]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/wide-int.h
[Ada] Disable unwanted warnings in Assertion_Policy(Ignore) mode
[thirdparty/gcc.git] / gcc / wide-int.h
CommitLineData
807e902e 1/* Operations with very long integers. -*- C++ -*-
8d9254fc 2 Copyright (C) 2012-2020 Free Software Foundation, Inc.
807e902e
KZ
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8Free Software Foundation; either version 3, or (at your option) any
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#ifndef WIDE_INT_H
21#define WIDE_INT_H
22
23/* wide-int.[cc|h] implements a class that efficiently performs
24 mathematical operations on finite precision integers. wide_ints
25 are designed to be transient - they are not for long term storage
26 of values. There is tight integration between wide_ints and the
27 other longer storage GCC representations (rtl and tree).
28
29 The actual precision of a wide_int depends on the flavor. There
30 are three predefined flavors:
31
32 1) wide_int (the default). This flavor does the math in the
33 precision of its input arguments. It is assumed (and checked)
34 that the precisions of the operands and results are consistent.
35 This is the most efficient flavor. It is not possible to examine
36 bits above the precision that has been specified. Because of
37 this, the default flavor has semantics that are simple to
38 understand and in general model the underlying hardware that the
39 compiler is targetted for.
40
41 This flavor must be used at the RTL level of gcc because there
42 is, in general, not enough information in the RTL representation
43 to extend a value beyond the precision specified in the mode.
44
45 This flavor should also be used at the TREE and GIMPLE levels of
46 the compiler except for the circumstances described in the
47 descriptions of the other two flavors.
48
49 The default wide_int representation does not contain any
50 information inherent about signedness of the represented value,
51 so it can be used to represent both signed and unsigned numbers.
52 For operations where the results depend on signedness (full width
53 multiply, division, shifts, comparisons, and operations that need
54 overflow detected), the signedness must be specified separately.
55
032c80e9
RS
56 2) offset_int. This is a fixed-precision integer that can hold
57 any address offset, measured in either bits or bytes, with at
58 least one extra sign bit. At the moment the maximum address
59 size GCC supports is 64 bits. With 8-bit bytes and an extra
60 sign bit, offset_int therefore needs to have at least 68 bits
61 of precision. We round this up to 128 bits for efficiency.
62 Values of type T are converted to this precision by sign- or
63 zero-extending them based on the signedness of T.
64
65 The extra sign bit means that offset_int is effectively a signed
66 128-bit integer, i.e. it behaves like int128_t.
67
68 Since the values are logically signed, there is no need to
69 distinguish between signed and unsigned operations. Sign-sensitive
70 comparison operators <, <=, > and >= are therefore supported.
8de73453
RS
71 Shift operators << and >> are also supported, with >> being
72 an _arithmetic_ right shift.
032c80e9
RS
73
74 [ Note that, even though offset_int is effectively int128_t,
75 it can still be useful to use unsigned comparisons like
76 wi::leu_p (a, b) as a more efficient short-hand for
77 "a >= 0 && a <= b". ]
807e902e
KZ
78
79 3) widest_int. This representation is an approximation of
80 infinite precision math. However, it is not really infinite
81 precision math as in the GMP library. It is really finite
82 precision math where the precision is 4 times the size of the
83 largest integer that the target port can represent.
84
032c80e9
RS
85 Like offset_int, widest_int is wider than all the values that
86 it needs to represent, so the integers are logically signed.
8de73453
RS
87 Sign-sensitive comparison operators <, <=, > and >= are supported,
88 as are << and >>.
807e902e
KZ
89
90 There are several places in the GCC where this should/must be used:
91
92 * Code that does induction variable optimizations. This code
93 works with induction variables of many different types at the
94 same time. Because of this, it ends up doing many different
95 calculations where the operands are not compatible types. The
96 widest_int makes this easy, because it provides a field where
97 nothing is lost when converting from any variable,
98
99 * There are a small number of passes that currently use the
100 widest_int that should use the default. These should be
101 changed.
102
103 There are surprising features of offset_int and widest_int
104 that the users should be careful about:
105
106 1) Shifts and rotations are just weird. You have to specify a
107 precision in which the shift or rotate is to happen in. The bits
108 above this precision are zeroed. While this is what you
109 want, it is clearly non obvious.
110
111 2) Larger precision math sometimes does not produce the same
112 answer as would be expected for doing the math at the proper
113 precision. In particular, a multiply followed by a divide will
114 produce a different answer if the first product is larger than
115 what can be represented in the input precision.
116
117 The offset_int and the widest_int flavors are more expensive
118 than the default wide int, so in addition to the caveats with these
119 two, the default is the prefered representation.
120
121 All three flavors of wide_int are represented as a vector of
122 HOST_WIDE_INTs. The default and widest_int vectors contain enough elements
123 to hold a value of MAX_BITSIZE_MODE_ANY_INT bits. offset_int contains only
124 enough elements to hold ADDR_MAX_PRECISION bits. The values are stored
125 in the vector with the least significant HOST_BITS_PER_WIDE_INT bits
126 in element 0.
127
128 The default wide_int contains three fields: the vector (VAL),
129 the precision and a length (LEN). The length is the number of HWIs
130 needed to represent the value. widest_int and offset_int have a
131 constant precision that cannot be changed, so they only store the
132 VAL and LEN fields.
133
134 Since most integers used in a compiler are small values, it is
135 generally profitable to use a representation of the value that is
136 as small as possible. LEN is used to indicate the number of
137 elements of the vector that are in use. The numbers are stored as
138 sign extended numbers as a means of compression. Leading
139 HOST_WIDE_INTs that contain strings of either -1 or 0 are removed
140 as long as they can be reconstructed from the top bit that is being
141 represented.
142
143 The precision and length of a wide_int are always greater than 0.
144 Any bits in a wide_int above the precision are sign-extended from the
145 most significant bit. For example, a 4-bit value 0x8 is represented as
146 VAL = { 0xf...fff8 }. However, as an optimization, we allow other integer
147 constants to be represented with undefined bits above the precision.
148 This allows INTEGER_CSTs to be pre-extended according to TYPE_SIGN,
149 so that the INTEGER_CST representation can be used both in TYPE_PRECISION
150 and in wider precisions.
151
152 There are constructors to create the various forms of wide_int from
8e6cdc90 153 trees, rtl and constants. For trees the options are:
807e902e
KZ
154
155 tree t = ...;
8e6cdc90
RS
156 wi::to_wide (t) // Treat T as a wide_int
157 wi::to_offset (t) // Treat T as an offset_int
158 wi::to_widest (t) // Treat T as a widest_int
807e902e 159
8e6cdc90
RS
160 All three are light-weight accessors that should have no overhead
161 in release builds. If it is useful for readability reasons to
162 store the result in a temporary variable, the preferred method is:
163
164 wi::tree_to_wide_ref twide = wi::to_wide (t);
165 wi::tree_to_offset_ref toffset = wi::to_offset (t);
166 wi::tree_to_widest_ref twidest = wi::to_widest (t);
167
168 To make an rtx into a wide_int, you have to pair it with a mode.
169 The canonical way to do this is with rtx_mode_t as in:
807e902e
KZ
170
171 rtx r = ...
f079167a 172 wide_int x = rtx_mode_t (r, mode);
807e902e
KZ
173
174 Similarly, a wide_int can only be constructed from a host value if
175 the target precision is given explicitly, such as in:
176
177 wide_int x = wi::shwi (c, prec); // sign-extend C if necessary
178 wide_int y = wi::uhwi (c, prec); // zero-extend C if necessary
179
180 However, offset_int and widest_int have an inherent precision and so
181 can be initialized directly from a host value:
182
183 offset_int x = (int) c; // sign-extend C
184 widest_int x = (unsigned int) c; // zero-extend C
185
8e6cdc90 186 It is also possible to do arithmetic directly on rtx_mode_ts and
807e902e
KZ
187 constants. For example:
188
8e6cdc90
RS
189 wi::add (r1, r2); // add equal-sized rtx_mode_ts r1 and r2
190 wi::add (r1, 1); // add 1 to rtx_mode_t r1
807e902e
KZ
191 wi::lshift (1, 100); // 1 << 100 as a widest_int
192
193 Many binary operations place restrictions on the combinations of inputs,
194 using the following rules:
195
8e6cdc90 196 - {rtx, wide_int} op {rtx, wide_int} -> wide_int
807e902e
KZ
197 The inputs must be the same precision. The result is a wide_int
198 of the same precision
199
8e6cdc90
RS
200 - {rtx, wide_int} op (un)signed HOST_WIDE_INT -> wide_int
201 (un)signed HOST_WIDE_INT op {rtx, wide_int} -> wide_int
807e902e
KZ
202 The HOST_WIDE_INT is extended or truncated to the precision of
203 the other input. The result is a wide_int of the same precision
204 as that input.
205
206 - (un)signed HOST_WIDE_INT op (un)signed HOST_WIDE_INT -> widest_int
207 The inputs are extended to widest_int precision and produce a
208 widest_int result.
209
210 - offset_int op offset_int -> offset_int
211 offset_int op (un)signed HOST_WIDE_INT -> offset_int
212 (un)signed HOST_WIDE_INT op offset_int -> offset_int
213
214 - widest_int op widest_int -> widest_int
215 widest_int op (un)signed HOST_WIDE_INT -> widest_int
216 (un)signed HOST_WIDE_INT op widest_int -> widest_int
217
218 Other combinations like:
219
220 - widest_int op offset_int and
221 - wide_int op offset_int
222
223 are not allowed. The inputs should instead be extended or truncated
224 so that they match.
225
226 The inputs to comparison functions like wi::eq_p and wi::lts_p
227 follow the same compatibility rules, although their return types
228 are different. Unary functions on X produce the same result as
229 a binary operation X + X. Shift functions X op Y also produce
230 the same result as X + X; the precision of the shift amount Y
231 can be arbitrarily different from X. */
232
807e902e
KZ
233/* The MAX_BITSIZE_MODE_ANY_INT is automatically generated by a very
234 early examination of the target's mode file. The WIDE_INT_MAX_ELTS
235 can accomodate at least 1 more bit so that unsigned numbers of that
236 mode can be represented as a signed value. Note that it is still
237 possible to create fixed_wide_ints that have precisions greater than
238 MAX_BITSIZE_MODE_ANY_INT. This can be useful when representing a
239 double-width multiplication result, for example. */
240#define WIDE_INT_MAX_ELTS \
241 ((MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT) / HOST_BITS_PER_WIDE_INT)
242
243#define WIDE_INT_MAX_PRECISION (WIDE_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT)
244
245/* This is the max size of any pointer on any machine. It does not
246 seem to be as easy to sniff this out of the machine description as
247 it is for MAX_BITSIZE_MODE_ANY_INT since targets may support
248 multiple address sizes and may have different address sizes for
249 different address spaces. However, currently the largest pointer
250 on any platform is 64 bits. When that changes, then it is likely
251 that a target hook should be defined so that targets can make this
252 value larger for those targets. */
253#define ADDR_MAX_BITSIZE 64
254
255/* This is the internal precision used when doing any address
256 arithmetic. The '4' is really 3 + 1. Three of the bits are for
257 the number of extra bits needed to do bit addresses and the other bit
258 is to allow everything to be signed without loosing any precision.
259 Then everything is rounded up to the next HWI for efficiency. */
260#define ADDR_MAX_PRECISION \
261 ((ADDR_MAX_BITSIZE + 4 + HOST_BITS_PER_WIDE_INT - 1) \
262 & ~(HOST_BITS_PER_WIDE_INT - 1))
263
264/* The number of HWIs needed to store an offset_int. */
265#define OFFSET_INT_ELTS (ADDR_MAX_PRECISION / HOST_BITS_PER_WIDE_INT)
266
267/* The type of result produced by a binary operation on types T1 and T2.
268 Defined purely for brevity. */
269#define WI_BINARY_RESULT(T1, T2) \
270 typename wi::binary_traits <T1, T2>::result_type
271
7b27cb4b
RS
272/* Likewise for binary operators, which excludes the case in which neither
273 T1 nor T2 is a wide-int-based type. */
274#define WI_BINARY_OPERATOR_RESULT(T1, T2) \
275 typename wi::binary_traits <T1, T2>::operator_result
276
8de73453
RS
277/* The type of result produced by T1 << T2. Leads to substitution failure
278 if the operation isn't supported. Defined purely for brevity. */
279#define WI_SIGNED_SHIFT_RESULT(T1, T2) \
280 typename wi::binary_traits <T1, T2>::signed_shift_result_type
281
7b27cb4b
RS
282/* The type of result produced by a sign-agnostic binary predicate on
283 types T1 and T2. This is bool if wide-int operations make sense for
284 T1 and T2 and leads to substitution failure otherwise. */
285#define WI_BINARY_PREDICATE_RESULT(T1, T2) \
286 typename wi::binary_traits <T1, T2>::predicate_result
287
032c80e9
RS
288/* The type of result produced by a signed binary predicate on types T1 and T2.
289 This is bool if signed comparisons make sense for T1 and T2 and leads to
290 substitution failure otherwise. */
291#define WI_SIGNED_BINARY_PREDICATE_RESULT(T1, T2) \
292 typename wi::binary_traits <T1, T2>::signed_predicate_result
293
807e902e
KZ
294/* The type of result produced by a unary operation on type T. */
295#define WI_UNARY_RESULT(T) \
e535b963 296 typename wi::binary_traits <T, T>::result_type
807e902e
KZ
297
298/* Define a variable RESULT to hold the result of a binary operation on
299 X and Y, which have types T1 and T2 respectively. Define VAL to
300 point to the blocks of RESULT. Once the user of the macro has
301 filled in VAL, it should call RESULT.set_len to set the number
302 of initialized blocks. */
303#define WI_BINARY_RESULT_VAR(RESULT, VAL, T1, X, T2, Y) \
304 WI_BINARY_RESULT (T1, T2) RESULT = \
305 wi::int_traits <WI_BINARY_RESULT (T1, T2)>::get_binary_result (X, Y); \
306 HOST_WIDE_INT *VAL = RESULT.write_val ()
307
308/* Similar for the result of a unary operation on X, which has type T. */
309#define WI_UNARY_RESULT_VAR(RESULT, VAL, T, X) \
310 WI_UNARY_RESULT (T) RESULT = \
311 wi::int_traits <WI_UNARY_RESULT (T)>::get_binary_result (X, X); \
312 HOST_WIDE_INT *VAL = RESULT.write_val ()
313
3655abdd 314template <typename T> class generic_wide_int;
92237f43 315template <int N> class fixed_wide_int_storage;
a4ff2ef3 316class wide_int_storage;
807e902e
KZ
317
318/* An N-bit integer. Until we can use typedef templates, use this instead. */
319#define FIXED_WIDE_INT(N) \
320 generic_wide_int < fixed_wide_int_storage <N> >
321
322typedef generic_wide_int <wide_int_storage> wide_int;
323typedef FIXED_WIDE_INT (ADDR_MAX_PRECISION) offset_int;
324typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION) widest_int;
3bb1161f
AH
325/* Spelled out explicitly (rather than through FIXED_WIDE_INT)
326 so as not to confuse gengtype. */
327typedef generic_wide_int < fixed_wide_int_storage <WIDE_INT_MAX_PRECISION * 2> > widest2_int;
807e902e 328
8e6cdc90
RS
329/* wi::storage_ref can be a reference to a primitive type,
330 so this is the conservatively-correct setting. */
331template <bool SE, bool HDP = true>
99b1c316 332class wide_int_ref_storage;
807e902e
KZ
333
334typedef generic_wide_int <wide_int_ref_storage <false> > wide_int_ref;
335
336/* This can be used instead of wide_int_ref if the referenced value is
337 known to have type T. It carries across properties of T's representation,
338 such as whether excess upper bits in a HWI are defined, and can therefore
339 help avoid redundant work.
340
341 The macro could be replaced with a template typedef, once we're able
342 to use those. */
343#define WIDE_INT_REF_FOR(T) \
344 generic_wide_int \
8e6cdc90
RS
345 <wide_int_ref_storage <wi::int_traits <T>::is_sign_extended, \
346 wi::int_traits <T>::host_dependent_precision> >
807e902e
KZ
347
348namespace wi
349{
4a669ac3
AH
350 /* Operations that calculate overflow do so even for
351 TYPE_OVERFLOW_WRAPS types. For example, adding 1 to +MAX_INT in
352 an unsigned int is 0 and does not overflow in C/C++, but wi::add
353 will set the overflow argument in case it's needed for further
354 analysis.
355
356 For operations that require overflow, these are the different
357 types of overflow. */
358 enum overflow_type {
359 OVF_NONE = 0,
360 OVF_UNDERFLOW = -1,
361 OVF_OVERFLOW = 1,
362 /* There was an overflow, but we are unsure whether it was an
363 overflow or an underflow. */
364 OVF_UNKNOWN = 2
365 };
366
807e902e
KZ
367 /* Classifies an integer based on its precision. */
368 enum precision_type {
369 /* The integer has both a precision and defined signedness. This allows
370 the integer to be converted to any width, since we know whether to fill
371 any extra bits with zeros or signs. */
372 FLEXIBLE_PRECISION,
373
374 /* The integer has a variable precision but no defined signedness. */
375 VAR_PRECISION,
376
377 /* The integer has a constant precision (known at GCC compile time)
032c80e9 378 and is signed. */
807e902e
KZ
379 CONST_PRECISION
380 };
381
382 /* This class, which has no default implementation, is expected to
383 provide the following members:
384
385 static const enum precision_type precision_type;
386 Classifies the type of T.
387
388 static const unsigned int precision;
389 Only defined if precision_type == CONST_PRECISION. Specifies the
390 precision of all integers of type T.
391
392 static const bool host_dependent_precision;
393 True if the precision of T depends (or can depend) on the host.
394
395 static unsigned int get_precision (const T &x)
396 Return the number of bits in X.
397
398 static wi::storage_ref *decompose (HOST_WIDE_INT *scratch,
399 unsigned int precision, const T &x)
400 Decompose X as a PRECISION-bit integer, returning the associated
401 wi::storage_ref. SCRATCH is available as scratch space if needed.
402 The routine should assert that PRECISION is acceptable. */
403 template <typename T> struct int_traits;
404
405 /* This class provides a single type, result_type, which specifies the
406 type of integer produced by a binary operation whose inputs have
407 types T1 and T2. The definition should be symmetric. */
408 template <typename T1, typename T2,
409 enum precision_type P1 = int_traits <T1>::precision_type,
410 enum precision_type P2 = int_traits <T2>::precision_type>
411 struct binary_traits;
412
807e902e
KZ
413 /* Specify the result type for each supported combination of binary
414 inputs. Note that CONST_PRECISION and VAR_PRECISION cannot be
415 mixed, in order to give stronger type checking. When both inputs
416 are CONST_PRECISION, they must have the same precision. */
807e902e
KZ
417 template <typename T1, typename T2>
418 struct binary_traits <T1, T2, FLEXIBLE_PRECISION, FLEXIBLE_PRECISION>
419 {
420 typedef widest_int result_type;
7b27cb4b 421 /* Don't define operators for this combination. */
807e902e
KZ
422 };
423
807e902e
KZ
424 template <typename T1, typename T2>
425 struct binary_traits <T1, T2, FLEXIBLE_PRECISION, VAR_PRECISION>
426 {
427 typedef wide_int result_type;
7b27cb4b
RS
428 typedef result_type operator_result;
429 typedef bool predicate_result;
807e902e
KZ
430 };
431
807e902e
KZ
432 template <typename T1, typename T2>
433 struct binary_traits <T1, T2, FLEXIBLE_PRECISION, CONST_PRECISION>
434 {
435 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
436 so as not to confuse gengtype. */
437 typedef generic_wide_int < fixed_wide_int_storage
438 <int_traits <T2>::precision> > result_type;
7b27cb4b
RS
439 typedef result_type operator_result;
440 typedef bool predicate_result;
e535b963 441 typedef result_type signed_shift_result_type;
032c80e9 442 typedef bool signed_predicate_result;
807e902e
KZ
443 };
444
807e902e
KZ
445 template <typename T1, typename T2>
446 struct binary_traits <T1, T2, VAR_PRECISION, FLEXIBLE_PRECISION>
447 {
448 typedef wide_int result_type;
7b27cb4b
RS
449 typedef result_type operator_result;
450 typedef bool predicate_result;
807e902e
KZ
451 };
452
807e902e
KZ
453 template <typename T1, typename T2>
454 struct binary_traits <T1, T2, CONST_PRECISION, FLEXIBLE_PRECISION>
455 {
456 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
457 so as not to confuse gengtype. */
458 typedef generic_wide_int < fixed_wide_int_storage
459 <int_traits <T1>::precision> > result_type;
7b27cb4b
RS
460 typedef result_type operator_result;
461 typedef bool predicate_result;
8de73453 462 typedef result_type signed_shift_result_type;
032c80e9 463 typedef bool signed_predicate_result;
807e902e
KZ
464 };
465
807e902e
KZ
466 template <typename T1, typename T2>
467 struct binary_traits <T1, T2, CONST_PRECISION, CONST_PRECISION>
468 {
7b27cb4b 469 STATIC_ASSERT (int_traits <T1>::precision == int_traits <T2>::precision);
807e902e
KZ
470 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
471 so as not to confuse gengtype. */
807e902e
KZ
472 typedef generic_wide_int < fixed_wide_int_storage
473 <int_traits <T1>::precision> > result_type;
7b27cb4b
RS
474 typedef result_type operator_result;
475 typedef bool predicate_result;
8de73453 476 typedef result_type signed_shift_result_type;
032c80e9 477 typedef bool signed_predicate_result;
807e902e
KZ
478 };
479
807e902e
KZ
480 template <typename T1, typename T2>
481 struct binary_traits <T1, T2, VAR_PRECISION, VAR_PRECISION>
482 {
483 typedef wide_int result_type;
7b27cb4b
RS
484 typedef result_type operator_result;
485 typedef bool predicate_result;
807e902e
KZ
486 };
487}
488
489/* Public functions for querying and operating on integers. */
490namespace wi
491{
492 template <typename T>
493 unsigned int get_precision (const T &);
494
495 template <typename T1, typename T2>
496 unsigned int get_binary_precision (const T1 &, const T2 &);
497
498 template <typename T1, typename T2>
499 void copy (T1 &, const T2 &);
500
501#define UNARY_PREDICATE \
502 template <typename T> bool
503#define UNARY_FUNCTION \
504 template <typename T> WI_UNARY_RESULT (T)
505#define BINARY_PREDICATE \
506 template <typename T1, typename T2> bool
507#define BINARY_FUNCTION \
508 template <typename T1, typename T2> WI_BINARY_RESULT (T1, T2)
509#define SHIFT_FUNCTION \
510 template <typename T1, typename T2> WI_UNARY_RESULT (T1)
511
512 UNARY_PREDICATE fits_shwi_p (const T &);
513 UNARY_PREDICATE fits_uhwi_p (const T &);
514 UNARY_PREDICATE neg_p (const T &, signop = SIGNED);
515
516 template <typename T>
517 HOST_WIDE_INT sign_mask (const T &);
518
519 BINARY_PREDICATE eq_p (const T1 &, const T2 &);
520 BINARY_PREDICATE ne_p (const T1 &, const T2 &);
521 BINARY_PREDICATE lt_p (const T1 &, const T2 &, signop);
522 BINARY_PREDICATE lts_p (const T1 &, const T2 &);
523 BINARY_PREDICATE ltu_p (const T1 &, const T2 &);
524 BINARY_PREDICATE le_p (const T1 &, const T2 &, signop);
525 BINARY_PREDICATE les_p (const T1 &, const T2 &);
526 BINARY_PREDICATE leu_p (const T1 &, const T2 &);
527 BINARY_PREDICATE gt_p (const T1 &, const T2 &, signop);
528 BINARY_PREDICATE gts_p (const T1 &, const T2 &);
529 BINARY_PREDICATE gtu_p (const T1 &, const T2 &);
530 BINARY_PREDICATE ge_p (const T1 &, const T2 &, signop);
531 BINARY_PREDICATE ges_p (const T1 &, const T2 &);
532 BINARY_PREDICATE geu_p (const T1 &, const T2 &);
533
534 template <typename T1, typename T2>
535 int cmp (const T1 &, const T2 &, signop);
536
537 template <typename T1, typename T2>
538 int cmps (const T1 &, const T2 &);
539
540 template <typename T1, typename T2>
541 int cmpu (const T1 &, const T2 &);
542
543 UNARY_FUNCTION bit_not (const T &);
544 UNARY_FUNCTION neg (const T &);
4a669ac3 545 UNARY_FUNCTION neg (const T &, overflow_type *);
807e902e
KZ
546 UNARY_FUNCTION abs (const T &);
547 UNARY_FUNCTION ext (const T &, unsigned int, signop);
548 UNARY_FUNCTION sext (const T &, unsigned int);
549 UNARY_FUNCTION zext (const T &, unsigned int);
550 UNARY_FUNCTION set_bit (const T &, unsigned int);
551
552 BINARY_FUNCTION min (const T1 &, const T2 &, signop);
553 BINARY_FUNCTION smin (const T1 &, const T2 &);
554 BINARY_FUNCTION umin (const T1 &, const T2 &);
555 BINARY_FUNCTION max (const T1 &, const T2 &, signop);
556 BINARY_FUNCTION smax (const T1 &, const T2 &);
557 BINARY_FUNCTION umax (const T1 &, const T2 &);
558
559 BINARY_FUNCTION bit_and (const T1 &, const T2 &);
560 BINARY_FUNCTION bit_and_not (const T1 &, const T2 &);
561 BINARY_FUNCTION bit_or (const T1 &, const T2 &);
562 BINARY_FUNCTION bit_or_not (const T1 &, const T2 &);
563 BINARY_FUNCTION bit_xor (const T1 &, const T2 &);
564 BINARY_FUNCTION add (const T1 &, const T2 &);
4a669ac3 565 BINARY_FUNCTION add (const T1 &, const T2 &, signop, overflow_type *);
807e902e 566 BINARY_FUNCTION sub (const T1 &, const T2 &);
4a669ac3 567 BINARY_FUNCTION sub (const T1 &, const T2 &, signop, overflow_type *);
807e902e 568 BINARY_FUNCTION mul (const T1 &, const T2 &);
4a669ac3
AH
569 BINARY_FUNCTION mul (const T1 &, const T2 &, signop, overflow_type *);
570 BINARY_FUNCTION smul (const T1 &, const T2 &, overflow_type *);
571 BINARY_FUNCTION umul (const T1 &, const T2 &, overflow_type *);
807e902e 572 BINARY_FUNCTION mul_high (const T1 &, const T2 &, signop);
4a669ac3
AH
573 BINARY_FUNCTION div_trunc (const T1 &, const T2 &, signop,
574 overflow_type * = 0);
807e902e
KZ
575 BINARY_FUNCTION sdiv_trunc (const T1 &, const T2 &);
576 BINARY_FUNCTION udiv_trunc (const T1 &, const T2 &);
4a669ac3
AH
577 BINARY_FUNCTION div_floor (const T1 &, const T2 &, signop,
578 overflow_type * = 0);
807e902e
KZ
579 BINARY_FUNCTION udiv_floor (const T1 &, const T2 &);
580 BINARY_FUNCTION sdiv_floor (const T1 &, const T2 &);
4a669ac3
AH
581 BINARY_FUNCTION div_ceil (const T1 &, const T2 &, signop,
582 overflow_type * = 0);
7cfb4d93 583 BINARY_FUNCTION udiv_ceil (const T1 &, const T2 &);
4a669ac3
AH
584 BINARY_FUNCTION div_round (const T1 &, const T2 &, signop,
585 overflow_type * = 0);
807e902e
KZ
586 BINARY_FUNCTION divmod_trunc (const T1 &, const T2 &, signop,
587 WI_BINARY_RESULT (T1, T2) *);
d9a6bd32 588 BINARY_FUNCTION gcd (const T1 &, const T2 &, signop = UNSIGNED);
4a669ac3
AH
589 BINARY_FUNCTION mod_trunc (const T1 &, const T2 &, signop,
590 overflow_type * = 0);
807e902e
KZ
591 BINARY_FUNCTION smod_trunc (const T1 &, const T2 &);
592 BINARY_FUNCTION umod_trunc (const T1 &, const T2 &);
4a669ac3
AH
593 BINARY_FUNCTION mod_floor (const T1 &, const T2 &, signop,
594 overflow_type * = 0);
807e902e 595 BINARY_FUNCTION umod_floor (const T1 &, const T2 &);
4a669ac3
AH
596 BINARY_FUNCTION mod_ceil (const T1 &, const T2 &, signop,
597 overflow_type * = 0);
598 BINARY_FUNCTION mod_round (const T1 &, const T2 &, signop,
599 overflow_type * = 0);
807e902e 600
7588d8aa
RS
601 template <typename T1, typename T2>
602 bool multiple_of_p (const T1 &, const T2 &, signop);
603
807e902e
KZ
604 template <typename T1, typename T2>
605 bool multiple_of_p (const T1 &, const T2 &, signop,
606 WI_BINARY_RESULT (T1, T2) *);
607
608 SHIFT_FUNCTION lshift (const T1 &, const T2 &);
609 SHIFT_FUNCTION lrshift (const T1 &, const T2 &);
610 SHIFT_FUNCTION arshift (const T1 &, const T2 &);
611 SHIFT_FUNCTION rshift (const T1 &, const T2 &, signop sgn);
612 SHIFT_FUNCTION lrotate (const T1 &, const T2 &, unsigned int = 0);
613 SHIFT_FUNCTION rrotate (const T1 &, const T2 &, unsigned int = 0);
614
615#undef SHIFT_FUNCTION
616#undef BINARY_PREDICATE
617#undef BINARY_FUNCTION
618#undef UNARY_PREDICATE
619#undef UNARY_FUNCTION
620
621 bool only_sign_bit_p (const wide_int_ref &, unsigned int);
622 bool only_sign_bit_p (const wide_int_ref &);
623 int clz (const wide_int_ref &);
624 int clrsb (const wide_int_ref &);
625 int ctz (const wide_int_ref &);
626 int exact_log2 (const wide_int_ref &);
627 int floor_log2 (const wide_int_ref &);
628 int ffs (const wide_int_ref &);
629 int popcount (const wide_int_ref &);
630 int parity (const wide_int_ref &);
631
632 template <typename T>
633 unsigned HOST_WIDE_INT extract_uhwi (const T &, unsigned int, unsigned int);
634
635 template <typename T>
636 unsigned int min_precision (const T &, signop);
4a669ac3
AH
637
638 static inline void accumulate_overflow (overflow_type &, overflow_type);
807e902e
KZ
639}
640
641namespace wi
642{
643 /* Contains the components of a decomposed integer for easy, direct
644 access. */
6c1dae73 645 class storage_ref
807e902e 646 {
6c1dae73 647 public:
0c12fc9b 648 storage_ref () {}
807e902e
KZ
649 storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int);
650
651 const HOST_WIDE_INT *val;
652 unsigned int len;
653 unsigned int precision;
654
655 /* Provide enough trappings for this class to act as storage for
656 generic_wide_int. */
657 unsigned int get_len () const;
658 unsigned int get_precision () const;
659 const HOST_WIDE_INT *get_val () const;
660 };
661}
662
663inline::wi::storage_ref::storage_ref (const HOST_WIDE_INT *val_in,
664 unsigned int len_in,
665 unsigned int precision_in)
666 : val (val_in), len (len_in), precision (precision_in)
667{
668}
669
670inline unsigned int
671wi::storage_ref::get_len () const
672{
673 return len;
674}
675
676inline unsigned int
677wi::storage_ref::get_precision () const
678{
679 return precision;
680}
681
682inline const HOST_WIDE_INT *
683wi::storage_ref::get_val () const
684{
685 return val;
686}
687
688/* This class defines an integer type using the storage provided by the
689 template argument. The storage class must provide the following
690 functions:
691
692 unsigned int get_precision () const
693 Return the number of bits in the integer.
694
695 HOST_WIDE_INT *get_val () const
696 Return a pointer to the array of blocks that encodes the integer.
697
698 unsigned int get_len () const
699 Return the number of blocks in get_val (). If this is smaller
700 than the number of blocks implied by get_precision (), the
701 remaining blocks are sign extensions of block get_len () - 1.
702
703 Although not required by generic_wide_int itself, writable storage
704 classes can also provide the following functions:
705
706 HOST_WIDE_INT *write_val ()
707 Get a modifiable version of get_val ()
708
709 unsigned int set_len (unsigned int len)
710 Set the value returned by get_len () to LEN. */
711template <typename storage>
712class GTY(()) generic_wide_int : public storage
713{
714public:
715 generic_wide_int ();
716
717 template <typename T>
718 generic_wide_int (const T &);
719
720 template <typename T>
721 generic_wide_int (const T &, unsigned int);
722
723 /* Conversions. */
724 HOST_WIDE_INT to_shwi (unsigned int) const;
725 HOST_WIDE_INT to_shwi () const;
726 unsigned HOST_WIDE_INT to_uhwi (unsigned int) const;
727 unsigned HOST_WIDE_INT to_uhwi () const;
728 HOST_WIDE_INT to_short_addr () const;
729
730 /* Public accessors for the interior of a wide int. */
731 HOST_WIDE_INT sign_mask () const;
732 HOST_WIDE_INT elt (unsigned int) const;
5d5bb9bc 733 HOST_WIDE_INT sext_elt (unsigned int) const;
807e902e
KZ
734 unsigned HOST_WIDE_INT ulow () const;
735 unsigned HOST_WIDE_INT uhigh () const;
736 HOST_WIDE_INT slow () const;
737 HOST_WIDE_INT shigh () const;
738
739 template <typename T>
740 generic_wide_int &operator = (const T &);
741
807e902e
KZ
742#define ASSIGNMENT_OPERATOR(OP, F) \
743 template <typename T> \
744 generic_wide_int &OP (const T &c) { return (*this = wi::F (*this, c)); }
745
8de73453
RS
746/* Restrict these to cases where the shift operator is defined. */
747#define SHIFT_ASSIGNMENT_OPERATOR(OP, OP2) \
748 template <typename T> \
749 generic_wide_int &OP (const T &c) { return (*this = *this OP2 c); }
750
807e902e
KZ
751#define INCDEC_OPERATOR(OP, DELTA) \
752 generic_wide_int &OP () { *this += DELTA; return *this; }
753
807e902e
KZ
754 ASSIGNMENT_OPERATOR (operator &=, bit_and)
755 ASSIGNMENT_OPERATOR (operator |=, bit_or)
756 ASSIGNMENT_OPERATOR (operator ^=, bit_xor)
757 ASSIGNMENT_OPERATOR (operator +=, add)
758 ASSIGNMENT_OPERATOR (operator -=, sub)
759 ASSIGNMENT_OPERATOR (operator *=, mul)
e535b963 760 ASSIGNMENT_OPERATOR (operator <<=, lshift)
8de73453 761 SHIFT_ASSIGNMENT_OPERATOR (operator >>=, >>)
807e902e
KZ
762 INCDEC_OPERATOR (operator ++, 1)
763 INCDEC_OPERATOR (operator --, -1)
764
8de73453 765#undef SHIFT_ASSIGNMENT_OPERATOR
807e902e
KZ
766#undef ASSIGNMENT_OPERATOR
767#undef INCDEC_OPERATOR
768
769 /* Debugging functions. */
770 void dump () const;
771
772 static const bool is_sign_extended
773 = wi::int_traits <generic_wide_int <storage> >::is_sign_extended;
774};
775
776template <typename storage>
777inline generic_wide_int <storage>::generic_wide_int () {}
778
779template <typename storage>
780template <typename T>
781inline generic_wide_int <storage>::generic_wide_int (const T &x)
782 : storage (x)
783{
784}
785
786template <typename storage>
787template <typename T>
788inline generic_wide_int <storage>::generic_wide_int (const T &x,
789 unsigned int precision)
790 : storage (x, precision)
791{
792}
793
794/* Return THIS as a signed HOST_WIDE_INT, sign-extending from PRECISION.
795 If THIS does not fit in PRECISION, the information is lost. */
796template <typename storage>
797inline HOST_WIDE_INT
798generic_wide_int <storage>::to_shwi (unsigned int precision) const
799{
800 if (precision < HOST_BITS_PER_WIDE_INT)
801 return sext_hwi (this->get_val ()[0], precision);
802 else
803 return this->get_val ()[0];
804}
805
806/* Return THIS as a signed HOST_WIDE_INT, in its natural precision. */
807template <typename storage>
808inline HOST_WIDE_INT
809generic_wide_int <storage>::to_shwi () const
810{
811 if (is_sign_extended)
812 return this->get_val ()[0];
813 else
814 return to_shwi (this->get_precision ());
815}
816
817/* Return THIS as an unsigned HOST_WIDE_INT, zero-extending from
818 PRECISION. If THIS does not fit in PRECISION, the information
819 is lost. */
820template <typename storage>
821inline unsigned HOST_WIDE_INT
822generic_wide_int <storage>::to_uhwi (unsigned int precision) const
823{
824 if (precision < HOST_BITS_PER_WIDE_INT)
825 return zext_hwi (this->get_val ()[0], precision);
826 else
827 return this->get_val ()[0];
828}
829
830/* Return THIS as an signed HOST_WIDE_INT, in its natural precision. */
831template <typename storage>
832inline unsigned HOST_WIDE_INT
833generic_wide_int <storage>::to_uhwi () const
834{
835 return to_uhwi (this->get_precision ());
836}
837
838/* TODO: The compiler is half converted from using HOST_WIDE_INT to
839 represent addresses to using offset_int to represent addresses.
840 We use to_short_addr at the interface from new code to old,
841 unconverted code. */
842template <typename storage>
843inline HOST_WIDE_INT
844generic_wide_int <storage>::to_short_addr () const
845{
846 return this->get_val ()[0];
847}
848
849/* Return the implicit value of blocks above get_len (). */
850template <typename storage>
851inline HOST_WIDE_INT
852generic_wide_int <storage>::sign_mask () const
853{
854 unsigned int len = this->get_len ();
49fb45c8
MS
855 gcc_assert (len > 0);
856
807e902e
KZ
857 unsigned HOST_WIDE_INT high = this->get_val ()[len - 1];
858 if (!is_sign_extended)
859 {
860 unsigned int precision = this->get_precision ();
861 int excess = len * HOST_BITS_PER_WIDE_INT - precision;
862 if (excess > 0)
863 high <<= excess;
864 }
865 return (HOST_WIDE_INT) (high) < 0 ? -1 : 0;
866}
867
868/* Return the signed value of the least-significant explicitly-encoded
869 block. */
870template <typename storage>
871inline HOST_WIDE_INT
872generic_wide_int <storage>::slow () const
873{
874 return this->get_val ()[0];
875}
876
877/* Return the signed value of the most-significant explicitly-encoded
878 block. */
879template <typename storage>
880inline HOST_WIDE_INT
881generic_wide_int <storage>::shigh () const
882{
883 return this->get_val ()[this->get_len () - 1];
884}
885
886/* Return the unsigned value of the least-significant
887 explicitly-encoded block. */
888template <typename storage>
889inline unsigned HOST_WIDE_INT
890generic_wide_int <storage>::ulow () const
891{
892 return this->get_val ()[0];
893}
894
895/* Return the unsigned value of the most-significant
896 explicitly-encoded block. */
897template <typename storage>
898inline unsigned HOST_WIDE_INT
899generic_wide_int <storage>::uhigh () const
900{
901 return this->get_val ()[this->get_len () - 1];
902}
903
904/* Return block I, which might be implicitly or explicit encoded. */
905template <typename storage>
906inline HOST_WIDE_INT
907generic_wide_int <storage>::elt (unsigned int i) const
908{
909 if (i >= this->get_len ())
910 return sign_mask ();
911 else
912 return this->get_val ()[i];
913}
914
5d5bb9bc
RS
915/* Like elt, but sign-extend beyond the upper bit, instead of returning
916 the raw encoding. */
917template <typename storage>
918inline HOST_WIDE_INT
919generic_wide_int <storage>::sext_elt (unsigned int i) const
920{
921 HOST_WIDE_INT elt_i = elt (i);
922 if (!is_sign_extended)
923 {
924 unsigned int precision = this->get_precision ();
925 unsigned int lsb = i * HOST_BITS_PER_WIDE_INT;
926 if (precision - lsb < HOST_BITS_PER_WIDE_INT)
927 elt_i = sext_hwi (elt_i, precision - lsb);
928 }
929 return elt_i;
930}
931
807e902e
KZ
932template <typename storage>
933template <typename T>
8de73453 934inline generic_wide_int <storage> &
807e902e
KZ
935generic_wide_int <storage>::operator = (const T &x)
936{
937 storage::operator = (x);
938 return *this;
939}
940
941/* Dump the contents of the integer to stderr, for debugging. */
942template <typename storage>
943void
944generic_wide_int <storage>::dump () const
945{
946 unsigned int len = this->get_len ();
947 const HOST_WIDE_INT *val = this->get_val ();
948 unsigned int precision = this->get_precision ();
949 fprintf (stderr, "[");
950 if (len * HOST_BITS_PER_WIDE_INT < precision)
951 fprintf (stderr, "...,");
952 for (unsigned int i = 0; i < len - 1; ++i)
953 fprintf (stderr, HOST_WIDE_INT_PRINT_HEX ",", val[len - 1 - i]);
954 fprintf (stderr, HOST_WIDE_INT_PRINT_HEX "], precision = %d\n",
955 val[0], precision);
956}
957
958namespace wi
959{
807e902e
KZ
960 template <typename storage>
961 struct int_traits < generic_wide_int <storage> >
962 : public wi::int_traits <storage>
963 {
964 static unsigned int get_precision (const generic_wide_int <storage> &);
965 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
966 const generic_wide_int <storage> &);
967 };
968}
969
970template <typename storage>
971inline unsigned int
972wi::int_traits < generic_wide_int <storage> >::
973get_precision (const generic_wide_int <storage> &x)
974{
975 return x.get_precision ();
976}
977
978template <typename storage>
979inline wi::storage_ref
980wi::int_traits < generic_wide_int <storage> >::
981decompose (HOST_WIDE_INT *, unsigned int precision,
982 const generic_wide_int <storage> &x)
983{
984 gcc_checking_assert (precision == x.get_precision ());
985 return wi::storage_ref (x.get_val (), x.get_len (), precision);
986}
987
988/* Provide the storage for a wide_int_ref. This acts like a read-only
989 wide_int, with the optimization that VAL is normally a pointer to
990 another integer's storage, so that no array copy is needed. */
8e6cdc90 991template <bool SE, bool HDP>
6c1dae73 992class wide_int_ref_storage : public wi::storage_ref
807e902e
KZ
993{
994private:
995 /* Scratch space that can be used when decomposing the original integer.
996 It must live as long as this object. */
997 HOST_WIDE_INT scratch[2];
998
999public:
0c12fc9b
RS
1000 wide_int_ref_storage () {}
1001
807e902e
KZ
1002 wide_int_ref_storage (const wi::storage_ref &);
1003
1004 template <typename T>
1005 wide_int_ref_storage (const T &);
1006
1007 template <typename T>
1008 wide_int_ref_storage (const T &, unsigned int);
1009};
1010
1011/* Create a reference from an existing reference. */
8e6cdc90
RS
1012template <bool SE, bool HDP>
1013inline wide_int_ref_storage <SE, HDP>::
807e902e
KZ
1014wide_int_ref_storage (const wi::storage_ref &x)
1015 : storage_ref (x)
1016{}
1017
1018/* Create a reference to integer X in its natural precision. Note
1019 that the natural precision is host-dependent for primitive
1020 types. */
8e6cdc90 1021template <bool SE, bool HDP>
807e902e 1022template <typename T>
8e6cdc90 1023inline wide_int_ref_storage <SE, HDP>::wide_int_ref_storage (const T &x)
807e902e
KZ
1024 : storage_ref (wi::int_traits <T>::decompose (scratch,
1025 wi::get_precision (x), x))
1026{
1027}
1028
1029/* Create a reference to integer X in precision PRECISION. */
8e6cdc90 1030template <bool SE, bool HDP>
807e902e 1031template <typename T>
8e6cdc90
RS
1032inline wide_int_ref_storage <SE, HDP>::
1033wide_int_ref_storage (const T &x, unsigned int precision)
807e902e
KZ
1034 : storage_ref (wi::int_traits <T>::decompose (scratch, precision, x))
1035{
1036}
1037
1038namespace wi
1039{
8e6cdc90
RS
1040 template <bool SE, bool HDP>
1041 struct int_traits <wide_int_ref_storage <SE, HDP> >
807e902e
KZ
1042 {
1043 static const enum precision_type precision_type = VAR_PRECISION;
8e6cdc90 1044 static const bool host_dependent_precision = HDP;
807e902e
KZ
1045 static const bool is_sign_extended = SE;
1046 };
1047}
1048
1049namespace wi
1050{
1051 unsigned int force_to_size (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1052 unsigned int, unsigned int, unsigned int,
1053 signop sgn);
1054 unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1055 unsigned int, unsigned int, bool = true);
1056}
1057
1058/* The storage used by wide_int. */
1059class GTY(()) wide_int_storage
1060{
1061private:
1062 HOST_WIDE_INT val[WIDE_INT_MAX_ELTS];
1063 unsigned int len;
1064 unsigned int precision;
1065
1066public:
1067 wide_int_storage ();
1068 template <typename T>
1069 wide_int_storage (const T &);
1070
1071 /* The standard generic_wide_int storage methods. */
1072 unsigned int get_precision () const;
1073 const HOST_WIDE_INT *get_val () const;
1074 unsigned int get_len () const;
1075 HOST_WIDE_INT *write_val ();
1076 void set_len (unsigned int, bool = false);
1077
c8c6a29e
RB
1078 template <typename T>
1079 wide_int_storage &operator = (const T &);
1080
807e902e
KZ
1081 static wide_int from (const wide_int_ref &, unsigned int, signop);
1082 static wide_int from_array (const HOST_WIDE_INT *, unsigned int,
1083 unsigned int, bool = true);
1084 static wide_int create (unsigned int);
1085
1086 /* FIXME: target-dependent, so should disappear. */
1087 wide_int bswap () const;
1088};
1089
1090namespace wi
1091{
1092 template <>
1093 struct int_traits <wide_int_storage>
1094 {
1095 static const enum precision_type precision_type = VAR_PRECISION;
1096 /* Guaranteed by a static assert in the wide_int_storage constructor. */
1097 static const bool host_dependent_precision = false;
1098 static const bool is_sign_extended = true;
1099 template <typename T1, typename T2>
1100 static wide_int get_binary_result (const T1 &, const T2 &);
1101 };
1102}
1103
1104inline wide_int_storage::wide_int_storage () {}
1105
1106/* Initialize the storage from integer X, in its natural precision.
1107 Note that we do not allow integers with host-dependent precision
1108 to become wide_ints; wide_ints must always be logically independent
1109 of the host. */
1110template <typename T>
1111inline wide_int_storage::wide_int_storage (const T &x)
1112{
1113 { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
1114 { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
1115 WIDE_INT_REF_FOR (T) xi (x);
1116 precision = xi.precision;
1117 wi::copy (*this, xi);
1118}
1119
c8c6a29e
RB
1120template <typename T>
1121inline wide_int_storage&
1122wide_int_storage::operator = (const T &x)
1123{
1124 { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
1125 { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
1126 WIDE_INT_REF_FOR (T) xi (x);
1127 precision = xi.precision;
1128 wi::copy (*this, xi);
1129 return *this;
1130}
1131
807e902e
KZ
1132inline unsigned int
1133wide_int_storage::get_precision () const
1134{
1135 return precision;
1136}
1137
1138inline const HOST_WIDE_INT *
1139wide_int_storage::get_val () const
1140{
1141 return val;
1142}
1143
1144inline unsigned int
1145wide_int_storage::get_len () const
1146{
1147 return len;
1148}
1149
1150inline HOST_WIDE_INT *
1151wide_int_storage::write_val ()
1152{
1153 return val;
1154}
1155
1156inline void
1157wide_int_storage::set_len (unsigned int l, bool is_sign_extended)
1158{
1159 len = l;
1160 if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision)
1161 val[len - 1] = sext_hwi (val[len - 1],
1162 precision % HOST_BITS_PER_WIDE_INT);
1163}
1164
1165/* Treat X as having signedness SGN and convert it to a PRECISION-bit
1166 number. */
1167inline wide_int
1168wide_int_storage::from (const wide_int_ref &x, unsigned int precision,
1169 signop sgn)
1170{
1171 wide_int result = wide_int::create (precision);
1172 result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
1173 x.precision, precision, sgn));
1174 return result;
1175}
1176
1177/* Create a wide_int from the explicit block encoding given by VAL and
1178 LEN. PRECISION is the precision of the integer. NEED_CANON_P is
1179 true if the encoding may have redundant trailing blocks. */
1180inline wide_int
1181wide_int_storage::from_array (const HOST_WIDE_INT *val, unsigned int len,
1182 unsigned int precision, bool need_canon_p)
1183{
1184 wide_int result = wide_int::create (precision);
1185 result.set_len (wi::from_array (result.write_val (), val, len, precision,
1186 need_canon_p));
1187 return result;
1188}
1189
1190/* Return an uninitialized wide_int with precision PRECISION. */
1191inline wide_int
1192wide_int_storage::create (unsigned int precision)
1193{
1194 wide_int x;
1195 x.precision = precision;
1196 return x;
1197}
1198
1199template <typename T1, typename T2>
1200inline wide_int
1201wi::int_traits <wide_int_storage>::get_binary_result (const T1 &x, const T2 &y)
1202{
1203 /* This shouldn't be used for two flexible-precision inputs. */
1204 STATIC_ASSERT (wi::int_traits <T1>::precision_type != FLEXIBLE_PRECISION
1205 || wi::int_traits <T2>::precision_type != FLEXIBLE_PRECISION);
1206 if (wi::int_traits <T1>::precision_type == FLEXIBLE_PRECISION)
1207 return wide_int::create (wi::get_precision (y));
1208 else
1209 return wide_int::create (wi::get_precision (x));
1210}
1211
1212/* The storage used by FIXED_WIDE_INT (N). */
1213template <int N>
1214class GTY(()) fixed_wide_int_storage
1215{
1216private:
1217 HOST_WIDE_INT val[(N + HOST_BITS_PER_WIDE_INT + 1) / HOST_BITS_PER_WIDE_INT];
1218 unsigned int len;
1219
1220public:
1221 fixed_wide_int_storage ();
1222 template <typename T>
1223 fixed_wide_int_storage (const T &);
1224
1225 /* The standard generic_wide_int storage methods. */
1226 unsigned int get_precision () const;
1227 const HOST_WIDE_INT *get_val () const;
1228 unsigned int get_len () const;
1229 HOST_WIDE_INT *write_val ();
1230 void set_len (unsigned int, bool = false);
1231
1232 static FIXED_WIDE_INT (N) from (const wide_int_ref &, signop);
1233 static FIXED_WIDE_INT (N) from_array (const HOST_WIDE_INT *, unsigned int,
1234 bool = true);
1235};
1236
1237namespace wi
1238{
807e902e
KZ
1239 template <int N>
1240 struct int_traits < fixed_wide_int_storage <N> >
1241 {
1242 static const enum precision_type precision_type = CONST_PRECISION;
1243 static const bool host_dependent_precision = false;
1244 static const bool is_sign_extended = true;
1245 static const unsigned int precision = N;
1246 template <typename T1, typename T2>
1247 static FIXED_WIDE_INT (N) get_binary_result (const T1 &, const T2 &);
1248 };
1249}
1250
1251template <int N>
1252inline fixed_wide_int_storage <N>::fixed_wide_int_storage () {}
1253
1254/* Initialize the storage from integer X, in precision N. */
1255template <int N>
1256template <typename T>
1257inline fixed_wide_int_storage <N>::fixed_wide_int_storage (const T &x)
1258{
1259 /* Check for type compatibility. We don't want to initialize a
1260 fixed-width integer from something like a wide_int. */
1261 WI_BINARY_RESULT (T, FIXED_WIDE_INT (N)) *assertion ATTRIBUTE_UNUSED;
1262 wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N));
1263}
1264
1265template <int N>
1266inline unsigned int
1267fixed_wide_int_storage <N>::get_precision () const
1268{
1269 return N;
1270}
1271
1272template <int N>
1273inline const HOST_WIDE_INT *
1274fixed_wide_int_storage <N>::get_val () const
1275{
1276 return val;
1277}
1278
1279template <int N>
1280inline unsigned int
1281fixed_wide_int_storage <N>::get_len () const
1282{
1283 return len;
1284}
1285
1286template <int N>
1287inline HOST_WIDE_INT *
1288fixed_wide_int_storage <N>::write_val ()
1289{
1290 return val;
1291}
1292
1293template <int N>
1294inline void
1295fixed_wide_int_storage <N>::set_len (unsigned int l, bool)
1296{
1297 len = l;
1298 /* There are no excess bits in val[len - 1]. */
1299 STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0);
1300}
1301
1302/* Treat X as having signedness SGN and convert it to an N-bit number. */
1303template <int N>
1304inline FIXED_WIDE_INT (N)
1305fixed_wide_int_storage <N>::from (const wide_int_ref &x, signop sgn)
1306{
1307 FIXED_WIDE_INT (N) result;
1308 result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
1309 x.precision, N, sgn));
1310 return result;
1311}
1312
1313/* Create a FIXED_WIDE_INT (N) from the explicit block encoding given by
1314 VAL and LEN. NEED_CANON_P is true if the encoding may have redundant
1315 trailing blocks. */
1316template <int N>
1317inline FIXED_WIDE_INT (N)
1318fixed_wide_int_storage <N>::from_array (const HOST_WIDE_INT *val,
1319 unsigned int len,
1320 bool need_canon_p)
1321{
1322 FIXED_WIDE_INT (N) result;
1323 result.set_len (wi::from_array (result.write_val (), val, len,
1324 N, need_canon_p));
1325 return result;
1326}
1327
1328template <int N>
1329template <typename T1, typename T2>
1330inline FIXED_WIDE_INT (N)
1331wi::int_traits < fixed_wide_int_storage <N> >::
1332get_binary_result (const T1 &, const T2 &)
1333{
1334 return FIXED_WIDE_INT (N) ();
1335}
1336
1337/* A reference to one element of a trailing_wide_ints structure. */
1338class trailing_wide_int_storage
1339{
1340private:
1341 /* The precision of the integer, which is a fixed property of the
1342 parent trailing_wide_ints. */
1343 unsigned int m_precision;
1344
1345 /* A pointer to the length field. */
1346 unsigned char *m_len;
1347
1348 /* A pointer to the HWI array. There are enough elements to hold all
1349 values of precision M_PRECISION. */
1350 HOST_WIDE_INT *m_val;
1351
1352public:
1353 trailing_wide_int_storage (unsigned int, unsigned char *, HOST_WIDE_INT *);
1354
1355 /* The standard generic_wide_int storage methods. */
1356 unsigned int get_len () const;
1357 unsigned int get_precision () const;
1358 const HOST_WIDE_INT *get_val () const;
1359 HOST_WIDE_INT *write_val ();
1360 void set_len (unsigned int, bool = false);
1361
1362 template <typename T>
1363 trailing_wide_int_storage &operator = (const T &);
1364};
1365
1366typedef generic_wide_int <trailing_wide_int_storage> trailing_wide_int;
1367
1368/* trailing_wide_int behaves like a wide_int. */
1369namespace wi
1370{
1371 template <>
1372 struct int_traits <trailing_wide_int_storage>
1373 : public int_traits <wide_int_storage> {};
1374}
1375
1376/* An array of N wide_int-like objects that can be put at the end of
1377 a variable-sized structure. Use extra_size to calculate how many
1378 bytes beyond the sizeof need to be allocated. Use set_precision
1379 to initialize the structure. */
1380template <int N>
6c1dae73 1381struct GTY((user)) trailing_wide_ints
807e902e
KZ
1382{
1383private:
1384 /* The shared precision of each number. */
1385 unsigned short m_precision;
1386
1387 /* The shared maximum length of each number. */
1388 unsigned char m_max_len;
1389
1390 /* The current length of each number. */
1391 unsigned char m_len[N];
1392
1393 /* The variable-length part of the structure, which always contains
1394 at least one HWI. Element I starts at index I * M_MAX_LEN. */
1395 HOST_WIDE_INT m_val[1];
1396
1397public:
0c12fc9b
RS
1398 typedef WIDE_INT_REF_FOR (trailing_wide_int_storage) const_reference;
1399
807e902e 1400 void set_precision (unsigned int);
0c12fc9b 1401 unsigned int get_precision () const { return m_precision; }
807e902e 1402 trailing_wide_int operator [] (unsigned int);
0c12fc9b 1403 const_reference operator [] (unsigned int) const;
807e902e 1404 static size_t extra_size (unsigned int);
0c12fc9b 1405 size_t extra_size () const { return extra_size (m_precision); }
807e902e
KZ
1406};
1407
1408inline trailing_wide_int_storage::
1409trailing_wide_int_storage (unsigned int precision, unsigned char *len,
1410 HOST_WIDE_INT *val)
1411 : m_precision (precision), m_len (len), m_val (val)
1412{
1413}
1414
1415inline unsigned int
1416trailing_wide_int_storage::get_len () const
1417{
1418 return *m_len;
1419}
1420
1421inline unsigned int
1422trailing_wide_int_storage::get_precision () const
1423{
1424 return m_precision;
1425}
1426
1427inline const HOST_WIDE_INT *
1428trailing_wide_int_storage::get_val () const
1429{
1430 return m_val;
1431}
1432
1433inline HOST_WIDE_INT *
1434trailing_wide_int_storage::write_val ()
1435{
1436 return m_val;
1437}
1438
1439inline void
1440trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended)
1441{
1442 *m_len = len;
1443 if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision)
1444 m_val[len - 1] = sext_hwi (m_val[len - 1],
1445 m_precision % HOST_BITS_PER_WIDE_INT);
1446}
1447
1448template <typename T>
1449inline trailing_wide_int_storage &
1450trailing_wide_int_storage::operator = (const T &x)
1451{
1452 WIDE_INT_REF_FOR (T) xi (x, m_precision);
1453 wi::copy (*this, xi);
1454 return *this;
1455}
1456
1457/* Initialize the structure and record that all elements have precision
1458 PRECISION. */
1459template <int N>
1460inline void
1461trailing_wide_ints <N>::set_precision (unsigned int precision)
1462{
1463 m_precision = precision;
1464 m_max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
1465 / HOST_BITS_PER_WIDE_INT);
1466}
1467
1468/* Return a reference to element INDEX. */
1469template <int N>
1470inline trailing_wide_int
1471trailing_wide_ints <N>::operator [] (unsigned int index)
1472{
1473 return trailing_wide_int_storage (m_precision, &m_len[index],
1474 &m_val[index * m_max_len]);
1475}
1476
0c12fc9b
RS
1477template <int N>
1478inline typename trailing_wide_ints <N>::const_reference
1479trailing_wide_ints <N>::operator [] (unsigned int index) const
1480{
1481 return wi::storage_ref (&m_val[index * m_max_len],
1482 m_len[index], m_precision);
1483}
1484
807e902e
KZ
1485/* Return how many extra bytes need to be added to the end of the structure
1486 in order to handle N wide_ints of precision PRECISION. */
1487template <int N>
1488inline size_t
1489trailing_wide_ints <N>::extra_size (unsigned int precision)
1490{
1491 unsigned int max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
1492 / HOST_BITS_PER_WIDE_INT);
1493 return (N * max_len - 1) * sizeof (HOST_WIDE_INT);
1494}
1495
1496/* This macro is used in structures that end with a trailing_wide_ints field
1497 called FIELD. It declares get_NAME() and set_NAME() methods to access
1498 element I of FIELD. */
1499#define TRAILING_WIDE_INT_ACCESSOR(NAME, FIELD, I) \
1500 trailing_wide_int get_##NAME () { return FIELD[I]; } \
1501 template <typename T> void set_##NAME (const T &x) { FIELD[I] = x; }
1502
1503namespace wi
1504{
1505 /* Implementation of int_traits for primitive integer types like "int". */
1506 template <typename T, bool signed_p>
1507 struct primitive_int_traits
1508 {
1509 static const enum precision_type precision_type = FLEXIBLE_PRECISION;
1510 static const bool host_dependent_precision = true;
1511 static const bool is_sign_extended = true;
1512 static unsigned int get_precision (T);
1513 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, T);
1514 };
1515}
1516
1517template <typename T, bool signed_p>
1518inline unsigned int
1519wi::primitive_int_traits <T, signed_p>::get_precision (T)
1520{
1521 return sizeof (T) * CHAR_BIT;
1522}
1523
1524template <typename T, bool signed_p>
1525inline wi::storage_ref
1526wi::primitive_int_traits <T, signed_p>::decompose (HOST_WIDE_INT *scratch,
1527 unsigned int precision, T x)
1528{
1529 scratch[0] = x;
1530 if (signed_p || scratch[0] >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
1531 return wi::storage_ref (scratch, 1, precision);
1532 scratch[1] = 0;
1533 return wi::storage_ref (scratch, 2, precision);
1534}
1535
1536/* Allow primitive C types to be used in wi:: routines. */
1537namespace wi
1538{
b0567726
RS
1539 template <>
1540 struct int_traits <unsigned char>
1541 : public primitive_int_traits <unsigned char, false> {};
1542
1543 template <>
1544 struct int_traits <unsigned short>
1545 : public primitive_int_traits <unsigned short, false> {};
1546
807e902e
KZ
1547 template <>
1548 struct int_traits <int>
1549 : public primitive_int_traits <int, true> {};
1550
1551 template <>
1552 struct int_traits <unsigned int>
1553 : public primitive_int_traits <unsigned int, false> {};
1554
807e902e 1555 template <>
d93461f7
RB
1556 struct int_traits <long>
1557 : public primitive_int_traits <long, true> {};
807e902e
KZ
1558
1559 template <>
d93461f7
RB
1560 struct int_traits <unsigned long>
1561 : public primitive_int_traits <unsigned long, false> {};
1562
1563#if defined HAVE_LONG_LONG
1564 template <>
1565 struct int_traits <long long>
1566 : public primitive_int_traits <long long, true> {};
1567
1568 template <>
1569 struct int_traits <unsigned long long>
1570 : public primitive_int_traits <unsigned long long, false> {};
1571#endif
807e902e
KZ
1572}
1573
1574namespace wi
1575{
1576 /* Stores HWI-sized integer VAL, treating it as having signedness SGN
1577 and precision PRECISION. */
6c1dae73 1578 class hwi_with_prec
807e902e 1579 {
6c1dae73 1580 public:
e535b963 1581 hwi_with_prec () {}
807e902e
KZ
1582 hwi_with_prec (HOST_WIDE_INT, unsigned int, signop);
1583 HOST_WIDE_INT val;
1584 unsigned int precision;
1585 signop sgn;
1586 };
1587
1588 hwi_with_prec shwi (HOST_WIDE_INT, unsigned int);
1589 hwi_with_prec uhwi (unsigned HOST_WIDE_INT, unsigned int);
1590
1591 hwi_with_prec minus_one (unsigned int);
1592 hwi_with_prec zero (unsigned int);
1593 hwi_with_prec one (unsigned int);
1594 hwi_with_prec two (unsigned int);
1595}
1596
1597inline wi::hwi_with_prec::hwi_with_prec (HOST_WIDE_INT v, unsigned int p,
1598 signop s)
4ea9e1a5 1599 : precision (p), sgn (s)
807e902e 1600{
4ea9e1a5
AH
1601 if (precision < HOST_BITS_PER_WIDE_INT)
1602 val = sext_hwi (v, precision);
1603 else
1604 val = v;
807e902e
KZ
1605}
1606
1607/* Return a signed integer that has value VAL and precision PRECISION. */
1608inline wi::hwi_with_prec
1609wi::shwi (HOST_WIDE_INT val, unsigned int precision)
1610{
1611 return hwi_with_prec (val, precision, SIGNED);
1612}
1613
1614/* Return an unsigned integer that has value VAL and precision PRECISION. */
1615inline wi::hwi_with_prec
1616wi::uhwi (unsigned HOST_WIDE_INT val, unsigned int precision)
1617{
1618 return hwi_with_prec (val, precision, UNSIGNED);
1619}
1620
1621/* Return a wide int of -1 with precision PRECISION. */
1622inline wi::hwi_with_prec
1623wi::minus_one (unsigned int precision)
1624{
1625 return wi::shwi (-1, precision);
1626}
1627
1628/* Return a wide int of 0 with precision PRECISION. */
1629inline wi::hwi_with_prec
1630wi::zero (unsigned int precision)
1631{
1632 return wi::shwi (0, precision);
1633}
1634
1635/* Return a wide int of 1 with precision PRECISION. */
1636inline wi::hwi_with_prec
1637wi::one (unsigned int precision)
1638{
1639 return wi::shwi (1, precision);
1640}
1641
1642/* Return a wide int of 2 with precision PRECISION. */
1643inline wi::hwi_with_prec
1644wi::two (unsigned int precision)
1645{
1646 return wi::shwi (2, precision);
1647}
1648
e535b963
RS
1649namespace wi
1650{
1651 /* ints_for<T>::zero (X) returns a zero that, when asssigned to a T,
1652 gives that T the same precision as X. */
1653 template<typename T, precision_type = int_traits<T>::precision_type>
1654 struct ints_for
1655 {
1656 static int zero (const T &) { return 0; }
1657 };
1658
1659 template<typename T>
1660 struct ints_for<T, VAR_PRECISION>
1661 {
1662 static hwi_with_prec zero (const T &);
1663 };
1664}
1665
1666template<typename T>
1667inline wi::hwi_with_prec
1668wi::ints_for<T, wi::VAR_PRECISION>::zero (const T &x)
1669{
1670 return wi::zero (wi::get_precision (x));
1671}
1672
807e902e
KZ
1673namespace wi
1674{
1675 template <>
1676 struct int_traits <wi::hwi_with_prec>
1677 {
1678 static const enum precision_type precision_type = VAR_PRECISION;
1679 /* hwi_with_prec has an explicitly-given precision, rather than the
1680 precision of HOST_WIDE_INT. */
1681 static const bool host_dependent_precision = false;
1682 static const bool is_sign_extended = true;
1683 static unsigned int get_precision (const wi::hwi_with_prec &);
1684 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1685 const wi::hwi_with_prec &);
1686 };
1687}
1688
1689inline unsigned int
1690wi::int_traits <wi::hwi_with_prec>::get_precision (const wi::hwi_with_prec &x)
1691{
1692 return x.precision;
1693}
1694
1695inline wi::storage_ref
1696wi::int_traits <wi::hwi_with_prec>::
1697decompose (HOST_WIDE_INT *scratch, unsigned int precision,
1698 const wi::hwi_with_prec &x)
1699{
1700 gcc_checking_assert (precision == x.precision);
1701 scratch[0] = x.val;
1702 if (x.sgn == SIGNED || x.val >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
1703 return wi::storage_ref (scratch, 1, precision);
1704 scratch[1] = 0;
1705 return wi::storage_ref (scratch, 2, precision);
1706}
1707
1708/* Private functions for handling large cases out of line. They take
1709 individual length and array parameters because that is cheaper for
1710 the inline caller than constructing an object on the stack and
1711 passing a reference to it. (Although many callers use wide_int_refs,
1712 we generally want those to be removed by SRA.) */
1713namespace wi
1714{
1715 bool eq_p_large (const HOST_WIDE_INT *, unsigned int,
1716 const HOST_WIDE_INT *, unsigned int, unsigned int);
1717 bool lts_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1718 const HOST_WIDE_INT *, unsigned int);
1719 bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1720 const HOST_WIDE_INT *, unsigned int);
1721 int cmps_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1722 const HOST_WIDE_INT *, unsigned int);
1723 int cmpu_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1724 const HOST_WIDE_INT *, unsigned int);
1725 unsigned int sext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1726 unsigned int,
1727 unsigned int, unsigned int);
1728 unsigned int zext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1729 unsigned int,
1730 unsigned int, unsigned int);
1731 unsigned int set_bit_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1732 unsigned int, unsigned int, unsigned int);
1733 unsigned int lshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1734 unsigned int, unsigned int, unsigned int);
1735 unsigned int lrshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1736 unsigned int, unsigned int, unsigned int,
1737 unsigned int);
1738 unsigned int arshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1739 unsigned int, unsigned int, unsigned int,
1740 unsigned int);
1741 unsigned int and_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1742 const HOST_WIDE_INT *, unsigned int, unsigned int);
1743 unsigned int and_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1744 unsigned int, const HOST_WIDE_INT *,
1745 unsigned int, unsigned int);
1746 unsigned int or_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1747 const HOST_WIDE_INT *, unsigned int, unsigned int);
1748 unsigned int or_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1749 unsigned int, const HOST_WIDE_INT *,
1750 unsigned int, unsigned int);
1751 unsigned int xor_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1752 const HOST_WIDE_INT *, unsigned int, unsigned int);
1753 unsigned int add_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1754 const HOST_WIDE_INT *, unsigned int, unsigned int,
4a669ac3 1755 signop, overflow_type *);
807e902e
KZ
1756 unsigned int sub_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1757 const HOST_WIDE_INT *, unsigned int, unsigned int,
4a669ac3 1758 signop, overflow_type *);
807e902e
KZ
1759 unsigned int mul_internal (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1760 unsigned int, const HOST_WIDE_INT *,
4a669ac3
AH
1761 unsigned int, unsigned int, signop,
1762 overflow_type *, bool);
807e902e
KZ
1763 unsigned int divmod_internal (HOST_WIDE_INT *, unsigned int *,
1764 HOST_WIDE_INT *, const HOST_WIDE_INT *,
1765 unsigned int, unsigned int,
1766 const HOST_WIDE_INT *,
1767 unsigned int, unsigned int,
4a669ac3 1768 signop, overflow_type *);
807e902e
KZ
1769}
1770
1771/* Return the number of bits that integer X can hold. */
1772template <typename T>
1773inline unsigned int
1774wi::get_precision (const T &x)
1775{
1776 return wi::int_traits <T>::get_precision (x);
1777}
1778
1779/* Return the number of bits that the result of a binary operation can
1780 hold when the input operands are X and Y. */
1781template <typename T1, typename T2>
1782inline unsigned int
1783wi::get_binary_precision (const T1 &x, const T2 &y)
1784{
1785 return get_precision (wi::int_traits <WI_BINARY_RESULT (T1, T2)>::
1786 get_binary_result (x, y));
1787}
1788
1789/* Copy the contents of Y to X, but keeping X's current precision. */
1790template <typename T1, typename T2>
1791inline void
1792wi::copy (T1 &x, const T2 &y)
1793{
1794 HOST_WIDE_INT *xval = x.write_val ();
1795 const HOST_WIDE_INT *yval = y.get_val ();
1796 unsigned int len = y.get_len ();
1797 unsigned int i = 0;
1798 do
1799 xval[i] = yval[i];
1800 while (++i < len);
1801 x.set_len (len, y.is_sign_extended);
1802}
1803
1804/* Return true if X fits in a HOST_WIDE_INT with no loss of precision. */
1805template <typename T>
1806inline bool
1807wi::fits_shwi_p (const T &x)
1808{
1809 WIDE_INT_REF_FOR (T) xi (x);
1810 return xi.len == 1;
1811}
1812
1813/* Return true if X fits in an unsigned HOST_WIDE_INT with no loss of
1814 precision. */
1815template <typename T>
1816inline bool
1817wi::fits_uhwi_p (const T &x)
1818{
1819 WIDE_INT_REF_FOR (T) xi (x);
1820 if (xi.precision <= HOST_BITS_PER_WIDE_INT)
1821 return true;
1822 if (xi.len == 1)
1823 return xi.slow () >= 0;
1824 return xi.len == 2 && xi.uhigh () == 0;
1825}
1826
1827/* Return true if X is negative based on the interpretation of SGN.
1828 For UNSIGNED, this is always false. */
1829template <typename T>
1830inline bool
1831wi::neg_p (const T &x, signop sgn)
1832{
1833 WIDE_INT_REF_FOR (T) xi (x);
1834 if (sgn == UNSIGNED)
1835 return false;
1836 return xi.sign_mask () < 0;
1837}
1838
1839/* Return -1 if the top bit of X is set and 0 if the top bit is clear. */
1840template <typename T>
1841inline HOST_WIDE_INT
1842wi::sign_mask (const T &x)
1843{
1844 WIDE_INT_REF_FOR (T) xi (x);
1845 return xi.sign_mask ();
1846}
1847
1848/* Return true if X == Y. X and Y must be binary-compatible. */
1849template <typename T1, typename T2>
1850inline bool
1851wi::eq_p (const T1 &x, const T2 &y)
1852{
1853 unsigned int precision = get_binary_precision (x, y);
1854 WIDE_INT_REF_FOR (T1) xi (x, precision);
1855 WIDE_INT_REF_FOR (T2) yi (y, precision);
1856 if (xi.is_sign_extended && yi.is_sign_extended)
1857 {
1858 /* This case reduces to array equality. */
1859 if (xi.len != yi.len)
1860 return false;
1861 unsigned int i = 0;
1862 do
1863 if (xi.val[i] != yi.val[i])
1864 return false;
1865 while (++i != xi.len);
1866 return true;
1867 }
1868 if (__builtin_expect (yi.len == 1, true))
1869 {
1870 /* XI is only equal to YI if it too has a single HWI. */
1871 if (xi.len != 1)
1872 return false;
1873 /* Excess bits in xi.val[0] will be signs or zeros, so comparisons
1874 with 0 are simple. */
1875 if (STATIC_CONSTANT_P (yi.val[0] == 0))
1876 return xi.val[0] == 0;
1877 /* Otherwise flush out any excess bits first. */
1878 unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0];
1879 int excess = HOST_BITS_PER_WIDE_INT - precision;
1880 if (excess > 0)
1881 diff <<= excess;
1882 return diff == 0;
1883 }
1884 return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision);
1885}
1886
1887/* Return true if X != Y. X and Y must be binary-compatible. */
1888template <typename T1, typename T2>
1889inline bool
1890wi::ne_p (const T1 &x, const T2 &y)
1891{
1892 return !eq_p (x, y);
1893}
1894
1895/* Return true if X < Y when both are treated as signed values. */
1896template <typename T1, typename T2>
1897inline bool
1898wi::lts_p (const T1 &x, const T2 &y)
1899{
1900 unsigned int precision = get_binary_precision (x, y);
1901 WIDE_INT_REF_FOR (T1) xi (x, precision);
1902 WIDE_INT_REF_FOR (T2) yi (y, precision);
1903 /* We optimize x < y, where y is 64 or fewer bits. */
1904 if (wi::fits_shwi_p (yi))
1905 {
1906 /* Make lts_p (x, 0) as efficient as wi::neg_p (x). */
1907 if (STATIC_CONSTANT_P (yi.val[0] == 0))
1908 return neg_p (xi);
1909 /* If x fits directly into a shwi, we can compare directly. */
1910 if (wi::fits_shwi_p (xi))
1911 return xi.to_shwi () < yi.to_shwi ();
1912 /* If x doesn't fit and is negative, then it must be more
1913 negative than any value in y, and hence smaller than y. */
1914 if (neg_p (xi))
1915 return true;
1916 /* If x is positive, then it must be larger than any value in y,
1917 and hence greater than y. */
1918 return false;
1919 }
1920 /* Optimize the opposite case, if it can be detected at compile time. */
1921 if (STATIC_CONSTANT_P (xi.len == 1))
1922 /* If YI is negative it is lower than the least HWI.
1923 If YI is positive it is greater than the greatest HWI. */
1924 return !neg_p (yi);
1925 return lts_p_large (xi.val, xi.len, precision, yi.val, yi.len);
1926}
1927
1928/* Return true if X < Y when both are treated as unsigned values. */
1929template <typename T1, typename T2>
1930inline bool
1931wi::ltu_p (const T1 &x, const T2 &y)
1932{
1933 unsigned int precision = get_binary_precision (x, y);
1934 WIDE_INT_REF_FOR (T1) xi (x, precision);
1935 WIDE_INT_REF_FOR (T2) yi (y, precision);
1936 /* Optimize comparisons with constants. */
1937 if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
1938 return xi.len == 1 && xi.to_uhwi () < (unsigned HOST_WIDE_INT) yi.val[0];
1939 if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
1940 return yi.len != 1 || yi.to_uhwi () > (unsigned HOST_WIDE_INT) xi.val[0];
1941 /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
1942 for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
1943 values does not change the result. */
1944 if (__builtin_expect (xi.len + yi.len == 2, true))
1945 {
1946 unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
1947 unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
1948 return xl < yl;
1949 }
1950 return ltu_p_large (xi.val, xi.len, precision, yi.val, yi.len);
1951}
1952
1953/* Return true if X < Y. Signedness of X and Y is indicated by SGN. */
1954template <typename T1, typename T2>
1955inline bool
1956wi::lt_p (const T1 &x, const T2 &y, signop sgn)
1957{
1958 if (sgn == SIGNED)
1959 return lts_p (x, y);
1960 else
1961 return ltu_p (x, y);
1962}
1963
1964/* Return true if X <= Y when both are treated as signed values. */
1965template <typename T1, typename T2>
1966inline bool
1967wi::les_p (const T1 &x, const T2 &y)
1968{
1969 return !lts_p (y, x);
1970}
1971
1972/* Return true if X <= Y when both are treated as unsigned values. */
1973template <typename T1, typename T2>
1974inline bool
1975wi::leu_p (const T1 &x, const T2 &y)
1976{
1977 return !ltu_p (y, x);
1978}
1979
1980/* Return true if X <= Y. Signedness of X and Y is indicated by SGN. */
1981template <typename T1, typename T2>
1982inline bool
1983wi::le_p (const T1 &x, const T2 &y, signop sgn)
1984{
1985 if (sgn == SIGNED)
1986 return les_p (x, y);
1987 else
1988 return leu_p (x, y);
1989}
1990
1991/* Return true if X > Y when both are treated as signed values. */
1992template <typename T1, typename T2>
1993inline bool
1994wi::gts_p (const T1 &x, const T2 &y)
1995{
1996 return lts_p (y, x);
1997}
1998
1999/* Return true if X > Y when both are treated as unsigned values. */
2000template <typename T1, typename T2>
2001inline bool
2002wi::gtu_p (const T1 &x, const T2 &y)
2003{
2004 return ltu_p (y, x);
2005}
2006
2007/* Return true if X > Y. Signedness of X and Y is indicated by SGN. */
2008template <typename T1, typename T2>
2009inline bool
2010wi::gt_p (const T1 &x, const T2 &y, signop sgn)
2011{
2012 if (sgn == SIGNED)
2013 return gts_p (x, y);
2014 else
2015 return gtu_p (x, y);
2016}
2017
2018/* Return true if X >= Y when both are treated as signed values. */
2019template <typename T1, typename T2>
2020inline bool
2021wi::ges_p (const T1 &x, const T2 &y)
2022{
2023 return !lts_p (x, y);
2024}
2025
2026/* Return true if X >= Y when both are treated as unsigned values. */
2027template <typename T1, typename T2>
2028inline bool
2029wi::geu_p (const T1 &x, const T2 &y)
2030{
2031 return !ltu_p (x, y);
2032}
2033
2034/* Return true if X >= Y. Signedness of X and Y is indicated by SGN. */
2035template <typename T1, typename T2>
2036inline bool
2037wi::ge_p (const T1 &x, const T2 &y, signop sgn)
2038{
2039 if (sgn == SIGNED)
2040 return ges_p (x, y);
2041 else
2042 return geu_p (x, y);
2043}
2044
2045/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
2046 as signed values. */
2047template <typename T1, typename T2>
2048inline int
2049wi::cmps (const T1 &x, const T2 &y)
2050{
2051 unsigned int precision = get_binary_precision (x, y);
2052 WIDE_INT_REF_FOR (T1) xi (x, precision);
2053 WIDE_INT_REF_FOR (T2) yi (y, precision);
2054 if (wi::fits_shwi_p (yi))
2055 {
2056 /* Special case for comparisons with 0. */
2057 if (STATIC_CONSTANT_P (yi.val[0] == 0))
2058 return neg_p (xi) ? -1 : !(xi.len == 1 && xi.val[0] == 0);
2059 /* If x fits into a signed HWI, we can compare directly. */
2060 if (wi::fits_shwi_p (xi))
2061 {
2062 HOST_WIDE_INT xl = xi.to_shwi ();
2063 HOST_WIDE_INT yl = yi.to_shwi ();
2064 return xl < yl ? -1 : xl > yl;
2065 }
2066 /* If x doesn't fit and is negative, then it must be more
2067 negative than any signed HWI, and hence smaller than y. */
2068 if (neg_p (xi))
2069 return -1;
2070 /* If x is positive, then it must be larger than any signed HWI,
2071 and hence greater than y. */
2072 return 1;
2073 }
2074 /* Optimize the opposite case, if it can be detected at compile time. */
2075 if (STATIC_CONSTANT_P (xi.len == 1))
2076 /* If YI is negative it is lower than the least HWI.
2077 If YI is positive it is greater than the greatest HWI. */
2078 return neg_p (yi) ? 1 : -1;
2079 return cmps_large (xi.val, xi.len, precision, yi.val, yi.len);
2080}
2081
2082/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
2083 as unsigned values. */
2084template <typename T1, typename T2>
2085inline int
2086wi::cmpu (const T1 &x, const T2 &y)
2087{
2088 unsigned int precision = get_binary_precision (x, y);
2089 WIDE_INT_REF_FOR (T1) xi (x, precision);
2090 WIDE_INT_REF_FOR (T2) yi (y, precision);
2091 /* Optimize comparisons with constants. */
2092 if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
2093 {
2094 /* If XI doesn't fit in a HWI then it must be larger than YI. */
2095 if (xi.len != 1)
2096 return 1;
2097 /* Otherwise compare directly. */
2098 unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
2099 unsigned HOST_WIDE_INT yl = yi.val[0];
2100 return xl < yl ? -1 : xl > yl;
2101 }
2102 if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
2103 {
2104 /* If YI doesn't fit in a HWI then it must be larger than XI. */
2105 if (yi.len != 1)
2106 return -1;
2107 /* Otherwise compare directly. */
2108 unsigned HOST_WIDE_INT xl = xi.val[0];
2109 unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
2110 return xl < yl ? -1 : xl > yl;
2111 }
2112 /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
2113 for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
2114 values does not change the result. */
2115 if (__builtin_expect (xi.len + yi.len == 2, true))
2116 {
2117 unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
2118 unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
2119 return xl < yl ? -1 : xl > yl;
2120 }
2121 return cmpu_large (xi.val, xi.len, precision, yi.val, yi.len);
2122}
2123
2124/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Signedness of
2125 X and Y indicated by SGN. */
2126template <typename T1, typename T2>
2127inline int
2128wi::cmp (const T1 &x, const T2 &y, signop sgn)
2129{
2130 if (sgn == SIGNED)
2131 return cmps (x, y);
2132 else
2133 return cmpu (x, y);
2134}
2135
2136/* Return ~x. */
2137template <typename T>
2138inline WI_UNARY_RESULT (T)
2139wi::bit_not (const T &x)
2140{
2141 WI_UNARY_RESULT_VAR (result, val, T, x);
2142 WIDE_INT_REF_FOR (T) xi (x, get_precision (result));
2143 for (unsigned int i = 0; i < xi.len; ++i)
2144 val[i] = ~xi.val[i];
2145 result.set_len (xi.len);
2146 return result;
2147}
2148
2149/* Return -x. */
2150template <typename T>
2151inline WI_UNARY_RESULT (T)
2152wi::neg (const T &x)
2153{
2154 return sub (0, x);
2155}
2156
4a669ac3
AH
2157/* Return -x. Indicate in *OVERFLOW if performing the negation would
2158 cause an overflow. */
807e902e
KZ
2159template <typename T>
2160inline WI_UNARY_RESULT (T)
4a669ac3 2161wi::neg (const T &x, overflow_type *overflow)
807e902e 2162{
4a669ac3 2163 *overflow = only_sign_bit_p (x) ? OVF_OVERFLOW : OVF_NONE;
807e902e
KZ
2164 return sub (0, x);
2165}
2166
2167/* Return the absolute value of x. */
2168template <typename T>
2169inline WI_UNARY_RESULT (T)
2170wi::abs (const T &x)
2171{
2172 return neg_p (x) ? neg (x) : WI_UNARY_RESULT (T) (x);
2173}
2174
2175/* Return the result of sign-extending the low OFFSET bits of X. */
2176template <typename T>
2177inline WI_UNARY_RESULT (T)
2178wi::sext (const T &x, unsigned int offset)
2179{
2180 WI_UNARY_RESULT_VAR (result, val, T, x);
2181 unsigned int precision = get_precision (result);
2182 WIDE_INT_REF_FOR (T) xi (x, precision);
2183
2184 if (offset <= HOST_BITS_PER_WIDE_INT)
2185 {
2186 val[0] = sext_hwi (xi.ulow (), offset);
2187 result.set_len (1, true);
2188 }
2189 else
2190 result.set_len (sext_large (val, xi.val, xi.len, precision, offset));
2191 return result;
2192}
2193
2194/* Return the result of zero-extending the low OFFSET bits of X. */
2195template <typename T>
2196inline WI_UNARY_RESULT (T)
2197wi::zext (const T &x, unsigned int offset)
2198{
2199 WI_UNARY_RESULT_VAR (result, val, T, x);
2200 unsigned int precision = get_precision (result);
2201 WIDE_INT_REF_FOR (T) xi (x, precision);
2202
2203 /* This is not just an optimization, it is actually required to
2204 maintain canonization. */
2205 if (offset >= precision)
2206 {
2207 wi::copy (result, xi);
2208 return result;
2209 }
2210
2211 /* In these cases we know that at least the top bit will be clear,
2212 so no sign extension is necessary. */
2213 if (offset < HOST_BITS_PER_WIDE_INT)
2214 {
2215 val[0] = zext_hwi (xi.ulow (), offset);
2216 result.set_len (1, true);
2217 }
2218 else
2219 result.set_len (zext_large (val, xi.val, xi.len, precision, offset), true);
2220 return result;
2221}
2222
2223/* Return the result of extending the low OFFSET bits of X according to
2224 signedness SGN. */
2225template <typename T>
2226inline WI_UNARY_RESULT (T)
2227wi::ext (const T &x, unsigned int offset, signop sgn)
2228{
2229 return sgn == SIGNED ? sext (x, offset) : zext (x, offset);
2230}
2231
2232/* Return an integer that represents X | (1 << bit). */
2233template <typename T>
2234inline WI_UNARY_RESULT (T)
2235wi::set_bit (const T &x, unsigned int bit)
2236{
2237 WI_UNARY_RESULT_VAR (result, val, T, x);
2238 unsigned int precision = get_precision (result);
2239 WIDE_INT_REF_FOR (T) xi (x, precision);
2240 if (precision <= HOST_BITS_PER_WIDE_INT)
2241 {
fecfbfa4 2242 val[0] = xi.ulow () | (HOST_WIDE_INT_1U << bit);
807e902e
KZ
2243 result.set_len (1);
2244 }
2245 else
2246 result.set_len (set_bit_large (val, xi.val, xi.len, precision, bit));
2247 return result;
2248}
2249
2250/* Return the mininum of X and Y, treating them both as having
2251 signedness SGN. */
2252template <typename T1, typename T2>
2253inline WI_BINARY_RESULT (T1, T2)
2254wi::min (const T1 &x, const T2 &y, signop sgn)
2255{
2256 WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
2257 unsigned int precision = get_precision (result);
2258 if (wi::le_p (x, y, sgn))
2259 wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
2260 else
2261 wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
2262 return result;
2263}
2264
2265/* Return the minimum of X and Y, treating both as signed values. */
2266template <typename T1, typename T2>
2267inline WI_BINARY_RESULT (T1, T2)
2268wi::smin (const T1 &x, const T2 &y)
2269{
33c430b5 2270 return wi::min (x, y, SIGNED);
807e902e
KZ
2271}
2272
2273/* Return the minimum of X and Y, treating both as unsigned values. */
2274template <typename T1, typename T2>
2275inline WI_BINARY_RESULT (T1, T2)
2276wi::umin (const T1 &x, const T2 &y)
2277{
33c430b5 2278 return wi::min (x, y, UNSIGNED);
807e902e
KZ
2279}
2280
2281/* Return the maxinum of X and Y, treating them both as having
2282 signedness SGN. */
2283template <typename T1, typename T2>
2284inline WI_BINARY_RESULT (T1, T2)
2285wi::max (const T1 &x, const T2 &y, signop sgn)
2286{
2287 WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
2288 unsigned int precision = get_precision (result);
2289 if (wi::ge_p (x, y, sgn))
2290 wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
2291 else
2292 wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
2293 return result;
2294}
2295
2296/* Return the maximum of X and Y, treating both as signed values. */
2297template <typename T1, typename T2>
2298inline WI_BINARY_RESULT (T1, T2)
2299wi::smax (const T1 &x, const T2 &y)
2300{
33c430b5 2301 return wi::max (x, y, SIGNED);
807e902e
KZ
2302}
2303
2304/* Return the maximum of X and Y, treating both as unsigned values. */
2305template <typename T1, typename T2>
2306inline WI_BINARY_RESULT (T1, T2)
2307wi::umax (const T1 &x, const T2 &y)
2308{
33c430b5 2309 return wi::max (x, y, UNSIGNED);
807e902e
KZ
2310}
2311
2312/* Return X & Y. */
2313template <typename T1, typename T2>
2314inline WI_BINARY_RESULT (T1, T2)
2315wi::bit_and (const T1 &x, const T2 &y)
2316{
2317 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2318 unsigned int precision = get_precision (result);
2319 WIDE_INT_REF_FOR (T1) xi (x, precision);
2320 WIDE_INT_REF_FOR (T2) yi (y, precision);
2321 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2322 if (__builtin_expect (xi.len + yi.len == 2, true))
2323 {
2324 val[0] = xi.ulow () & yi.ulow ();
2325 result.set_len (1, is_sign_extended);
2326 }
2327 else
2328 result.set_len (and_large (val, xi.val, xi.len, yi.val, yi.len,
2329 precision), is_sign_extended);
2330 return result;
2331}
2332
2333/* Return X & ~Y. */
2334template <typename T1, typename T2>
2335inline WI_BINARY_RESULT (T1, T2)
2336wi::bit_and_not (const T1 &x, const T2 &y)
2337{
2338 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2339 unsigned int precision = get_precision (result);
2340 WIDE_INT_REF_FOR (T1) xi (x, precision);
2341 WIDE_INT_REF_FOR (T2) yi (y, precision);
2342 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2343 if (__builtin_expect (xi.len + yi.len == 2, true))
2344 {
2345 val[0] = xi.ulow () & ~yi.ulow ();
2346 result.set_len (1, is_sign_extended);
2347 }
2348 else
2349 result.set_len (and_not_large (val, xi.val, xi.len, yi.val, yi.len,
2350 precision), is_sign_extended);
2351 return result;
2352}
2353
2354/* Return X | Y. */
2355template <typename T1, typename T2>
2356inline WI_BINARY_RESULT (T1, T2)
2357wi::bit_or (const T1 &x, const T2 &y)
2358{
2359 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2360 unsigned int precision = get_precision (result);
2361 WIDE_INT_REF_FOR (T1) xi (x, precision);
2362 WIDE_INT_REF_FOR (T2) yi (y, precision);
2363 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2364 if (__builtin_expect (xi.len + yi.len == 2, true))
2365 {
2366 val[0] = xi.ulow () | yi.ulow ();
2367 result.set_len (1, is_sign_extended);
2368 }
2369 else
2370 result.set_len (or_large (val, xi.val, xi.len,
2371 yi.val, yi.len, precision), is_sign_extended);
2372 return result;
2373}
2374
2375/* Return X | ~Y. */
2376template <typename T1, typename T2>
2377inline WI_BINARY_RESULT (T1, T2)
2378wi::bit_or_not (const T1 &x, const T2 &y)
2379{
2380 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2381 unsigned int precision = get_precision (result);
2382 WIDE_INT_REF_FOR (T1) xi (x, precision);
2383 WIDE_INT_REF_FOR (T2) yi (y, precision);
2384 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2385 if (__builtin_expect (xi.len + yi.len == 2, true))
2386 {
2387 val[0] = xi.ulow () | ~yi.ulow ();
2388 result.set_len (1, is_sign_extended);
2389 }
2390 else
2391 result.set_len (or_not_large (val, xi.val, xi.len, yi.val, yi.len,
2392 precision), is_sign_extended);
2393 return result;
2394}
2395
2396/* Return X ^ Y. */
2397template <typename T1, typename T2>
2398inline WI_BINARY_RESULT (T1, T2)
2399wi::bit_xor (const T1 &x, const T2 &y)
2400{
2401 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2402 unsigned int precision = get_precision (result);
2403 WIDE_INT_REF_FOR (T1) xi (x, precision);
2404 WIDE_INT_REF_FOR (T2) yi (y, precision);
2405 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2406 if (__builtin_expect (xi.len + yi.len == 2, true))
2407 {
2408 val[0] = xi.ulow () ^ yi.ulow ();
2409 result.set_len (1, is_sign_extended);
2410 }
2411 else
2412 result.set_len (xor_large (val, xi.val, xi.len,
2413 yi.val, yi.len, precision), is_sign_extended);
2414 return result;
2415}
2416
2417/* Return X + Y. */
2418template <typename T1, typename T2>
2419inline WI_BINARY_RESULT (T1, T2)
2420wi::add (const T1 &x, const T2 &y)
2421{
2422 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2423 unsigned int precision = get_precision (result);
2424 WIDE_INT_REF_FOR (T1) xi (x, precision);
2425 WIDE_INT_REF_FOR (T2) yi (y, precision);
2426 if (precision <= HOST_BITS_PER_WIDE_INT)
2427 {
2428 val[0] = xi.ulow () + yi.ulow ();
2429 result.set_len (1);
2430 }
2431 /* If the precision is known at compile time to be greater than
2432 HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
2433 knowing that (a) all bits in those HWIs are significant and
2434 (b) the result has room for at least two HWIs. This provides
2435 a fast path for things like offset_int and widest_int.
2436
2437 The STATIC_CONSTANT_P test prevents this path from being
2438 used for wide_ints. wide_ints with precisions greater than
2439 HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
2440 point handling them inline. */
2441 else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
2442 && __builtin_expect (xi.len + yi.len == 2, true))
2443 {
2444 unsigned HOST_WIDE_INT xl = xi.ulow ();
2445 unsigned HOST_WIDE_INT yl = yi.ulow ();
2446 unsigned HOST_WIDE_INT resultl = xl + yl;
2447 val[0] = resultl;
2448 val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
2449 result.set_len (1 + (((resultl ^ xl) & (resultl ^ yl))
2450 >> (HOST_BITS_PER_WIDE_INT - 1)));
2451 }
2452 else
2453 result.set_len (add_large (val, xi.val, xi.len,
2454 yi.val, yi.len, precision,
2455 UNSIGNED, 0));
2456 return result;
2457}
2458
2459/* Return X + Y. Treat X and Y as having the signednes given by SGN
2460 and indicate in *OVERFLOW whether the operation overflowed. */
2461template <typename T1, typename T2>
2462inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2463wi::add (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2464{
2465 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2466 unsigned int precision = get_precision (result);
2467 WIDE_INT_REF_FOR (T1) xi (x, precision);
2468 WIDE_INT_REF_FOR (T2) yi (y, precision);
2469 if (precision <= HOST_BITS_PER_WIDE_INT)
2470 {
2471 unsigned HOST_WIDE_INT xl = xi.ulow ();
2472 unsigned HOST_WIDE_INT yl = yi.ulow ();
2473 unsigned HOST_WIDE_INT resultl = xl + yl;
2474 if (sgn == SIGNED)
4a669ac3
AH
2475 {
2476 if ((((resultl ^ xl) & (resultl ^ yl))
2477 >> (precision - 1)) & 1)
2478 {
2479 if (xl > resultl)
2480 *overflow = OVF_UNDERFLOW;
2481 else if (xl < resultl)
2482 *overflow = OVF_OVERFLOW;
2483 else
2484 *overflow = OVF_NONE;
2485 }
2486 else
2487 *overflow = OVF_NONE;
2488 }
807e902e
KZ
2489 else
2490 *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
4a669ac3
AH
2491 < (xl << (HOST_BITS_PER_WIDE_INT - precision)))
2492 ? OVF_OVERFLOW : OVF_NONE;
807e902e
KZ
2493 val[0] = resultl;
2494 result.set_len (1);
2495 }
2496 else
2497 result.set_len (add_large (val, xi.val, xi.len,
2498 yi.val, yi.len, precision,
2499 sgn, overflow));
2500 return result;
2501}
2502
2503/* Return X - Y. */
2504template <typename T1, typename T2>
2505inline WI_BINARY_RESULT (T1, T2)
2506wi::sub (const T1 &x, const T2 &y)
2507{
2508 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2509 unsigned int precision = get_precision (result);
2510 WIDE_INT_REF_FOR (T1) xi (x, precision);
2511 WIDE_INT_REF_FOR (T2) yi (y, precision);
2512 if (precision <= HOST_BITS_PER_WIDE_INT)
2513 {
2514 val[0] = xi.ulow () - yi.ulow ();
2515 result.set_len (1);
2516 }
2517 /* If the precision is known at compile time to be greater than
2518 HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
2519 knowing that (a) all bits in those HWIs are significant and
2520 (b) the result has room for at least two HWIs. This provides
2521 a fast path for things like offset_int and widest_int.
2522
2523 The STATIC_CONSTANT_P test prevents this path from being
2524 used for wide_ints. wide_ints with precisions greater than
2525 HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
2526 point handling them inline. */
2527 else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
2528 && __builtin_expect (xi.len + yi.len == 2, true))
2529 {
2530 unsigned HOST_WIDE_INT xl = xi.ulow ();
2531 unsigned HOST_WIDE_INT yl = yi.ulow ();
2532 unsigned HOST_WIDE_INT resultl = xl - yl;
2533 val[0] = resultl;
2534 val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
2535 result.set_len (1 + (((resultl ^ xl) & (xl ^ yl))
2536 >> (HOST_BITS_PER_WIDE_INT - 1)));
2537 }
2538 else
2539 result.set_len (sub_large (val, xi.val, xi.len,
2540 yi.val, yi.len, precision,
2541 UNSIGNED, 0));
2542 return result;
2543}
2544
2545/* Return X - Y. Treat X and Y as having the signednes given by SGN
2546 and indicate in *OVERFLOW whether the operation overflowed. */
2547template <typename T1, typename T2>
2548inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2549wi::sub (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2550{
2551 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2552 unsigned int precision = get_precision (result);
2553 WIDE_INT_REF_FOR (T1) xi (x, precision);
2554 WIDE_INT_REF_FOR (T2) yi (y, precision);
2555 if (precision <= HOST_BITS_PER_WIDE_INT)
2556 {
2557 unsigned HOST_WIDE_INT xl = xi.ulow ();
2558 unsigned HOST_WIDE_INT yl = yi.ulow ();
2559 unsigned HOST_WIDE_INT resultl = xl - yl;
2560 if (sgn == SIGNED)
4a669ac3
AH
2561 {
2562 if ((((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1)
2563 {
2564 if (xl > yl)
2565 *overflow = OVF_UNDERFLOW;
2566 else if (xl < yl)
2567 *overflow = OVF_OVERFLOW;
2568 else
2569 *overflow = OVF_NONE;
2570 }
2571 else
2572 *overflow = OVF_NONE;
2573 }
807e902e
KZ
2574 else
2575 *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
4a669ac3
AH
2576 > (xl << (HOST_BITS_PER_WIDE_INT - precision)))
2577 ? OVF_UNDERFLOW : OVF_NONE;
807e902e
KZ
2578 val[0] = resultl;
2579 result.set_len (1);
2580 }
2581 else
2582 result.set_len (sub_large (val, xi.val, xi.len,
2583 yi.val, yi.len, precision,
2584 sgn, overflow));
2585 return result;
2586}
2587
2588/* Return X * Y. */
2589template <typename T1, typename T2>
2590inline WI_BINARY_RESULT (T1, T2)
2591wi::mul (const T1 &x, const T2 &y)
2592{
2593 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2594 unsigned int precision = get_precision (result);
2595 WIDE_INT_REF_FOR (T1) xi (x, precision);
2596 WIDE_INT_REF_FOR (T2) yi (y, precision);
2597 if (precision <= HOST_BITS_PER_WIDE_INT)
2598 {
2599 val[0] = xi.ulow () * yi.ulow ();
2600 result.set_len (1);
2601 }
2602 else
2603 result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len,
2604 precision, UNSIGNED, 0, false));
2605 return result;
2606}
2607
2608/* Return X * Y. Treat X and Y as having the signednes given by SGN
2609 and indicate in *OVERFLOW whether the operation overflowed. */
2610template <typename T1, typename T2>
2611inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2612wi::mul (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2613{
2614 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2615 unsigned int precision = get_precision (result);
2616 WIDE_INT_REF_FOR (T1) xi (x, precision);
2617 WIDE_INT_REF_FOR (T2) yi (y, precision);
2618 result.set_len (mul_internal (val, xi.val, xi.len,
2619 yi.val, yi.len, precision,
2620 sgn, overflow, false));
2621 return result;
2622}
2623
2624/* Return X * Y, treating both X and Y as signed values. Indicate in
2625 *OVERFLOW whether the operation overflowed. */
2626template <typename T1, typename T2>
2627inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2628wi::smul (const T1 &x, const T2 &y, overflow_type *overflow)
807e902e
KZ
2629{
2630 return mul (x, y, SIGNED, overflow);
2631}
2632
2633/* Return X * Y, treating both X and Y as unsigned values. Indicate in
4a669ac3 2634 *OVERFLOW if the result overflows. */
807e902e
KZ
2635template <typename T1, typename T2>
2636inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2637wi::umul (const T1 &x, const T2 &y, overflow_type *overflow)
807e902e
KZ
2638{
2639 return mul (x, y, UNSIGNED, overflow);
2640}
2641
2642/* Perform a widening multiplication of X and Y, extending the values
2643 according to SGN, and return the high part of the result. */
2644template <typename T1, typename T2>
2645inline WI_BINARY_RESULT (T1, T2)
2646wi::mul_high (const T1 &x, const T2 &y, signop sgn)
2647{
2648 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2649 unsigned int precision = get_precision (result);
2650 WIDE_INT_REF_FOR (T1) xi (x, precision);
2651 WIDE_INT_REF_FOR (T2) yi (y, precision);
2652 result.set_len (mul_internal (val, xi.val, xi.len,
2653 yi.val, yi.len, precision,
2654 sgn, 0, true));
2655 return result;
2656}
2657
2658/* Return X / Y, rouding towards 0. Treat X and Y as having the
2659 signedness given by SGN. Indicate in *OVERFLOW if the result
2660 overflows. */
2661template <typename T1, typename T2>
2662inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2663wi::div_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2664{
2665 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2666 unsigned int precision = get_precision (quotient);
2667 WIDE_INT_REF_FOR (T1) xi (x, precision);
2668 WIDE_INT_REF_FOR (T2) yi (y);
2669
2670 quotient.set_len (divmod_internal (quotient_val, 0, 0, xi.val, xi.len,
2671 precision,
2672 yi.val, yi.len, yi.precision,
2673 sgn, overflow));
2674 return quotient;
2675}
2676
2677/* Return X / Y, rouding towards 0. Treat X and Y as signed values. */
2678template <typename T1, typename T2>
2679inline WI_BINARY_RESULT (T1, T2)
2680wi::sdiv_trunc (const T1 &x, const T2 &y)
2681{
2682 return div_trunc (x, y, SIGNED);
2683}
2684
2685/* Return X / Y, rouding towards 0. Treat X and Y as unsigned values. */
2686template <typename T1, typename T2>
2687inline WI_BINARY_RESULT (T1, T2)
2688wi::udiv_trunc (const T1 &x, const T2 &y)
2689{
2690 return div_trunc (x, y, UNSIGNED);
2691}
2692
2693/* Return X / Y, rouding towards -inf. Treat X and Y as having the
2694 signedness given by SGN. Indicate in *OVERFLOW if the result
2695 overflows. */
2696template <typename T1, typename T2>
2697inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2698wi::div_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2699{
2700 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2701 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2702 unsigned int precision = get_precision (quotient);
2703 WIDE_INT_REF_FOR (T1) xi (x, precision);
2704 WIDE_INT_REF_FOR (T2) yi (y);
2705
2706 unsigned int remainder_len;
2707 quotient.set_len (divmod_internal (quotient_val,
2708 &remainder_len, remainder_val,
2709 xi.val, xi.len, precision,
2710 yi.val, yi.len, yi.precision, sgn,
2711 overflow));
2712 remainder.set_len (remainder_len);
2713 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
2714 return quotient - 1;
2715 return quotient;
2716}
2717
2718/* Return X / Y, rouding towards -inf. Treat X and Y as signed values. */
2719template <typename T1, typename T2>
2720inline WI_BINARY_RESULT (T1, T2)
2721wi::sdiv_floor (const T1 &x, const T2 &y)
2722{
2723 return div_floor (x, y, SIGNED);
2724}
2725
2726/* Return X / Y, rouding towards -inf. Treat X and Y as unsigned values. */
2727/* ??? Why do we have both this and udiv_trunc. Aren't they the same? */
2728template <typename T1, typename T2>
2729inline WI_BINARY_RESULT (T1, T2)
2730wi::udiv_floor (const T1 &x, const T2 &y)
2731{
2732 return div_floor (x, y, UNSIGNED);
2733}
2734
2735/* Return X / Y, rouding towards +inf. Treat X and Y as having the
2736 signedness given by SGN. Indicate in *OVERFLOW if the result
2737 overflows. */
2738template <typename T1, typename T2>
2739inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2740wi::div_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2741{
2742 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2743 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2744 unsigned int precision = get_precision (quotient);
2745 WIDE_INT_REF_FOR (T1) xi (x, precision);
2746 WIDE_INT_REF_FOR (T2) yi (y);
2747
2748 unsigned int remainder_len;
2749 quotient.set_len (divmod_internal (quotient_val,
2750 &remainder_len, remainder_val,
2751 xi.val, xi.len, precision,
2752 yi.val, yi.len, yi.precision, sgn,
2753 overflow));
2754 remainder.set_len (remainder_len);
2755 if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
2756 return quotient + 1;
2757 return quotient;
2758}
2759
7cfb4d93
RS
2760/* Return X / Y, rouding towards +inf. Treat X and Y as unsigned values. */
2761template <typename T1, typename T2>
2762inline WI_BINARY_RESULT (T1, T2)
2763wi::udiv_ceil (const T1 &x, const T2 &y)
2764{
2765 return div_ceil (x, y, UNSIGNED);
2766}
2767
807e902e
KZ
2768/* Return X / Y, rouding towards nearest with ties away from zero.
2769 Treat X and Y as having the signedness given by SGN. Indicate
2770 in *OVERFLOW if the result overflows. */
2771template <typename T1, typename T2>
2772inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2773wi::div_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2774{
2775 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2776 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2777 unsigned int precision = get_precision (quotient);
2778 WIDE_INT_REF_FOR (T1) xi (x, precision);
2779 WIDE_INT_REF_FOR (T2) yi (y);
2780
2781 unsigned int remainder_len;
2782 quotient.set_len (divmod_internal (quotient_val,
2783 &remainder_len, remainder_val,
2784 xi.val, xi.len, precision,
2785 yi.val, yi.len, yi.precision, sgn,
2786 overflow));
2787 remainder.set_len (remainder_len);
2788
2789 if (remainder != 0)
2790 {
2791 if (sgn == SIGNED)
2792 {
4db4954f
RS
2793 WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
2794 if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
807e902e
KZ
2795 {
2796 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
2797 return quotient - 1;
2798 else
2799 return quotient + 1;
2800 }
2801 }
2802 else
2803 {
4db4954f 2804 if (wi::geu_p (remainder, wi::sub (y, remainder)))
807e902e
KZ
2805 return quotient + 1;
2806 }
2807 }
2808 return quotient;
2809}
2810
2811/* Return X / Y, rouding towards 0. Treat X and Y as having the
2812 signedness given by SGN. Store the remainder in *REMAINDER_PTR. */
2813template <typename T1, typename T2>
2814inline WI_BINARY_RESULT (T1, T2)
2815wi::divmod_trunc (const T1 &x, const T2 &y, signop sgn,
2816 WI_BINARY_RESULT (T1, T2) *remainder_ptr)
2817{
2818 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2819 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2820 unsigned int precision = get_precision (quotient);
2821 WIDE_INT_REF_FOR (T1) xi (x, precision);
2822 WIDE_INT_REF_FOR (T2) yi (y);
2823
2824 unsigned int remainder_len;
2825 quotient.set_len (divmod_internal (quotient_val,
2826 &remainder_len, remainder_val,
2827 xi.val, xi.len, precision,
2828 yi.val, yi.len, yi.precision, sgn, 0));
2829 remainder.set_len (remainder_len);
2830
2831 *remainder_ptr = remainder;
2832 return quotient;
2833}
2834
d9a6bd32
JJ
2835/* Compute the greatest common divisor of two numbers A and B using
2836 Euclid's algorithm. */
2837template <typename T1, typename T2>
2838inline WI_BINARY_RESULT (T1, T2)
2839wi::gcd (const T1 &a, const T2 &b, signop sgn)
2840{
2841 T1 x, y, z;
2842
2843 x = wi::abs (a);
2844 y = wi::abs (b);
2845
2846 while (gt_p (x, 0, sgn))
2847 {
2848 z = mod_trunc (y, x, sgn);
2849 y = x;
2850 x = z;
2851 }
2852
2853 return y;
2854}
2855
807e902e
KZ
2856/* Compute X / Y, rouding towards 0, and return the remainder.
2857 Treat X and Y as having the signedness given by SGN. Indicate
2858 in *OVERFLOW if the division overflows. */
2859template <typename T1, typename T2>
2860inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2861wi::mod_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2862{
2863 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2864 unsigned int precision = get_precision (remainder);
2865 WIDE_INT_REF_FOR (T1) xi (x, precision);
2866 WIDE_INT_REF_FOR (T2) yi (y);
2867
2868 unsigned int remainder_len;
2869 divmod_internal (0, &remainder_len, remainder_val,
2870 xi.val, xi.len, precision,
2871 yi.val, yi.len, yi.precision, sgn, overflow);
2872 remainder.set_len (remainder_len);
2873
2874 return remainder;
2875}
2876
2877/* Compute X / Y, rouding towards 0, and return the remainder.
2878 Treat X and Y as signed values. */
2879template <typename T1, typename T2>
2880inline WI_BINARY_RESULT (T1, T2)
2881wi::smod_trunc (const T1 &x, const T2 &y)
2882{
2883 return mod_trunc (x, y, SIGNED);
2884}
2885
2886/* Compute X / Y, rouding towards 0, and return the remainder.
2887 Treat X and Y as unsigned values. */
2888template <typename T1, typename T2>
2889inline WI_BINARY_RESULT (T1, T2)
2890wi::umod_trunc (const T1 &x, const T2 &y)
2891{
2892 return mod_trunc (x, y, UNSIGNED);
2893}
2894
2895/* Compute X / Y, rouding towards -inf, and return the remainder.
2896 Treat X and Y as having the signedness given by SGN. Indicate
2897 in *OVERFLOW if the division overflows. */
2898template <typename T1, typename T2>
2899inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2900wi::mod_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2901{
2902 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2903 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2904 unsigned int precision = get_precision (quotient);
2905 WIDE_INT_REF_FOR (T1) xi (x, precision);
2906 WIDE_INT_REF_FOR (T2) yi (y);
2907
2908 unsigned int remainder_len;
2909 quotient.set_len (divmod_internal (quotient_val,
2910 &remainder_len, remainder_val,
2911 xi.val, xi.len, precision,
2912 yi.val, yi.len, yi.precision, sgn,
2913 overflow));
2914 remainder.set_len (remainder_len);
2915
2916 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
2917 return remainder + y;
2918 return remainder;
2919}
2920
2921/* Compute X / Y, rouding towards -inf, and return the remainder.
2922 Treat X and Y as unsigned values. */
2923/* ??? Why do we have both this and umod_trunc. Aren't they the same? */
2924template <typename T1, typename T2>
2925inline WI_BINARY_RESULT (T1, T2)
2926wi::umod_floor (const T1 &x, const T2 &y)
2927{
2928 return mod_floor (x, y, UNSIGNED);
2929}
2930
2931/* Compute X / Y, rouding towards +inf, and return the remainder.
2932 Treat X and Y as having the signedness given by SGN. Indicate
2933 in *OVERFLOW if the division overflows. */
2934template <typename T1, typename T2>
2935inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2936wi::mod_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2937{
2938 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2939 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2940 unsigned int precision = get_precision (quotient);
2941 WIDE_INT_REF_FOR (T1) xi (x, precision);
2942 WIDE_INT_REF_FOR (T2) yi (y);
2943
2944 unsigned int remainder_len;
2945 quotient.set_len (divmod_internal (quotient_val,
2946 &remainder_len, remainder_val,
2947 xi.val, xi.len, precision,
2948 yi.val, yi.len, yi.precision, sgn,
2949 overflow));
2950 remainder.set_len (remainder_len);
2951
2952 if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
2953 return remainder - y;
2954 return remainder;
2955}
2956
2957/* Compute X / Y, rouding towards nearest with ties away from zero,
2958 and return the remainder. Treat X and Y as having the signedness
2959 given by SGN. Indicate in *OVERFLOW if the division overflows. */
2960template <typename T1, typename T2>
2961inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2962wi::mod_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2963{
2964 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2965 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2966 unsigned int precision = get_precision (quotient);
2967 WIDE_INT_REF_FOR (T1) xi (x, precision);
2968 WIDE_INT_REF_FOR (T2) yi (y);
2969
2970 unsigned int remainder_len;
2971 quotient.set_len (divmod_internal (quotient_val,
2972 &remainder_len, remainder_val,
2973 xi.val, xi.len, precision,
2974 yi.val, yi.len, yi.precision, sgn,
2975 overflow));
2976 remainder.set_len (remainder_len);
2977
2978 if (remainder != 0)
2979 {
2980 if (sgn == SIGNED)
2981 {
4db4954f
RS
2982 WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
2983 if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
807e902e
KZ
2984 {
2985 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
2986 return remainder + y;
2987 else
2988 return remainder - y;
2989 }
2990 }
2991 else
2992 {
4db4954f 2993 if (wi::geu_p (remainder, wi::sub (y, remainder)))
807e902e
KZ
2994 return remainder - y;
2995 }
2996 }
2997 return remainder;
2998}
2999
7588d8aa
RS
3000/* Return true if X is a multiple of Y. Treat X and Y as having the
3001 signedness given by SGN. */
3002template <typename T1, typename T2>
3003inline bool
3004wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn)
3005{
3006 return wi::mod_trunc (x, y, sgn) == 0;
3007}
3008
807e902e
KZ
3009/* Return true if X is a multiple of Y, storing X / Y in *RES if so.
3010 Treat X and Y as having the signedness given by SGN. */
3011template <typename T1, typename T2>
3012inline bool
3013wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn,
3014 WI_BINARY_RESULT (T1, T2) *res)
3015{
3016 WI_BINARY_RESULT (T1, T2) remainder;
3017 WI_BINARY_RESULT (T1, T2) quotient
3018 = divmod_trunc (x, y, sgn, &remainder);
3019 if (remainder == 0)
3020 {
3021 *res = quotient;
3022 return true;
3023 }
3024 return false;
3025}
3026
3027/* Return X << Y. Return 0 if Y is greater than or equal to
3028 the precision of X. */
3029template <typename T1, typename T2>
3030inline WI_UNARY_RESULT (T1)
3031wi::lshift (const T1 &x, const T2 &y)
3032{
3033 WI_UNARY_RESULT_VAR (result, val, T1, x);
3034 unsigned int precision = get_precision (result);
3035 WIDE_INT_REF_FOR (T1) xi (x, precision);
3036 WIDE_INT_REF_FOR (T2) yi (y);
3037 /* Handle the simple cases quickly. */
3038 if (geu_p (yi, precision))
3039 {
3040 val[0] = 0;
3041 result.set_len (1);
3042 }
3043 else
3044 {
3045 unsigned int shift = yi.to_uhwi ();
3046 /* For fixed-precision integers like offset_int and widest_int,
3047 handle the case where the shift value is constant and the
3048 result is a single nonnegative HWI (meaning that we don't
3049 need to worry about val[1]). This is particularly common
3050 for converting a byte count to a bit count.
3051
3052 For variable-precision integers like wide_int, handle HWI
3053 and sub-HWI integers inline. */
3054 if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
3055 ? (STATIC_CONSTANT_P (shift < HOST_BITS_PER_WIDE_INT - 1)
3056 && xi.len == 1
12bb0436 3057 && IN_RANGE (xi.val[0], 0, HOST_WIDE_INT_MAX >> shift))
807e902e
KZ
3058 : precision <= HOST_BITS_PER_WIDE_INT)
3059 {
3060 val[0] = xi.ulow () << shift;
3061 result.set_len (1);
3062 }
3063 else
3064 result.set_len (lshift_large (val, xi.val, xi.len,
3065 precision, shift));
3066 }
3067 return result;
3068}
3069
3070/* Return X >> Y, using a logical shift. Return 0 if Y is greater than
3071 or equal to the precision of X. */
3072template <typename T1, typename T2>
3073inline WI_UNARY_RESULT (T1)
3074wi::lrshift (const T1 &x, const T2 &y)
3075{
3076 WI_UNARY_RESULT_VAR (result, val, T1, x);
3077 /* Do things in the precision of the input rather than the output,
3078 since the result can be no larger than that. */
3079 WIDE_INT_REF_FOR (T1) xi (x);
3080 WIDE_INT_REF_FOR (T2) yi (y);
3081 /* Handle the simple cases quickly. */
3082 if (geu_p (yi, xi.precision))
3083 {
3084 val[0] = 0;
3085 result.set_len (1);
3086 }
3087 else
3088 {
3089 unsigned int shift = yi.to_uhwi ();
3090 /* For fixed-precision integers like offset_int and widest_int,
3091 handle the case where the shift value is constant and the
3092 shifted value is a single nonnegative HWI (meaning that all
3093 bits above the HWI are zero). This is particularly common
3094 for converting a bit count to a byte count.
3095
3096 For variable-precision integers like wide_int, handle HWI
3097 and sub-HWI integers inline. */
3098 if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
b1652dde
JJ
3099 ? (shift < HOST_BITS_PER_WIDE_INT
3100 && xi.len == 1
3101 && xi.val[0] >= 0)
807e902e
KZ
3102 : xi.precision <= HOST_BITS_PER_WIDE_INT)
3103 {
3104 val[0] = xi.to_uhwi () >> shift;
3105 result.set_len (1);
3106 }
3107 else
3108 result.set_len (lrshift_large (val, xi.val, xi.len, xi.precision,
3109 get_precision (result), shift));
3110 }
3111 return result;
3112}
3113
3114/* Return X >> Y, using an arithmetic shift. Return a sign mask if
3115 Y is greater than or equal to the precision of X. */
3116template <typename T1, typename T2>
3117inline WI_UNARY_RESULT (T1)
3118wi::arshift (const T1 &x, const T2 &y)
3119{
3120 WI_UNARY_RESULT_VAR (result, val, T1, x);
3121 /* Do things in the precision of the input rather than the output,
3122 since the result can be no larger than that. */
3123 WIDE_INT_REF_FOR (T1) xi (x);
3124 WIDE_INT_REF_FOR (T2) yi (y);
3125 /* Handle the simple cases quickly. */
3126 if (geu_p (yi, xi.precision))
3127 {
3128 val[0] = sign_mask (x);
3129 result.set_len (1);
3130 }
3131 else
3132 {
3133 unsigned int shift = yi.to_uhwi ();
3134 if (xi.precision <= HOST_BITS_PER_WIDE_INT)
3135 {
3136 val[0] = sext_hwi (xi.ulow () >> shift, xi.precision - shift);
3137 result.set_len (1, true);
3138 }
3139 else
3140 result.set_len (arshift_large (val, xi.val, xi.len, xi.precision,
3141 get_precision (result), shift));
3142 }
3143 return result;
3144}
3145
3146/* Return X >> Y, using an arithmetic shift if SGN is SIGNED and a
3147 logical shift otherwise. */
3148template <typename T1, typename T2>
3149inline WI_UNARY_RESULT (T1)
3150wi::rshift (const T1 &x, const T2 &y, signop sgn)
3151{
3152 if (sgn == UNSIGNED)
3153 return lrshift (x, y);
3154 else
3155 return arshift (x, y);
3156}
3157
3158/* Return the result of rotating the low WIDTH bits of X left by Y
3159 bits and zero-extending the result. Use a full-width rotate if
3160 WIDTH is zero. */
3161template <typename T1, typename T2>
3162WI_UNARY_RESULT (T1)
3163wi::lrotate (const T1 &x, const T2 &y, unsigned int width)
3164{
3165 unsigned int precision = get_binary_precision (x, x);
3166 if (width == 0)
3167 width = precision;
3168 WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
3169 WI_UNARY_RESULT (T1) left = wi::lshift (x, ymod);
3170 WI_UNARY_RESULT (T1) right = wi::lrshift (x, wi::sub (width, ymod));
3171 if (width != precision)
3172 return wi::zext (left, width) | wi::zext (right, width);
3173 return left | right;
3174}
3175
3176/* Return the result of rotating the low WIDTH bits of X right by Y
3177 bits and zero-extending the result. Use a full-width rotate if
3178 WIDTH is zero. */
3179template <typename T1, typename T2>
3180WI_UNARY_RESULT (T1)
3181wi::rrotate (const T1 &x, const T2 &y, unsigned int width)
3182{
3183 unsigned int precision = get_binary_precision (x, x);
3184 if (width == 0)
3185 width = precision;
3186 WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
3187 WI_UNARY_RESULT (T1) right = wi::lrshift (x, ymod);
3188 WI_UNARY_RESULT (T1) left = wi::lshift (x, wi::sub (width, ymod));
3189 if (width != precision)
3190 return wi::zext (left, width) | wi::zext (right, width);
3191 return left | right;
3192}
3193
3194/* Return 0 if the number of 1s in X is even and 1 if the number of 1s
3195 is odd. */
3196inline int
3197wi::parity (const wide_int_ref &x)
3198{
3199 return popcount (x) & 1;
3200}
3201
3202/* Extract WIDTH bits from X, starting at BITPOS. */
3203template <typename T>
3204inline unsigned HOST_WIDE_INT
3205wi::extract_uhwi (const T &x, unsigned int bitpos, unsigned int width)
3206{
3207 unsigned precision = get_precision (x);
3208 if (precision < bitpos + width)
3209 precision = bitpos + width;
3210 WIDE_INT_REF_FOR (T) xi (x, precision);
3211
3212 /* Handle this rare case after the above, so that we assert about
3213 bogus BITPOS values. */
3214 if (width == 0)
3215 return 0;
3216
3217 unsigned int start = bitpos / HOST_BITS_PER_WIDE_INT;
3218 unsigned int shift = bitpos % HOST_BITS_PER_WIDE_INT;
3219 unsigned HOST_WIDE_INT res = xi.elt (start);
3220 res >>= shift;
3221 if (shift + width > HOST_BITS_PER_WIDE_INT)
3222 {
3223 unsigned HOST_WIDE_INT upper = xi.elt (start + 1);
3224 res |= upper << (-shift % HOST_BITS_PER_WIDE_INT);
3225 }
3226 return zext_hwi (res, width);
3227}
3228
3229/* Return the minimum precision needed to store X with sign SGN. */
3230template <typename T>
3231inline unsigned int
3232wi::min_precision (const T &x, signop sgn)
3233{
3234 if (sgn == SIGNED)
3235 return get_precision (x) - clrsb (x);
3236 else
3237 return get_precision (x) - clz (x);
3238}
3239
032c80e9
RS
3240#define SIGNED_BINARY_PREDICATE(OP, F) \
3241 template <typename T1, typename T2> \
3242 inline WI_SIGNED_BINARY_PREDICATE_RESULT (T1, T2) \
3243 OP (const T1 &x, const T2 &y) \
3244 { \
3245 return wi::F (x, y); \
3246 }
3247
3248SIGNED_BINARY_PREDICATE (operator <, lts_p)
3249SIGNED_BINARY_PREDICATE (operator <=, les_p)
3250SIGNED_BINARY_PREDICATE (operator >, gts_p)
3251SIGNED_BINARY_PREDICATE (operator >=, ges_p)
3252
3253#undef SIGNED_BINARY_PREDICATE
3254
7b27cb4b
RS
3255#define UNARY_OPERATOR(OP, F) \
3256 template<typename T> \
3257 WI_UNARY_RESULT (generic_wide_int<T>) \
3258 OP (const generic_wide_int<T> &x) \
3259 { \
3260 return wi::F (x); \
3261 }
3262
3263#define BINARY_PREDICATE(OP, F) \
3264 template<typename T1, typename T2> \
3265 WI_BINARY_PREDICATE_RESULT (T1, T2) \
3266 OP (const T1 &x, const T2 &y) \
3267 { \
3268 return wi::F (x, y); \
3269 }
3270
3271#define BINARY_OPERATOR(OP, F) \
3272 template<typename T1, typename T2> \
3273 WI_BINARY_OPERATOR_RESULT (T1, T2) \
3274 OP (const T1 &x, const T2 &y) \
3275 { \
3276 return wi::F (x, y); \
3277 }
3278
e535b963
RS
3279#define SHIFT_OPERATOR(OP, F) \
3280 template<typename T1, typename T2> \
3281 WI_BINARY_OPERATOR_RESULT (T1, T1) \
3282 OP (const T1 &x, const T2 &y) \
3283 { \
3284 return wi::F (x, y); \
3285 }
3286
7b27cb4b
RS
3287UNARY_OPERATOR (operator ~, bit_not)
3288UNARY_OPERATOR (operator -, neg)
3289BINARY_PREDICATE (operator ==, eq_p)
3290BINARY_PREDICATE (operator !=, ne_p)
3291BINARY_OPERATOR (operator &, bit_and)
3292BINARY_OPERATOR (operator |, bit_or)
3293BINARY_OPERATOR (operator ^, bit_xor)
3294BINARY_OPERATOR (operator +, add)
3295BINARY_OPERATOR (operator -, sub)
3296BINARY_OPERATOR (operator *, mul)
e535b963 3297SHIFT_OPERATOR (operator <<, lshift)
7b27cb4b
RS
3298
3299#undef UNARY_OPERATOR
3300#undef BINARY_PREDICATE
3301#undef BINARY_OPERATOR
e535b963
RS
3302#undef SHIFT_OPERATOR
3303
3304template <typename T1, typename T2>
3305inline WI_SIGNED_SHIFT_RESULT (T1, T2)
3306operator >> (const T1 &x, const T2 &y)
3307{
3308 return wi::arshift (x, y);
3309}
7b27cb4b 3310
8de73453
RS
3311template <typename T1, typename T2>
3312inline WI_SIGNED_SHIFT_RESULT (T1, T2)
e535b963 3313operator / (const T1 &x, const T2 &y)
8de73453 3314{
e535b963 3315 return wi::sdiv_trunc (x, y);
8de73453
RS
3316}
3317
3318template <typename T1, typename T2>
3319inline WI_SIGNED_SHIFT_RESULT (T1, T2)
e535b963 3320operator % (const T1 &x, const T2 &y)
8de73453 3321{
e535b963 3322 return wi::smod_trunc (x, y);
8de73453
RS
3323}
3324
807e902e
KZ
3325template<typename T>
3326void
3327gt_ggc_mx (generic_wide_int <T> *)
3328{
3329}
3330
3331template<typename T>
3332void
3333gt_pch_nx (generic_wide_int <T> *)
3334{
3335}
3336
3337template<typename T>
3338void
3339gt_pch_nx (generic_wide_int <T> *, void (*) (void *, void *), void *)
3340{
3341}
3342
3343template<int N>
3344void
3345gt_ggc_mx (trailing_wide_ints <N> *)
3346{
3347}
3348
3349template<int N>
3350void
3351gt_pch_nx (trailing_wide_ints <N> *)
3352{
3353}
3354
3355template<int N>
3356void
3357gt_pch_nx (trailing_wide_ints <N> *, void (*) (void *, void *), void *)
3358{
3359}
3360
3361namespace wi
3362{
3363 /* Used for overloaded functions in which the only other acceptable
3364 scalar type is a pointer. It stops a plain 0 from being treated
3365 as a null pointer. */
3366 struct never_used1 {};
3367 struct never_used2 {};
3368
3369 wide_int min_value (unsigned int, signop);
3370 wide_int min_value (never_used1 *);
3371 wide_int min_value (never_used2 *);
3372 wide_int max_value (unsigned int, signop);
3373 wide_int max_value (never_used1 *);
3374 wide_int max_value (never_used2 *);
3375
3376 /* FIXME: this is target dependent, so should be elsewhere.
3377 It also seems to assume that CHAR_BIT == BITS_PER_UNIT. */
3378 wide_int from_buffer (const unsigned char *, unsigned int);
3379
3380#ifndef GENERATOR_FILE
3381 void to_mpz (const wide_int_ref &, mpz_t, signop);
3382#endif
3383
3384 wide_int mask (unsigned int, bool, unsigned int);
3385 wide_int shifted_mask (unsigned int, unsigned int, bool, unsigned int);
3386 wide_int set_bit_in_zero (unsigned int, unsigned int);
3387 wide_int insert (const wide_int &x, const wide_int &y, unsigned int,
3388 unsigned int);
fff22900
RS
3389 wide_int round_down_for_mask (const wide_int &, const wide_int &);
3390 wide_int round_up_for_mask (const wide_int &, const wide_int &);
807e902e
KZ
3391
3392 template <typename T>
3393 T mask (unsigned int, bool);
3394
3395 template <typename T>
3396 T shifted_mask (unsigned int, unsigned int, bool);
3397
3398 template <typename T>
3399 T set_bit_in_zero (unsigned int);
3400
3401 unsigned int mask (HOST_WIDE_INT *, unsigned int, bool, unsigned int);
3402 unsigned int shifted_mask (HOST_WIDE_INT *, unsigned int, unsigned int,
3403 bool, unsigned int);
3404 unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
3405 unsigned int, unsigned int, bool);
3406}
3407
3408/* Return a PRECISION-bit integer in which the low WIDTH bits are set
3409 and the other bits are clear, or the inverse if NEGATE_P. */
3410inline wide_int
3411wi::mask (unsigned int width, bool negate_p, unsigned int precision)
3412{
3413 wide_int result = wide_int::create (precision);
3414 result.set_len (mask (result.write_val (), width, negate_p, precision));
3415 return result;
3416}
3417
3418/* Return a PRECISION-bit integer in which the low START bits are clear,
3419 the next WIDTH bits are set, and the other bits are clear,
3420 or the inverse if NEGATE_P. */
3421inline wide_int
3422wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p,
3423 unsigned int precision)
3424{
3425 wide_int result = wide_int::create (precision);
3426 result.set_len (shifted_mask (result.write_val (), start, width, negate_p,
3427 precision));
3428 return result;
3429}
3430
3431/* Return a PRECISION-bit integer in which bit BIT is set and all the
3432 others are clear. */
3433inline wide_int
3434wi::set_bit_in_zero (unsigned int bit, unsigned int precision)
3435{
3436 return shifted_mask (bit, 1, false, precision);
3437}
3438
3439/* Return an integer of type T in which the low WIDTH bits are set
3440 and the other bits are clear, or the inverse if NEGATE_P. */
3441template <typename T>
3442inline T
3443wi::mask (unsigned int width, bool negate_p)
3444{
3445 STATIC_ASSERT (wi::int_traits<T>::precision);
3446 T result;
3447 result.set_len (mask (result.write_val (), width, negate_p,
3448 wi::int_traits <T>::precision));
3449 return result;
3450}
3451
3452/* Return an integer of type T in which the low START bits are clear,
3453 the next WIDTH bits are set, and the other bits are clear, or the
3454 inverse if NEGATE_P. */
3455template <typename T>
3456inline T
3457wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p)
3458{
3459 STATIC_ASSERT (wi::int_traits<T>::precision);
3460 T result;
3461 result.set_len (shifted_mask (result.write_val (), start, width,
3462 negate_p,
3463 wi::int_traits <T>::precision));
3464 return result;
3465}
3466
3467/* Return an integer of type T in which bit BIT is set and all the
3468 others are clear. */
3469template <typename T>
3470inline T
3471wi::set_bit_in_zero (unsigned int bit)
3472{
3473 return shifted_mask <T> (bit, 1, false);
3474}
3475
4a669ac3
AH
3476/* Accumulate a set of overflows into OVERFLOW. */
3477
3478static inline void
3479wi::accumulate_overflow (wi::overflow_type &overflow,
3480 wi::overflow_type suboverflow)
3481{
3482 if (!suboverflow)
3483 return;
3484 if (!overflow)
3485 overflow = suboverflow;
3486 else if (overflow != suboverflow)
3487 overflow = wi::OVF_UNKNOWN;
3488}
3489
807e902e 3490#endif /* WIDE_INT_H */