]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgcc/libgcc2.c
Update Copyright year in ChangeLog files
[thirdparty/gcc.git] / libgcc / libgcc2.c
CommitLineData
203b91b9
RS
1/* More subroutines needed by GCC output code on some machines. */
2/* Compile this one with gcc. */
7adcbafe 3/* Copyright (C) 1989-2022 Free Software Foundation, Inc.
203b91b9 4
1322177d 5This file is part of GCC.
203b91b9 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
748086b7 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
203b91b9 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
203b91b9 16
748086b7
JJ
17Under Section 7 of GPL version 3, you are granted additional
18permissions described in the GCC Runtime Library Exception, version
193.1, as published by the Free Software Foundation.
20
21You should have received a copy of the GNU General Public License and
22a copy of the GCC Runtime Library Exception along with this program;
23see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24<http://www.gnu.org/licenses/>. */
203b91b9 25
0dadecf6 26#include "tconfig.h"
2e39bdbe 27#include "tsystem.h"
4977bab6
ZW
28#include "coretypes.h"
29#include "tm.h"
852b75ed 30#include "libgcc_tm.h"
2467749d 31
53585c36
RH
32#ifdef HAVE_GAS_HIDDEN
33#define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
34#else
35#define ATTRIBUTE_HIDDEN
36#endif
37
b2a203c8
RS
38/* Work out the largest "word" size that we can deal with on this target. */
39#if MIN_UNITS_PER_WORD > 4
40# define LIBGCC2_MAX_UNITS_PER_WORD 8
41#elif (MIN_UNITS_PER_WORD > 2 \
4471aff6 42 || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
b2a203c8
RS
43# define LIBGCC2_MAX_UNITS_PER_WORD 4
44#else
45# define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
46#endif
47
48/* Work out what word size we are using for this compilation.
49 The value can be set on the command line. */
baffad1f 50#ifndef LIBGCC2_UNITS_PER_WORD
b2a203c8 51#define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
baffad1f
RS
52#endif
53
b2a203c8 54#if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
baffad1f 55
299b83b7 56#include "libgcc2.h"
203b91b9 57\f
d8088c6f
BS
58#ifdef DECLARE_LIBRARY_RENAMES
59 DECLARE_LIBRARY_RENAMES
60#endif
61
b68daef4 62#if defined (L_negdi2)
3d2adde6
CC
63DWtype
64__negdi2 (DWtype u)
65{
b982024e
KG
66 const DWunion uu = {.ll = u};
67 const DWunion w = { {.low = -uu.s.low,
68 .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
3d2adde6
CC
69
70 return w.ll;
71}
72#endif
91ce572a
CC
73
74#ifdef L_addvsi3
66f77154 75Wtype
0aec6014 76__addvSI3 (Wtype a, Wtype b)
91ce572a 77{
ebc4cd54 78 Wtype w;
91ce572a 79
831f24a7 80 if (__builtin_add_overflow (a, b, &w))
91ce572a
CC
81 abort ();
82
83 return w;
23190837 84}
0aec6014
EB
85#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
86SItype
87__addvsi3 (SItype a, SItype b)
88{
ebc4cd54 89 SItype w;
0aec6014 90
831f24a7 91 if (__builtin_add_overflow (a, b, &w))
0aec6014
EB
92 abort ();
93
94 return w;
95}
96#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
3d2adde6 97#endif
91ce572a
CC
98\f
99#ifdef L_addvdi3
66f77154 100DWtype
0aec6014 101__addvDI3 (DWtype a, DWtype b)
91ce572a 102{
ebc4cd54 103 DWtype w;
91ce572a 104
831f24a7 105 if (__builtin_add_overflow (a, b, &w))
91ce572a
CC
106 abort ();
107
108 return w;
109}
110#endif
111\f
112#ifdef L_subvsi3
66f77154 113Wtype
0aec6014 114__subvSI3 (Wtype a, Wtype b)
91ce572a 115{
ebc4cd54 116 Wtype w;
91ce572a 117
831f24a7 118 if (__builtin_sub_overflow (a, b, &w))
91ce572a
CC
119 abort ();
120
121 return w;
91ce572a 122}
0aec6014
EB
123#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
124SItype
125__subvsi3 (SItype a, SItype b)
126{
ebc4cd54 127 SItype w;
0aec6014 128
831f24a7 129 if (__builtin_sub_overflow (a, b, &w))
0aec6014
EB
130 abort ();
131
132 return w;
133}
134#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
91ce572a
CC
135#endif
136\f
137#ifdef L_subvdi3
66f77154 138DWtype
0aec6014 139__subvDI3 (DWtype a, DWtype b)
91ce572a 140{
ebc4cd54 141 DWtype w;
91ce572a 142
831f24a7 143 if (__builtin_sub_overflow (a, b, &w))
91ce572a
CC
144 abort ();
145
146 return w;
91ce572a
CC
147}
148#endif
149\f
150#ifdef L_mulvsi3
66f77154 151Wtype
0aec6014 152__mulvSI3 (Wtype a, Wtype b)
91ce572a 153{
ebc4cd54 154 Wtype w;
91ce572a 155
831f24a7 156 if (__builtin_mul_overflow (a, b, &w))
91ce572a
CC
157 abort ();
158
159 return w;
160}
0aec6014 161#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
0aec6014
EB
162SItype
163__mulvsi3 (SItype a, SItype b)
164{
ebc4cd54 165 SItype w;
0aec6014 166
831f24a7 167 if (__builtin_mul_overflow (a, b, &w))
0aec6014
EB
168 abort ();
169
170 return w;
171}
172#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
91ce572a
CC
173#endif
174\f
175#ifdef L_negvsi2
66f77154 176Wtype
0aec6014 177__negvSI2 (Wtype a)
91ce572a 178{
ebc4cd54 179 Wtype w;
91ce572a 180
831f24a7 181 if (__builtin_sub_overflow (0, a, &w))
91ce572a
CC
182 abort ();
183
ebc4cd54 184 return w;
91ce572a 185}
0aec6014
EB
186#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
187SItype
188__negvsi2 (SItype a)
189{
ebc4cd54 190 SItype w;
0aec6014 191
831f24a7 192 if (__builtin_sub_overflow (0, a, &w))
0aec6014
EB
193 abort ();
194
ebc4cd54 195 return w;
0aec6014
EB
196}
197#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
91ce572a
CC
198#endif
199\f
200#ifdef L_negvdi2
66f77154 201DWtype
0aec6014 202__negvDI2 (DWtype a)
91ce572a 203{
ebc4cd54 204 DWtype w;
91ce572a 205
831f24a7 206 if (__builtin_sub_overflow (0, a, &w))
91ce572a
CC
207 abort ();
208
e11e816e 209 return w;
91ce572a
CC
210}
211#endif
212\f
213#ifdef L_absvsi2
66f77154 214Wtype
0aec6014 215__absvSI2 (Wtype a)
91ce572a 216{
4919ed71
SK
217 const Wtype v = 0 - (a < 0);
218 Wtype w;
0aec6014 219
4919ed71 220 if (__builtin_add_overflow (a, v, &w))
0aec6014 221 abort ();
0aec6014 222
4919ed71 223 return v ^ w;
0aec6014
EB
224}
225#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
226SItype
227__absvsi2 (SItype a)
228{
4919ed71
SK
229 const SItype v = 0 - (a < 0);
230 SItype w;
91ce572a 231
4919ed71 232 if (__builtin_add_overflow (a, v, &w))
e11e816e 233 abort ();
91ce572a 234
4919ed71 235 return v ^ w;
91ce572a 236}
0aec6014 237#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
91ce572a
CC
238#endif
239\f
240#ifdef L_absvdi2
66f77154 241DWtype
0aec6014 242__absvDI2 (DWtype a)
91ce572a 243{
4919ed71
SK
244 const DWtype v = 0 - (a < 0);
245 DWtype w;
91ce572a 246
4919ed71 247 if (__builtin_add_overflow (a, v, &w))
e11e816e 248 abort ();
91ce572a 249
4919ed71 250 return v ^ w;
91ce572a
CC
251}
252#endif
253\f
254#ifdef L_mulvdi3
66f77154 255DWtype
0aec6014 256__mulvDI3 (DWtype u, DWtype v)
91ce572a 257{
4c20b2e7
BH
258 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
259 but the checked multiplication needs only two. */
b982024e
KG
260 const DWunion uu = {.ll = u};
261 const DWunion vv = {.ll = v};
91ce572a 262
4f2e0d5e 263 if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
264 {
265 /* u fits in a single Wtype. */
4f2e0d5e 266 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
267 {
268 /* v fits in a single Wtype as well. */
269 /* A single multiplication. No overflow risk. */
270 return (DWtype) uu.s.low * (DWtype) vv.s.low;
271 }
272 else
273 {
274 /* Two multiplications. */
b982024e
KG
275 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
276 * (UDWtype) (UWtype) vv.s.low};
277 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
278 * (UDWtype) (UWtype) vv.s.high};
4c20b2e7 279
4c20b2e7
BH
280 if (vv.s.high < 0)
281 w1.s.high -= uu.s.low;
282 if (uu.s.low < 0)
283 w1.ll -= vv.ll;
284 w1.ll += (UWtype) w0.s.high;
4f2e0d5e 285 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
286 {
287 w0.s.high = w1.s.low;
288 return w0.ll;
289 }
290 }
291 }
292 else
293 {
4f2e0d5e 294 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
295 {
296 /* v fits into a single Wtype. */
297 /* Two multiplications. */
b982024e
KG
298 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
299 * (UDWtype) (UWtype) vv.s.low};
300 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
301 * (UDWtype) (UWtype) vv.s.low};
4c20b2e7 302
4c20b2e7
BH
303 if (uu.s.high < 0)
304 w1.s.high -= vv.s.low;
305 if (vv.s.low < 0)
306 w1.ll -= uu.ll;
307 w1.ll += (UWtype) w0.s.high;
4f2e0d5e 308 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
309 {
310 w0.s.high = w1.s.low;
311 return w0.ll;
312 }
313 }
314 else
315 {
316 /* A few sign checks and a single multiplication. */
317 if (uu.s.high >= 0)
318 {
319 if (vv.s.high >= 0)
320 {
321 if (uu.s.high == 0 && vv.s.high == 0)
322 {
b982024e
KG
323 const DWtype w = (UDWtype) (UWtype) uu.s.low
324 * (UDWtype) (UWtype) vv.s.low;
4c20b2e7
BH
325 if (__builtin_expect (w >= 0, 1))
326 return w;
327 }
328 }
329 else
330 {
331 if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
332 {
b982024e
KG
333 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
334 * (UDWtype) (UWtype) vv.s.low};
4c20b2e7 335
4c20b2e7
BH
336 ww.s.high -= uu.s.low;
337 if (__builtin_expect (ww.s.high < 0, 1))
338 return ww.ll;
339 }
340 }
341 }
342 else
343 {
344 if (vv.s.high >= 0)
345 {
346 if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
347 {
b982024e
KG
348 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
349 * (UDWtype) (UWtype) vv.s.low};
4c20b2e7 350
4c20b2e7
BH
351 ww.s.high -= vv.s.low;
352 if (__builtin_expect (ww.s.high < 0, 1))
353 return ww.ll;
354 }
355 }
356 else
357 {
e7176f75
JJ
358 if ((uu.s.high & vv.s.high) == (Wtype) -1
359 && (uu.s.low | vv.s.low) != 0)
4c20b2e7 360 {
b982024e
KG
361 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
362 * (UDWtype) (UWtype) vv.s.low};
4c20b2e7 363
4c20b2e7
BH
364 ww.s.high -= uu.s.low;
365 ww.s.high -= vv.s.low;
366 if (__builtin_expect (ww.s.high >= 0, 1))
367 return ww.ll;
368 }
369 }
370 }
371 }
372 }
91ce572a 373
4c20b2e7
BH
374 /* Overflow. */
375 abort ();
91ce572a
CC
376}
377#endif
378\f
203b91b9 379
3d042e77 380/* Unless shift functions are defined with full ANSI prototypes,
c7ff6e7a 381 parameter b will be promoted to int if shift_count_type is smaller than an int. */
203b91b9 382#ifdef L_lshrdi3
996ed075 383DWtype
c7ff6e7a 384__lshrdi3 (DWtype u, shift_count_type b)
203b91b9 385{
203b91b9
RS
386 if (b == 0)
387 return u;
388
b982024e 389 const DWunion uu = {.ll = u};
fdf3e18a 390 const shift_count_type bm = W_TYPE_SIZE - b;
b982024e 391 DWunion w;
203b91b9 392
203b91b9
RS
393 if (bm <= 0)
394 {
395 w.s.high = 0;
6da9c622 396 w.s.low = (UWtype) uu.s.high >> -bm;
203b91b9
RS
397 }
398 else
399 {
b982024e 400 const UWtype carries = (UWtype) uu.s.high << bm;
6da9c622
RK
401
402 w.s.high = (UWtype) uu.s.high >> b;
403 w.s.low = ((UWtype) uu.s.low >> b) | carries;
203b91b9
RS
404 }
405
406 return w.ll;
407}
408#endif
409
410#ifdef L_ashldi3
996ed075 411DWtype
c7ff6e7a 412__ashldi3 (DWtype u, shift_count_type b)
203b91b9 413{
203b91b9
RS
414 if (b == 0)
415 return u;
416
b982024e 417 const DWunion uu = {.ll = u};
fdf3e18a 418 const shift_count_type bm = W_TYPE_SIZE - b;
b982024e 419 DWunion w;
203b91b9 420
203b91b9
RS
421 if (bm <= 0)
422 {
423 w.s.low = 0;
6da9c622 424 w.s.high = (UWtype) uu.s.low << -bm;
203b91b9
RS
425 }
426 else
427 {
b982024e 428 const UWtype carries = (UWtype) uu.s.low >> bm;
6da9c622
RK
429
430 w.s.low = (UWtype) uu.s.low << b;
431 w.s.high = ((UWtype) uu.s.high << b) | carries;
203b91b9
RS
432 }
433
434 return w.ll;
435}
436#endif
437
438#ifdef L_ashrdi3
996ed075 439DWtype
c7ff6e7a 440__ashrdi3 (DWtype u, shift_count_type b)
203b91b9 441{
203b91b9
RS
442 if (b == 0)
443 return u;
444
b982024e 445 const DWunion uu = {.ll = u};
fdf3e18a 446 const shift_count_type bm = W_TYPE_SIZE - b;
b982024e 447 DWunion w;
203b91b9 448
203b91b9
RS
449 if (bm <= 0)
450 {
451 /* w.s.high = 1..1 or 0..0 */
fdf3e18a 452 w.s.high = uu.s.high >> (W_TYPE_SIZE - 1);
203b91b9
RS
453 w.s.low = uu.s.high >> -bm;
454 }
455 else
456 {
b982024e 457 const UWtype carries = (UWtype) uu.s.high << bm;
6da9c622 458
203b91b9 459 w.s.high = uu.s.high >> b;
6da9c622 460 w.s.low = ((UWtype) uu.s.low >> b) | carries;
203b91b9
RS
461 }
462
463 return w.ll;
464}
465#endif
466\f
167fa32c 467#ifdef L_bswapsi2
e4b6bec2
EC
468SItype
469__bswapsi2 (SItype u)
167fa32c 470{
a8ae2392
SK
471 return ((((u) & 0xff000000u) >> 24)
472 | (((u) & 0x00ff0000u) >> 8)
473 | (((u) & 0x0000ff00u) << 8)
474 | (((u) & 0x000000ffu) << 24));
167fa32c
EC
475}
476#endif
477#ifdef L_bswapdi2
e4b6bec2
EC
478DItype
479__bswapdi2 (DItype u)
167fa32c
EC
480{
481 return ((((u) & 0xff00000000000000ull) >> 56)
482 | (((u) & 0x00ff000000000000ull) >> 40)
483 | (((u) & 0x0000ff0000000000ull) >> 24)
484 | (((u) & 0x000000ff00000000ull) >> 8)
485 | (((u) & 0x00000000ff000000ull) << 8)
486 | (((u) & 0x0000000000ff0000ull) << 24)
487 | (((u) & 0x000000000000ff00ull) << 40)
488 | (((u) & 0x00000000000000ffull) << 56));
489}
490#endif
dfff898c
RH
491#ifdef L_ffssi2
492#undef int
dfff898c
RH
493int
494__ffsSI2 (UWtype u)
495{
496 UWtype count;
497
498 if (u == 0)
499 return 0;
500
501 count_trailing_zeros (count, u);
502 return count + 1;
503}
504#endif
505\f
aa66bd06 506#ifdef L_ffsdi2
dabb3f04 507#undef int
dabb3f04 508int
dfff898c 509__ffsDI2 (DWtype u)
aa66bd06 510{
b982024e 511 const DWunion uu = {.ll = u};
d6eacd48
RH
512 UWtype word, count, add;
513
d6eacd48
RH
514 if (uu.s.low != 0)
515 word = uu.s.low, add = 0;
516 else if (uu.s.high != 0)
fdf3e18a 517 word = uu.s.high, add = W_TYPE_SIZE;
d6eacd48
RH
518 else
519 return 0;
520
521 count_trailing_zeros (count, word);
522 return count + add + 1;
aa66bd06
RS
523}
524#endif
525\f
203b91b9 526#ifdef L_muldi3
996ed075
JJ
527DWtype
528__muldi3 (DWtype u, DWtype v)
203b91b9 529{
b982024e
KG
530 const DWunion uu = {.ll = u};
531 const DWunion vv = {.ll = v};
532 DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
203b91b9 533
996ed075
JJ
534 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
535 + (UWtype) uu.s.high * (UWtype) vv.s.low);
203b91b9
RS
536
537 return w.ll;
538}
539#endif
540\f
59798a0c
UW
541#if (defined (L_udivdi3) || defined (L_divdi3) || \
542 defined (L_umoddi3) || defined (L_moddi3))
f8eef883 543#if defined (sdiv_qrnnd)
59798a0c
UW
544#define L_udiv_w_sdiv
545#endif
f8eef883 546#endif
59798a0c 547
3904131a 548#ifdef L_udiv_w_sdiv
ce13d15f 549#if defined (sdiv_qrnnd)
59798a0c
UW
550#if (defined (L_udivdi3) || defined (L_divdi3) || \
551 defined (L_umoddi3) || defined (L_moddi3))
1ab9ba62 552static inline __attribute__ ((__always_inline__))
59798a0c 553#endif
996ed075
JJ
554UWtype
555__udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
431b1ee0 556{
996ed075
JJ
557 UWtype q, r;
558 UWtype c0, c1, b1;
431b1ee0 559
996ed075 560 if ((Wtype) d >= 0)
431b1ee0 561 {
996ed075 562 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
431b1ee0 563 {
ea4b7848 564 /* Dividend, divisor, and quotient are nonnegative. */
431b1ee0
TG
565 sdiv_qrnnd (q, r, a1, a0, d);
566 }
567 else
568 {
ea4b7848 569 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
996ed075 570 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
ea4b7848 571 /* Divide (c1*2^32 + c0) by d. */
431b1ee0 572 sdiv_qrnnd (q, r, c1, c0, d);
ea4b7848 573 /* Add 2^31 to quotient. */
996ed075 574 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
431b1ee0
TG
575 }
576 }
577 else
578 {
579 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
580 c1 = a1 >> 1; /* A/2 */
996ed075 581 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
431b1ee0
TG
582
583 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
584 {
585 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
586
587 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
588 if ((d & 1) != 0)
589 {
590 if (r >= q)
591 r = r - q;
592 else if (q - r <= d)
593 {
594 r = r - q + d;
595 q--;
596 }
597 else
598 {
599 r = r - q + 2*d;
600 q -= 2;
601 }
602 }
603 }
604 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
605 {
606 c1 = (b1 - 1) - c1;
607 c0 = ~c0; /* logical NOT */
608
609 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
610
611 q = ~q; /* (A/2)/b1 */
612 r = (b1 - 1) - r;
613
614 r = 2*r + (a0 & 1); /* A/(2*b1) */
615
616 if ((d & 1) != 0)
617 {
618 if (r >= q)
619 r = r - q;
620 else if (q - r <= d)
621 {
622 r = r - q + d;
623 q--;
624 }
625 else
626 {
627 r = r - q + 2*d;
628 q -= 2;
629 }
630 }
631 }
632 else /* Implies c1 = b1 */
633 { /* Hence a1 = d - 1 = 2*b1 - 1 */
634 if (a0 >= -d)
635 {
636 q = -1;
637 r = a0 + d;
638 }
639 else
640 {
641 q = -2;
642 r = a0 + 2*d;
643 }
644 }
645 }
646
647 *rp = r;
648 return q;
649}
ce13d15f
RK
650#else
651/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
996ed075
JJ
652UWtype
653__udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
654 UWtype a1 __attribute__ ((__unused__)),
655 UWtype a0 __attribute__ ((__unused__)),
656 UWtype d __attribute__ ((__unused__)))
081f5e7e
KG
657{
658 return 0;
659}
ce13d15f 660#endif
431b1ee0
TG
661#endif
662\f
536bfcd0 663#if (defined (L_udivdi3) || defined (L_divdi3) || \
18362447
UB
664 defined (L_umoddi3) || defined (L_moddi3) || \
665 defined (L_divmoddi4))
536bfcd0
RK
666#define L_udivmoddi4
667#endif
668
d6eacd48 669#ifdef L_clz
dcfae47c 670const UQItype __clz_tab[256] =
203b91b9
RS
671{
672 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
673 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
674 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
675 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
676 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
677 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
678 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
dcfae47c 679 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
203b91b9 680};
d6eacd48 681#endif
2928cd7a
RH
682\f
683#ifdef L_clzsi2
dabb3f04 684#undef int
dabb3f04 685int
8275b011 686__clzSI2 (UWtype x)
2928cd7a 687{
53585c36 688 Wtype ret;
2928cd7a 689
8275b011 690 count_leading_zeros (ret, x);
53585c36
RH
691
692 return ret;
2928cd7a
RH
693}
694#endif
695\f
696#ifdef L_clzdi2
dabb3f04 697#undef int
dabb3f04 698int
8275b011 699__clzDI2 (UDWtype x)
2928cd7a 700{
b982024e 701 const DWunion uu = {.ll = x};
53585c36
RH
702 UWtype word;
703 Wtype ret, add;
704
8275b011
RH
705 if (uu.s.high)
706 word = uu.s.high, add = 0;
53585c36 707 else
8275b011 708 word = uu.s.low, add = W_TYPE_SIZE;
2928cd7a 709
53585c36
RH
710 count_leading_zeros (ret, word);
711 return ret + add;
2928cd7a
RH
712}
713#endif
714\f
715#ifdef L_ctzsi2
dabb3f04 716#undef int
dabb3f04 717int
8275b011 718__ctzSI2 (UWtype x)
2928cd7a 719{
53585c36 720 Wtype ret;
2928cd7a 721
53585c36 722 count_trailing_zeros (ret, x);
2928cd7a 723
53585c36 724 return ret;
2928cd7a
RH
725}
726#endif
727\f
728#ifdef L_ctzdi2
dabb3f04 729#undef int
dabb3f04 730int
8275b011 731__ctzDI2 (UDWtype x)
2928cd7a 732{
b982024e 733 const DWunion uu = {.ll = x};
53585c36
RH
734 UWtype word;
735 Wtype ret, add;
736
8275b011
RH
737 if (uu.s.low)
738 word = uu.s.low, add = 0;
53585c36 739 else
8275b011 740 word = uu.s.high, add = W_TYPE_SIZE;
2928cd7a 741
53585c36
RH
742 count_trailing_zeros (ret, word);
743 return ret + add;
2928cd7a
RH
744}
745#endif
3801c801
BS
746\f
747#ifdef L_clrsbsi2
748#undef int
749int
750__clrsbSI2 (Wtype x)
751{
752 Wtype ret;
2928cd7a 753
3801c801
BS
754 if (x < 0)
755 x = ~x;
756 if (x == 0)
757 return W_TYPE_SIZE - 1;
758 count_leading_zeros (ret, x);
759 return ret - 1;
760}
761#endif
762\f
763#ifdef L_clrsbdi2
764#undef int
765int
766__clrsbDI2 (DWtype x)
767{
768 const DWunion uu = {.ll = x};
769 UWtype word;
770 Wtype ret, add;
771
772 if (uu.s.high == 0)
773 word = uu.s.low, add = W_TYPE_SIZE;
774 else if (uu.s.high == -1)
775 word = ~uu.s.low, add = W_TYPE_SIZE;
776 else if (uu.s.high >= 0)
777 word = uu.s.high, add = 0;
778 else
779 word = ~uu.s.high, add = 0;
780
781 if (word == 0)
782 ret = W_TYPE_SIZE;
783 else
784 count_leading_zeros (ret, word);
785
786 return ret + add - 1;
787}
788#endif
789\f
2928cd7a 790#ifdef L_popcount_tab
dcfae47c 791const UQItype __popcount_tab[256] =
2928cd7a
RH
792{
793 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
794 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
795 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
796 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
797 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
798 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
799 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
dcfae47c 800 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
2928cd7a
RH
801};
802#endif
803\f
4ea3d774 804#if defined(L_popcountsi2) || defined(L_popcountdi2)
a153644f
TS
805#define POPCOUNTCST2(x) (((UWtype) x << __CHAR_BIT__) | x)
806#define POPCOUNTCST4(x) (((UWtype) x << (2 * __CHAR_BIT__)) | x)
807#define POPCOUNTCST8(x) (((UWtype) x << (4 * __CHAR_BIT__)) | x)
808#if W_TYPE_SIZE == __CHAR_BIT__
4ea3d774 809#define POPCOUNTCST(x) x
a153644f 810#elif W_TYPE_SIZE == 2 * __CHAR_BIT__
4ea3d774 811#define POPCOUNTCST(x) POPCOUNTCST2 (x)
a153644f 812#elif W_TYPE_SIZE == 4 * __CHAR_BIT__
4ea3d774 813#define POPCOUNTCST(x) POPCOUNTCST4 (POPCOUNTCST2 (x))
a153644f 814#elif W_TYPE_SIZE == 8 * __CHAR_BIT__
4ea3d774
JJ
815#define POPCOUNTCST(x) POPCOUNTCST8 (POPCOUNTCST4 (POPCOUNTCST2 (x)))
816#endif
817#endif
818\f
2928cd7a 819#ifdef L_popcountsi2
dabb3f04 820#undef int
dabb3f04 821int
8275b011 822__popcountSI2 (UWtype x)
2928cd7a 823{
4ea3d774
JJ
824 /* Force table lookup on targets like AVR and RL78 which only
825 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
826 have 1, and other small word targets. */
a153644f 827#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
4ea3d774
JJ
828 x = x - ((x >> 1) & POPCOUNTCST (0x55));
829 x = (x & POPCOUNTCST (0x33)) + ((x >> 2) & POPCOUNTCST (0x33));
830 x = (x + (x >> 4)) & POPCOUNTCST (0x0F);
a153644f 831 return (x * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
4ea3d774 832#else
4000debb 833 int i, ret = 0;
8275b011
RH
834
835 for (i = 0; i < W_TYPE_SIZE; i += 8)
836 ret += __popcount_tab[(x >> i) & 0xff];
837
838 return ret;
4ea3d774 839#endif
2928cd7a
RH
840}
841#endif
842\f
843#ifdef L_popcountdi2
dabb3f04 844#undef int
dabb3f04 845int
8275b011 846__popcountDI2 (UDWtype x)
2928cd7a 847{
4ea3d774
JJ
848 /* Force table lookup on targets like AVR and RL78 which only
849 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
850 have 1, and other small word targets. */
a153644f 851#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
4ea3d774
JJ
852 const DWunion uu = {.ll = x};
853 UWtype x1 = uu.s.low, x2 = uu.s.high;
854 x1 = x1 - ((x1 >> 1) & POPCOUNTCST (0x55));
855 x2 = x2 - ((x2 >> 1) & POPCOUNTCST (0x55));
856 x1 = (x1 & POPCOUNTCST (0x33)) + ((x1 >> 2) & POPCOUNTCST (0x33));
857 x2 = (x2 & POPCOUNTCST (0x33)) + ((x2 >> 2) & POPCOUNTCST (0x33));
858 x1 = (x1 + (x1 >> 4)) & POPCOUNTCST (0x0F);
859 x2 = (x2 + (x2 >> 4)) & POPCOUNTCST (0x0F);
860 x1 += x2;
a153644f 861 return (x1 * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
4ea3d774 862#else
4000debb 863 int i, ret = 0;
8275b011
RH
864
865 for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
866 ret += __popcount_tab[(x >> i) & 0xff];
867
868 return ret;
4ea3d774 869#endif
2928cd7a
RH
870}
871#endif
872\f
873#ifdef L_paritysi2
dabb3f04 874#undef int
dabb3f04 875int
8275b011 876__paritySI2 (UWtype x)
2928cd7a 877{
8275b011
RH
878#if W_TYPE_SIZE > 64
879# error "fill out the table"
880#endif
881#if W_TYPE_SIZE > 32
882 x ^= x >> 32;
883#endif
884#if W_TYPE_SIZE > 16
885 x ^= x >> 16;
886#endif
887 x ^= x >> 8;
888 x ^= x >> 4;
889 x &= 0xf;
890 return (0x6996 >> x) & 1;
2928cd7a
RH
891}
892#endif
893\f
894#ifdef L_paritydi2
dabb3f04 895#undef int
dabb3f04 896int
8275b011 897__parityDI2 (UDWtype x)
2928cd7a 898{
b982024e
KG
899 const DWunion uu = {.ll = x};
900 UWtype nx = uu.s.low ^ uu.s.high;
8275b011
RH
901
902#if W_TYPE_SIZE > 64
903# error "fill out the table"
904#endif
905#if W_TYPE_SIZE > 32
906 nx ^= nx >> 32;
907#endif
908#if W_TYPE_SIZE > 16
2928cd7a 909 nx ^= nx >> 16;
8275b011 910#endif
2928cd7a 911 nx ^= nx >> 8;
53585c36 912 nx ^= nx >> 4;
0c9ed856
RH
913 nx &= 0xf;
914 return (0x6996 >> nx) & 1;
2928cd7a
RH
915}
916#endif
d6eacd48
RH
917
918#ifdef L_udivmoddi4
30b8f78b
KV
919#ifdef TARGET_HAS_NO_HW_DIVIDE
920
921#if (defined (L_udivdi3) || defined (L_divdi3) || \
18362447
UB
922 defined (L_umoddi3) || defined (L_moddi3) || \
923 defined (L_divmoddi4))
30b8f78b
KV
924static inline __attribute__ ((__always_inline__))
925#endif
926UDWtype
927__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
928{
929 UDWtype q = 0, r = n, y = d;
930 UWtype lz1, lz2, i, k;
931
932 /* Implements align divisor shift dividend method. This algorithm
933 aligns the divisor under the dividend and then perform number of
934 test-subtract iterations which shift the dividend left. Number of
935 iterations is k + 1 where k is the number of bit positions the
ebc4cd54 936 divisor must be shifted left to align it under the dividend.
30b8f78b
KV
937 quotient bits can be saved in the rightmost positions of the dividend
938 as it shifts left on each test-subtract iteration. */
939
940 if (y <= r)
941 {
942 lz1 = __builtin_clzll (d);
943 lz2 = __builtin_clzll (n);
944
945 k = lz1 - lz2;
946 y = (y << k);
947
ebc4cd54 948 /* Dividend can exceed 2 ^ (width - 1) - 1 but still be less than the
30b8f78b
KV
949 aligned divisor. Normal iteration can drops the high order bit
950 of the dividend. Therefore, first test-subtract iteration is a
951 special case, saving its quotient bit in a separate location and
952 not shifting the dividend. */
953 if (r >= y)
954 {
955 r = r - y;
956 q = (1ULL << k);
957 }
958
959 if (k > 0)
960 {
961 y = y >> 1;
962
963 /* k additional iterations where k regular test subtract shift
964 dividend iterations are done. */
965 i = k;
966 do
967 {
968 if (r >= y)
969 r = ((r - y) << 1) + 1;
970 else
971 r = (r << 1);
972 i = i - 1;
973 } while (i != 0);
974
975 /* First quotient bit is combined with the quotient bits resulting
976 from the k regular iterations. */
977 q = q + r;
978 r = r >> k;
979 q = q - (r << k);
980 }
981 }
982
983 if (rp)
984 *rp = r;
985 return q;
986}
987#else
203b91b9 988
536bfcd0 989#if (defined (L_udivdi3) || defined (L_divdi3) || \
18362447
UB
990 defined (L_umoddi3) || defined (L_moddi3) || \
991 defined (L_divmoddi4))
1ab9ba62 992static inline __attribute__ ((__always_inline__))
536bfcd0 993#endif
996ed075
JJ
994UDWtype
995__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
203b91b9 996{
b982024e
KG
997 const DWunion nn = {.ll = n};
998 const DWunion dd = {.ll = d};
996ed075
JJ
999 DWunion rr;
1000 UWtype d0, d1, n0, n1, n2;
1001 UWtype q0, q1;
1002 UWtype b, bm;
203b91b9 1003
203b91b9
RS
1004 d0 = dd.s.low;
1005 d1 = dd.s.high;
1006 n0 = nn.s.low;
1007 n1 = nn.s.high;
1008
1009#if !UDIV_NEEDS_NORMALIZATION
1010 if (d1 == 0)
1011 {
1012 if (d0 > n1)
1013 {
1014 /* 0q = nn / 0D */
1015
1016 udiv_qrnnd (q0, n0, n1, n0, d0);
1017 q1 = 0;
1018
1019 /* Remainder in n0. */
1020 }
1021 else
1022 {
1023 /* qq = NN / 0d */
1024
1025 if (d0 == 0)
1026 d0 = 1 / d0; /* Divide intentionally by zero. */
1027
1028 udiv_qrnnd (q1, n1, 0, n1, d0);
1029 udiv_qrnnd (q0, n0, n1, n0, d0);
1030
1031 /* Remainder in n0. */
1032 }
1033
1034 if (rp != 0)
1035 {
1036 rr.s.low = n0;
1037 rr.s.high = 0;
1038 *rp = rr.ll;
1039 }
1040 }
1041
1042#else /* UDIV_NEEDS_NORMALIZATION */
1043
1044 if (d1 == 0)
1045 {
1046 if (d0 > n1)
1047 {
1048 /* 0q = nn / 0D */
1049
1050 count_leading_zeros (bm, d0);
1051
1052 if (bm != 0)
1053 {
1054 /* Normalize, i.e. make the most significant bit of the
1055 denominator set. */
1056
1057 d0 = d0 << bm;
996ed075 1058 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
203b91b9
RS
1059 n0 = n0 << bm;
1060 }
1061
1062 udiv_qrnnd (q0, n0, n1, n0, d0);
1063 q1 = 0;
1064
1065 /* Remainder in n0 >> bm. */
1066 }
1067 else
1068 {
1069 /* qq = NN / 0d */
1070
1071 if (d0 == 0)
1072 d0 = 1 / d0; /* Divide intentionally by zero. */
1073
1074 count_leading_zeros (bm, d0);
1075
1076 if (bm == 0)
1077 {
1078 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
1079 conclude (the most significant bit of n1 is set) /\ (the
1080 leading quotient digit q1 = 1).
1081
1082 This special case is necessary, not an optimization.
996ed075 1083 (Shifts counts of W_TYPE_SIZE are undefined.) */
203b91b9
RS
1084
1085 n1 -= d0;
1086 q1 = 1;
1087 }
1088 else
1089 {
1090 /* Normalize. */
1091
996ed075 1092 b = W_TYPE_SIZE - bm;
203b91b9
RS
1093
1094 d0 = d0 << bm;
1095 n2 = n1 >> b;
1096 n1 = (n1 << bm) | (n0 >> b);
1097 n0 = n0 << bm;
1098
1099 udiv_qrnnd (q1, n1, n2, n1, d0);
1100 }
1101
0f41302f 1102 /* n1 != d0... */
203b91b9
RS
1103
1104 udiv_qrnnd (q0, n0, n1, n0, d0);
1105
1106 /* Remainder in n0 >> bm. */
1107 }
1108
1109 if (rp != 0)
1110 {
1111 rr.s.low = n0 >> bm;
1112 rr.s.high = 0;
1113 *rp = rr.ll;
1114 }
1115 }
1116#endif /* UDIV_NEEDS_NORMALIZATION */
1117
1118 else
1119 {
1120 if (d1 > n1)
1121 {
1122 /* 00 = nn / DD */
1123
1124 q0 = 0;
1125 q1 = 0;
1126
1127 /* Remainder in n1n0. */
1128 if (rp != 0)
1129 {
1130 rr.s.low = n0;
1131 rr.s.high = n1;
1132 *rp = rr.ll;
1133 }
1134 }
1135 else
1136 {
1137 /* 0q = NN / dd */
1138
1139 count_leading_zeros (bm, d1);
1140 if (bm == 0)
1141 {
1142 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1143 conclude (the most significant bit of n1 is set) /\ (the
1144 quotient digit q0 = 0 or 1).
1145
1146 This special case is necessary, not an optimization. */
1147
1148 /* The condition on the next line takes advantage of that
1149 n1 >= d1 (true due to program flow). */
1150 if (n1 > d1 || n0 >= d0)
1151 {
1152 q0 = 1;
1153 sub_ddmmss (n1, n0, n1, n0, d1, d0);
1154 }
1155 else
1156 q0 = 0;
1157
1158 q1 = 0;
1159
1160 if (rp != 0)
1161 {
1162 rr.s.low = n0;
1163 rr.s.high = n1;
1164 *rp = rr.ll;
1165 }
1166 }
1167 else
1168 {
996ed075 1169 UWtype m1, m0;
203b91b9
RS
1170 /* Normalize. */
1171
996ed075 1172 b = W_TYPE_SIZE - bm;
203b91b9
RS
1173
1174 d1 = (d1 << bm) | (d0 >> b);
1175 d0 = d0 << bm;
1176 n2 = n1 >> b;
1177 n1 = (n1 << bm) | (n0 >> b);
1178 n0 = n0 << bm;
1179
1180 udiv_qrnnd (q0, n1, n2, n1, d1);
1181 umul_ppmm (m1, m0, q0, d0);
1182
1183 if (m1 > n1 || (m1 == n1 && m0 > n0))
1184 {
1185 q0--;
1186 sub_ddmmss (m1, m0, m1, m0, d1, d0);
1187 }
1188
1189 q1 = 0;
1190
1191 /* Remainder in (n1n0 - m1m0) >> bm. */
1192 if (rp != 0)
1193 {
1194 sub_ddmmss (n1, n0, n1, n0, m1, m0);
1195 rr.s.low = (n1 << b) | (n0 >> bm);
1196 rr.s.high = n1 >> bm;
1197 *rp = rr.ll;
1198 }
1199 }
1200 }
1201 }
1202
b982024e 1203 const DWunion ww = {{.low = q0, .high = q1}};
203b91b9
RS
1204 return ww.ll;
1205}
1206#endif
30b8f78b 1207#endif
203b91b9
RS
1208
1209#ifdef L_divdi3
996ed075
JJ
1210DWtype
1211__divdi3 (DWtype u, DWtype v)
203b91b9 1212{
c7ff6e7a 1213 Wtype c = 0;
b982024e
KG
1214 DWunion uu = {.ll = u};
1215 DWunion vv = {.ll = v};
996ed075 1216 DWtype w;
203b91b9 1217
203b91b9
RS
1218 if (uu.s.high < 0)
1219 c = ~c,
b68daef4 1220 uu.ll = -uu.ll;
203b91b9
RS
1221 if (vv.s.high < 0)
1222 c = ~c,
b68daef4 1223 vv.ll = -vv.ll;
203b91b9 1224
996ed075 1225 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
203b91b9 1226 if (c)
b68daef4 1227 w = -w;
203b91b9
RS
1228
1229 return w;
1230}
1231#endif
1232
1233#ifdef L_moddi3
996ed075
JJ
1234DWtype
1235__moddi3 (DWtype u, DWtype v)
203b91b9 1236{
c7ff6e7a 1237 Wtype c = 0;
b982024e
KG
1238 DWunion uu = {.ll = u};
1239 DWunion vv = {.ll = v};
996ed075 1240 DWtype w;
203b91b9 1241
203b91b9
RS
1242 if (uu.s.high < 0)
1243 c = ~c,
b68daef4 1244 uu.ll = -uu.ll;
203b91b9 1245 if (vv.s.high < 0)
b68daef4 1246 vv.ll = -vv.ll;
203b91b9 1247
9c859be1 1248 (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
203b91b9 1249 if (c)
b68daef4 1250 w = -w;
203b91b9
RS
1251
1252 return w;
1253}
1254#endif
1255
18362447
UB
1256#ifdef L_divmoddi4
1257DWtype
1258__divmoddi4 (DWtype u, DWtype v, DWtype *rp)
1259{
1260 Wtype c1 = 0, c2 = 0;
1261 DWunion uu = {.ll = u};
1262 DWunion vv = {.ll = v};
1263 DWtype w;
1264 DWtype r;
1265
1266 if (uu.s.high < 0)
1267 c1 = ~c1, c2 = ~c2,
1268 uu.ll = -uu.ll;
1269 if (vv.s.high < 0)
1270 c1 = ~c1,
1271 vv.ll = -vv.ll;
1272
1273 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&r);
1274 if (c1)
1275 w = -w;
1276 if (c2)
1277 r = -r;
1278
1279 *rp = r;
1280 return w;
1281}
1282#endif
1283
203b91b9 1284#ifdef L_umoddi3
996ed075
JJ
1285UDWtype
1286__umoddi3 (UDWtype u, UDWtype v)
203b91b9 1287{
996ed075 1288 UDWtype w;
203b91b9
RS
1289
1290 (void) __udivmoddi4 (u, v, &w);
1291
1292 return w;
1293}
1294#endif
1295
1296#ifdef L_udivdi3
996ed075
JJ
1297UDWtype
1298__udivdi3 (UDWtype n, UDWtype d)
203b91b9 1299{
996ed075 1300 return __udivmoddi4 (n, d, (UDWtype *) 0);
203b91b9
RS
1301}
1302#endif
1303\f
1304#ifdef L_cmpdi2
c7ff6e7a 1305cmp_return_type
996ed075 1306__cmpdi2 (DWtype a, DWtype b)
203b91b9 1307{
ebc4cd54 1308 return (a > b) - (a < b) + 1;
203b91b9
RS
1309}
1310#endif
1311
1312#ifdef L_ucmpdi2
c7ff6e7a 1313cmp_return_type
ebc4cd54 1314__ucmpdi2 (UDWtype a, UDWtype b)
203b91b9 1315{
ebc4cd54 1316 return (a > b) - (a < b) + 1;
203b91b9
RS
1317}
1318#endif
1319\f
4e9db8b2 1320#if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
f139f5fa 1321UDWtype
6da9c622 1322__fixunstfDI (TFtype a)
ab495388 1323{
ab495388
RS
1324 if (a < 0)
1325 return 0;
1326
1327 /* Compute high word of result, as a flonum. */
4f2e0d5e 1328 const TFtype b = (a / Wtype_MAXp1_F);
996ed075 1329 /* Convert that to fixed (but not to DWtype!),
ab495388 1330 and shift it into the high word. */
b982024e 1331 UDWtype v = (UWtype) b;
4f2e0d5e 1332 v <<= W_TYPE_SIZE;
ab495388
RS
1333 /* Remove high part from the TFtype, leaving the low part as flonum. */
1334 a -= (TFtype)v;
996ed075 1335 /* Convert that to fixed (but not to DWtype!) and add it in.
ab495388
RS
1336 Sometimes A comes out negative. This is significant, since
1337 A has more bits than a long int does. */
1338 if (a < 0)
996ed075 1339 v -= (UWtype) (- a);
ab495388 1340 else
996ed075 1341 v += (UWtype) a;
ab495388
RS
1342 return v;
1343}
1344#endif
1345
4e9db8b2 1346#if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
996ed075 1347DWtype
37ef1054 1348__fixtfdi (TFtype a)
ab495388
RS
1349{
1350 if (a < 0)
6da9c622
RK
1351 return - __fixunstfDI (-a);
1352 return __fixunstfDI (a);
ab495388
RS
1353}
1354#endif
1355
4e9db8b2 1356#if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
f139f5fa 1357UDWtype
6da9c622 1358__fixunsxfDI (XFtype a)
e0799b34 1359{
e0799b34
RS
1360 if (a < 0)
1361 return 0;
1362
1363 /* Compute high word of result, as a flonum. */
4f2e0d5e 1364 const XFtype b = (a / Wtype_MAXp1_F);
996ed075 1365 /* Convert that to fixed (but not to DWtype!),
e0799b34 1366 and shift it into the high word. */
b982024e 1367 UDWtype v = (UWtype) b;
4f2e0d5e 1368 v <<= W_TYPE_SIZE;
e0799b34
RS
1369 /* Remove high part from the XFtype, leaving the low part as flonum. */
1370 a -= (XFtype)v;
996ed075 1371 /* Convert that to fixed (but not to DWtype!) and add it in.
e0799b34
RS
1372 Sometimes A comes out negative. This is significant, since
1373 A has more bits than a long int does. */
1374 if (a < 0)
996ed075 1375 v -= (UWtype) (- a);
e0799b34 1376 else
996ed075 1377 v += (UWtype) a;
e0799b34
RS
1378 return v;
1379}
1380#endif
1381
4e9db8b2 1382#if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
996ed075 1383DWtype
37ef1054 1384__fixxfdi (XFtype a)
e0799b34
RS
1385{
1386 if (a < 0)
6da9c622
RK
1387 return - __fixunsxfDI (-a);
1388 return __fixunsxfDI (a);
e0799b34
RS
1389}
1390#endif
1391
4e9db8b2 1392#if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
f139f5fa 1393UDWtype
6da9c622 1394__fixunsdfDI (DFtype a)
203b91b9 1395{
4977bab6
ZW
1396 /* Get high part of result. The division here will just moves the radix
1397 point and will not cause any rounding. Then the conversion to integral
1398 type chops result as desired. */
4f2e0d5e 1399 const UWtype hi = a / Wtype_MAXp1_F;
203b91b9 1400
4977bab6
ZW
1401 /* Get low part of result. Convert `hi' to floating type and scale it back,
1402 then subtract this from the number being converted. This leaves the low
1403 part. Convert that to integral type. */
4f2e0d5e 1404 const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
4977bab6
ZW
1405
1406 /* Assemble result from the two parts. */
4f2e0d5e 1407 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
203b91b9
RS
1408}
1409#endif
1410
4e9db8b2 1411#if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
996ed075 1412DWtype
37ef1054 1413__fixdfdi (DFtype a)
203b91b9
RS
1414{
1415 if (a < 0)
6da9c622
RK
1416 return - __fixunsdfDI (-a);
1417 return __fixunsdfDI (a);
203b91b9
RS
1418}
1419#endif
1420
cfa7bd9c 1421#if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
f139f5fa 1422UDWtype
4f2e0d5e 1423__fixunssfDI (SFtype a)
203b91b9 1424{
4e9db8b2 1425#if LIBGCC2_HAS_DF_MODE
ab495388 1426 /* Convert the SFtype to a DFtype, because that is surely not going
203b91b9 1427 to lose any bits. Some day someone else can write a faster version
ab495388 1428 that avoids converting to DFtype, and verify it really works right. */
4f2e0d5e 1429 const DFtype dfa = a;
203b91b9 1430
4977bab6
ZW
1431 /* Get high part of result. The division here will just moves the radix
1432 point and will not cause any rounding. Then the conversion to integral
1433 type chops result as desired. */
4f2e0d5e 1434 const UWtype hi = dfa / Wtype_MAXp1_F;
203b91b9 1435
4977bab6
ZW
1436 /* Get low part of result. Convert `hi' to floating type and scale it back,
1437 then subtract this from the number being converted. This leaves the low
1438 part. Convert that to integral type. */
4f2e0d5e 1439 const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
4977bab6
ZW
1440
1441 /* Assemble result from the two parts. */
4f2e0d5e
RH
1442 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1443#elif FLT_MANT_DIG < W_TYPE_SIZE
1444 if (a < 1)
1445 return 0;
1446 if (a < Wtype_MAXp1_F)
1447 return (UWtype)a;
1448 if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
1449 {
1450 /* Since we know that there are fewer significant bits in the SFmode
1451 quantity than in a word, we know that we can convert out all the
2e681715 1452 significant bits in one step, and thus avoid losing bits. */
4f2e0d5e
RH
1453
1454 /* ??? This following loop essentially performs frexpf. If we could
1455 use the real libm function, or poke at the actual bits of the fp
1456 format, it would be significantly faster. */
1457
1458 UWtype shift = 0, counter;
1459 SFtype msb;
1460
1461 a /= Wtype_MAXp1_F;
1462 for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
1463 {
1464 SFtype counterf = (UWtype)1 << counter;
1465 if (a >= counterf)
1466 {
1467 shift |= counter;
1468 a /= counterf;
1469 }
1470 }
1471
1472 /* Rescale into the range of one word, extract the bits of that
1473 one word, and shift the result into position. */
1474 a *= Wtype_MAXp1_F;
1475 counter = a;
1476 return (DWtype)counter << shift;
1477 }
1478 return -1;
1479#else
1480# error
1481#endif
203b91b9
RS
1482}
1483#endif
1484
cfa7bd9c 1485#if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
996ed075 1486DWtype
ab495388 1487__fixsfdi (SFtype a)
203b91b9
RS
1488{
1489 if (a < 0)
6da9c622
RK
1490 return - __fixunssfDI (-a);
1491 return __fixunssfDI (a);
203b91b9
RS
1492}
1493#endif
1494
4e9db8b2 1495#if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
e0799b34 1496XFtype
996ed075 1497__floatdixf (DWtype u)
e0799b34 1498{
66bb34c0 1499#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
4a73d865
JM
1500# error
1501#endif
4f2e0d5e
RH
1502 XFtype d = (Wtype) (u >> W_TYPE_SIZE);
1503 d *= Wtype_MAXp1_F;
1504 d += (UWtype)u;
e5e809f4 1505 return d;
e0799b34
RS
1506}
1507#endif
1508
d7735880
JM
1509#if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1510XFtype
1511__floatundixf (UDWtype u)
1512{
66bb34c0 1513#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
4a73d865
JM
1514# error
1515#endif
d7735880
JM
1516 XFtype d = (UWtype) (u >> W_TYPE_SIZE);
1517 d *= Wtype_MAXp1_F;
1518 d += (UWtype)u;
1519 return d;
1520}
1521#endif
1522
4e9db8b2 1523#if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
ab495388 1524TFtype
996ed075 1525__floatditf (DWtype u)
ab495388 1526{
66bb34c0 1527#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
4a73d865
JM
1528# error
1529#endif
4f2e0d5e
RH
1530 TFtype d = (Wtype) (u >> W_TYPE_SIZE);
1531 d *= Wtype_MAXp1_F;
1532 d += (UWtype)u;
e5e809f4 1533 return d;
ab495388
RS
1534}
1535#endif
1536
d7735880
JM
1537#if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1538TFtype
1539__floatunditf (UDWtype u)
1540{
66bb34c0 1541#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
4a73d865 1542# error
203b91b9 1543#endif
4a73d865 1544 TFtype d = (UWtype) (u >> W_TYPE_SIZE);
d7735880
JM
1545 d *= Wtype_MAXp1_F;
1546 d += (UWtype)u;
1547 return d;
1548}
1549#endif
1550
4a73d865
JM
1551#if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
1552 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
4f2e0d5e 1553#define DI_SIZE (W_TYPE_SIZE * 2)
b04c9063
AM
1554#define F_MODE_OK(SIZE) \
1555 (SIZE < DI_SIZE \
1556 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
5fb54b91 1557 && !AVOID_FP_TYPE_CONVERSION(SIZE))
4a73d865
JM
1558#if defined(L_floatdisf)
1559#define FUNC __floatdisf
1560#define FSTYPE SFtype
66bb34c0 1561#define FSSIZE __LIBGCC_SF_MANT_DIG__
4a73d865
JM
1562#else
1563#define FUNC __floatdidf
1564#define FSTYPE DFtype
66bb34c0 1565#define FSSIZE __LIBGCC_DF_MANT_DIG__
4a73d865 1566#endif
203b91b9 1567
4a73d865
JM
1568FSTYPE
1569FUNC (DWtype u)
203b91b9 1570{
4a73d865 1571#if FSSIZE >= W_TYPE_SIZE
4f2e0d5e 1572 /* When the word size is small, we never get any rounding error. */
4a73d865 1573 FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
4f2e0d5e
RH
1574 f *= Wtype_MAXp1_F;
1575 f += (UWtype)u;
1576 return f;
66bb34c0
JM
1577#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
1578 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
1579 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
4a73d865 1580
66bb34c0
JM
1581#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
1582# define FSIZE __LIBGCC_DF_MANT_DIG__
4a73d865 1583# define FTYPE DFtype
66bb34c0
JM
1584#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
1585# define FSIZE __LIBGCC_XF_MANT_DIG__
4a73d865 1586# define FTYPE XFtype
66bb34c0
JM
1587#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1588# define FSIZE __LIBGCC_TF_MANT_DIG__
4a73d865 1589# define FTYPE TFtype
4f2e0d5e
RH
1590#else
1591# error
1592#endif
1593
4a73d865 1594#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
4f2e0d5e 1595
d9e1ab8d 1596 /* Protect against double-rounding error.
4f2e0d5e
RH
1597 Represent any low-order bits, that might be truncated by a bit that
1598 won't be lost. The bit can go in anywhere below the rounding position
4a73d865
JM
1599 of the FSTYPE. A fixed mask and bit position handles all usual
1600 configurations. */
1601 if (! (- ((DWtype) 1 << FSIZE) < u
1602 && u < ((DWtype) 1 << FSIZE)))
d9e1ab8d 1603 {
4a73d865 1604 if ((UDWtype) u & (REP_BIT - 1))
d9e1ab8d 1605 {
4a73d865
JM
1606 u &= ~ (REP_BIT - 1);
1607 u |= REP_BIT;
d9e1ab8d
RK
1608 }
1609 }
203b91b9 1610
4a73d865
JM
1611 /* Do the calculation in a wider type so that we don't lose any of
1612 the precision of the high word while multiplying it. */
1613 FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
4f2e0d5e
RH
1614 f *= Wtype_MAXp1_F;
1615 f += (UWtype)u;
4a73d865 1616 return (FSTYPE) f;
4f2e0d5e 1617#else
4a73d865
JM
1618#if FSSIZE >= W_TYPE_SIZE - 2
1619# error
1620#endif
1621 /* Finally, the word size is larger than the number of bits in the
1622 required FSTYPE, and we've got no suitable wider type. The only
1623 way to avoid double rounding is to special case the
1624 extraction. */
4f2e0d5e
RH
1625
1626 /* If there are no high bits set, fall back to one conversion. */
1627 if ((Wtype)u == u)
4a73d865 1628 return (FSTYPE)(Wtype)u;
4f2e0d5e
RH
1629
1630 /* Otherwise, find the power of two. */
1631 Wtype hi = u >> W_TYPE_SIZE;
1632 if (hi < 0)
1f6eac90 1633 hi = -(UWtype) hi;
4f2e0d5e
RH
1634
1635 UWtype count, shift;
5de3e2d8
BE
1636#if !defined (COUNT_LEADING_ZEROS_0) || COUNT_LEADING_ZEROS_0 != W_TYPE_SIZE
1637 if (hi == 0)
1638 count = W_TYPE_SIZE;
1639 else
1640#endif
4f2e0d5e
RH
1641 count_leading_zeros (count, hi);
1642
1643 /* No leading bits means u == minimum. */
1644 if (count == 0)
6395ba73 1645 return Wtype_MAXp1_F * (FSTYPE) (hi | ((UWtype) u != 0));
4f2e0d5e 1646
4a73d865 1647 shift = 1 + W_TYPE_SIZE - count;
4f2e0d5e
RH
1648
1649 /* Shift down the most significant bits. */
1650 hi = u >> shift;
1651
1652 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
5fb54b91 1653 if ((UWtype)u << (W_TYPE_SIZE - shift))
4f2e0d5e
RH
1654 hi |= 1;
1655
1656 /* Convert the one word of data, and rescale. */
5fb54b91
RH
1657 FSTYPE f = hi, e;
1658 if (shift == W_TYPE_SIZE)
1659 e = Wtype_MAXp1_F;
1660 /* The following two cases could be merged if we knew that the target
1661 supported a native unsigned->float conversion. More often, we only
1662 have a signed conversion, and have to add extra fixup code. */
1663 else if (shift == W_TYPE_SIZE - 1)
1664 e = Wtype_MAXp1_F / 2;
1665 else
1666 e = (Wtype)1 << shift;
1667 return f * e;
4f2e0d5e 1668#endif
203b91b9
RS
1669}
1670#endif
1671
4a73d865
JM
1672#if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
1673 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
d7735880 1674#define DI_SIZE (W_TYPE_SIZE * 2)
b04c9063
AM
1675#define F_MODE_OK(SIZE) \
1676 (SIZE < DI_SIZE \
1677 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
5fb54b91 1678 && !AVOID_FP_TYPE_CONVERSION(SIZE))
4a73d865
JM
1679#if defined(L_floatundisf)
1680#define FUNC __floatundisf
1681#define FSTYPE SFtype
66bb34c0 1682#define FSSIZE __LIBGCC_SF_MANT_DIG__
4a73d865
JM
1683#else
1684#define FUNC __floatundidf
1685#define FSTYPE DFtype
66bb34c0 1686#define FSSIZE __LIBGCC_DF_MANT_DIG__
4a73d865 1687#endif
d7735880 1688
4a73d865
JM
1689FSTYPE
1690FUNC (UDWtype u)
d7735880 1691{
4a73d865 1692#if FSSIZE >= W_TYPE_SIZE
d7735880 1693 /* When the word size is small, we never get any rounding error. */
4a73d865 1694 FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
d7735880
JM
1695 f *= Wtype_MAXp1_F;
1696 f += (UWtype)u;
1697 return f;
66bb34c0
JM
1698#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
1699 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
1700 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
4a73d865 1701
66bb34c0
JM
1702#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
1703# define FSIZE __LIBGCC_DF_MANT_DIG__
4a73d865 1704# define FTYPE DFtype
66bb34c0
JM
1705#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
1706# define FSIZE __LIBGCC_XF_MANT_DIG__
4a73d865 1707# define FTYPE XFtype
66bb34c0
JM
1708#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1709# define FSIZE __LIBGCC_TF_MANT_DIG__
4a73d865 1710# define FTYPE TFtype
d7735880
JM
1711#else
1712# error
1713#endif
1714
4a73d865 1715#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
d7735880
JM
1716
1717 /* Protect against double-rounding error.
1718 Represent any low-order bits, that might be truncated by a bit that
1719 won't be lost. The bit can go in anywhere below the rounding position
4a73d865
JM
1720 of the FSTYPE. A fixed mask and bit position handles all usual
1721 configurations. */
1722 if (u >= ((UDWtype) 1 << FSIZE))
d7735880 1723 {
4a73d865 1724 if ((UDWtype) u & (REP_BIT - 1))
d7735880 1725 {
4a73d865
JM
1726 u &= ~ (REP_BIT - 1);
1727 u |= REP_BIT;
d7735880
JM
1728 }
1729 }
1730
4a73d865
JM
1731 /* Do the calculation in a wider type so that we don't lose any of
1732 the precision of the high word while multiplying it. */
1733 FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
d7735880
JM
1734 f *= Wtype_MAXp1_F;
1735 f += (UWtype)u;
4a73d865 1736 return (FSTYPE) f;
d7735880 1737#else
4a73d865
JM
1738#if FSSIZE == W_TYPE_SIZE - 1
1739# error
1740#endif
1741 /* Finally, the word size is larger than the number of bits in the
1742 required FSTYPE, and we've got no suitable wider type. The only
1743 way to avoid double rounding is to special case the
1744 extraction. */
d7735880
JM
1745
1746 /* If there are no high bits set, fall back to one conversion. */
1747 if ((UWtype)u == u)
4a73d865 1748 return (FSTYPE)(UWtype)u;
d7735880
JM
1749
1750 /* Otherwise, find the power of two. */
1751 UWtype hi = u >> W_TYPE_SIZE;
1752
1753 UWtype count, shift;
1754 count_leading_zeros (count, hi);
1755
1756 shift = W_TYPE_SIZE - count;
1757
1758 /* Shift down the most significant bits. */
1759 hi = u >> shift;
1760
1761 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
5fb54b91 1762 if ((UWtype)u << (W_TYPE_SIZE - shift))
d7735880
JM
1763 hi |= 1;
1764
1765 /* Convert the one word of data, and rescale. */
5fb54b91
RH
1766 FSTYPE f = hi, e;
1767 if (shift == W_TYPE_SIZE)
1768 e = Wtype_MAXp1_F;
1769 /* The following two cases could be merged if we knew that the target
1770 supported a native unsigned->float conversion. More often, we only
1771 have a signed conversion, and have to add extra fixup code. */
1772 else if (shift == W_TYPE_SIZE - 1)
1773 e = Wtype_MAXp1_F / 2;
1774 else
1775 e = (Wtype)1 << shift;
1776 return f * e;
d7735880
JM
1777#endif
1778}
1779#endif
1780
4e9db8b2 1781#if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
996ed075 1782UWtype
6da9c622 1783__fixunsxfSI (XFtype a)
e0799b34 1784{
5d0e6486
AO
1785 if (a >= - (DFtype) Wtype_MIN)
1786 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
996ed075 1787 return (Wtype) a;
e0799b34
RS
1788}
1789#endif
1790
4e9db8b2 1791#if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
996ed075 1792UWtype
6da9c622 1793__fixunsdfSI (DFtype a)
203b91b9 1794{
5d0e6486
AO
1795 if (a >= - (DFtype) Wtype_MIN)
1796 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
996ed075 1797 return (Wtype) a;
203b91b9
RS
1798}
1799#endif
1800
cfa7bd9c 1801#if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
996ed075 1802UWtype
6da9c622 1803__fixunssfSI (SFtype a)
203b91b9 1804{
5d0e6486
AO
1805 if (a >= - (SFtype) Wtype_MIN)
1806 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
996ed075 1807 return (Wtype) a;
203b91b9 1808}
17684d46
RG
1809#endif
1810\f
1811/* Integer power helper used from __builtin_powi for non-constant
1812 exponents. */
1813
cfa7bd9c 1814#if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
4e9db8b2
SE
1815 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1816 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1817 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
17684d46
RG
1818# if defined(L_powisf2)
1819# define TYPE SFtype
1820# define NAME __powisf2
1821# elif defined(L_powidf2)
1822# define TYPE DFtype
1823# define NAME __powidf2
1824# elif defined(L_powixf2)
1825# define TYPE XFtype
1826# define NAME __powixf2
1827# elif defined(L_powitf2)
1828# define TYPE TFtype
1829# define NAME __powitf2
1830# endif
1831
0b8495ae
FJ
1832#undef int
1833#undef unsigned
17684d46 1834TYPE
0b8495ae 1835NAME (TYPE x, int m)
17684d46 1836{
35da095d 1837 unsigned int n = m < 0 ? -(unsigned int) m : (unsigned int) m;
17684d46
RG
1838 TYPE y = n % 2 ? x : 1;
1839 while (n >>= 1)
1840 {
1841 x = x * x;
1842 if (n % 2)
1843 y = y * x;
1844 }
1845 return m < 0 ? 1/y : y;
1846}
1847
203b91b9
RS
1848#endif
1849\f
0abcd6cc
JG
1850#if((defined(L_mulhc3) || defined(L_divhc3)) && LIBGCC2_HAS_HF_MODE) \
1851 || ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
4e9db8b2
SE
1852 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1853 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1854 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
7e7e470f
RH
1855
1856#undef float
1857#undef double
1858#undef long
1859
0abcd6cc
JG
1860#if defined(L_mulhc3) || defined(L_divhc3)
1861# define MTYPE HFtype
1862# define CTYPE HCtype
54f0224d 1863# define AMTYPE SFtype
0abcd6cc
JG
1864# define MODE hc
1865# define CEXT __LIBGCC_HF_FUNC_EXT__
1866# define NOTRUNC (!__LIBGCC_HF_EXCESS_PRECISION__)
1867#elif defined(L_mulsc3) || defined(L_divsc3)
7e7e470f
RH
1868# define MTYPE SFtype
1869# define CTYPE SCtype
54f0224d 1870# define AMTYPE DFtype
7e7e470f 1871# define MODE sc
dd69f047 1872# define CEXT __LIBGCC_SF_FUNC_EXT__
d758aeb5 1873# define NOTRUNC (!__LIBGCC_SF_EXCESS_PRECISION__)
54f0224d
PM
1874# define RBIG (__LIBGCC_SF_MAX__ / 2)
1875# define RMIN (__LIBGCC_SF_MIN__)
1876# define RMIN2 (__LIBGCC_SF_EPSILON__)
1877# define RMINSCAL (1 / __LIBGCC_SF_EPSILON__)
1878# define RMAX2 (RBIG * RMIN2)
7e7e470f
RH
1879#elif defined(L_muldc3) || defined(L_divdc3)
1880# define MTYPE DFtype
1881# define CTYPE DCtype
1882# define MODE dc
dd69f047 1883# define CEXT __LIBGCC_DF_FUNC_EXT__
d758aeb5 1884# define NOTRUNC (!__LIBGCC_DF_EXCESS_PRECISION__)
54f0224d
PM
1885# define RBIG (__LIBGCC_DF_MAX__ / 2)
1886# define RMIN (__LIBGCC_DF_MIN__)
1887# define RMIN2 (__LIBGCC_DF_EPSILON__)
1888# define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
1889# define RMAX2 (RBIG * RMIN2)
7e7e470f
RH
1890#elif defined(L_mulxc3) || defined(L_divxc3)
1891# define MTYPE XFtype
1892# define CTYPE XCtype
1893# define MODE xc
dd69f047 1894# define CEXT __LIBGCC_XF_FUNC_EXT__
d758aeb5 1895# define NOTRUNC (!__LIBGCC_XF_EXCESS_PRECISION__)
54f0224d
PM
1896# define RBIG (__LIBGCC_XF_MAX__ / 2)
1897# define RMIN (__LIBGCC_XF_MIN__)
1898# define RMIN2 (__LIBGCC_XF_EPSILON__)
1899# define RMINSCAL (1 / __LIBGCC_XF_EPSILON__)
1900# define RMAX2 (RBIG * RMIN2)
7e7e470f
RH
1901#elif defined(L_multc3) || defined(L_divtc3)
1902# define MTYPE TFtype
1903# define CTYPE TCtype
1904# define MODE tc
dd69f047 1905# define CEXT __LIBGCC_TF_FUNC_EXT__
d758aeb5 1906# define NOTRUNC (!__LIBGCC_TF_EXCESS_PRECISION__)
d9105685
PM
1907# if __LIBGCC_TF_MANT_DIG__ == 106
1908# define RBIG (__LIBGCC_DF_MAX__ / 2)
1909# define RMIN (__LIBGCC_DF_MIN__)
1910# define RMIN2 (__LIBGCC_DF_EPSILON__)
1911# define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
1912# else
1913# define RBIG (__LIBGCC_TF_MAX__ / 2)
1914# define RMIN (__LIBGCC_TF_MIN__)
1915# define RMIN2 (__LIBGCC_TF_EPSILON__)
1916# define RMINSCAL (1 / __LIBGCC_TF_EPSILON__)
1917# endif
54f0224d 1918# define RMAX2 (RBIG * RMIN2)
7e7e470f
RH
1919#else
1920# error
1921#endif
1922
1923#define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1924#define _CONCAT3(A,B,C) A##B##C
1925
1926#define CONCAT2(A,B) _CONCAT2(A,B)
1927#define _CONCAT2(A,B) A##B
1928
af8096fc
UB
1929#define isnan(x) __builtin_isnan (x)
1930#define isfinite(x) __builtin_isfinite (x)
1931#define isinf(x) __builtin_isinf (x)
7e7e470f 1932
ca22d882 1933#define INFINITY CONCAT2(__builtin_huge_val, CEXT) ()
7e7e470f
RH
1934#define I 1i
1935
1936/* Helpers to make the following code slightly less gross. */
1937#define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1938#define FABS CONCAT2(__builtin_fabs, CEXT)
1939
1940/* Verify that MTYPE matches up with CEXT. */
1941extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
1942
1943/* Ensure that we've lost any extra precision. */
1944#if NOTRUNC
1945# define TRUNC(x)
1946#else
1947# define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1948#endif
1949
0abcd6cc 1950#if defined(L_mulhc3) || defined(L_mulsc3) || defined(L_muldc3) \
7e7e470f
RH
1951 || defined(L_mulxc3) || defined(L_multc3)
1952
1953CTYPE
1954CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1955{
1956 MTYPE ac, bd, ad, bc, x, y;
ddef83d2 1957 CTYPE res;
7e7e470f
RH
1958
1959 ac = a * c;
1960 bd = b * d;
1961 ad = a * d;
1962 bc = b * c;
1963
1964 TRUNC (ac);
1965 TRUNC (bd);
1966 TRUNC (ad);
1967 TRUNC (bc);
1968
1969 x = ac - bd;
1970 y = ad + bc;
1971
1972 if (isnan (x) && isnan (y))
1973 {
1974 /* Recover infinities that computed as NaN + iNaN. */
1975 _Bool recalc = 0;
1976 if (isinf (a) || isinf (b))
1977 {
1978 /* z is infinite. "Box" the infinity and change NaNs in
1979 the other factor to 0. */
1980 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1981 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1982 if (isnan (c)) c = COPYSIGN (0, c);
1983 if (isnan (d)) d = COPYSIGN (0, d);
1984 recalc = 1;
1985 }
1986 if (isinf (c) || isinf (d))
1987 {
1988 /* w is infinite. "Box" the infinity and change NaNs in
1989 the other factor to 0. */
1990 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1991 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1992 if (isnan (a)) a = COPYSIGN (0, a);
1993 if (isnan (b)) b = COPYSIGN (0, b);
1994 recalc = 1;
1995 }
1996 if (!recalc
1997 && (isinf (ac) || isinf (bd)
1998 || isinf (ad) || isinf (bc)))
1999 {
2000 /* Recover infinities from overflow by changing NaNs to 0. */
2001 if (isnan (a)) a = COPYSIGN (0, a);
2002 if (isnan (b)) b = COPYSIGN (0, b);
2003 if (isnan (c)) c = COPYSIGN (0, c);
2004 if (isnan (d)) d = COPYSIGN (0, d);
2005 recalc = 1;
2006 }
2007 if (recalc)
2008 {
2009 x = INFINITY * (a * c - b * d);
2010 y = INFINITY * (a * d + b * c);
2011 }
2012 }
2013
ddef83d2
RG
2014 __real__ res = x;
2015 __imag__ res = y;
2016 return res;
7e7e470f
RH
2017}
2018#endif /* complex multiply */
2019
0abcd6cc 2020#if defined(L_divhc3) || defined(L_divsc3) || defined(L_divdc3) \
7e7e470f
RH
2021 || defined(L_divxc3) || defined(L_divtc3)
2022
2023CTYPE
2024CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
2025{
54f0224d
PM
2026#if defined(L_divhc3) \
2027 || (defined(L_divsc3) && defined(__LIBGCC_HAVE_HWDBL__) )
2028
2029 /* Half precision is handled with float precision.
2030 float is handled with double precision when double precision
2031 hardware is available.
2032 Due to the additional precision, the simple complex divide
2033 method (without Smith's method) is sufficient to get accurate
2034 answers and runs slightly faster than Smith's method. */
2035
2036 AMTYPE aa, bb, cc, dd;
2037 AMTYPE denom;
2038 MTYPE x, y;
2039 CTYPE res;
2040 aa = a;
2041 bb = b;
2042 cc = c;
2043 dd = d;
2044
2045 denom = (cc * cc) + (dd * dd);
2046 x = ((aa * cc) + (bb * dd)) / denom;
2047 y = ((bb * cc) - (aa * dd)) / denom;
2048
2049#else
7e7e470f 2050 MTYPE denom, ratio, x, y;
ddef83d2 2051 CTYPE res;
7e7e470f 2052
54f0224d
PM
2053 /* double, extended, long double have significant potential
2054 underflow/overflow errors that can be greatly reduced with
2055 a limited number of tests and adjustments. float is handled
2056 the same way when no HW double is available.
2057 */
2058
2059 /* Scale by max(c,d) to reduce chances of denominator overflowing. */
7e7e470f
RH
2060 if (FABS (c) < FABS (d))
2061 {
54f0224d
PM
2062 /* Prevent underflow when denominator is near max representable. */
2063 if (FABS (d) >= RBIG)
2064 {
2065 a = a / 2;
2066 b = b / 2;
2067 c = c / 2;
2068 d = d / 2;
2069 }
2070 /* Avoid overflow/underflow issues when c and d are small.
2071 Scaling up helps avoid some underflows.
2072 No new overflow possible since c&d < RMIN2. */
2073 if (FABS (d) < RMIN2)
2074 {
2075 a = a * RMINSCAL;
2076 b = b * RMINSCAL;
2077 c = c * RMINSCAL;
2078 d = d * RMINSCAL;
2079 }
2080 else
2081 {
2082 if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (d) < RMAX2))
2083 || ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
2084 && (FABS (d) < RMAX2)))
2085 {
2086 a = a * RMINSCAL;
2087 b = b * RMINSCAL;
2088 c = c * RMINSCAL;
2089 d = d * RMINSCAL;
2090 }
2091 }
7e7e470f
RH
2092 ratio = c / d;
2093 denom = (c * ratio) + d;
54f0224d
PM
2094 /* Choose alternate order of computation if ratio is subnormal. */
2095 if (FABS (ratio) > RMIN)
2096 {
2097 x = ((a * ratio) + b) / denom;
2098 y = ((b * ratio) - a) / denom;
2099 }
2100 else
2101 {
2102 x = ((c * (a / d)) + b) / denom;
2103 y = ((c * (b / d)) - a) / denom;
2104 }
7e7e470f
RH
2105 }
2106 else
2107 {
54f0224d
PM
2108 /* Prevent underflow when denominator is near max representable. */
2109 if (FABS (c) >= RBIG)
2110 {
2111 a = a / 2;
2112 b = b / 2;
2113 c = c / 2;
2114 d = d / 2;
2115 }
2116 /* Avoid overflow/underflow issues when both c and d are small.
2117 Scaling up helps avoid some underflows.
2118 No new overflow possible since both c&d are less than RMIN2. */
2119 if (FABS (c) < RMIN2)
2120 {
2121 a = a * RMINSCAL;
2122 b = b * RMINSCAL;
2123 c = c * RMINSCAL;
2124 d = d * RMINSCAL;
2125 }
2126 else
2127 {
2128 if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (c) < RMAX2))
2129 || ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
2130 && (FABS (c) < RMAX2)))
2131 {
2132 a = a * RMINSCAL;
2133 b = b * RMINSCAL;
2134 c = c * RMINSCAL;
2135 d = d * RMINSCAL;
2136 }
2137 }
7e7e470f
RH
2138 ratio = d / c;
2139 denom = (d * ratio) + c;
54f0224d
PM
2140 /* Choose alternate order of computation if ratio is subnormal. */
2141 if (FABS (ratio) > RMIN)
2142 {
2143 x = ((b * ratio) + a) / denom;
2144 y = (b - (a * ratio)) / denom;
2145 }
2146 else
2147 {
2148 x = (a + (d * (b / c))) / denom;
2149 y = (b - (d * (a / c))) / denom;
2150 }
7e7e470f 2151 }
54f0224d 2152#endif
7e7e470f 2153
54f0224d
PM
2154 /* Recover infinities and zeros that computed as NaN+iNaN; the only
2155 cases are nonzero/zero, infinite/finite, and finite/infinite. */
7e7e470f
RH
2156 if (isnan (x) && isnan (y))
2157 {
698ac934 2158 if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
7e7e470f
RH
2159 {
2160 x = COPYSIGN (INFINITY, c) * a;
2161 y = COPYSIGN (INFINITY, c) * b;
2162 }
2163 else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
2164 {
2165 a = COPYSIGN (isinf (a) ? 1 : 0, a);
2166 b = COPYSIGN (isinf (b) ? 1 : 0, b);
2167 x = INFINITY * (a * c + b * d);
2168 y = INFINITY * (b * c - a * d);
2169 }
2170 else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
2171 {
2172 c = COPYSIGN (isinf (c) ? 1 : 0, c);
2173 d = COPYSIGN (isinf (d) ? 1 : 0, d);
2174 x = 0.0 * (a * c + b * d);
2175 y = 0.0 * (b * c - a * d);
2176 }
2177 }
2178
ddef83d2
RG
2179 __real__ res = x;
2180 __imag__ res = y;
2181 return res;
7e7e470f
RH
2182}
2183#endif /* complex divide */
2184
2185#endif /* all complex float routines */
2186\f
ab495388
RS
2187/* From here on down, the routines use normal data types. */
2188
2189#define SItype bogus_type
2190#define USItype bogus_type
2191#define DItype bogus_type
2192#define UDItype bogus_type
2193#define SFtype bogus_type
2194#define DFtype bogus_type
996ed075
JJ
2195#undef Wtype
2196#undef UWtype
2197#undef HWtype
2198#undef UHWtype
2199#undef DWtype
2200#undef UDWtype
ab495388
RS
2201
2202#undef char
2203#undef short
2204#undef int
2205#undef long
2206#undef unsigned
2207#undef float
2208#undef double
9bd23d2c
RS
2209\f
2210#ifdef L__gcc_bcmp
2211
2212/* Like bcmp except the sign is meaningful.
9faa82d8 2213 Result is negative if S1 is less than S2,
9bd23d2c
RS
2214 positive if S1 is greater, 0 if S1 and S2 are equal. */
2215
2216int
299b83b7 2217__gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
9bd23d2c
RS
2218{
2219 while (size > 0)
2220 {
b982024e 2221 const unsigned char c1 = *s1++, c2 = *s2++;
9bd23d2c
RS
2222 if (c1 != c2)
2223 return c1 - c2;
2224 size--;
2225 }
2226 return 0;
2227}
ab495388 2228
3fe68d0a
ZW
2229#endif
2230\f
2231/* __eprintf used to be used by GCC's private version of <assert.h>.
2232 We no longer provide that header, but this routine remains in libgcc.a
2233 for binary backward compatibility. Note that it is not included in
2234 the shared version of libgcc. */
2235#ifdef L_eprintf
2236#ifndef inhibit_libc
2237
2238#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
2239#include <stdio.h>
2240
2241void
2242__eprintf (const char *string, const char *expression,
2243 unsigned int line, const char *filename)
2244{
2245 fprintf (stderr, string, expression, line, filename);
2246 fflush (stderr);
2247 abort ();
2248}
2249
2250#endif
203b91b9
RS
2251#endif
2252
203b91b9 2253\f
203b91b9
RS
2254#ifdef L_clear_cache
2255/* Clear part of an instruction cache. */
2256
203b91b9 2257void
a90b0cdd
MS
2258__clear_cache (void *beg __attribute__((__unused__)),
2259 void *end __attribute__((__unused__)))
203b91b9 2260{
23190837 2261#ifdef CLEAR_INSN_CACHE
a90b0cdd
MS
2262 /* Cast the void* pointers to char* as some implementations
2263 of the macro assume the pointers can be subtracted from
2264 one another. */
2265 CLEAR_INSN_CACHE ((char *) beg, (char *) end);
e1178973 2266#endif /* CLEAR_INSN_CACHE */
203b91b9
RS
2267}
2268
2269#endif /* L_clear_cache */
2270\f
2271#ifdef L_trampoline
2272
2273/* Jump to a trampoline, loading the static chain address. */
2274
cd985f66 2275#if defined(WINNT) && ! defined(__CYGWIN__)
bf806a90 2276#include <windows.h>
0a38153f
KT
2277int getpagesize (void);
2278int mprotect (char *,int, int);
e3367a77 2279
94c1e7ac 2280int
3e7d8ef1 2281getpagesize (void)
f5ea9817
RK
2282{
2283#ifdef _ALPHA_
2284 return 8192;
2285#else
2286 return 4096;
2287#endif
2288}
2289
272e2587
RK
2290int
2291mprotect (char *addr, int len, int prot)
f5ea9817 2292{
234952b3 2293 DWORD np, op;
f5ea9817 2294
272e2587
RK
2295 if (prot == 7)
2296 np = 0x40;
2297 else if (prot == 5)
2298 np = 0x20;
2299 else if (prot == 4)
2300 np = 0x10;
2301 else if (prot == 3)
2302 np = 0x04;
2303 else if (prot == 1)
2304 np = 0x02;
2305 else if (prot == 0)
2306 np = 0x01;
234952b3
OS
2307 else
2308 return -1;
f5ea9817
RK
2309
2310 if (VirtualProtect (addr, len, np, &op))
2311 return 0;
2312 else
2313 return -1;
f5ea9817
RK
2314}
2315
cd985f66 2316#endif /* WINNT && ! __CYGWIN__ */
f5ea9817 2317
23190837
AJ
2318#ifdef TRANSFER_FROM_TRAMPOLINE
2319TRANSFER_FROM_TRAMPOLINE
203b91b9 2320#endif
203b91b9
RS
2321#endif /* L_trampoline */
2322\f
cae21ae8 2323#ifndef __CYGWIN__
203b91b9
RS
2324#ifdef L__main
2325
2326#include "gbl-ctors.h"
7abc66b1 2327
c06cff95
RS
2328/* Some systems use __main in a way incompatible with its use in gcc, in these
2329 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2330 give the same symbol without quotes for an alternative entry point. You
0f41302f 2331 must define both, or neither. */
c06cff95
RS
2332#ifndef NAME__MAIN
2333#define NAME__MAIN "__main"
2334#define SYMBOL__MAIN __main
2335#endif
203b91b9 2336
53d68b9f
JM
2337#if defined (__LIBGCC_INIT_SECTION_ASM_OP__) \
2338 || defined (__LIBGCC_INIT_ARRAY_SECTION_ASM_OP__)
fe1fd353
JM
2339#undef HAS_INIT_SECTION
2340#define HAS_INIT_SECTION
2341#endif
2342
2343#if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
31cf0144
JM
2344
2345/* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
72d1a48d
EB
2346 code to run constructors. In that case, we need to handle EH here, too.
2347 But MINGW32 is special because it handles CRTSTUFF and EH on its own. */
2348
2349#ifdef __MINGW32__
2350#undef __LIBGCC_EH_FRAME_SECTION_NAME__
2351#endif
31cf0144 2352
53d68b9f 2353#ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
e4b776a6 2354#include "unwind-dw2-fde.h"
31cf0144
JM
2355extern unsigned char __EH_FRAME_BEGIN__[];
2356#endif
2357
203b91b9
RS
2358/* Run all the global destructors on exit from the program. */
2359
2360void
3e7d8ef1 2361__do_global_dtors (void)
203b91b9 2362{
89cf554b
RS
2363#ifdef DO_GLOBAL_DTORS_BODY
2364 DO_GLOBAL_DTORS_BODY;
2365#else
b40b9d93
MS
2366 static func_ptr *p = __DTOR_LIST__ + 1;
2367 while (*p)
2368 {
2369 p++;
2370 (*(p-1)) ();
2371 }
89cf554b 2372#endif
53d68b9f 2373#if defined (__LIBGCC_EH_FRAME_SECTION_NAME__) && !defined (HAS_INIT_SECTION)
a4ebb0e6
GRK
2374 {
2375 static int completed = 0;
2376 if (! completed)
2377 {
2378 completed = 1;
2379 __deregister_frame_info (__EH_FRAME_BEGIN__);
2380 }
2381 }
31cf0144 2382#endif
203b91b9 2383}
68d69835 2384#endif
203b91b9 2385
fe1fd353 2386#ifndef HAS_INIT_SECTION
203b91b9
RS
2387/* Run all the global constructors on entry to the program. */
2388
203b91b9 2389void
3e7d8ef1 2390__do_global_ctors (void)
203b91b9 2391{
53d68b9f 2392#ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
31cf0144
JM
2393 {
2394 static struct object object;
2395 __register_frame_info (__EH_FRAME_BEGIN__, &object);
2396 }
2397#endif
203b91b9 2398 DO_GLOBAL_CTORS_BODY;
a218d5ba 2399 atexit (__do_global_dtors);
203b91b9 2400}
fe1fd353 2401#endif /* no HAS_INIT_SECTION */
203b91b9 2402
fe1fd353 2403#if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
203b91b9
RS
2404/* Subroutine called automatically by `main'.
2405 Compiling a global function named `main'
2406 produces an automatic call to this function at the beginning.
2407
2408 For many systems, this routine calls __do_global_ctors.
2409 For systems which support a .init section we use the .init section
2410 to run __do_global_ctors, so we need not do anything here. */
2411
4043d9c1 2412extern void SYMBOL__MAIN (void);
203b91b9 2413void
4043d9c1 2414SYMBOL__MAIN (void)
203b91b9
RS
2415{
2416 /* Support recursive calls to `main': run initializers just once. */
7e6f1890 2417 static int initialized;
203b91b9
RS
2418 if (! initialized)
2419 {
2420 initialized = 1;
2421 __do_global_ctors ();
2422 }
2423}
fe1fd353 2424#endif /* no HAS_INIT_SECTION or INVOKE__main */
203b91b9
RS
2425
2426#endif /* L__main */
cae21ae8 2427#endif /* __CYGWIN__ */
203b91b9 2428\f
ad38743d 2429#ifdef L_ctors
203b91b9
RS
2430
2431#include "gbl-ctors.h"
2432
2433/* Provide default definitions for the lists of constructors and
657be7af
JL
2434 destructors, so that we don't get linker errors. These symbols are
2435 intentionally bss symbols, so that gld and/or collect will provide
2436 the right values. */
203b91b9
RS
2437
2438/* We declare the lists here with two elements each,
657be7af
JL
2439 so that they are valid empty lists if no other definition is loaded.
2440
2441 If we are using the old "set" extensions to have the gnu linker
2442 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2443 must be in the bss/common section.
2444
2445 Long term no port should use those extensions. But many still do. */
1770511a 2446#if !defined(__LIBGCC_INIT_SECTION_ASM_OP__)
aa6ad1a6 2447#if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
d15d0264
RS
2448func_ptr __CTOR_LIST__[2] = {0, 0};
2449func_ptr __DTOR_LIST__[2] = {0, 0};
657be7af
JL
2450#else
2451func_ptr __CTOR_LIST__[2];
2452func_ptr __DTOR_LIST__[2];
2453#endif
1770511a 2454#endif /* no __LIBGCC_INIT_SECTION_ASM_OP__ */
ad38743d 2455#endif /* L_ctors */
baffad1f 2456#endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */