]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgcc/libgcc2.c
testsuite, rs6000: Fix builtins-6-p9-runnable.c for BE [PR114744]
[thirdparty/gcc.git] / libgcc / libgcc2.c
CommitLineData
203b91b9
RS
1/* More subroutines needed by GCC output code on some machines. */
2/* Compile this one with gcc. */
a945c346 3/* Copyright (C) 1989-2024 Free Software Foundation, Inc.
203b91b9 4
1322177d 5This file is part of GCC.
203b91b9 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
748086b7 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
203b91b9 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
203b91b9 16
748086b7
JJ
17Under Section 7 of GPL version 3, you are granted additional
18permissions described in the GCC Runtime Library Exception, version
193.1, as published by the Free Software Foundation.
20
21You should have received a copy of the GNU General Public License and
22a copy of the GCC Runtime Library Exception along with this program;
23see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24<http://www.gnu.org/licenses/>. */
203b91b9 25
0dadecf6 26#include "tconfig.h"
2e39bdbe 27#include "tsystem.h"
4977bab6
ZW
28#include "coretypes.h"
29#include "tm.h"
852b75ed 30#include "libgcc_tm.h"
2467749d 31
53585c36
RH
32#ifdef HAVE_GAS_HIDDEN
33#define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
34#else
35#define ATTRIBUTE_HIDDEN
36#endif
37
b2a203c8
RS
38/* Work out the largest "word" size that we can deal with on this target. */
39#if MIN_UNITS_PER_WORD > 4
40# define LIBGCC2_MAX_UNITS_PER_WORD 8
41#elif (MIN_UNITS_PER_WORD > 2 \
4471aff6 42 || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
b2a203c8
RS
43# define LIBGCC2_MAX_UNITS_PER_WORD 4
44#else
45# define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
46#endif
47
48/* Work out what word size we are using for this compilation.
49 The value can be set on the command line. */
baffad1f 50#ifndef LIBGCC2_UNITS_PER_WORD
b2a203c8 51#define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
baffad1f
RS
52#endif
53
b2a203c8 54#if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
baffad1f 55
299b83b7 56#include "libgcc2.h"
203b91b9 57\f
d8088c6f
BS
58#ifdef DECLARE_LIBRARY_RENAMES
59 DECLARE_LIBRARY_RENAMES
60#endif
61
b68daef4 62#if defined (L_negdi2)
3d2adde6
CC
63DWtype
64__negdi2 (DWtype u)
65{
b982024e
KG
66 const DWunion uu = {.ll = u};
67 const DWunion w = { {.low = -uu.s.low,
68 .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
3d2adde6
CC
69
70 return w.ll;
71}
72#endif
91ce572a
CC
73
74#ifdef L_addvsi3
66f77154 75Wtype
0aec6014 76__addvSI3 (Wtype a, Wtype b)
91ce572a 77{
ebc4cd54 78 Wtype w;
91ce572a 79
831f24a7 80 if (__builtin_add_overflow (a, b, &w))
91ce572a
CC
81 abort ();
82
83 return w;
23190837 84}
0aec6014
EB
85#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
86SItype
87__addvsi3 (SItype a, SItype b)
88{
ebc4cd54 89 SItype w;
0aec6014 90
831f24a7 91 if (__builtin_add_overflow (a, b, &w))
0aec6014
EB
92 abort ();
93
94 return w;
95}
96#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
3d2adde6 97#endif
91ce572a
CC
98\f
99#ifdef L_addvdi3
66f77154 100DWtype
0aec6014 101__addvDI3 (DWtype a, DWtype b)
91ce572a 102{
ebc4cd54 103 DWtype w;
91ce572a 104
831f24a7 105 if (__builtin_add_overflow (a, b, &w))
91ce572a
CC
106 abort ();
107
108 return w;
109}
110#endif
111\f
112#ifdef L_subvsi3
66f77154 113Wtype
0aec6014 114__subvSI3 (Wtype a, Wtype b)
91ce572a 115{
ebc4cd54 116 Wtype w;
91ce572a 117
831f24a7 118 if (__builtin_sub_overflow (a, b, &w))
91ce572a
CC
119 abort ();
120
121 return w;
91ce572a 122}
0aec6014
EB
123#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
124SItype
125__subvsi3 (SItype a, SItype b)
126{
ebc4cd54 127 SItype w;
0aec6014 128
831f24a7 129 if (__builtin_sub_overflow (a, b, &w))
0aec6014
EB
130 abort ();
131
132 return w;
133}
134#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
91ce572a
CC
135#endif
136\f
137#ifdef L_subvdi3
66f77154 138DWtype
0aec6014 139__subvDI3 (DWtype a, DWtype b)
91ce572a 140{
ebc4cd54 141 DWtype w;
91ce572a 142
831f24a7 143 if (__builtin_sub_overflow (a, b, &w))
91ce572a
CC
144 abort ();
145
146 return w;
91ce572a
CC
147}
148#endif
149\f
150#ifdef L_mulvsi3
66f77154 151Wtype
0aec6014 152__mulvSI3 (Wtype a, Wtype b)
91ce572a 153{
ebc4cd54 154 Wtype w;
91ce572a 155
831f24a7 156 if (__builtin_mul_overflow (a, b, &w))
91ce572a
CC
157 abort ();
158
159 return w;
160}
0aec6014 161#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
0aec6014
EB
162SItype
163__mulvsi3 (SItype a, SItype b)
164{
ebc4cd54 165 SItype w;
0aec6014 166
831f24a7 167 if (__builtin_mul_overflow (a, b, &w))
0aec6014
EB
168 abort ();
169
170 return w;
171}
172#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
91ce572a
CC
173#endif
174\f
175#ifdef L_negvsi2
66f77154 176Wtype
0aec6014 177__negvSI2 (Wtype a)
91ce572a 178{
ebc4cd54 179 Wtype w;
91ce572a 180
831f24a7 181 if (__builtin_sub_overflow (0, a, &w))
91ce572a
CC
182 abort ();
183
ebc4cd54 184 return w;
91ce572a 185}
0aec6014
EB
186#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
187SItype
188__negvsi2 (SItype a)
189{
ebc4cd54 190 SItype w;
0aec6014 191
831f24a7 192 if (__builtin_sub_overflow (0, a, &w))
0aec6014
EB
193 abort ();
194
ebc4cd54 195 return w;
0aec6014
EB
196}
197#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
91ce572a
CC
198#endif
199\f
200#ifdef L_negvdi2
66f77154 201DWtype
0aec6014 202__negvDI2 (DWtype a)
91ce572a 203{
ebc4cd54 204 DWtype w;
91ce572a 205
831f24a7 206 if (__builtin_sub_overflow (0, a, &w))
91ce572a
CC
207 abort ();
208
e11e816e 209 return w;
91ce572a
CC
210}
211#endif
212\f
213#ifdef L_absvsi2
66f77154 214Wtype
0aec6014 215__absvSI2 (Wtype a)
91ce572a 216{
4919ed71
SK
217 const Wtype v = 0 - (a < 0);
218 Wtype w;
0aec6014 219
4919ed71 220 if (__builtin_add_overflow (a, v, &w))
0aec6014 221 abort ();
0aec6014 222
4919ed71 223 return v ^ w;
0aec6014
EB
224}
225#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
226SItype
227__absvsi2 (SItype a)
228{
4919ed71
SK
229 const SItype v = 0 - (a < 0);
230 SItype w;
91ce572a 231
4919ed71 232 if (__builtin_add_overflow (a, v, &w))
e11e816e 233 abort ();
91ce572a 234
4919ed71 235 return v ^ w;
91ce572a 236}
0aec6014 237#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
91ce572a
CC
238#endif
239\f
240#ifdef L_absvdi2
66f77154 241DWtype
0aec6014 242__absvDI2 (DWtype a)
91ce572a 243{
4919ed71
SK
244 const DWtype v = 0 - (a < 0);
245 DWtype w;
91ce572a 246
4919ed71 247 if (__builtin_add_overflow (a, v, &w))
e11e816e 248 abort ();
91ce572a 249
4919ed71 250 return v ^ w;
91ce572a
CC
251}
252#endif
253\f
254#ifdef L_mulvdi3
66f77154 255DWtype
0aec6014 256__mulvDI3 (DWtype u, DWtype v)
91ce572a 257{
4c20b2e7
BH
258 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
259 but the checked multiplication needs only two. */
b982024e
KG
260 const DWunion uu = {.ll = u};
261 const DWunion vv = {.ll = v};
91ce572a 262
4f2e0d5e 263 if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
264 {
265 /* u fits in a single Wtype. */
4f2e0d5e 266 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
267 {
268 /* v fits in a single Wtype as well. */
269 /* A single multiplication. No overflow risk. */
270 return (DWtype) uu.s.low * (DWtype) vv.s.low;
271 }
272 else
273 {
274 /* Two multiplications. */
b982024e
KG
275 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
276 * (UDWtype) (UWtype) vv.s.low};
277 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
278 * (UDWtype) (UWtype) vv.s.high};
4c20b2e7 279
4c20b2e7
BH
280 if (vv.s.high < 0)
281 w1.s.high -= uu.s.low;
282 if (uu.s.low < 0)
283 w1.ll -= vv.ll;
284 w1.ll += (UWtype) w0.s.high;
4f2e0d5e 285 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
286 {
287 w0.s.high = w1.s.low;
288 return w0.ll;
289 }
290 }
291 }
292 else
293 {
4f2e0d5e 294 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
295 {
296 /* v fits into a single Wtype. */
297 /* Two multiplications. */
b982024e
KG
298 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
299 * (UDWtype) (UWtype) vv.s.low};
300 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
301 * (UDWtype) (UWtype) vv.s.low};
4c20b2e7 302
4c20b2e7
BH
303 if (uu.s.high < 0)
304 w1.s.high -= vv.s.low;
305 if (vv.s.low < 0)
306 w1.ll -= uu.ll;
307 w1.ll += (UWtype) w0.s.high;
4f2e0d5e 308 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
309 {
310 w0.s.high = w1.s.low;
311 return w0.ll;
312 }
313 }
314 else
315 {
316 /* A few sign checks and a single multiplication. */
317 if (uu.s.high >= 0)
318 {
319 if (vv.s.high >= 0)
320 {
321 if (uu.s.high == 0 && vv.s.high == 0)
322 {
b982024e
KG
323 const DWtype w = (UDWtype) (UWtype) uu.s.low
324 * (UDWtype) (UWtype) vv.s.low;
4c20b2e7
BH
325 if (__builtin_expect (w >= 0, 1))
326 return w;
327 }
328 }
329 else
330 {
331 if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
332 {
b982024e
KG
333 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
334 * (UDWtype) (UWtype) vv.s.low};
4c20b2e7 335
4c20b2e7
BH
336 ww.s.high -= uu.s.low;
337 if (__builtin_expect (ww.s.high < 0, 1))
338 return ww.ll;
339 }
340 }
341 }
342 else
343 {
344 if (vv.s.high >= 0)
345 {
346 if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
347 {
b982024e
KG
348 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
349 * (UDWtype) (UWtype) vv.s.low};
4c20b2e7 350
4c20b2e7
BH
351 ww.s.high -= vv.s.low;
352 if (__builtin_expect (ww.s.high < 0, 1))
353 return ww.ll;
354 }
355 }
356 else
357 {
e7176f75
JJ
358 if ((uu.s.high & vv.s.high) == (Wtype) -1
359 && (uu.s.low | vv.s.low) != 0)
4c20b2e7 360 {
b982024e
KG
361 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
362 * (UDWtype) (UWtype) vv.s.low};
4c20b2e7 363
4c20b2e7
BH
364 ww.s.high -= uu.s.low;
365 ww.s.high -= vv.s.low;
366 if (__builtin_expect (ww.s.high >= 0, 1))
367 return ww.ll;
368 }
369 }
370 }
371 }
372 }
91ce572a 373
4c20b2e7
BH
374 /* Overflow. */
375 abort ();
91ce572a
CC
376}
377#endif
378\f
203b91b9 379
3d042e77 380/* Unless shift functions are defined with full ANSI prototypes,
c7ff6e7a 381 parameter b will be promoted to int if shift_count_type is smaller than an int. */
203b91b9 382#ifdef L_lshrdi3
996ed075 383DWtype
c7ff6e7a 384__lshrdi3 (DWtype u, shift_count_type b)
203b91b9 385{
203b91b9
RS
386 if (b == 0)
387 return u;
388
b982024e 389 const DWunion uu = {.ll = u};
fdf3e18a 390 const shift_count_type bm = W_TYPE_SIZE - b;
b982024e 391 DWunion w;
203b91b9 392
203b91b9
RS
393 if (bm <= 0)
394 {
395 w.s.high = 0;
6da9c622 396 w.s.low = (UWtype) uu.s.high >> -bm;
203b91b9
RS
397 }
398 else
399 {
b982024e 400 const UWtype carries = (UWtype) uu.s.high << bm;
6da9c622
RK
401
402 w.s.high = (UWtype) uu.s.high >> b;
403 w.s.low = ((UWtype) uu.s.low >> b) | carries;
203b91b9
RS
404 }
405
406 return w.ll;
407}
408#endif
409
410#ifdef L_ashldi3
996ed075 411DWtype
c7ff6e7a 412__ashldi3 (DWtype u, shift_count_type b)
203b91b9 413{
203b91b9
RS
414 if (b == 0)
415 return u;
416
b982024e 417 const DWunion uu = {.ll = u};
fdf3e18a 418 const shift_count_type bm = W_TYPE_SIZE - b;
b982024e 419 DWunion w;
203b91b9 420
203b91b9
RS
421 if (bm <= 0)
422 {
423 w.s.low = 0;
6da9c622 424 w.s.high = (UWtype) uu.s.low << -bm;
203b91b9
RS
425 }
426 else
427 {
b982024e 428 const UWtype carries = (UWtype) uu.s.low >> bm;
6da9c622
RK
429
430 w.s.low = (UWtype) uu.s.low << b;
431 w.s.high = ((UWtype) uu.s.high << b) | carries;
203b91b9
RS
432 }
433
434 return w.ll;
435}
436#endif
437
438#ifdef L_ashrdi3
996ed075 439DWtype
c7ff6e7a 440__ashrdi3 (DWtype u, shift_count_type b)
203b91b9 441{
203b91b9
RS
442 if (b == 0)
443 return u;
444
b982024e 445 const DWunion uu = {.ll = u};
fdf3e18a 446 const shift_count_type bm = W_TYPE_SIZE - b;
b982024e 447 DWunion w;
203b91b9 448
203b91b9
RS
449 if (bm <= 0)
450 {
451 /* w.s.high = 1..1 or 0..0 */
fdf3e18a 452 w.s.high = uu.s.high >> (W_TYPE_SIZE - 1);
203b91b9
RS
453 w.s.low = uu.s.high >> -bm;
454 }
455 else
456 {
b982024e 457 const UWtype carries = (UWtype) uu.s.high << bm;
6da9c622 458
203b91b9 459 w.s.high = uu.s.high >> b;
6da9c622 460 w.s.low = ((UWtype) uu.s.low >> b) | carries;
203b91b9
RS
461 }
462
463 return w.ll;
464}
465#endif
466\f
167fa32c 467#ifdef L_bswapsi2
e4b6bec2
EC
468SItype
469__bswapsi2 (SItype u)
167fa32c 470{
a8ae2392
SK
471 return ((((u) & 0xff000000u) >> 24)
472 | (((u) & 0x00ff0000u) >> 8)
473 | (((u) & 0x0000ff00u) << 8)
474 | (((u) & 0x000000ffu) << 24));
167fa32c
EC
475}
476#endif
477#ifdef L_bswapdi2
e4b6bec2
EC
478DItype
479__bswapdi2 (DItype u)
167fa32c
EC
480{
481 return ((((u) & 0xff00000000000000ull) >> 56)
482 | (((u) & 0x00ff000000000000ull) >> 40)
483 | (((u) & 0x0000ff0000000000ull) >> 24)
484 | (((u) & 0x000000ff00000000ull) >> 8)
485 | (((u) & 0x00000000ff000000ull) << 8)
486 | (((u) & 0x0000000000ff0000ull) << 24)
487 | (((u) & 0x000000000000ff00ull) << 40)
488 | (((u) & 0x00000000000000ffull) << 56));
489}
490#endif
dfff898c
RH
491#ifdef L_ffssi2
492#undef int
dfff898c
RH
493int
494__ffsSI2 (UWtype u)
495{
496 UWtype count;
497
498 if (u == 0)
499 return 0;
500
501 count_trailing_zeros (count, u);
502 return count + 1;
503}
504#endif
505\f
aa66bd06 506#ifdef L_ffsdi2
dabb3f04 507#undef int
dabb3f04 508int
dfff898c 509__ffsDI2 (DWtype u)
aa66bd06 510{
b982024e 511 const DWunion uu = {.ll = u};
d6eacd48
RH
512 UWtype word, count, add;
513
d6eacd48
RH
514 if (uu.s.low != 0)
515 word = uu.s.low, add = 0;
516 else if (uu.s.high != 0)
fdf3e18a 517 word = uu.s.high, add = W_TYPE_SIZE;
d6eacd48
RH
518 else
519 return 0;
520
521 count_trailing_zeros (count, word);
522 return count + add + 1;
aa66bd06
RS
523}
524#endif
525\f
203b91b9 526#ifdef L_muldi3
996ed075
JJ
527DWtype
528__muldi3 (DWtype u, DWtype v)
203b91b9 529{
b982024e
KG
530 const DWunion uu = {.ll = u};
531 const DWunion vv = {.ll = v};
532 DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
203b91b9 533
996ed075
JJ
534 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
535 + (UWtype) uu.s.high * (UWtype) vv.s.low);
203b91b9
RS
536
537 return w.ll;
538}
539#endif
540\f
59798a0c
UW
541#if (defined (L_udivdi3) || defined (L_divdi3) || \
542 defined (L_umoddi3) || defined (L_moddi3))
f8eef883 543#if defined (sdiv_qrnnd)
59798a0c
UW
544#define L_udiv_w_sdiv
545#endif
f8eef883 546#endif
59798a0c 547
3904131a 548#ifdef L_udiv_w_sdiv
ce13d15f 549#if defined (sdiv_qrnnd)
59798a0c
UW
550#if (defined (L_udivdi3) || defined (L_divdi3) || \
551 defined (L_umoddi3) || defined (L_moddi3))
1ab9ba62 552static inline __attribute__ ((__always_inline__))
59798a0c 553#endif
996ed075
JJ
554UWtype
555__udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
431b1ee0 556{
996ed075
JJ
557 UWtype q, r;
558 UWtype c0, c1, b1;
431b1ee0 559
996ed075 560 if ((Wtype) d >= 0)
431b1ee0 561 {
996ed075 562 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
431b1ee0 563 {
ea4b7848 564 /* Dividend, divisor, and quotient are nonnegative. */
431b1ee0
TG
565 sdiv_qrnnd (q, r, a1, a0, d);
566 }
567 else
568 {
ea4b7848 569 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
996ed075 570 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
ea4b7848 571 /* Divide (c1*2^32 + c0) by d. */
431b1ee0 572 sdiv_qrnnd (q, r, c1, c0, d);
ea4b7848 573 /* Add 2^31 to quotient. */
996ed075 574 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
431b1ee0
TG
575 }
576 }
577 else
578 {
579 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
580 c1 = a1 >> 1; /* A/2 */
996ed075 581 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
431b1ee0
TG
582
583 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
584 {
585 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
586
587 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
588 if ((d & 1) != 0)
589 {
590 if (r >= q)
591 r = r - q;
592 else if (q - r <= d)
593 {
594 r = r - q + d;
595 q--;
596 }
597 else
598 {
599 r = r - q + 2*d;
600 q -= 2;
601 }
602 }
603 }
604 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
605 {
606 c1 = (b1 - 1) - c1;
607 c0 = ~c0; /* logical NOT */
608
609 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
610
611 q = ~q; /* (A/2)/b1 */
612 r = (b1 - 1) - r;
613
614 r = 2*r + (a0 & 1); /* A/(2*b1) */
615
616 if ((d & 1) != 0)
617 {
618 if (r >= q)
619 r = r - q;
620 else if (q - r <= d)
621 {
622 r = r - q + d;
623 q--;
624 }
625 else
626 {
627 r = r - q + 2*d;
628 q -= 2;
629 }
630 }
631 }
632 else /* Implies c1 = b1 */
633 { /* Hence a1 = d - 1 = 2*b1 - 1 */
634 if (a0 >= -d)
635 {
636 q = -1;
637 r = a0 + d;
638 }
639 else
640 {
641 q = -2;
642 r = a0 + 2*d;
643 }
644 }
645 }
646
647 *rp = r;
648 return q;
649}
ce13d15f
RK
650#else
651/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
996ed075
JJ
652UWtype
653__udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
654 UWtype a1 __attribute__ ((__unused__)),
655 UWtype a0 __attribute__ ((__unused__)),
656 UWtype d __attribute__ ((__unused__)))
081f5e7e
KG
657{
658 return 0;
659}
ce13d15f 660#endif
431b1ee0
TG
661#endif
662\f
536bfcd0 663#if (defined (L_udivdi3) || defined (L_divdi3) || \
18362447
UB
664 defined (L_umoddi3) || defined (L_moddi3) || \
665 defined (L_divmoddi4))
536bfcd0
RK
666#define L_udivmoddi4
667#endif
668
d6eacd48 669#ifdef L_clz
dcfae47c 670const UQItype __clz_tab[256] =
203b91b9
RS
671{
672 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
673 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
674 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
675 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
676 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
677 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
678 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
dcfae47c 679 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
203b91b9 680};
d6eacd48 681#endif
2928cd7a
RH
682\f
683#ifdef L_clzsi2
dabb3f04 684#undef int
dabb3f04 685int
8275b011 686__clzSI2 (UWtype x)
2928cd7a 687{
53585c36 688 Wtype ret;
2928cd7a 689
8275b011 690 count_leading_zeros (ret, x);
53585c36
RH
691
692 return ret;
2928cd7a
RH
693}
694#endif
695\f
696#ifdef L_clzdi2
dabb3f04 697#undef int
dabb3f04 698int
8275b011 699__clzDI2 (UDWtype x)
2928cd7a 700{
b982024e 701 const DWunion uu = {.ll = x};
53585c36
RH
702 UWtype word;
703 Wtype ret, add;
704
8275b011
RH
705 if (uu.s.high)
706 word = uu.s.high, add = 0;
53585c36 707 else
8275b011 708 word = uu.s.low, add = W_TYPE_SIZE;
2928cd7a 709
53585c36
RH
710 count_leading_zeros (ret, word);
711 return ret + add;
2928cd7a
RH
712}
713#endif
714\f
715#ifdef L_ctzsi2
dabb3f04 716#undef int
dabb3f04 717int
8275b011 718__ctzSI2 (UWtype x)
2928cd7a 719{
53585c36 720 Wtype ret;
2928cd7a 721
53585c36 722 count_trailing_zeros (ret, x);
2928cd7a 723
53585c36 724 return ret;
2928cd7a
RH
725}
726#endif
727\f
728#ifdef L_ctzdi2
dabb3f04 729#undef int
dabb3f04 730int
8275b011 731__ctzDI2 (UDWtype x)
2928cd7a 732{
b982024e 733 const DWunion uu = {.ll = x};
53585c36
RH
734 UWtype word;
735 Wtype ret, add;
736
8275b011
RH
737 if (uu.s.low)
738 word = uu.s.low, add = 0;
53585c36 739 else
8275b011 740 word = uu.s.high, add = W_TYPE_SIZE;
2928cd7a 741
53585c36
RH
742 count_trailing_zeros (ret, word);
743 return ret + add;
2928cd7a
RH
744}
745#endif
3801c801
BS
746\f
747#ifdef L_clrsbsi2
748#undef int
749int
750__clrsbSI2 (Wtype x)
751{
752 Wtype ret;
2928cd7a 753
3801c801
BS
754 if (x < 0)
755 x = ~x;
756 if (x == 0)
757 return W_TYPE_SIZE - 1;
758 count_leading_zeros (ret, x);
759 return ret - 1;
760}
761#endif
762\f
763#ifdef L_clrsbdi2
764#undef int
765int
766__clrsbDI2 (DWtype x)
767{
768 const DWunion uu = {.ll = x};
769 UWtype word;
770 Wtype ret, add;
771
772 if (uu.s.high == 0)
773 word = uu.s.low, add = W_TYPE_SIZE;
774 else if (uu.s.high == -1)
775 word = ~uu.s.low, add = W_TYPE_SIZE;
776 else if (uu.s.high >= 0)
777 word = uu.s.high, add = 0;
778 else
779 word = ~uu.s.high, add = 0;
780
781 if (word == 0)
782 ret = W_TYPE_SIZE;
783 else
784 count_leading_zeros (ret, word);
785
786 return ret + add - 1;
787}
788#endif
789\f
2928cd7a 790#ifdef L_popcount_tab
dcfae47c 791const UQItype __popcount_tab[256] =
2928cd7a
RH
792{
793 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
794 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
795 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
796 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
797 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
798 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
799 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
dcfae47c 800 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
2928cd7a
RH
801};
802#endif
803\f
4ea3d774 804#if defined(L_popcountsi2) || defined(L_popcountdi2)
a153644f
TS
805#define POPCOUNTCST2(x) (((UWtype) x << __CHAR_BIT__) | x)
806#define POPCOUNTCST4(x) (((UWtype) x << (2 * __CHAR_BIT__)) | x)
807#define POPCOUNTCST8(x) (((UWtype) x << (4 * __CHAR_BIT__)) | x)
808#if W_TYPE_SIZE == __CHAR_BIT__
4ea3d774 809#define POPCOUNTCST(x) x
a153644f 810#elif W_TYPE_SIZE == 2 * __CHAR_BIT__
4ea3d774 811#define POPCOUNTCST(x) POPCOUNTCST2 (x)
a153644f 812#elif W_TYPE_SIZE == 4 * __CHAR_BIT__
4ea3d774 813#define POPCOUNTCST(x) POPCOUNTCST4 (POPCOUNTCST2 (x))
a153644f 814#elif W_TYPE_SIZE == 8 * __CHAR_BIT__
4ea3d774
JJ
815#define POPCOUNTCST(x) POPCOUNTCST8 (POPCOUNTCST4 (POPCOUNTCST2 (x)))
816#endif
817#endif
818\f
2928cd7a 819#ifdef L_popcountsi2
dabb3f04 820#undef int
dabb3f04 821int
8275b011 822__popcountSI2 (UWtype x)
2928cd7a 823{
4ea3d774
JJ
824 /* Force table lookup on targets like AVR and RL78 which only
825 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
826 have 1, and other small word targets. */
a153644f 827#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
4ea3d774
JJ
828 x = x - ((x >> 1) & POPCOUNTCST (0x55));
829 x = (x & POPCOUNTCST (0x33)) + ((x >> 2) & POPCOUNTCST (0x33));
830 x = (x + (x >> 4)) & POPCOUNTCST (0x0F);
a153644f 831 return (x * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
4ea3d774 832#else
4000debb 833 int i, ret = 0;
8275b011
RH
834
835 for (i = 0; i < W_TYPE_SIZE; i += 8)
836 ret += __popcount_tab[(x >> i) & 0xff];
837
838 return ret;
4ea3d774 839#endif
2928cd7a
RH
840}
841#endif
842\f
843#ifdef L_popcountdi2
dabb3f04 844#undef int
dabb3f04 845int
8275b011 846__popcountDI2 (UDWtype x)
2928cd7a 847{
4ea3d774
JJ
848 /* Force table lookup on targets like AVR and RL78 which only
849 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
850 have 1, and other small word targets. */
a153644f 851#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
4ea3d774
JJ
852 const DWunion uu = {.ll = x};
853 UWtype x1 = uu.s.low, x2 = uu.s.high;
854 x1 = x1 - ((x1 >> 1) & POPCOUNTCST (0x55));
855 x2 = x2 - ((x2 >> 1) & POPCOUNTCST (0x55));
856 x1 = (x1 & POPCOUNTCST (0x33)) + ((x1 >> 2) & POPCOUNTCST (0x33));
857 x2 = (x2 & POPCOUNTCST (0x33)) + ((x2 >> 2) & POPCOUNTCST (0x33));
858 x1 = (x1 + (x1 >> 4)) & POPCOUNTCST (0x0F);
859 x2 = (x2 + (x2 >> 4)) & POPCOUNTCST (0x0F);
860 x1 += x2;
a153644f 861 return (x1 * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
4ea3d774 862#else
4000debb 863 int i, ret = 0;
8275b011
RH
864
865 for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
866 ret += __popcount_tab[(x >> i) & 0xff];
867
868 return ret;
4ea3d774 869#endif
2928cd7a
RH
870}
871#endif
872\f
873#ifdef L_paritysi2
dabb3f04 874#undef int
dabb3f04 875int
8275b011 876__paritySI2 (UWtype x)
2928cd7a 877{
8275b011
RH
878#if W_TYPE_SIZE > 64
879# error "fill out the table"
880#endif
881#if W_TYPE_SIZE > 32
882 x ^= x >> 32;
883#endif
884#if W_TYPE_SIZE > 16
885 x ^= x >> 16;
886#endif
887 x ^= x >> 8;
888 x ^= x >> 4;
889 x &= 0xf;
890 return (0x6996 >> x) & 1;
2928cd7a
RH
891}
892#endif
893\f
894#ifdef L_paritydi2
dabb3f04 895#undef int
dabb3f04 896int
8275b011 897__parityDI2 (UDWtype x)
2928cd7a 898{
b982024e
KG
899 const DWunion uu = {.ll = x};
900 UWtype nx = uu.s.low ^ uu.s.high;
8275b011
RH
901
902#if W_TYPE_SIZE > 64
903# error "fill out the table"
904#endif
905#if W_TYPE_SIZE > 32
906 nx ^= nx >> 32;
907#endif
908#if W_TYPE_SIZE > 16
2928cd7a 909 nx ^= nx >> 16;
8275b011 910#endif
2928cd7a 911 nx ^= nx >> 8;
53585c36 912 nx ^= nx >> 4;
0c9ed856
RH
913 nx &= 0xf;
914 return (0x6996 >> nx) & 1;
2928cd7a
RH
915}
916#endif
d6eacd48
RH
917
918#ifdef L_udivmoddi4
30b8f78b
KV
919#ifdef TARGET_HAS_NO_HW_DIVIDE
920
921#if (defined (L_udivdi3) || defined (L_divdi3) || \
18362447
UB
922 defined (L_umoddi3) || defined (L_moddi3) || \
923 defined (L_divmoddi4))
30b8f78b
KV
924static inline __attribute__ ((__always_inline__))
925#endif
926UDWtype
927__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
928{
929 UDWtype q = 0, r = n, y = d;
930 UWtype lz1, lz2, i, k;
931
932 /* Implements align divisor shift dividend method. This algorithm
933 aligns the divisor under the dividend and then perform number of
934 test-subtract iterations which shift the dividend left. Number of
935 iterations is k + 1 where k is the number of bit positions the
ebc4cd54 936 divisor must be shifted left to align it under the dividend.
30b8f78b
KV
937 quotient bits can be saved in the rightmost positions of the dividend
938 as it shifts left on each test-subtract iteration. */
939
940 if (y <= r)
941 {
942 lz1 = __builtin_clzll (d);
943 lz2 = __builtin_clzll (n);
944
945 k = lz1 - lz2;
946 y = (y << k);
947
ebc4cd54 948 /* Dividend can exceed 2 ^ (width - 1) - 1 but still be less than the
30b8f78b
KV
949 aligned divisor. Normal iteration can drops the high order bit
950 of the dividend. Therefore, first test-subtract iteration is a
951 special case, saving its quotient bit in a separate location and
952 not shifting the dividend. */
953 if (r >= y)
954 {
955 r = r - y;
956 q = (1ULL << k);
957 }
958
959 if (k > 0)
960 {
961 y = y >> 1;
962
963 /* k additional iterations where k regular test subtract shift
964 dividend iterations are done. */
965 i = k;
966 do
967 {
968 if (r >= y)
969 r = ((r - y) << 1) + 1;
970 else
971 r = (r << 1);
972 i = i - 1;
973 } while (i != 0);
974
975 /* First quotient bit is combined with the quotient bits resulting
976 from the k regular iterations. */
977 q = q + r;
978 r = r >> k;
979 q = q - (r << k);
980 }
981 }
982
983 if (rp)
984 *rp = r;
985 return q;
986}
987#else
203b91b9 988
536bfcd0 989#if (defined (L_udivdi3) || defined (L_divdi3) || \
18362447
UB
990 defined (L_umoddi3) || defined (L_moddi3) || \
991 defined (L_divmoddi4))
1ab9ba62 992static inline __attribute__ ((__always_inline__))
536bfcd0 993#endif
996ed075
JJ
994UDWtype
995__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
203b91b9 996{
b982024e
KG
997 const DWunion nn = {.ll = n};
998 const DWunion dd = {.ll = d};
996ed075
JJ
999 DWunion rr;
1000 UWtype d0, d1, n0, n1, n2;
1001 UWtype q0, q1;
1002 UWtype b, bm;
203b91b9 1003
203b91b9
RS
1004 d0 = dd.s.low;
1005 d1 = dd.s.high;
1006 n0 = nn.s.low;
1007 n1 = nn.s.high;
1008
1009#if !UDIV_NEEDS_NORMALIZATION
1010 if (d1 == 0)
1011 {
1012 if (d0 > n1)
1013 {
1014 /* 0q = nn / 0D */
1015
1016 udiv_qrnnd (q0, n0, n1, n0, d0);
1017 q1 = 0;
1018
1019 /* Remainder in n0. */
1020 }
1021 else
1022 {
1023 /* qq = NN / 0d */
1024
1025 if (d0 == 0)
1026 d0 = 1 / d0; /* Divide intentionally by zero. */
1027
1028 udiv_qrnnd (q1, n1, 0, n1, d0);
1029 udiv_qrnnd (q0, n0, n1, n0, d0);
1030
1031 /* Remainder in n0. */
1032 }
1033
1034 if (rp != 0)
1035 {
1036 rr.s.low = n0;
1037 rr.s.high = 0;
1038 *rp = rr.ll;
1039 }
1040 }
1041
1042#else /* UDIV_NEEDS_NORMALIZATION */
1043
1044 if (d1 == 0)
1045 {
1046 if (d0 > n1)
1047 {
1048 /* 0q = nn / 0D */
1049
1050 count_leading_zeros (bm, d0);
1051
1052 if (bm != 0)
1053 {
1054 /* Normalize, i.e. make the most significant bit of the
1055 denominator set. */
1056
1057 d0 = d0 << bm;
996ed075 1058 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
203b91b9
RS
1059 n0 = n0 << bm;
1060 }
1061
1062 udiv_qrnnd (q0, n0, n1, n0, d0);
1063 q1 = 0;
1064
1065 /* Remainder in n0 >> bm. */
1066 }
1067 else
1068 {
1069 /* qq = NN / 0d */
1070
1071 if (d0 == 0)
1072 d0 = 1 / d0; /* Divide intentionally by zero. */
1073
1074 count_leading_zeros (bm, d0);
1075
1076 if (bm == 0)
1077 {
1078 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
1079 conclude (the most significant bit of n1 is set) /\ (the
1080 leading quotient digit q1 = 1).
1081
1082 This special case is necessary, not an optimization.
996ed075 1083 (Shifts counts of W_TYPE_SIZE are undefined.) */
203b91b9
RS
1084
1085 n1 -= d0;
1086 q1 = 1;
1087 }
1088 else
1089 {
1090 /* Normalize. */
1091
996ed075 1092 b = W_TYPE_SIZE - bm;
203b91b9
RS
1093
1094 d0 = d0 << bm;
1095 n2 = n1 >> b;
1096 n1 = (n1 << bm) | (n0 >> b);
1097 n0 = n0 << bm;
1098
1099 udiv_qrnnd (q1, n1, n2, n1, d0);
1100 }
1101
0f41302f 1102 /* n1 != d0... */
203b91b9
RS
1103
1104 udiv_qrnnd (q0, n0, n1, n0, d0);
1105
1106 /* Remainder in n0 >> bm. */
1107 }
1108
1109 if (rp != 0)
1110 {
1111 rr.s.low = n0 >> bm;
1112 rr.s.high = 0;
1113 *rp = rr.ll;
1114 }
1115 }
1116#endif /* UDIV_NEEDS_NORMALIZATION */
1117
1118 else
1119 {
1120 if (d1 > n1)
1121 {
1122 /* 00 = nn / DD */
1123
1124 q0 = 0;
1125 q1 = 0;
1126
1127 /* Remainder in n1n0. */
1128 if (rp != 0)
1129 {
1130 rr.s.low = n0;
1131 rr.s.high = n1;
1132 *rp = rr.ll;
1133 }
1134 }
1135 else
1136 {
1137 /* 0q = NN / dd */
1138
1139 count_leading_zeros (bm, d1);
1140 if (bm == 0)
1141 {
1142 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1143 conclude (the most significant bit of n1 is set) /\ (the
1144 quotient digit q0 = 0 or 1).
1145
1146 This special case is necessary, not an optimization. */
1147
1148 /* The condition on the next line takes advantage of that
1149 n1 >= d1 (true due to program flow). */
1150 if (n1 > d1 || n0 >= d0)
1151 {
1152 q0 = 1;
1153 sub_ddmmss (n1, n0, n1, n0, d1, d0);
1154 }
1155 else
1156 q0 = 0;
1157
1158 q1 = 0;
1159
1160 if (rp != 0)
1161 {
1162 rr.s.low = n0;
1163 rr.s.high = n1;
1164 *rp = rr.ll;
1165 }
1166 }
1167 else
1168 {
996ed075 1169 UWtype m1, m0;
203b91b9
RS
1170 /* Normalize. */
1171
996ed075 1172 b = W_TYPE_SIZE - bm;
203b91b9
RS
1173
1174 d1 = (d1 << bm) | (d0 >> b);
1175 d0 = d0 << bm;
1176 n2 = n1 >> b;
1177 n1 = (n1 << bm) | (n0 >> b);
1178 n0 = n0 << bm;
1179
1180 udiv_qrnnd (q0, n1, n2, n1, d1);
1181 umul_ppmm (m1, m0, q0, d0);
1182
1183 if (m1 > n1 || (m1 == n1 && m0 > n0))
1184 {
1185 q0--;
1186 sub_ddmmss (m1, m0, m1, m0, d1, d0);
1187 }
1188
1189 q1 = 0;
1190
1191 /* Remainder in (n1n0 - m1m0) >> bm. */
1192 if (rp != 0)
1193 {
1194 sub_ddmmss (n1, n0, n1, n0, m1, m0);
1195 rr.s.low = (n1 << b) | (n0 >> bm);
1196 rr.s.high = n1 >> bm;
1197 *rp = rr.ll;
1198 }
1199 }
1200 }
1201 }
1202
b982024e 1203 const DWunion ww = {{.low = q0, .high = q1}};
203b91b9
RS
1204 return ww.ll;
1205}
1206#endif
30b8f78b 1207#endif
203b91b9
RS
1208
1209#ifdef L_divdi3
996ed075
JJ
1210DWtype
1211__divdi3 (DWtype u, DWtype v)
203b91b9 1212{
c7ff6e7a 1213 Wtype c = 0;
b982024e
KG
1214 DWunion uu = {.ll = u};
1215 DWunion vv = {.ll = v};
996ed075 1216 DWtype w;
203b91b9 1217
203b91b9
RS
1218 if (uu.s.high < 0)
1219 c = ~c,
b68daef4 1220 uu.ll = -uu.ll;
203b91b9
RS
1221 if (vv.s.high < 0)
1222 c = ~c,
b68daef4 1223 vv.ll = -vv.ll;
203b91b9 1224
996ed075 1225 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
203b91b9 1226 if (c)
b68daef4 1227 w = -w;
203b91b9
RS
1228
1229 return w;
1230}
1231#endif
1232
1233#ifdef L_moddi3
996ed075
JJ
1234DWtype
1235__moddi3 (DWtype u, DWtype v)
203b91b9 1236{
c7ff6e7a 1237 Wtype c = 0;
b982024e
KG
1238 DWunion uu = {.ll = u};
1239 DWunion vv = {.ll = v};
996ed075 1240 DWtype w;
203b91b9 1241
203b91b9
RS
1242 if (uu.s.high < 0)
1243 c = ~c,
b68daef4 1244 uu.ll = -uu.ll;
203b91b9 1245 if (vv.s.high < 0)
b68daef4 1246 vv.ll = -vv.ll;
203b91b9 1247
9c859be1 1248 (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
203b91b9 1249 if (c)
b68daef4 1250 w = -w;
203b91b9
RS
1251
1252 return w;
1253}
1254#endif
1255
18362447
UB
1256#ifdef L_divmoddi4
1257DWtype
1258__divmoddi4 (DWtype u, DWtype v, DWtype *rp)
1259{
1260 Wtype c1 = 0, c2 = 0;
1261 DWunion uu = {.ll = u};
1262 DWunion vv = {.ll = v};
1263 DWtype w;
1264 DWtype r;
1265
1266 if (uu.s.high < 0)
1267 c1 = ~c1, c2 = ~c2,
1268 uu.ll = -uu.ll;
1269 if (vv.s.high < 0)
1270 c1 = ~c1,
1271 vv.ll = -vv.ll;
1272
1273 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&r);
1274 if (c1)
1275 w = -w;
1276 if (c2)
1277 r = -r;
1278
1279 *rp = r;
1280 return w;
1281}
1282#endif
1283
203b91b9 1284#ifdef L_umoddi3
996ed075
JJ
1285UDWtype
1286__umoddi3 (UDWtype u, UDWtype v)
203b91b9 1287{
996ed075 1288 UDWtype w;
203b91b9
RS
1289
1290 (void) __udivmoddi4 (u, v, &w);
1291
1292 return w;
1293}
1294#endif
1295
1296#ifdef L_udivdi3
996ed075
JJ
1297UDWtype
1298__udivdi3 (UDWtype n, UDWtype d)
203b91b9 1299{
996ed075 1300 return __udivmoddi4 (n, d, (UDWtype *) 0);
203b91b9
RS
1301}
1302#endif
1303\f
2ce182e2
JJ
1304#if (defined(__BITINT_MAXWIDTH__) \
1305 && (defined(L_mulbitint3) || defined(L_divmodbitint4)))
1306/* _BitInt support. */
1307
1308/* If *P is zero or sign extended (the latter only for PREC < 0) from
1309 some narrower _BitInt value, reduce precision. */
1310
1311static inline __attribute__((__always_inline__)) SItype
6dece991 1312bitint_reduce_prec (const UBILtype **p, SItype prec)
2ce182e2
JJ
1313{
1314 UWtype mslimb;
1315 SItype i;
1316 if (prec < 0)
1317 {
1318#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1319 i = 0;
1320#else
1321 i = ((USItype) -1 - prec) / W_TYPE_SIZE;
1322#endif
1323 mslimb = (*p)[i];
1324 if (mslimb & ((UWtype) 1 << (((USItype) -1 - prec) % W_TYPE_SIZE)))
1325 {
1326 SItype n = ((USItype) -prec) % W_TYPE_SIZE;
1327 if (n)
1328 {
1329 mslimb |= ((UWtype) -1 << (((USItype) -1 - prec) % W_TYPE_SIZE));
1330 if (mslimb == (UWtype) -1)
1331 {
1332 prec += n;
1333 if (prec >= -1)
1334 return -2;
1335#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1336 ++p;
1337#else
1338 --i;
1339#endif
1340 mslimb = (*p)[i];
1341 n = 0;
1342 }
1343 }
1344 while (mslimb == (UWtype) -1)
1345 {
1346 prec += W_TYPE_SIZE;
1347 if (prec >= -1)
1348 return -2;
1349#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1350 ++p;
1351#else
1352 --i;
1353#endif
1354 mslimb = (*p)[i];
1355 }
1356 if (n == 0)
1357 {
1358 if ((Wtype) mslimb >= 0)
1359 {
1360#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1361 --p;
1362#endif
1363 return prec - 1;
1364 }
1365 }
1366 return prec;
1367 }
1368 else
1369 prec = -prec;
1370 }
1371 else
1372 {
1373#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1374 i = 0;
1375#else
1376 i = ((USItype) prec - 1) / W_TYPE_SIZE;
1377#endif
1378 mslimb = (*p)[i];
1379 }
1380 SItype n = ((USItype) prec) % W_TYPE_SIZE;
1381 if (n)
1382 {
1383 mslimb &= ((UWtype) 1 << (((USItype) prec) % W_TYPE_SIZE)) - 1;
1384 if (mslimb == 0)
1385 {
1386 prec -= n;
1387 if (prec == 0)
1388 return 1;
1389#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1390 ++p;
1391#else
1392 --i;
1393#endif
1394 mslimb = (*p)[i];
1395 }
1396 }
1397 while (mslimb == 0)
1398 {
1399 prec -= W_TYPE_SIZE;
1400 if (prec == 0)
1401 return 1;
1402#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1403 ++p;
1404#else
1405 --i;
1406#endif
1407 mslimb = (*p)[i];
1408 }
1409 return prec;
1410}
1411
1412#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1413# define BITINT_INC -1
1414# define BITINT_END(be, le) (be)
1415#else
1416# define BITINT_INC 1
1417# define BITINT_END(be, le) (le)
1418#endif
1419
1420#ifdef L_mulbitint3
1421/* D = S * L. */
1422
1423static UWtype
6dece991 1424bitint_mul_1 (UBILtype *d, const UBILtype *s, UWtype l, SItype n)
2ce182e2
JJ
1425{
1426 UWtype sv, hi, lo, c = 0;
1427 do
1428 {
1429 sv = *s;
1430 s += BITINT_INC;
1431 umul_ppmm (hi, lo, sv, l);
1432 c = __builtin_add_overflow (lo, c, &lo) + hi;
1433 *d = lo;
1434 d += BITINT_INC;
1435 }
1436 while (--n);
1437 return c;
1438}
1439
1440/* D += S * L. */
1441
1442static UWtype
6dece991 1443bitint_addmul_1 (UBILtype *d, const UBILtype *s, UWtype l, SItype n)
2ce182e2
JJ
1444{
1445 UWtype sv, hi, lo, c = 0;
1446 do
1447 {
1448 sv = *s;
1449 s += BITINT_INC;
1450 umul_ppmm (hi, lo, sv, l);
1451 hi += __builtin_add_overflow (lo, *d, &lo);
1452 c = __builtin_add_overflow (lo, c, &lo) + hi;
1453 *d = lo;
1454 d += BITINT_INC;
1455 }
1456 while (--n);
1457 return c;
1458}
1459
1460/* If XPREC is positive, it is precision in bits
1461 of an unsigned _BitInt operand (which has XPREC/W_TYPE_SIZE
1462 full limbs and if Xprec%W_TYPE_SIZE one partial limb.
1463 If Xprec is negative, -XPREC is precision in bits
1464 of a signed _BitInt operand. RETPREC should be always
1465 positive. */
1466
1467void
6dece991
JJ
1468__mulbitint3 (UBILtype *ret, SItype retprec,
1469 const UBILtype *u, SItype uprec,
1470 const UBILtype *v, SItype vprec)
2ce182e2
JJ
1471{
1472 uprec = bitint_reduce_prec (&u, uprec);
1473 vprec = bitint_reduce_prec (&v, vprec);
1474 USItype auprec = uprec < 0 ? -uprec : uprec;
1475 USItype avprec = vprec < 0 ? -vprec : vprec;
1476
1477 /* Prefer non-negative U.
1478 Otherwise make sure V doesn't have higher precision than U. */
1479 if ((uprec < 0 && vprec >= 0)
1480 || (avprec > auprec && !(uprec >= 0 && vprec < 0)))
1481 {
1482 SItype p;
6dece991 1483 const UBILtype *t;
2ce182e2
JJ
1484 p = uprec; uprec = vprec; vprec = p;
1485 p = auprec; auprec = avprec; avprec = p;
1486 t = u; u = v; v = t;
1487 }
1488
1489 USItype un = auprec / W_TYPE_SIZE;
1490 USItype un2 = (auprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1491 USItype vn = avprec / W_TYPE_SIZE;
1492 USItype vn2 = (avprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1493 USItype retn = ((USItype) retprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1494 USItype retidx, uidx, vidx;
1495 UWtype vv;
1496 /* Indexes of least significant limb. */
1497#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1498 retidx = retn - 1;
1499 uidx = un2 - 1;
1500 vidx = vn2 - 1;
1501#else
1502 retidx = 0;
1503 uidx = 0;
1504 vidx = 0;
1505#endif
1506 if (__builtin_expect (auprec <= W_TYPE_SIZE, 0) && vprec < 0)
1507 {
1508 UWtype uu = u[uidx];
1509 if (__builtin_expect (auprec < W_TYPE_SIZE, 0))
1510 uu &= ((UWtype) 1 << (auprec % W_TYPE_SIZE)) - 1;
1511 if (uu == 0)
1512 {
1513 /* 0 * negative would be otherwise mishandled below, so
1514 handle it specially. */
1515 __builtin_memset (ret, 0, retn * sizeof (UWtype));
1516 return;
1517 }
1518 }
1519 vv = v[vidx];
1520 if (__builtin_expect (avprec < W_TYPE_SIZE, 0))
1521 {
1522 if (vprec > 0)
1523 vv &= ((UWtype) 1 << (avprec % W_TYPE_SIZE)) - 1;
1524 else
1525 vv |= (UWtype) -1 << (avprec % W_TYPE_SIZE);
1526 }
1527
1528 USItype n = un > retn ? retn : un;
1529 USItype n2 = n;
1530 USItype retidx2 = retidx + n * BITINT_INC;
1531 UWtype c = 0, uv = 0;
1532 if (n)
1533 c = bitint_mul_1 (ret + retidx, u + uidx, vv, n);
1534 if (retn > un && un2 != un)
1535 {
1536 UWtype hi, lo;
1537 uv = u[uidx + n * BITINT_INC];
1538 if (uprec > 0)
1539 uv &= ((UWtype) 1 << (auprec % W_TYPE_SIZE)) - 1;
1540 else
1541 uv |= (UWtype) -1 << (auprec % W_TYPE_SIZE);
1542 umul_ppmm (hi, lo, uv, vv);
1543 c = __builtin_add_overflow (lo, c, &lo) + hi;
1544 ret[retidx2] = lo;
1545 retidx2 += BITINT_INC;
1546 ++n2;
1547 }
1548 if (retn > un2)
1549 {
1550 if (uprec < 0)
1551 {
1552 while (n2 < retn)
1553 {
1554 if (n2 >= un2 + vn2)
1555 break;
1556 UWtype hi, lo;
1557 umul_ppmm (hi, lo, (UWtype) -1, vv);
1558 c = __builtin_add_overflow (lo, c, &lo) + hi;
1559 ret[retidx2] = lo;
1560 retidx2 += BITINT_INC;
1561 ++n2;
1562 }
1563 }
1564 else
1565 {
1566 ret[retidx2] = c;
1567 retidx2 += BITINT_INC;
1568 ++n2;
1569 }
1570 /* If RET has more limbs than U after precision reduction,
1571 fill in the remaining limbs. */
1572 while (n2 < retn)
1573 {
1574 if (n2 < un2 + vn2 || (uprec ^ vprec) >= 0)
1575 c = 0;
1576 else
1577 c = (UWtype) -1;
1578 ret[retidx2] = c;
1579 retidx2 += BITINT_INC;
1580 ++n2;
1581 }
1582 }
1583 /* N is now number of possibly non-zero limbs in RET (ignoring
1584 limbs above UN2 + VN2 which if any have been finalized already). */
1585 USItype end = vprec < 0 ? un2 + vn2 : vn2;
1586 if (retn > un2 + vn2) retn = un2 + vn2;
1587 if (end > retn) end = retn;
1588 for (USItype m = 1; m < end; ++m)
1589 {
1590 retidx += BITINT_INC;
1591 vidx += BITINT_INC;
1592 if (m < vn2)
1593 {
1594 vv = v[vidx];
1595 if (__builtin_expect (m == vn, 0))
1596 {
1597 if (vprec > 0)
1598 vv &= ((UWtype) 1 << (avprec % W_TYPE_SIZE)) - 1;
1599 else
1600 vv |= (UWtype) -1 << (avprec % W_TYPE_SIZE);
1601 }
1602 }
1603 else
1604 vv = (UWtype) -1;
1605 if (m + n > retn)
1606 n = retn - m;
1607 c = 0;
1608 if (n)
1609 c = bitint_addmul_1 (ret + retidx, u + uidx, vv, n);
1610 n2 = m + n;
1611 retidx2 = retidx + n * BITINT_INC;
1612 if (n2 < retn && un2 != un)
1613 {
1614 UWtype hi, lo;
1615 umul_ppmm (hi, lo, uv, vv);
1616 hi += __builtin_add_overflow (lo, ret[retidx2], &lo);
1617 c = __builtin_add_overflow (lo, c, &lo) + hi;
1618 ret[retidx2] = lo;
1619 retidx2 += BITINT_INC;
1620 ++n2;
1621 }
1622 if (uprec < 0)
1623 while (n2 < retn)
1624 {
1625 UWtype hi, lo;
1626 umul_ppmm (hi, lo, (UWtype) -1, vv);
1627 hi += __builtin_add_overflow (lo, ret[retidx2], &lo);
1628 c = __builtin_add_overflow (lo, c, &lo) + hi;
1629 ret[retidx2] = lo;
1630 retidx2 += BITINT_INC;
1631 ++n2;
1632 }
1633 else if (n2 < retn)
1634 {
1635 ret[retidx2] = c;
1636 retidx2 += BITINT_INC;
1637 }
1638 }
1639}
1640#endif
1641
1642#ifdef L_divmodbitint4
f6e0ec56
JJ
1643/* D = -S. */
1644
a6dab195 1645static UWtype
6dece991 1646bitint_negate (UBILtype *d, const UBILtype *s, SItype n)
2ce182e2
JJ
1647{
1648 UWtype c = 1;
a6dab195 1649 UWtype r = 0;
2ce182e2
JJ
1650 do
1651 {
1652 UWtype sv = *s, lo;
a6dab195 1653 r |= sv;
2ce182e2
JJ
1654 s += BITINT_INC;
1655 c = __builtin_add_overflow (~sv, c, &lo);
1656 *d = lo;
1657 d += BITINT_INC;
1658 }
1659 while (--n);
a6dab195 1660 return r;
2ce182e2
JJ
1661}
1662
1663/* D -= S * L. */
1664
1665static UWtype
6dece991 1666bitint_submul_1 (UBILtype *d, const UBILtype *s, UWtype l, SItype n)
2ce182e2
JJ
1667{
1668 UWtype sv, hi, lo, c = 0;
1669 do
1670 {
1671 sv = *s;
1672 s += BITINT_INC;
1673 umul_ppmm (hi, lo, sv, l);
1674 hi += __builtin_sub_overflow (*d, lo, &lo);
1675 c = __builtin_sub_overflow (lo, c, &lo) + hi;
1676 *d = lo;
1677 d += BITINT_INC;
1678 }
1679 while (--n);
1680 return c;
1681}
1682
1683/* If XPREC is positive, it is precision in bits
1684 of an unsigned _BitInt operand (which has XPREC/W_TYPE_SIZE
1685 full limbs and if Xprec%W_TYPE_SIZE one partial limb.
1686 If Xprec is negative, -XPREC is precision in bits
1687 of a signed _BitInt operand. QPREC and RPREC should be
1688 always non-negative. If either Q or R is NULL (at least
1689 one should be non-NULL), then corresponding QPREC or RPREC
1690 should be 0. */
1691
1692void
6dece991
JJ
1693__divmodbitint4 (UBILtype *q, SItype qprec,
1694 UBILtype *r, SItype rprec,
1695 const UBILtype *u, SItype uprec,
1696 const UBILtype *v, SItype vprec)
2ce182e2
JJ
1697{
1698 uprec = bitint_reduce_prec (&u, uprec);
1699 vprec = bitint_reduce_prec (&v, vprec);
1700 USItype auprec = uprec < 0 ? -uprec : uprec;
1701 USItype avprec = vprec < 0 ? -vprec : vprec;
1702 USItype un = (auprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1703 USItype vn = (avprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1704 USItype qn = ((USItype) qprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1705 USItype rn = ((USItype) rprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1706 USItype up = auprec % W_TYPE_SIZE;
1707 USItype vp = avprec % W_TYPE_SIZE;
1708 if (__builtin_expect (un < vn, 0))
1709 {
59b6cece
JJ
1710 /* If abs(v) > abs(u), then q is 0 and r is u.
1711 Unfortunately un < vn doesn't always mean abs(v) > abs(u).
1712 If uprec > 0 and vprec < 0 and vn == un + 1, if the
1713 top limb of v is all ones and the second most significant
1714 limb has most significant bit clear, then just decrease
1715 vn/avprec/vp and continue, after negation both numbers
1716 will have the same number of limbs. */
1717 if (un + 1 == vn
1718 && uprec >= 0
1719 && vprec < 0
1720 && ((v[BITINT_END (0, vn - 1)] | (vp ? ((UWtype) -1 << vp) : 0))
1721 == (UWtype) -1)
1722 && (Wtype) v[BITINT_END (1, vn - 2)] >= 0)
2ce182e2 1723 {
59b6cece
JJ
1724 vp = 0;
1725 --vn;
1726#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1727 ++v;
1728#endif
2ce182e2 1729 }
59b6cece 1730 else
2ce182e2 1731 {
59b6cece
JJ
1732 /* q is 0 and r is u. */
1733 if (q)
1734 __builtin_memset (q, 0, qn * sizeof (UWtype));
1735 if (r == NULL)
2ce182e2 1736 return;
59b6cece
JJ
1737#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1738 r += rn - 1;
1739 u += un - 1;
1740#endif
1741 if (up)
1742 --un;
1743 if (rn < un)
1744 un = rn;
1745 for (rn -= un; un; --un)
1746 {
1747 *r = *u;
1748 r += BITINT_INC;
1749 u += BITINT_INC;
1750 }
1751 if (!rn)
1752 return;
1753 if (up)
1754 {
1755 if (uprec > 0)
1756 *r = *u & (((UWtype) 1 << up) - 1);
1757 else
1758 *r = *u | ((UWtype) -1 << up);
1759 r += BITINT_INC;
1760 if (!--rn)
1761 return;
1762 }
1763 UWtype c = uprec < 0 ? (UWtype) -1 : (UWtype) 0;
1764 for (; rn; --rn)
1765 {
1766 *r = c;
1767 r += BITINT_INC;
1768 }
1769 return;
2ce182e2 1770 }
2ce182e2
JJ
1771 }
1772 USItype qn2 = un - vn + 1;
1773 if (qn >= qn2)
1774 qn2 = 0;
1775 USItype sz = un + 1 + vn + qn2;
6dece991 1776 UBILtype *buf = __builtin_alloca (sz * sizeof (UWtype));
2ce182e2
JJ
1777 USItype uidx, vidx;
1778#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1779 uidx = un - 1;
1780 vidx = vn - 1;
1781#else
1782 uidx = 0;
1783 vidx = 0;
1784#endif
1785 if (uprec < 0)
1786 bitint_negate (buf + BITINT_END (uidx + 1, 0), u + uidx, un);
1787 else
1788 __builtin_memcpy (buf + BITINT_END (1, 0), u, un * sizeof (UWtype));
1789 if (up)
1790 buf[BITINT_END (1, un - 1)] &= (((UWtype) 1 << up) - 1);
1791 if (vprec < 0)
1792 bitint_negate (buf + un + 1 + vidx, v + vidx, vn);
1793 else
1794 __builtin_memcpy (buf + un + 1, v, vn * sizeof (UWtype));
1795 if (vp)
1796 buf[un + 1 + BITINT_END (0, vn - 1)] &= (((UWtype) 1 << vp) - 1);
6dece991
JJ
1797 UBILtype *u2 = buf;
1798 UBILtype *v2 = u2 + un + 1;
1799 UBILtype *q2 = v2 + vn;
2ce182e2
JJ
1800 if (!qn2)
1801 q2 = q + BITINT_END (qn - (un - vn + 1), 0);
1802
1803 /* Knuth's algorithm. See also ../gcc/wide-int.cc (divmod_internal_2). */
1804
1805#ifndef UDIV_NEEDS_NORMALIZATION
1806 /* Handle single limb divisor first. */
1807 if (vn == 1)
1808 {
1809 UWtype vv = v2[0];
1810 if (vv == 0)
1811 vv = 1 / vv; /* Divide intentionally by zero. */
1812 UWtype k = 0;
1813#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1814 for (SItype i = 0; i <= un - 1; ++i)
1815#else
1816 for (SItype i = un - 1; i >= 0; --i)
1817#endif
1818 udiv_qrnnd (q2[i], k, k, u2[BITINT_END (i + 1, i)], vv);
1819 if (r != NULL)
1820 r[BITINT_END (rn - 1, 0)] = k;
1821 }
1822 else
1823#endif
1824 {
1825 SItype s;
1826#ifdef UDIV_NEEDS_NORMALIZATION
1827 if (vn == 1 && v2[0] == 0)
1828 s = 0;
1829 else
1830#endif
1831 if (sizeof (0U) == sizeof (UWtype))
1832 s = __builtin_clz (v2[BITINT_END (0, vn - 1)]);
1833 else if (sizeof (0UL) == sizeof (UWtype))
1834 s = __builtin_clzl (v2[BITINT_END (0, vn - 1)]);
1835 else
1836 s = __builtin_clzll (v2[BITINT_END (0, vn - 1)]);
1837 if (s)
1838 {
1839 /* Normalize by shifting v2 left so that it has msb set. */
1840 const SItype n = sizeof (UWtype) * __CHAR_BIT__;
1841#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1842 for (SItype i = 0; i < vn - 1; ++i)
1843#else
1844 for (SItype i = vn - 1; i > 0; --i)
1845#endif
1846 v2[i] = (v2[i] << s) | (v2[i - BITINT_INC] >> (n - s));
1847 v2[vidx] = v2[vidx] << s;
1848 /* And shift u2 left by the same amount. */
1849 u2[BITINT_END (0, un)] = u2[BITINT_END (1, un - 1)] >> (n - s);
1850#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1851 for (SItype i = 1; i < un; ++i)
1852#else
1853 for (SItype i = un - 1; i > 0; --i)
1854#endif
1855 u2[i] = (u2[i] << s) | (u2[i - BITINT_INC] >> (n - s));
1856 u2[BITINT_END (un, 0)] = u2[BITINT_END (un, 0)] << s;
1857 }
1858 else
1859 u2[BITINT_END (0, un)] = 0;
1860#ifdef UDIV_NEEDS_NORMALIZATION
1861 /* Handle single limb divisor first. */
1862 if (vn == 1)
1863 {
1864 UWtype vv = v2[0];
1865 if (vv == 0)
1866 vv = 1 / vv; /* Divide intentionally by zero. */
1867 UWtype k = u2[BITINT_END (0, un)];
1868#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1869 for (SItype i = 0; i <= un - 1; ++i)
1870#else
1871 for (SItype i = un - 1; i >= 0; --i)
1872#endif
1873 udiv_qrnnd (q2[i], k, k, u2[BITINT_END (i + 1, i)], vv);
1874 if (r != NULL)
1875 r[BITINT_END (rn - 1, 0)] = k >> s;
1876 }
1877 else
1878#endif
1879 {
1880 UWtype vv1 = v2[BITINT_END (0, vn - 1)];
1881 UWtype vv0 = v2[BITINT_END (1, vn - 2)];
1882 /* Main loop. */
1883 for (SItype j = un - vn; j >= 0; --j)
1884 {
1885 /* Compute estimate in qhat. */
1886 UWtype uv1 = u2[BITINT_END (un - j - vn, j + vn)];
1887 UWtype uv0 = u2[BITINT_END (un - j - vn + 1, j + vn - 1)];
1888 UWtype qhat, rhat, hi, lo, c;
1889 if (uv1 >= vv1)
1890 {
1891 /* udiv_qrnnd doesn't support quotients which don't
fbb56931
JJ
1892 fit into UWtype, while Knuth's algorithm originally
1893 uses a double-word by word to double-word division.
1894 Fortunately, the algorithm guarantees that uv1 <= vv1,
1895 because if uv1 > vv1, then even if v would have all
1896 bits in all words below vv1 set, the previous iteration
1897 would be supposed to use qhat larger by 1 and subtract
1898 v. With uv1 == vv1 and uv0 >= vv1 the double-word
1899 qhat in Knuth's algorithm would be 1 in the upper word
1900 and 1 in the lower word, say for
1901 uv1 0x8000000000000000ULL
1902 uv0 0xffffffffffffffffULL
1903 vv1 0x8000000000000000ULL
1904 0x8000000000000000ffffffffffffffffuwb
1905 / 0x8000000000000000uwb == 0x10000000000000001uwb, and
1906 exactly like that also for any other value
1907 > 0x8000000000000000ULL in uv1 and vv1 and uv0 >= uv1.
1908 So we need to subtract one or at most two vv1s from
1909 uv1:uv0 (qhat because of that decreases by 1 or 2 and
1910 is then representable in UWtype) and need to increase
1911 rhat by vv1 once or twice because of that. Now, if
1912 we need to subtract 2 vv1s, i.e. if
1913 uv1 == vv1 && uv0 >= vv1, then rhat (which is uv0 - vv1)
1914 + vv1 computation can't overflow, because it is equal
1915 to uv0 and therefore the original algorithm in that case
1916 performs goto again, but the second vv1 addition must
1917 overflow already because vv1 has msb set from the
1918 canonicalization. */
1919 uv1 -= __builtin_sub_overflow (uv0, vv1, &uv0);
1920 if (uv1 >= vv1)
1921 {
1922 uv1 -= __builtin_sub_overflow (uv0, vv1, &uv0);
1923 udiv_qrnnd (qhat, rhat, uv1, uv0, vv1);
1924 rhat += 2 * vv1;
1925 }
1926 else
1927 {
1928 udiv_qrnnd (qhat, rhat, uv1, uv0, vv1);
1929 if (!__builtin_add_overflow (rhat, vv1, &rhat))
1930 goto again;
1931 }
2ce182e2
JJ
1932 }
1933 else
1934 {
1935 udiv_qrnnd (qhat, rhat, uv1, uv0, vv1);
1936 again:
1937 umul_ppmm (hi, lo, qhat, vv0);
1938 if (hi > rhat
1939 || (hi == rhat
1940 && lo > u2[BITINT_END (un - j - vn + 2,
1941 j + vn - 2)]))
1942 {
1943 --qhat;
1944 if (!__builtin_add_overflow (rhat, vv1, &rhat))
1945 goto again;
1946 }
1947 }
1948
1949 c = bitint_submul_1 (u2 + BITINT_END (un - j, j),
1950 v2 + BITINT_END (vn - 1, 0), qhat, vn);
1951 u2[BITINT_END (un - j - vn, j + vn)] -= c;
1952 /* If we've subtracted too much, decrease qhat and
1953 and add back. */
1954 if ((Wtype) u2[BITINT_END (un - j - vn, j + vn)] < 0)
1955 {
1956 --qhat;
1957 c = 0;
1958 for (USItype i = 0; i < vn; ++i)
1959 {
1960 UWtype s = v2[BITINT_END (vn - 1 - i, i)];
1961 UWtype d = u2[BITINT_END (un - i - j, i + j)];
1962 UWtype c1 = __builtin_add_overflow (d, s, &d);
1963 UWtype c2 = __builtin_add_overflow (d, c, &d);
1964 c = c1 + c2;
1965 u2[BITINT_END (un - i - j, i + j)] = d;
1966 }
1967 u2[BITINT_END (un - j - vn, j + vn)] += c;
1968 }
1969 q2[BITINT_END (un - vn - j, j)] = qhat;
1970 }
1971 if (r != NULL)
1972 {
1973 if (s)
1974 {
1975 const SItype n = sizeof (UWtype) * __CHAR_BIT__;
1976 /* Unnormalize remainder. */
1977 USItype i;
1978 for (i = 0; i < vn && i < rn; ++i)
1979 r[BITINT_END (rn - 1 - i, i)]
1980 = ((u2[BITINT_END (un - i, i)] >> s)
1981 | (u2[BITINT_END (un - i - 1, i + 1)] << (n - s)));
1982 if (i < rn)
1983 r[BITINT_END (rn - vn, vn - 1)]
1984 = u2[BITINT_END (un - vn + 1, vn - 1)] >> s;
1985 }
1986 else if (rn > vn)
1987 __builtin_memcpy (&r[BITINT_END (rn - vn, 0)],
1988 &u2[BITINT_END (un + 1 - vn, 0)],
1989 vn * sizeof (UWtype));
1990 else
1991 __builtin_memcpy (&r[0], &u2[BITINT_END (un + 1 - rn, 0)],
1992 rn * sizeof (UWtype));
1993 }
1994 }
1995 }
1996 if (q != NULL)
1997 {
1998 if ((uprec < 0) ^ (vprec < 0))
1999 {
2000 /* Negative quotient. */
2001 USItype n;
2002 if (un - vn + 1 > qn)
2003 n = qn;
2004 else
2005 n = un - vn + 1;
a6dab195
JJ
2006 SItype c = bitint_negate (q + BITINT_END (qn - 1, 0),
2007 q2 + BITINT_END (un - vn, 0), n) ? -1 : 0;
2ce182e2 2008 if (qn > n)
a6dab195 2009 __builtin_memset (q + BITINT_END (0, n), c,
2ce182e2
JJ
2010 (qn - n) * sizeof (UWtype));
2011 }
2012 else
2013 {
2014 /* Positive quotient. */
2015 if (qn2)
2016 __builtin_memcpy (q, q2 + BITINT_END (un - vn + 1 - qn, 0),
2017 qn * sizeof (UWtype));
2018 else if (qn > un - vn + 1)
2019 __builtin_memset (q + BITINT_END (0, un - vn + 1), 0,
2020 (qn - (un - vn + 1)) * sizeof (UWtype));
2021 }
2022 }
2023 if (r != NULL)
2024 {
2025 if (uprec < 0)
2026 {
2027 /* Negative remainder. */
a6dab195
JJ
2028 SItype c = bitint_negate (r + BITINT_END (rn - 1, 0),
2029 r + BITINT_END (rn - 1, 0),
2030 rn > vn ? vn : rn) ? -1 : 0;
2ce182e2 2031 if (rn > vn)
a6dab195 2032 __builtin_memset (r + BITINT_END (0, vn), c,
2ce182e2
JJ
2033 (rn - vn) * sizeof (UWtype));
2034 }
2035 else
2036 {
2037 /* Positive remainder. */
2038 if (rn > vn)
2039 __builtin_memset (r + BITINT_END (0, vn), 0,
2040 (rn - vn) * sizeof (UWtype));
2041 }
2042 }
2043}
2044#endif
2045#endif
2046\f
203b91b9 2047#ifdef L_cmpdi2
c7ff6e7a 2048cmp_return_type
996ed075 2049__cmpdi2 (DWtype a, DWtype b)
203b91b9 2050{
ebc4cd54 2051 return (a > b) - (a < b) + 1;
203b91b9
RS
2052}
2053#endif
2054
2055#ifdef L_ucmpdi2
c7ff6e7a 2056cmp_return_type
ebc4cd54 2057__ucmpdi2 (UDWtype a, UDWtype b)
203b91b9 2058{
ebc4cd54 2059 return (a > b) - (a < b) + 1;
203b91b9
RS
2060}
2061#endif
2062\f
4e9db8b2 2063#if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
f139f5fa 2064UDWtype
6da9c622 2065__fixunstfDI (TFtype a)
ab495388 2066{
ab495388
RS
2067 if (a < 0)
2068 return 0;
2069
2070 /* Compute high word of result, as a flonum. */
4f2e0d5e 2071 const TFtype b = (a / Wtype_MAXp1_F);
996ed075 2072 /* Convert that to fixed (but not to DWtype!),
ab495388 2073 and shift it into the high word. */
b982024e 2074 UDWtype v = (UWtype) b;
4f2e0d5e 2075 v <<= W_TYPE_SIZE;
ab495388
RS
2076 /* Remove high part from the TFtype, leaving the low part as flonum. */
2077 a -= (TFtype)v;
996ed075 2078 /* Convert that to fixed (but not to DWtype!) and add it in.
ab495388
RS
2079 Sometimes A comes out negative. This is significant, since
2080 A has more bits than a long int does. */
2081 if (a < 0)
996ed075 2082 v -= (UWtype) (- a);
ab495388 2083 else
996ed075 2084 v += (UWtype) a;
ab495388
RS
2085 return v;
2086}
2087#endif
2088
4e9db8b2 2089#if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
996ed075 2090DWtype
37ef1054 2091__fixtfdi (TFtype a)
ab495388
RS
2092{
2093 if (a < 0)
6da9c622
RK
2094 return - __fixunstfDI (-a);
2095 return __fixunstfDI (a);
ab495388
RS
2096}
2097#endif
2098
4e9db8b2 2099#if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
f139f5fa 2100UDWtype
6da9c622 2101__fixunsxfDI (XFtype a)
e0799b34 2102{
e0799b34
RS
2103 if (a < 0)
2104 return 0;
2105
2106 /* Compute high word of result, as a flonum. */
4f2e0d5e 2107 const XFtype b = (a / Wtype_MAXp1_F);
996ed075 2108 /* Convert that to fixed (but not to DWtype!),
e0799b34 2109 and shift it into the high word. */
b982024e 2110 UDWtype v = (UWtype) b;
4f2e0d5e 2111 v <<= W_TYPE_SIZE;
e0799b34
RS
2112 /* Remove high part from the XFtype, leaving the low part as flonum. */
2113 a -= (XFtype)v;
996ed075 2114 /* Convert that to fixed (but not to DWtype!) and add it in.
e0799b34
RS
2115 Sometimes A comes out negative. This is significant, since
2116 A has more bits than a long int does. */
2117 if (a < 0)
996ed075 2118 v -= (UWtype) (- a);
e0799b34 2119 else
996ed075 2120 v += (UWtype) a;
e0799b34
RS
2121 return v;
2122}
2123#endif
2124
4e9db8b2 2125#if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
996ed075 2126DWtype
37ef1054 2127__fixxfdi (XFtype a)
e0799b34
RS
2128{
2129 if (a < 0)
6da9c622
RK
2130 return - __fixunsxfDI (-a);
2131 return __fixunsxfDI (a);
e0799b34
RS
2132}
2133#endif
2134
4e9db8b2 2135#if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
f139f5fa 2136UDWtype
6da9c622 2137__fixunsdfDI (DFtype a)
203b91b9 2138{
4977bab6
ZW
2139 /* Get high part of result. The division here will just moves the radix
2140 point and will not cause any rounding. Then the conversion to integral
2141 type chops result as desired. */
4f2e0d5e 2142 const UWtype hi = a / Wtype_MAXp1_F;
203b91b9 2143
4977bab6
ZW
2144 /* Get low part of result. Convert `hi' to floating type and scale it back,
2145 then subtract this from the number being converted. This leaves the low
2146 part. Convert that to integral type. */
4f2e0d5e 2147 const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
4977bab6
ZW
2148
2149 /* Assemble result from the two parts. */
4f2e0d5e 2150 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
203b91b9
RS
2151}
2152#endif
2153
4e9db8b2 2154#if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
996ed075 2155DWtype
37ef1054 2156__fixdfdi (DFtype a)
203b91b9
RS
2157{
2158 if (a < 0)
6da9c622
RK
2159 return - __fixunsdfDI (-a);
2160 return __fixunsdfDI (a);
203b91b9
RS
2161}
2162#endif
2163
cfa7bd9c 2164#if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
f139f5fa 2165UDWtype
4f2e0d5e 2166__fixunssfDI (SFtype a)
203b91b9 2167{
4e9db8b2 2168#if LIBGCC2_HAS_DF_MODE
ab495388 2169 /* Convert the SFtype to a DFtype, because that is surely not going
203b91b9 2170 to lose any bits. Some day someone else can write a faster version
ab495388 2171 that avoids converting to DFtype, and verify it really works right. */
4f2e0d5e 2172 const DFtype dfa = a;
203b91b9 2173
4977bab6
ZW
2174 /* Get high part of result. The division here will just moves the radix
2175 point and will not cause any rounding. Then the conversion to integral
2176 type chops result as desired. */
4f2e0d5e 2177 const UWtype hi = dfa / Wtype_MAXp1_F;
203b91b9 2178
4977bab6
ZW
2179 /* Get low part of result. Convert `hi' to floating type and scale it back,
2180 then subtract this from the number being converted. This leaves the low
2181 part. Convert that to integral type. */
4f2e0d5e 2182 const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
4977bab6
ZW
2183
2184 /* Assemble result from the two parts. */
4f2e0d5e
RH
2185 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
2186#elif FLT_MANT_DIG < W_TYPE_SIZE
2187 if (a < 1)
2188 return 0;
2189 if (a < Wtype_MAXp1_F)
2190 return (UWtype)a;
2191 if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
2192 {
2193 /* Since we know that there are fewer significant bits in the SFmode
2194 quantity than in a word, we know that we can convert out all the
2e681715 2195 significant bits in one step, and thus avoid losing bits. */
4f2e0d5e
RH
2196
2197 /* ??? This following loop essentially performs frexpf. If we could
2198 use the real libm function, or poke at the actual bits of the fp
2199 format, it would be significantly faster. */
2200
2201 UWtype shift = 0, counter;
2202 SFtype msb;
2203
2204 a /= Wtype_MAXp1_F;
2205 for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
2206 {
2207 SFtype counterf = (UWtype)1 << counter;
2208 if (a >= counterf)
2209 {
2210 shift |= counter;
2211 a /= counterf;
2212 }
2213 }
2214
2215 /* Rescale into the range of one word, extract the bits of that
2216 one word, and shift the result into position. */
2217 a *= Wtype_MAXp1_F;
2218 counter = a;
2219 return (DWtype)counter << shift;
2220 }
2221 return -1;
2222#else
2223# error
2224#endif
203b91b9
RS
2225}
2226#endif
2227
cfa7bd9c 2228#if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
996ed075 2229DWtype
ab495388 2230__fixsfdi (SFtype a)
203b91b9
RS
2231{
2232 if (a < 0)
6da9c622
RK
2233 return - __fixunssfDI (-a);
2234 return __fixunssfDI (a);
203b91b9
RS
2235}
2236#endif
2237
4e9db8b2 2238#if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
e0799b34 2239XFtype
996ed075 2240__floatdixf (DWtype u)
e0799b34 2241{
66bb34c0 2242#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
4a73d865
JM
2243# error
2244#endif
4f2e0d5e
RH
2245 XFtype d = (Wtype) (u >> W_TYPE_SIZE);
2246 d *= Wtype_MAXp1_F;
2247 d += (UWtype)u;
e5e809f4 2248 return d;
e0799b34
RS
2249}
2250#endif
2251
d7735880
JM
2252#if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
2253XFtype
2254__floatundixf (UDWtype u)
2255{
66bb34c0 2256#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
4a73d865
JM
2257# error
2258#endif
d7735880
JM
2259 XFtype d = (UWtype) (u >> W_TYPE_SIZE);
2260 d *= Wtype_MAXp1_F;
2261 d += (UWtype)u;
2262 return d;
2263}
2264#endif
2265
4e9db8b2 2266#if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
ab495388 2267TFtype
996ed075 2268__floatditf (DWtype u)
ab495388 2269{
66bb34c0 2270#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
4a73d865
JM
2271# error
2272#endif
4f2e0d5e
RH
2273 TFtype d = (Wtype) (u >> W_TYPE_SIZE);
2274 d *= Wtype_MAXp1_F;
2275 d += (UWtype)u;
e5e809f4 2276 return d;
ab495388
RS
2277}
2278#endif
2279
d7735880
JM
2280#if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
2281TFtype
2282__floatunditf (UDWtype u)
2283{
66bb34c0 2284#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
4a73d865 2285# error
203b91b9 2286#endif
4a73d865 2287 TFtype d = (UWtype) (u >> W_TYPE_SIZE);
d7735880
JM
2288 d *= Wtype_MAXp1_F;
2289 d += (UWtype)u;
2290 return d;
2291}
2292#endif
2293
4a73d865
JM
2294#if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
2295 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
4f2e0d5e 2296#define DI_SIZE (W_TYPE_SIZE * 2)
b04c9063
AM
2297#define F_MODE_OK(SIZE) \
2298 (SIZE < DI_SIZE \
2299 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
5fb54b91 2300 && !AVOID_FP_TYPE_CONVERSION(SIZE))
4a73d865
JM
2301#if defined(L_floatdisf)
2302#define FUNC __floatdisf
2303#define FSTYPE SFtype
66bb34c0 2304#define FSSIZE __LIBGCC_SF_MANT_DIG__
4a73d865
JM
2305#else
2306#define FUNC __floatdidf
2307#define FSTYPE DFtype
66bb34c0 2308#define FSSIZE __LIBGCC_DF_MANT_DIG__
4a73d865 2309#endif
203b91b9 2310
4a73d865
JM
2311FSTYPE
2312FUNC (DWtype u)
203b91b9 2313{
4a73d865 2314#if FSSIZE >= W_TYPE_SIZE
4f2e0d5e 2315 /* When the word size is small, we never get any rounding error. */
4a73d865 2316 FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
4f2e0d5e
RH
2317 f *= Wtype_MAXp1_F;
2318 f += (UWtype)u;
2319 return f;
66bb34c0
JM
2320#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
2321 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
2322 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
4a73d865 2323
66bb34c0
JM
2324#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
2325# define FSIZE __LIBGCC_DF_MANT_DIG__
4a73d865 2326# define FTYPE DFtype
66bb34c0
JM
2327#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
2328# define FSIZE __LIBGCC_XF_MANT_DIG__
4a73d865 2329# define FTYPE XFtype
66bb34c0
JM
2330#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
2331# define FSIZE __LIBGCC_TF_MANT_DIG__
4a73d865 2332# define FTYPE TFtype
4f2e0d5e
RH
2333#else
2334# error
2335#endif
2336
4a73d865 2337#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
4f2e0d5e 2338
d9e1ab8d 2339 /* Protect against double-rounding error.
4f2e0d5e
RH
2340 Represent any low-order bits, that might be truncated by a bit that
2341 won't be lost. The bit can go in anywhere below the rounding position
4a73d865
JM
2342 of the FSTYPE. A fixed mask and bit position handles all usual
2343 configurations. */
2344 if (! (- ((DWtype) 1 << FSIZE) < u
2345 && u < ((DWtype) 1 << FSIZE)))
d9e1ab8d 2346 {
4a73d865 2347 if ((UDWtype) u & (REP_BIT - 1))
d9e1ab8d 2348 {
4a73d865
JM
2349 u &= ~ (REP_BIT - 1);
2350 u |= REP_BIT;
d9e1ab8d
RK
2351 }
2352 }
203b91b9 2353
4a73d865
JM
2354 /* Do the calculation in a wider type so that we don't lose any of
2355 the precision of the high word while multiplying it. */
2356 FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
4f2e0d5e
RH
2357 f *= Wtype_MAXp1_F;
2358 f += (UWtype)u;
4a73d865 2359 return (FSTYPE) f;
4f2e0d5e 2360#else
4a73d865
JM
2361#if FSSIZE >= W_TYPE_SIZE - 2
2362# error
2363#endif
2364 /* Finally, the word size is larger than the number of bits in the
2365 required FSTYPE, and we've got no suitable wider type. The only
2366 way to avoid double rounding is to special case the
2367 extraction. */
4f2e0d5e
RH
2368
2369 /* If there are no high bits set, fall back to one conversion. */
2370 if ((Wtype)u == u)
4a73d865 2371 return (FSTYPE)(Wtype)u;
4f2e0d5e
RH
2372
2373 /* Otherwise, find the power of two. */
2374 Wtype hi = u >> W_TYPE_SIZE;
2375 if (hi < 0)
1f6eac90 2376 hi = -(UWtype) hi;
4f2e0d5e
RH
2377
2378 UWtype count, shift;
5de3e2d8
BE
2379#if !defined (COUNT_LEADING_ZEROS_0) || COUNT_LEADING_ZEROS_0 != W_TYPE_SIZE
2380 if (hi == 0)
2381 count = W_TYPE_SIZE;
2382 else
2383#endif
4f2e0d5e
RH
2384 count_leading_zeros (count, hi);
2385
2386 /* No leading bits means u == minimum. */
2387 if (count == 0)
6395ba73 2388 return Wtype_MAXp1_F * (FSTYPE) (hi | ((UWtype) u != 0));
4f2e0d5e 2389
4a73d865 2390 shift = 1 + W_TYPE_SIZE - count;
4f2e0d5e
RH
2391
2392 /* Shift down the most significant bits. */
2393 hi = u >> shift;
2394
2395 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
5fb54b91 2396 if ((UWtype)u << (W_TYPE_SIZE - shift))
4f2e0d5e
RH
2397 hi |= 1;
2398
2399 /* Convert the one word of data, and rescale. */
5fb54b91
RH
2400 FSTYPE f = hi, e;
2401 if (shift == W_TYPE_SIZE)
2402 e = Wtype_MAXp1_F;
2403 /* The following two cases could be merged if we knew that the target
2404 supported a native unsigned->float conversion. More often, we only
2405 have a signed conversion, and have to add extra fixup code. */
2406 else if (shift == W_TYPE_SIZE - 1)
2407 e = Wtype_MAXp1_F / 2;
2408 else
2409 e = (Wtype)1 << shift;
2410 return f * e;
4f2e0d5e 2411#endif
203b91b9
RS
2412}
2413#endif
2414
4a73d865
JM
2415#if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
2416 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
d7735880 2417#define DI_SIZE (W_TYPE_SIZE * 2)
b04c9063
AM
2418#define F_MODE_OK(SIZE) \
2419 (SIZE < DI_SIZE \
2420 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
5fb54b91 2421 && !AVOID_FP_TYPE_CONVERSION(SIZE))
4a73d865
JM
2422#if defined(L_floatundisf)
2423#define FUNC __floatundisf
2424#define FSTYPE SFtype
66bb34c0 2425#define FSSIZE __LIBGCC_SF_MANT_DIG__
4a73d865
JM
2426#else
2427#define FUNC __floatundidf
2428#define FSTYPE DFtype
66bb34c0 2429#define FSSIZE __LIBGCC_DF_MANT_DIG__
4a73d865 2430#endif
d7735880 2431
4a73d865
JM
2432FSTYPE
2433FUNC (UDWtype u)
d7735880 2434{
4a73d865 2435#if FSSIZE >= W_TYPE_SIZE
d7735880 2436 /* When the word size is small, we never get any rounding error. */
4a73d865 2437 FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
d7735880
JM
2438 f *= Wtype_MAXp1_F;
2439 f += (UWtype)u;
2440 return f;
66bb34c0
JM
2441#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
2442 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
2443 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
4a73d865 2444
66bb34c0
JM
2445#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
2446# define FSIZE __LIBGCC_DF_MANT_DIG__
4a73d865 2447# define FTYPE DFtype
66bb34c0
JM
2448#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
2449# define FSIZE __LIBGCC_XF_MANT_DIG__
4a73d865 2450# define FTYPE XFtype
66bb34c0
JM
2451#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
2452# define FSIZE __LIBGCC_TF_MANT_DIG__
4a73d865 2453# define FTYPE TFtype
d7735880
JM
2454#else
2455# error
2456#endif
2457
4a73d865 2458#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
d7735880
JM
2459
2460 /* Protect against double-rounding error.
2461 Represent any low-order bits, that might be truncated by a bit that
2462 won't be lost. The bit can go in anywhere below the rounding position
4a73d865
JM
2463 of the FSTYPE. A fixed mask and bit position handles all usual
2464 configurations. */
2465 if (u >= ((UDWtype) 1 << FSIZE))
d7735880 2466 {
4a73d865 2467 if ((UDWtype) u & (REP_BIT - 1))
d7735880 2468 {
4a73d865
JM
2469 u &= ~ (REP_BIT - 1);
2470 u |= REP_BIT;
d7735880
JM
2471 }
2472 }
2473
4a73d865
JM
2474 /* Do the calculation in a wider type so that we don't lose any of
2475 the precision of the high word while multiplying it. */
2476 FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
d7735880
JM
2477 f *= Wtype_MAXp1_F;
2478 f += (UWtype)u;
4a73d865 2479 return (FSTYPE) f;
d7735880 2480#else
4a73d865
JM
2481#if FSSIZE == W_TYPE_SIZE - 1
2482# error
2483#endif
2484 /* Finally, the word size is larger than the number of bits in the
2485 required FSTYPE, and we've got no suitable wider type. The only
2486 way to avoid double rounding is to special case the
2487 extraction. */
d7735880
JM
2488
2489 /* If there are no high bits set, fall back to one conversion. */
2490 if ((UWtype)u == u)
4a73d865 2491 return (FSTYPE)(UWtype)u;
d7735880
JM
2492
2493 /* Otherwise, find the power of two. */
2494 UWtype hi = u >> W_TYPE_SIZE;
2495
2496 UWtype count, shift;
2497 count_leading_zeros (count, hi);
2498
2499 shift = W_TYPE_SIZE - count;
2500
2501 /* Shift down the most significant bits. */
2502 hi = u >> shift;
2503
2504 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
5fb54b91 2505 if ((UWtype)u << (W_TYPE_SIZE - shift))
d7735880
JM
2506 hi |= 1;
2507
2508 /* Convert the one word of data, and rescale. */
5fb54b91
RH
2509 FSTYPE f = hi, e;
2510 if (shift == W_TYPE_SIZE)
2511 e = Wtype_MAXp1_F;
2512 /* The following two cases could be merged if we knew that the target
2513 supported a native unsigned->float conversion. More often, we only
2514 have a signed conversion, and have to add extra fixup code. */
2515 else if (shift == W_TYPE_SIZE - 1)
2516 e = Wtype_MAXp1_F / 2;
2517 else
2518 e = (Wtype)1 << shift;
2519 return f * e;
d7735880
JM
2520#endif
2521}
2522#endif
2523
4e9db8b2 2524#if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
996ed075 2525UWtype
6da9c622 2526__fixunsxfSI (XFtype a)
e0799b34 2527{
5d0e6486
AO
2528 if (a >= - (DFtype) Wtype_MIN)
2529 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
996ed075 2530 return (Wtype) a;
e0799b34
RS
2531}
2532#endif
2533
4e9db8b2 2534#if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
996ed075 2535UWtype
6da9c622 2536__fixunsdfSI (DFtype a)
203b91b9 2537{
5d0e6486
AO
2538 if (a >= - (DFtype) Wtype_MIN)
2539 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
996ed075 2540 return (Wtype) a;
203b91b9
RS
2541}
2542#endif
2543
cfa7bd9c 2544#if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
996ed075 2545UWtype
6da9c622 2546__fixunssfSI (SFtype a)
203b91b9 2547{
5d0e6486
AO
2548 if (a >= - (SFtype) Wtype_MIN)
2549 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
996ed075 2550 return (Wtype) a;
203b91b9 2551}
17684d46
RG
2552#endif
2553\f
2554/* Integer power helper used from __builtin_powi for non-constant
2555 exponents. */
2556
cfa7bd9c 2557#if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
4e9db8b2
SE
2558 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
2559 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
2560 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
17684d46
RG
2561# if defined(L_powisf2)
2562# define TYPE SFtype
2563# define NAME __powisf2
2564# elif defined(L_powidf2)
2565# define TYPE DFtype
2566# define NAME __powidf2
2567# elif defined(L_powixf2)
2568# define TYPE XFtype
2569# define NAME __powixf2
2570# elif defined(L_powitf2)
2571# define TYPE TFtype
2572# define NAME __powitf2
2573# endif
2574
0b8495ae
FJ
2575#undef int
2576#undef unsigned
17684d46 2577TYPE
0b8495ae 2578NAME (TYPE x, int m)
17684d46 2579{
35da095d 2580 unsigned int n = m < 0 ? -(unsigned int) m : (unsigned int) m;
17684d46
RG
2581 TYPE y = n % 2 ? x : 1;
2582 while (n >>= 1)
2583 {
2584 x = x * x;
2585 if (n % 2)
2586 y = y * x;
2587 }
2588 return m < 0 ? 1/y : y;
2589}
2590
203b91b9
RS
2591#endif
2592\f
0abcd6cc
JG
2593#if((defined(L_mulhc3) || defined(L_divhc3)) && LIBGCC2_HAS_HF_MODE) \
2594 || ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
4e9db8b2
SE
2595 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
2596 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
2597 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
7e7e470f
RH
2598
2599#undef float
2600#undef double
2601#undef long
2602
0abcd6cc
JG
2603#if defined(L_mulhc3) || defined(L_divhc3)
2604# define MTYPE HFtype
2605# define CTYPE HCtype
54f0224d 2606# define AMTYPE SFtype
0abcd6cc
JG
2607# define MODE hc
2608# define CEXT __LIBGCC_HF_FUNC_EXT__
2609# define NOTRUNC (!__LIBGCC_HF_EXCESS_PRECISION__)
2610#elif defined(L_mulsc3) || defined(L_divsc3)
7e7e470f
RH
2611# define MTYPE SFtype
2612# define CTYPE SCtype
54f0224d 2613# define AMTYPE DFtype
7e7e470f 2614# define MODE sc
dd69f047 2615# define CEXT __LIBGCC_SF_FUNC_EXT__
d758aeb5 2616# define NOTRUNC (!__LIBGCC_SF_EXCESS_PRECISION__)
54f0224d
PM
2617# define RBIG (__LIBGCC_SF_MAX__ / 2)
2618# define RMIN (__LIBGCC_SF_MIN__)
2619# define RMIN2 (__LIBGCC_SF_EPSILON__)
2620# define RMINSCAL (1 / __LIBGCC_SF_EPSILON__)
2621# define RMAX2 (RBIG * RMIN2)
7e7e470f
RH
2622#elif defined(L_muldc3) || defined(L_divdc3)
2623# define MTYPE DFtype
2624# define CTYPE DCtype
2625# define MODE dc
dd69f047 2626# define CEXT __LIBGCC_DF_FUNC_EXT__
d758aeb5 2627# define NOTRUNC (!__LIBGCC_DF_EXCESS_PRECISION__)
54f0224d
PM
2628# define RBIG (__LIBGCC_DF_MAX__ / 2)
2629# define RMIN (__LIBGCC_DF_MIN__)
2630# define RMIN2 (__LIBGCC_DF_EPSILON__)
2631# define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
2632# define RMAX2 (RBIG * RMIN2)
7e7e470f
RH
2633#elif defined(L_mulxc3) || defined(L_divxc3)
2634# define MTYPE XFtype
2635# define CTYPE XCtype
2636# define MODE xc
dd69f047 2637# define CEXT __LIBGCC_XF_FUNC_EXT__
d758aeb5 2638# define NOTRUNC (!__LIBGCC_XF_EXCESS_PRECISION__)
54f0224d
PM
2639# define RBIG (__LIBGCC_XF_MAX__ / 2)
2640# define RMIN (__LIBGCC_XF_MIN__)
2641# define RMIN2 (__LIBGCC_XF_EPSILON__)
2642# define RMINSCAL (1 / __LIBGCC_XF_EPSILON__)
2643# define RMAX2 (RBIG * RMIN2)
7e7e470f
RH
2644#elif defined(L_multc3) || defined(L_divtc3)
2645# define MTYPE TFtype
2646# define CTYPE TCtype
2647# define MODE tc
dd69f047 2648# define CEXT __LIBGCC_TF_FUNC_EXT__
d758aeb5 2649# define NOTRUNC (!__LIBGCC_TF_EXCESS_PRECISION__)
d9105685
PM
2650# if __LIBGCC_TF_MANT_DIG__ == 106
2651# define RBIG (__LIBGCC_DF_MAX__ / 2)
2652# define RMIN (__LIBGCC_DF_MIN__)
2653# define RMIN2 (__LIBGCC_DF_EPSILON__)
2654# define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
2655# else
2656# define RBIG (__LIBGCC_TF_MAX__ / 2)
2657# define RMIN (__LIBGCC_TF_MIN__)
2658# define RMIN2 (__LIBGCC_TF_EPSILON__)
2659# define RMINSCAL (1 / __LIBGCC_TF_EPSILON__)
2660# endif
54f0224d 2661# define RMAX2 (RBIG * RMIN2)
7e7e470f
RH
2662#else
2663# error
2664#endif
2665
2666#define CONCAT3(A,B,C) _CONCAT3(A,B,C)
2667#define _CONCAT3(A,B,C) A##B##C
2668
2669#define CONCAT2(A,B) _CONCAT2(A,B)
2670#define _CONCAT2(A,B) A##B
2671
af8096fc
UB
2672#define isnan(x) __builtin_isnan (x)
2673#define isfinite(x) __builtin_isfinite (x)
2674#define isinf(x) __builtin_isinf (x)
7e7e470f 2675
ca22d882 2676#define INFINITY CONCAT2(__builtin_huge_val, CEXT) ()
7e7e470f
RH
2677#define I 1i
2678
2679/* Helpers to make the following code slightly less gross. */
2680#define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
2681#define FABS CONCAT2(__builtin_fabs, CEXT)
2682
2683/* Verify that MTYPE matches up with CEXT. */
2684extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
2685
2686/* Ensure that we've lost any extra precision. */
2687#if NOTRUNC
2688# define TRUNC(x)
2689#else
2690# define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
2691#endif
2692
0abcd6cc 2693#if defined(L_mulhc3) || defined(L_mulsc3) || defined(L_muldc3) \
7e7e470f
RH
2694 || defined(L_mulxc3) || defined(L_multc3)
2695
2696CTYPE
2697CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
2698{
2699 MTYPE ac, bd, ad, bc, x, y;
ddef83d2 2700 CTYPE res;
7e7e470f
RH
2701
2702 ac = a * c;
2703 bd = b * d;
2704 ad = a * d;
2705 bc = b * c;
2706
2707 TRUNC (ac);
2708 TRUNC (bd);
2709 TRUNC (ad);
2710 TRUNC (bc);
2711
2712 x = ac - bd;
2713 y = ad + bc;
2714
2715 if (isnan (x) && isnan (y))
2716 {
2717 /* Recover infinities that computed as NaN + iNaN. */
2718 _Bool recalc = 0;
2719 if (isinf (a) || isinf (b))
2720 {
2721 /* z is infinite. "Box" the infinity and change NaNs in
2722 the other factor to 0. */
2723 a = COPYSIGN (isinf (a) ? 1 : 0, a);
2724 b = COPYSIGN (isinf (b) ? 1 : 0, b);
2725 if (isnan (c)) c = COPYSIGN (0, c);
2726 if (isnan (d)) d = COPYSIGN (0, d);
2727 recalc = 1;
2728 }
2729 if (isinf (c) || isinf (d))
2730 {
2731 /* w is infinite. "Box" the infinity and change NaNs in
2732 the other factor to 0. */
2733 c = COPYSIGN (isinf (c) ? 1 : 0, c);
2734 d = COPYSIGN (isinf (d) ? 1 : 0, d);
2735 if (isnan (a)) a = COPYSIGN (0, a);
2736 if (isnan (b)) b = COPYSIGN (0, b);
2737 recalc = 1;
2738 }
2739 if (!recalc
2740 && (isinf (ac) || isinf (bd)
2741 || isinf (ad) || isinf (bc)))
2742 {
2743 /* Recover infinities from overflow by changing NaNs to 0. */
2744 if (isnan (a)) a = COPYSIGN (0, a);
2745 if (isnan (b)) b = COPYSIGN (0, b);
2746 if (isnan (c)) c = COPYSIGN (0, c);
2747 if (isnan (d)) d = COPYSIGN (0, d);
2748 recalc = 1;
2749 }
2750 if (recalc)
2751 {
2752 x = INFINITY * (a * c - b * d);
2753 y = INFINITY * (a * d + b * c);
2754 }
2755 }
2756
ddef83d2
RG
2757 __real__ res = x;
2758 __imag__ res = y;
2759 return res;
7e7e470f
RH
2760}
2761#endif /* complex multiply */
2762
0abcd6cc 2763#if defined(L_divhc3) || defined(L_divsc3) || defined(L_divdc3) \
7e7e470f
RH
2764 || defined(L_divxc3) || defined(L_divtc3)
2765
2766CTYPE
2767CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
2768{
54f0224d
PM
2769#if defined(L_divhc3) \
2770 || (defined(L_divsc3) && defined(__LIBGCC_HAVE_HWDBL__) )
2771
2772 /* Half precision is handled with float precision.
2773 float is handled with double precision when double precision
2774 hardware is available.
2775 Due to the additional precision, the simple complex divide
2776 method (without Smith's method) is sufficient to get accurate
2777 answers and runs slightly faster than Smith's method. */
2778
2779 AMTYPE aa, bb, cc, dd;
2780 AMTYPE denom;
2781 MTYPE x, y;
2782 CTYPE res;
2783 aa = a;
2784 bb = b;
2785 cc = c;
2786 dd = d;
2787
2788 denom = (cc * cc) + (dd * dd);
2789 x = ((aa * cc) + (bb * dd)) / denom;
2790 y = ((bb * cc) - (aa * dd)) / denom;
2791
2792#else
7e7e470f 2793 MTYPE denom, ratio, x, y;
ddef83d2 2794 CTYPE res;
7e7e470f 2795
54f0224d
PM
2796 /* double, extended, long double have significant potential
2797 underflow/overflow errors that can be greatly reduced with
2798 a limited number of tests and adjustments. float is handled
2799 the same way when no HW double is available.
2800 */
2801
2802 /* Scale by max(c,d) to reduce chances of denominator overflowing. */
7e7e470f
RH
2803 if (FABS (c) < FABS (d))
2804 {
54f0224d
PM
2805 /* Prevent underflow when denominator is near max representable. */
2806 if (FABS (d) >= RBIG)
2807 {
2808 a = a / 2;
2809 b = b / 2;
2810 c = c / 2;
2811 d = d / 2;
2812 }
2813 /* Avoid overflow/underflow issues when c and d are small.
2814 Scaling up helps avoid some underflows.
2815 No new overflow possible since c&d < RMIN2. */
2816 if (FABS (d) < RMIN2)
2817 {
2818 a = a * RMINSCAL;
2819 b = b * RMINSCAL;
2820 c = c * RMINSCAL;
2821 d = d * RMINSCAL;
2822 }
2823 else
2824 {
2825 if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (d) < RMAX2))
2826 || ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
2827 && (FABS (d) < RMAX2)))
2828 {
2829 a = a * RMINSCAL;
2830 b = b * RMINSCAL;
2831 c = c * RMINSCAL;
2832 d = d * RMINSCAL;
2833 }
2834 }
7e7e470f
RH
2835 ratio = c / d;
2836 denom = (c * ratio) + d;
54f0224d
PM
2837 /* Choose alternate order of computation if ratio is subnormal. */
2838 if (FABS (ratio) > RMIN)
2839 {
2840 x = ((a * ratio) + b) / denom;
2841 y = ((b * ratio) - a) / denom;
2842 }
2843 else
2844 {
2845 x = ((c * (a / d)) + b) / denom;
2846 y = ((c * (b / d)) - a) / denom;
2847 }
7e7e470f
RH
2848 }
2849 else
2850 {
54f0224d
PM
2851 /* Prevent underflow when denominator is near max representable. */
2852 if (FABS (c) >= RBIG)
2853 {
2854 a = a / 2;
2855 b = b / 2;
2856 c = c / 2;
2857 d = d / 2;
2858 }
2859 /* Avoid overflow/underflow issues when both c and d are small.
2860 Scaling up helps avoid some underflows.
2861 No new overflow possible since both c&d are less than RMIN2. */
2862 if (FABS (c) < RMIN2)
2863 {
2864 a = a * RMINSCAL;
2865 b = b * RMINSCAL;
2866 c = c * RMINSCAL;
2867 d = d * RMINSCAL;
2868 }
2869 else
2870 {
2871 if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (c) < RMAX2))
2872 || ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
2873 && (FABS (c) < RMAX2)))
2874 {
2875 a = a * RMINSCAL;
2876 b = b * RMINSCAL;
2877 c = c * RMINSCAL;
2878 d = d * RMINSCAL;
2879 }
2880 }
7e7e470f
RH
2881 ratio = d / c;
2882 denom = (d * ratio) + c;
54f0224d
PM
2883 /* Choose alternate order of computation if ratio is subnormal. */
2884 if (FABS (ratio) > RMIN)
2885 {
2886 x = ((b * ratio) + a) / denom;
2887 y = (b - (a * ratio)) / denom;
2888 }
2889 else
2890 {
2891 x = (a + (d * (b / c))) / denom;
2892 y = (b - (d * (a / c))) / denom;
2893 }
7e7e470f 2894 }
54f0224d 2895#endif
7e7e470f 2896
54f0224d
PM
2897 /* Recover infinities and zeros that computed as NaN+iNaN; the only
2898 cases are nonzero/zero, infinite/finite, and finite/infinite. */
7e7e470f
RH
2899 if (isnan (x) && isnan (y))
2900 {
698ac934 2901 if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
7e7e470f
RH
2902 {
2903 x = COPYSIGN (INFINITY, c) * a;
2904 y = COPYSIGN (INFINITY, c) * b;
2905 }
2906 else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
2907 {
2908 a = COPYSIGN (isinf (a) ? 1 : 0, a);
2909 b = COPYSIGN (isinf (b) ? 1 : 0, b);
2910 x = INFINITY * (a * c + b * d);
2911 y = INFINITY * (b * c - a * d);
2912 }
2913 else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
2914 {
2915 c = COPYSIGN (isinf (c) ? 1 : 0, c);
2916 d = COPYSIGN (isinf (d) ? 1 : 0, d);
2917 x = 0.0 * (a * c + b * d);
2918 y = 0.0 * (b * c - a * d);
2919 }
2920 }
2921
ddef83d2
RG
2922 __real__ res = x;
2923 __imag__ res = y;
2924 return res;
7e7e470f
RH
2925}
2926#endif /* complex divide */
2927
2928#endif /* all complex float routines */
2929\f
ab495388
RS
2930/* From here on down, the routines use normal data types. */
2931
2932#define SItype bogus_type
2933#define USItype bogus_type
2934#define DItype bogus_type
2935#define UDItype bogus_type
2936#define SFtype bogus_type
2937#define DFtype bogus_type
996ed075
JJ
2938#undef Wtype
2939#undef UWtype
2940#undef HWtype
2941#undef UHWtype
2942#undef DWtype
2943#undef UDWtype
ab495388
RS
2944
2945#undef char
2946#undef short
2947#undef int
2948#undef long
2949#undef unsigned
2950#undef float
2951#undef double
9bd23d2c
RS
2952\f
2953#ifdef L__gcc_bcmp
2954
2955/* Like bcmp except the sign is meaningful.
9faa82d8 2956 Result is negative if S1 is less than S2,
9bd23d2c
RS
2957 positive if S1 is greater, 0 if S1 and S2 are equal. */
2958
2959int
299b83b7 2960__gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
9bd23d2c
RS
2961{
2962 while (size > 0)
2963 {
b982024e 2964 const unsigned char c1 = *s1++, c2 = *s2++;
9bd23d2c
RS
2965 if (c1 != c2)
2966 return c1 - c2;
2967 size--;
2968 }
2969 return 0;
2970}
ab495388 2971
3fe68d0a
ZW
2972#endif
2973\f
2974/* __eprintf used to be used by GCC's private version of <assert.h>.
2975 We no longer provide that header, but this routine remains in libgcc.a
2976 for binary backward compatibility. Note that it is not included in
2977 the shared version of libgcc. */
2978#ifdef L_eprintf
2979#ifndef inhibit_libc
2980
2981#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
2982#include <stdio.h>
2983
2984void
2985__eprintf (const char *string, const char *expression,
2986 unsigned int line, const char *filename)
2987{
2988 fprintf (stderr, string, expression, line, filename);
2989 fflush (stderr);
2990 abort ();
2991}
2992
2993#endif
203b91b9
RS
2994#endif
2995
203b91b9 2996\f
203b91b9
RS
2997#ifdef L_clear_cache
2998/* Clear part of an instruction cache. */
2999
203b91b9 3000void
a90b0cdd
MS
3001__clear_cache (void *beg __attribute__((__unused__)),
3002 void *end __attribute__((__unused__)))
203b91b9 3003{
23190837 3004#ifdef CLEAR_INSN_CACHE
a90b0cdd
MS
3005 /* Cast the void* pointers to char* as some implementations
3006 of the macro assume the pointers can be subtracted from
3007 one another. */
3008 CLEAR_INSN_CACHE ((char *) beg, (char *) end);
e1178973 3009#endif /* CLEAR_INSN_CACHE */
203b91b9
RS
3010}
3011
3012#endif /* L_clear_cache */
3013\f
3014#ifdef L_trampoline
3015
3016/* Jump to a trampoline, loading the static chain address. */
3017
cd985f66 3018#if defined(WINNT) && ! defined(__CYGWIN__)
902c7559 3019#define WIN32_LEAN_AND_MEAN
bf806a90 3020#include <windows.h>
0a38153f
KT
3021int getpagesize (void);
3022int mprotect (char *,int, int);
e3367a77 3023
94c1e7ac 3024int
3e7d8ef1 3025getpagesize (void)
f5ea9817
RK
3026{
3027#ifdef _ALPHA_
3028 return 8192;
3029#else
3030 return 4096;
3031#endif
3032}
3033
272e2587
RK
3034int
3035mprotect (char *addr, int len, int prot)
f5ea9817 3036{
234952b3 3037 DWORD np, op;
f5ea9817 3038
272e2587
RK
3039 if (prot == 7)
3040 np = 0x40;
3041 else if (prot == 5)
3042 np = 0x20;
3043 else if (prot == 4)
3044 np = 0x10;
3045 else if (prot == 3)
3046 np = 0x04;
3047 else if (prot == 1)
3048 np = 0x02;
3049 else if (prot == 0)
3050 np = 0x01;
234952b3
OS
3051 else
3052 return -1;
f5ea9817
RK
3053
3054 if (VirtualProtect (addr, len, np, &op))
3055 return 0;
3056 else
3057 return -1;
f5ea9817
RK
3058}
3059
cd985f66 3060#endif /* WINNT && ! __CYGWIN__ */
f5ea9817 3061
23190837
AJ
3062#ifdef TRANSFER_FROM_TRAMPOLINE
3063TRANSFER_FROM_TRAMPOLINE
203b91b9 3064#endif
203b91b9
RS
3065#endif /* L_trampoline */
3066\f
cae21ae8 3067#ifndef __CYGWIN__
203b91b9
RS
3068#ifdef L__main
3069
3070#include "gbl-ctors.h"
7abc66b1 3071
c06cff95
RS
3072/* Some systems use __main in a way incompatible with its use in gcc, in these
3073 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
3074 give the same symbol without quotes for an alternative entry point. You
0f41302f 3075 must define both, or neither. */
c06cff95
RS
3076#ifndef NAME__MAIN
3077#define NAME__MAIN "__main"
3078#define SYMBOL__MAIN __main
3079#endif
203b91b9 3080
53d68b9f
JM
3081#if defined (__LIBGCC_INIT_SECTION_ASM_OP__) \
3082 || defined (__LIBGCC_INIT_ARRAY_SECTION_ASM_OP__)
fe1fd353
JM
3083#undef HAS_INIT_SECTION
3084#define HAS_INIT_SECTION
3085#endif
3086
3087#if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
31cf0144
JM
3088
3089/* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
72d1a48d
EB
3090 code to run constructors. In that case, we need to handle EH here, too.
3091 But MINGW32 is special because it handles CRTSTUFF and EH on its own. */
3092
3093#ifdef __MINGW32__
3094#undef __LIBGCC_EH_FRAME_SECTION_NAME__
3095#endif
31cf0144 3096
53d68b9f 3097#ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
e4b776a6 3098#include "unwind-dw2-fde.h"
31cf0144
JM
3099extern unsigned char __EH_FRAME_BEGIN__[];
3100#endif
3101
203b91b9
RS
3102/* Run all the global destructors on exit from the program. */
3103
3104void
3e7d8ef1 3105__do_global_dtors (void)
203b91b9 3106{
89cf554b
RS
3107#ifdef DO_GLOBAL_DTORS_BODY
3108 DO_GLOBAL_DTORS_BODY;
3109#else
b40b9d93
MS
3110 static func_ptr *p = __DTOR_LIST__ + 1;
3111 while (*p)
3112 {
3113 p++;
3114 (*(p-1)) ();
3115 }
89cf554b 3116#endif
53d68b9f 3117#if defined (__LIBGCC_EH_FRAME_SECTION_NAME__) && !defined (HAS_INIT_SECTION)
a4ebb0e6
GRK
3118 {
3119 static int completed = 0;
3120 if (! completed)
3121 {
3122 completed = 1;
3123 __deregister_frame_info (__EH_FRAME_BEGIN__);
3124 }
3125 }
31cf0144 3126#endif
203b91b9 3127}
68d69835 3128#endif
203b91b9 3129
fe1fd353 3130#ifndef HAS_INIT_SECTION
203b91b9
RS
3131/* Run all the global constructors on entry to the program. */
3132
203b91b9 3133void
3e7d8ef1 3134__do_global_ctors (void)
203b91b9 3135{
53d68b9f 3136#ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
31cf0144
JM
3137 {
3138 static struct object object;
3139 __register_frame_info (__EH_FRAME_BEGIN__, &object);
3140 }
3141#endif
203b91b9 3142 DO_GLOBAL_CTORS_BODY;
a218d5ba 3143 atexit (__do_global_dtors);
203b91b9 3144}
fe1fd353 3145#endif /* no HAS_INIT_SECTION */
203b91b9 3146
fe1fd353 3147#if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
203b91b9
RS
3148/* Subroutine called automatically by `main'.
3149 Compiling a global function named `main'
3150 produces an automatic call to this function at the beginning.
3151
3152 For many systems, this routine calls __do_global_ctors.
3153 For systems which support a .init section we use the .init section
3154 to run __do_global_ctors, so we need not do anything here. */
3155
4043d9c1 3156extern void SYMBOL__MAIN (void);
203b91b9 3157void
4043d9c1 3158SYMBOL__MAIN (void)
203b91b9
RS
3159{
3160 /* Support recursive calls to `main': run initializers just once. */
7e6f1890 3161 static int initialized;
203b91b9
RS
3162 if (! initialized)
3163 {
3164 initialized = 1;
3165 __do_global_ctors ();
3166 }
3167}
fe1fd353 3168#endif /* no HAS_INIT_SECTION or INVOKE__main */
203b91b9
RS
3169
3170#endif /* L__main */
cae21ae8 3171#endif /* __CYGWIN__ */
203b91b9 3172\f
ad38743d 3173#ifdef L_ctors
203b91b9
RS
3174
3175#include "gbl-ctors.h"
3176
3177/* Provide default definitions for the lists of constructors and
657be7af
JL
3178 destructors, so that we don't get linker errors. These symbols are
3179 intentionally bss symbols, so that gld and/or collect will provide
3180 the right values. */
203b91b9
RS
3181
3182/* We declare the lists here with two elements each,
657be7af
JL
3183 so that they are valid empty lists if no other definition is loaded.
3184
3185 If we are using the old "set" extensions to have the gnu linker
3186 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
3187 must be in the bss/common section.
3188
3189 Long term no port should use those extensions. But many still do. */
1770511a 3190#if !defined(__LIBGCC_INIT_SECTION_ASM_OP__)
aa6ad1a6 3191#if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
d15d0264
RS
3192func_ptr __CTOR_LIST__[2] = {0, 0};
3193func_ptr __DTOR_LIST__[2] = {0, 0};
657be7af
JL
3194#else
3195func_ptr __CTOR_LIST__[2];
3196func_ptr __DTOR_LIST__[2];
3197#endif
1770511a 3198#endif /* no __LIBGCC_INIT_SECTION_ASM_OP__ */
ad38743d 3199#endif /* L_ctors */
baffad1f 3200#endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */