]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgcc/config/libbid/bid64_sqrt.c
Licensing changes to GPLv3 resp. GPLv3 with GCC Runtime Exception.
[thirdparty/gcc.git] / libgcc / config / libbid / bid64_sqrt.c
CommitLineData
748086b7 1/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
200359e8
L
2
3This file is part of GCC.
4
5GCC is free software; you can redistribute it and/or modify it under
6the terms of the GNU General Public License as published by the Free
748086b7 7Software Foundation; either version 3, or (at your option) any later
200359e8
L
8version.
9
200359e8
L
10GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11WARRANTY; without even the implied warranty of MERCHANTABILITY or
12FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13for more details.
14
748086b7
JJ
15Under Section 7 of GPL version 3, you are granted additional
16permissions described in the GCC Runtime Library Exception, version
173.1, as published by the Free Software Foundation.
18
19You should have received a copy of the GNU General Public License and
20a copy of the GCC Runtime Library Exception along with this program;
21see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
22<http://www.gnu.org/licenses/>. */
200359e8
L
23
24/*****************************************************************************
25 * BID64 square root
26 *****************************************************************************
27 *
28 * Algorithm description:
29 *
30 * if(exponent_x is odd)
31 * scale coefficient_x by 10, adjust exponent
32 * - get lower estimate for number of digits in coefficient_x
33 * - scale coefficient x to between 31 and 33 decimal digits
34 * - in parallel, check for exact case and return if true
35 * - get high part of result coefficient using double precision sqrt
36 * - compute remainder and refine coefficient in one iteration (which
37 * modifies it by at most 1)
38 * - result exponent is easy to compute from the adjusted arg. exponent
39 *
40 ****************************************************************************/
41
42#include "bid_internal.h"
b2a00c89
L
43#include "bid_sqrt_macros.h"
44#ifdef UNCHANGED_BINARY_STATUS_FLAGS
45#include <fenv.h>
46
47#define FE_ALL_FLAGS FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT
48#endif
200359e8
L
49
50extern double sqrt (double);
51
52#if DECIMAL_CALL_BY_REFERENCE
53
54void
b2a00c89 55bid64_sqrt (UINT64 * pres,
200359e8
L
56 UINT64 *
57 px _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
58 _EXC_INFO_PARAM) {
59 UINT64 x;
60#else
61
62UINT64
b2a00c89 63bid64_sqrt (UINT64 x _RND_MODE_PARAM _EXC_FLAGS_PARAM
200359e8
L
64 _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
65#endif
66 UINT128 CA, CT;
67 UINT64 sign_x, coefficient_x;
68 UINT64 Q, Q2, A10, C4, R, R2, QE, res;
69 SINT64 D;
70 int_double t_scale;
71 int_float tempx;
72 double da, dq, da_h, da_l, dqe;
73 int exponent_x, exponent_q, bin_expon_cx;
74 int digits_x;
75 int scale;
b2a00c89
L
76#ifdef UNCHANGED_BINARY_STATUS_FLAGS
77 fexcept_t binaryflags = 0;
78#endif
200359e8
L
79
80#if DECIMAL_CALL_BY_REFERENCE
81#if !DECIMAL_GLOBAL_ROUNDING
82 _IDEC_round rnd_mode = *prnd_mode;
83#endif
84 x = *px;
85#endif
86
87 // unpack arguments, check for NaN or Infinity
88 if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
89 // x is Inf. or NaN or 0
200359e8 90 if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
b2a00c89
L
91 res = coefficient_x;
92 if ((coefficient_x & SSNAN_MASK64) == SINFINITY_MASK64) // -Infinity
200359e8
L
93 {
94 res = NAN_MASK64;
95#ifdef SET_STATUS_FLAGS
96 __set_status_flags (pfpsf, INVALID_EXCEPTION);
97#endif
98 }
99#ifdef SET_STATUS_FLAGS
100 if ((x & SNAN_MASK64) == SNAN_MASK64) // sNaN
101 __set_status_flags (pfpsf, INVALID_EXCEPTION);
102#endif
103 BID_RETURN (res & QUIET_MASK64);
104 }
105 // x is 0
106 exponent_x = (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1;
107 res = sign_x | (((UINT64) exponent_x) << 53);
108 BID_RETURN (res);
109 }
110 // x<0?
111 if (sign_x && coefficient_x) {
112 res = NAN_MASK64;
113#ifdef SET_STATUS_FLAGS
114 __set_status_flags (pfpsf, INVALID_EXCEPTION);
115#endif
116 BID_RETURN (res);
117 }
b2a00c89
L
118#ifdef UNCHANGED_BINARY_STATUS_FLAGS
119 (void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
120#endif
200359e8
L
121 //--- get number of bits in the coefficient of x ---
122 tempx.d = (float) coefficient_x;
123 bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
b2a00c89 124 digits_x = estimate_decimal_digits[bin_expon_cx];
200359e8 125 // add test for range
b2a00c89 126 if (coefficient_x >= power10_index_binexp[bin_expon_cx])
200359e8
L
127 digits_x++;
128
129 A10 = coefficient_x;
130 if (exponent_x & 1) {
131 A10 = (A10 << 2) + A10;
132 A10 += A10;
133 }
134
135 dqe = sqrt ((double) A10);
136 QE = (UINT32) dqe;
137 if (QE * QE == A10) {
138 res =
139 very_fast_get_BID64 (0, (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1,
140 QE);
b2a00c89
L
141#ifdef UNCHANGED_BINARY_STATUS_FLAGS
142 (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
143#endif
200359e8
L
144 BID_RETURN (res);
145 }
146 // if exponent is odd, scale coefficient by 10
147 scale = 31 - digits_x;
148 exponent_q = exponent_x - scale;
149 scale += (exponent_q & 1); // exp. bias is even
150
b2a00c89 151 CT = power10_table_128[scale];
200359e8
L
152 __mul_64x128_short (CA, coefficient_x, CT);
153
154 // 2^64
155 t_scale.i = 0x43f0000000000000ull;
156 // convert CA to DP
157 da_h = CA.w[1];
158 da_l = CA.w[0];
159 da = da_h * t_scale.d + da_l;
160
161 dq = sqrt (da);
162
163 Q = (UINT64) dq;
164
165 // get sign(sqrt(CA)-Q)
166 R = CA.w[0] - Q * Q;
167 R = ((SINT64) R) >> 63;
168 D = R + R + 1;
169
170 exponent_q = (exponent_q + DECIMAL_EXPONENT_BIAS) >> 1;
171
172#ifdef SET_STATUS_FLAGS
173 __set_status_flags (pfpsf, INEXACT_EXCEPTION);
174#endif
175
176#ifndef IEEE_ROUND_NEAREST
177#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
178 if (!((rnd_mode) & 3)) {
179#endif
180#endif
181
182 // midpoint to check
183 Q2 = Q + Q + D;
184 C4 = CA.w[0] << 2;
185
186 // get sign(-sqrt(CA)+Midpoint)
187 R2 = Q2 * Q2 - C4;
188 R2 = ((SINT64) R2) >> 63;
189
190 // adjust Q if R!=R2
191 Q += (D & (R ^ R2));
192#ifndef IEEE_ROUND_NEAREST
193#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
194 } else {
195 C4 = CA.w[0];
196 Q += D;
197 if ((SINT64) (Q * Q - C4) > 0)
198 Q--;
199 if (rnd_mode == ROUNDING_UP)
200 Q++;
201 }
202#endif
203#endif
204
205 res = fast_get_BID64 (0, exponent_q, Q);
b2a00c89
L
206#ifdef UNCHANGED_BINARY_STATUS_FLAGS
207 (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
208#endif
209 BID_RETURN (res);
210}
211
212
213TYPE0_FUNCTION_ARG1 (UINT64, bid64q_sqrt, x)
214
215 UINT256 M256, C4, C8;
216 UINT128 CX, CX2, A10, S2, T128, CS, CSM, CS2, C256, CS1,
217 mul_factor2_long = { {0x0ull, 0x0ull} }, QH, Tmp, TP128, Qh, Ql;
218UINT64 sign_x, Carry, B10, res, mul_factor, mul_factor2 = 0x0ull, CS0;
219SINT64 D;
220int_float fx, f64;
221int exponent_x, bin_expon_cx, done = 0;
222int digits, scale, exponent_q = 0, exact = 1, amount, extra_digits;
223#ifdef UNCHANGED_BINARY_STATUS_FLAGS
224fexcept_t binaryflags = 0;
225#endif
226
227 // unpack arguments, check for NaN or Infinity
228if (!unpack_BID128_value (&sign_x, &exponent_x, &CX, x)) {
229 res = CX.w[1];
230 // NaN ?
231 if ((x.w[1] & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
232#ifdef SET_STATUS_FLAGS
233 if ((x.w[1] & 0x7e00000000000000ull) == 0x7e00000000000000ull) // sNaN
234 __set_status_flags (pfpsf, INVALID_EXCEPTION);
235#endif
236 Tmp.w[1] = (CX.w[1] & 0x00003fffffffffffull);
237 Tmp.w[0] = CX.w[0];
238 TP128 = reciprocals10_128[18];
239 __mul_128x128_full (Qh, Ql, Tmp, TP128);
240 amount = recip_scale[18];
241 __shr_128 (Tmp, Qh, amount);
242 res = (CX.w[1] & 0xfc00000000000000ull) | Tmp.w[0];
243 BID_RETURN (res);
244 }
245 // x is Infinity?
246 if ((x.w[1] & 0x7800000000000000ull) == 0x7800000000000000ull) {
247 if (sign_x) {
248 // -Inf, return NaN
249 res = 0x7c00000000000000ull;
250#ifdef SET_STATUS_FLAGS
251 __set_status_flags (pfpsf, INVALID_EXCEPTION);
252#endif
253 }
254 BID_RETURN (res);
255 }
256 // x is 0 otherwise
257
258 exponent_x =
259 ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
260 DECIMAL_EXPONENT_BIAS;
261 if (exponent_x < 0)
262 exponent_x = 0;
263 if (exponent_x > DECIMAL_MAX_EXPON_64)
264 exponent_x = DECIMAL_MAX_EXPON_64;
265 //res= sign_x | (((UINT64)exponent_x)<<53);
266 res = get_BID64 (sign_x, exponent_x, 0, rnd_mode, pfpsf);
267 BID_RETURN (res);
268}
269if (sign_x) {
270 res = 0x7c00000000000000ull;
271#ifdef SET_STATUS_FLAGS
272 __set_status_flags (pfpsf, INVALID_EXCEPTION);
273#endif
200359e8
L
274 BID_RETURN (res);
275}
b2a00c89
L
276#ifdef UNCHANGED_BINARY_STATUS_FLAGS
277(void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
278#endif
279
280 // 2^64
281f64.i = 0x5f800000;
282
283 // fx ~ CX
284fx.d = (float) CX.w[1] * f64.d + (float) CX.w[0];
285bin_expon_cx = ((fx.i >> 23) & 0xff) - 0x7f;
286digits = estimate_decimal_digits[bin_expon_cx];
287
288A10 = CX;
289if (exponent_x & 1) {
290 A10.w[1] = (CX.w[1] << 3) | (CX.w[0] >> 61);
291 A10.w[0] = CX.w[0] << 3;
292 CX2.w[1] = (CX.w[1] << 1) | (CX.w[0] >> 63);
293 CX2.w[0] = CX.w[0] << 1;
294 __add_128_128 (A10, A10, CX2);
295}
296
297C256.w[1] = A10.w[1];
298C256.w[0] = A10.w[0];
299CS.w[0] = short_sqrt128 (A10);
300CS.w[1] = 0;
301mul_factor = 0;
302 // check for exact result
303if (CS.w[0] < 10000000000000000ull) {
304 if (CS.w[0] * CS.w[0] == A10.w[0]) {
305 __sqr64_fast (S2, CS.w[0]);
306 if (S2.w[1] == A10.w[1]) // && S2.w[0]==A10.w[0])
307 {
308 res =
309 get_BID64 (0,
310 ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
311 DECIMAL_EXPONENT_BIAS, CS.w[0], rnd_mode, pfpsf);
312#ifdef UNCHANGED_BINARY_STATUS_FLAGS
313 (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
314#endif
315 BID_RETURN (res);
316 }
317 }
318 if (CS.w[0] >= 1000000000000000ull) {
319 done = 1;
320 exponent_q = exponent_x;
321 C256.w[1] = A10.w[1];
322 C256.w[0] = A10.w[0];
323 }
324#ifdef SET_STATUS_FLAGS
325 __set_status_flags (pfpsf, INEXACT_EXCEPTION);
326#endif
327 exact = 0;
328} else {
329 B10 = 0x3333333333333334ull;
330 __mul_64x64_to_128_full (CS2, CS.w[0], B10);
331 CS0 = CS2.w[1] >> 1;
332 if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
333#ifdef SET_STATUS_FLAGS
334 __set_status_flags (pfpsf, INEXACT_EXCEPTION);
335#endif
336 exact = 0;
337 }
338 done = 1;
339 CS.w[0] = CS0;
340 exponent_q = exponent_x + 2;
341 mul_factor = 10;
342 mul_factor2 = 100;
343 if (CS.w[0] >= 10000000000000000ull) {
344 __mul_64x64_to_128_full (CS2, CS.w[0], B10);
345 CS0 = CS2.w[1] >> 1;
346 if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
347#ifdef SET_STATUS_FLAGS
348 __set_status_flags (pfpsf, INEXACT_EXCEPTION);
349#endif
350 exact = 0;
351 }
352 exponent_q += 2;
353 CS.w[0] = CS0;
354 mul_factor = 100;
355 mul_factor2 = 10000;
356 }
357 if (exact) {
358 CS0 = CS.w[0] * mul_factor;
359 __sqr64_fast (CS1, CS0)
360 if ((CS1.w[0] != A10.w[0]) || (CS1.w[1] != A10.w[1])) {
361#ifdef SET_STATUS_FLAGS
362 __set_status_flags (pfpsf, INEXACT_EXCEPTION);
363#endif
364 exact = 0;
365 }
366 }
367}
368
369if (!done) {
370 // get number of digits in CX
371 D = CX.w[1] - power10_index_binexp_128[bin_expon_cx].w[1];
372 if (D > 0
373 || (!D && CX.w[0] >= power10_index_binexp_128[bin_expon_cx].w[0]))
374 digits++;
375
376 // if exponent is odd, scale coefficient by 10
377 scale = 31 - digits;
378 exponent_q = exponent_x - scale;
379 scale += (exponent_q & 1); // exp. bias is even
380
381 T128 = power10_table_128[scale];
382 __mul_128x128_low (C256, CX, T128);
383
384
385 CS.w[0] = short_sqrt128 (C256);
386}
387 //printf("CS=%016I64x\n",CS.w[0]);
388
389exponent_q =
390 ((exponent_q - DECIMAL_EXPONENT_BIAS_128) >> 1) +
391 DECIMAL_EXPONENT_BIAS;
392if ((exponent_q < 0) && (exponent_q + MAX_FORMAT_DIGITS >= 0)) {
393 extra_digits = -exponent_q;
394 exponent_q = 0;
395
396 // get coeff*(2^M[extra_digits])/10^extra_digits
397 __mul_64x64_to_128 (QH, CS.w[0], reciprocals10_64[extra_digits]);
398
399 // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
400 amount = short_recip_scale[extra_digits];
401
402 CS0 = QH.w[1] >> amount;
403
404#ifdef SET_STATUS_FLAGS
405 if (exact) {
406 if (CS.w[0] != CS0 * power10_table_128[extra_digits].w[0])
407 exact = 0;
408 }
409 if (!exact)
410 __set_status_flags (pfpsf, UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
411#endif
412
413 CS.w[0] = CS0;
414 if (!mul_factor)
415 mul_factor = 1;
416 mul_factor *= power10_table_128[extra_digits].w[0];
417 __mul_64x64_to_128 (mul_factor2_long, mul_factor, mul_factor);
418 if (mul_factor2_long.w[1])
419 mul_factor2 = 0;
420 else
421 mul_factor2 = mul_factor2_long.w[1];
422}
423 // 4*C256
424C4.w[1] = (C256.w[1] << 2) | (C256.w[0] >> 62);
425C4.w[0] = C256.w[0] << 2;
426
427#ifndef IEEE_ROUND_NEAREST
428#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
429if (!((rnd_mode) & 3)) {
430#endif
431#endif
432 // compare to midpoints
433 CSM.w[0] = (CS.w[0] + CS.w[0]) | 1;
434 //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C4.w[1],C4.w[0],CSM.w[1],CSM.w[0], CS.w[0]);
435 if (mul_factor)
436 CSM.w[0] *= mul_factor;
437 // CSM^2
438 __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
439 //__mul_128x128_to_256(M256, CSM, CSM);
440
441 if (C4.w[1] > M256.w[1] ||
442 (C4.w[1] == M256.w[1] && C4.w[0] > M256.w[0])) {
443 // round up
444 CS.w[0]++;
445 } else {
446 C8.w[0] = CS.w[0] << 3;
447 C8.w[1] = 0;
448 if (mul_factor) {
449 if (mul_factor2) {
450 __mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
451 } else {
452 __mul_64x128_low (C8, C8.w[0], mul_factor2_long);
453 }
454 }
455 // M256 - 8*CSM
456 __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
457 M256.w[1] = M256.w[1] - C8.w[1] - Carry;
458
459 // if CSM' > C256, round up
460 if (M256.w[1] > C4.w[1] ||
461 (M256.w[1] == C4.w[1] && M256.w[0] > C4.w[0])) {
462 // round down
463 if (CS.w[0])
464 CS.w[0]--;
465 }
466 }
467#ifndef IEEE_ROUND_NEAREST
468#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
469} else {
470 CS.w[0]++;
471 CSM.w[0] = CS.w[0];
472 C8.w[0] = CSM.w[0] << 1;
473 if (mul_factor)
474 CSM.w[0] *= mul_factor;
475 __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
476 C8.w[1] = 0;
477 if (mul_factor) {
478 if (mul_factor2) {
479 __mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
480 } else {
481 __mul_64x128_low (C8, C8.w[0], mul_factor2_long);
482 }
483 }
484 //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C256.w[1],C256.w[0],M256.w[1],M256.w[0], CS.w[0]);
485
486 if (M256.w[1] > C256.w[1] ||
487 (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0])) {
488 __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
489 M256.w[1] = M256.w[1] - Carry - C8.w[1];
490 M256.w[0]++;
491 if (!M256.w[0]) {
492 M256.w[1]++;
493
494 }
495
496 if ((M256.w[1] > C256.w[1] ||
497 (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
498 && (CS.w[0] > 1)) {
499
500 CS.w[0]--;
501
502 if (CS.w[0] > 1) {
503 __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
504 M256.w[1] = M256.w[1] - Carry - C8.w[1];
505 M256.w[0]++;
506 if (!M256.w[0]) {
507 M256.w[1]++;
508 }
509
510 if (M256.w[1] > C256.w[1] ||
511 (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
512 CS.w[0]--;
513 }
514 }
515 }
516
517 else {
518 /*__add_carry_out(M256.w[0], Carry, M256.w[0], C8.w[0]);
519 M256.w[1] = M256.w[1] + Carry + C8.w[1];
520 M256.w[0]++;
521 if(!M256.w[0])
522 {
523 M256.w[1]++;
524 }
525 CS.w[0]++;
526 if(M256.w[1]<C256.w[1] ||
527 (M256.w[1]==C256.w[1] && M256.w[0]<=C256.w[0]))
528 {
529 CS.w[0]++;
530 }*/
531 CS.w[0]++;
532 }
533 //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
534 // RU?
535 if (((rnd_mode) != ROUNDING_UP) || exact) {
536 if (CS.w[0])
537 CS.w[0]--;
538 }
539
540}
541#endif
542#endif
543 //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
544
545res = get_BID64 (0, exponent_q, CS.w[0], rnd_mode, pfpsf);
546#ifdef UNCHANGED_BINARY_STATUS_FLAGS
547(void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
548#endif
549BID_RETURN (res);
550
551
552}