]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgcc/generic-morestack.c
libgo: Update to weekly.2011-12-06.
[thirdparty/gcc.git] / libgcc / generic-morestack.c
CommitLineData
7458026b 1/* Library support for -fsplit-stack. */
457186f6 2/* Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
7458026b
ILT
3 Contributed by Ian Lance Taylor <iant@google.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17Under Section 7 of GPL version 3, you are granted additional
18permissions described in the GCC Runtime Library Exception, version
193.1, as published by the Free Software Foundation.
20
21You should have received a copy of the GNU General Public License and
22a copy of the GCC Runtime Library Exception along with this program;
23see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24<http://www.gnu.org/licenses/>. */
25
26#include "tconfig.h"
27#include "tsystem.h"
28#include "coretypes.h"
29#include "tm.h"
852b75ed 30#include "libgcc_tm.h"
7458026b
ILT
31
32/* If inhibit_libc is defined, we can not compile this file. The
33 effect is that people will not be able to use -fsplit-stack. That
34 is much better than failing the build particularly since people
35 will want to define inhibit_libc while building a compiler which
36 can build glibc. */
37
38#ifndef inhibit_libc
39
40#include <assert.h>
41#include <errno.h>
42#include <signal.h>
43#include <stdlib.h>
e14304ef 44#include <string.h>
7458026b
ILT
45#include <unistd.h>
46#include <sys/mman.h>
47#include <sys/uio.h>
48
49#include "generic-morestack.h"
50
e14304ef
ILT
51typedef unsigned uintptr_type __attribute__ ((mode (pointer)));
52
7458026b
ILT
53/* This file contains subroutines that are used by code compiled with
54 -fsplit-stack. */
55
56/* Declare functions to avoid warnings--there is no header file for
57 these internal functions. We give most of these functions the
58 flatten attribute in order to minimize their stack usage--here we
59 must minimize stack usage even at the cost of code size, and in
60 general inlining everything will do that. */
61
62extern void
63__generic_morestack_set_initial_sp (void *sp, size_t len)
64 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
65
66extern void *
67__generic_morestack (size_t *frame_size, void *old_stack, size_t param_size)
68 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
69
70extern void *
71__generic_releasestack (size_t *pavailable)
72 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
73
74extern void
75__morestack_block_signals (void)
76 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
77
78extern void
79__morestack_unblock_signals (void)
80 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
81
82extern size_t
83__generic_findstack (void *stack)
84 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
85
86extern void
87__morestack_load_mmap (void)
88 __attribute__ ((no_split_stack, visibility ("hidden")));
89
90extern void *
91__morestack_allocate_stack_space (size_t size)
92 __attribute__ ((visibility ("hidden")));
93
e14304ef
ILT
94/* These are functions which -fsplit-stack code can call. These are
95 not called by the compiler, and are not hidden. FIXME: These
96 should be in some header file somewhere, somehow. */
7458026b
ILT
97
98extern void *
99__splitstack_find (void *, void *, size_t *, void **, void **, void **)
100 __attribute__ ((visibility ("default")));
101
e14304ef
ILT
102extern void
103__splitstack_block_signals (int *, int *)
104 __attribute__ ((visibility ("default")));
105
106extern void
107__splitstack_getcontext (void *context[10])
108 __attribute__ ((no_split_stack, visibility ("default")));
109
110extern void
111__splitstack_setcontext (void *context[10])
112 __attribute__ ((no_split_stack, visibility ("default")));
113
114extern void *
115__splitstack_makecontext (size_t, void *context[10], size_t *)
116 __attribute__ ((visibility ("default")));
117
a01207c4
ILT
118extern void *
119__splitstack_resetcontext (void *context[10], size_t *)
120 __attribute__ ((visibility ("default")));
121
122extern void
123__splitstack_releasecontext (void *context[10])
124 __attribute__ ((visibility ("default")));
125
e14304ef
ILT
126extern void
127__splitstack_block_signals_context (void *context[10], int *, int *)
128 __attribute__ ((visibility ("default")));
129
130extern void *
131__splitstack_find_context (void *context[10], size_t *, void **, void **,
132 void **)
133 __attribute__ ((visibility ("default")));
134
135/* These functions must be defined by the processor specific code. */
136
137extern void *__morestack_get_guard (void)
138 __attribute__ ((no_split_stack, visibility ("hidden")));
139
140extern void __morestack_set_guard (void *)
141 __attribute__ ((no_split_stack, visibility ("hidden")));
142
143extern void *__morestack_make_guard (void *, size_t)
144 __attribute__ ((no_split_stack, visibility ("hidden")));
145
7458026b
ILT
146/* When we allocate a stack segment we put this header at the
147 start. */
148
149struct stack_segment
150{
151 /* The previous stack segment--when a function running on this stack
152 segment returns, it will run on the previous one. */
153 struct stack_segment *prev;
154 /* The next stack segment, if it has been allocated--when a function
155 is running on this stack segment, the next one is not being
156 used. */
157 struct stack_segment *next;
158 /* The total size of this stack segment. */
159 size_t size;
160 /* The stack address when this stack was created. This is used when
161 popping the stack. */
162 void *old_stack;
163 /* A list of memory blocks allocated by dynamic stack
164 allocation. */
165 struct dynamic_allocation_blocks *dynamic_allocation;
166 /* A list of dynamic memory blocks no longer needed. */
167 struct dynamic_allocation_blocks *free_dynamic_allocation;
168 /* An extra pointer in case we need some more information some
169 day. */
170 void *extra;
171};
172
173/* This structure holds the (approximate) initial stack pointer and
174 size for the system supplied stack for a thread. This is set when
175 the thread is created. We also store a sigset_t here to hold the
176 signal mask while splitting the stack, since we don't want to store
177 that on the stack. */
178
179struct initial_sp
180{
181 /* The initial stack pointer. */
182 void *sp;
183 /* The stack length. */
184 size_t len;
185 /* A signal mask, put here so that the thread can use it without
186 needing stack space. */
187 sigset_t mask;
e14304ef
ILT
188 /* Non-zero if we should not block signals. This is a reversed flag
189 so that the default zero value is the safe value. The type is
190 uintptr_type because it replaced one of the void * pointers in
191 extra. */
192 uintptr_type dont_block_signals;
7458026b 193 /* Some extra space for later extensibility. */
e14304ef 194 void *extra[4];
7458026b
ILT
195};
196
197/* A list of memory blocks allocated by dynamic stack allocation.
198 This is used for code that calls alloca or uses variably sized
199 arrays. */
200
201struct dynamic_allocation_blocks
202{
203 /* The next block in the list. */
204 struct dynamic_allocation_blocks *next;
205 /* The size of the allocated memory. */
206 size_t size;
207 /* The allocated memory. */
208 void *block;
209};
210
211/* These thread local global variables must be shared by all split
212 stack code across shared library boundaries. Therefore, they have
213 default visibility. They have extensibility fields if needed for
214 new versions. If more radical changes are needed, new code can be
215 written using new variable names, while still using the existing
216 variables in a backward compatible manner. Symbol versioning is
217 also used, although, since these variables are only referenced by
218 code in this file and generic-morestack-thread.c, it is likely that
219 simply using new names will suffice. */
220
221/* The first stack segment allocated for this thread. */
222
223__thread struct stack_segment *__morestack_segments
224 __attribute__ ((visibility ("default")));
225
226/* The stack segment that we think we are currently using. This will
227 be correct in normal usage, but will be incorrect if an exception
228 unwinds into a different stack segment or if longjmp jumps to a
229 different stack segment. */
230
231__thread struct stack_segment *__morestack_current_segment
232 __attribute__ ((visibility ("default")));
233
234/* The initial stack pointer and size for this thread. */
235
236__thread struct initial_sp __morestack_initial_sp
237 __attribute__ ((visibility ("default")));
238
239/* A static signal mask, to avoid taking up stack space. */
240
241static sigset_t __morestack_fullmask;
242
243/* Convert an integer to a decimal string without using much stack
244 space. Return a pointer to the part of the buffer to use. We this
245 instead of sprintf because sprintf will require too much stack
246 space. */
247
248static char *
249print_int (int val, char *buf, int buflen, size_t *print_len)
250{
251 int is_negative;
252 int i;
253 unsigned int uval;
254
255 uval = (unsigned int) val;
256 if (val >= 0)
257 is_negative = 0;
258 else
259 {
260 is_negative = 1;
261 uval = - uval;
262 }
263
264 i = buflen;
265 do
266 {
267 --i;
268 buf[i] = '0' + (uval % 10);
269 uval /= 10;
270 }
271 while (uval != 0 && i > 0);
272
273 if (is_negative)
274 {
275 if (i > 0)
276 --i;
277 buf[i] = '-';
278 }
279
280 *print_len = buflen - i;
281 return buf + i;
282}
283
284/* Print the string MSG/LEN, the errno number ERR, and a newline on
285 stderr. Then crash. */
286
287void
288__morestack_fail (const char *, size_t, int) __attribute__ ((noreturn));
289
290void
291__morestack_fail (const char *msg, size_t len, int err)
292{
293 char buf[24];
294 static const char nl[] = "\n";
295 struct iovec iov[3];
296 union { char *p; const char *cp; } const_cast;
297
298 const_cast.cp = msg;
299 iov[0].iov_base = const_cast.p;
300 iov[0].iov_len = len;
301 /* We can't call strerror, because it may try to translate the error
302 message, and that would use too much stack space. */
303 iov[1].iov_base = print_int (err, buf, sizeof buf, &iov[1].iov_len);
304 const_cast.cp = &nl[0];
305 iov[2].iov_base = const_cast.p;
306 iov[2].iov_len = sizeof nl - 1;
307 /* FIXME: On systems without writev we need to issue three write
308 calls, or punt on printing errno. For now this is irrelevant
309 since stack splitting only works on GNU/Linux anyhow. */
310 writev (2, iov, 3);
311 abort ();
312}
313
314/* Allocate a new stack segment. FRAME_SIZE is the required frame
315 size. */
316
317static struct stack_segment *
318allocate_segment (size_t frame_size)
319{
320 static unsigned int static_pagesize;
321 static int use_guard_page;
322 unsigned int pagesize;
323 unsigned int overhead;
324 unsigned int allocate;
325 void *space;
326 struct stack_segment *pss;
327
328 pagesize = static_pagesize;
329 if (pagesize == 0)
330 {
331 unsigned int p;
332
333 pagesize = getpagesize ();
334
335#ifdef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
336 p = __sync_val_compare_and_swap (&static_pagesize, 0, pagesize);
337#else
338 /* Just hope this assignment is atomic. */
339 static_pagesize = pagesize;
340 p = 0;
341#endif
342
343 use_guard_page = getenv ("SPLIT_STACK_GUARD") != 0;
344
345 /* FIXME: I'm not sure this assert should be in the released
346 code. */
347 assert (p == 0 || p == pagesize);
348 }
349
350 overhead = sizeof (struct stack_segment);
351
352 allocate = pagesize;
353 if (allocate < MINSIGSTKSZ)
354 allocate = ((MINSIGSTKSZ + overhead + pagesize - 1)
355 & ~ (pagesize - 1));
356 if (allocate < frame_size)
357 allocate = ((frame_size + overhead + pagesize - 1)
358 & ~ (pagesize - 1));
359
360 if (use_guard_page)
361 allocate += pagesize;
362
363 /* FIXME: If this binary requires an executable stack, then we need
364 to set PROT_EXEC. Unfortunately figuring that out is complicated
365 and target dependent. We would need to use dl_iterate_phdr to
366 see if there is any object which does not have a PT_GNU_STACK
367 phdr, though only for architectures which use that mechanism. */
368 space = mmap (NULL, allocate, PROT_READ | PROT_WRITE,
369 MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
370 if (space == MAP_FAILED)
371 {
372 static const char msg[] =
373 "unable to allocate additional stack space: errno ";
374 __morestack_fail (msg, sizeof msg - 1, errno);
375 }
376
377 if (use_guard_page)
378 {
379 void *guard;
380
381#ifdef STACK_GROWS_DOWNWARD
382 guard = space;
383 space = (char *) space + pagesize;
384#else
385 guard = space + allocate - pagesize;
386#endif
387
388 mprotect (guard, pagesize, PROT_NONE);
389 allocate -= pagesize;
390 }
391
392 pss = (struct stack_segment *) space;
393
e14304ef 394 pss->prev = NULL;
7458026b
ILT
395 pss->next = NULL;
396 pss->size = allocate - overhead;
397 pss->dynamic_allocation = NULL;
398 pss->free_dynamic_allocation = NULL;
399 pss->extra = NULL;
400
7458026b
ILT
401 return pss;
402}
403
404/* Free a list of dynamic blocks. */
405
406static void
407free_dynamic_blocks (struct dynamic_allocation_blocks *p)
408{
409 while (p != NULL)
410 {
411 struct dynamic_allocation_blocks *next;
412
413 next = p->next;
414 free (p->block);
415 free (p);
416 p = next;
417 }
418}
419
420/* Merge two lists of dynamic blocks. */
421
422static struct dynamic_allocation_blocks *
423merge_dynamic_blocks (struct dynamic_allocation_blocks *a,
424 struct dynamic_allocation_blocks *b)
425{
426 struct dynamic_allocation_blocks **pp;
427
428 if (a == NULL)
429 return b;
430 if (b == NULL)
431 return a;
432 for (pp = &a->next; *pp != NULL; pp = &(*pp)->next)
433 ;
434 *pp = b;
435 return a;
436}
437
438/* Release stack segments. If FREE_DYNAMIC is non-zero, we also free
439 any dynamic blocks. Otherwise we return them. */
440
441struct dynamic_allocation_blocks *
442__morestack_release_segments (struct stack_segment **pp, int free_dynamic)
443{
444 struct dynamic_allocation_blocks *ret;
445 struct stack_segment *pss;
446
447 ret = NULL;
448 pss = *pp;
449 while (pss != NULL)
450 {
451 struct stack_segment *next;
452 unsigned int allocate;
453
454 next = pss->next;
455
456 if (pss->dynamic_allocation != NULL
457 || pss->free_dynamic_allocation != NULL)
458 {
459 if (free_dynamic)
460 {
461 free_dynamic_blocks (pss->dynamic_allocation);
462 free_dynamic_blocks (pss->free_dynamic_allocation);
463 }
464 else
465 {
466 ret = merge_dynamic_blocks (pss->dynamic_allocation, ret);
467 ret = merge_dynamic_blocks (pss->free_dynamic_allocation, ret);
468 }
469 }
470
471 allocate = pss->size + sizeof (struct stack_segment);
472 if (munmap (pss, allocate) < 0)
473 {
474 static const char msg[] = "munmap of stack space failed: errno ";
475 __morestack_fail (msg, sizeof msg - 1, errno);
476 }
477
478 pss = next;
479 }
480 *pp = NULL;
481
482 return ret;
483}
484
485/* This function is called by a processor specific function to set the
486 initial stack pointer for a thread. The operating system will
487 always create a stack for a thread. Here we record a stack pointer
488 near the base of that stack. The size argument lets the processor
489 specific code estimate how much stack space is available on this
490 initial stack. */
491
492void
493__generic_morestack_set_initial_sp (void *sp, size_t len)
494{
495 /* The stack pointer most likely starts on a page boundary. Adjust
496 to the nearest 512 byte boundary. It's not essential that we be
497 precise here; getting it wrong will just leave some stack space
498 unused. */
499#ifdef STACK_GROWS_DOWNWARD
500 sp = (void *) ((((__UINTPTR_TYPE__) sp + 511U) / 512U) * 512U);
501#else
502 sp = (void *) ((((__UINTPTR_TYPE__) sp - 511U) / 512U) * 512U);
503#endif
504
505 __morestack_initial_sp.sp = sp;
506 __morestack_initial_sp.len = len;
507 sigemptyset (&__morestack_initial_sp.mask);
508
509 sigfillset (&__morestack_fullmask);
510#ifdef __linux__
511 /* On Linux, the first two real time signals are used by the NPTL
512 threading library. By taking them out of the set of signals, we
513 avoiding copying the signal mask in pthread_sigmask. More
514 importantly, pthread_sigmask uses less stack space on x86_64. */
515 sigdelset (&__morestack_fullmask, __SIGRTMIN);
516 sigdelset (&__morestack_fullmask, __SIGRTMIN + 1);
517#endif
518}
519
520/* This function is called by a processor specific function which is
521 run in the prologue when more stack is needed. The processor
522 specific function handles the details of saving registers and
523 frobbing the actual stack pointer. This function is responsible
524 for allocating a new stack segment and for copying a parameter
525 block from the old stack to the new one. On function entry
526 *PFRAME_SIZE is the size of the required stack frame--the returned
527 stack must be at least this large. On function exit *PFRAME_SIZE
528 is the amount of space remaining on the allocated stack. OLD_STACK
529 points at the parameters the old stack (really the current one
530 while this function is running). OLD_STACK is saved so that it can
531 be returned by a later call to __generic_releasestack. PARAM_SIZE
532 is the size in bytes of parameters to copy to the new stack. This
533 function returns a pointer to the new stack segment, pointing to
534 the memory after the parameters have been copied. The returned
535 value minus the returned *PFRAME_SIZE (or plus if the stack grows
536 upward) is the first address on the stack which should not be used.
537
538 This function is running on the old stack and has only a limited
539 amount of stack space available. */
540
541void *
542__generic_morestack (size_t *pframe_size, void *old_stack, size_t param_size)
543{
544 size_t frame_size = *pframe_size;
545 struct stack_segment *current;
546 struct stack_segment **pp;
547 struct dynamic_allocation_blocks *dynamic;
548 char *from;
549 char *to;
550 void *ret;
551 size_t i;
552
553 current = __morestack_current_segment;
554
555 pp = current != NULL ? &current->next : &__morestack_segments;
556 if (*pp != NULL && (*pp)->size < frame_size)
557 dynamic = __morestack_release_segments (pp, 0);
558 else
559 dynamic = NULL;
560 current = *pp;
561
562 if (current == NULL)
e14304ef
ILT
563 {
564 current = allocate_segment (frame_size + param_size);
565 current->prev = __morestack_current_segment;
566 *pp = current;
567 }
7458026b
ILT
568
569 current->old_stack = old_stack;
570
571 __morestack_current_segment = current;
572
573 if (dynamic != NULL)
574 {
575 /* Move the free blocks onto our list. We don't want to call
576 free here, as we are short on stack space. */
577 current->free_dynamic_allocation =
578 merge_dynamic_blocks (dynamic, current->free_dynamic_allocation);
579 }
580
581 *pframe_size = current->size - param_size;
582
583#ifdef STACK_GROWS_DOWNWARD
584 {
585 char *bottom = (char *) (current + 1) + current->size;
586 to = bottom - param_size;
587 ret = bottom - param_size;
588 }
589#else
590 to = current + 1;
591 ret = (char *) (current + 1) + param_size;
592#endif
593
594 /* We don't call memcpy to avoid worrying about the dynamic linker
595 trying to resolve it. */
596 from = (char *) old_stack;
597 for (i = 0; i < param_size; i++)
598 *to++ = *from++;
599
600 return ret;
601}
602
603/* This function is called by a processor specific function when it is
604 ready to release a stack segment. We don't actually release the
605 stack segment, we just move back to the previous one. The current
606 stack segment will still be available if we need it in
607 __generic_morestack. This returns a pointer to the new stack
608 segment to use, which is the one saved by a previous call to
609 __generic_morestack. The processor specific function is then
610 responsible for actually updating the stack pointer. This sets
611 *PAVAILABLE to the amount of stack space now available. */
612
613void *
614__generic_releasestack (size_t *pavailable)
615{
616 struct stack_segment *current;
617 void *old_stack;
618
619 current = __morestack_current_segment;
620 old_stack = current->old_stack;
621 current = current->prev;
622 __morestack_current_segment = current;
623
624 if (current != NULL)
625 {
626#ifdef STACK_GROWS_DOWNWARD
627 *pavailable = (char *) old_stack - (char *) (current + 1);
628#else
629 *pavailable = (char *) (current + 1) + current->size - (char *) old_stack;
630#endif
631 }
632 else
633 {
634 size_t used;
635
636 /* We have popped back to the original stack. */
637#ifdef STACK_GROWS_DOWNWARD
638 if ((char *) old_stack >= (char *) __morestack_initial_sp.sp)
639 used = 0;
640 else
641 used = (char *) __morestack_initial_sp.sp - (char *) old_stack;
642#else
643 if ((char *) old_stack <= (char *) __morestack_initial_sp.sp)
644 used = 0;
645 else
646 used = (char *) old_stack - (char *) __morestack_initial_sp.sp;
647#endif
648
649 if (used > __morestack_initial_sp.len)
650 *pavailable = 0;
651 else
652 *pavailable = __morestack_initial_sp.len - used;
653 }
654
655 return old_stack;
656}
657
658/* Block signals while splitting the stack. This avoids trouble if we
659 try to invoke a signal handler which itself wants to split the
660 stack. */
661
662extern int pthread_sigmask (int, const sigset_t *, sigset_t *)
663 __attribute__ ((weak));
664
665void
666__morestack_block_signals (void)
667{
e14304ef
ILT
668 if (__morestack_initial_sp.dont_block_signals)
669 ;
670 else if (pthread_sigmask)
7458026b
ILT
671 pthread_sigmask (SIG_BLOCK, &__morestack_fullmask,
672 &__morestack_initial_sp.mask);
673 else
674 sigprocmask (SIG_BLOCK, &__morestack_fullmask,
675 &__morestack_initial_sp.mask);
676}
677
678/* Unblock signals while splitting the stack. */
679
680void
681__morestack_unblock_signals (void)
682{
e14304ef
ILT
683 if (__morestack_initial_sp.dont_block_signals)
684 ;
685 else if (pthread_sigmask)
7458026b
ILT
686 pthread_sigmask (SIG_SETMASK, &__morestack_initial_sp.mask, NULL);
687 else
688 sigprocmask (SIG_SETMASK, &__morestack_initial_sp.mask, NULL);
689}
690
691/* This function is called to allocate dynamic stack space, for alloca
692 or a variably sized array. This is a regular function with
693 sufficient stack space, so we just use malloc to allocate the
694 space. We attach the allocated blocks to the current stack
695 segment, so that they will eventually be reused or freed. */
696
697void *
698__morestack_allocate_stack_space (size_t size)
699{
700 struct stack_segment *seg, *current;
701 struct dynamic_allocation_blocks *p;
702
703 /* We have to block signals to avoid getting confused if we get
704 interrupted by a signal whose handler itself uses alloca or a
705 variably sized array. */
706 __morestack_block_signals ();
707
708 /* Since we don't want to call free while we are low on stack space,
709 we may have a list of already allocated blocks waiting to be
710 freed. Release them all, unless we find one that is large
711 enough. We don't look at every block to see if one is large
712 enough, just the first one, because we aren't trying to build a
713 memory allocator here, we're just trying to speed up common
714 cases. */
715
716 current = __morestack_current_segment;
717 p = NULL;
718 for (seg = __morestack_segments; seg != NULL; seg = seg->next)
719 {
720 p = seg->free_dynamic_allocation;
721 if (p != NULL)
722 {
723 if (p->size >= size)
724 {
725 seg->free_dynamic_allocation = p->next;
726 break;
727 }
728
729 free_dynamic_blocks (p);
730 seg->free_dynamic_allocation = NULL;
731 p = NULL;
732 }
733 }
734
735 if (p == NULL)
736 {
737 /* We need to allocate additional memory. */
738 p = malloc (sizeof (*p));
739 if (p == NULL)
740 abort ();
741 p->size = size;
742 p->block = malloc (size);
743 if (p->block == NULL)
744 abort ();
745 }
746
747 /* If we are still on the initial stack, then we have a space leak.
748 FIXME. */
749 if (current != NULL)
750 {
751 p->next = current->dynamic_allocation;
752 current->dynamic_allocation = p;
753 }
754
755 __morestack_unblock_signals ();
756
757 return p->block;
758}
759
760/* Find the stack segment for STACK and return the amount of space
761 available. This is used when unwinding the stack because of an
762 exception, in order to reset the stack guard correctly. */
763
764size_t
765__generic_findstack (void *stack)
766{
767 struct stack_segment *pss;
768 size_t used;
769
770 for (pss = __morestack_current_segment; pss != NULL; pss = pss->prev)
771 {
772 if ((char *) pss < (char *) stack
773 && (char *) pss + pss->size > (char *) stack)
774 {
775 __morestack_current_segment = pss;
776#ifdef STACK_GROWS_DOWNWARD
777 return (char *) stack - (char *) (pss + 1);
778#else
779 return (char *) (pss + 1) + pss->size - (char *) stack;
780#endif
781 }
782 }
783
784 /* We have popped back to the original stack. */
e14304ef
ILT
785
786 if (__morestack_initial_sp.sp == NULL)
787 return 0;
788
7458026b
ILT
789#ifdef STACK_GROWS_DOWNWARD
790 if ((char *) stack >= (char *) __morestack_initial_sp.sp)
791 used = 0;
792 else
793 used = (char *) __morestack_initial_sp.sp - (char *) stack;
794#else
795 if ((char *) stack <= (char *) __morestack_initial_sp.sp)
796 used = 0;
797 else
798 used = (char *) stack - (char *) __morestack_initial_sp.sp;
799#endif
800
801 if (used > __morestack_initial_sp.len)
802 return 0;
803 else
804 return __morestack_initial_sp.len - used;
805}
806
807/* This function is called at program startup time to make sure that
808 mmap, munmap, and getpagesize are resolved if linking dynamically.
809 We want to resolve them while we have enough stack for them, rather
810 than calling into the dynamic linker while low on stack space. */
811
812void
813__morestack_load_mmap (void)
814{
815 /* Call with bogus values to run faster. We don't care if the call
816 fails. Pass __MORESTACK_CURRENT_SEGMENT to make sure that any
817 TLS accessor function is resolved. */
818 mmap (__morestack_current_segment, 0, PROT_READ, MAP_ANONYMOUS, -1, 0);
819 mprotect (NULL, 0, 0);
820 munmap (0, getpagesize ());
821}
822
823/* This function may be used to iterate over the stack segments.
824 This can be called like this.
825 void *next_segment = NULL;
826 void *next_sp = NULL;
827 void *initial_sp = NULL;
828 void *stack;
829 size_t stack_size;
830 while ((stack = __splitstack_find (next_segment, next_sp, &stack_size,
831 &next_segment, &next_sp,
832 &initial_sp)) != NULL)
833 {
834 // Stack segment starts at stack and is stack_size bytes long.
835 }
836
837 There is no way to iterate over the stack segments of a different
838 thread. However, what is permitted is for one thread to call this
839 with the first two values NULL, to pass next_segment, next_sp, and
840 initial_sp to a different thread, and then to suspend one way or
841 another. A different thread may run the subsequent
842 __morestack_find iterations. Of course, this will only work if the
843 first thread is suspended during the __morestack_find iterations.
844 If not, the second thread will be looking at the stack while it is
845 changing, and anything could happen.
846
847 FIXME: This should be declared in some header file, but where? */
848
849void *
850__splitstack_find (void *segment_arg, void *sp, size_t *len,
851 void **next_segment, void **next_sp,
852 void **initial_sp)
853{
854 struct stack_segment *segment;
855 void *ret;
856 char *nsp;
857
e14304ef 858 if (segment_arg == (void *) (uintptr_type) 1)
7458026b
ILT
859 {
860 char *isp = (char *) *initial_sp;
861
e14304ef
ILT
862 if (isp == NULL)
863 return NULL;
864
865 *next_segment = (void *) (uintptr_type) 2;
7458026b
ILT
866 *next_sp = NULL;
867#ifdef STACK_GROWS_DOWNWARD
868 if ((char *) sp >= isp)
869 return NULL;
870 *len = (char *) isp - (char *) sp;
871 return sp;
872#else
873 if ((char *) sp <= (char *) isp)
874 return NULL;
875 *len = (char *) sp - (char *) isp;
876 return (void *) isp;
877#endif
878 }
e14304ef 879 else if (segment_arg == (void *) (uintptr_type) 2)
7458026b
ILT
880 return NULL;
881 else if (segment_arg != NULL)
882 segment = (struct stack_segment *) segment_arg;
883 else
884 {
885 *initial_sp = __morestack_initial_sp.sp;
886 segment = __morestack_current_segment;
887 sp = (void *) &segment;
888 while (1)
889 {
890 if (segment == NULL)
e14304ef
ILT
891 return __splitstack_find ((void *) (uintptr_type) 1, sp, len,
892 next_segment, next_sp, initial_sp);
7458026b
ILT
893 if ((char *) sp >= (char *) (segment + 1)
894 && (char *) sp <= (char *) (segment + 1) + segment->size)
895 break;
896 segment = segment->prev;
897 }
898 }
899
900 if (segment->prev == NULL)
e14304ef 901 *next_segment = (void *) (uintptr_type) 1;
7458026b
ILT
902 else
903 *next_segment = segment->prev;
904
905 /* The old_stack value is the address of the function parameters of
906 the function which called __morestack. So if f1 called f2 which
907 called __morestack, the stack looks like this:
908
909 parameters <- old_stack
910 return in f1
911 return in f2
457186f6 912 registers pushed by __morestack
7458026b 913
457186f6
ILT
914 The registers pushed by __morestack may not be visible on any
915 other stack, if we are being called by a signal handler
916 immediately after the call to __morestack_unblock_signals. We
917 want to adjust our return value to include those registers. This
918 is target dependent. */
7458026b
ILT
919
920 nsp = (char *) segment->old_stack;
457186f6 921
a01207c4
ILT
922 if (nsp == NULL)
923 {
924 /* We've reached the top of the stack. */
925 *next_segment = (void *) (uintptr_type) 2;
926 }
927 else
928 {
457186f6 929#if defined (__x86_64__)
a01207c4 930 nsp -= 12 * sizeof (void *);
457186f6 931#elif defined (__i386__)
a01207c4 932 nsp -= 6 * sizeof (void *);
7458026b 933#else
457186f6 934#error "unrecognized target"
7458026b 935#endif
457186f6 936
a01207c4
ILT
937 *next_sp = (void *) nsp;
938 }
7458026b
ILT
939
940#ifdef STACK_GROWS_DOWNWARD
941 *len = (char *) (segment + 1) + segment->size - (char *) sp;
942 ret = (void *) sp;
943#else
944 *len = (char *) sp - (char *) (segment + 1);
945 ret = (void *) (segment + 1);
946#endif
947
948 return ret;
949}
950
e14304ef
ILT
951/* Tell the split stack code whether it has to block signals while
952 manipulating the stack. This is for programs in which some threads
953 block all signals. If a thread already blocks signals, there is no
954 need for the split stack code to block them as well. If NEW is not
955 NULL, then if *NEW is non-zero signals will be blocked while
956 splitting the stack, otherwise they will not. If OLD is not NULL,
957 *OLD will be set to the old value. */
958
959void
960__splitstack_block_signals (int *new, int *old)
961{
962 if (old != NULL)
963 *old = __morestack_initial_sp.dont_block_signals ? 0 : 1;
964 if (new != NULL)
965 __morestack_initial_sp.dont_block_signals = *new ? 0 : 1;
966}
967
968/* The offsets into the arrays used by __splitstack_getcontext and
969 __splitstack_setcontext. */
970
971enum __splitstack_context_offsets
972{
973 MORESTACK_SEGMENTS = 0,
974 CURRENT_SEGMENT = 1,
975 CURRENT_STACK = 2,
976 STACK_GUARD = 3,
977 INITIAL_SP = 4,
978 INITIAL_SP_LEN = 5,
979 BLOCK_SIGNALS = 6,
980
981 NUMBER_OFFSETS = 10
982};
983
984/* Get the current split stack context. This may be used for
985 coroutine switching, similar to getcontext. The argument should
986 have at least 10 void *pointers for extensibility, although we
987 don't currently use all of them. This would normally be called
988 immediately before a call to getcontext or swapcontext or
989 setjmp. */
990
991void
992__splitstack_getcontext (void *context[NUMBER_OFFSETS])
993{
994 memset (context, 0, NUMBER_OFFSETS * sizeof (void *));
995 context[MORESTACK_SEGMENTS] = (void *) __morestack_segments;
996 context[CURRENT_SEGMENT] = (void *) __morestack_current_segment;
997 context[CURRENT_STACK] = (void *) &context;
998 context[STACK_GUARD] = __morestack_get_guard ();
999 context[INITIAL_SP] = (void *) __morestack_initial_sp.sp;
1000 context[INITIAL_SP_LEN] = (void *) (uintptr_type) __morestack_initial_sp.len;
1001 context[BLOCK_SIGNALS] = (void *) __morestack_initial_sp.dont_block_signals;
1002}
1003
1004/* Set the current split stack context. The argument should be a
1005 context previously passed to __splitstack_getcontext. This would
1006 normally be called immediately after a call to getcontext or
1007 swapcontext or setjmp if something jumped to it. */
1008
1009void
1010__splitstack_setcontext (void *context[NUMBER_OFFSETS])
1011{
1012 __morestack_segments = (struct stack_segment *) context[MORESTACK_SEGMENTS];
1013 __morestack_current_segment =
1014 (struct stack_segment *) context[CURRENT_SEGMENT];
1015 __morestack_set_guard (context[STACK_GUARD]);
1016 __morestack_initial_sp.sp = context[INITIAL_SP];
1017 __morestack_initial_sp.len = (size_t) context[INITIAL_SP_LEN];
1018 __morestack_initial_sp.dont_block_signals =
1019 (uintptr_type) context[BLOCK_SIGNALS];
1020}
1021
1022/* Create a new split stack context. This will allocate a new stack
1023 segment which may be used by a coroutine. STACK_SIZE is the
1024 minimum size of the new stack. The caller is responsible for
1025 actually setting the stack pointer. This would normally be called
1026 before a call to makecontext, and the returned stack pointer and
1027 size would be used to set the uc_stack field. A function called
1028 via makecontext on a stack created by __splitstack_makecontext may
1029 not return. Note that the returned pointer points to the lowest
1030 address in the stack space, and thus may not be the value to which
1031 to set the stack pointer. */
1032
1033void *
1034__splitstack_makecontext (size_t stack_size, void *context[NUMBER_OFFSETS],
1035 size_t *size)
1036{
1037 struct stack_segment *segment;
1038 void *initial_sp;
1039
1040 memset (context, 0, NUMBER_OFFSETS * sizeof (void *));
1041 segment = allocate_segment (stack_size);
1042 context[MORESTACK_SEGMENTS] = segment;
1043 context[CURRENT_SEGMENT] = segment;
1044#ifdef STACK_GROWS_DOWNWARD
1045 initial_sp = (void *) ((char *) (segment + 1) + segment->size);
1046#else
1047 initial_sp = (void *) (segment + 1);
1048#endif
1049 context[STACK_GUARD] = __morestack_make_guard (initial_sp, segment->size);
1050 context[INITIAL_SP] = NULL;
1051 context[INITIAL_SP_LEN] = 0;
1052 *size = segment->size;
1053 return (void *) (segment + 1);
1054}
1055
a01207c4
ILT
1056/* Given an existing split stack context, reset it back to the start
1057 of the stack. Return the stack pointer and size, appropriate for
1058 use with makecontext. This may be used if a coroutine exits, in
1059 order to reuse the stack segments for a new coroutine. */
1060
1061void *
1062__splitstack_resetcontext (void *context[10], size_t *size)
1063{
1064 struct stack_segment *segment;
1065 void *initial_sp;
1066 size_t initial_size;
1067 void *ret;
1068
1069 /* Reset the context assuming that MORESTACK_SEGMENTS, INITIAL_SP
1070 and INITIAL_SP_LEN are correct. */
1071
1072 segment = context[MORESTACK_SEGMENTS];
1073 context[CURRENT_SEGMENT] = segment;
1074 context[CURRENT_STACK] = NULL;
1075 if (segment == NULL)
1076 {
1077 initial_sp = context[INITIAL_SP];
1078 initial_size = (uintptr_type) context[INITIAL_SP_LEN];
1079 ret = initial_sp;
1080#ifdef STACK_GROWS_DOWNWARD
1081 ret = (void *) ((char *) ret - initial_size);
1082#endif
1083 }
1084 else
1085 {
1086#ifdef STACK_GROWS_DOWNWARD
1087 initial_sp = (void *) ((char *) (segment + 1) + segment->size);
1088#else
1089 initial_sp = (void *) (segment + 1);
1090#endif
1091 initial_size = segment->size;
1092 ret = (void *) (segment + 1);
1093 }
1094 context[STACK_GUARD] = __morestack_make_guard (initial_sp, initial_size);
1095 context[BLOCK_SIGNALS] = NULL;
1096 *size = initial_size;
1097 return ret;
1098}
1099
1100/* Release all the memory associated with a splitstack context. This
1101 may be used if a coroutine exits and the associated stack should be
1102 freed. */
1103
1104void
1105__splitstack_releasecontext (void *context[10])
1106{
1107 __morestack_release_segments (context[MORESTACK_SEGMENTS], 1);
1108}
1109
e14304ef
ILT
1110/* Like __splitstack_block_signals, but operating on CONTEXT, rather
1111 than on the current state. */
1112
1113void
1114__splitstack_block_signals_context (void *context[NUMBER_OFFSETS], int *new,
1115 int *old)
1116{
1117 if (old != NULL)
1118 *old = ((uintptr_type) context[BLOCK_SIGNALS]) != 0 ? 0 : 1;
1119 if (new != NULL)
1120 context[BLOCK_SIGNALS] = (void *) (uintptr_type) (*new ? 0 : 1);
1121}
1122
1123/* Find the stack segments associated with a split stack context.
1124 This will return the address of the first stack segment and set
1125 *STACK_SIZE to its size. It will set next_segment, next_sp, and
1126 initial_sp which may be passed to __splitstack_find to find the
1127 remaining segments. */
1128
1129void *
1130__splitstack_find_context (void *context[NUMBER_OFFSETS], size_t *stack_size,
1131 void **next_segment, void **next_sp,
1132 void **initial_sp)
1133{
1134 void *sp;
1135 struct stack_segment *segment;
1136
1137 *initial_sp = context[INITIAL_SP];
1138
1139 sp = context[CURRENT_STACK];
1140 if (sp == NULL)
1141 {
1142 /* Most likely this context was created but was never used. The
1143 value 2 is a code used by __splitstack_find to mean that we
1144 have reached the end of the list of stacks. */
1145 *next_segment = (void *) (uintptr_type) 2;
1146 *next_sp = NULL;
1147 *initial_sp = NULL;
1148 return NULL;
1149 }
1150
1151 segment = context[CURRENT_SEGMENT];
1152 if (segment == NULL)
1153 {
1154 /* Most likely this context was saved by a thread which was not
1155 created using __splistack_makecontext and which has never
1156 split the stack. The value 1 is a code used by
1157 __splitstack_find to look at the initial stack. */
1158 segment = (struct stack_segment *) (uintptr_type) 1;
1159 }
1160
1161 return __splitstack_find (segment, sp, stack_size, next_segment, next_sp,
1162 initial_sp);
1163}
1164
7458026b 1165#endif /* !defined (inhibit_libc) */