]>
Commit | Line | Data |
---|---|---|
807e902e | 1 | /* Operations with very long integers. -*- C++ -*- |
8d9254fc | 2 | Copyright (C) 2012-2020 Free Software Foundation, Inc. |
807e902e KZ |
3 | |
4 | This file is part of GCC. | |
5 | ||
6 | GCC is free software; you can redistribute it and/or modify it | |
7 | under the terms of the GNU General Public License as published by the | |
8 | Free Software Foundation; either version 3, or (at your option) any | |
9 | later version. | |
10 | ||
11 | GCC is distributed in the hope that it will be useful, but WITHOUT | |
12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
14 | for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GCC; see the file COPYING3. If not see | |
18 | <http://www.gnu.org/licenses/>. */ | |
19 | ||
20 | #ifndef WIDE_INT_H | |
21 | #define WIDE_INT_H | |
22 | ||
23 | /* wide-int.[cc|h] implements a class that efficiently performs | |
24 | mathematical operations on finite precision integers. wide_ints | |
25 | are designed to be transient - they are not for long term storage | |
26 | of values. There is tight integration between wide_ints and the | |
27 | other longer storage GCC representations (rtl and tree). | |
28 | ||
29 | The actual precision of a wide_int depends on the flavor. There | |
30 | are three predefined flavors: | |
31 | ||
32 | 1) wide_int (the default). This flavor does the math in the | |
33 | precision of its input arguments. It is assumed (and checked) | |
34 | that the precisions of the operands and results are consistent. | |
35 | This is the most efficient flavor. It is not possible to examine | |
36 | bits above the precision that has been specified. Because of | |
37 | this, the default flavor has semantics that are simple to | |
38 | understand and in general model the underlying hardware that the | |
39 | compiler is targetted for. | |
40 | ||
41 | This flavor must be used at the RTL level of gcc because there | |
42 | is, in general, not enough information in the RTL representation | |
43 | to extend a value beyond the precision specified in the mode. | |
44 | ||
45 | This flavor should also be used at the TREE and GIMPLE levels of | |
46 | the compiler except for the circumstances described in the | |
47 | descriptions of the other two flavors. | |
48 | ||
49 | The default wide_int representation does not contain any | |
50 | information inherent about signedness of the represented value, | |
51 | so it can be used to represent both signed and unsigned numbers. | |
52 | For operations where the results depend on signedness (full width | |
53 | multiply, division, shifts, comparisons, and operations that need | |
54 | overflow detected), the signedness must be specified separately. | |
55 | ||
032c80e9 RS |
56 | 2) offset_int. This is a fixed-precision integer that can hold |
57 | any address offset, measured in either bits or bytes, with at | |
58 | least one extra sign bit. At the moment the maximum address | |
59 | size GCC supports is 64 bits. With 8-bit bytes and an extra | |
60 | sign bit, offset_int therefore needs to have at least 68 bits | |
61 | of precision. We round this up to 128 bits for efficiency. | |
62 | Values of type T are converted to this precision by sign- or | |
63 | zero-extending them based on the signedness of T. | |
64 | ||
65 | The extra sign bit means that offset_int is effectively a signed | |
66 | 128-bit integer, i.e. it behaves like int128_t. | |
67 | ||
68 | Since the values are logically signed, there is no need to | |
69 | distinguish between signed and unsigned operations. Sign-sensitive | |
70 | comparison operators <, <=, > and >= are therefore supported. | |
8de73453 RS |
71 | Shift operators << and >> are also supported, with >> being |
72 | an _arithmetic_ right shift. | |
032c80e9 RS |
73 | |
74 | [ Note that, even though offset_int is effectively int128_t, | |
75 | it can still be useful to use unsigned comparisons like | |
76 | wi::leu_p (a, b) as a more efficient short-hand for | |
77 | "a >= 0 && a <= b". ] | |
807e902e KZ |
78 | |
79 | 3) widest_int. This representation is an approximation of | |
80 | infinite precision math. However, it is not really infinite | |
81 | precision math as in the GMP library. It is really finite | |
82 | precision math where the precision is 4 times the size of the | |
83 | largest integer that the target port can represent. | |
84 | ||
032c80e9 RS |
85 | Like offset_int, widest_int is wider than all the values that |
86 | it needs to represent, so the integers are logically signed. | |
8de73453 RS |
87 | Sign-sensitive comparison operators <, <=, > and >= are supported, |
88 | as are << and >>. | |
807e902e KZ |
89 | |
90 | There are several places in the GCC where this should/must be used: | |
91 | ||
92 | * Code that does induction variable optimizations. This code | |
93 | works with induction variables of many different types at the | |
94 | same time. Because of this, it ends up doing many different | |
95 | calculations where the operands are not compatible types. The | |
96 | widest_int makes this easy, because it provides a field where | |
97 | nothing is lost when converting from any variable, | |
98 | ||
99 | * There are a small number of passes that currently use the | |
100 | widest_int that should use the default. These should be | |
101 | changed. | |
102 | ||
103 | There are surprising features of offset_int and widest_int | |
104 | that the users should be careful about: | |
105 | ||
106 | 1) Shifts and rotations are just weird. You have to specify a | |
107 | precision in which the shift or rotate is to happen in. The bits | |
108 | above this precision are zeroed. While this is what you | |
109 | want, it is clearly non obvious. | |
110 | ||
111 | 2) Larger precision math sometimes does not produce the same | |
112 | answer as would be expected for doing the math at the proper | |
113 | precision. In particular, a multiply followed by a divide will | |
114 | produce a different answer if the first product is larger than | |
115 | what can be represented in the input precision. | |
116 | ||
117 | The offset_int and the widest_int flavors are more expensive | |
118 | than the default wide int, so in addition to the caveats with these | |
119 | two, the default is the prefered representation. | |
120 | ||
121 | All three flavors of wide_int are represented as a vector of | |
122 | HOST_WIDE_INTs. The default and widest_int vectors contain enough elements | |
123 | to hold a value of MAX_BITSIZE_MODE_ANY_INT bits. offset_int contains only | |
124 | enough elements to hold ADDR_MAX_PRECISION bits. The values are stored | |
125 | in the vector with the least significant HOST_BITS_PER_WIDE_INT bits | |
126 | in element 0. | |
127 | ||
128 | The default wide_int contains three fields: the vector (VAL), | |
129 | the precision and a length (LEN). The length is the number of HWIs | |
130 | needed to represent the value. widest_int and offset_int have a | |
131 | constant precision that cannot be changed, so they only store the | |
132 | VAL and LEN fields. | |
133 | ||
134 | Since most integers used in a compiler are small values, it is | |
135 | generally profitable to use a representation of the value that is | |
136 | as small as possible. LEN is used to indicate the number of | |
137 | elements of the vector that are in use. The numbers are stored as | |
138 | sign extended numbers as a means of compression. Leading | |
139 | HOST_WIDE_INTs that contain strings of either -1 or 0 are removed | |
140 | as long as they can be reconstructed from the top bit that is being | |
141 | represented. | |
142 | ||
143 | The precision and length of a wide_int are always greater than 0. | |
144 | Any bits in a wide_int above the precision are sign-extended from the | |
145 | most significant bit. For example, a 4-bit value 0x8 is represented as | |
146 | VAL = { 0xf...fff8 }. However, as an optimization, we allow other integer | |
147 | constants to be represented with undefined bits above the precision. | |
148 | This allows INTEGER_CSTs to be pre-extended according to TYPE_SIGN, | |
149 | so that the INTEGER_CST representation can be used both in TYPE_PRECISION | |
150 | and in wider precisions. | |
151 | ||
152 | There are constructors to create the various forms of wide_int from | |
8e6cdc90 | 153 | trees, rtl and constants. For trees the options are: |
807e902e KZ |
154 | |
155 | tree t = ...; | |
8e6cdc90 RS |
156 | wi::to_wide (t) // Treat T as a wide_int |
157 | wi::to_offset (t) // Treat T as an offset_int | |
158 | wi::to_widest (t) // Treat T as a widest_int | |
807e902e | 159 | |
8e6cdc90 RS |
160 | All three are light-weight accessors that should have no overhead |
161 | in release builds. If it is useful for readability reasons to | |
162 | store the result in a temporary variable, the preferred method is: | |
163 | ||
164 | wi::tree_to_wide_ref twide = wi::to_wide (t); | |
165 | wi::tree_to_offset_ref toffset = wi::to_offset (t); | |
166 | wi::tree_to_widest_ref twidest = wi::to_widest (t); | |
167 | ||
168 | To make an rtx into a wide_int, you have to pair it with a mode. | |
169 | The canonical way to do this is with rtx_mode_t as in: | |
807e902e KZ |
170 | |
171 | rtx r = ... | |
f079167a | 172 | wide_int x = rtx_mode_t (r, mode); |
807e902e KZ |
173 | |
174 | Similarly, a wide_int can only be constructed from a host value if | |
175 | the target precision is given explicitly, such as in: | |
176 | ||
177 | wide_int x = wi::shwi (c, prec); // sign-extend C if necessary | |
178 | wide_int y = wi::uhwi (c, prec); // zero-extend C if necessary | |
179 | ||
180 | However, offset_int and widest_int have an inherent precision and so | |
181 | can be initialized directly from a host value: | |
182 | ||
183 | offset_int x = (int) c; // sign-extend C | |
184 | widest_int x = (unsigned int) c; // zero-extend C | |
185 | ||
8e6cdc90 | 186 | It is also possible to do arithmetic directly on rtx_mode_ts and |
807e902e KZ |
187 | constants. For example: |
188 | ||
8e6cdc90 RS |
189 | wi::add (r1, r2); // add equal-sized rtx_mode_ts r1 and r2 |
190 | wi::add (r1, 1); // add 1 to rtx_mode_t r1 | |
807e902e KZ |
191 | wi::lshift (1, 100); // 1 << 100 as a widest_int |
192 | ||
193 | Many binary operations place restrictions on the combinations of inputs, | |
194 | using the following rules: | |
195 | ||
8e6cdc90 | 196 | - {rtx, wide_int} op {rtx, wide_int} -> wide_int |
807e902e KZ |
197 | The inputs must be the same precision. The result is a wide_int |
198 | of the same precision | |
199 | ||
8e6cdc90 RS |
200 | - {rtx, wide_int} op (un)signed HOST_WIDE_INT -> wide_int |
201 | (un)signed HOST_WIDE_INT op {rtx, wide_int} -> wide_int | |
807e902e KZ |
202 | The HOST_WIDE_INT is extended or truncated to the precision of |
203 | the other input. The result is a wide_int of the same precision | |
204 | as that input. | |
205 | ||
206 | - (un)signed HOST_WIDE_INT op (un)signed HOST_WIDE_INT -> widest_int | |
207 | The inputs are extended to widest_int precision and produce a | |
208 | widest_int result. | |
209 | ||
210 | - offset_int op offset_int -> offset_int | |
211 | offset_int op (un)signed HOST_WIDE_INT -> offset_int | |
212 | (un)signed HOST_WIDE_INT op offset_int -> offset_int | |
213 | ||
214 | - widest_int op widest_int -> widest_int | |
215 | widest_int op (un)signed HOST_WIDE_INT -> widest_int | |
216 | (un)signed HOST_WIDE_INT op widest_int -> widest_int | |
217 | ||
218 | Other combinations like: | |
219 | ||
220 | - widest_int op offset_int and | |
221 | - wide_int op offset_int | |
222 | ||
223 | are not allowed. The inputs should instead be extended or truncated | |
224 | so that they match. | |
225 | ||
226 | The inputs to comparison functions like wi::eq_p and wi::lts_p | |
227 | follow the same compatibility rules, although their return types | |
228 | are different. Unary functions on X produce the same result as | |
229 | a binary operation X + X. Shift functions X op Y also produce | |
230 | the same result as X + X; the precision of the shift amount Y | |
231 | can be arbitrarily different from X. */ | |
232 | ||
807e902e KZ |
233 | /* The MAX_BITSIZE_MODE_ANY_INT is automatically generated by a very |
234 | early examination of the target's mode file. The WIDE_INT_MAX_ELTS | |
235 | can accomodate at least 1 more bit so that unsigned numbers of that | |
236 | mode can be represented as a signed value. Note that it is still | |
237 | possible to create fixed_wide_ints that have precisions greater than | |
238 | MAX_BITSIZE_MODE_ANY_INT. This can be useful when representing a | |
239 | double-width multiplication result, for example. */ | |
240 | #define WIDE_INT_MAX_ELTS \ | |
241 | ((MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT) / HOST_BITS_PER_WIDE_INT) | |
242 | ||
243 | #define WIDE_INT_MAX_PRECISION (WIDE_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT) | |
244 | ||
245 | /* This is the max size of any pointer on any machine. It does not | |
246 | seem to be as easy to sniff this out of the machine description as | |
247 | it is for MAX_BITSIZE_MODE_ANY_INT since targets may support | |
248 | multiple address sizes and may have different address sizes for | |
249 | different address spaces. However, currently the largest pointer | |
250 | on any platform is 64 bits. When that changes, then it is likely | |
251 | that a target hook should be defined so that targets can make this | |
252 | value larger for those targets. */ | |
253 | #define ADDR_MAX_BITSIZE 64 | |
254 | ||
255 | /* This is the internal precision used when doing any address | |
256 | arithmetic. The '4' is really 3 + 1. Three of the bits are for | |
257 | the number of extra bits needed to do bit addresses and the other bit | |
258 | is to allow everything to be signed without loosing any precision. | |
259 | Then everything is rounded up to the next HWI for efficiency. */ | |
260 | #define ADDR_MAX_PRECISION \ | |
261 | ((ADDR_MAX_BITSIZE + 4 + HOST_BITS_PER_WIDE_INT - 1) \ | |
262 | & ~(HOST_BITS_PER_WIDE_INT - 1)) | |
263 | ||
264 | /* The number of HWIs needed to store an offset_int. */ | |
265 | #define OFFSET_INT_ELTS (ADDR_MAX_PRECISION / HOST_BITS_PER_WIDE_INT) | |
266 | ||
267 | /* The type of result produced by a binary operation on types T1 and T2. | |
268 | Defined purely for brevity. */ | |
269 | #define WI_BINARY_RESULT(T1, T2) \ | |
270 | typename wi::binary_traits <T1, T2>::result_type | |
271 | ||
7b27cb4b RS |
272 | /* Likewise for binary operators, which excludes the case in which neither |
273 | T1 nor T2 is a wide-int-based type. */ | |
274 | #define WI_BINARY_OPERATOR_RESULT(T1, T2) \ | |
275 | typename wi::binary_traits <T1, T2>::operator_result | |
276 | ||
8de73453 RS |
277 | /* The type of result produced by T1 << T2. Leads to substitution failure |
278 | if the operation isn't supported. Defined purely for brevity. */ | |
279 | #define WI_SIGNED_SHIFT_RESULT(T1, T2) \ | |
280 | typename wi::binary_traits <T1, T2>::signed_shift_result_type | |
281 | ||
7b27cb4b RS |
282 | /* The type of result produced by a sign-agnostic binary predicate on |
283 | types T1 and T2. This is bool if wide-int operations make sense for | |
284 | T1 and T2 and leads to substitution failure otherwise. */ | |
285 | #define WI_BINARY_PREDICATE_RESULT(T1, T2) \ | |
286 | typename wi::binary_traits <T1, T2>::predicate_result | |
287 | ||
032c80e9 RS |
288 | /* The type of result produced by a signed binary predicate on types T1 and T2. |
289 | This is bool if signed comparisons make sense for T1 and T2 and leads to | |
290 | substitution failure otherwise. */ | |
291 | #define WI_SIGNED_BINARY_PREDICATE_RESULT(T1, T2) \ | |
292 | typename wi::binary_traits <T1, T2>::signed_predicate_result | |
293 | ||
807e902e KZ |
294 | /* The type of result produced by a unary operation on type T. */ |
295 | #define WI_UNARY_RESULT(T) \ | |
e535b963 | 296 | typename wi::binary_traits <T, T>::result_type |
807e902e KZ |
297 | |
298 | /* Define a variable RESULT to hold the result of a binary operation on | |
299 | X and Y, which have types T1 and T2 respectively. Define VAL to | |
300 | point to the blocks of RESULT. Once the user of the macro has | |
301 | filled in VAL, it should call RESULT.set_len to set the number | |
302 | of initialized blocks. */ | |
303 | #define WI_BINARY_RESULT_VAR(RESULT, VAL, T1, X, T2, Y) \ | |
304 | WI_BINARY_RESULT (T1, T2) RESULT = \ | |
305 | wi::int_traits <WI_BINARY_RESULT (T1, T2)>::get_binary_result (X, Y); \ | |
306 | HOST_WIDE_INT *VAL = RESULT.write_val () | |
307 | ||
308 | /* Similar for the result of a unary operation on X, which has type T. */ | |
309 | #define WI_UNARY_RESULT_VAR(RESULT, VAL, T, X) \ | |
310 | WI_UNARY_RESULT (T) RESULT = \ | |
311 | wi::int_traits <WI_UNARY_RESULT (T)>::get_binary_result (X, X); \ | |
312 | HOST_WIDE_INT *VAL = RESULT.write_val () | |
313 | ||
3655abdd | 314 | template <typename T> class generic_wide_int; |
92237f43 | 315 | template <int N> class fixed_wide_int_storage; |
a4ff2ef3 | 316 | class wide_int_storage; |
807e902e KZ |
317 | |
318 | /* An N-bit integer. Until we can use typedef templates, use this instead. */ | |
319 | #define FIXED_WIDE_INT(N) \ | |
320 | generic_wide_int < fixed_wide_int_storage <N> > | |
321 | ||
322 | typedef generic_wide_int <wide_int_storage> wide_int; | |
323 | typedef FIXED_WIDE_INT (ADDR_MAX_PRECISION) offset_int; | |
324 | typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION) widest_int; | |
3bb1161f AH |
325 | /* Spelled out explicitly (rather than through FIXED_WIDE_INT) |
326 | so as not to confuse gengtype. */ | |
327 | typedef generic_wide_int < fixed_wide_int_storage <WIDE_INT_MAX_PRECISION * 2> > widest2_int; | |
807e902e | 328 | |
8e6cdc90 RS |
329 | /* wi::storage_ref can be a reference to a primitive type, |
330 | so this is the conservatively-correct setting. */ | |
331 | template <bool SE, bool HDP = true> | |
99b1c316 | 332 | class wide_int_ref_storage; |
807e902e KZ |
333 | |
334 | typedef generic_wide_int <wide_int_ref_storage <false> > wide_int_ref; | |
335 | ||
336 | /* This can be used instead of wide_int_ref if the referenced value is | |
337 | known to have type T. It carries across properties of T's representation, | |
338 | such as whether excess upper bits in a HWI are defined, and can therefore | |
339 | help avoid redundant work. | |
340 | ||
341 | The macro could be replaced with a template typedef, once we're able | |
342 | to use those. */ | |
343 | #define WIDE_INT_REF_FOR(T) \ | |
344 | generic_wide_int \ | |
8e6cdc90 RS |
345 | <wide_int_ref_storage <wi::int_traits <T>::is_sign_extended, \ |
346 | wi::int_traits <T>::host_dependent_precision> > | |
807e902e KZ |
347 | |
348 | namespace wi | |
349 | { | |
4a669ac3 AH |
350 | /* Operations that calculate overflow do so even for |
351 | TYPE_OVERFLOW_WRAPS types. For example, adding 1 to +MAX_INT in | |
352 | an unsigned int is 0 and does not overflow in C/C++, but wi::add | |
353 | will set the overflow argument in case it's needed for further | |
354 | analysis. | |
355 | ||
356 | For operations that require overflow, these are the different | |
357 | types of overflow. */ | |
358 | enum overflow_type { | |
359 | OVF_NONE = 0, | |
360 | OVF_UNDERFLOW = -1, | |
361 | OVF_OVERFLOW = 1, | |
362 | /* There was an overflow, but we are unsure whether it was an | |
363 | overflow or an underflow. */ | |
364 | OVF_UNKNOWN = 2 | |
365 | }; | |
366 | ||
807e902e KZ |
367 | /* Classifies an integer based on its precision. */ |
368 | enum precision_type { | |
369 | /* The integer has both a precision and defined signedness. This allows | |
370 | the integer to be converted to any width, since we know whether to fill | |
371 | any extra bits with zeros or signs. */ | |
372 | FLEXIBLE_PRECISION, | |
373 | ||
374 | /* The integer has a variable precision but no defined signedness. */ | |
375 | VAR_PRECISION, | |
376 | ||
377 | /* The integer has a constant precision (known at GCC compile time) | |
032c80e9 | 378 | and is signed. */ |
807e902e KZ |
379 | CONST_PRECISION |
380 | }; | |
381 | ||
382 | /* This class, which has no default implementation, is expected to | |
383 | provide the following members: | |
384 | ||
385 | static const enum precision_type precision_type; | |
386 | Classifies the type of T. | |
387 | ||
388 | static const unsigned int precision; | |
389 | Only defined if precision_type == CONST_PRECISION. Specifies the | |
390 | precision of all integers of type T. | |
391 | ||
392 | static const bool host_dependent_precision; | |
393 | True if the precision of T depends (or can depend) on the host. | |
394 | ||
395 | static unsigned int get_precision (const T &x) | |
396 | Return the number of bits in X. | |
397 | ||
398 | static wi::storage_ref *decompose (HOST_WIDE_INT *scratch, | |
399 | unsigned int precision, const T &x) | |
400 | Decompose X as a PRECISION-bit integer, returning the associated | |
401 | wi::storage_ref. SCRATCH is available as scratch space if needed. | |
402 | The routine should assert that PRECISION is acceptable. */ | |
403 | template <typename T> struct int_traits; | |
404 | ||
405 | /* This class provides a single type, result_type, which specifies the | |
406 | type of integer produced by a binary operation whose inputs have | |
407 | types T1 and T2. The definition should be symmetric. */ | |
408 | template <typename T1, typename T2, | |
409 | enum precision_type P1 = int_traits <T1>::precision_type, | |
410 | enum precision_type P2 = int_traits <T2>::precision_type> | |
411 | struct binary_traits; | |
412 | ||
807e902e KZ |
413 | /* Specify the result type for each supported combination of binary |
414 | inputs. Note that CONST_PRECISION and VAR_PRECISION cannot be | |
415 | mixed, in order to give stronger type checking. When both inputs | |
416 | are CONST_PRECISION, they must have the same precision. */ | |
807e902e KZ |
417 | template <typename T1, typename T2> |
418 | struct binary_traits <T1, T2, FLEXIBLE_PRECISION, FLEXIBLE_PRECISION> | |
419 | { | |
420 | typedef widest_int result_type; | |
7b27cb4b | 421 | /* Don't define operators for this combination. */ |
807e902e KZ |
422 | }; |
423 | ||
807e902e KZ |
424 | template <typename T1, typename T2> |
425 | struct binary_traits <T1, T2, FLEXIBLE_PRECISION, VAR_PRECISION> | |
426 | { | |
427 | typedef wide_int result_type; | |
7b27cb4b RS |
428 | typedef result_type operator_result; |
429 | typedef bool predicate_result; | |
807e902e KZ |
430 | }; |
431 | ||
807e902e KZ |
432 | template <typename T1, typename T2> |
433 | struct binary_traits <T1, T2, FLEXIBLE_PRECISION, CONST_PRECISION> | |
434 | { | |
435 | /* Spelled out explicitly (rather than through FIXED_WIDE_INT) | |
436 | so as not to confuse gengtype. */ | |
437 | typedef generic_wide_int < fixed_wide_int_storage | |
438 | <int_traits <T2>::precision> > result_type; | |
7b27cb4b RS |
439 | typedef result_type operator_result; |
440 | typedef bool predicate_result; | |
e535b963 | 441 | typedef result_type signed_shift_result_type; |
032c80e9 | 442 | typedef bool signed_predicate_result; |
807e902e KZ |
443 | }; |
444 | ||
807e902e KZ |
445 | template <typename T1, typename T2> |
446 | struct binary_traits <T1, T2, VAR_PRECISION, FLEXIBLE_PRECISION> | |
447 | { | |
448 | typedef wide_int result_type; | |
7b27cb4b RS |
449 | typedef result_type operator_result; |
450 | typedef bool predicate_result; | |
807e902e KZ |
451 | }; |
452 | ||
807e902e KZ |
453 | template <typename T1, typename T2> |
454 | struct binary_traits <T1, T2, CONST_PRECISION, FLEXIBLE_PRECISION> | |
455 | { | |
456 | /* Spelled out explicitly (rather than through FIXED_WIDE_INT) | |
457 | so as not to confuse gengtype. */ | |
458 | typedef generic_wide_int < fixed_wide_int_storage | |
459 | <int_traits <T1>::precision> > result_type; | |
7b27cb4b RS |
460 | typedef result_type operator_result; |
461 | typedef bool predicate_result; | |
8de73453 | 462 | typedef result_type signed_shift_result_type; |
032c80e9 | 463 | typedef bool signed_predicate_result; |
807e902e KZ |
464 | }; |
465 | ||
807e902e KZ |
466 | template <typename T1, typename T2> |
467 | struct binary_traits <T1, T2, CONST_PRECISION, CONST_PRECISION> | |
468 | { | |
7b27cb4b | 469 | STATIC_ASSERT (int_traits <T1>::precision == int_traits <T2>::precision); |
807e902e KZ |
470 | /* Spelled out explicitly (rather than through FIXED_WIDE_INT) |
471 | so as not to confuse gengtype. */ | |
807e902e KZ |
472 | typedef generic_wide_int < fixed_wide_int_storage |
473 | <int_traits <T1>::precision> > result_type; | |
7b27cb4b RS |
474 | typedef result_type operator_result; |
475 | typedef bool predicate_result; | |
8de73453 | 476 | typedef result_type signed_shift_result_type; |
032c80e9 | 477 | typedef bool signed_predicate_result; |
807e902e KZ |
478 | }; |
479 | ||
807e902e KZ |
480 | template <typename T1, typename T2> |
481 | struct binary_traits <T1, T2, VAR_PRECISION, VAR_PRECISION> | |
482 | { | |
483 | typedef wide_int result_type; | |
7b27cb4b RS |
484 | typedef result_type operator_result; |
485 | typedef bool predicate_result; | |
807e902e KZ |
486 | }; |
487 | } | |
488 | ||
489 | /* Public functions for querying and operating on integers. */ | |
490 | namespace wi | |
491 | { | |
492 | template <typename T> | |
493 | unsigned int get_precision (const T &); | |
494 | ||
495 | template <typename T1, typename T2> | |
496 | unsigned int get_binary_precision (const T1 &, const T2 &); | |
497 | ||
498 | template <typename T1, typename T2> | |
499 | void copy (T1 &, const T2 &); | |
500 | ||
501 | #define UNARY_PREDICATE \ | |
502 | template <typename T> bool | |
503 | #define UNARY_FUNCTION \ | |
504 | template <typename T> WI_UNARY_RESULT (T) | |
505 | #define BINARY_PREDICATE \ | |
506 | template <typename T1, typename T2> bool | |
507 | #define BINARY_FUNCTION \ | |
508 | template <typename T1, typename T2> WI_BINARY_RESULT (T1, T2) | |
509 | #define SHIFT_FUNCTION \ | |
510 | template <typename T1, typename T2> WI_UNARY_RESULT (T1) | |
511 | ||
512 | UNARY_PREDICATE fits_shwi_p (const T &); | |
513 | UNARY_PREDICATE fits_uhwi_p (const T &); | |
514 | UNARY_PREDICATE neg_p (const T &, signop = SIGNED); | |
515 | ||
516 | template <typename T> | |
517 | HOST_WIDE_INT sign_mask (const T &); | |
518 | ||
519 | BINARY_PREDICATE eq_p (const T1 &, const T2 &); | |
520 | BINARY_PREDICATE ne_p (const T1 &, const T2 &); | |
521 | BINARY_PREDICATE lt_p (const T1 &, const T2 &, signop); | |
522 | BINARY_PREDICATE lts_p (const T1 &, const T2 &); | |
523 | BINARY_PREDICATE ltu_p (const T1 &, const T2 &); | |
524 | BINARY_PREDICATE le_p (const T1 &, const T2 &, signop); | |
525 | BINARY_PREDICATE les_p (const T1 &, const T2 &); | |
526 | BINARY_PREDICATE leu_p (const T1 &, const T2 &); | |
527 | BINARY_PREDICATE gt_p (const T1 &, const T2 &, signop); | |
528 | BINARY_PREDICATE gts_p (const T1 &, const T2 &); | |
529 | BINARY_PREDICATE gtu_p (const T1 &, const T2 &); | |
530 | BINARY_PREDICATE ge_p (const T1 &, const T2 &, signop); | |
531 | BINARY_PREDICATE ges_p (const T1 &, const T2 &); | |
532 | BINARY_PREDICATE geu_p (const T1 &, const T2 &); | |
533 | ||
534 | template <typename T1, typename T2> | |
535 | int cmp (const T1 &, const T2 &, signop); | |
536 | ||
537 | template <typename T1, typename T2> | |
538 | int cmps (const T1 &, const T2 &); | |
539 | ||
540 | template <typename T1, typename T2> | |
541 | int cmpu (const T1 &, const T2 &); | |
542 | ||
543 | UNARY_FUNCTION bit_not (const T &); | |
544 | UNARY_FUNCTION neg (const T &); | |
4a669ac3 | 545 | UNARY_FUNCTION neg (const T &, overflow_type *); |
807e902e KZ |
546 | UNARY_FUNCTION abs (const T &); |
547 | UNARY_FUNCTION ext (const T &, unsigned int, signop); | |
548 | UNARY_FUNCTION sext (const T &, unsigned int); | |
549 | UNARY_FUNCTION zext (const T &, unsigned int); | |
550 | UNARY_FUNCTION set_bit (const T &, unsigned int); | |
551 | ||
552 | BINARY_FUNCTION min (const T1 &, const T2 &, signop); | |
553 | BINARY_FUNCTION smin (const T1 &, const T2 &); | |
554 | BINARY_FUNCTION umin (const T1 &, const T2 &); | |
555 | BINARY_FUNCTION max (const T1 &, const T2 &, signop); | |
556 | BINARY_FUNCTION smax (const T1 &, const T2 &); | |
557 | BINARY_FUNCTION umax (const T1 &, const T2 &); | |
558 | ||
559 | BINARY_FUNCTION bit_and (const T1 &, const T2 &); | |
560 | BINARY_FUNCTION bit_and_not (const T1 &, const T2 &); | |
561 | BINARY_FUNCTION bit_or (const T1 &, const T2 &); | |
562 | BINARY_FUNCTION bit_or_not (const T1 &, const T2 &); | |
563 | BINARY_FUNCTION bit_xor (const T1 &, const T2 &); | |
564 | BINARY_FUNCTION add (const T1 &, const T2 &); | |
4a669ac3 | 565 | BINARY_FUNCTION add (const T1 &, const T2 &, signop, overflow_type *); |
807e902e | 566 | BINARY_FUNCTION sub (const T1 &, const T2 &); |
4a669ac3 | 567 | BINARY_FUNCTION sub (const T1 &, const T2 &, signop, overflow_type *); |
807e902e | 568 | BINARY_FUNCTION mul (const T1 &, const T2 &); |
4a669ac3 AH |
569 | BINARY_FUNCTION mul (const T1 &, const T2 &, signop, overflow_type *); |
570 | BINARY_FUNCTION smul (const T1 &, const T2 &, overflow_type *); | |
571 | BINARY_FUNCTION umul (const T1 &, const T2 &, overflow_type *); | |
807e902e | 572 | BINARY_FUNCTION mul_high (const T1 &, const T2 &, signop); |
4a669ac3 AH |
573 | BINARY_FUNCTION div_trunc (const T1 &, const T2 &, signop, |
574 | overflow_type * = 0); | |
807e902e KZ |
575 | BINARY_FUNCTION sdiv_trunc (const T1 &, const T2 &); |
576 | BINARY_FUNCTION udiv_trunc (const T1 &, const T2 &); | |
4a669ac3 AH |
577 | BINARY_FUNCTION div_floor (const T1 &, const T2 &, signop, |
578 | overflow_type * = 0); | |
807e902e KZ |
579 | BINARY_FUNCTION udiv_floor (const T1 &, const T2 &); |
580 | BINARY_FUNCTION sdiv_floor (const T1 &, const T2 &); | |
4a669ac3 AH |
581 | BINARY_FUNCTION div_ceil (const T1 &, const T2 &, signop, |
582 | overflow_type * = 0); | |
7cfb4d93 | 583 | BINARY_FUNCTION udiv_ceil (const T1 &, const T2 &); |
4a669ac3 AH |
584 | BINARY_FUNCTION div_round (const T1 &, const T2 &, signop, |
585 | overflow_type * = 0); | |
807e902e KZ |
586 | BINARY_FUNCTION divmod_trunc (const T1 &, const T2 &, signop, |
587 | WI_BINARY_RESULT (T1, T2) *); | |
d9a6bd32 | 588 | BINARY_FUNCTION gcd (const T1 &, const T2 &, signop = UNSIGNED); |
4a669ac3 AH |
589 | BINARY_FUNCTION mod_trunc (const T1 &, const T2 &, signop, |
590 | overflow_type * = 0); | |
807e902e KZ |
591 | BINARY_FUNCTION smod_trunc (const T1 &, const T2 &); |
592 | BINARY_FUNCTION umod_trunc (const T1 &, const T2 &); | |
4a669ac3 AH |
593 | BINARY_FUNCTION mod_floor (const T1 &, const T2 &, signop, |
594 | overflow_type * = 0); | |
807e902e | 595 | BINARY_FUNCTION umod_floor (const T1 &, const T2 &); |
4a669ac3 AH |
596 | BINARY_FUNCTION mod_ceil (const T1 &, const T2 &, signop, |
597 | overflow_type * = 0); | |
598 | BINARY_FUNCTION mod_round (const T1 &, const T2 &, signop, | |
599 | overflow_type * = 0); | |
807e902e | 600 | |
7588d8aa RS |
601 | template <typename T1, typename T2> |
602 | bool multiple_of_p (const T1 &, const T2 &, signop); | |
603 | ||
807e902e KZ |
604 | template <typename T1, typename T2> |
605 | bool multiple_of_p (const T1 &, const T2 &, signop, | |
606 | WI_BINARY_RESULT (T1, T2) *); | |
607 | ||
608 | SHIFT_FUNCTION lshift (const T1 &, const T2 &); | |
609 | SHIFT_FUNCTION lrshift (const T1 &, const T2 &); | |
610 | SHIFT_FUNCTION arshift (const T1 &, const T2 &); | |
611 | SHIFT_FUNCTION rshift (const T1 &, const T2 &, signop sgn); | |
612 | SHIFT_FUNCTION lrotate (const T1 &, const T2 &, unsigned int = 0); | |
613 | SHIFT_FUNCTION rrotate (const T1 &, const T2 &, unsigned int = 0); | |
614 | ||
615 | #undef SHIFT_FUNCTION | |
616 | #undef BINARY_PREDICATE | |
617 | #undef BINARY_FUNCTION | |
618 | #undef UNARY_PREDICATE | |
619 | #undef UNARY_FUNCTION | |
620 | ||
621 | bool only_sign_bit_p (const wide_int_ref &, unsigned int); | |
622 | bool only_sign_bit_p (const wide_int_ref &); | |
623 | int clz (const wide_int_ref &); | |
624 | int clrsb (const wide_int_ref &); | |
625 | int ctz (const wide_int_ref &); | |
626 | int exact_log2 (const wide_int_ref &); | |
627 | int floor_log2 (const wide_int_ref &); | |
628 | int ffs (const wide_int_ref &); | |
629 | int popcount (const wide_int_ref &); | |
630 | int parity (const wide_int_ref &); | |
631 | ||
632 | template <typename T> | |
633 | unsigned HOST_WIDE_INT extract_uhwi (const T &, unsigned int, unsigned int); | |
634 | ||
635 | template <typename T> | |
636 | unsigned int min_precision (const T &, signop); | |
4a669ac3 AH |
637 | |
638 | static inline void accumulate_overflow (overflow_type &, overflow_type); | |
807e902e KZ |
639 | } |
640 | ||
641 | namespace wi | |
642 | { | |
643 | /* Contains the components of a decomposed integer for easy, direct | |
644 | access. */ | |
6c1dae73 | 645 | class storage_ref |
807e902e | 646 | { |
6c1dae73 | 647 | public: |
0c12fc9b | 648 | storage_ref () {} |
807e902e KZ |
649 | storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int); |
650 | ||
651 | const HOST_WIDE_INT *val; | |
652 | unsigned int len; | |
653 | unsigned int precision; | |
654 | ||
655 | /* Provide enough trappings for this class to act as storage for | |
656 | generic_wide_int. */ | |
657 | unsigned int get_len () const; | |
658 | unsigned int get_precision () const; | |
659 | const HOST_WIDE_INT *get_val () const; | |
660 | }; | |
661 | } | |
662 | ||
663 | inline::wi::storage_ref::storage_ref (const HOST_WIDE_INT *val_in, | |
664 | unsigned int len_in, | |
665 | unsigned int precision_in) | |
666 | : val (val_in), len (len_in), precision (precision_in) | |
667 | { | |
668 | } | |
669 | ||
670 | inline unsigned int | |
671 | wi::storage_ref::get_len () const | |
672 | { | |
673 | return len; | |
674 | } | |
675 | ||
676 | inline unsigned int | |
677 | wi::storage_ref::get_precision () const | |
678 | { | |
679 | return precision; | |
680 | } | |
681 | ||
682 | inline const HOST_WIDE_INT * | |
683 | wi::storage_ref::get_val () const | |
684 | { | |
685 | return val; | |
686 | } | |
687 | ||
688 | /* This class defines an integer type using the storage provided by the | |
689 | template argument. The storage class must provide the following | |
690 | functions: | |
691 | ||
692 | unsigned int get_precision () const | |
693 | Return the number of bits in the integer. | |
694 | ||
695 | HOST_WIDE_INT *get_val () const | |
696 | Return a pointer to the array of blocks that encodes the integer. | |
697 | ||
698 | unsigned int get_len () const | |
699 | Return the number of blocks in get_val (). If this is smaller | |
700 | than the number of blocks implied by get_precision (), the | |
701 | remaining blocks are sign extensions of block get_len () - 1. | |
702 | ||
703 | Although not required by generic_wide_int itself, writable storage | |
704 | classes can also provide the following functions: | |
705 | ||
706 | HOST_WIDE_INT *write_val () | |
707 | Get a modifiable version of get_val () | |
708 | ||
709 | unsigned int set_len (unsigned int len) | |
710 | Set the value returned by get_len () to LEN. */ | |
711 | template <typename storage> | |
712 | class GTY(()) generic_wide_int : public storage | |
713 | { | |
714 | public: | |
715 | generic_wide_int (); | |
716 | ||
717 | template <typename T> | |
718 | generic_wide_int (const T &); | |
719 | ||
720 | template <typename T> | |
721 | generic_wide_int (const T &, unsigned int); | |
722 | ||
723 | /* Conversions. */ | |
724 | HOST_WIDE_INT to_shwi (unsigned int) const; | |
725 | HOST_WIDE_INT to_shwi () const; | |
726 | unsigned HOST_WIDE_INT to_uhwi (unsigned int) const; | |
727 | unsigned HOST_WIDE_INT to_uhwi () const; | |
728 | HOST_WIDE_INT to_short_addr () const; | |
729 | ||
730 | /* Public accessors for the interior of a wide int. */ | |
731 | HOST_WIDE_INT sign_mask () const; | |
732 | HOST_WIDE_INT elt (unsigned int) const; | |
5d5bb9bc | 733 | HOST_WIDE_INT sext_elt (unsigned int) const; |
807e902e KZ |
734 | unsigned HOST_WIDE_INT ulow () const; |
735 | unsigned HOST_WIDE_INT uhigh () const; | |
736 | HOST_WIDE_INT slow () const; | |
737 | HOST_WIDE_INT shigh () const; | |
738 | ||
739 | template <typename T> | |
740 | generic_wide_int &operator = (const T &); | |
741 | ||
807e902e KZ |
742 | #define ASSIGNMENT_OPERATOR(OP, F) \ |
743 | template <typename T> \ | |
744 | generic_wide_int &OP (const T &c) { return (*this = wi::F (*this, c)); } | |
745 | ||
8de73453 RS |
746 | /* Restrict these to cases where the shift operator is defined. */ |
747 | #define SHIFT_ASSIGNMENT_OPERATOR(OP, OP2) \ | |
748 | template <typename T> \ | |
749 | generic_wide_int &OP (const T &c) { return (*this = *this OP2 c); } | |
750 | ||
807e902e KZ |
751 | #define INCDEC_OPERATOR(OP, DELTA) \ |
752 | generic_wide_int &OP () { *this += DELTA; return *this; } | |
753 | ||
807e902e KZ |
754 | ASSIGNMENT_OPERATOR (operator &=, bit_and) |
755 | ASSIGNMENT_OPERATOR (operator |=, bit_or) | |
756 | ASSIGNMENT_OPERATOR (operator ^=, bit_xor) | |
757 | ASSIGNMENT_OPERATOR (operator +=, add) | |
758 | ASSIGNMENT_OPERATOR (operator -=, sub) | |
759 | ASSIGNMENT_OPERATOR (operator *=, mul) | |
e535b963 | 760 | ASSIGNMENT_OPERATOR (operator <<=, lshift) |
8de73453 | 761 | SHIFT_ASSIGNMENT_OPERATOR (operator >>=, >>) |
807e902e KZ |
762 | INCDEC_OPERATOR (operator ++, 1) |
763 | INCDEC_OPERATOR (operator --, -1) | |
764 | ||
8de73453 | 765 | #undef SHIFT_ASSIGNMENT_OPERATOR |
807e902e KZ |
766 | #undef ASSIGNMENT_OPERATOR |
767 | #undef INCDEC_OPERATOR | |
768 | ||
769 | /* Debugging functions. */ | |
770 | void dump () const; | |
771 | ||
772 | static const bool is_sign_extended | |
773 | = wi::int_traits <generic_wide_int <storage> >::is_sign_extended; | |
774 | }; | |
775 | ||
776 | template <typename storage> | |
777 | inline generic_wide_int <storage>::generic_wide_int () {} | |
778 | ||
779 | template <typename storage> | |
780 | template <typename T> | |
781 | inline generic_wide_int <storage>::generic_wide_int (const T &x) | |
782 | : storage (x) | |
783 | { | |
784 | } | |
785 | ||
786 | template <typename storage> | |
787 | template <typename T> | |
788 | inline generic_wide_int <storage>::generic_wide_int (const T &x, | |
789 | unsigned int precision) | |
790 | : storage (x, precision) | |
791 | { | |
792 | } | |
793 | ||
794 | /* Return THIS as a signed HOST_WIDE_INT, sign-extending from PRECISION. | |
795 | If THIS does not fit in PRECISION, the information is lost. */ | |
796 | template <typename storage> | |
797 | inline HOST_WIDE_INT | |
798 | generic_wide_int <storage>::to_shwi (unsigned int precision) const | |
799 | { | |
800 | if (precision < HOST_BITS_PER_WIDE_INT) | |
801 | return sext_hwi (this->get_val ()[0], precision); | |
802 | else | |
803 | return this->get_val ()[0]; | |
804 | } | |
805 | ||
806 | /* Return THIS as a signed HOST_WIDE_INT, in its natural precision. */ | |
807 | template <typename storage> | |
808 | inline HOST_WIDE_INT | |
809 | generic_wide_int <storage>::to_shwi () const | |
810 | { | |
811 | if (is_sign_extended) | |
812 | return this->get_val ()[0]; | |
813 | else | |
814 | return to_shwi (this->get_precision ()); | |
815 | } | |
816 | ||
817 | /* Return THIS as an unsigned HOST_WIDE_INT, zero-extending from | |
818 | PRECISION. If THIS does not fit in PRECISION, the information | |
819 | is lost. */ | |
820 | template <typename storage> | |
821 | inline unsigned HOST_WIDE_INT | |
822 | generic_wide_int <storage>::to_uhwi (unsigned int precision) const | |
823 | { | |
824 | if (precision < HOST_BITS_PER_WIDE_INT) | |
825 | return zext_hwi (this->get_val ()[0], precision); | |
826 | else | |
827 | return this->get_val ()[0]; | |
828 | } | |
829 | ||
830 | /* Return THIS as an signed HOST_WIDE_INT, in its natural precision. */ | |
831 | template <typename storage> | |
832 | inline unsigned HOST_WIDE_INT | |
833 | generic_wide_int <storage>::to_uhwi () const | |
834 | { | |
835 | return to_uhwi (this->get_precision ()); | |
836 | } | |
837 | ||
838 | /* TODO: The compiler is half converted from using HOST_WIDE_INT to | |
839 | represent addresses to using offset_int to represent addresses. | |
840 | We use to_short_addr at the interface from new code to old, | |
841 | unconverted code. */ | |
842 | template <typename storage> | |
843 | inline HOST_WIDE_INT | |
844 | generic_wide_int <storage>::to_short_addr () const | |
845 | { | |
846 | return this->get_val ()[0]; | |
847 | } | |
848 | ||
849 | /* Return the implicit value of blocks above get_len (). */ | |
850 | template <typename storage> | |
851 | inline HOST_WIDE_INT | |
852 | generic_wide_int <storage>::sign_mask () const | |
853 | { | |
854 | unsigned int len = this->get_len (); | |
49fb45c8 MS |
855 | gcc_assert (len > 0); |
856 | ||
807e902e KZ |
857 | unsigned HOST_WIDE_INT high = this->get_val ()[len - 1]; |
858 | if (!is_sign_extended) | |
859 | { | |
860 | unsigned int precision = this->get_precision (); | |
861 | int excess = len * HOST_BITS_PER_WIDE_INT - precision; | |
862 | if (excess > 0) | |
863 | high <<= excess; | |
864 | } | |
865 | return (HOST_WIDE_INT) (high) < 0 ? -1 : 0; | |
866 | } | |
867 | ||
868 | /* Return the signed value of the least-significant explicitly-encoded | |
869 | block. */ | |
870 | template <typename storage> | |
871 | inline HOST_WIDE_INT | |
872 | generic_wide_int <storage>::slow () const | |
873 | { | |
874 | return this->get_val ()[0]; | |
875 | } | |
876 | ||
877 | /* Return the signed value of the most-significant explicitly-encoded | |
878 | block. */ | |
879 | template <typename storage> | |
880 | inline HOST_WIDE_INT | |
881 | generic_wide_int <storage>::shigh () const | |
882 | { | |
883 | return this->get_val ()[this->get_len () - 1]; | |
884 | } | |
885 | ||
886 | /* Return the unsigned value of the least-significant | |
887 | explicitly-encoded block. */ | |
888 | template <typename storage> | |
889 | inline unsigned HOST_WIDE_INT | |
890 | generic_wide_int <storage>::ulow () const | |
891 | { | |
892 | return this->get_val ()[0]; | |
893 | } | |
894 | ||
895 | /* Return the unsigned value of the most-significant | |
896 | explicitly-encoded block. */ | |
897 | template <typename storage> | |
898 | inline unsigned HOST_WIDE_INT | |
899 | generic_wide_int <storage>::uhigh () const | |
900 | { | |
901 | return this->get_val ()[this->get_len () - 1]; | |
902 | } | |
903 | ||
904 | /* Return block I, which might be implicitly or explicit encoded. */ | |
905 | template <typename storage> | |
906 | inline HOST_WIDE_INT | |
907 | generic_wide_int <storage>::elt (unsigned int i) const | |
908 | { | |
909 | if (i >= this->get_len ()) | |
910 | return sign_mask (); | |
911 | else | |
912 | return this->get_val ()[i]; | |
913 | } | |
914 | ||
5d5bb9bc RS |
915 | /* Like elt, but sign-extend beyond the upper bit, instead of returning |
916 | the raw encoding. */ | |
917 | template <typename storage> | |
918 | inline HOST_WIDE_INT | |
919 | generic_wide_int <storage>::sext_elt (unsigned int i) const | |
920 | { | |
921 | HOST_WIDE_INT elt_i = elt (i); | |
922 | if (!is_sign_extended) | |
923 | { | |
924 | unsigned int precision = this->get_precision (); | |
925 | unsigned int lsb = i * HOST_BITS_PER_WIDE_INT; | |
926 | if (precision - lsb < HOST_BITS_PER_WIDE_INT) | |
927 | elt_i = sext_hwi (elt_i, precision - lsb); | |
928 | } | |
929 | return elt_i; | |
930 | } | |
931 | ||
807e902e KZ |
932 | template <typename storage> |
933 | template <typename T> | |
8de73453 | 934 | inline generic_wide_int <storage> & |
807e902e KZ |
935 | generic_wide_int <storage>::operator = (const T &x) |
936 | { | |
937 | storage::operator = (x); | |
938 | return *this; | |
939 | } | |
940 | ||
941 | /* Dump the contents of the integer to stderr, for debugging. */ | |
942 | template <typename storage> | |
943 | void | |
944 | generic_wide_int <storage>::dump () const | |
945 | { | |
946 | unsigned int len = this->get_len (); | |
947 | const HOST_WIDE_INT *val = this->get_val (); | |
948 | unsigned int precision = this->get_precision (); | |
949 | fprintf (stderr, "["); | |
950 | if (len * HOST_BITS_PER_WIDE_INT < precision) | |
951 | fprintf (stderr, "...,"); | |
952 | for (unsigned int i = 0; i < len - 1; ++i) | |
953 | fprintf (stderr, HOST_WIDE_INT_PRINT_HEX ",", val[len - 1 - i]); | |
954 | fprintf (stderr, HOST_WIDE_INT_PRINT_HEX "], precision = %d\n", | |
955 | val[0], precision); | |
956 | } | |
957 | ||
958 | namespace wi | |
959 | { | |
807e902e KZ |
960 | template <typename storage> |
961 | struct int_traits < generic_wide_int <storage> > | |
962 | : public wi::int_traits <storage> | |
963 | { | |
964 | static unsigned int get_precision (const generic_wide_int <storage> &); | |
965 | static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, | |
966 | const generic_wide_int <storage> &); | |
967 | }; | |
968 | } | |
969 | ||
970 | template <typename storage> | |
971 | inline unsigned int | |
972 | wi::int_traits < generic_wide_int <storage> >:: | |
973 | get_precision (const generic_wide_int <storage> &x) | |
974 | { | |
975 | return x.get_precision (); | |
976 | } | |
977 | ||
978 | template <typename storage> | |
979 | inline wi::storage_ref | |
980 | wi::int_traits < generic_wide_int <storage> >:: | |
981 | decompose (HOST_WIDE_INT *, unsigned int precision, | |
982 | const generic_wide_int <storage> &x) | |
983 | { | |
984 | gcc_checking_assert (precision == x.get_precision ()); | |
985 | return wi::storage_ref (x.get_val (), x.get_len (), precision); | |
986 | } | |
987 | ||
988 | /* Provide the storage for a wide_int_ref. This acts like a read-only | |
989 | wide_int, with the optimization that VAL is normally a pointer to | |
990 | another integer's storage, so that no array copy is needed. */ | |
8e6cdc90 | 991 | template <bool SE, bool HDP> |
6c1dae73 | 992 | class wide_int_ref_storage : public wi::storage_ref |
807e902e KZ |
993 | { |
994 | private: | |
995 | /* Scratch space that can be used when decomposing the original integer. | |
996 | It must live as long as this object. */ | |
997 | HOST_WIDE_INT scratch[2]; | |
998 | ||
999 | public: | |
0c12fc9b RS |
1000 | wide_int_ref_storage () {} |
1001 | ||
807e902e KZ |
1002 | wide_int_ref_storage (const wi::storage_ref &); |
1003 | ||
1004 | template <typename T> | |
1005 | wide_int_ref_storage (const T &); | |
1006 | ||
1007 | template <typename T> | |
1008 | wide_int_ref_storage (const T &, unsigned int); | |
1009 | }; | |
1010 | ||
1011 | /* Create a reference from an existing reference. */ | |
8e6cdc90 RS |
1012 | template <bool SE, bool HDP> |
1013 | inline wide_int_ref_storage <SE, HDP>:: | |
807e902e KZ |
1014 | wide_int_ref_storage (const wi::storage_ref &x) |
1015 | : storage_ref (x) | |
1016 | {} | |
1017 | ||
1018 | /* Create a reference to integer X in its natural precision. Note | |
1019 | that the natural precision is host-dependent for primitive | |
1020 | types. */ | |
8e6cdc90 | 1021 | template <bool SE, bool HDP> |
807e902e | 1022 | template <typename T> |
8e6cdc90 | 1023 | inline wide_int_ref_storage <SE, HDP>::wide_int_ref_storage (const T &x) |
807e902e KZ |
1024 | : storage_ref (wi::int_traits <T>::decompose (scratch, |
1025 | wi::get_precision (x), x)) | |
1026 | { | |
1027 | } | |
1028 | ||
1029 | /* Create a reference to integer X in precision PRECISION. */ | |
8e6cdc90 | 1030 | template <bool SE, bool HDP> |
807e902e | 1031 | template <typename T> |
8e6cdc90 RS |
1032 | inline wide_int_ref_storage <SE, HDP>:: |
1033 | wide_int_ref_storage (const T &x, unsigned int precision) | |
807e902e KZ |
1034 | : storage_ref (wi::int_traits <T>::decompose (scratch, precision, x)) |
1035 | { | |
1036 | } | |
1037 | ||
1038 | namespace wi | |
1039 | { | |
8e6cdc90 RS |
1040 | template <bool SE, bool HDP> |
1041 | struct int_traits <wide_int_ref_storage <SE, HDP> > | |
807e902e KZ |
1042 | { |
1043 | static const enum precision_type precision_type = VAR_PRECISION; | |
8e6cdc90 | 1044 | static const bool host_dependent_precision = HDP; |
807e902e KZ |
1045 | static const bool is_sign_extended = SE; |
1046 | }; | |
1047 | } | |
1048 | ||
1049 | namespace wi | |
1050 | { | |
1051 | unsigned int force_to_size (HOST_WIDE_INT *, const HOST_WIDE_INT *, | |
1052 | unsigned int, unsigned int, unsigned int, | |
1053 | signop sgn); | |
1054 | unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *, | |
1055 | unsigned int, unsigned int, bool = true); | |
1056 | } | |
1057 | ||
1058 | /* The storage used by wide_int. */ | |
1059 | class GTY(()) wide_int_storage | |
1060 | { | |
1061 | private: | |
1062 | HOST_WIDE_INT val[WIDE_INT_MAX_ELTS]; | |
1063 | unsigned int len; | |
1064 | unsigned int precision; | |
1065 | ||
1066 | public: | |
1067 | wide_int_storage (); | |
1068 | template <typename T> | |
1069 | wide_int_storage (const T &); | |
1070 | ||
1071 | /* The standard generic_wide_int storage methods. */ | |
1072 | unsigned int get_precision () const; | |
1073 | const HOST_WIDE_INT *get_val () const; | |
1074 | unsigned int get_len () const; | |
1075 | HOST_WIDE_INT *write_val (); | |
1076 | void set_len (unsigned int, bool = false); | |
1077 | ||
c8c6a29e RB |
1078 | template <typename T> |
1079 | wide_int_storage &operator = (const T &); | |
1080 | ||
807e902e KZ |
1081 | static wide_int from (const wide_int_ref &, unsigned int, signop); |
1082 | static wide_int from_array (const HOST_WIDE_INT *, unsigned int, | |
1083 | unsigned int, bool = true); | |
1084 | static wide_int create (unsigned int); | |
1085 | ||
1086 | /* FIXME: target-dependent, so should disappear. */ | |
1087 | wide_int bswap () const; | |
1088 | }; | |
1089 | ||
1090 | namespace wi | |
1091 | { | |
1092 | template <> | |
1093 | struct int_traits <wide_int_storage> | |
1094 | { | |
1095 | static const enum precision_type precision_type = VAR_PRECISION; | |
1096 | /* Guaranteed by a static assert in the wide_int_storage constructor. */ | |
1097 | static const bool host_dependent_precision = false; | |
1098 | static const bool is_sign_extended = true; | |
1099 | template <typename T1, typename T2> | |
1100 | static wide_int get_binary_result (const T1 &, const T2 &); | |
1101 | }; | |
1102 | } | |
1103 | ||
1104 | inline wide_int_storage::wide_int_storage () {} | |
1105 | ||
1106 | /* Initialize the storage from integer X, in its natural precision. | |
1107 | Note that we do not allow integers with host-dependent precision | |
1108 | to become wide_ints; wide_ints must always be logically independent | |
1109 | of the host. */ | |
1110 | template <typename T> | |
1111 | inline wide_int_storage::wide_int_storage (const T &x) | |
1112 | { | |
1113 | { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); } | |
1114 | { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); } | |
1115 | WIDE_INT_REF_FOR (T) xi (x); | |
1116 | precision = xi.precision; | |
1117 | wi::copy (*this, xi); | |
1118 | } | |
1119 | ||
c8c6a29e RB |
1120 | template <typename T> |
1121 | inline wide_int_storage& | |
1122 | wide_int_storage::operator = (const T &x) | |
1123 | { | |
1124 | { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); } | |
1125 | { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); } | |
1126 | WIDE_INT_REF_FOR (T) xi (x); | |
1127 | precision = xi.precision; | |
1128 | wi::copy (*this, xi); | |
1129 | return *this; | |
1130 | } | |
1131 | ||
807e902e KZ |
1132 | inline unsigned int |
1133 | wide_int_storage::get_precision () const | |
1134 | { | |
1135 | return precision; | |
1136 | } | |
1137 | ||
1138 | inline const HOST_WIDE_INT * | |
1139 | wide_int_storage::get_val () const | |
1140 | { | |
1141 | return val; | |
1142 | } | |
1143 | ||
1144 | inline unsigned int | |
1145 | wide_int_storage::get_len () const | |
1146 | { | |
1147 | return len; | |
1148 | } | |
1149 | ||
1150 | inline HOST_WIDE_INT * | |
1151 | wide_int_storage::write_val () | |
1152 | { | |
1153 | return val; | |
1154 | } | |
1155 | ||
1156 | inline void | |
1157 | wide_int_storage::set_len (unsigned int l, bool is_sign_extended) | |
1158 | { | |
1159 | len = l; | |
1160 | if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision) | |
1161 | val[len - 1] = sext_hwi (val[len - 1], | |
1162 | precision % HOST_BITS_PER_WIDE_INT); | |
1163 | } | |
1164 | ||
1165 | /* Treat X as having signedness SGN and convert it to a PRECISION-bit | |
1166 | number. */ | |
1167 | inline wide_int | |
1168 | wide_int_storage::from (const wide_int_ref &x, unsigned int precision, | |
1169 | signop sgn) | |
1170 | { | |
1171 | wide_int result = wide_int::create (precision); | |
1172 | result.set_len (wi::force_to_size (result.write_val (), x.val, x.len, | |
1173 | x.precision, precision, sgn)); | |
1174 | return result; | |
1175 | } | |
1176 | ||
1177 | /* Create a wide_int from the explicit block encoding given by VAL and | |
1178 | LEN. PRECISION is the precision of the integer. NEED_CANON_P is | |
1179 | true if the encoding may have redundant trailing blocks. */ | |
1180 | inline wide_int | |
1181 | wide_int_storage::from_array (const HOST_WIDE_INT *val, unsigned int len, | |
1182 | unsigned int precision, bool need_canon_p) | |
1183 | { | |
1184 | wide_int result = wide_int::create (precision); | |
1185 | result.set_len (wi::from_array (result.write_val (), val, len, precision, | |
1186 | need_canon_p)); | |
1187 | return result; | |
1188 | } | |
1189 | ||
1190 | /* Return an uninitialized wide_int with precision PRECISION. */ | |
1191 | inline wide_int | |
1192 | wide_int_storage::create (unsigned int precision) | |
1193 | { | |
1194 | wide_int x; | |
1195 | x.precision = precision; | |
1196 | return x; | |
1197 | } | |
1198 | ||
1199 | template <typename T1, typename T2> | |
1200 | inline wide_int | |
1201 | wi::int_traits <wide_int_storage>::get_binary_result (const T1 &x, const T2 &y) | |
1202 | { | |
1203 | /* This shouldn't be used for two flexible-precision inputs. */ | |
1204 | STATIC_ASSERT (wi::int_traits <T1>::precision_type != FLEXIBLE_PRECISION | |
1205 | || wi::int_traits <T2>::precision_type != FLEXIBLE_PRECISION); | |
1206 | if (wi::int_traits <T1>::precision_type == FLEXIBLE_PRECISION) | |
1207 | return wide_int::create (wi::get_precision (y)); | |
1208 | else | |
1209 | return wide_int::create (wi::get_precision (x)); | |
1210 | } | |
1211 | ||
1212 | /* The storage used by FIXED_WIDE_INT (N). */ | |
1213 | template <int N> | |
1214 | class GTY(()) fixed_wide_int_storage | |
1215 | { | |
1216 | private: | |
1217 | HOST_WIDE_INT val[(N + HOST_BITS_PER_WIDE_INT + 1) / HOST_BITS_PER_WIDE_INT]; | |
1218 | unsigned int len; | |
1219 | ||
1220 | public: | |
1221 | fixed_wide_int_storage (); | |
1222 | template <typename T> | |
1223 | fixed_wide_int_storage (const T &); | |
1224 | ||
1225 | /* The standard generic_wide_int storage methods. */ | |
1226 | unsigned int get_precision () const; | |
1227 | const HOST_WIDE_INT *get_val () const; | |
1228 | unsigned int get_len () const; | |
1229 | HOST_WIDE_INT *write_val (); | |
1230 | void set_len (unsigned int, bool = false); | |
1231 | ||
1232 | static FIXED_WIDE_INT (N) from (const wide_int_ref &, signop); | |
1233 | static FIXED_WIDE_INT (N) from_array (const HOST_WIDE_INT *, unsigned int, | |
1234 | bool = true); | |
1235 | }; | |
1236 | ||
1237 | namespace wi | |
1238 | { | |
807e902e KZ |
1239 | template <int N> |
1240 | struct int_traits < fixed_wide_int_storage <N> > | |
1241 | { | |
1242 | static const enum precision_type precision_type = CONST_PRECISION; | |
1243 | static const bool host_dependent_precision = false; | |
1244 | static const bool is_sign_extended = true; | |
1245 | static const unsigned int precision = N; | |
1246 | template <typename T1, typename T2> | |
1247 | static FIXED_WIDE_INT (N) get_binary_result (const T1 &, const T2 &); | |
1248 | }; | |
1249 | } | |
1250 | ||
1251 | template <int N> | |
1252 | inline fixed_wide_int_storage <N>::fixed_wide_int_storage () {} | |
1253 | ||
1254 | /* Initialize the storage from integer X, in precision N. */ | |
1255 | template <int N> | |
1256 | template <typename T> | |
1257 | inline fixed_wide_int_storage <N>::fixed_wide_int_storage (const T &x) | |
1258 | { | |
1259 | /* Check for type compatibility. We don't want to initialize a | |
1260 | fixed-width integer from something like a wide_int. */ | |
1261 | WI_BINARY_RESULT (T, FIXED_WIDE_INT (N)) *assertion ATTRIBUTE_UNUSED; | |
1262 | wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N)); | |
1263 | } | |
1264 | ||
1265 | template <int N> | |
1266 | inline unsigned int | |
1267 | fixed_wide_int_storage <N>::get_precision () const | |
1268 | { | |
1269 | return N; | |
1270 | } | |
1271 | ||
1272 | template <int N> | |
1273 | inline const HOST_WIDE_INT * | |
1274 | fixed_wide_int_storage <N>::get_val () const | |
1275 | { | |
1276 | return val; | |
1277 | } | |
1278 | ||
1279 | template <int N> | |
1280 | inline unsigned int | |
1281 | fixed_wide_int_storage <N>::get_len () const | |
1282 | { | |
1283 | return len; | |
1284 | } | |
1285 | ||
1286 | template <int N> | |
1287 | inline HOST_WIDE_INT * | |
1288 | fixed_wide_int_storage <N>::write_val () | |
1289 | { | |
1290 | return val; | |
1291 | } | |
1292 | ||
1293 | template <int N> | |
1294 | inline void | |
1295 | fixed_wide_int_storage <N>::set_len (unsigned int l, bool) | |
1296 | { | |
1297 | len = l; | |
1298 | /* There are no excess bits in val[len - 1]. */ | |
1299 | STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0); | |
1300 | } | |
1301 | ||
1302 | /* Treat X as having signedness SGN and convert it to an N-bit number. */ | |
1303 | template <int N> | |
1304 | inline FIXED_WIDE_INT (N) | |
1305 | fixed_wide_int_storage <N>::from (const wide_int_ref &x, signop sgn) | |
1306 | { | |
1307 | FIXED_WIDE_INT (N) result; | |
1308 | result.set_len (wi::force_to_size (result.write_val (), x.val, x.len, | |
1309 | x.precision, N, sgn)); | |
1310 | return result; | |
1311 | } | |
1312 | ||
1313 | /* Create a FIXED_WIDE_INT (N) from the explicit block encoding given by | |
1314 | VAL and LEN. NEED_CANON_P is true if the encoding may have redundant | |
1315 | trailing blocks. */ | |
1316 | template <int N> | |
1317 | inline FIXED_WIDE_INT (N) | |
1318 | fixed_wide_int_storage <N>::from_array (const HOST_WIDE_INT *val, | |
1319 | unsigned int len, | |
1320 | bool need_canon_p) | |
1321 | { | |
1322 | FIXED_WIDE_INT (N) result; | |
1323 | result.set_len (wi::from_array (result.write_val (), val, len, | |
1324 | N, need_canon_p)); | |
1325 | return result; | |
1326 | } | |
1327 | ||
1328 | template <int N> | |
1329 | template <typename T1, typename T2> | |
1330 | inline FIXED_WIDE_INT (N) | |
1331 | wi::int_traits < fixed_wide_int_storage <N> >:: | |
1332 | get_binary_result (const T1 &, const T2 &) | |
1333 | { | |
1334 | return FIXED_WIDE_INT (N) (); | |
1335 | } | |
1336 | ||
1337 | /* A reference to one element of a trailing_wide_ints structure. */ | |
1338 | class trailing_wide_int_storage | |
1339 | { | |
1340 | private: | |
1341 | /* The precision of the integer, which is a fixed property of the | |
1342 | parent trailing_wide_ints. */ | |
1343 | unsigned int m_precision; | |
1344 | ||
1345 | /* A pointer to the length field. */ | |
1346 | unsigned char *m_len; | |
1347 | ||
1348 | /* A pointer to the HWI array. There are enough elements to hold all | |
1349 | values of precision M_PRECISION. */ | |
1350 | HOST_WIDE_INT *m_val; | |
1351 | ||
1352 | public: | |
1353 | trailing_wide_int_storage (unsigned int, unsigned char *, HOST_WIDE_INT *); | |
1354 | ||
1355 | /* The standard generic_wide_int storage methods. */ | |
1356 | unsigned int get_len () const; | |
1357 | unsigned int get_precision () const; | |
1358 | const HOST_WIDE_INT *get_val () const; | |
1359 | HOST_WIDE_INT *write_val (); | |
1360 | void set_len (unsigned int, bool = false); | |
1361 | ||
1362 | template <typename T> | |
1363 | trailing_wide_int_storage &operator = (const T &); | |
1364 | }; | |
1365 | ||
1366 | typedef generic_wide_int <trailing_wide_int_storage> trailing_wide_int; | |
1367 | ||
1368 | /* trailing_wide_int behaves like a wide_int. */ | |
1369 | namespace wi | |
1370 | { | |
1371 | template <> | |
1372 | struct int_traits <trailing_wide_int_storage> | |
1373 | : public int_traits <wide_int_storage> {}; | |
1374 | } | |
1375 | ||
1376 | /* An array of N wide_int-like objects that can be put at the end of | |
1377 | a variable-sized structure. Use extra_size to calculate how many | |
1378 | bytes beyond the sizeof need to be allocated. Use set_precision | |
1379 | to initialize the structure. */ | |
1380 | template <int N> | |
6c1dae73 | 1381 | struct GTY((user)) trailing_wide_ints |
807e902e KZ |
1382 | { |
1383 | private: | |
1384 | /* The shared precision of each number. */ | |
1385 | unsigned short m_precision; | |
1386 | ||
1387 | /* The shared maximum length of each number. */ | |
1388 | unsigned char m_max_len; | |
1389 | ||
1390 | /* The current length of each number. */ | |
1391 | unsigned char m_len[N]; | |
1392 | ||
1393 | /* The variable-length part of the structure, which always contains | |
1394 | at least one HWI. Element I starts at index I * M_MAX_LEN. */ | |
1395 | HOST_WIDE_INT m_val[1]; | |
1396 | ||
1397 | public: | |
0c12fc9b RS |
1398 | typedef WIDE_INT_REF_FOR (trailing_wide_int_storage) const_reference; |
1399 | ||
807e902e | 1400 | void set_precision (unsigned int); |
0c12fc9b | 1401 | unsigned int get_precision () const { return m_precision; } |
807e902e | 1402 | trailing_wide_int operator [] (unsigned int); |
0c12fc9b | 1403 | const_reference operator [] (unsigned int) const; |
807e902e | 1404 | static size_t extra_size (unsigned int); |
0c12fc9b | 1405 | size_t extra_size () const { return extra_size (m_precision); } |
807e902e KZ |
1406 | }; |
1407 | ||
1408 | inline trailing_wide_int_storage:: | |
1409 | trailing_wide_int_storage (unsigned int precision, unsigned char *len, | |
1410 | HOST_WIDE_INT *val) | |
1411 | : m_precision (precision), m_len (len), m_val (val) | |
1412 | { | |
1413 | } | |
1414 | ||
1415 | inline unsigned int | |
1416 | trailing_wide_int_storage::get_len () const | |
1417 | { | |
1418 | return *m_len; | |
1419 | } | |
1420 | ||
1421 | inline unsigned int | |
1422 | trailing_wide_int_storage::get_precision () const | |
1423 | { | |
1424 | return m_precision; | |
1425 | } | |
1426 | ||
1427 | inline const HOST_WIDE_INT * | |
1428 | trailing_wide_int_storage::get_val () const | |
1429 | { | |
1430 | return m_val; | |
1431 | } | |
1432 | ||
1433 | inline HOST_WIDE_INT * | |
1434 | trailing_wide_int_storage::write_val () | |
1435 | { | |
1436 | return m_val; | |
1437 | } | |
1438 | ||
1439 | inline void | |
1440 | trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended) | |
1441 | { | |
1442 | *m_len = len; | |
1443 | if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision) | |
1444 | m_val[len - 1] = sext_hwi (m_val[len - 1], | |
1445 | m_precision % HOST_BITS_PER_WIDE_INT); | |
1446 | } | |
1447 | ||
1448 | template <typename T> | |
1449 | inline trailing_wide_int_storage & | |
1450 | trailing_wide_int_storage::operator = (const T &x) | |
1451 | { | |
1452 | WIDE_INT_REF_FOR (T) xi (x, m_precision); | |
1453 | wi::copy (*this, xi); | |
1454 | return *this; | |
1455 | } | |
1456 | ||
1457 | /* Initialize the structure and record that all elements have precision | |
1458 | PRECISION. */ | |
1459 | template <int N> | |
1460 | inline void | |
1461 | trailing_wide_ints <N>::set_precision (unsigned int precision) | |
1462 | { | |
1463 | m_precision = precision; | |
1464 | m_max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1) | |
1465 | / HOST_BITS_PER_WIDE_INT); | |
1466 | } | |
1467 | ||
1468 | /* Return a reference to element INDEX. */ | |
1469 | template <int N> | |
1470 | inline trailing_wide_int | |
1471 | trailing_wide_ints <N>::operator [] (unsigned int index) | |
1472 | { | |
1473 | return trailing_wide_int_storage (m_precision, &m_len[index], | |
1474 | &m_val[index * m_max_len]); | |
1475 | } | |
1476 | ||
0c12fc9b RS |
1477 | template <int N> |
1478 | inline typename trailing_wide_ints <N>::const_reference | |
1479 | trailing_wide_ints <N>::operator [] (unsigned int index) const | |
1480 | { | |
1481 | return wi::storage_ref (&m_val[index * m_max_len], | |
1482 | m_len[index], m_precision); | |
1483 | } | |
1484 | ||
807e902e KZ |
1485 | /* Return how many extra bytes need to be added to the end of the structure |
1486 | in order to handle N wide_ints of precision PRECISION. */ | |
1487 | template <int N> | |
1488 | inline size_t | |
1489 | trailing_wide_ints <N>::extra_size (unsigned int precision) | |
1490 | { | |
1491 | unsigned int max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1) | |
1492 | / HOST_BITS_PER_WIDE_INT); | |
1493 | return (N * max_len - 1) * sizeof (HOST_WIDE_INT); | |
1494 | } | |
1495 | ||
1496 | /* This macro is used in structures that end with a trailing_wide_ints field | |
1497 | called FIELD. It declares get_NAME() and set_NAME() methods to access | |
1498 | element I of FIELD. */ | |
1499 | #define TRAILING_WIDE_INT_ACCESSOR(NAME, FIELD, I) \ | |
1500 | trailing_wide_int get_##NAME () { return FIELD[I]; } \ | |
1501 | template <typename T> void set_##NAME (const T &x) { FIELD[I] = x; } | |
1502 | ||
1503 | namespace wi | |
1504 | { | |
1505 | /* Implementation of int_traits for primitive integer types like "int". */ | |
1506 | template <typename T, bool signed_p> | |
1507 | struct primitive_int_traits | |
1508 | { | |
1509 | static const enum precision_type precision_type = FLEXIBLE_PRECISION; | |
1510 | static const bool host_dependent_precision = true; | |
1511 | static const bool is_sign_extended = true; | |
1512 | static unsigned int get_precision (T); | |
1513 | static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, T); | |
1514 | }; | |
1515 | } | |
1516 | ||
1517 | template <typename T, bool signed_p> | |
1518 | inline unsigned int | |
1519 | wi::primitive_int_traits <T, signed_p>::get_precision (T) | |
1520 | { | |
1521 | return sizeof (T) * CHAR_BIT; | |
1522 | } | |
1523 | ||
1524 | template <typename T, bool signed_p> | |
1525 | inline wi::storage_ref | |
1526 | wi::primitive_int_traits <T, signed_p>::decompose (HOST_WIDE_INT *scratch, | |
1527 | unsigned int precision, T x) | |
1528 | { | |
1529 | scratch[0] = x; | |
1530 | if (signed_p || scratch[0] >= 0 || precision <= HOST_BITS_PER_WIDE_INT) | |
1531 | return wi::storage_ref (scratch, 1, precision); | |
1532 | scratch[1] = 0; | |
1533 | return wi::storage_ref (scratch, 2, precision); | |
1534 | } | |
1535 | ||
1536 | /* Allow primitive C types to be used in wi:: routines. */ | |
1537 | namespace wi | |
1538 | { | |
b0567726 RS |
1539 | template <> |
1540 | struct int_traits <unsigned char> | |
1541 | : public primitive_int_traits <unsigned char, false> {}; | |
1542 | ||
1543 | template <> | |
1544 | struct int_traits <unsigned short> | |
1545 | : public primitive_int_traits <unsigned short, false> {}; | |
1546 | ||
807e902e KZ |
1547 | template <> |
1548 | struct int_traits <int> | |
1549 | : public primitive_int_traits <int, true> {}; | |
1550 | ||
1551 | template <> | |
1552 | struct int_traits <unsigned int> | |
1553 | : public primitive_int_traits <unsigned int, false> {}; | |
1554 | ||
807e902e | 1555 | template <> |
d93461f7 RB |
1556 | struct int_traits <long> |
1557 | : public primitive_int_traits <long, true> {}; | |
807e902e KZ |
1558 | |
1559 | template <> | |
d93461f7 RB |
1560 | struct int_traits <unsigned long> |
1561 | : public primitive_int_traits <unsigned long, false> {}; | |
1562 | ||
1563 | #if defined HAVE_LONG_LONG | |
1564 | template <> | |
1565 | struct int_traits <long long> | |
1566 | : public primitive_int_traits <long long, true> {}; | |
1567 | ||
1568 | template <> | |
1569 | struct int_traits <unsigned long long> | |
1570 | : public primitive_int_traits <unsigned long long, false> {}; | |
1571 | #endif | |
807e902e KZ |
1572 | } |
1573 | ||
1574 | namespace wi | |
1575 | { | |
1576 | /* Stores HWI-sized integer VAL, treating it as having signedness SGN | |
1577 | and precision PRECISION. */ | |
6c1dae73 | 1578 | class hwi_with_prec |
807e902e | 1579 | { |
6c1dae73 | 1580 | public: |
e535b963 | 1581 | hwi_with_prec () {} |
807e902e KZ |
1582 | hwi_with_prec (HOST_WIDE_INT, unsigned int, signop); |
1583 | HOST_WIDE_INT val; | |
1584 | unsigned int precision; | |
1585 | signop sgn; | |
1586 | }; | |
1587 | ||
1588 | hwi_with_prec shwi (HOST_WIDE_INT, unsigned int); | |
1589 | hwi_with_prec uhwi (unsigned HOST_WIDE_INT, unsigned int); | |
1590 | ||
1591 | hwi_with_prec minus_one (unsigned int); | |
1592 | hwi_with_prec zero (unsigned int); | |
1593 | hwi_with_prec one (unsigned int); | |
1594 | hwi_with_prec two (unsigned int); | |
1595 | } | |
1596 | ||
1597 | inline wi::hwi_with_prec::hwi_with_prec (HOST_WIDE_INT v, unsigned int p, | |
1598 | signop s) | |
4ea9e1a5 | 1599 | : precision (p), sgn (s) |
807e902e | 1600 | { |
4ea9e1a5 AH |
1601 | if (precision < HOST_BITS_PER_WIDE_INT) |
1602 | val = sext_hwi (v, precision); | |
1603 | else | |
1604 | val = v; | |
807e902e KZ |
1605 | } |
1606 | ||
1607 | /* Return a signed integer that has value VAL and precision PRECISION. */ | |
1608 | inline wi::hwi_with_prec | |
1609 | wi::shwi (HOST_WIDE_INT val, unsigned int precision) | |
1610 | { | |
1611 | return hwi_with_prec (val, precision, SIGNED); | |
1612 | } | |
1613 | ||
1614 | /* Return an unsigned integer that has value VAL and precision PRECISION. */ | |
1615 | inline wi::hwi_with_prec | |
1616 | wi::uhwi (unsigned HOST_WIDE_INT val, unsigned int precision) | |
1617 | { | |
1618 | return hwi_with_prec (val, precision, UNSIGNED); | |
1619 | } | |
1620 | ||
1621 | /* Return a wide int of -1 with precision PRECISION. */ | |
1622 | inline wi::hwi_with_prec | |
1623 | wi::minus_one (unsigned int precision) | |
1624 | { | |
1625 | return wi::shwi (-1, precision); | |
1626 | } | |
1627 | ||
1628 | /* Return a wide int of 0 with precision PRECISION. */ | |
1629 | inline wi::hwi_with_prec | |
1630 | wi::zero (unsigned int precision) | |
1631 | { | |
1632 | return wi::shwi (0, precision); | |
1633 | } | |
1634 | ||
1635 | /* Return a wide int of 1 with precision PRECISION. */ | |
1636 | inline wi::hwi_with_prec | |
1637 | wi::one (unsigned int precision) | |
1638 | { | |
1639 | return wi::shwi (1, precision); | |
1640 | } | |
1641 | ||
1642 | /* Return a wide int of 2 with precision PRECISION. */ | |
1643 | inline wi::hwi_with_prec | |
1644 | wi::two (unsigned int precision) | |
1645 | { | |
1646 | return wi::shwi (2, precision); | |
1647 | } | |
1648 | ||
e535b963 RS |
1649 | namespace wi |
1650 | { | |
1651 | /* ints_for<T>::zero (X) returns a zero that, when asssigned to a T, | |
1652 | gives that T the same precision as X. */ | |
1653 | template<typename T, precision_type = int_traits<T>::precision_type> | |
1654 | struct ints_for | |
1655 | { | |
1656 | static int zero (const T &) { return 0; } | |
1657 | }; | |
1658 | ||
1659 | template<typename T> | |
1660 | struct ints_for<T, VAR_PRECISION> | |
1661 | { | |
1662 | static hwi_with_prec zero (const T &); | |
1663 | }; | |
1664 | } | |
1665 | ||
1666 | template<typename T> | |
1667 | inline wi::hwi_with_prec | |
1668 | wi::ints_for<T, wi::VAR_PRECISION>::zero (const T &x) | |
1669 | { | |
1670 | return wi::zero (wi::get_precision (x)); | |
1671 | } | |
1672 | ||
807e902e KZ |
1673 | namespace wi |
1674 | { | |
1675 | template <> | |
1676 | struct int_traits <wi::hwi_with_prec> | |
1677 | { | |
1678 | static const enum precision_type precision_type = VAR_PRECISION; | |
1679 | /* hwi_with_prec has an explicitly-given precision, rather than the | |
1680 | precision of HOST_WIDE_INT. */ | |
1681 | static const bool host_dependent_precision = false; | |
1682 | static const bool is_sign_extended = true; | |
1683 | static unsigned int get_precision (const wi::hwi_with_prec &); | |
1684 | static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, | |
1685 | const wi::hwi_with_prec &); | |
1686 | }; | |
1687 | } | |
1688 | ||
1689 | inline unsigned int | |
1690 | wi::int_traits <wi::hwi_with_prec>::get_precision (const wi::hwi_with_prec &x) | |
1691 | { | |
1692 | return x.precision; | |
1693 | } | |
1694 | ||
1695 | inline wi::storage_ref | |
1696 | wi::int_traits <wi::hwi_with_prec>:: | |
1697 | decompose (HOST_WIDE_INT *scratch, unsigned int precision, | |
1698 | const wi::hwi_with_prec &x) | |
1699 | { | |
1700 | gcc_checking_assert (precision == x.precision); | |
1701 | scratch[0] = x.val; | |
1702 | if (x.sgn == SIGNED || x.val >= 0 || precision <= HOST_BITS_PER_WIDE_INT) | |
1703 | return wi::storage_ref (scratch, 1, precision); | |
1704 | scratch[1] = 0; | |
1705 | return wi::storage_ref (scratch, 2, precision); | |
1706 | } | |
1707 | ||
1708 | /* Private functions for handling large cases out of line. They take | |
1709 | individual length and array parameters because that is cheaper for | |
1710 | the inline caller than constructing an object on the stack and | |
1711 | passing a reference to it. (Although many callers use wide_int_refs, | |
1712 | we generally want those to be removed by SRA.) */ | |
1713 | namespace wi | |
1714 | { | |
1715 | bool eq_p_large (const HOST_WIDE_INT *, unsigned int, | |
1716 | const HOST_WIDE_INT *, unsigned int, unsigned int); | |
1717 | bool lts_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int, | |
1718 | const HOST_WIDE_INT *, unsigned int); | |
1719 | bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int, | |
1720 | const HOST_WIDE_INT *, unsigned int); | |
1721 | int cmps_large (const HOST_WIDE_INT *, unsigned int, unsigned int, | |
1722 | const HOST_WIDE_INT *, unsigned int); | |
1723 | int cmpu_large (const HOST_WIDE_INT *, unsigned int, unsigned int, | |
1724 | const HOST_WIDE_INT *, unsigned int); | |
1725 | unsigned int sext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, | |
1726 | unsigned int, | |
1727 | unsigned int, unsigned int); | |
1728 | unsigned int zext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, | |
1729 | unsigned int, | |
1730 | unsigned int, unsigned int); | |
1731 | unsigned int set_bit_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, | |
1732 | unsigned int, unsigned int, unsigned int); | |
1733 | unsigned int lshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, | |
1734 | unsigned int, unsigned int, unsigned int); | |
1735 | unsigned int lrshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, | |
1736 | unsigned int, unsigned int, unsigned int, | |
1737 | unsigned int); | |
1738 | unsigned int arshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, | |
1739 | unsigned int, unsigned int, unsigned int, | |
1740 | unsigned int); | |
1741 | unsigned int and_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, | |
1742 | const HOST_WIDE_INT *, unsigned int, unsigned int); | |
1743 | unsigned int and_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, | |
1744 | unsigned int, const HOST_WIDE_INT *, | |
1745 | unsigned int, unsigned int); | |
1746 | unsigned int or_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, | |
1747 | const HOST_WIDE_INT *, unsigned int, unsigned int); | |
1748 | unsigned int or_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, | |
1749 | unsigned int, const HOST_WIDE_INT *, | |
1750 | unsigned int, unsigned int); | |
1751 | unsigned int xor_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, | |
1752 | const HOST_WIDE_INT *, unsigned int, unsigned int); | |
1753 | unsigned int add_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, | |
1754 | const HOST_WIDE_INT *, unsigned int, unsigned int, | |
4a669ac3 | 1755 | signop, overflow_type *); |
807e902e KZ |
1756 | unsigned int sub_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, |
1757 | const HOST_WIDE_INT *, unsigned int, unsigned int, | |
4a669ac3 | 1758 | signop, overflow_type *); |
807e902e KZ |
1759 | unsigned int mul_internal (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
1760 | unsigned int, const HOST_WIDE_INT *, | |
4a669ac3 AH |
1761 | unsigned int, unsigned int, signop, |
1762 | overflow_type *, bool); | |
807e902e KZ |
1763 | unsigned int divmod_internal (HOST_WIDE_INT *, unsigned int *, |
1764 | HOST_WIDE_INT *, const HOST_WIDE_INT *, | |
1765 | unsigned int, unsigned int, | |
1766 | const HOST_WIDE_INT *, | |
1767 | unsigned int, unsigned int, | |
4a669ac3 | 1768 | signop, overflow_type *); |
807e902e KZ |
1769 | } |
1770 | ||
1771 | /* Return the number of bits that integer X can hold. */ | |
1772 | template <typename T> | |
1773 | inline unsigned int | |
1774 | wi::get_precision (const T &x) | |
1775 | { | |
1776 | return wi::int_traits <T>::get_precision (x); | |
1777 | } | |
1778 | ||
1779 | /* Return the number of bits that the result of a binary operation can | |
1780 | hold when the input operands are X and Y. */ | |
1781 | template <typename T1, typename T2> | |
1782 | inline unsigned int | |
1783 | wi::get_binary_precision (const T1 &x, const T2 &y) | |
1784 | { | |
1785 | return get_precision (wi::int_traits <WI_BINARY_RESULT (T1, T2)>:: | |
1786 | get_binary_result (x, y)); | |
1787 | } | |
1788 | ||
1789 | /* Copy the contents of Y to X, but keeping X's current precision. */ | |
1790 | template <typename T1, typename T2> | |
1791 | inline void | |
1792 | wi::copy (T1 &x, const T2 &y) | |
1793 | { | |
1794 | HOST_WIDE_INT *xval = x.write_val (); | |
1795 | const HOST_WIDE_INT *yval = y.get_val (); | |
1796 | unsigned int len = y.get_len (); | |
1797 | unsigned int i = 0; | |
1798 | do | |
1799 | xval[i] = yval[i]; | |
1800 | while (++i < len); | |
1801 | x.set_len (len, y.is_sign_extended); | |
1802 | } | |
1803 | ||
1804 | /* Return true if X fits in a HOST_WIDE_INT with no loss of precision. */ | |
1805 | template <typename T> | |
1806 | inline bool | |
1807 | wi::fits_shwi_p (const T &x) | |
1808 | { | |
1809 | WIDE_INT_REF_FOR (T) xi (x); | |
1810 | return xi.len == 1; | |
1811 | } | |
1812 | ||
1813 | /* Return true if X fits in an unsigned HOST_WIDE_INT with no loss of | |
1814 | precision. */ | |
1815 | template <typename T> | |
1816 | inline bool | |
1817 | wi::fits_uhwi_p (const T &x) | |
1818 | { | |
1819 | WIDE_INT_REF_FOR (T) xi (x); | |
1820 | if (xi.precision <= HOST_BITS_PER_WIDE_INT) | |
1821 | return true; | |
1822 | if (xi.len == 1) | |
1823 | return xi.slow () >= 0; | |
1824 | return xi.len == 2 && xi.uhigh () == 0; | |
1825 | } | |
1826 | ||
1827 | /* Return true if X is negative based on the interpretation of SGN. | |
1828 | For UNSIGNED, this is always false. */ | |
1829 | template <typename T> | |
1830 | inline bool | |
1831 | wi::neg_p (const T &x, signop sgn) | |
1832 | { | |
1833 | WIDE_INT_REF_FOR (T) xi (x); | |
1834 | if (sgn == UNSIGNED) | |
1835 | return false; | |
1836 | return xi.sign_mask () < 0; | |
1837 | } | |
1838 | ||
1839 | /* Return -1 if the top bit of X is set and 0 if the top bit is clear. */ | |
1840 | template <typename T> | |
1841 | inline HOST_WIDE_INT | |
1842 | wi::sign_mask (const T &x) | |
1843 | { | |
1844 | WIDE_INT_REF_FOR (T) xi (x); | |
1845 | return xi.sign_mask (); | |
1846 | } | |
1847 | ||
1848 | /* Return true if X == Y. X and Y must be binary-compatible. */ | |
1849 | template <typename T1, typename T2> | |
1850 | inline bool | |
1851 | wi::eq_p (const T1 &x, const T2 &y) | |
1852 | { | |
1853 | unsigned int precision = get_binary_precision (x, y); | |
1854 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
1855 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
1856 | if (xi.is_sign_extended && yi.is_sign_extended) | |
1857 | { | |
1858 | /* This case reduces to array equality. */ | |
1859 | if (xi.len != yi.len) | |
1860 | return false; | |
1861 | unsigned int i = 0; | |
1862 | do | |
1863 | if (xi.val[i] != yi.val[i]) | |
1864 | return false; | |
1865 | while (++i != xi.len); | |
1866 | return true; | |
1867 | } | |
1868 | if (__builtin_expect (yi.len == 1, true)) | |
1869 | { | |
1870 | /* XI is only equal to YI if it too has a single HWI. */ | |
1871 | if (xi.len != 1) | |
1872 | return false; | |
1873 | /* Excess bits in xi.val[0] will be signs or zeros, so comparisons | |
1874 | with 0 are simple. */ | |
1875 | if (STATIC_CONSTANT_P (yi.val[0] == 0)) | |
1876 | return xi.val[0] == 0; | |
1877 | /* Otherwise flush out any excess bits first. */ | |
1878 | unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0]; | |
1879 | int excess = HOST_BITS_PER_WIDE_INT - precision; | |
1880 | if (excess > 0) | |
1881 | diff <<= excess; | |
1882 | return diff == 0; | |
1883 | } | |
1884 | return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision); | |
1885 | } | |
1886 | ||
1887 | /* Return true if X != Y. X and Y must be binary-compatible. */ | |
1888 | template <typename T1, typename T2> | |
1889 | inline bool | |
1890 | wi::ne_p (const T1 &x, const T2 &y) | |
1891 | { | |
1892 | return !eq_p (x, y); | |
1893 | } | |
1894 | ||
1895 | /* Return true if X < Y when both are treated as signed values. */ | |
1896 | template <typename T1, typename T2> | |
1897 | inline bool | |
1898 | wi::lts_p (const T1 &x, const T2 &y) | |
1899 | { | |
1900 | unsigned int precision = get_binary_precision (x, y); | |
1901 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
1902 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
1903 | /* We optimize x < y, where y is 64 or fewer bits. */ | |
1904 | if (wi::fits_shwi_p (yi)) | |
1905 | { | |
1906 | /* Make lts_p (x, 0) as efficient as wi::neg_p (x). */ | |
1907 | if (STATIC_CONSTANT_P (yi.val[0] == 0)) | |
1908 | return neg_p (xi); | |
1909 | /* If x fits directly into a shwi, we can compare directly. */ | |
1910 | if (wi::fits_shwi_p (xi)) | |
1911 | return xi.to_shwi () < yi.to_shwi (); | |
1912 | /* If x doesn't fit and is negative, then it must be more | |
1913 | negative than any value in y, and hence smaller than y. */ | |
1914 | if (neg_p (xi)) | |
1915 | return true; | |
1916 | /* If x is positive, then it must be larger than any value in y, | |
1917 | and hence greater than y. */ | |
1918 | return false; | |
1919 | } | |
1920 | /* Optimize the opposite case, if it can be detected at compile time. */ | |
1921 | if (STATIC_CONSTANT_P (xi.len == 1)) | |
1922 | /* If YI is negative it is lower than the least HWI. | |
1923 | If YI is positive it is greater than the greatest HWI. */ | |
1924 | return !neg_p (yi); | |
1925 | return lts_p_large (xi.val, xi.len, precision, yi.val, yi.len); | |
1926 | } | |
1927 | ||
1928 | /* Return true if X < Y when both are treated as unsigned values. */ | |
1929 | template <typename T1, typename T2> | |
1930 | inline bool | |
1931 | wi::ltu_p (const T1 &x, const T2 &y) | |
1932 | { | |
1933 | unsigned int precision = get_binary_precision (x, y); | |
1934 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
1935 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
1936 | /* Optimize comparisons with constants. */ | |
1937 | if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0)) | |
1938 | return xi.len == 1 && xi.to_uhwi () < (unsigned HOST_WIDE_INT) yi.val[0]; | |
1939 | if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0)) | |
1940 | return yi.len != 1 || yi.to_uhwi () > (unsigned HOST_WIDE_INT) xi.val[0]; | |
1941 | /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended | |
1942 | for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both | |
1943 | values does not change the result. */ | |
1944 | if (__builtin_expect (xi.len + yi.len == 2, true)) | |
1945 | { | |
1946 | unsigned HOST_WIDE_INT xl = xi.to_uhwi (); | |
1947 | unsigned HOST_WIDE_INT yl = yi.to_uhwi (); | |
1948 | return xl < yl; | |
1949 | } | |
1950 | return ltu_p_large (xi.val, xi.len, precision, yi.val, yi.len); | |
1951 | } | |
1952 | ||
1953 | /* Return true if X < Y. Signedness of X and Y is indicated by SGN. */ | |
1954 | template <typename T1, typename T2> | |
1955 | inline bool | |
1956 | wi::lt_p (const T1 &x, const T2 &y, signop sgn) | |
1957 | { | |
1958 | if (sgn == SIGNED) | |
1959 | return lts_p (x, y); | |
1960 | else | |
1961 | return ltu_p (x, y); | |
1962 | } | |
1963 | ||
1964 | /* Return true if X <= Y when both are treated as signed values. */ | |
1965 | template <typename T1, typename T2> | |
1966 | inline bool | |
1967 | wi::les_p (const T1 &x, const T2 &y) | |
1968 | { | |
1969 | return !lts_p (y, x); | |
1970 | } | |
1971 | ||
1972 | /* Return true if X <= Y when both are treated as unsigned values. */ | |
1973 | template <typename T1, typename T2> | |
1974 | inline bool | |
1975 | wi::leu_p (const T1 &x, const T2 &y) | |
1976 | { | |
1977 | return !ltu_p (y, x); | |
1978 | } | |
1979 | ||
1980 | /* Return true if X <= Y. Signedness of X and Y is indicated by SGN. */ | |
1981 | template <typename T1, typename T2> | |
1982 | inline bool | |
1983 | wi::le_p (const T1 &x, const T2 &y, signop sgn) | |
1984 | { | |
1985 | if (sgn == SIGNED) | |
1986 | return les_p (x, y); | |
1987 | else | |
1988 | return leu_p (x, y); | |
1989 | } | |
1990 | ||
1991 | /* Return true if X > Y when both are treated as signed values. */ | |
1992 | template <typename T1, typename T2> | |
1993 | inline bool | |
1994 | wi::gts_p (const T1 &x, const T2 &y) | |
1995 | { | |
1996 | return lts_p (y, x); | |
1997 | } | |
1998 | ||
1999 | /* Return true if X > Y when both are treated as unsigned values. */ | |
2000 | template <typename T1, typename T2> | |
2001 | inline bool | |
2002 | wi::gtu_p (const T1 &x, const T2 &y) | |
2003 | { | |
2004 | return ltu_p (y, x); | |
2005 | } | |
2006 | ||
2007 | /* Return true if X > Y. Signedness of X and Y is indicated by SGN. */ | |
2008 | template <typename T1, typename T2> | |
2009 | inline bool | |
2010 | wi::gt_p (const T1 &x, const T2 &y, signop sgn) | |
2011 | { | |
2012 | if (sgn == SIGNED) | |
2013 | return gts_p (x, y); | |
2014 | else | |
2015 | return gtu_p (x, y); | |
2016 | } | |
2017 | ||
2018 | /* Return true if X >= Y when both are treated as signed values. */ | |
2019 | template <typename T1, typename T2> | |
2020 | inline bool | |
2021 | wi::ges_p (const T1 &x, const T2 &y) | |
2022 | { | |
2023 | return !lts_p (x, y); | |
2024 | } | |
2025 | ||
2026 | /* Return true if X >= Y when both are treated as unsigned values. */ | |
2027 | template <typename T1, typename T2> | |
2028 | inline bool | |
2029 | wi::geu_p (const T1 &x, const T2 &y) | |
2030 | { | |
2031 | return !ltu_p (x, y); | |
2032 | } | |
2033 | ||
2034 | /* Return true if X >= Y. Signedness of X and Y is indicated by SGN. */ | |
2035 | template <typename T1, typename T2> | |
2036 | inline bool | |
2037 | wi::ge_p (const T1 &x, const T2 &y, signop sgn) | |
2038 | { | |
2039 | if (sgn == SIGNED) | |
2040 | return ges_p (x, y); | |
2041 | else | |
2042 | return geu_p (x, y); | |
2043 | } | |
2044 | ||
2045 | /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y | |
2046 | as signed values. */ | |
2047 | template <typename T1, typename T2> | |
2048 | inline int | |
2049 | wi::cmps (const T1 &x, const T2 &y) | |
2050 | { | |
2051 | unsigned int precision = get_binary_precision (x, y); | |
2052 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2053 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2054 | if (wi::fits_shwi_p (yi)) | |
2055 | { | |
2056 | /* Special case for comparisons with 0. */ | |
2057 | if (STATIC_CONSTANT_P (yi.val[0] == 0)) | |
2058 | return neg_p (xi) ? -1 : !(xi.len == 1 && xi.val[0] == 0); | |
2059 | /* If x fits into a signed HWI, we can compare directly. */ | |
2060 | if (wi::fits_shwi_p (xi)) | |
2061 | { | |
2062 | HOST_WIDE_INT xl = xi.to_shwi (); | |
2063 | HOST_WIDE_INT yl = yi.to_shwi (); | |
2064 | return xl < yl ? -1 : xl > yl; | |
2065 | } | |
2066 | /* If x doesn't fit and is negative, then it must be more | |
2067 | negative than any signed HWI, and hence smaller than y. */ | |
2068 | if (neg_p (xi)) | |
2069 | return -1; | |
2070 | /* If x is positive, then it must be larger than any signed HWI, | |
2071 | and hence greater than y. */ | |
2072 | return 1; | |
2073 | } | |
2074 | /* Optimize the opposite case, if it can be detected at compile time. */ | |
2075 | if (STATIC_CONSTANT_P (xi.len == 1)) | |
2076 | /* If YI is negative it is lower than the least HWI. | |
2077 | If YI is positive it is greater than the greatest HWI. */ | |
2078 | return neg_p (yi) ? 1 : -1; | |
2079 | return cmps_large (xi.val, xi.len, precision, yi.val, yi.len); | |
2080 | } | |
2081 | ||
2082 | /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y | |
2083 | as unsigned values. */ | |
2084 | template <typename T1, typename T2> | |
2085 | inline int | |
2086 | wi::cmpu (const T1 &x, const T2 &y) | |
2087 | { | |
2088 | unsigned int precision = get_binary_precision (x, y); | |
2089 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2090 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2091 | /* Optimize comparisons with constants. */ | |
2092 | if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0)) | |
2093 | { | |
2094 | /* If XI doesn't fit in a HWI then it must be larger than YI. */ | |
2095 | if (xi.len != 1) | |
2096 | return 1; | |
2097 | /* Otherwise compare directly. */ | |
2098 | unsigned HOST_WIDE_INT xl = xi.to_uhwi (); | |
2099 | unsigned HOST_WIDE_INT yl = yi.val[0]; | |
2100 | return xl < yl ? -1 : xl > yl; | |
2101 | } | |
2102 | if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0)) | |
2103 | { | |
2104 | /* If YI doesn't fit in a HWI then it must be larger than XI. */ | |
2105 | if (yi.len != 1) | |
2106 | return -1; | |
2107 | /* Otherwise compare directly. */ | |
2108 | unsigned HOST_WIDE_INT xl = xi.val[0]; | |
2109 | unsigned HOST_WIDE_INT yl = yi.to_uhwi (); | |
2110 | return xl < yl ? -1 : xl > yl; | |
2111 | } | |
2112 | /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended | |
2113 | for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both | |
2114 | values does not change the result. */ | |
2115 | if (__builtin_expect (xi.len + yi.len == 2, true)) | |
2116 | { | |
2117 | unsigned HOST_WIDE_INT xl = xi.to_uhwi (); | |
2118 | unsigned HOST_WIDE_INT yl = yi.to_uhwi (); | |
2119 | return xl < yl ? -1 : xl > yl; | |
2120 | } | |
2121 | return cmpu_large (xi.val, xi.len, precision, yi.val, yi.len); | |
2122 | } | |
2123 | ||
2124 | /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Signedness of | |
2125 | X and Y indicated by SGN. */ | |
2126 | template <typename T1, typename T2> | |
2127 | inline int | |
2128 | wi::cmp (const T1 &x, const T2 &y, signop sgn) | |
2129 | { | |
2130 | if (sgn == SIGNED) | |
2131 | return cmps (x, y); | |
2132 | else | |
2133 | return cmpu (x, y); | |
2134 | } | |
2135 | ||
2136 | /* Return ~x. */ | |
2137 | template <typename T> | |
2138 | inline WI_UNARY_RESULT (T) | |
2139 | wi::bit_not (const T &x) | |
2140 | { | |
2141 | WI_UNARY_RESULT_VAR (result, val, T, x); | |
2142 | WIDE_INT_REF_FOR (T) xi (x, get_precision (result)); | |
2143 | for (unsigned int i = 0; i < xi.len; ++i) | |
2144 | val[i] = ~xi.val[i]; | |
2145 | result.set_len (xi.len); | |
2146 | return result; | |
2147 | } | |
2148 | ||
2149 | /* Return -x. */ | |
2150 | template <typename T> | |
2151 | inline WI_UNARY_RESULT (T) | |
2152 | wi::neg (const T &x) | |
2153 | { | |
2154 | return sub (0, x); | |
2155 | } | |
2156 | ||
4a669ac3 AH |
2157 | /* Return -x. Indicate in *OVERFLOW if performing the negation would |
2158 | cause an overflow. */ | |
807e902e KZ |
2159 | template <typename T> |
2160 | inline WI_UNARY_RESULT (T) | |
4a669ac3 | 2161 | wi::neg (const T &x, overflow_type *overflow) |
807e902e | 2162 | { |
4a669ac3 | 2163 | *overflow = only_sign_bit_p (x) ? OVF_OVERFLOW : OVF_NONE; |
807e902e KZ |
2164 | return sub (0, x); |
2165 | } | |
2166 | ||
2167 | /* Return the absolute value of x. */ | |
2168 | template <typename T> | |
2169 | inline WI_UNARY_RESULT (T) | |
2170 | wi::abs (const T &x) | |
2171 | { | |
2172 | return neg_p (x) ? neg (x) : WI_UNARY_RESULT (T) (x); | |
2173 | } | |
2174 | ||
2175 | /* Return the result of sign-extending the low OFFSET bits of X. */ | |
2176 | template <typename T> | |
2177 | inline WI_UNARY_RESULT (T) | |
2178 | wi::sext (const T &x, unsigned int offset) | |
2179 | { | |
2180 | WI_UNARY_RESULT_VAR (result, val, T, x); | |
2181 | unsigned int precision = get_precision (result); | |
2182 | WIDE_INT_REF_FOR (T) xi (x, precision); | |
2183 | ||
2184 | if (offset <= HOST_BITS_PER_WIDE_INT) | |
2185 | { | |
2186 | val[0] = sext_hwi (xi.ulow (), offset); | |
2187 | result.set_len (1, true); | |
2188 | } | |
2189 | else | |
2190 | result.set_len (sext_large (val, xi.val, xi.len, precision, offset)); | |
2191 | return result; | |
2192 | } | |
2193 | ||
2194 | /* Return the result of zero-extending the low OFFSET bits of X. */ | |
2195 | template <typename T> | |
2196 | inline WI_UNARY_RESULT (T) | |
2197 | wi::zext (const T &x, unsigned int offset) | |
2198 | { | |
2199 | WI_UNARY_RESULT_VAR (result, val, T, x); | |
2200 | unsigned int precision = get_precision (result); | |
2201 | WIDE_INT_REF_FOR (T) xi (x, precision); | |
2202 | ||
2203 | /* This is not just an optimization, it is actually required to | |
2204 | maintain canonization. */ | |
2205 | if (offset >= precision) | |
2206 | { | |
2207 | wi::copy (result, xi); | |
2208 | return result; | |
2209 | } | |
2210 | ||
2211 | /* In these cases we know that at least the top bit will be clear, | |
2212 | so no sign extension is necessary. */ | |
2213 | if (offset < HOST_BITS_PER_WIDE_INT) | |
2214 | { | |
2215 | val[0] = zext_hwi (xi.ulow (), offset); | |
2216 | result.set_len (1, true); | |
2217 | } | |
2218 | else | |
2219 | result.set_len (zext_large (val, xi.val, xi.len, precision, offset), true); | |
2220 | return result; | |
2221 | } | |
2222 | ||
2223 | /* Return the result of extending the low OFFSET bits of X according to | |
2224 | signedness SGN. */ | |
2225 | template <typename T> | |
2226 | inline WI_UNARY_RESULT (T) | |
2227 | wi::ext (const T &x, unsigned int offset, signop sgn) | |
2228 | { | |
2229 | return sgn == SIGNED ? sext (x, offset) : zext (x, offset); | |
2230 | } | |
2231 | ||
2232 | /* Return an integer that represents X | (1 << bit). */ | |
2233 | template <typename T> | |
2234 | inline WI_UNARY_RESULT (T) | |
2235 | wi::set_bit (const T &x, unsigned int bit) | |
2236 | { | |
2237 | WI_UNARY_RESULT_VAR (result, val, T, x); | |
2238 | unsigned int precision = get_precision (result); | |
2239 | WIDE_INT_REF_FOR (T) xi (x, precision); | |
2240 | if (precision <= HOST_BITS_PER_WIDE_INT) | |
2241 | { | |
fecfbfa4 | 2242 | val[0] = xi.ulow () | (HOST_WIDE_INT_1U << bit); |
807e902e KZ |
2243 | result.set_len (1); |
2244 | } | |
2245 | else | |
2246 | result.set_len (set_bit_large (val, xi.val, xi.len, precision, bit)); | |
2247 | return result; | |
2248 | } | |
2249 | ||
2250 | /* Return the mininum of X and Y, treating them both as having | |
2251 | signedness SGN. */ | |
2252 | template <typename T1, typename T2> | |
2253 | inline WI_BINARY_RESULT (T1, T2) | |
2254 | wi::min (const T1 &x, const T2 &y, signop sgn) | |
2255 | { | |
2256 | WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y); | |
2257 | unsigned int precision = get_precision (result); | |
2258 | if (wi::le_p (x, y, sgn)) | |
2259 | wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision)); | |
2260 | else | |
2261 | wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision)); | |
2262 | return result; | |
2263 | } | |
2264 | ||
2265 | /* Return the minimum of X and Y, treating both as signed values. */ | |
2266 | template <typename T1, typename T2> | |
2267 | inline WI_BINARY_RESULT (T1, T2) | |
2268 | wi::smin (const T1 &x, const T2 &y) | |
2269 | { | |
33c430b5 | 2270 | return wi::min (x, y, SIGNED); |
807e902e KZ |
2271 | } |
2272 | ||
2273 | /* Return the minimum of X and Y, treating both as unsigned values. */ | |
2274 | template <typename T1, typename T2> | |
2275 | inline WI_BINARY_RESULT (T1, T2) | |
2276 | wi::umin (const T1 &x, const T2 &y) | |
2277 | { | |
33c430b5 | 2278 | return wi::min (x, y, UNSIGNED); |
807e902e KZ |
2279 | } |
2280 | ||
2281 | /* Return the maxinum of X and Y, treating them both as having | |
2282 | signedness SGN. */ | |
2283 | template <typename T1, typename T2> | |
2284 | inline WI_BINARY_RESULT (T1, T2) | |
2285 | wi::max (const T1 &x, const T2 &y, signop sgn) | |
2286 | { | |
2287 | WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y); | |
2288 | unsigned int precision = get_precision (result); | |
2289 | if (wi::ge_p (x, y, sgn)) | |
2290 | wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision)); | |
2291 | else | |
2292 | wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision)); | |
2293 | return result; | |
2294 | } | |
2295 | ||
2296 | /* Return the maximum of X and Y, treating both as signed values. */ | |
2297 | template <typename T1, typename T2> | |
2298 | inline WI_BINARY_RESULT (T1, T2) | |
2299 | wi::smax (const T1 &x, const T2 &y) | |
2300 | { | |
33c430b5 | 2301 | return wi::max (x, y, SIGNED); |
807e902e KZ |
2302 | } |
2303 | ||
2304 | /* Return the maximum of X and Y, treating both as unsigned values. */ | |
2305 | template <typename T1, typename T2> | |
2306 | inline WI_BINARY_RESULT (T1, T2) | |
2307 | wi::umax (const T1 &x, const T2 &y) | |
2308 | { | |
33c430b5 | 2309 | return wi::max (x, y, UNSIGNED); |
807e902e KZ |
2310 | } |
2311 | ||
2312 | /* Return X & Y. */ | |
2313 | template <typename T1, typename T2> | |
2314 | inline WI_BINARY_RESULT (T1, T2) | |
2315 | wi::bit_and (const T1 &x, const T2 &y) | |
2316 | { | |
2317 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); | |
2318 | unsigned int precision = get_precision (result); | |
2319 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2320 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2321 | bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; | |
2322 | if (__builtin_expect (xi.len + yi.len == 2, true)) | |
2323 | { | |
2324 | val[0] = xi.ulow () & yi.ulow (); | |
2325 | result.set_len (1, is_sign_extended); | |
2326 | } | |
2327 | else | |
2328 | result.set_len (and_large (val, xi.val, xi.len, yi.val, yi.len, | |
2329 | precision), is_sign_extended); | |
2330 | return result; | |
2331 | } | |
2332 | ||
2333 | /* Return X & ~Y. */ | |
2334 | template <typename T1, typename T2> | |
2335 | inline WI_BINARY_RESULT (T1, T2) | |
2336 | wi::bit_and_not (const T1 &x, const T2 &y) | |
2337 | { | |
2338 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); | |
2339 | unsigned int precision = get_precision (result); | |
2340 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2341 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2342 | bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; | |
2343 | if (__builtin_expect (xi.len + yi.len == 2, true)) | |
2344 | { | |
2345 | val[0] = xi.ulow () & ~yi.ulow (); | |
2346 | result.set_len (1, is_sign_extended); | |
2347 | } | |
2348 | else | |
2349 | result.set_len (and_not_large (val, xi.val, xi.len, yi.val, yi.len, | |
2350 | precision), is_sign_extended); | |
2351 | return result; | |
2352 | } | |
2353 | ||
2354 | /* Return X | Y. */ | |
2355 | template <typename T1, typename T2> | |
2356 | inline WI_BINARY_RESULT (T1, T2) | |
2357 | wi::bit_or (const T1 &x, const T2 &y) | |
2358 | { | |
2359 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); | |
2360 | unsigned int precision = get_precision (result); | |
2361 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2362 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2363 | bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; | |
2364 | if (__builtin_expect (xi.len + yi.len == 2, true)) | |
2365 | { | |
2366 | val[0] = xi.ulow () | yi.ulow (); | |
2367 | result.set_len (1, is_sign_extended); | |
2368 | } | |
2369 | else | |
2370 | result.set_len (or_large (val, xi.val, xi.len, | |
2371 | yi.val, yi.len, precision), is_sign_extended); | |
2372 | return result; | |
2373 | } | |
2374 | ||
2375 | /* Return X | ~Y. */ | |
2376 | template <typename T1, typename T2> | |
2377 | inline WI_BINARY_RESULT (T1, T2) | |
2378 | wi::bit_or_not (const T1 &x, const T2 &y) | |
2379 | { | |
2380 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); | |
2381 | unsigned int precision = get_precision (result); | |
2382 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2383 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2384 | bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; | |
2385 | if (__builtin_expect (xi.len + yi.len == 2, true)) | |
2386 | { | |
2387 | val[0] = xi.ulow () | ~yi.ulow (); | |
2388 | result.set_len (1, is_sign_extended); | |
2389 | } | |
2390 | else | |
2391 | result.set_len (or_not_large (val, xi.val, xi.len, yi.val, yi.len, | |
2392 | precision), is_sign_extended); | |
2393 | return result; | |
2394 | } | |
2395 | ||
2396 | /* Return X ^ Y. */ | |
2397 | template <typename T1, typename T2> | |
2398 | inline WI_BINARY_RESULT (T1, T2) | |
2399 | wi::bit_xor (const T1 &x, const T2 &y) | |
2400 | { | |
2401 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); | |
2402 | unsigned int precision = get_precision (result); | |
2403 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2404 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2405 | bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; | |
2406 | if (__builtin_expect (xi.len + yi.len == 2, true)) | |
2407 | { | |
2408 | val[0] = xi.ulow () ^ yi.ulow (); | |
2409 | result.set_len (1, is_sign_extended); | |
2410 | } | |
2411 | else | |
2412 | result.set_len (xor_large (val, xi.val, xi.len, | |
2413 | yi.val, yi.len, precision), is_sign_extended); | |
2414 | return result; | |
2415 | } | |
2416 | ||
2417 | /* Return X + Y. */ | |
2418 | template <typename T1, typename T2> | |
2419 | inline WI_BINARY_RESULT (T1, T2) | |
2420 | wi::add (const T1 &x, const T2 &y) | |
2421 | { | |
2422 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); | |
2423 | unsigned int precision = get_precision (result); | |
2424 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2425 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2426 | if (precision <= HOST_BITS_PER_WIDE_INT) | |
2427 | { | |
2428 | val[0] = xi.ulow () + yi.ulow (); | |
2429 | result.set_len (1); | |
2430 | } | |
2431 | /* If the precision is known at compile time to be greater than | |
2432 | HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case | |
2433 | knowing that (a) all bits in those HWIs are significant and | |
2434 | (b) the result has room for at least two HWIs. This provides | |
2435 | a fast path for things like offset_int and widest_int. | |
2436 | ||
2437 | The STATIC_CONSTANT_P test prevents this path from being | |
2438 | used for wide_ints. wide_ints with precisions greater than | |
2439 | HOST_BITS_PER_WIDE_INT are relatively rare and there's not much | |
2440 | point handling them inline. */ | |
2441 | else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT) | |
2442 | && __builtin_expect (xi.len + yi.len == 2, true)) | |
2443 | { | |
2444 | unsigned HOST_WIDE_INT xl = xi.ulow (); | |
2445 | unsigned HOST_WIDE_INT yl = yi.ulow (); | |
2446 | unsigned HOST_WIDE_INT resultl = xl + yl; | |
2447 | val[0] = resultl; | |
2448 | val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1; | |
2449 | result.set_len (1 + (((resultl ^ xl) & (resultl ^ yl)) | |
2450 | >> (HOST_BITS_PER_WIDE_INT - 1))); | |
2451 | } | |
2452 | else | |
2453 | result.set_len (add_large (val, xi.val, xi.len, | |
2454 | yi.val, yi.len, precision, | |
2455 | UNSIGNED, 0)); | |
2456 | return result; | |
2457 | } | |
2458 | ||
2459 | /* Return X + Y. Treat X and Y as having the signednes given by SGN | |
2460 | and indicate in *OVERFLOW whether the operation overflowed. */ | |
2461 | template <typename T1, typename T2> | |
2462 | inline WI_BINARY_RESULT (T1, T2) | |
4a669ac3 | 2463 | wi::add (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
807e902e KZ |
2464 | { |
2465 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); | |
2466 | unsigned int precision = get_precision (result); | |
2467 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2468 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2469 | if (precision <= HOST_BITS_PER_WIDE_INT) | |
2470 | { | |
2471 | unsigned HOST_WIDE_INT xl = xi.ulow (); | |
2472 | unsigned HOST_WIDE_INT yl = yi.ulow (); | |
2473 | unsigned HOST_WIDE_INT resultl = xl + yl; | |
2474 | if (sgn == SIGNED) | |
4a669ac3 AH |
2475 | { |
2476 | if ((((resultl ^ xl) & (resultl ^ yl)) | |
2477 | >> (precision - 1)) & 1) | |
2478 | { | |
2479 | if (xl > resultl) | |
2480 | *overflow = OVF_UNDERFLOW; | |
2481 | else if (xl < resultl) | |
2482 | *overflow = OVF_OVERFLOW; | |
2483 | else | |
2484 | *overflow = OVF_NONE; | |
2485 | } | |
2486 | else | |
2487 | *overflow = OVF_NONE; | |
2488 | } | |
807e902e KZ |
2489 | else |
2490 | *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision)) | |
4a669ac3 AH |
2491 | < (xl << (HOST_BITS_PER_WIDE_INT - precision))) |
2492 | ? OVF_OVERFLOW : OVF_NONE; | |
807e902e KZ |
2493 | val[0] = resultl; |
2494 | result.set_len (1); | |
2495 | } | |
2496 | else | |
2497 | result.set_len (add_large (val, xi.val, xi.len, | |
2498 | yi.val, yi.len, precision, | |
2499 | sgn, overflow)); | |
2500 | return result; | |
2501 | } | |
2502 | ||
2503 | /* Return X - Y. */ | |
2504 | template <typename T1, typename T2> | |
2505 | inline WI_BINARY_RESULT (T1, T2) | |
2506 | wi::sub (const T1 &x, const T2 &y) | |
2507 | { | |
2508 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); | |
2509 | unsigned int precision = get_precision (result); | |
2510 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2511 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2512 | if (precision <= HOST_BITS_PER_WIDE_INT) | |
2513 | { | |
2514 | val[0] = xi.ulow () - yi.ulow (); | |
2515 | result.set_len (1); | |
2516 | } | |
2517 | /* If the precision is known at compile time to be greater than | |
2518 | HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case | |
2519 | knowing that (a) all bits in those HWIs are significant and | |
2520 | (b) the result has room for at least two HWIs. This provides | |
2521 | a fast path for things like offset_int and widest_int. | |
2522 | ||
2523 | The STATIC_CONSTANT_P test prevents this path from being | |
2524 | used for wide_ints. wide_ints with precisions greater than | |
2525 | HOST_BITS_PER_WIDE_INT are relatively rare and there's not much | |
2526 | point handling them inline. */ | |
2527 | else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT) | |
2528 | && __builtin_expect (xi.len + yi.len == 2, true)) | |
2529 | { | |
2530 | unsigned HOST_WIDE_INT xl = xi.ulow (); | |
2531 | unsigned HOST_WIDE_INT yl = yi.ulow (); | |
2532 | unsigned HOST_WIDE_INT resultl = xl - yl; | |
2533 | val[0] = resultl; | |
2534 | val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1; | |
2535 | result.set_len (1 + (((resultl ^ xl) & (xl ^ yl)) | |
2536 | >> (HOST_BITS_PER_WIDE_INT - 1))); | |
2537 | } | |
2538 | else | |
2539 | result.set_len (sub_large (val, xi.val, xi.len, | |
2540 | yi.val, yi.len, precision, | |
2541 | UNSIGNED, 0)); | |
2542 | return result; | |
2543 | } | |
2544 | ||
2545 | /* Return X - Y. Treat X and Y as having the signednes given by SGN | |
2546 | and indicate in *OVERFLOW whether the operation overflowed. */ | |
2547 | template <typename T1, typename T2> | |
2548 | inline WI_BINARY_RESULT (T1, T2) | |
4a669ac3 | 2549 | wi::sub (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
807e902e KZ |
2550 | { |
2551 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); | |
2552 | unsigned int precision = get_precision (result); | |
2553 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2554 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2555 | if (precision <= HOST_BITS_PER_WIDE_INT) | |
2556 | { | |
2557 | unsigned HOST_WIDE_INT xl = xi.ulow (); | |
2558 | unsigned HOST_WIDE_INT yl = yi.ulow (); | |
2559 | unsigned HOST_WIDE_INT resultl = xl - yl; | |
2560 | if (sgn == SIGNED) | |
4a669ac3 AH |
2561 | { |
2562 | if ((((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1) | |
2563 | { | |
2564 | if (xl > yl) | |
2565 | *overflow = OVF_UNDERFLOW; | |
2566 | else if (xl < yl) | |
2567 | *overflow = OVF_OVERFLOW; | |
2568 | else | |
2569 | *overflow = OVF_NONE; | |
2570 | } | |
2571 | else | |
2572 | *overflow = OVF_NONE; | |
2573 | } | |
807e902e KZ |
2574 | else |
2575 | *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision)) | |
4a669ac3 AH |
2576 | > (xl << (HOST_BITS_PER_WIDE_INT - precision))) |
2577 | ? OVF_UNDERFLOW : OVF_NONE; | |
807e902e KZ |
2578 | val[0] = resultl; |
2579 | result.set_len (1); | |
2580 | } | |
2581 | else | |
2582 | result.set_len (sub_large (val, xi.val, xi.len, | |
2583 | yi.val, yi.len, precision, | |
2584 | sgn, overflow)); | |
2585 | return result; | |
2586 | } | |
2587 | ||
2588 | /* Return X * Y. */ | |
2589 | template <typename T1, typename T2> | |
2590 | inline WI_BINARY_RESULT (T1, T2) | |
2591 | wi::mul (const T1 &x, const T2 &y) | |
2592 | { | |
2593 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); | |
2594 | unsigned int precision = get_precision (result); | |
2595 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2596 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2597 | if (precision <= HOST_BITS_PER_WIDE_INT) | |
2598 | { | |
2599 | val[0] = xi.ulow () * yi.ulow (); | |
2600 | result.set_len (1); | |
2601 | } | |
2602 | else | |
2603 | result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len, | |
2604 | precision, UNSIGNED, 0, false)); | |
2605 | return result; | |
2606 | } | |
2607 | ||
2608 | /* Return X * Y. Treat X and Y as having the signednes given by SGN | |
2609 | and indicate in *OVERFLOW whether the operation overflowed. */ | |
2610 | template <typename T1, typename T2> | |
2611 | inline WI_BINARY_RESULT (T1, T2) | |
4a669ac3 | 2612 | wi::mul (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
807e902e KZ |
2613 | { |
2614 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); | |
2615 | unsigned int precision = get_precision (result); | |
2616 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2617 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2618 | result.set_len (mul_internal (val, xi.val, xi.len, | |
2619 | yi.val, yi.len, precision, | |
2620 | sgn, overflow, false)); | |
2621 | return result; | |
2622 | } | |
2623 | ||
2624 | /* Return X * Y, treating both X and Y as signed values. Indicate in | |
2625 | *OVERFLOW whether the operation overflowed. */ | |
2626 | template <typename T1, typename T2> | |
2627 | inline WI_BINARY_RESULT (T1, T2) | |
4a669ac3 | 2628 | wi::smul (const T1 &x, const T2 &y, overflow_type *overflow) |
807e902e KZ |
2629 | { |
2630 | return mul (x, y, SIGNED, overflow); | |
2631 | } | |
2632 | ||
2633 | /* Return X * Y, treating both X and Y as unsigned values. Indicate in | |
4a669ac3 | 2634 | *OVERFLOW if the result overflows. */ |
807e902e KZ |
2635 | template <typename T1, typename T2> |
2636 | inline WI_BINARY_RESULT (T1, T2) | |
4a669ac3 | 2637 | wi::umul (const T1 &x, const T2 &y, overflow_type *overflow) |
807e902e KZ |
2638 | { |
2639 | return mul (x, y, UNSIGNED, overflow); | |
2640 | } | |
2641 | ||
2642 | /* Perform a widening multiplication of X and Y, extending the values | |
2643 | according to SGN, and return the high part of the result. */ | |
2644 | template <typename T1, typename T2> | |
2645 | inline WI_BINARY_RESULT (T1, T2) | |
2646 | wi::mul_high (const T1 &x, const T2 &y, signop sgn) | |
2647 | { | |
2648 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); | |
2649 | unsigned int precision = get_precision (result); | |
2650 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2651 | WIDE_INT_REF_FOR (T2) yi (y, precision); | |
2652 | result.set_len (mul_internal (val, xi.val, xi.len, | |
2653 | yi.val, yi.len, precision, | |
2654 | sgn, 0, true)); | |
2655 | return result; | |
2656 | } | |
2657 | ||
2658 | /* Return X / Y, rouding towards 0. Treat X and Y as having the | |
2659 | signedness given by SGN. Indicate in *OVERFLOW if the result | |
2660 | overflows. */ | |
2661 | template <typename T1, typename T2> | |
2662 | inline WI_BINARY_RESULT (T1, T2) | |
4a669ac3 | 2663 | wi::div_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
807e902e KZ |
2664 | { |
2665 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); | |
2666 | unsigned int precision = get_precision (quotient); | |
2667 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2668 | WIDE_INT_REF_FOR (T2) yi (y); | |
2669 | ||
2670 | quotient.set_len (divmod_internal (quotient_val, 0, 0, xi.val, xi.len, | |
2671 | precision, | |
2672 | yi.val, yi.len, yi.precision, | |
2673 | sgn, overflow)); | |
2674 | return quotient; | |
2675 | } | |
2676 | ||
2677 | /* Return X / Y, rouding towards 0. Treat X and Y as signed values. */ | |
2678 | template <typename T1, typename T2> | |
2679 | inline WI_BINARY_RESULT (T1, T2) | |
2680 | wi::sdiv_trunc (const T1 &x, const T2 &y) | |
2681 | { | |
2682 | return div_trunc (x, y, SIGNED); | |
2683 | } | |
2684 | ||
2685 | /* Return X / Y, rouding towards 0. Treat X and Y as unsigned values. */ | |
2686 | template <typename T1, typename T2> | |
2687 | inline WI_BINARY_RESULT (T1, T2) | |
2688 | wi::udiv_trunc (const T1 &x, const T2 &y) | |
2689 | { | |
2690 | return div_trunc (x, y, UNSIGNED); | |
2691 | } | |
2692 | ||
2693 | /* Return X / Y, rouding towards -inf. Treat X and Y as having the | |
2694 | signedness given by SGN. Indicate in *OVERFLOW if the result | |
2695 | overflows. */ | |
2696 | template <typename T1, typename T2> | |
2697 | inline WI_BINARY_RESULT (T1, T2) | |
4a669ac3 | 2698 | wi::div_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
807e902e KZ |
2699 | { |
2700 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); | |
2701 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); | |
2702 | unsigned int precision = get_precision (quotient); | |
2703 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2704 | WIDE_INT_REF_FOR (T2) yi (y); | |
2705 | ||
2706 | unsigned int remainder_len; | |
2707 | quotient.set_len (divmod_internal (quotient_val, | |
2708 | &remainder_len, remainder_val, | |
2709 | xi.val, xi.len, precision, | |
2710 | yi.val, yi.len, yi.precision, sgn, | |
2711 | overflow)); | |
2712 | remainder.set_len (remainder_len); | |
2713 | if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0) | |
2714 | return quotient - 1; | |
2715 | return quotient; | |
2716 | } | |
2717 | ||
2718 | /* Return X / Y, rouding towards -inf. Treat X and Y as signed values. */ | |
2719 | template <typename T1, typename T2> | |
2720 | inline WI_BINARY_RESULT (T1, T2) | |
2721 | wi::sdiv_floor (const T1 &x, const T2 &y) | |
2722 | { | |
2723 | return div_floor (x, y, SIGNED); | |
2724 | } | |
2725 | ||
2726 | /* Return X / Y, rouding towards -inf. Treat X and Y as unsigned values. */ | |
2727 | /* ??? Why do we have both this and udiv_trunc. Aren't they the same? */ | |
2728 | template <typename T1, typename T2> | |
2729 | inline WI_BINARY_RESULT (T1, T2) | |
2730 | wi::udiv_floor (const T1 &x, const T2 &y) | |
2731 | { | |
2732 | return div_floor (x, y, UNSIGNED); | |
2733 | } | |
2734 | ||
2735 | /* Return X / Y, rouding towards +inf. Treat X and Y as having the | |
2736 | signedness given by SGN. Indicate in *OVERFLOW if the result | |
2737 | overflows. */ | |
2738 | template <typename T1, typename T2> | |
2739 | inline WI_BINARY_RESULT (T1, T2) | |
4a669ac3 | 2740 | wi::div_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
807e902e KZ |
2741 | { |
2742 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); | |
2743 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); | |
2744 | unsigned int precision = get_precision (quotient); | |
2745 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2746 | WIDE_INT_REF_FOR (T2) yi (y); | |
2747 | ||
2748 | unsigned int remainder_len; | |
2749 | quotient.set_len (divmod_internal (quotient_val, | |
2750 | &remainder_len, remainder_val, | |
2751 | xi.val, xi.len, precision, | |
2752 | yi.val, yi.len, yi.precision, sgn, | |
2753 | overflow)); | |
2754 | remainder.set_len (remainder_len); | |
2755 | if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0) | |
2756 | return quotient + 1; | |
2757 | return quotient; | |
2758 | } | |
2759 | ||
7cfb4d93 RS |
2760 | /* Return X / Y, rouding towards +inf. Treat X and Y as unsigned values. */ |
2761 | template <typename T1, typename T2> | |
2762 | inline WI_BINARY_RESULT (T1, T2) | |
2763 | wi::udiv_ceil (const T1 &x, const T2 &y) | |
2764 | { | |
2765 | return div_ceil (x, y, UNSIGNED); | |
2766 | } | |
2767 | ||
807e902e KZ |
2768 | /* Return X / Y, rouding towards nearest with ties away from zero. |
2769 | Treat X and Y as having the signedness given by SGN. Indicate | |
2770 | in *OVERFLOW if the result overflows. */ | |
2771 | template <typename T1, typename T2> | |
2772 | inline WI_BINARY_RESULT (T1, T2) | |
4a669ac3 | 2773 | wi::div_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
807e902e KZ |
2774 | { |
2775 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); | |
2776 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); | |
2777 | unsigned int precision = get_precision (quotient); | |
2778 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2779 | WIDE_INT_REF_FOR (T2) yi (y); | |
2780 | ||
2781 | unsigned int remainder_len; | |
2782 | quotient.set_len (divmod_internal (quotient_val, | |
2783 | &remainder_len, remainder_val, | |
2784 | xi.val, xi.len, precision, | |
2785 | yi.val, yi.len, yi.precision, sgn, | |
2786 | overflow)); | |
2787 | remainder.set_len (remainder_len); | |
2788 | ||
2789 | if (remainder != 0) | |
2790 | { | |
2791 | if (sgn == SIGNED) | |
2792 | { | |
4db4954f RS |
2793 | WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder); |
2794 | if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder))) | |
807e902e KZ |
2795 | { |
2796 | if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn)) | |
2797 | return quotient - 1; | |
2798 | else | |
2799 | return quotient + 1; | |
2800 | } | |
2801 | } | |
2802 | else | |
2803 | { | |
4db4954f | 2804 | if (wi::geu_p (remainder, wi::sub (y, remainder))) |
807e902e KZ |
2805 | return quotient + 1; |
2806 | } | |
2807 | } | |
2808 | return quotient; | |
2809 | } | |
2810 | ||
2811 | /* Return X / Y, rouding towards 0. Treat X and Y as having the | |
2812 | signedness given by SGN. Store the remainder in *REMAINDER_PTR. */ | |
2813 | template <typename T1, typename T2> | |
2814 | inline WI_BINARY_RESULT (T1, T2) | |
2815 | wi::divmod_trunc (const T1 &x, const T2 &y, signop sgn, | |
2816 | WI_BINARY_RESULT (T1, T2) *remainder_ptr) | |
2817 | { | |
2818 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); | |
2819 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); | |
2820 | unsigned int precision = get_precision (quotient); | |
2821 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2822 | WIDE_INT_REF_FOR (T2) yi (y); | |
2823 | ||
2824 | unsigned int remainder_len; | |
2825 | quotient.set_len (divmod_internal (quotient_val, | |
2826 | &remainder_len, remainder_val, | |
2827 | xi.val, xi.len, precision, | |
2828 | yi.val, yi.len, yi.precision, sgn, 0)); | |
2829 | remainder.set_len (remainder_len); | |
2830 | ||
2831 | *remainder_ptr = remainder; | |
2832 | return quotient; | |
2833 | } | |
2834 | ||
d9a6bd32 JJ |
2835 | /* Compute the greatest common divisor of two numbers A and B using |
2836 | Euclid's algorithm. */ | |
2837 | template <typename T1, typename T2> | |
2838 | inline WI_BINARY_RESULT (T1, T2) | |
2839 | wi::gcd (const T1 &a, const T2 &b, signop sgn) | |
2840 | { | |
2841 | T1 x, y, z; | |
2842 | ||
2843 | x = wi::abs (a); | |
2844 | y = wi::abs (b); | |
2845 | ||
2846 | while (gt_p (x, 0, sgn)) | |
2847 | { | |
2848 | z = mod_trunc (y, x, sgn); | |
2849 | y = x; | |
2850 | x = z; | |
2851 | } | |
2852 | ||
2853 | return y; | |
2854 | } | |
2855 | ||
807e902e KZ |
2856 | /* Compute X / Y, rouding towards 0, and return the remainder. |
2857 | Treat X and Y as having the signedness given by SGN. Indicate | |
2858 | in *OVERFLOW if the division overflows. */ | |
2859 | template <typename T1, typename T2> | |
2860 | inline WI_BINARY_RESULT (T1, T2) | |
4a669ac3 | 2861 | wi::mod_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
807e902e KZ |
2862 | { |
2863 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); | |
2864 | unsigned int precision = get_precision (remainder); | |
2865 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2866 | WIDE_INT_REF_FOR (T2) yi (y); | |
2867 | ||
2868 | unsigned int remainder_len; | |
2869 | divmod_internal (0, &remainder_len, remainder_val, | |
2870 | xi.val, xi.len, precision, | |
2871 | yi.val, yi.len, yi.precision, sgn, overflow); | |
2872 | remainder.set_len (remainder_len); | |
2873 | ||
2874 | return remainder; | |
2875 | } | |
2876 | ||
2877 | /* Compute X / Y, rouding towards 0, and return the remainder. | |
2878 | Treat X and Y as signed values. */ | |
2879 | template <typename T1, typename T2> | |
2880 | inline WI_BINARY_RESULT (T1, T2) | |
2881 | wi::smod_trunc (const T1 &x, const T2 &y) | |
2882 | { | |
2883 | return mod_trunc (x, y, SIGNED); | |
2884 | } | |
2885 | ||
2886 | /* Compute X / Y, rouding towards 0, and return the remainder. | |
2887 | Treat X and Y as unsigned values. */ | |
2888 | template <typename T1, typename T2> | |
2889 | inline WI_BINARY_RESULT (T1, T2) | |
2890 | wi::umod_trunc (const T1 &x, const T2 &y) | |
2891 | { | |
2892 | return mod_trunc (x, y, UNSIGNED); | |
2893 | } | |
2894 | ||
2895 | /* Compute X / Y, rouding towards -inf, and return the remainder. | |
2896 | Treat X and Y as having the signedness given by SGN. Indicate | |
2897 | in *OVERFLOW if the division overflows. */ | |
2898 | template <typename T1, typename T2> | |
2899 | inline WI_BINARY_RESULT (T1, T2) | |
4a669ac3 | 2900 | wi::mod_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
807e902e KZ |
2901 | { |
2902 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); | |
2903 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); | |
2904 | unsigned int precision = get_precision (quotient); | |
2905 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2906 | WIDE_INT_REF_FOR (T2) yi (y); | |
2907 | ||
2908 | unsigned int remainder_len; | |
2909 | quotient.set_len (divmod_internal (quotient_val, | |
2910 | &remainder_len, remainder_val, | |
2911 | xi.val, xi.len, precision, | |
2912 | yi.val, yi.len, yi.precision, sgn, | |
2913 | overflow)); | |
2914 | remainder.set_len (remainder_len); | |
2915 | ||
2916 | if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0) | |
2917 | return remainder + y; | |
2918 | return remainder; | |
2919 | } | |
2920 | ||
2921 | /* Compute X / Y, rouding towards -inf, and return the remainder. | |
2922 | Treat X and Y as unsigned values. */ | |
2923 | /* ??? Why do we have both this and umod_trunc. Aren't they the same? */ | |
2924 | template <typename T1, typename T2> | |
2925 | inline WI_BINARY_RESULT (T1, T2) | |
2926 | wi::umod_floor (const T1 &x, const T2 &y) | |
2927 | { | |
2928 | return mod_floor (x, y, UNSIGNED); | |
2929 | } | |
2930 | ||
2931 | /* Compute X / Y, rouding towards +inf, and return the remainder. | |
2932 | Treat X and Y as having the signedness given by SGN. Indicate | |
2933 | in *OVERFLOW if the division overflows. */ | |
2934 | template <typename T1, typename T2> | |
2935 | inline WI_BINARY_RESULT (T1, T2) | |
4a669ac3 | 2936 | wi::mod_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
807e902e KZ |
2937 | { |
2938 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); | |
2939 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); | |
2940 | unsigned int precision = get_precision (quotient); | |
2941 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2942 | WIDE_INT_REF_FOR (T2) yi (y); | |
2943 | ||
2944 | unsigned int remainder_len; | |
2945 | quotient.set_len (divmod_internal (quotient_val, | |
2946 | &remainder_len, remainder_val, | |
2947 | xi.val, xi.len, precision, | |
2948 | yi.val, yi.len, yi.precision, sgn, | |
2949 | overflow)); | |
2950 | remainder.set_len (remainder_len); | |
2951 | ||
2952 | if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0) | |
2953 | return remainder - y; | |
2954 | return remainder; | |
2955 | } | |
2956 | ||
2957 | /* Compute X / Y, rouding towards nearest with ties away from zero, | |
2958 | and return the remainder. Treat X and Y as having the signedness | |
2959 | given by SGN. Indicate in *OVERFLOW if the division overflows. */ | |
2960 | template <typename T1, typename T2> | |
2961 | inline WI_BINARY_RESULT (T1, T2) | |
4a669ac3 | 2962 | wi::mod_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
807e902e KZ |
2963 | { |
2964 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); | |
2965 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); | |
2966 | unsigned int precision = get_precision (quotient); | |
2967 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
2968 | WIDE_INT_REF_FOR (T2) yi (y); | |
2969 | ||
2970 | unsigned int remainder_len; | |
2971 | quotient.set_len (divmod_internal (quotient_val, | |
2972 | &remainder_len, remainder_val, | |
2973 | xi.val, xi.len, precision, | |
2974 | yi.val, yi.len, yi.precision, sgn, | |
2975 | overflow)); | |
2976 | remainder.set_len (remainder_len); | |
2977 | ||
2978 | if (remainder != 0) | |
2979 | { | |
2980 | if (sgn == SIGNED) | |
2981 | { | |
4db4954f RS |
2982 | WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder); |
2983 | if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder))) | |
807e902e KZ |
2984 | { |
2985 | if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn)) | |
2986 | return remainder + y; | |
2987 | else | |
2988 | return remainder - y; | |
2989 | } | |
2990 | } | |
2991 | else | |
2992 | { | |
4db4954f | 2993 | if (wi::geu_p (remainder, wi::sub (y, remainder))) |
807e902e KZ |
2994 | return remainder - y; |
2995 | } | |
2996 | } | |
2997 | return remainder; | |
2998 | } | |
2999 | ||
7588d8aa RS |
3000 | /* Return true if X is a multiple of Y. Treat X and Y as having the |
3001 | signedness given by SGN. */ | |
3002 | template <typename T1, typename T2> | |
3003 | inline bool | |
3004 | wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn) | |
3005 | { | |
3006 | return wi::mod_trunc (x, y, sgn) == 0; | |
3007 | } | |
3008 | ||
807e902e KZ |
3009 | /* Return true if X is a multiple of Y, storing X / Y in *RES if so. |
3010 | Treat X and Y as having the signedness given by SGN. */ | |
3011 | template <typename T1, typename T2> | |
3012 | inline bool | |
3013 | wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn, | |
3014 | WI_BINARY_RESULT (T1, T2) *res) | |
3015 | { | |
3016 | WI_BINARY_RESULT (T1, T2) remainder; | |
3017 | WI_BINARY_RESULT (T1, T2) quotient | |
3018 | = divmod_trunc (x, y, sgn, &remainder); | |
3019 | if (remainder == 0) | |
3020 | { | |
3021 | *res = quotient; | |
3022 | return true; | |
3023 | } | |
3024 | return false; | |
3025 | } | |
3026 | ||
3027 | /* Return X << Y. Return 0 if Y is greater than or equal to | |
3028 | the precision of X. */ | |
3029 | template <typename T1, typename T2> | |
3030 | inline WI_UNARY_RESULT (T1) | |
3031 | wi::lshift (const T1 &x, const T2 &y) | |
3032 | { | |
3033 | WI_UNARY_RESULT_VAR (result, val, T1, x); | |
3034 | unsigned int precision = get_precision (result); | |
3035 | WIDE_INT_REF_FOR (T1) xi (x, precision); | |
3036 | WIDE_INT_REF_FOR (T2) yi (y); | |
3037 | /* Handle the simple cases quickly. */ | |
3038 | if (geu_p (yi, precision)) | |
3039 | { | |
3040 | val[0] = 0; | |
3041 | result.set_len (1); | |
3042 | } | |
3043 | else | |
3044 | { | |
3045 | unsigned int shift = yi.to_uhwi (); | |
3046 | /* For fixed-precision integers like offset_int and widest_int, | |
3047 | handle the case where the shift value is constant and the | |
3048 | result is a single nonnegative HWI (meaning that we don't | |
3049 | need to worry about val[1]). This is particularly common | |
3050 | for converting a byte count to a bit count. | |
3051 | ||
3052 | For variable-precision integers like wide_int, handle HWI | |
3053 | and sub-HWI integers inline. */ | |
3054 | if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT) | |
3055 | ? (STATIC_CONSTANT_P (shift < HOST_BITS_PER_WIDE_INT - 1) | |
3056 | && xi.len == 1 | |
12bb0436 | 3057 | && IN_RANGE (xi.val[0], 0, HOST_WIDE_INT_MAX >> shift)) |
807e902e KZ |
3058 | : precision <= HOST_BITS_PER_WIDE_INT) |
3059 | { | |
3060 | val[0] = xi.ulow () << shift; | |
3061 | result.set_len (1); | |
3062 | } | |
3063 | else | |
3064 | result.set_len (lshift_large (val, xi.val, xi.len, | |
3065 | precision, shift)); | |
3066 | } | |
3067 | return result; | |
3068 | } | |
3069 | ||
3070 | /* Return X >> Y, using a logical shift. Return 0 if Y is greater than | |
3071 | or equal to the precision of X. */ | |
3072 | template <typename T1, typename T2> | |
3073 | inline WI_UNARY_RESULT (T1) | |
3074 | wi::lrshift (const T1 &x, const T2 &y) | |
3075 | { | |
3076 | WI_UNARY_RESULT_VAR (result, val, T1, x); | |
3077 | /* Do things in the precision of the input rather than the output, | |
3078 | since the result can be no larger than that. */ | |
3079 | WIDE_INT_REF_FOR (T1) xi (x); | |
3080 | WIDE_INT_REF_FOR (T2) yi (y); | |
3081 | /* Handle the simple cases quickly. */ | |
3082 | if (geu_p (yi, xi.precision)) | |
3083 | { | |
3084 | val[0] = 0; | |
3085 | result.set_len (1); | |
3086 | } | |
3087 | else | |
3088 | { | |
3089 | unsigned int shift = yi.to_uhwi (); | |
3090 | /* For fixed-precision integers like offset_int and widest_int, | |
3091 | handle the case where the shift value is constant and the | |
3092 | shifted value is a single nonnegative HWI (meaning that all | |
3093 | bits above the HWI are zero). This is particularly common | |
3094 | for converting a bit count to a byte count. | |
3095 | ||
3096 | For variable-precision integers like wide_int, handle HWI | |
3097 | and sub-HWI integers inline. */ | |
3098 | if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT) | |
b1652dde JJ |
3099 | ? (shift < HOST_BITS_PER_WIDE_INT |
3100 | && xi.len == 1 | |
3101 | && xi.val[0] >= 0) | |
807e902e KZ |
3102 | : xi.precision <= HOST_BITS_PER_WIDE_INT) |
3103 | { | |
3104 | val[0] = xi.to_uhwi () >> shift; | |
3105 | result.set_len (1); | |
3106 | } | |
3107 | else | |
3108 | result.set_len (lrshift_large (val, xi.val, xi.len, xi.precision, | |
3109 | get_precision (result), shift)); | |
3110 | } | |
3111 | return result; | |
3112 | } | |
3113 | ||
3114 | /* Return X >> Y, using an arithmetic shift. Return a sign mask if | |
3115 | Y is greater than or equal to the precision of X. */ | |
3116 | template <typename T1, typename T2> | |
3117 | inline WI_UNARY_RESULT (T1) | |
3118 | wi::arshift (const T1 &x, const T2 &y) | |
3119 | { | |
3120 | WI_UNARY_RESULT_VAR (result, val, T1, x); | |
3121 | /* Do things in the precision of the input rather than the output, | |
3122 | since the result can be no larger than that. */ | |
3123 | WIDE_INT_REF_FOR (T1) xi (x); | |
3124 | WIDE_INT_REF_FOR (T2) yi (y); | |
3125 | /* Handle the simple cases quickly. */ | |
3126 | if (geu_p (yi, xi.precision)) | |
3127 | { | |
3128 | val[0] = sign_mask (x); | |
3129 | result.set_len (1); | |
3130 | } | |
3131 | else | |
3132 | { | |
3133 | unsigned int shift = yi.to_uhwi (); | |
3134 | if (xi.precision <= HOST_BITS_PER_WIDE_INT) | |
3135 | { | |
3136 | val[0] = sext_hwi (xi.ulow () >> shift, xi.precision - shift); | |
3137 | result.set_len (1, true); | |
3138 | } | |
3139 | else | |
3140 | result.set_len (arshift_large (val, xi.val, xi.len, xi.precision, | |
3141 | get_precision (result), shift)); | |
3142 | } | |
3143 | return result; | |
3144 | } | |
3145 | ||
3146 | /* Return X >> Y, using an arithmetic shift if SGN is SIGNED and a | |
3147 | logical shift otherwise. */ | |
3148 | template <typename T1, typename T2> | |
3149 | inline WI_UNARY_RESULT (T1) | |
3150 | wi::rshift (const T1 &x, const T2 &y, signop sgn) | |
3151 | { | |
3152 | if (sgn == UNSIGNED) | |
3153 | return lrshift (x, y); | |
3154 | else | |
3155 | return arshift (x, y); | |
3156 | } | |
3157 | ||
3158 | /* Return the result of rotating the low WIDTH bits of X left by Y | |
3159 | bits and zero-extending the result. Use a full-width rotate if | |
3160 | WIDTH is zero. */ | |
3161 | template <typename T1, typename T2> | |
3162 | WI_UNARY_RESULT (T1) | |
3163 | wi::lrotate (const T1 &x, const T2 &y, unsigned int width) | |
3164 | { | |
3165 | unsigned int precision = get_binary_precision (x, x); | |
3166 | if (width == 0) | |
3167 | width = precision; | |
3168 | WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width); | |
3169 | WI_UNARY_RESULT (T1) left = wi::lshift (x, ymod); | |
3170 | WI_UNARY_RESULT (T1) right = wi::lrshift (x, wi::sub (width, ymod)); | |
3171 | if (width != precision) | |
3172 | return wi::zext (left, width) | wi::zext (right, width); | |
3173 | return left | right; | |
3174 | } | |
3175 | ||
3176 | /* Return the result of rotating the low WIDTH bits of X right by Y | |
3177 | bits and zero-extending the result. Use a full-width rotate if | |
3178 | WIDTH is zero. */ | |
3179 | template <typename T1, typename T2> | |
3180 | WI_UNARY_RESULT (T1) | |
3181 | wi::rrotate (const T1 &x, const T2 &y, unsigned int width) | |
3182 | { | |
3183 | unsigned int precision = get_binary_precision (x, x); | |
3184 | if (width == 0) | |
3185 | width = precision; | |
3186 | WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width); | |
3187 | WI_UNARY_RESULT (T1) right = wi::lrshift (x, ymod); | |
3188 | WI_UNARY_RESULT (T1) left = wi::lshift (x, wi::sub (width, ymod)); | |
3189 | if (width != precision) | |
3190 | return wi::zext (left, width) | wi::zext (right, width); | |
3191 | return left | right; | |
3192 | } | |
3193 | ||
3194 | /* Return 0 if the number of 1s in X is even and 1 if the number of 1s | |
3195 | is odd. */ | |
3196 | inline int | |
3197 | wi::parity (const wide_int_ref &x) | |
3198 | { | |
3199 | return popcount (x) & 1; | |
3200 | } | |
3201 | ||
3202 | /* Extract WIDTH bits from X, starting at BITPOS. */ | |
3203 | template <typename T> | |
3204 | inline unsigned HOST_WIDE_INT | |
3205 | wi::extract_uhwi (const T &x, unsigned int bitpos, unsigned int width) | |
3206 | { | |
3207 | unsigned precision = get_precision (x); | |
3208 | if (precision < bitpos + width) | |
3209 | precision = bitpos + width; | |
3210 | WIDE_INT_REF_FOR (T) xi (x, precision); | |
3211 | ||
3212 | /* Handle this rare case after the above, so that we assert about | |
3213 | bogus BITPOS values. */ | |
3214 | if (width == 0) | |
3215 | return 0; | |
3216 | ||
3217 | unsigned int start = bitpos / HOST_BITS_PER_WIDE_INT; | |
3218 | unsigned int shift = bitpos % HOST_BITS_PER_WIDE_INT; | |
3219 | unsigned HOST_WIDE_INT res = xi.elt (start); | |
3220 | res >>= shift; | |
3221 | if (shift + width > HOST_BITS_PER_WIDE_INT) | |
3222 | { | |
3223 | unsigned HOST_WIDE_INT upper = xi.elt (start + 1); | |
3224 | res |= upper << (-shift % HOST_BITS_PER_WIDE_INT); | |
3225 | } | |
3226 | return zext_hwi (res, width); | |
3227 | } | |
3228 | ||
3229 | /* Return the minimum precision needed to store X with sign SGN. */ | |
3230 | template <typename T> | |
3231 | inline unsigned int | |
3232 | wi::min_precision (const T &x, signop sgn) | |
3233 | { | |
3234 | if (sgn == SIGNED) | |
3235 | return get_precision (x) - clrsb (x); | |
3236 | else | |
3237 | return get_precision (x) - clz (x); | |
3238 | } | |
3239 | ||
032c80e9 RS |
3240 | #define SIGNED_BINARY_PREDICATE(OP, F) \ |
3241 | template <typename T1, typename T2> \ | |
3242 | inline WI_SIGNED_BINARY_PREDICATE_RESULT (T1, T2) \ | |
3243 | OP (const T1 &x, const T2 &y) \ | |
3244 | { \ | |
3245 | return wi::F (x, y); \ | |
3246 | } | |
3247 | ||
3248 | SIGNED_BINARY_PREDICATE (operator <, lts_p) | |
3249 | SIGNED_BINARY_PREDICATE (operator <=, les_p) | |
3250 | SIGNED_BINARY_PREDICATE (operator >, gts_p) | |
3251 | SIGNED_BINARY_PREDICATE (operator >=, ges_p) | |
3252 | ||
3253 | #undef SIGNED_BINARY_PREDICATE | |
3254 | ||
7b27cb4b RS |
3255 | #define UNARY_OPERATOR(OP, F) \ |
3256 | template<typename T> \ | |
3257 | WI_UNARY_RESULT (generic_wide_int<T>) \ | |
3258 | OP (const generic_wide_int<T> &x) \ | |
3259 | { \ | |
3260 | return wi::F (x); \ | |
3261 | } | |
3262 | ||
3263 | #define BINARY_PREDICATE(OP, F) \ | |
3264 | template<typename T1, typename T2> \ | |
3265 | WI_BINARY_PREDICATE_RESULT (T1, T2) \ | |
3266 | OP (const T1 &x, const T2 &y) \ | |
3267 | { \ | |
3268 | return wi::F (x, y); \ | |
3269 | } | |
3270 | ||
3271 | #define BINARY_OPERATOR(OP, F) \ | |
3272 | template<typename T1, typename T2> \ | |
3273 | WI_BINARY_OPERATOR_RESULT (T1, T2) \ | |
3274 | OP (const T1 &x, const T2 &y) \ | |
3275 | { \ | |
3276 | return wi::F (x, y); \ | |
3277 | } | |
3278 | ||
e535b963 RS |
3279 | #define SHIFT_OPERATOR(OP, F) \ |
3280 | template<typename T1, typename T2> \ | |
3281 | WI_BINARY_OPERATOR_RESULT (T1, T1) \ | |
3282 | OP (const T1 &x, const T2 &y) \ | |
3283 | { \ | |
3284 | return wi::F (x, y); \ | |
3285 | } | |
3286 | ||
7b27cb4b RS |
3287 | UNARY_OPERATOR (operator ~, bit_not) |
3288 | UNARY_OPERATOR (operator -, neg) | |
3289 | BINARY_PREDICATE (operator ==, eq_p) | |
3290 | BINARY_PREDICATE (operator !=, ne_p) | |
3291 | BINARY_OPERATOR (operator &, bit_and) | |
3292 | BINARY_OPERATOR (operator |, bit_or) | |
3293 | BINARY_OPERATOR (operator ^, bit_xor) | |
3294 | BINARY_OPERATOR (operator +, add) | |
3295 | BINARY_OPERATOR (operator -, sub) | |
3296 | BINARY_OPERATOR (operator *, mul) | |
e535b963 | 3297 | SHIFT_OPERATOR (operator <<, lshift) |
7b27cb4b RS |
3298 | |
3299 | #undef UNARY_OPERATOR | |
3300 | #undef BINARY_PREDICATE | |
3301 | #undef BINARY_OPERATOR | |
e535b963 RS |
3302 | #undef SHIFT_OPERATOR |
3303 | ||
3304 | template <typename T1, typename T2> | |
3305 | inline WI_SIGNED_SHIFT_RESULT (T1, T2) | |
3306 | operator >> (const T1 &x, const T2 &y) | |
3307 | { | |
3308 | return wi::arshift (x, y); | |
3309 | } | |
7b27cb4b | 3310 | |
8de73453 RS |
3311 | template <typename T1, typename T2> |
3312 | inline WI_SIGNED_SHIFT_RESULT (T1, T2) | |
e535b963 | 3313 | operator / (const T1 &x, const T2 &y) |
8de73453 | 3314 | { |
e535b963 | 3315 | return wi::sdiv_trunc (x, y); |
8de73453 RS |
3316 | } |
3317 | ||
3318 | template <typename T1, typename T2> | |
3319 | inline WI_SIGNED_SHIFT_RESULT (T1, T2) | |
e535b963 | 3320 | operator % (const T1 &x, const T2 &y) |
8de73453 | 3321 | { |
e535b963 | 3322 | return wi::smod_trunc (x, y); |
8de73453 RS |
3323 | } |
3324 | ||
807e902e KZ |
3325 | template<typename T> |
3326 | void | |
3327 | gt_ggc_mx (generic_wide_int <T> *) | |
3328 | { | |
3329 | } | |
3330 | ||
3331 | template<typename T> | |
3332 | void | |
3333 | gt_pch_nx (generic_wide_int <T> *) | |
3334 | { | |
3335 | } | |
3336 | ||
3337 | template<typename T> | |
3338 | void | |
3339 | gt_pch_nx (generic_wide_int <T> *, void (*) (void *, void *), void *) | |
3340 | { | |
3341 | } | |
3342 | ||
3343 | template<int N> | |
3344 | void | |
3345 | gt_ggc_mx (trailing_wide_ints <N> *) | |
3346 | { | |
3347 | } | |
3348 | ||
3349 | template<int N> | |
3350 | void | |
3351 | gt_pch_nx (trailing_wide_ints <N> *) | |
3352 | { | |
3353 | } | |
3354 | ||
3355 | template<int N> | |
3356 | void | |
3357 | gt_pch_nx (trailing_wide_ints <N> *, void (*) (void *, void *), void *) | |
3358 | { | |
3359 | } | |
3360 | ||
3361 | namespace wi | |
3362 | { | |
3363 | /* Used for overloaded functions in which the only other acceptable | |
3364 | scalar type is a pointer. It stops a plain 0 from being treated | |
3365 | as a null pointer. */ | |
3366 | struct never_used1 {}; | |
3367 | struct never_used2 {}; | |
3368 | ||
3369 | wide_int min_value (unsigned int, signop); | |
3370 | wide_int min_value (never_used1 *); | |
3371 | wide_int min_value (never_used2 *); | |
3372 | wide_int max_value (unsigned int, signop); | |
3373 | wide_int max_value (never_used1 *); | |
3374 | wide_int max_value (never_used2 *); | |
3375 | ||
3376 | /* FIXME: this is target dependent, so should be elsewhere. | |
3377 | It also seems to assume that CHAR_BIT == BITS_PER_UNIT. */ | |
3378 | wide_int from_buffer (const unsigned char *, unsigned int); | |
3379 | ||
3380 | #ifndef GENERATOR_FILE | |
3381 | void to_mpz (const wide_int_ref &, mpz_t, signop); | |
3382 | #endif | |
3383 | ||
3384 | wide_int mask (unsigned int, bool, unsigned int); | |
3385 | wide_int shifted_mask (unsigned int, unsigned int, bool, unsigned int); | |
3386 | wide_int set_bit_in_zero (unsigned int, unsigned int); | |
3387 | wide_int insert (const wide_int &x, const wide_int &y, unsigned int, | |
3388 | unsigned int); | |
fff22900 RS |
3389 | wide_int round_down_for_mask (const wide_int &, const wide_int &); |
3390 | wide_int round_up_for_mask (const wide_int &, const wide_int &); | |
807e902e KZ |
3391 | |
3392 | template <typename T> | |
3393 | T mask (unsigned int, bool); | |
3394 | ||
3395 | template <typename T> | |
3396 | T shifted_mask (unsigned int, unsigned int, bool); | |
3397 | ||
3398 | template <typename T> | |
3399 | T set_bit_in_zero (unsigned int); | |
3400 | ||
3401 | unsigned int mask (HOST_WIDE_INT *, unsigned int, bool, unsigned int); | |
3402 | unsigned int shifted_mask (HOST_WIDE_INT *, unsigned int, unsigned int, | |
3403 | bool, unsigned int); | |
3404 | unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *, | |
3405 | unsigned int, unsigned int, bool); | |
3406 | } | |
3407 | ||
3408 | /* Return a PRECISION-bit integer in which the low WIDTH bits are set | |
3409 | and the other bits are clear, or the inverse if NEGATE_P. */ | |
3410 | inline wide_int | |
3411 | wi::mask (unsigned int width, bool negate_p, unsigned int precision) | |
3412 | { | |
3413 | wide_int result = wide_int::create (precision); | |
3414 | result.set_len (mask (result.write_val (), width, negate_p, precision)); | |
3415 | return result; | |
3416 | } | |
3417 | ||
3418 | /* Return a PRECISION-bit integer in which the low START bits are clear, | |
3419 | the next WIDTH bits are set, and the other bits are clear, | |
3420 | or the inverse if NEGATE_P. */ | |
3421 | inline wide_int | |
3422 | wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p, | |
3423 | unsigned int precision) | |
3424 | { | |
3425 | wide_int result = wide_int::create (precision); | |
3426 | result.set_len (shifted_mask (result.write_val (), start, width, negate_p, | |
3427 | precision)); | |
3428 | return result; | |
3429 | } | |
3430 | ||
3431 | /* Return a PRECISION-bit integer in which bit BIT is set and all the | |
3432 | others are clear. */ | |
3433 | inline wide_int | |
3434 | wi::set_bit_in_zero (unsigned int bit, unsigned int precision) | |
3435 | { | |
3436 | return shifted_mask (bit, 1, false, precision); | |
3437 | } | |
3438 | ||
3439 | /* Return an integer of type T in which the low WIDTH bits are set | |
3440 | and the other bits are clear, or the inverse if NEGATE_P. */ | |
3441 | template <typename T> | |
3442 | inline T | |
3443 | wi::mask (unsigned int width, bool negate_p) | |
3444 | { | |
3445 | STATIC_ASSERT (wi::int_traits<T>::precision); | |
3446 | T result; | |
3447 | result.set_len (mask (result.write_val (), width, negate_p, | |
3448 | wi::int_traits <T>::precision)); | |
3449 | return result; | |
3450 | } | |
3451 | ||
3452 | /* Return an integer of type T in which the low START bits are clear, | |
3453 | the next WIDTH bits are set, and the other bits are clear, or the | |
3454 | inverse if NEGATE_P. */ | |
3455 | template <typename T> | |
3456 | inline T | |
3457 | wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p) | |
3458 | { | |
3459 | STATIC_ASSERT (wi::int_traits<T>::precision); | |
3460 | T result; | |
3461 | result.set_len (shifted_mask (result.write_val (), start, width, | |
3462 | negate_p, | |
3463 | wi::int_traits <T>::precision)); | |
3464 | return result; | |
3465 | } | |
3466 | ||
3467 | /* Return an integer of type T in which bit BIT is set and all the | |
3468 | others are clear. */ | |
3469 | template <typename T> | |
3470 | inline T | |
3471 | wi::set_bit_in_zero (unsigned int bit) | |
3472 | { | |
3473 | return shifted_mask <T> (bit, 1, false); | |
3474 | } | |
3475 | ||
4a669ac3 AH |
3476 | /* Accumulate a set of overflows into OVERFLOW. */ |
3477 | ||
3478 | static inline void | |
3479 | wi::accumulate_overflow (wi::overflow_type &overflow, | |
3480 | wi::overflow_type suboverflow) | |
3481 | { | |
3482 | if (!suboverflow) | |
3483 | return; | |
3484 | if (!overflow) | |
3485 | overflow = suboverflow; | |
3486 | else if (overflow != suboverflow) | |
3487 | overflow = wi::OVF_UNKNOWN; | |
3488 | } | |
3489 | ||
807e902e | 3490 | #endif /* WIDE_INT_H */ |