDE_INT));
303 free (valres);
304 }
dcc74ead
RS
305 /* Zero-extend the absolute value to PREC bits. */
306 if (count < BLOCKS_NEEDED (prec) && val[count - 1] < 0)
307 val[count++] = 0;
308 else
309 count = canonize (val, count, prec);
310 res.set_len (count);
807e902e
KZ
311
312 if (mpz_sgn (x) < 0)
313 res = -res;
314
315 return res;
316}
317
318/*
319 * Largest and smallest values in a mode.
320 */
321
322/* Return the largest SGNed number that is representable in PRECISION bits.
323
324 TODO: There is still code from the double_int era that trys to
325 make up for the fact that double int's could not represent the
326 min and max values of all types. This code should be removed
327 because the min and max values can always be represented in
328 wide_ints and int-csts. */
329wide_int
330wi::max_value (unsigned int precision, signop sgn)
331{
332 gcc_checking_assert (precision != 0);
333 if (sgn == UNSIGNED)
334 /* The unsigned max is just all ones. */
335 return shwi (-1, precision);
336 else
337 /* The signed max is all ones except the top bit. This must be
338 explicitly represented. */
339 return mask (precision - 1, false, precision);
340}
341
342/* Return the largest SGNed number that is representable in PRECISION bits. */
343wide_int
344wi::min_value (unsigned int precision, signop sgn)
345{
346 gcc_checking_assert (precision != 0);
347 if (sgn == UNSIGNED)
348 return uhwi (0, precision);
349 else
350 /* The signed min is all zeros except the top bit. This must be
351 explicitly represented. */
352 return wi::set_bit_in_zero (precision - 1, precision);
353}
354
355/*
356 * Public utilities.
357 */
358
359/* Convert the number represented by XVAL, XLEN and XPRECISION, which has
360 signedness SGN, to an integer that has PRECISION bits. Store the blocks
361 in VAL and return the number of blocks used.
362
363 This function can handle both extension (PRECISION > XPRECISION)
364 and truncation (PRECISION < XPRECISION). */
365unsigned int
366wi::force_to_size (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
367 unsigned int xlen, unsigned int xprecision,
368 unsigned int precision, signop sgn)
369{
370 unsigned int blocks_needed = BLOCKS_NEEDED (precision);
371 unsigned int len = blocks_needed < xlen ? blocks_needed : xlen;
372 for (unsigned i = 0; i < len; i++)
373 val[i] = xval[i];
374
375 if (precision > xprecision)
376 {
377 unsigned int small_xprecision = xprecision % HOST_BITS_PER_WIDE_INT;
378
379 /* Expanding. */
380 if (sgn == UNSIGNED)
381 {
382 if (small_xprecision && len == BLOCKS_NEEDED (xprecision))
383 val[len - 1] = zext_hwi (val[len - 1], small_xprecision);
384 else if (val[len - 1] < 0)
385 {
386 while (len < BLOCKS_NEEDED (xprecision))
387 val[len++] = -1;
388 if (small_xprecision)
389 val[len - 1] = zext_hwi (val[len - 1], small_xprecision);
390 else
391 val[len++] = 0;
392 }
393 }
394 else
395 {
396 if (small_xprecision && len == BLOCKS_NEEDED (xprecision))
397 val[len - 1] = sext_hwi (val[len - 1], small_xprecision);
398 }
399 }
400 len = canonize (val, len, precision);
401
402 return len;
403}
404
405/* This function hides the fact that we cannot rely on the bits beyond
406 the precision. This issue comes up in the relational comparisions
407 where we do allow comparisons of values of different precisions. */
408static inline HOST_WIDE_INT
409selt (const HOST_WIDE_INT *a, unsigned int len,
410 unsigned int blocks_needed, unsigned int small_prec,
411 unsigned int index, signop sgn)
412{
413 HOST_WIDE_INT val;
414 if (index < len)
415 val = a[index];
416 else if (index < blocks_needed || sgn == SIGNED)
417 /* Signed or within the precision. */
418 val = SIGN_MASK (a[len - 1]);
419 else
420 /* Unsigned extension beyond the precision. */
421 val = 0;
422
423 if (small_prec && index == blocks_needed - 1)
424 return (sgn == SIGNED
425 ? sext_hwi (val, small_prec)
426 : zext_hwi (val, small_prec));
427 else
428 return val;
429}
430
431/* Find the highest bit represented in a wide int. This will in
432 general have the same value as the sign bit. */
433static inline HOST_WIDE_INT
434top_bit_of (const HOST_WIDE_INT *a, unsigned int len, unsigned int prec)
435{
436 int excess = len * HOST_BITS_PER_WIDE_INT - prec;
437 unsigned HOST_WIDE_INT val = a[len - 1];
438 if (excess > 0)
439 val <<= excess;
440 return val >> (HOST_BITS_PER_WIDE_INT - 1);
441}
442
443/*
444 * Comparisons, note that only equality is an operator. The other
445 * comparisons cannot be operators since they are inherently signed or
446 * unsigned and C++ has no such operators.
447 */
448
449/* Return true if OP0 == OP1. */
450bool
451wi::eq_p_large (const HOST_WIDE_INT *op0, unsigned int op0len,
452 const HOST_WIDE_INT *op1, unsigned int op1len,
453 unsigned int prec)
454{
455 int l0 = op0len - 1;
456 unsigned int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1);
457
458 if (op0len != op1len)
459 return false;
460
461 if (op0len == BLOCKS_NEEDED (prec) && small_prec)
462 {
463 /* It does not matter if we zext or sext here, we just have to
464 do both the same way. */
465 if (zext_hwi (op0 [l0], small_prec) != zext_hwi (op1 [l0], small_prec))
466 return false;
467 l0--;
468 }
469
470 while (l0 >= 0)
471 if (op0[l0] != op1[l0])
472 return false;
473 else
474 l0--;
475
476 return true;
477}
478
479/* Return true if OP0 < OP1 using signed comparisons. */
480bool
481wi::lts_p_large (const HOST_WIDE_INT *op0, unsigned int op0len,
482 unsigned int precision,
483 const HOST_WIDE_INT *op1, unsigned int op1len)
484{
485 HOST_WIDE_INT s0, s1;
486 unsigned HOST_WIDE_INT u0, u1;
487 unsigned int blocks_needed = BLOCKS_NEEDED (precision);
488 unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
489 int l = MAX (op0len - 1, op1len - 1);
490
491 /* Only the top block is compared as signed. The rest are unsigned
492 comparisons. */
493 s0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
494 s1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
495 if (s0 < s1)
496 return true;
497 if (s0 > s1)
498 return false;
499
500 l--;
501 while (l >= 0)
502 {
503 u0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
504 u1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
505
506 if (u0 < u1)
507 return true;
508 if (u0 > u1)
509 return false;
510 l--;
511 }
512
513 return false;
514}
515
516/* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using
517 signed compares. */
518int
519wi::cmps_large (const HOST_WIDE_INT *op0, unsigned int op0len,
520 unsigned int precision,
521 const HOST_WIDE_INT *op1, unsigned int op1len)
522{
523 HOST_WIDE_INT s0, s1;
524 unsigned HOST_WIDE_INT u0, u1;
525 unsigned int blocks_needed = BLOCKS_NEEDED (precision);
526 unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
527 int l = MAX (op0len - 1, op1len - 1);
528
529 /* Only the top block is compared as signed. The rest are unsigned
530 comparisons. */
531 s0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
532 s1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
533 if (s0 < s1)
534 return -1;
535 if (s0 > s1)
536 return 1;
537
538 l--;
539 while (l >= 0)
540 {
541 u0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
542 u1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
543
544 if (u0 < u1)
545 return -1;
546 if (u0 > u1)
547 return 1;
548 l--;
549 }
550
551 return 0;
552}
553
554/* Return true if OP0 < OP1 using unsigned comparisons. */
555bool
556wi::ltu_p_large (const HOST_WIDE_INT *op0, unsigned int op0len,
557 unsigned int precision,
558 const HOST_WIDE_INT *op1, unsigned int op1len)
559{
560 unsigned HOST_WIDE_INT x0;
561 unsigned HOST_WIDE_INT x1;
562 unsigned int blocks_needed = BLOCKS_NEEDED (precision);
563 unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
564 int l = MAX (op0len - 1, op1len - 1);
565
566 while (l >= 0)
567 {
568 x0 = selt (op0, op0len, blocks_needed, small_prec, l, UNSIGNED);
569 x1 = selt (op1, op1len, blocks_needed, small_prec, l, UNSIGNED);
570 if (x0 < x1)
571 return true;
572 if (x0 > x1)
573 return false;
574 l--;
575 }
576
577 return false;
578}
579
580/* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using
581 unsigned compares. */
582int
583wi::cmpu_large (const HOST_WIDE_INT *op0, unsigned int op0len,
584 unsigned int precision,
585 const HOST_WIDE_INT *op1, unsigned int op1len)
586{
587 unsigned HOST_WIDE_INT x0;
588 unsigned HOST_WIDE_INT x1;
589 unsigned int blocks_needed = BLOCKS_NEEDED (precision);
590 unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
591 int l = MAX (op0len - 1, op1len - 1);
592
593 while (l >= 0)
594 {
595 x0 = selt (op0, op0len, blocks_needed, small_prec, l, UNSIGNED);
596 x1 = selt (op1, op1len, blocks_needed, small_prec, l, UNSIGNED);
597 if (x0 < x1)
598 return -1;
599 if (x0 > x1)
600 return 1;
601 l--;
602 }
603
604 return 0;
605}
606
607/*
608 * Extension.
609 */
610
611/* Sign-extend the number represented by XVAL and XLEN into VAL,
612 starting at OFFSET. Return the number of blocks in VAL. Both XVAL
613 and VAL have PRECISION bits. */
614unsigned int
615wi::sext_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
616 unsigned int xlen, unsigned int precision, unsigned int offset)
617{
618 unsigned int len = offset / HOST_BITS_PER_WIDE_INT;
619 /* Extending beyond the precision is a no-op. If we have only stored
620 OFFSET bits or fewer, the rest are already signs. */
621 if (offset >= precision || len >= xlen)
622 {
623 for (unsigned i = 0; i < xlen; ++i)
624 val[i] = xval[i];
625 return xlen;
626 }
627 unsigned int suboffset = offset % HOST_BITS_PER_WIDE_INT;
628 for (unsigned int i = 0; i < len; i++)
629 val[i] = xval[i];
630 if (suboffset > 0)
631 {
632 val[len] = sext_hwi (xval[len], suboffset);
633 len += 1;
634 }
635 return canonize (val, len, precision);
636}
637
638/* Zero-extend the number represented by XVAL and XLEN into VAL,
639 starting at OFFSET. Return the number of blocks in VAL. Both XVAL
640 and VAL have PRECISION bits. */
641unsigned int
642wi::zext_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
643 unsigned int xlen, unsigned int precision, unsigned int offset)
644{
645 unsigned int len = offset / HOST_BITS_PER_WIDE_INT;
646 /* Extending beyond the precision is a no-op. If we have only stored
647 OFFSET bits or fewer, and the upper stored bit is zero, then there
648 is nothing to do. */
649 if (offset >= precision || (len >= xlen && xval[xlen - 1] >= 0))
650 {
651 for (unsigned i = 0; i < xlen; ++i)
652 val[i] = xval[i];
653 return xlen;
654 }
655 unsigned int suboffset = offset % HOST_BITS_PER_WIDE_INT;
656 for (unsigned int i = 0; i < len; i++)
657 val[i] = i < xlen ? xval[i] : -1;
658 if (suboffset > 0)
659 val[len] = zext_hwi (len < xlen ? xval[len] : -1, suboffset);
660 else
661 val[len] = 0;
662 return canonize (val, len + 1, precision);
663}
664
665/*
666 * Masking, inserting, shifting, rotating.
667 */
668
669/* Insert WIDTH bits from Y into X starting at START. */
670wide_int
671wi::insert (const wide_int &x, const wide_int &y, unsigned int start,
672 unsigned int width)
673{
674 wide_int result;
675 wide_int mask;
676 wide_int tmp;
677
678 unsigned int precision = x.get_precision ();
679 if (start >= precision)
680 return x;
681
682 gcc_checking_assert (precision >= width);
683
684 if (start + width >= precision)
685 width = precision - start;
686
687 mask = wi::shifted_mask (start, width, false, precision);
688 tmp = wi::lshift (wide_int::from (y, precision, UNSIGNED), start);
689 result = tmp & mask;
690
691 tmp = wi::bit_and_not (x, mask);
692 result = result | tmp;
693
694 return result;
695}
696
697/* Copy the number represented by XVAL and XLEN into VAL, setting bit BIT.
698 Return the number of blocks in VAL. Both XVAL and VAL have PRECISION
699 bits. */
700unsigned int
701wi::set_bit_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
702 unsigned int xlen, unsigned int precision, unsigned int bit)
703{
704 unsigned int block = bit / HOST_BITS_PER_WIDE_INT;
705 unsigned int subbit = bit % HOST_BITS_PER_WIDE_INT;
706
707 if (block + 1 >= xlen)
708 {
709 /* The operation either affects the last current block or needs
710 a new block. */
711 unsigned int len = block + 1;
712 for (unsigned int i = 0; i < len; i++)
713 val[i] = safe_uhwi (xval, xlen, i);
fecfbfa4 714 val[block] |= HOST_WIDE_INT_1U << subbit;
807e902e
KZ
715
716 /* If the bit we just set is at the msb of the block, make sure
717 that any higher bits are zeros. */
718 if (bit + 1 < precision && subbit == HOST_BITS_PER_WIDE_INT - 1)
279a9ce9
JJ
719 {
720 val[len++] = 0;
721 return len;
722 }
723 return canonize (val, len, precision);
807e902e
KZ
724 }
725 else
726 {
727 for (unsigned int i = 0; i < xlen; i++)
728 val[i] = xval[i];
fecfbfa4 729 val[block] |= HOST_WIDE_INT_1U << subbit;
807e902e
KZ
730 return canonize (val, xlen, precision);
731 }
732}
733
734/* bswap THIS. */
735wide_int
736wide_int_storage::bswap () const
737{
738 wide_int result = wide_int::create (precision);
739 unsigned int i, s;
740 unsigned int len = BLOCKS_NEEDED (precision);
741 unsigned int xlen = get_len ();
742 const HOST_WIDE_INT *xval = get_val ();
743 HOST_WIDE_INT *val = result.write_val ();
744
745 /* This is not a well defined operation if the precision is not a
746 multiple of 8. */
747 gcc_assert ((precision & 0x7) == 0);
748
749 for (i = 0; i < len; i++)
750 val[i] = 0;
751
752 /* Only swap the bytes that are not the padding. */
753 for (s = 0; s < precision; s += 8)
754 {
755 unsigned int d = precision - s - 8;
756 unsigned HOST_WIDE_INT byte;
757
758 unsigned int block = s / HOST_BITS_PER_WIDE_INT;
759 unsigned int offset = s & (HOST_BITS_PER_WIDE_INT - 1);
760
761 byte = (safe_uhwi (xval, xlen, block) >> offset) & 0xff;
762
763 block = d / HOST_BITS_PER_WIDE_INT;
764 offset = d & (HOST_BITS_PER_WIDE_INT - 1);
765
766 val[block] |= byte << offset;
767 }
768
769 result.set_len (canonize (val, len, precision));
770 return result;
771}
772
773/* Fill VAL with a mask where the lower WIDTH bits are ones and the bits
774 above that up to PREC are zeros. The result is inverted if NEGATE
775 is true. Return the number of blocks in VAL. */
776unsigned int
777wi::mask (HOST_WIDE_INT *val, unsigned int width, bool negate,
778 unsigned int prec)
779{
780 if (width >= prec)
781 {
782 val[0] = negate ? 0 : -1;
783 return 1;
784 }
785 else if (width == 0)
786 {
787 val[0] = negate ? -1 : 0;
788 return 1;
789 }
790
791 unsigned int i = 0;
792 while (i < width / HOST_BITS_PER_WIDE_INT)
793 val[i++] = negate ? 0 : -1;
794
795 unsigned int shift = width & (HOST_BITS_PER_WIDE_INT - 1);
796 if (shift != 0)
797 {
fecfbfa4 798 HOST_WIDE_INT last = (HOST_WIDE_INT_1U << shift) - 1;
807e902e
KZ
799 val[i++] = negate ? ~last : last;
800 }
801 else
802 val[i++] = negate ? -1 : 0;
803
804 return i;
805}
806
807/* Fill VAL with a mask where the lower START bits are zeros, the next WIDTH
808 bits are ones, and the bits above that up to PREC are zeros. The result
809 is inverted if NEGATE is true. Return the number of blocks in VAL. */
810unsigned int
811wi::shifted_mask (HOST_WIDE_INT *val, unsigned int start, unsigned int width,
812 bool negate, unsigned int prec)
813{
814 if (start >= prec || width == 0)
815 {
816 val[0] = negate ? -1 : 0;
817 return 1;
818 }
819
820 if (width > prec - start)
821 width = prec - start;
822 unsigned int end = start + width;
823
824 unsigned int i = 0;
825 while (i < start / HOST_BITS_PER_WIDE_INT)
826 val[i++] = negate ? -1 : 0;
827
828 unsigned int shift = start & (HOST_BITS_PER_WIDE_INT - 1);
829 if (shift)
830 {
fecfbfa4 831 HOST_WIDE_INT block = (HOST_WIDE_INT_1U << shift) - 1;
807e902e
KZ
832 shift += width;
833 if (shift < HOST_BITS_PER_WIDE_INT)
834 {
835 /* case 000111000 */
fecfbfa4 836 block = (HOST_WIDE_INT_1U << shift) - block - 1;
807e902e
KZ
837 val[i++] = negate ? ~block : block;
838 return i;
839 }
840 else
841 /* ...111000 */
842 val[i++] = negate ? block : ~block;
843 }
844
527dccb3
JJ
845 if (end >= prec)
846 {
847 if (!shift)
848 val[i++] = negate ? 0 : -1;
849 return i;
850 }
851
807e902e
KZ
852 while (i < end / HOST_BITS_PER_WIDE_INT)
853 /* 1111111 */
854 val[i++] = negate ? 0 : -1;
855
856 shift = end & (HOST_BITS_PER_WIDE_INT - 1);
857 if (shift != 0)
858 {
859 /* 000011111 */
fecfbfa4 860 HOST_WIDE_INT block = (HOST_WIDE_INT_1U << shift) - 1;
807e902e
KZ
861 val[i++] = negate ? ~block : block;
862 }
527dccb3 863 else
807e902e
KZ
864 val[i++] = negate ? -1 : 0;
865
866 return i;
867}
868
869/*
870 * logical operations.
871 */
872
873/* Set VAL to OP0 & OP1. Return the number of blocks used. */
874unsigned int
875wi::and_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
876 unsigned int op0len, const HOST_WIDE_INT *op1,
877 unsigned int op1len, unsigned int prec)
878{
879 int l0 = op0len - 1;
880 int l1 = op1len - 1;
881 bool need_canon = true;
882
883 unsigned int len = MAX (op0len, op1len);
884 if (l0 > l1)
885 {
886 HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
887 if (op1mask == 0)
888 {
889 l0 = l1;
890 len = l1 + 1;
891 }
892 else
893 {
894 need_canon = false;
895 while (l0 > l1)
896 {
897 val[l0] = op0[l0];
898 l0--;
899 }
900 }
901 }
902 else if (l1 > l0)
903 {
904 HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
905 if (op0mask == 0)
906 len = l0 + 1;
907 else
908 {
909 need_canon = false;
910 while (l1 > l0)
911 {
912 val[l1] = op1[l1];
913 l1--;
914 }
915 }
916 }
917
918 while (l0 >= 0)
919 {
920 val[l0] = op0[l0] & op1[l0];
921 l0--;
922 }
923
924 if (need_canon)
925 len = canonize (val, len, prec);
926
927 return len;
928}
929
930/* Set VAL to OP0 & ~OP1. Return the number of blocks used. */
931unsigned int
932wi::and_not_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
933 unsigned int op0len, const HOST_WIDE_INT *op1,
934 unsigned int op1len, unsigned int prec)
935{
936 wide_int result;
937 int l0 = op0len - 1;
938 int l1 = op1len - 1;
939 bool need_canon = true;
940
941 unsigned int len = MAX (op0len, op1len);
942 if (l0 > l1)
943 {
944 HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
945 if (op1mask != 0)
946 {
947 l0 = l1;
948 len = l1 + 1;
949 }
950 else
951 {
952 need_canon = false;
953 while (l0 > l1)
954 {
955 val[l0] = op0[l0];
956 l0--;
957 }
958 }
959 }
960 else if (l1 > l0)
961 {
962 HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
963 if (op0mask == 0)
964 len = l0 + 1;
965 else
966 {
967 need_canon = false;
968 while (l1 > l0)
969 {
970 val[l1] = ~op1[l1];
971 l1--;
972 }
973 }
974 }
975
976 while (l0 >= 0)
977 {
978 val[l0] = op0[l0] & ~op1[l0];
979 l0--;
980 }
981
982 if (need_canon)
983 len = canonize (val, len, prec);
984
985 return len;
986}
987
988/* Set VAL to OP0 | OP1. Return the number of blocks used. */
989unsigned int
990wi::or_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
991 unsigned int op0len, const HOST_WIDE_INT *op1,
992 unsigned int op1len, unsigned int prec)
993{
994 wide_int result;
995 int l0 = op0len - 1;
996 int l1 = op1len - 1;
997 bool need_canon = true;
998
999 unsigned int len = MAX (op0len, op1len);
1000 if (l0 > l1)
1001 {
1002 HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
1003 if (op1mask != 0)
1004 {
1005 l0 = l1;
1006 len = l1 + 1;
1007 }
1008 else
1009 {
1010 need_canon = false;
1011 while (l0 > l1)
1012 {
1013 val[l0] = op0[l0];
1014 l0--;
1015 }
1016 }
1017 }
1018 else if (l1 > l0)
1019 {
1020 HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
1021 if (op0mask != 0)
1022 len = l0 + 1;
1023 else
1024 {
1025 need_canon = false;
1026 while (l1 > l0)
1027 {
1028 val[l1] = op1[l1];
1029 l1--;
1030 }
1031 }
1032 }
1033
1034 while (l0 >= 0)
1035 {
1036 val[l0] = op0[l0] | op1[l0];
1037 l0--;
1038 }
1039
1040 if (need_canon)
1041 len = canonize (val, len, prec);
1042
1043 return len;
1044}
1045
1046/* Set VAL to OP0 | ~OP1. Return the number of blocks used. */
1047unsigned int
1048wi::or_not_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
1049 unsigned int op0len, const HOST_WIDE_INT *op1,
1050 unsigned int op1len, unsigned int prec)
1051{
1052 wide_int result;
1053 int l0 = op0len - 1;
1054 int l1 = op1len - 1;
1055 bool need_canon = true;
1056
1057 unsigned int len = MAX (op0len, op1len);
1058 if (l0 > l1)
1059 {
1060 HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
1061 if (op1mask == 0)
1062 {
1063 l0 = l1;
1064 len = l1 + 1;
1065 }
1066 else
1067 {
1068 need_canon = false;
1069 while (l0 > l1)
1070 {
1071 val[l0] = op0[l0];
1072 l0--;
1073 }
1074 }
1075 }
1076 else if (l1 > l0)
1077 {
1078 HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
1079 if (op0mask != 0)
1080 len = l0 + 1;
1081 else
1082 {
1083 need_canon = false;
1084 while (l1 > l0)
1085 {
1086 val[l1] = ~op1[l1];
1087 l1--;
1088 }
1089 }
1090 }
1091
1092 while (l0 >= 0)
1093 {
1094 val[l0] = op0[l0] | ~op1[l0];
1095 l0--;
1096 }
1097
1098 if (need_canon)
1099 len = canonize (val, len, prec);
1100
1101 return len;
1102}
1103
1104/* Set VAL to OP0 ^ OP1. Return the number of blocks used. */
1105unsigned int
1106wi::xor_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
1107 unsigned int op0len, const HOST_WIDE_INT *op1,
1108 unsigned int op1len, unsigned int prec)
1109{
1110 wide_int result;
1111 int l0 = op0len - 1;
1112 int l1 = op1len - 1;
1113
1114 unsigned int len = MAX (op0len, op1len);
1115 if (l0 > l1)
1116 {
1117 HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
1118 while (l0 > l1)
1119 {
1120 val[l0] = op0[l0] ^ op1mask;
1121 l0--;
1122 }
1123 }
1124
1125 if (l1 > l0)
1126 {
1127 HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
1128 while (l1 > l0)
1129 {
1130 val[l1] = op0mask ^ op1[l1];
1131 l1--;
1132 }
1133 }
1134
1135 while (l0 >= 0)
1136 {
1137 val[l0] = op0[l0] ^ op1[l0];
1138 l0--;
1139 }
1140
1141 return canonize (val, len, prec);
1142}
1143
1144/*
1145 * math
1146 */
1147
1148/* Set VAL to OP0 + OP1. If OVERFLOW is nonnull, record in *OVERFLOW
1149 whether the result overflows when OP0 and OP1 are treated as having
1150 signedness SGN. Return the number of blocks in VAL. */
1151unsigned int
1152wi::add_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
1153 unsigned int op0len, const HOST_WIDE_INT *op1,
1154 unsigned int op1len, unsigned int prec,
4a669ac3 1155 signop sgn, wi::overflow_type *overflow)
807e902e
KZ
1156{
1157 unsigned HOST_WIDE_INT o0 = 0;
1158 unsigned HOST_WIDE_INT o1 = 0;
1159 unsigned HOST_WIDE_INT x = 0;
1160 unsigned HOST_WIDE_INT carry = 0;
1161 unsigned HOST_WIDE_INT old_carry = 0;
1162 unsigned HOST_WIDE_INT mask0, mask1;
1163 unsigned int i;
1164
1165 unsigned int len = MAX (op0len, op1len);
1166 mask0 = -top_bit_of (op0, op0len, prec);
1167 mask1 = -top_bit_of (op1, op1len, prec);
1168 /* Add all of the explicitly defined elements. */
1169
1170 for (i = 0; i < len; i++)
1171 {
1172 o0 = i < op0len ? (unsigned HOST_WIDE_INT) op0[i] : mask0;
1173 o1 = i < op1len ? (unsigned HOST_WIDE_INT) op1[i] : mask1;
1174 x = o0 + o1 + carry;
1175 val[i] = x;
1176 old_carry = carry;
1177 carry = carry == 0 ? x < o0 : x <= o0;
1178 }
1179
1180 if (len * HOST_BITS_PER_WIDE_INT < prec)
1181 {
1182 val[len] = mask0 + mask1 + carry;
1183 len++;
1184 if (overflow)
4a669ac3
AH
1185 *overflow
1186 = (sgn == UNSIGNED && carry) ? wi::OVF_OVERFLOW : wi::OVF_NONE;
807e902e
KZ
1187 }
1188 else if (overflow)
1189 {
1190 unsigned int shift = -prec % HOST_BITS_PER_WIDE_INT;
1191 if (sgn == SIGNED)
1192 {
1193 unsigned HOST_WIDE_INT x = (val[len - 1] ^ o0) & (val[len - 1] ^ o1);
4a669ac3
AH
1194 if ((HOST_WIDE_INT) (x << shift) < 0)
1195 {
1196 if (o0 > (unsigned HOST_WIDE_INT) val[len - 1])
1197 *overflow = wi::OVF_UNDERFLOW;
1198 else if (o0 < (unsigned HOST_WIDE_INT) val[len - 1])
1199 *overflow = wi::OVF_OVERFLOW;
1200 else
1201 *overflow = wi::OVF_NONE;
1202 }
1203 else
1204 *overflow = wi::OVF_NONE;
807e902e
KZ
1205 }
1206 else
1207 {
1208 /* Put the MSB of X and O0 and in the top of the HWI. */
1209 x <<= shift;
1210 o0 <<= shift;
1211 if (old_carry)
4a669ac3 1212 *overflow = (x <= o0) ? wi::OVF_OVERFLOW : wi::OVF_NONE;
807e902e 1213 else
4a669ac3 1214 *overflow = (x < o0) ? wi::OVF_OVERFLOW : wi::OVF_NONE;
807e902e
KZ
1215 }
1216 }
1217
1218 return canonize (val, len, prec);
1219}
1220
1221/* Subroutines of the multiplication and division operations. Unpack
1222 the first IN_LEN HOST_WIDE_INTs in INPUT into 2 * IN_LEN
1223 HOST_HALF_WIDE_INTs of RESULT. The rest of RESULT is filled by
1224 uncompressing the top bit of INPUT[IN_LEN - 1]. */
1225static void
1226wi_unpack (unsigned HOST_HALF_WIDE_INT *result, const HOST_WIDE_INT *input,
1227 unsigned int in_len, unsigned int out_len,
1228 unsigned int prec, signop sgn)
1229{
1230 unsigned int i;
1231 unsigned int j = 0;
1232 unsigned int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1);
1233 unsigned int blocks_needed = BLOCKS_NEEDED (prec);
1234 HOST_WIDE_INT mask;
1235
1236 if (sgn == SIGNED)
1237 {
1238 mask = -top_bit_of ((const HOST_WIDE_INT *) input, in_len, prec);
1239 mask &= HALF_INT_MASK;
1240 }
1241 else
1242 mask = 0;
1243
1244 for (i = 0; i < blocks_needed - 1; i++)
1245 {
1246 HOST_WIDE_INT x = safe_uhwi (input, in_len, i);
1247 result[j++] = x;
1248 result[j++] = x >> HOST_BITS_PER_HALF_WIDE_INT;
1249 }
1250
1251 HOST_WIDE_INT x = safe_uhwi (input, in_len, i);
1252 if (small_prec)
1253 {
1254 if (sgn == SIGNED)
1255 x = sext_hwi (x, small_prec);
1256 else
1257 x = zext_hwi (x, small_prec);
1258 }
1259 result[j++] = x;
1260 result[j++] = x >> HOST_BITS_PER_HALF_WIDE_INT;
1261
1262 /* Smear the sign bit. */
1263 while (j < out_len)
1264 result[j++] = mask;
1265}
1266
5ee31e57
RS
1267/* The inverse of wi_unpack. IN_LEN is the number of input
1268 blocks and PRECISION is the precision of the result. Return the
1269 number of blocks in the canonicalized result. */
1270static unsigned int
1271wi_pack (HOST_WIDE_INT *result,
807e902e 1272 const unsigned HOST_HALF_WIDE_INT *input,
5ee31e57 1273 unsigned int in_len, unsigned int precision)
807e902e
KZ
1274{
1275 unsigned int i = 0;
1276 unsigned int j = 0;
5ee31e57 1277 unsigned int blocks_needed = BLOCKS_NEEDED (precision);
807e902e 1278
5ee31e57 1279 while (i + 1 < in_len)
807e902e 1280 {
5ee31e57
RS
1281 result[j++] = ((unsigned HOST_WIDE_INT) input[i]
1282 | ((unsigned HOST_WIDE_INT) input[i + 1]
1283 << HOST_BITS_PER_HALF_WIDE_INT));
807e902e
KZ
1284 i += 2;
1285 }
1286
1287 /* Handle the case where in_len is odd. For this we zero extend. */
1288 if (in_len & 1)
5ee31e57
RS
1289 result[j++] = (unsigned HOST_WIDE_INT) input[i];
1290 else if (j < blocks_needed)
1291 result[j++] = 0;
1292 return canonize (result, j, precision);
807e902e
KZ
1293}
1294
1295/* Multiply Op1 by Op2. If HIGH is set, only the upper half of the
1296 result is returned.
1297
1298 If HIGH is not set, throw away the upper half after the check is
1299 made to see if it overflows. Unfortunately there is no better way
1300 to check for overflow than to do this. If OVERFLOW is nonnull,
1301 record in *OVERFLOW whether the result overflowed. SGN controls
4a669ac3
AH
1302 the signedness and is used to check overflow or if HIGH is set.
1303
1304 NOTE: Overflow type for signed overflow is not yet implemented. */
807e902e
KZ
1305unsigned int
1306wi::mul_internal (HOST_WIDE_INT *val, const HOST_WIDE_INT *op1val,
1307 unsigned int op1len, const HOST_WIDE_INT *op2val,
1308 unsigned int op2len, unsigned int prec, signop sgn,
4a669ac3 1309 wi::overflow_type *overflow, bool high)
807e902e
KZ
1310{
1311 unsigned HOST_WIDE_INT o0, o1, k, t;
1312 unsigned int i;
1313 unsigned int j;
1314 unsigned int blocks_needed = BLOCKS_NEEDED (prec);
1315 unsigned int half_blocks_needed = blocks_needed * 2;
1316 /* The sizes here are scaled to support a 2x largest mode by 2x
1317 largest mode yielding a 4x largest mode result. This is what is
1318 needed by vpn. */
1319
1320 unsigned HOST_HALF_WIDE_INT
1321 u[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
1322 unsigned HOST_HALF_WIDE_INT
1323 v[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
1324 /* The '2' in 'R' is because we are internally doing a full
1325 multiply. */
1326 unsigned HOST_HALF_WIDE_INT
1327 r[2 * 4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
1328 HOST_WIDE_INT mask = ((HOST_WIDE_INT)1 << HOST_BITS_PER_HALF_WIDE_INT) - 1;
1329
1330 /* If the top level routine did not really pass in an overflow, then
1331 just make sure that we never attempt to set it. */
1332 bool needs_overflow = (overflow != 0);
1333 if (needs_overflow)
4a669ac3 1334 *overflow = wi::OVF_NONE;
807e902e
KZ
1335
1336 wide_int_ref op1 = wi::storage_ref (op1val, op1len, prec);
1337 wide_int_ref op2 = wi::storage_ref (op2val, op2len, prec);
1338
1339 /* This is a surprisingly common case, so do it first. */
1340 if (op1 == 0 || op2 == 0)
1341 {
1342 val[0] = 0;
1343 return 1;
1344 }
1345
1346#ifdef umul_ppmm
1347 if (sgn == UNSIGNED)
1348 {
1349 /* If the inputs are single HWIs and the output has room for at
1350 least two HWIs, we can use umul_ppmm directly. */
1351 if (prec >= HOST_BITS_PER_WIDE_INT * 2
1352 && wi::fits_uhwi_p (op1)
1353 && wi::fits_uhwi_p (op2))
1354 {
c01d6ad9
JJ
1355 /* This case never overflows. */
1356 if (high)
1357 {
1358 val[0] = 0;
1359 return 1;
1360 }
807e902e 1361 umul_ppmm (val[1], val[0], op1.ulow (), op2.ulow ());
09901e8a
JJ
1362 if (val[1] < 0 && prec > HOST_BITS_PER_WIDE_INT * 2)
1363 {
1364 val[2] = 0;
1365 return 3;
1366 }
807e902e
KZ
1367 return 1 + (val[1] != 0 || val[0] < 0);
1368 }
1369 /* Likewise if the output is a full single HWI, except that the
1370 upper HWI of the result is only used for determining overflow.
1371 (We handle this case inline when overflow isn't needed.) */
1372 else if (prec == HOST_BITS_PER_WIDE_INT)
1373 {
1374 unsigned HOST_WIDE_INT upper;
1375 umul_ppmm (upper, val[0], op1.ulow (), op2.ulow ());
1376 if (needs_overflow)
4a669ac3
AH
1377 /* Unsigned overflow can only be +OVERFLOW. */
1378 *overflow = (upper != 0) ? wi::OVF_OVERFLOW : wi::OVF_NONE;
c01d6ad9
JJ
1379 if (high)
1380 val[0] = upper;
807e902e
KZ
1381 return 1;
1382 }
1383 }
1384#endif
1385
1386 /* Handle multiplications by 1. */
1387 if (op1 == 1)
1388 {
c01d6ad9
JJ
1389 if (high)
1390 {
1391 val[0] = wi::neg_p (op2, sgn) ? -1 : 0;
1392 return 1;
1393 }
807e902e
KZ
1394 for (i = 0; i < op2len; i++)
1395 val[i] = op2val[i];
1396 return op2len;
1397 }
1398 if (op2 == 1)
1399 {
c01d6ad9
JJ
1400 if (high)
1401 {
1402 val[0] = wi::neg_p (op1, sgn) ? -1 : 0;
1403 return 1;
1404 }
807e902e
KZ
1405 for (i = 0; i < op1len; i++)
1406 val[i] = op1val[i];
1407 return op1len;
1408 }
1409
1410 /* If we need to check for overflow, we can only do half wide
1411 multiplies quickly because we need to look at the top bits to
1412 check for the overflow. */
1413 if ((high || needs_overflow)
1414 && (prec <= HOST_BITS_PER_HALF_WIDE_INT))
1415 {
1416 unsigned HOST_WIDE_INT r;
1417
1418 if (sgn == SIGNED)
1419 {
1420 o0 = op1.to_shwi ();
1421 o1 = op2.to_shwi ();
1422 }
1423 else
1424 {
1425 o0 = op1.to_uhwi ();
1426 o1 = op2.to_uhwi ();
1427 }
1428
1429 r = o0 * o1;
1430 if (needs_overflow)
1431 {
1432 if (sgn == SIGNED)
1433 {
1434 if ((HOST_WIDE_INT) r != sext_hwi (r, prec))
4a669ac3
AH
1435 /* FIXME: Signed overflow type is not implemented yet. */
1436 *overflow = OVF_UNKNOWN;
807e902e
KZ
1437 }
1438 else
1439 {
1440 if ((r >> prec) != 0)
4a669ac3
AH
1441 /* Unsigned overflow can only be +OVERFLOW. */
1442 *overflow = OVF_OVERFLOW;
807e902e
KZ
1443 }
1444 }
1445 val[0] = high ? r >> prec : r;
1446 return 1;
1447 }
1448
1449 /* We do unsigned mul and then correct it. */
1450 wi_unpack (u, op1val, op1len, half_blocks_needed, prec, SIGNED);
1451 wi_unpack (v, op2val, op2len, half_blocks_needed, prec, SIGNED);
1452
1453 /* The 2 is for a full mult. */
1454 memset (r, 0, half_blocks_needed * 2
1455 * HOST_BITS_PER_HALF_WIDE_INT / CHAR_BIT);
1456
1457 for (j = 0; j < half_blocks_needed; j++)
1458 {
1459 k = 0;
1460 for (i = 0; i < half_blocks_needed; i++)
1461 {
1462 t = ((unsigned HOST_WIDE_INT)u[i] * (unsigned HOST_WIDE_INT)v[j]
1463 + r[i + j] + k);
1464 r[i + j] = t & HALF_INT_MASK;
1465 k = t >> HOST_BITS_PER_HALF_WIDE_INT;
1466 }
1467 r[j + half_blocks_needed] = k;
1468 }
1469
1470 /* We did unsigned math above. For signed we must adjust the
1471 product (assuming we need to see that). */
1472 if (sgn == SIGNED && (high || needs_overflow))
1473 {
1474 unsigned HOST_WIDE_INT b;
1475 if (wi::neg_p (op1))
1476 {
1477 b = 0;
1478 for (i = 0; i < half_blocks_needed; i++)
1479 {
1480 t = (unsigned HOST_WIDE_INT)r[i + half_blocks_needed]
1481 - (unsigned HOST_WIDE_INT)v[i] - b;
1482 r[i + half_blocks_needed] = t & HALF_INT_MASK;
1483 b = t >> (HOST_BITS_PER_WIDE_INT - 1);
1484 }
1485 }
1486 if (wi::neg_p (op2))
1487 {
1488 b = 0;
1489 for (i = 0; i < half_blocks_needed; i++)
1490 {
1491 t = (unsigned HOST_WIDE_INT)r[i + half_blocks_needed]
1492 - (unsigned HOST_WIDE_INT)u[i] - b;
1493 r[i + half_blocks_needed] = t & HALF_INT_MASK;
1494 b = t >> (HOST_BITS_PER_WIDE_INT - 1);
1495 }
1496 }
1497 }
1498
1499 if (needs_overflow)
1500 {
1501 HOST_WIDE_INT top;
1502
1503 /* For unsigned, overflow is true if any of the top bits are set.
1504 For signed, overflow is true if any of the top bits are not equal
1505 to the sign bit. */
1506 if (sgn == UNSIGNED)
1507 top = 0;
1508 else
1509 {
1510 top = r[(half_blocks_needed) - 1];
1511 top = SIGN_MASK (top << (HOST_BITS_PER_WIDE_INT / 2));
1512 top &= mask;
1513 }
1514
1515 for (i = half_blocks_needed; i < half_blocks_needed * 2; i++)
1516 if (((HOST_WIDE_INT)(r[i] & mask)) != top)
4a669ac3
AH
1517 /* FIXME: Signed overflow type is not implemented yet. */
1518 *overflow = (sgn == UNSIGNED) ? wi::OVF_OVERFLOW : wi::OVF_UNKNOWN;
807e902e
KZ
1519 }
1520
5ee31e57
RS
1521 int r_offset = high ? half_blocks_needed : 0;
1522 return wi_pack (val, &r[r_offset], half_blocks_needed, prec);
807e902e
KZ
1523}
1524
1525/* Compute the population count of X. */
1526int
1527wi::popcount (const wide_int_ref &x)
1528{
1529 unsigned int i;
1530 int count;
1531
1532 /* The high order block is special if it is the last block and the
1533 precision is not an even multiple of HOST_BITS_PER_WIDE_INT. We
1534 have to clear out any ones above the precision before doing
1535 popcount on this block. */
1536 count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
1537 unsigned int stop = x.len;
1538 if (count < 0)
1539 {
1540 count = popcount_hwi (x.uhigh () << -count);
1541 stop -= 1;
1542 }
1543 else
1544 {
1545 if (x.sign_mask () >= 0)
1546 count = 0;
1547 }
1548
1549 for (i = 0; i < stop; ++i)
1550 count += popcount_hwi (x.val[i]);
1551
1552 return count;
1553}
1554
1555/* Set VAL to OP0 - OP1. If OVERFLOW is nonnull, record in *OVERFLOW
1556 whether the result overflows when OP0 and OP1 are treated as having
1557 signedness SGN. Return the number of blocks in VAL. */
1558unsigned int
1559wi::sub_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
1560 unsigned int op0len, const HOST_WIDE_INT *op1,
1561 unsigned int op1len, unsigned int prec,
4a669ac3 1562 signop sgn, wi::overflow_type *overflow)
807e902e
KZ
1563{
1564 unsigned HOST_WIDE_INT o0 = 0;
1565 unsigned HOST_WIDE_INT o1 = 0;
1566 unsigned HOST_WIDE_INT x = 0;
1567 /* We implement subtraction as an in place negate and add. Negation
1568 is just inversion and add 1, so we can do the add of 1 by just
1569 starting the borrow in of the first element at 1. */
1570 unsigned HOST_WIDE_INT borrow = 0;
1571 unsigned HOST_WIDE_INT old_borrow = 0;
1572
1573 unsigned HOST_WIDE_INT mask0, mask1;
1574 unsigned int i;
1575
1576 unsigned int len = MAX (op0len, op1len);
1577 mask0 = -top_bit_of (op0, op0len, prec);
1578 mask1 = -top_bit_of (op1, op1len, prec);
1579
1580 /* Subtract all of the explicitly defined elements. */
1581 for (i = 0; i < len; i++)
1582 {
1583 o0 = i < op0len ? (unsigned HOST_WIDE_INT)op0[i] : mask0;
1584 o1 = i < op1len ? (unsigned HOST_WIDE_INT)op1[i] : mask1;
1585 x = o0 - o1 - borrow;
1586 val[i] = x;
1587 old_borrow = borrow;
1588 borrow = borrow == 0 ? o0 < o1 : o0 <= o1;
1589 }
1590
1591 if (len * HOST_BITS_PER_WIDE_INT < prec)
1592 {
1593 val[len] = mask0 - mask1 - borrow;
1594 len++;
1595 if (overflow)
4a669ac3 1596 *overflow = (sgn == UNSIGNED && borrow) ? OVF_UNDERFLOW : OVF_NONE;
807e902e
KZ
1597 }
1598 else if (overflow)
1599 {
1600 unsigned int shift = -prec % HOST_BITS_PER_WIDE_INT;
1601 if (sgn == SIGNED)
1602 {
1603 unsigned HOST_WIDE_INT x = (o0 ^ o1) & (val[len - 1] ^ o0);
4a669ac3
AH
1604 if ((HOST_WIDE_INT) (x << shift) < 0)
1605 {
1606 if (o0 > o1)
1607 *overflow = OVF_UNDERFLOW;
1608 else if (o0 < o1)
1609 *overflow = OVF_OVERFLOW;
1610 else
1611 *overflow = OVF_NONE;
1612 }
1613 else
1614 *overflow = OVF_NONE;
807e902e
KZ
1615 }
1616 else
1617 {
1618 /* Put the MSB of X and O0 and in the top of the HWI. */
1619 x <<= shift;
1620 o0 <<= shift;
1621 if (old_borrow)
4a669ac3 1622 *overflow = (x >= o0) ? OVF_UNDERFLOW : OVF_NONE;
807e902e 1623 else
4a669ac3 1624 *overflow = (x > o0) ? OVF_UNDERFLOW : OVF_NONE;
807e902e
KZ
1625 }
1626 }
1627
1628 return canonize (val, len, prec);
1629}
1630
1631
1632/*
1633 * Division and Mod
1634 */
1635
1636/* Compute B_QUOTIENT and B_REMAINDER from B_DIVIDEND/B_DIVISOR. The
1637 algorithm is a small modification of the algorithm in Hacker's
1638 Delight by Warren, which itself is a small modification of Knuth's
1639 algorithm. M is the number of significant elements of U however
1640 there needs to be at least one extra element of B_DIVIDEND
1641 allocated, N is the number of elements of B_DIVISOR. */
1642static void
1643divmod_internal_2 (unsigned HOST_HALF_WIDE_INT *b_quotient,
1644 unsigned HOST_HALF_WIDE_INT *b_remainder,
1645 unsigned HOST_HALF_WIDE_INT *b_dividend,
1646 unsigned HOST_HALF_WIDE_INT *b_divisor,
1647 int m, int n)
1648{
1649 /* The "digits" are a HOST_HALF_WIDE_INT which the size of half of a
1650 HOST_WIDE_INT and stored in the lower bits of each word. This
1651 algorithm should work properly on both 32 and 64 bit
1652 machines. */
1653 unsigned HOST_WIDE_INT b
1654 = (unsigned HOST_WIDE_INT)1 << HOST_BITS_PER_HALF_WIDE_INT;
1655 unsigned HOST_WIDE_INT qhat; /* Estimate of quotient digit. */
1656 unsigned HOST_WIDE_INT rhat; /* A remainder. */
1657 unsigned HOST_WIDE_INT p; /* Product of two digits. */
1658 HOST_WIDE_INT t, k;
1659 int i, j, s;
1660
1661 /* Single digit divisor. */
1662 if (n == 1)
1663 {
1664 k = 0;
1665 for (j = m - 1; j >= 0; j--)
1666 {
1667 b_quotient[j] = (k * b + b_dividend[j])/b_divisor[0];
1668 k = ((k * b + b_dividend[j])
1669 - ((unsigned HOST_WIDE_INT)b_quotient[j]
1670 * (unsigned HOST_WIDE_INT)b_divisor[0]));
1671 }
1672 b_remainder[0] = k;
1673 return;
1674 }
1675
1676 s = clz_hwi (b_divisor[n-1]) - HOST_BITS_PER_HALF_WIDE_INT; /* CHECK clz */
1677
1678 if (s)
1679 {
1680 /* Normalize B_DIVIDEND and B_DIVISOR. Unlike the published
1681 algorithm, we can overwrite b_dividend and b_divisor, so we do
1682 that. */
1683 for (i = n - 1; i > 0; i--)
1684 b_divisor[i] = (b_divisor[i] << s)
1685 | (b_divisor[i-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s));
1686 b_divisor[0] = b_divisor[0] << s;
1687
1688 b_dividend[m] = b_dividend[m-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s);
1689 for (i = m - 1; i > 0; i--)
1690 b_dividend[i] = (b_dividend[i] << s)
1691 | (b_dividend[i-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s));
1692 b_dividend[0] = b_dividend[0] << s;
1693 }
1694
1695 /* Main loop. */
1696 for (j = m - n; j >= 0; j--)
1697 {
1698 qhat = (b_dividend[j+n] * b + b_dividend[j+n-1]) / b_divisor[n-1];
1699 rhat = (b_dividend[j+n] * b + b_dividend[j+n-1]) - qhat * b_divisor[n-1];
1700 again:
1701 if (qhat >= b || qhat * b_divisor[n-2] > b * rhat + b_dividend[j+n-2])
1702 {
1703 qhat -= 1;
1704 rhat += b_divisor[n-1];
1705 if (rhat < b)
1706 goto again;
1707 }
1708
1709 /* Multiply and subtract. */
1710 k = 0;
1711 for (i = 0; i < n; i++)
1712 {
1713 p = qhat * b_divisor[i];
1714 t = b_dividend[i+j] - k - (p & HALF_INT_MASK);
1715 b_dividend[i + j] = t;
1716 k = ((p >> HOST_BITS_PER_HALF_WIDE_INT)
1717 - (t >> HOST_BITS_PER_HALF_WIDE_INT));
1718 }
1719 t = b_dividend[j+n] - k;
1720 b_dividend[j+n] = t;
1721
1722 b_quotient[j] = qhat;
1723 if (t < 0)
1724 {
1725 b_quotient[j] -= 1;
1726 k = 0;
1727 for (i = 0; i < n; i++)
1728 {
1729 t = (HOST_WIDE_INT)b_dividend[i+j] + b_divisor[i] + k;
1730 b_dividend[i+j] = t;
1731 k = t >> HOST_BITS_PER_HALF_WIDE_INT;
1732 }
1733 b_dividend[j+n] += k;
1734 }
1735 }
1736 if (s)
1737 for (i = 0; i < n; i++)
1738 b_remainder[i] = (b_dividend[i] >> s)
1739 | (b_dividend[i+1] << (HOST_BITS_PER_HALF_WIDE_INT - s));
1740 else
1741 for (i = 0; i < n; i++)
1742 b_remainder[i] = b_dividend[i];
1743}
1744
1745
1746/* Divide DIVIDEND by DIVISOR, which have signedness SGN, and truncate
1747 the result. If QUOTIENT is nonnull, store the value of the quotient
1748 there and return the number of blocks in it. The return value is
1749 not defined otherwise. If REMAINDER is nonnull, store the value
1750 of the remainder there and store the number of blocks in
1751 *REMAINDER_LEN. If OFLOW is not null, store in *OFLOW whether
1752 the division overflowed. */
1753unsigned int
1754wi::divmod_internal (HOST_WIDE_INT *quotient, unsigned int *remainder_len,
1755 HOST_WIDE_INT *remainder,
1756 const HOST_WIDE_INT *dividend_val,
1757 unsigned int dividend_len, unsigned int dividend_prec,
1758 const HOST_WIDE_INT *divisor_val, unsigned int divisor_len,
1759 unsigned int divisor_prec, signop sgn,
4a669ac3 1760 wi::overflow_type *oflow)
807e902e
KZ
1761{
1762 unsigned int dividend_blocks_needed = 2 * BLOCKS_NEEDED (dividend_prec);
1763 unsigned int divisor_blocks_needed = 2 * BLOCKS_NEEDED (divisor_prec);
1764 unsigned HOST_HALF_WIDE_INT
1765 b_quotient[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
1766 unsigned HOST_HALF_WIDE_INT
1767 b_remainder[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
1768 unsigned HOST_HALF_WIDE_INT
1769 b_dividend[(4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT) + 1];
1770 unsigned HOST_HALF_WIDE_INT
1771 b_divisor[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
1772 unsigned int m, n;
1773 bool dividend_neg = false;
1774 bool divisor_neg = false;
1775 bool overflow = false;
1776 wide_int neg_dividend, neg_divisor;
1777
1778 wide_int_ref dividend = wi::storage_ref (dividend_val, dividend_len,
1779 dividend_prec);
1780 wide_int_ref divisor = wi::storage_ref (divisor_val, divisor_len,
1781 divisor_prec);
1782 if (divisor == 0)
1783 overflow = true;
1784
1785 /* The smallest signed number / -1 causes overflow. The dividend_len
1786 check is for speed rather than correctness. */
1787 if (sgn == SIGNED
1788 && dividend_len == BLOCKS_NEEDED (dividend_prec)
1789 && divisor == -1
1790 && wi::only_sign_bit_p (dividend))
1791 overflow = true;
1792
1793 /* Handle the overflow cases. Viewed as unsigned value, the quotient of
1794 (signed min / -1) has the same representation as the orignal dividend.
1795 We have traditionally made division by zero act as division by one,
1796 so there too we use the original dividend. */
1797 if (overflow)
1798 {
1799 if (remainder)
1800 {
1801 *remainder_len = 1;
1802 remainder[0] = 0;
1803 }
4a669ac3
AH
1804 if (oflow)
1805 *oflow = OVF_OVERFLOW;
807e902e
KZ
1806 if (quotient)
1807 for (unsigned int i = 0; i < dividend_len; ++i)
1808 quotient[i] = dividend_val[i];
1809 return dividend_len;
1810 }
1811
1812 if (oflow)
4a669ac3 1813 *oflow = OVF_NONE;
807e902e
KZ
1814
1815 /* Do it on the host if you can. */
1816 if (sgn == SIGNED
1817 && wi::fits_shwi_p (dividend)
1818 && wi::fits_shwi_p (divisor))
1819 {
1820 HOST_WIDE_INT o0 = dividend.to_shwi ();
1821 HOST_WIDE_INT o1 = divisor.to_shwi ();
1822
1823 if (o0 == HOST_WIDE_INT_MIN && o1 == -1)
1824 {
1825 gcc_checking_assert (dividend_prec > HOST_BITS_PER_WIDE_INT);
1826 if (quotient)
1827 {
1828 quotient[0] = HOST_WIDE_INT_MIN;
1829 quotient[1] = 0;
1830 }
1831 if (remainder)
1832 {
1833 remainder[0] = 0;
1834 *remainder_len = 1;
1835 }
1836 return 2;
1837 }
1838 else
1839 {
1840 if (quotient)
1841 quotient[0] = o0 / o1;
1842 if (remainder)
1843 {
1844 remainder[0] = o0 % o1;
1845 *remainder_len = 1;
1846 }
1847 return 1;
1848 }
1849 }
1850
1851 if (sgn == UNSIGNED
1852 && wi::fits_uhwi_p (dividend)
1853 && wi::fits_uhwi_p (divisor))
1854 {
1855 unsigned HOST_WIDE_INT o0 = dividend.to_uhwi ();
1856 unsigned HOST_WIDE_INT o1 = divisor.to_uhwi ();
db7a2818 1857 unsigned int quotient_len = 1;
807e902e
KZ
1858
1859 if (quotient)
db7a2818
JJ
1860 {
1861 quotient[0] = o0 / o1;
321a2b65 1862 quotient_len = canonize_uhwi (quotient, dividend_prec);
db7a2818 1863 }
807e902e
KZ
1864 if (remainder)
1865 {
1866 remainder[0] = o0 % o1;
321a2b65 1867 *remainder_len = canonize_uhwi (remainder, dividend_prec);
807e902e 1868 }
db7a2818 1869 return quotient_len;
807e902e
KZ
1870 }
1871
1872 /* Make the divisor and dividend positive and remember what we
1873 did. */
1874 if (sgn == SIGNED)
1875 {
1876 if (wi::neg_p (dividend))
1877 {
1878 neg_dividend = -dividend;
1879 dividend = neg_dividend;
1880 dividend_neg = true;
1881 }
1882 if (wi::neg_p (divisor))
1883 {
1884 neg_divisor = -divisor;
1885 divisor = neg_divisor;
1886 divisor_neg = true;
1887 }
1888 }
1889
1890 wi_unpack (b_dividend, dividend.get_val (), dividend.get_len (),
1891 dividend_blocks_needed, dividend_prec, sgn);
1892 wi_unpack (b_divisor, divisor.get_val (), divisor.get_len (),
1893 divisor_blocks_needed, divisor_prec, sgn);
1894
1895 m = dividend_blocks_needed;
b30ea138 1896 b_dividend[m] = 0;
807e902e
KZ
1897 while (m > 1 && b_dividend[m - 1] == 0)
1898 m--;
1899
1900 n = divisor_blocks_needed;
1901 while (n > 1 && b_divisor[n - 1] == 0)
1902 n--;
1903
1904 memset (b_quotient, 0, sizeof (b_quotient));
1905
1906 divmod_internal_2 (b_quotient, b_remainder, b_dividend, b_divisor, m, n);
1907
1908 unsigned int quotient_len = 0;
1909 if (quotient)
1910 {
5ee31e57 1911 quotient_len = wi_pack (quotient, b_quotient, m, dividend_prec);
807e902e
KZ
1912 /* The quotient is neg if exactly one of the divisor or dividend is
1913 neg. */
1914 if (dividend_neg != divisor_neg)
1915 quotient_len = wi::sub_large (quotient, zeros, 1, quotient,
1916 quotient_len, dividend_prec,
1917 UNSIGNED, 0);
1918 }
1919
1920 if (remainder)
1921 {
5ee31e57 1922 *remainder_len = wi_pack (remainder, b_remainder, n, dividend_prec);
807e902e
KZ
1923 /* The remainder is always the same sign as the dividend. */
1924 if (dividend_neg)
1925 *remainder_len = wi::sub_large (remainder, zeros, 1, remainder,
1926 *remainder_len, dividend_prec,
1927 UNSIGNED, 0);
1928 }
1929
1930 return quotient_len;
1931}
1932
1933/*
1934 * Shifting, rotating and extraction.
1935 */
1936
1937/* Left shift XVAL by SHIFT and store the result in VAL. Return the
1938 number of blocks in VAL. Both XVAL and VAL have PRECISION bits. */
1939unsigned int
1940wi::lshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
1941 unsigned int xlen, unsigned int precision,
1942 unsigned int shift)
1943{
1944 /* Split the shift into a whole-block shift and a subblock shift. */
1945 unsigned int skip = shift / HOST_BITS_PER_WIDE_INT;
1946 unsigned int small_shift = shift % HOST_BITS_PER_WIDE_INT;
1947
1948 /* The whole-block shift fills with zeros. */
1949 unsigned int len = BLOCKS_NEEDED (precision);
1950 for (unsigned int i = 0; i < skip; ++i)
1951 val[i] = 0;
1952
1953 /* It's easier to handle the simple block case specially. */
1954 if (small_shift == 0)
1955 for (unsigned int i = skip; i < len; ++i)
1956 val[i] = safe_uhwi (xval, xlen, i - skip);
1957 else
1958 {
1959 /* The first unfilled output block is a left shift of the first
1960 block in XVAL. The other output blocks contain bits from two
1961 consecutive input blocks. */
1962 unsigned HOST_WIDE_INT carry = 0;
1963 for (unsigned int i = skip; i < len; ++i)
1964 {
1965 unsigned HOST_WIDE_INT x = safe_uhwi (xval, xlen, i - skip);
1966 val[i] = (x << small_shift) | carry;
1967 carry = x >> (-small_shift % HOST_BITS_PER_WIDE_INT);
1968 }
1969 }
1970 return canonize (val, len, precision);
1971}
1972
1973/* Right shift XVAL by SHIFT and store the result in VAL. Return the
1974 number of blocks in VAL. The input has XPRECISION bits and the
1975 output has XPRECISION - SHIFT bits. */
1976static unsigned int
1977rshift_large_common (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
1978 unsigned int xlen, unsigned int xprecision,
1979 unsigned int shift)
1980{
1981 /* Split the shift into a whole-block shift and a subblock shift. */
1982 unsigned int skip = shift / HOST_BITS_PER_WIDE_INT;
1983 unsigned int small_shift = shift % HOST_BITS_PER_WIDE_INT;
1984
1985 /* Work out how many blocks are needed to store the significant bits
1986 (excluding the upper zeros or signs). */
1987 unsigned int len = BLOCKS_NEEDED (xprecision - shift);
1988
1989 /* It's easier to handle the simple block case specially. */
1990 if (small_shift == 0)
1991 for (unsigned int i = 0; i < len; ++i)
1992 val[i] = safe_uhwi (xval, xlen, i + skip);
1993 else
1994 {
1995 /* Each output block but the last is a combination of two input blocks.
1996 The last block is a right shift of the last block in XVAL. */
1997 unsigned HOST_WIDE_INT curr = safe_uhwi (xval, xlen, skip);
1998 for (unsigned int i = 0; i < len; ++i)
1999 {
2000 val[i] = curr >> small_shift;
2001 curr = safe_uhwi (xval, xlen, i + skip + 1);
2002 val[i] |= curr << (-small_shift % HOST_BITS_PER_WIDE_INT);
2003 }
2004 }
2005 return len;
2006}
2007
2008/* Logically right shift XVAL by SHIFT and store the result in VAL.
2009 Return the number of blocks in VAL. XVAL has XPRECISION bits and
2010 VAL has PRECISION bits. */
2011unsigned int
2012wi::lrshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
2013 unsigned int xlen, unsigned int xprecision,
2014 unsigned int precision, unsigned int shift)
2015{
2016 unsigned int len = rshift_large_common (val, xval, xlen, xprecision, shift);
2017
2018 /* The value we just created has precision XPRECISION - SHIFT.
2019 Zero-extend it to wider precisions. */
2020 if (precision > xprecision - shift)
2021 {
2022 unsigned int small_prec = (xprecision - shift) % HOST_BITS_PER_WIDE_INT;
2023 if (small_prec)
2024 val[len - 1] = zext_hwi (val[len - 1], small_prec);
2025 else if (val[len - 1] < 0)
2026 {
2027 /* Add a new block with a zero. */
2028 val[len++] = 0;
2029 return len;
2030 }
2031 }
2032 return canonize (val, len, precision);
2033}
2034
2035/* Arithmetically right shift XVAL by SHIFT and store the result in VAL.
2036 Return the number of blocks in VAL. XVAL has XPRECISION bits and
2037 VAL has PRECISION bits. */
2038unsigned int
2039wi::arshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
2040 unsigned int xlen, unsigned int xprecision,
2041 unsigned int precision, unsigned int shift)
2042{
2043 unsigned int len = rshift_large_common (val, xval, xlen, xprecision, shift);
2044
2045 /* The value we just created has precision XPRECISION - SHIFT.
2046 Sign-extend it to wider types. */
2047 if (precision > xprecision - shift)
2048 {
2049 unsigned int small_prec = (xprecision - shift) % HOST_BITS_PER_WIDE_INT;
2050 if (small_prec)
2051 val[len - 1] = sext_hwi (val[len - 1], small_prec);
2052 }
2053 return canonize (val, len, precision);
2054}
2055
2056/* Return the number of leading (upper) zeros in X. */
2057int
2058wi::clz (const wide_int_ref &x)
2059{
74cb45e6
RS
2060 if (x.sign_mask () < 0)
2061 /* The upper bit is set, so there are no leading zeros. */
2062 return 0;
2063
807e902e
KZ
2064 /* Calculate how many bits there above the highest represented block. */
2065 int count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
2066
2067 unsigned HOST_WIDE_INT high = x.uhigh ();
2068 if (count < 0)
2069 /* The upper -COUNT bits of HIGH are not part of the value.
2070 Clear them out. */
2071 high = (high << -count) >> -count;
807e902e
KZ
2072
2073 /* We don't need to look below HIGH. Either HIGH is nonzero,
2074 or the top bit of the block below is nonzero; clz_hwi is
2075 HOST_BITS_PER_WIDE_INT in the latter case. */
2076 return count + clz_hwi (high);
2077}
2078
2079/* Return the number of redundant sign bits in X. (That is, the number
2080 of bits immediately below the sign bit that have the same value as
2081 the sign bit.) */
2082int
2083wi::clrsb (const wide_int_ref &x)
2084{
2085 /* Calculate how many bits there above the highest represented block. */
2086 int count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
2087
2088 unsigned HOST_WIDE_INT high = x.uhigh ();
2089 unsigned HOST_WIDE_INT mask = -1;
2090 if (count < 0)
2091 {
2092 /* The upper -COUNT bits of HIGH are not part of the value.
2093 Clear them from both MASK and HIGH. */
2094 mask >>= -count;
2095 high &= mask;
2096 }
2097
2098 /* If the top bit is 1, count the number of leading 1s. If the top
2099 bit is zero, count the number of leading zeros. */
2100 if (high > mask / 2)
2101 high ^= mask;
2102
2103 /* There are no sign bits below the top block, so we don't need to look
2104 beyond HIGH. Note that clz_hwi is HOST_BITS_PER_WIDE_INT when
2105 HIGH is 0. */
2106 return count + clz_hwi (high) - 1;
2107}
2108
2109/* Return the number of trailing (lower) zeros in X. */
2110int
2111wi::ctz (const wide_int_ref &x)
2112{
2113 if (x.len == 1 && x.ulow () == 0)
2114 return x.precision;
2115
2116 /* Having dealt with the zero case, there must be a block with a
2117 nonzero bit. We don't care about the bits above the first 1. */
2118 unsigned int i = 0;
2119 while (x.val[i] == 0)
2120 ++i;
2121 return i * HOST_BITS_PER_WIDE_INT + ctz_hwi (x.val[i]);
2122}
2123
2124/* If X is an exact power of 2, return the base-2 logarithm, otherwise
2125 return -1. */
2126int
2127wi::exact_log2 (const wide_int_ref &x)
2128{
2129 /* Reject cases where there are implicit -1 blocks above HIGH. */
2130 if (x.len * HOST_BITS_PER_WIDE_INT < x.precision && x.sign_mask () < 0)
2131 return -1;
2132
2133 /* Set CRUX to the index of the entry that should be nonzero.
2134 If the top block is zero then the next lowest block (if any)
2135 must have the high bit set. */
2136 unsigned int crux = x.len - 1;
2137 if (crux > 0 && x.val[crux] == 0)
2138 crux -= 1;
2139
2140 /* Check that all lower blocks are zero. */
2141 for (unsigned int i = 0; i < crux; ++i)
2142 if (x.val[i] != 0)
2143 return -1;
2144
2145 /* Get a zero-extended form of block CRUX. */
2146 unsigned HOST_WIDE_INT hwi = x.val[crux];
2147 if ((crux + 1) * HOST_BITS_PER_WIDE_INT > x.precision)
2148 hwi = zext_hwi (hwi, x.precision % HOST_BITS_PER_WIDE_INT);
2149
2150 /* Now it's down to whether HWI is a power of 2. */
2151 int res = ::exact_log2 (hwi);
2152 if (res >= 0)
2153 res += crux * HOST_BITS_PER_WIDE_INT;
2154 return res;
2155}
2156
2157/* Return the base-2 logarithm of X, rounding down. Return -1 if X is 0. */
2158int
2159wi::floor_log2 (const wide_int_ref &x)
2160{
2161 return x.precision - 1 - clz (x);
2162}
2163
2164/* Return the index of the first (lowest) set bit in X, counting from 1.
2165 Return 0 if X is 0. */
2166int
2167wi::ffs (const wide_int_ref &x)
2168{
2169 return eq_p (x, 0) ? 0 : ctz (x) + 1;
2170}
2171
2172/* Return true if sign-extending X to have precision PRECISION would give
2173 the minimum signed value at that precision. */
2174bool
2175wi::only_sign_bit_p (const wide_int_ref &x, unsigned int precision)
2176{
2177 return ctz (x) + 1 == int (precision);
2178}
2179
2180/* Return true if X represents the minimum signed value. */
2181bool
2182wi::only_sign_bit_p (const wide_int_ref &x)
2183{
2184 return only_sign_bit_p (x, x.precision);
2185}
2186
fff22900
RS
2187/* Return VAL if VAL has no bits set outside MASK. Otherwise round VAL
2188 down to the previous value that has no bits set outside MASK.
2189 This rounding wraps for signed values if VAL is negative and
2190 the top bit of MASK is clear.
2191
2192 For example, round_down_for_mask (6, 0xf1) would give 1 and
2193 round_down_for_mask (24, 0xf1) would give 17. */
2194
2195wide_int
2196wi::round_down_for_mask (const wide_int &val, const wide_int &mask)
2197{
2198 /* Get the bits in VAL that are outside the mask. */
2199 wide_int extra_bits = wi::bit_and_not (val, mask);
2200 if (extra_bits == 0)
2201 return val;
2202
2203 /* Get a mask that includes the top bit in EXTRA_BITS and is all 1s
2204 below that bit. */
2205 unsigned int precision = val.get_precision ();
2206 wide_int lower_mask = wi::mask (precision - wi::clz (extra_bits),
2207 false, precision);
2208
2209 /* Clear the bits that aren't in MASK, but ensure that all bits
2210 in MASK below the top cleared bit are set. */
2211 return (val & mask) | (mask & lower_mask);
2212}
2213
2214/* Return VAL if VAL has no bits set outside MASK. Otherwise round VAL
2215 up to the next value that has no bits set outside MASK. The rounding
2216 wraps if there are no suitable values greater than VAL.
2217
2218 For example, round_up_for_mask (6, 0xf1) would give 16 and
2219 round_up_for_mask (24, 0xf1) would give 32. */
2220
2221wide_int
2222wi::round_up_for_mask (const wide_int &val, const wide_int &mask)
2223{
2224 /* Get the bits in VAL that are outside the mask. */
2225 wide_int extra_bits = wi::bit_and_not (val, mask);
2226 if (extra_bits == 0)
2227 return val;
2228
2229 /* Get a mask that is all 1s above the top bit in EXTRA_BITS. */
2230 unsigned int precision = val.get_precision ();
2231 wide_int upper_mask = wi::mask (precision - wi::clz (extra_bits),
2232 true, precision);
2233
2234 /* Get the bits of the mask that are above the top bit in EXTRA_BITS. */
2235 upper_mask &= mask;
2236
2237 /* Conceptually we need to:
2238
2239 - clear bits of VAL outside UPPER_MASK
2240 - add the lowest bit in UPPER_MASK to VAL (or add 0 if UPPER_MASK is 0)
2241 - propagate the carry through the bits of VAL in UPPER_MASK
2242
2243 If (~VAL & UPPER_MASK) is nonzero, the carry eventually
2244 reaches that bit and the process leaves all lower bits clear.
2245 If (~VAL & UPPER_MASK) is zero then the result is also zero. */
2246 wide_int tmp = wi::bit_and_not (upper_mask, val);
2247
2248 return (val | tmp) & -tmp;
2249}
2250
28752261
MG
2251/* Compute the modular multiplicative inverse of A modulo B
2252 using extended Euclid's algorithm. Assumes A and B are coprime,
2253 and that A and B have the same precision. */
2254wide_int
2255wi::mod_inv (const wide_int &a, const wide_int &b)
2256{
2257 /* Verify the assumption. */
2258 gcc_checking_assert (wi::eq_p (wi::gcd (a, b), 1));
2259
2260 unsigned int p = a.get_precision () + 1;
2261 gcc_checking_assert (b.get_precision () + 1 == p);
2262 wide_int c = wide_int::from (a, p, UNSIGNED);
2263 wide_int d = wide_int::from (b, p, UNSIGNED);
2264 wide_int x0 = wide_int::from (0, p, UNSIGNED);
2265 wide_int x1 = wide_int::from (1, p, UNSIGNED);
2266
2267 if (wi::eq_p (b, 1))
2268 return wide_int::from (1, p, UNSIGNED);
2269
2270 while (wi::gt_p (c, 1, UNSIGNED))
2271 {
2272 wide_int t = d;
2273 wide_int q = wi::divmod_trunc (c, d, UNSIGNED, &d);
2274 c = t;
2275 wide_int s = x0;
2276 x0 = wi::sub (x1, wi::mul (q, x0));
2277 x1 = s;
2278 }
2279 if (wi::lt_p (x1, 0, SIGNED))
2280 x1 += d;
2281 return x1;
2282}
2283
807e902e
KZ
2284/*
2285 * Private utilities.
2286 */
2287
2288void gt_ggc_mx (widest_int *) { }
2289void gt_pch_nx (widest_int *, void (*) (void *, void *), void *) { }
2290void gt_pch_nx (widest_int *) { }
2291
2292template void wide_int::dump () const;
2293template void generic_wide_int <wide_int_ref_storage <false> >::dump () const;
2294template void generic_wide_int <wide_int_ref_storage <true> >::dump () const;
2295template void offset_int::dump () const;
2296template void widest_int::dump () const;
d9b950dd 2297
e61a4f52
AH
2298/* We could add all the above ::dump variants here, but wide_int and
2299 widest_int should handle the common cases. Besides, you can always
2300 call the dump method directly. */
2301
2302DEBUG_FUNCTION void
2303debug (const wide_int &ref)
2304{
2305 ref.dump ();
2306}
2307
2308DEBUG_FUNCTION void
2309debug (const wide_int *ptr)
2310{
2311 if (ptr)
2312 debug (*ptr);
2313 else
2314 fprintf (stderr, "<nil>\n");
2315}
2316
2317DEBUG_FUNCTION void
2318debug (const widest_int &ref)
2319{
2320 ref.dump ();
2321}
2322
2323DEBUG_FUNCTION void
2324debug (const widest_int *ptr)
2325{
2326 if (ptr)
2327 debug (*ptr);
2328 else
2329 fprintf (stderr, "<nil>\n");
2330}
d9b950dd
DM
2331
2332#if CHECKING_P
2333
2334namespace selftest {
2335
2336/* Selftests for wide ints. We run these multiple times, once per type. */
2337
2338/* Helper function for building a test value. */
2339
2340template <class VALUE_TYPE>
2341static VALUE_TYPE
2342from_int (int i);
2343
2344/* Specializations of the fixture for each wide-int type. */
2345
2346/* Specialization for VALUE_TYPE == wide_int. */
2347
2348template <>
2349wide_int
2350from_int (int i)
2351{
2352 return wi::shwi (i, 32);
2353}
2354
2355/* Specialization for VALUE_TYPE == offset_int. */
2356
2357template <>
2358offset_int
2359from_int (int i)
2360{
2361 return offset_int (i);
2362}
2363
2364/* Specialization for VALUE_TYPE == widest_int. */
2365
2366template <>
2367widest_int
2368from_int (int i)
2369{
2370 return widest_int (i);
2371}
2372
2373/* Verify that print_dec (WI, ..., SGN) gives the expected string
2374 representation (using base 10). */
2375
2376static void
2377assert_deceq (const char *expected, const wide_int_ref &wi, signop sgn)
2378{
2379 char buf[WIDE_INT_PRINT_BUFFER_SIZE];
2380 print_dec (wi, buf, sgn);
2381 ASSERT_STREQ (expected, buf);
2382}
2383
2384/* Likewise for base 16. */
2385
2386static void
2387assert_hexeq (const char *expected, const wide_int_ref &wi)
2388{
2389 char buf[WIDE_INT_PRINT_BUFFER_SIZE];
2390 print_hex (wi, buf);
2391 ASSERT_STREQ (expected, buf);
2392}
2393
2394/* Test cases. */
2395
2396/* Verify that print_dec and print_hex work for VALUE_TYPE. */
2397
2398template <class VALUE_TYPE>
2399static void
2400test_printing ()
2401{
2402 VALUE_TYPE a = from_int<VALUE_TYPE> (42);
2403 assert_deceq ("42", a, SIGNED);
2404 assert_hexeq ("0x2a", a);
7984457f
RS
2405 assert_hexeq ("0x1fffffffffffffffff", wi::shwi (-1, 69));
2406 assert_hexeq ("0xffffffffffffffff", wi::mask (64, false, 69));
2407 assert_hexeq ("0xffffffffffffffff", wi::mask <widest_int> (64, false));
2408 if (WIDE_INT_MAX_PRECISION > 128)
2409 {
2410 assert_hexeq ("0x20000000000000000fffffffffffffffe",
2411 wi::lshift (1, 129) + wi::lshift (1, 64) - 2);
2412 assert_hexeq ("0x200000000000004000123456789abcdef",
2413 wi::lshift (1, 129) + wi::lshift (1, 74)
2414 + wi::lshift (0x1234567, 32) + 0x89abcdef);
2415 }
d9b950dd
DM
2416}
2417
2418/* Verify that various operations work correctly for VALUE_TYPE,
2419 unary and binary, using both function syntax, and
2420 overloaded-operators. */
2421
2422template <class VALUE_TYPE>
2423static void
2424test_ops ()
2425{
2426 VALUE_TYPE a = from_int<VALUE_TYPE> (7);
2427 VALUE_TYPE b = from_int<VALUE_TYPE> (3);
2428
2429 /* Using functions. */
2430 assert_deceq ("-7", wi::neg (a), SIGNED);
2431 assert_deceq ("10", wi::add (a, b), SIGNED);
2432 assert_deceq ("4", wi::sub (a, b), SIGNED);
2433 assert_deceq ("-4", wi::sub (b, a), SIGNED);
2434 assert_deceq ("21", wi::mul (a, b), SIGNED);
2435
2436 /* Using operators. */
2437 assert_deceq ("-7", -a, SIGNED);
2438 assert_deceq ("10", a + b, SIGNED);
2439 assert_deceq ("4", a - b, SIGNED);
2440 assert_deceq ("-4", b - a, SIGNED);
2441 assert_deceq ("21", a * b, SIGNED);
2442}
2443
2444/* Verify that various comparisons work correctly for VALUE_TYPE. */
2445
2446template <class VALUE_TYPE>
2447static void
2448test_comparisons ()
2449{
2450 VALUE_TYPE a = from_int<VALUE_TYPE> (7);
2451 VALUE_TYPE b = from_int<VALUE_TYPE> (3);
2452
2453 /* == */
2454 ASSERT_TRUE (wi::eq_p (a, a));
2455 ASSERT_FALSE (wi::eq_p (a, b));
2456
2457 /* != */
2458 ASSERT_TRUE (wi::ne_p (a, b));
2459 ASSERT_FALSE (wi::ne_p (a, a));
2460
2461 /* < */
2462 ASSERT_FALSE (wi::lts_p (a, a));
2463 ASSERT_FALSE (wi::lts_p (a, b));
2464 ASSERT_TRUE (wi::lts_p (b, a));
2465
2466 /* <= */
2467 ASSERT_TRUE (wi::les_p (a, a));
2468 ASSERT_FALSE (wi::les_p (a, b));
2469 ASSERT_TRUE (wi::les_p (b, a));
2470
2471 /* > */
2472 ASSERT_FALSE (wi::gts_p (a, a));
2473 ASSERT_TRUE (wi::gts_p (a, b));
2474 ASSERT_FALSE (wi::gts_p (b, a));
2475
2476 /* >= */
2477 ASSERT_TRUE (wi::ges_p (a, a));
2478 ASSERT_TRUE (wi::ges_p (a, b));
2479 ASSERT_FALSE (wi::ges_p (b, a));
2480
2481 /* comparison */
2482 ASSERT_EQ (-1, wi::cmps (b, a));
2483 ASSERT_EQ (0, wi::cmps (a, a));
2484 ASSERT_EQ (1, wi::cmps (a, b));
2485}
2486
2487/* Run all of the selftests, using the given VALUE_TYPE. */
2488
2489template <class VALUE_TYPE>
2490static void run_all_wide_int_tests ()
2491{
2492 test_printing <VALUE_TYPE> ();
2493 test_ops <VALUE_TYPE> ();
2494 test_comparisons <VALUE_TYPE> ();
2495}
2496
2131f7f5
RS
2497/* Test overflow conditions. */
2498
2499static void
2500test_overflow ()
2501{
2502 static int precs[] = { 31, 32, 33, 63, 64, 65, 127, 128 };
2503 static int offsets[] = { 16, 1, 0 };
2504 for (unsigned int i = 0; i < ARRAY_SIZE (precs); ++i)
2505 for (unsigned int j = 0; j < ARRAY_SIZE (offsets); ++j)
2506 {
2507 int prec = precs[i];
2508 int offset = offsets[j];
4a669ac3 2509 wi::overflow_type overflow;
2131f7f5
RS
2510 wide_int sum, diff;
2511
2512 sum = wi::add (wi::max_value (prec, UNSIGNED) - offset, 1,
2513 UNSIGNED, &overflow);
2514 ASSERT_EQ (sum, -offset);
4a669ac3 2515 ASSERT_EQ (overflow != wi::OVF_NONE, offset == 0);
2131f7f5
RS
2516
2517 sum = wi::add (1, wi::max_value (prec, UNSIGNED) - offset,
2518 UNSIGNED, &overflow);
2519 ASSERT_EQ (sum, -offset);
4a669ac3 2520 ASSERT_EQ (overflow != wi::OVF_NONE, offset == 0);
2131f7f5
RS
2521
2522 diff = wi::sub (wi::max_value (prec, UNSIGNED) - offset,
2523 wi::max_value (prec, UNSIGNED),
2524 UNSIGNED, &overflow);
2525 ASSERT_EQ (diff, -offset);
4a669ac3 2526 ASSERT_EQ (overflow != wi::OVF_NONE, offset != 0);
2131f7f5
RS
2527
2528 diff = wi::sub (wi::max_value (prec, UNSIGNED) - offset,
2529 wi::max_value (prec, UNSIGNED) - 1,
2530 UNSIGNED, &overflow);
2531 ASSERT_EQ (diff, 1 - offset);
4a669ac3 2532 ASSERT_EQ (overflow != wi::OVF_NONE, offset > 1);
2131f7f5
RS
2533 }
2534}
2535
fff22900
RS
2536/* Test the round_{down,up}_for_mask functions. */
2537
2538static void
2539test_round_for_mask ()
2540{
2541 unsigned int prec = 18;
2542 ASSERT_EQ (17, wi::round_down_for_mask (wi::shwi (17, prec),
2543 wi::shwi (0xf1, prec)));
2544 ASSERT_EQ (17, wi::round_up_for_mask (wi::shwi (17, prec),
2545 wi::shwi (0xf1, prec)));
2546
2547 ASSERT_EQ (1, wi::round_down_for_mask (wi::shwi (6, prec),
2548 wi::shwi (0xf1, prec)));
2549 ASSERT_EQ (16, wi::round_up_for_mask (wi::shwi (6, prec),
2550 wi::shwi (0xf1, prec)));
2551
2552 ASSERT_EQ (17, wi::round_down_for_mask (wi::shwi (24, prec),
2553 wi::shwi (0xf1, prec)));
2554 ASSERT_EQ (32, wi::round_up_for_mask (wi::shwi (24, prec),
2555 wi::shwi (0xf1, prec)));
2556
2557 ASSERT_EQ (0x011, wi::round_down_for_mask (wi::shwi (0x22, prec),
2558 wi::shwi (0x111, prec)));
2559 ASSERT_EQ (0x100, wi::round_up_for_mask (wi::shwi (0x22, prec),
2560 wi::shwi (0x111, prec)));
2561
2562 ASSERT_EQ (100, wi::round_down_for_mask (wi::shwi (101, prec),
2563 wi::shwi (0xfc, prec)));
2564 ASSERT_EQ (104, wi::round_up_for_mask (wi::shwi (101, prec),
2565 wi::shwi (0xfc, prec)));
2566
2567 ASSERT_EQ (0x2bc, wi::round_down_for_mask (wi::shwi (0x2c2, prec),
2568 wi::shwi (0xabc, prec)));
2569 ASSERT_EQ (0x800, wi::round_up_for_mask (wi::shwi (0x2c2, prec),
2570 wi::shwi (0xabc, prec)));
2571
2572 ASSERT_EQ (0xabc, wi::round_down_for_mask (wi::shwi (0xabd, prec),
2573 wi::shwi (0xabc, prec)));
2574 ASSERT_EQ (0, wi::round_up_for_mask (wi::shwi (0xabd, prec),
2575 wi::shwi (0xabc, prec)));
2576
2577 ASSERT_EQ (0xabc, wi::round_down_for_mask (wi::shwi (0x1000, prec),
2578 wi::shwi (0xabc, prec)));
2579 ASSERT_EQ (0, wi::round_up_for_mask (wi::shwi (0x1000, prec),
2580 wi::shwi (0xabc, prec)));
2581}
2582
d9b950dd
DM
2583/* Run all of the selftests within this file, for all value types. */
2584
2585void
2586wide_int_cc_tests ()
2587{
2131f7f5
RS
2588 run_all_wide_int_tests <wide_int> ();
2589 run_all_wide_int_tests <offset_int> ();
2590 run_all_wide_int_tests <widest_int> ();
2591 test_overflow ();
fff22900 2592 test_round_for_mask ();
527dccb3
JJ
2593 ASSERT_EQ (wi::mask (128, false, 128),
2594 wi::shifted_mask (0, 128, false, 128));
2595 ASSERT_EQ (wi::mask (128, true, 128),
2596 wi::shifted_mask (0, 128, true, 128));
d9b950dd
DM
2597}
2598
2599} // namespace selftest
2600#endif /* CHECKING_P */