]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgcc/unwind-dw2-fde.c
release the sorted FDE array when deregistering a frame [PR109685]
[thirdparty/gcc.git] / libgcc / unwind-dw2-fde.c
CommitLineData
0021b564 1/* Subroutines needed for unwinding stack frames for exception handling. */
83ffe9cd 2/* Copyright (C) 1997-2023 Free Software Foundation, Inc.
0021b564
JM
3 Contributed by Jason Merrill <jason@cygnus.com>.
4
1322177d 5This file is part of GCC.
0021b564 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
748086b7 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
0021b564 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
0021b564 16
748086b7
JJ
17Under Section 7 of GPL version 3, you are granted additional
18permissions described in the GCC Runtime Library Exception, version
193.1, as published by the Free Software Foundation.
20
21You should have received a copy of the GNU General Public License and
22a copy of the GCC Runtime Library Exception along with this program;
23see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24<http://www.gnu.org/licenses/>. */
0021b564 25
275b60d6 26#ifndef _Unwind_Find_FDE
52a11cbf
RH
27#include "tconfig.h"
28#include "tsystem.h"
4977bab6
ZW
29#include "coretypes.h"
30#include "tm.h"
852b75ed 31#include "libgcc_tm.h"
a80b0574 32#include "dwarf2.h"
e1f9550a 33#include "unwind.h"
bda33a6e 34#define NO_BASE_OF_ENCODED_VALUE
e1f9550a 35#include "unwind-pe.h"
52a11cbf
RH
36#include "unwind-dw2-fde.h"
37#include "gthr.h"
29991048
JJ
38#else
39#if (defined(__GTHREAD_MUTEX_INIT) || defined(__GTHREAD_MUTEX_INIT_FUNCTION)) \
40 && defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4)
41#define ATOMIC_FDE_FAST_PATH 1
42#endif
275b60d6 43#endif
52a11cbf 44
d458f806
TN
45typedef __UINTPTR_TYPE__ uintptr_type;
46
6e80a1d1
TN
47#ifdef ATOMIC_FDE_FAST_PATH
48#include "unwind-dw2-btree.h"
49
50static struct btree registered_frames;
94ccaf62 51static bool in_shutdown;
6e80a1d1
TN
52
53static void
386ebf75 54release_registered_frames (void) __attribute__ ((destructor));
6e80a1d1
TN
55static void
56release_registered_frames (void)
57{
58 /* Release the b-tree and all frames. Frame releases that happen later are
59 * silently ignored */
60 btree_destroy (&registered_frames);
94ccaf62 61 in_shutdown = true;
6e80a1d1
TN
62}
63
64static void
d458f806 65get_pc_range (const struct object *ob, uintptr_type *range);
6e80a1d1
TN
66
67#else
386ebf75
TN
68/* Without fast path frame deregistration must always succeed. */
69static const int in_shutdown = 0;
6e80a1d1 70
e1f9550a
RH
71/* The unseen_objects list contains objects that have been registered
72 but not yet categorized in any way. The seen_objects list has had
0ab2a34f 73 its pc_begin and count fields initialized at minimum, and is sorted
e1f9550a
RH
74 by decreasing value of pc_begin. */
75static struct object *unseen_objects;
76static struct object *seen_objects;
6e56633d 77#endif
52a11cbf
RH
78
79#ifdef __GTHREAD_MUTEX_INIT
80static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
33e3e24d 81#define init_object_mutex_once()
52a11cbf 82#else
9c4271f3 83#ifdef __GTHREAD_MUTEX_INIT_FUNCTION
52a11cbf 84static __gthread_mutex_t object_mutex;
52a11cbf 85
41077ce4 86static void
52a11cbf
RH
87init_object_mutex (void)
88{
89 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
90}
91
92static void
93init_object_mutex_once (void)
94{
95 static __gthread_once_t once = __GTHREAD_ONCE_INIT;
96 __gthread_once (&once, init_object_mutex);
97}
9c4271f3
RG
98#else
99/* ??? Several targets include this file with stubbing parts of gthr.h
100 and expect no locking to be done. */
101#define init_object_mutex_once()
102static __gthread_mutex_t object_mutex;
103#endif
52a11cbf
RH
104#endif
105
106/* Called from crtbegin.o to register the unwind info for an object. */
107
108void
a30794da 109__register_frame_info_bases (const void *begin, struct object *ob,
e1f9550a 110 void *tbase, void *dbase)
52a11cbf 111{
55fae1a9 112 /* If .eh_frame is empty, don't register at all. */
5f754896 113 if ((const uword *) begin == 0 || *(const uword *) begin == 0)
55fae1a9
JJ
114 return;
115
e1f9550a
RH
116 ob->pc_begin = (void *)-1;
117 ob->tbase = tbase;
118 ob->dbase = dbase;
119 ob->u.single = begin;
120 ob->s.i = 0;
121 ob->s.b.encoding = DW_EH_PE_omit;
3cfe49da
GK
122#ifdef DWARF2_OBJECT_END_PTR_EXTENSION
123 ob->fde_end = NULL;
124#endif
52a11cbf 125
6e80a1d1 126#ifdef ATOMIC_FDE_FAST_PATH
6e56633d 127 // Register the frame in the b-tree
d458f806 128 uintptr_type range[2];
6e80a1d1
TN
129 get_pc_range (ob, range);
130 btree_insert (&registered_frames, range[0], range[1] - range[0], ob);
131#else
52a11cbf
RH
132 init_object_mutex_once ();
133 __gthread_mutex_lock (&object_mutex);
134
e1f9550a
RH
135 ob->next = unseen_objects;
136 unseen_objects = ob;
52a11cbf
RH
137
138 __gthread_mutex_unlock (&object_mutex);
6e80a1d1 139#endif
52a11cbf
RH
140}
141
e1f9550a 142void
a30794da 143__register_frame_info (const void *begin, struct object *ob)
e1f9550a
RH
144{
145 __register_frame_info_bases (begin, ob, 0, 0);
146}
147
52a11cbf
RH
148void
149__register_frame (void *begin)
150{
55fae1a9
JJ
151 struct object *ob;
152
153 /* If .eh_frame is empty, don't register at all. */
e9d1b155 154 if (*(uword *) begin == 0)
55fae1a9
JJ
155 return;
156
703ad42b 157 ob = malloc (sizeof (struct object));
41077ce4 158 __register_frame_info (begin, ob);
52a11cbf
RH
159}
160
161/* Similar, but BEGIN is actually a pointer to a table of unwind entries
162 for different translation units. Called from the file generated by
163 collect2. */
164
165void
e1f9550a
RH
166__register_frame_info_table_bases (void *begin, struct object *ob,
167 void *tbase, void *dbase)
52a11cbf 168{
e1f9550a
RH
169 ob->pc_begin = (void *)-1;
170 ob->tbase = tbase;
171 ob->dbase = dbase;
172 ob->u.array = begin;
173 ob->s.i = 0;
174 ob->s.b.from_array = 1;
175 ob->s.b.encoding = DW_EH_PE_omit;
52a11cbf 176
6e80a1d1 177#ifdef ATOMIC_FDE_FAST_PATH
6e56633d 178 // Register the frame in the b-tree
d458f806 179 uintptr_type range[2];
6e80a1d1
TN
180 get_pc_range (ob, range);
181 btree_insert (&registered_frames, range[0], range[1] - range[0], ob);
182#else
52a11cbf
RH
183 init_object_mutex_once ();
184 __gthread_mutex_lock (&object_mutex);
185
e1f9550a
RH
186 ob->next = unseen_objects;
187 unseen_objects = ob;
52a11cbf
RH
188
189 __gthread_mutex_unlock (&object_mutex);
6e80a1d1 190#endif
52a11cbf
RH
191}
192
e1f9550a
RH
193void
194__register_frame_info_table (void *begin, struct object *ob)
195{
196 __register_frame_info_table_bases (begin, ob, 0, 0);
197}
198
52a11cbf
RH
199void
200__register_frame_table (void *begin)
201{
703ad42b 202 struct object *ob = malloc (sizeof (struct object));
52a11cbf
RH
203 __register_frame_info_table (begin, ob);
204}
205
206/* Called from crtbegin.o to deregister the unwind info for an object. */
101fa48c
RH
207/* ??? Glibc has for a while now exported __register_frame_info and
208 __deregister_frame_info. If we call __register_frame_info_bases
209 from crtbegin (wherein it is declared weak), and this object does
210 not get pulled from libgcc.a for other reasons, then the
211 invocation of __deregister_frame_info will be resolved from glibc.
79d0dfa3 212 Since the registration did not happen there, we'll die.
101fa48c
RH
213
214 Therefore, declare a new deregistration entry point that does the
41077ce4 215 exact same thing, but will resolve to the same library as
101fa48c 216 implements __register_frame_info_bases. */
52a11cbf
RH
217
218void *
a30794da 219__deregister_frame_info_bases (const void *begin)
52a11cbf 220{
e1f9550a 221 struct object *ob = 0;
52a11cbf 222
55fae1a9 223 /* If .eh_frame is empty, we haven't registered. */
5f754896 224 if ((const uword *) begin == 0 || *(const uword *) begin == 0)
5d393c8e 225 return ob;
55fae1a9 226
6e80a1d1
TN
227#ifdef ATOMIC_FDE_FAST_PATH
228 // Find the corresponding PC range
229 struct object lookupob;
230 lookupob.tbase = 0;
231 lookupob.dbase = 0;
232 lookupob.u.single = begin;
233 lookupob.s.i = 0;
234 lookupob.s.b.encoding = DW_EH_PE_omit;
235#ifdef DWARF2_OBJECT_END_PTR_EXTENSION
236 lookupob.fde_end = NULL;
237#endif
d458f806 238 uintptr_type range[2];
6e80a1d1
TN
239 get_pc_range (&lookupob, range);
240
241 // And remove
242 ob = btree_remove (&registered_frames, range[0]);
30adfb85 243 bool empty_table = (range[1] - range[0]) == 0;
5cf60b6b
TN
244
245 // Deallocate the sort array if any.
246 if (ob && ob->s.b.sorted)
247 {
248 free (ob->u.sort);
249 }
6e80a1d1 250#else
52a11cbf
RH
251 init_object_mutex_once ();
252 __gthread_mutex_lock (&object_mutex);
253
6e80a1d1 254 struct object **p;
e1f9550a
RH
255 for (p = &unseen_objects; *p ; p = &(*p)->next)
256 if ((*p)->u.single == begin)
257 {
258 ob = *p;
259 *p = ob->next;
260 goto out;
261 }
262
263 for (p = &seen_objects; *p ; p = &(*p)->next)
264 if ((*p)->s.b.sorted)
265 {
266 if ((*p)->u.sort->orig_data == begin)
267 {
268 ob = *p;
269 *p = ob->next;
270 free (ob->u.sort);
271 goto out;
272 }
273 }
274 else
275 {
276 if ((*p)->u.single == begin)
277 {
278 ob = *p;
279 *p = ob->next;
280 goto out;
281 }
282 }
52a11cbf 283
e1f9550a
RH
284 out:
285 __gthread_mutex_unlock (&object_mutex);
30adfb85 286 const int empty_table = 0; // The non-atomic path stores all tables.
6e80a1d1
TN
287#endif
288
9be9be82
ST
289 // If we didn't find anything in the lookup data structures then they
290 // were either already destroyed or we tried to remove an empty range.
30adfb85 291 gcc_assert (in_shutdown || (empty_table || ob));
e1f9550a 292 return (void *) ob;
52a11cbf
RH
293}
294
101fa48c 295void *
a30794da 296__deregister_frame_info (const void *begin)
101fa48c
RH
297{
298 return __deregister_frame_info_bases (begin);
299}
101fa48c 300
52a11cbf
RH
301void
302__deregister_frame (void *begin)
303{
55fae1a9 304 /* If .eh_frame is empty, we haven't registered. */
e9d1b155 305 if (*(uword *) begin != 0)
55fae1a9 306 free (__deregister_frame_info (begin));
52a11cbf
RH
307}
308
e1f9550a
RH
309\f
310/* Like base_of_encoded_value, but take the base from a struct object
311 instead of an _Unwind_Context. */
312
313static _Unwind_Ptr
6e80a1d1 314base_from_object (unsigned char encoding, const struct object *ob)
e1f9550a
RH
315{
316 if (encoding == DW_EH_PE_omit)
317 return 0;
318
319 switch (encoding & 0x70)
320 {
321 case DW_EH_PE_absptr:
322 case DW_EH_PE_pcrel:
099c8b17 323 case DW_EH_PE_aligned:
e1f9550a
RH
324 return 0;
325
326 case DW_EH_PE_textrel:
327 return (_Unwind_Ptr) ob->tbase;
328 case DW_EH_PE_datarel:
329 return (_Unwind_Ptr) ob->dbase;
79d0dfa3
NS
330 default:
331 gcc_unreachable ();
e1f9550a 332 }
e1f9550a
RH
333}
334
335/* Return the FDE pointer encoding from the CIE. */
336/* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
337
338static int
a30794da 339get_cie_encoding (const struct dwarf_cie *cie)
e1f9550a
RH
340{
341 const unsigned char *aug, *p;
342 _Unwind_Ptr dummy;
f767122b
AK
343 _uleb128_t utmp;
344 _sleb128_t stmp;
e1f9550a
RH
345
346 aug = cie->augmentation;
8f65940d
JJ
347 p = aug + strlen ((const char *)aug) + 1; /* Skip the augmentation string. */
348 if (__builtin_expect (cie->version >= 4, 0))
349 {
350 if (p[0] != sizeof (void *) || p[1] != 0)
351 return DW_EH_PE_omit; /* We are not prepared to handle unexpected
352 address sizes or segment selectors. */
353 p += 2; /* Skip address size and segment size. */
354 }
355
e1f9550a
RH
356 if (aug[0] != 'z')
357 return DW_EH_PE_absptr;
358
a9985a92
JM
359 p = read_uleb128 (p, &utmp); /* Skip code alignment. */
360 p = read_sleb128 (p, &stmp); /* Skip data alignment. */
0ef54a47
PB
361 if (cie->version == 1) /* Skip return address column. */
362 p++;
363 else
364 p = read_uleb128 (p, &utmp);
e1f9550a
RH
365
366 aug++; /* Skip 'z' */
a9985a92 367 p = read_uleb128 (p, &utmp); /* Skip augmentation length. */
e1f9550a
RH
368 while (1)
369 {
370 /* This is what we're looking for. */
371 if (*aug == 'R')
372 return *p;
373 /* Personality encoding and pointer. */
374 else if (*aug == 'P')
099c8b17
RH
375 {
376 /* ??? Avoid dereferencing indirect pointers, since we're
377 faking the base address. Gotta keep DW_EH_PE_aligned
378 intact, however. */
379 p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy);
380 }
e1f9550a
RH
381 /* LSDA encoding. */
382 else if (*aug == 'L')
383 p++;
8fc16d72
ST
384 /* aarch64 b-key pointer authentication. */
385 else if (*aug == 'B')
386 p++;
e1f9550a
RH
387 /* Otherwise end of string, or unknown augmentation. */
388 else
389 return DW_EH_PE_absptr;
390 aug++;
391 }
392}
393
394static inline int
a30794da 395get_fde_encoding (const struct dwarf_fde *f)
e1f9550a
RH
396{
397 return get_cie_encoding (get_cie (f));
398}
399
52a11cbf 400\f
72dd050a
BH
401/* Sorting an array of FDEs by address.
402 (Ideally we would have the linker sort the FDEs so we don't have to do
403 it at run time. But the linkers are not yet prepared for this.) */
404
e1f9550a
RH
405/* Comparison routines. Three variants of increasing complexity. */
406
bde257ff 407static int
e1f9550a 408fde_unencoded_compare (struct object *ob __attribute__((unused)),
a30794da 409 const fde *x, const fde *y)
e1f9550a 410{
ce883f54
BE
411 _Unwind_Ptr x_ptr, y_ptr;
412 memcpy (&x_ptr, x->pc_begin, sizeof (_Unwind_Ptr));
413 memcpy (&y_ptr, y->pc_begin, sizeof (_Unwind_Ptr));
2f9ec5e5
HPN
414
415 if (x_ptr > y_ptr)
bde257ff 416 return 1;
2f9ec5e5 417 if (x_ptr < y_ptr)
bde257ff
RH
418 return -1;
419 return 0;
e1f9550a
RH
420}
421
bde257ff 422static int
a30794da 423fde_single_encoding_compare (struct object *ob, const fde *x, const fde *y)
e1f9550a
RH
424{
425 _Unwind_Ptr base, x_ptr, y_ptr;
426
427 base = base_from_object (ob->s.b.encoding, ob);
428 read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr);
429 read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr);
430
bde257ff
RH
431 if (x_ptr > y_ptr)
432 return 1;
433 if (x_ptr < y_ptr)
434 return -1;
435 return 0;
e1f9550a
RH
436}
437
bde257ff 438static int
a30794da 439fde_mixed_encoding_compare (struct object *ob, const fde *x, const fde *y)
e1f9550a
RH
440{
441 int x_encoding, y_encoding;
442 _Unwind_Ptr x_ptr, y_ptr;
443
444 x_encoding = get_fde_encoding (x);
445 read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob),
446 x->pc_begin, &x_ptr);
447
448 y_encoding = get_fde_encoding (y);
449 read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob),
450 y->pc_begin, &y_ptr);
451
bde257ff
RH
452 if (x_ptr > y_ptr)
453 return 1;
454 if (x_ptr < y_ptr)
455 return -1;
456 return 0;
e1f9550a
RH
457}
458
a30794da 459typedef int (*fde_compare_t) (struct object *, const fde *, const fde *);
e1f9550a 460
1c118c99
TN
461// The extractor functions compute the pointer values for a block of
462// fdes. The block processing hides the call overhead.
e1f9550a 463
1c118c99
TN
464static void
465fde_unencoded_extract (struct object *ob __attribute__ ((unused)),
466 _Unwind_Ptr *target, const fde **x, int count)
467{
468 for (int index = 0; index < count; ++index)
469 memcpy (target + index, x[index]->pc_begin, sizeof (_Unwind_Ptr));
470}
471
472static void
473fde_single_encoding_extract (struct object *ob, _Unwind_Ptr *target,
474 const fde **x, int count)
475{
476 _Unwind_Ptr base;
477
478 base = base_from_object (ob->s.b.encoding, ob);
479 for (int index = 0; index < count; ++index)
480 read_encoded_value_with_base (ob->s.b.encoding, base, x[index]->pc_begin,
481 target + index);
482}
483
484static void
485fde_mixed_encoding_extract (struct object *ob, _Unwind_Ptr *target,
486 const fde **x, int count)
487{
488 for (int index = 0; index < count; ++index)
489 {
490 int encoding = get_fde_encoding (x[index]);
491 read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
492 x[index]->pc_begin, target + index);
493 }
494}
495
496typedef void (*fde_extractor_t) (struct object *, _Unwind_Ptr *, const fde **,
497 int);
498
499// Data is is sorted using radix sort if possible, using an temporary
500// auxiliary data structure of the same size as the input. When running
501// out of memory do in-place heap sort.
72dd050a 502
e1f9550a 503struct fde_accumulator
72dd050a 504{
e1f9550a 505 struct fde_vector *linear;
1c118c99 506 struct fde_vector *aux;
e1f9550a 507};
52a11cbf 508
d593d1d2 509static inline int
e1f9550a 510start_fde_sort (struct fde_accumulator *accu, size_t count)
72dd050a 511{
e1f9550a
RH
512 size_t size;
513 if (! count)
514 return 0;
515
a30794da 516 size = sizeof (struct fde_vector) + sizeof (const fde *) * count;
703ad42b 517 if ((accu->linear = malloc (size)))
e1f9550a
RH
518 {
519 accu->linear->count = 0;
1c118c99
TN
520 if ((accu->aux = malloc (size)))
521 accu->aux->count = 0;
e1f9550a
RH
522 return 1;
523 }
524 else
41077ce4 525 return 0;
72dd050a 526}
0021b564 527
72dd050a 528static inline void
a30794da 529fde_insert (struct fde_accumulator *accu, const fde *this_fde)
72dd050a 530{
e1f9550a
RH
531 if (accu->linear)
532 accu->linear->array[accu->linear->count++] = this_fde;
72dd050a
BH
533}
534
a30794da 535#define SWAP(x,y) do { const fde * tmp = x; x = y; y = tmp; } while (0)
80d83b16
JM
536
537/* Convert a semi-heap to a heap. A semi-heap is a heap except possibly
538 for the first (root) node; push it down to its rightful place. */
539
540static void
a30794da 541frame_downheap (struct object *ob, fde_compare_t fde_compare, const fde **a,
80d83b16
JM
542 int lo, int hi)
543{
544 int i, j;
545
546 for (i = lo, j = 2*i+1;
547 j < hi;
548 j = 2*i+1)
549 {
550 if (j+1 < hi && fde_compare (ob, a[j], a[j+1]) < 0)
551 ++j;
552
553 if (fde_compare (ob, a[i], a[j]) < 0)
554 {
555 SWAP (a[i], a[j]);
556 i = j;
557 }
558 else
559 break;
560 }
561}
562
99b13ed3
JW
563/* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
564 use a name that does not conflict. */
e1f9550a
RH
565
566static void
567frame_heapsort (struct object *ob, fde_compare_t fde_compare,
568 struct fde_vector *erratic)
72dd050a
BH
569{
570 /* For a description of this algorithm, see:
571 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
2d76cb1a 572 p. 60-61. */
a30794da 573 const fde ** a = erratic->array;
72dd050a
BH
574 /* A portion of the array is called a "heap" if for all i>=0:
575 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
2d76cb1a 576 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
72dd050a 577 size_t n = erratic->count;
80d83b16
JM
578 int m;
579
580 /* Expand our heap incrementally from the end of the array, heapifying
581 each resulting semi-heap as we go. After each step, a[m] is the top
582 of a heap. */
583 for (m = n/2-1; m >= 0; --m)
584 frame_downheap (ob, fde_compare, a, m, n);
585
586 /* Shrink our heap incrementally from the end of the array, first
587 swapping out the largest element a[0] and then re-heapifying the
588 resulting semi-heap. After each step, a[0..m) is a heap. */
589 for (m = n-1; m >= 1; --m)
72dd050a 590 {
80d83b16
JM
591 SWAP (a[0], a[m]);
592 frame_downheap (ob, fde_compare, a, 0, m);
72dd050a
BH
593 }
594#undef SWAP
595}
596
1c118c99 597// Radix sort data in V1 using V2 as aux memory. Runtime O(n).
e1f9550a 598static inline void
1c118c99
TN
599fde_radixsort (struct object *ob, fde_extractor_t fde_extractor,
600 struct fde_vector *v1, struct fde_vector *v2)
0021b564 601{
1c118c99
TN
602#define FANOUTBITS 8
603#define FANOUT (1 << FANOUTBITS)
604#define BLOCKSIZE 128
605 const unsigned rounds
606 = (__CHAR_BIT__ * sizeof (_Unwind_Ptr) + FANOUTBITS - 1) / FANOUTBITS;
607 const fde **a1 = v1->array, **a2 = v2->array;
608 _Unwind_Ptr ptrs[BLOCKSIZE + 1];
609 unsigned n = v1->count;
610 for (unsigned round = 0; round != rounds; ++round)
0021b564 611 {
1c118c99
TN
612 unsigned counts[FANOUT] = {0};
613 unsigned violations = 0;
614
615 // Count the number of elements per bucket and check if we are already
616 // sorted.
617 _Unwind_Ptr last = 0;
618 for (unsigned i = 0; i < n;)
a01da83b 619 {
1c118c99
TN
620 unsigned chunk = ((n - i) <= BLOCKSIZE) ? (n - i) : BLOCKSIZE;
621 fde_extractor (ob, ptrs + 1, a1 + i, chunk);
622 ptrs[0] = last;
623 for (unsigned j = 0; j < chunk; ++j)
a01da83b 624 {
1c118c99
TN
625 unsigned b = (ptrs[j + 1] >> (round * FANOUTBITS)) & (FANOUT - 1);
626 counts[b]++;
627 // Use summation instead of an if to eliminate branches.
628 violations += ptrs[j + 1] < ptrs[j];
a01da83b 629 }
1c118c99
TN
630 i += chunk;
631 last = ptrs[chunk];
a01da83b 632 }
1c118c99
TN
633
634 // Stop if we are already sorted.
635 if (!violations)
636 {
637 // The sorted data is in a1 now.
638 a2 = a1;
639 break;
640 }
641
642 // Compute the prefix sum.
643 unsigned sum = 0;
644 for (unsigned i = 0; i != FANOUT; ++i)
645 {
646 unsigned s = sum;
647 sum += counts[i];
648 counts[i] = s;
649 }
650
651 // Place all elements.
652 for (unsigned i = 0; i < n;)
653 {
654 unsigned chunk = ((n - i) <= BLOCKSIZE) ? (n - i) : BLOCKSIZE;
655 fde_extractor (ob, ptrs, a1 + i, chunk);
656 for (unsigned j = 0; j < chunk; ++j)
657 {
658 unsigned b = (ptrs[j] >> (round * FANOUTBITS)) & (FANOUT - 1);
659 a2[counts[b]++] = a1[i + j];
660 }
661 i += chunk;
662 }
663
664 // Swap a1 and a2.
665 const fde **tmp = a1;
666 a1 = a2;
667 a2 = tmp;
0021b564 668 }
1c118c99
TN
669#undef BLOCKSIZE
670#undef FANOUT
671#undef FANOUTBITS
672
673 // The data is in a2 now, move in place if needed.
674 if (a2 != v1->array)
675 memcpy (v1->array, a2, sizeof (const fde *) * n);
0021b564
JM
676}
677
e1f9550a
RH
678static inline void
679end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count)
72dd050a 680{
79d0dfa3 681 gcc_assert (!accu->linear || accu->linear->count == count);
e1f9550a 682
1c118c99 683 if (accu->aux)
d593d1d2 684 {
1c118c99
TN
685 fde_extractor_t fde_extractor;
686 if (ob->s.b.mixed_encoding)
687 fde_extractor = fde_mixed_encoding_extract;
688 else if (ob->s.b.encoding == DW_EH_PE_absptr)
689 fde_extractor = fde_unencoded_extract;
690 else
691 fde_extractor = fde_single_encoding_extract;
692
693 fde_radixsort (ob, fde_extractor, accu->linear, accu->aux);
694 free (accu->aux);
d593d1d2
NS
695 }
696 else
697 {
1c118c99
TN
698 fde_compare_t fde_compare;
699 if (ob->s.b.mixed_encoding)
700 fde_compare = fde_mixed_encoding_compare;
701 else if (ob->s.b.encoding == DW_EH_PE_absptr)
702 fde_compare = fde_unencoded_compare;
703 else
704 fde_compare = fde_single_encoding_compare;
705
706 /* We've not managed to malloc an aux array,
e1f9550a
RH
707 so heap sort in the linear one. */
708 frame_heapsort (ob, fde_compare, accu->linear);
d593d1d2 709 }
72dd050a
BH
710}
711
6e80a1d1
TN
712/* Inspect the fde array beginning at this_fde. This
713 function can be used either in query mode (RANGE is
714 not null, OB is const), or in update mode (RANGE is
715 null, OB is modified). In query mode the function computes
716 the range of PC values and stores it in RANGE. In
717 update mode it updates encoding, mixed_encoding, and pc_begin
718 for OB. Return the number of fdes encountered along the way. */
e1f9550a 719
52a11cbf 720static size_t
6e80a1d1 721classify_object_over_fdes (struct object *ob, const fde *this_fde,
d458f806 722 uintptr_type *range)
52a11cbf 723{
a30794da 724 const struct dwarf_cie *last_cie = 0;
e1f9550a
RH
725 size_t count = 0;
726 int encoding = DW_EH_PE_absptr;
727 _Unwind_Ptr base = 0;
0021b564 728
3cfe49da 729 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
e1f9550a 730 {
a30794da 731 const struct dwarf_cie *this_cie;
e1f9550a 732 _Unwind_Ptr mask, pc_begin;
52a11cbf 733
e1f9550a
RH
734 /* Skip CIEs. */
735 if (this_fde->CIE_delta == 0)
736 continue;
52a11cbf 737
e1f9550a
RH
738 /* Determine the encoding for this FDE. Note mixed encoded
739 objects for later. */
740 this_cie = get_cie (this_fde);
741 if (this_cie != last_cie)
742 {
743 last_cie = this_cie;
744 encoding = get_cie_encoding (this_cie);
8f65940d
JJ
745 if (encoding == DW_EH_PE_omit)
746 return -1;
e1f9550a 747 base = base_from_object (encoding, ob);
6e80a1d1
TN
748 if (!range)
749 {
750 if (ob->s.b.encoding == DW_EH_PE_omit)
751 ob->s.b.encoding = encoding;
752 else if (ob->s.b.encoding != encoding)
753 ob->s.b.mixed_encoding = 1;
754 }
e1f9550a 755 }
0021b564 756
6e80a1d1
TN
757 const unsigned char *p;
758 p = read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
759 &pc_begin);
0021b564 760
e1f9550a
RH
761 /* Take care to ignore link-once functions that were removed.
762 In these cases, the function address will be NULL, but if
763 the encoding is smaller than a pointer a true NULL may not
764 be representable. Assume 0 in the representable bits is NULL. */
765 mask = size_of_encoded_value (encoding);
766 if (mask < sizeof (void *))
0b1d7060 767 mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
e1f9550a
RH
768 else
769 mask = -1;
770
771 if ((pc_begin & mask) == 0)
772 continue;
154bba13 773
e1f9550a 774 count += 1;
6e80a1d1
TN
775 if (range)
776 {
777 _Unwind_Ptr pc_range, pc_end;
778 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
779 pc_end = pc_begin + pc_range;
780 if ((!range[0]) && (!range[1]))
781 {
782 range[0] = pc_begin;
783 range[1] = pc_end;
784 }
785 else
786 {
787 if (pc_begin < range[0])
788 range[0] = pc_begin;
789 if (pc_end > range[1])
790 range[1] = pc_end;
791 }
792 }
793 else
794 {
795 if ((void *) pc_begin < ob->pc_begin)
796 ob->pc_begin = (void *) pc_begin;
797 }
52a11cbf 798 }
154bba13 799
e1f9550a 800 return count;
0021b564
JM
801}
802
e1f9550a 803static void
a30794da 804add_fdes (struct object *ob, struct fde_accumulator *accu, const fde *this_fde)
a3fd4e75 805{
a30794da 806 const struct dwarf_cie *last_cie = 0;
e1f9550a
RH
807 int encoding = ob->s.b.encoding;
808 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
809
3cfe49da 810 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
52a11cbf 811 {
a30794da 812 const struct dwarf_cie *this_cie;
52a11cbf 813
e1f9550a
RH
814 /* Skip CIEs. */
815 if (this_fde->CIE_delta == 0)
816 continue;
817
818 if (ob->s.b.mixed_encoding)
819 {
820 /* Determine the encoding for this FDE. Note mixed encoded
821 objects for later. */
822 this_cie = get_cie (this_fde);
823 if (this_cie != last_cie)
824 {
825 last_cie = this_cie;
826 encoding = get_cie_encoding (this_cie);
827 base = base_from_object (encoding, ob);
828 }
829 }
830
831 if (encoding == DW_EH_PE_absptr)
832 {
ce883f54
BE
833 _Unwind_Ptr ptr;
834 memcpy (&ptr, this_fde->pc_begin, sizeof (_Unwind_Ptr));
835 if (ptr == 0)
e1f9550a
RH
836 continue;
837 }
838 else
839 {
840 _Unwind_Ptr pc_begin, mask;
841
842 read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
843 &pc_begin);
844
845 /* Take care to ignore link-once functions that were removed.
846 In these cases, the function address will be NULL, but if
847 the encoding is smaller than a pointer a true NULL may not
848 be representable. Assume 0 in the representable bits is NULL. */
849 mask = size_of_encoded_value (encoding);
850 if (mask < sizeof (void *))
0b1d7060 851 mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
e1f9550a
RH
852 else
853 mask = -1;
854
855 if ((pc_begin & mask) == 0)
856 continue;
857 }
858
859 fde_insert (accu, this_fde);
52a11cbf 860 }
a3fd4e75
JL
861}
862
52a11cbf
RH
863/* Set up a sorted array of pointers to FDEs for a loaded object. We
864 count up the entries before allocating the array because it's likely to
865 be faster. We can be called multiple times, should we have failed to
866 allocate a sorted fde array on a previous occasion. */
0021b564 867
e1f9550a
RH
868static inline void
869init_object (struct object* ob)
0021b564 870{
e1f9550a 871 struct fde_accumulator accu;
52a11cbf 872 size_t count;
0021b564 873
e1f9550a
RH
874 count = ob->s.b.count;
875 if (count == 0)
52a11cbf 876 {
e1f9550a
RH
877 if (ob->s.b.from_array)
878 {
879 fde **p = ob->u.array;
880 for (count = 0; *p; ++p)
8f65940d 881 {
6e80a1d1 882 size_t cur_count = classify_object_over_fdes (ob, *p, NULL);
8f65940d
JJ
883 if (cur_count == (size_t) -1)
884 goto unhandled_fdes;
885 count += cur_count;
886 }
e1f9550a
RH
887 }
888 else
8f65940d 889 {
6e80a1d1 890 count = classify_object_over_fdes (ob, ob->u.single, NULL);
8f65940d
JJ
891 if (count == (size_t) -1)
892 {
893 static const fde terminator;
894 unhandled_fdes:
895 ob->s.i = 0;
896 ob->s.b.encoding = DW_EH_PE_omit;
897 ob->u.single = &terminator;
898 return;
899 }
900 }
e1f9550a
RH
901
902 /* The count field we have in the main struct object is somewhat
903 limited, but should suffice for virtually all cases. If the
904 counted value doesn't fit, re-write a zero. The worst that
905 happens is that we re-count next time -- admittedly non-trivial
906 in that this implies some 2M fdes, but at least we function. */
907 ob->s.b.count = count;
908 if (ob->s.b.count != count)
909 ob->s.b.count = 0;
52a11cbf 910 }
154bba13 911
e1f9550a 912 if (!start_fde_sort (&accu, count))
52a11cbf 913 return;
154bba13 914
e1f9550a 915 if (ob->s.b.from_array)
52a11cbf 916 {
e1f9550a
RH
917 fde **p;
918 for (p = ob->u.array; *p; ++p)
41077ce4 919 add_fdes (ob, &accu, *p);
52a11cbf
RH
920 }
921 else
e1f9550a
RH
922 add_fdes (ob, &accu, ob->u.single);
923
924 end_fde_sort (ob, &accu, count);
925
926 /* Save the original fde pointer, since this is the key by which the
927 DSO will deregister the object. */
928 accu.linear->orig_data = ob->u.single;
929 ob->u.sort = accu.linear;
930
6e56633d
TN
931#ifdef ATOMIC_FDE_FAST_PATH
932 // We must update the sorted bit with an atomic operation
933 struct object tmp;
934 tmp.s.b = ob->s.b;
935 tmp.s.b.sorted = 1;
936 __atomic_store (&(ob->s.b), &(tmp.s.b), __ATOMIC_RELEASE);
937#else
e1f9550a 938 ob->s.b.sorted = 1;
6e56633d 939#endif
a3fd4e75
JL
940}
941
6e80a1d1
TN
942#ifdef ATOMIC_FDE_FAST_PATH
943/* Get the PC range for lookup */
944static void
d458f806 945get_pc_range (const struct object *ob, uintptr_type *range)
6e80a1d1
TN
946{
947 // It is safe to cast to non-const object* here as
948 // classify_object_over_fdes does not modify ob in query mode.
d458f806 949 struct object *ncob = (struct object *) (uintptr_type) ob;
6e80a1d1
TN
950 range[0] = range[1] = 0;
951 if (ob->s.b.sorted)
952 {
953 classify_object_over_fdes (ncob, ob->u.sort->orig_data, range);
954 }
955 else if (ob->s.b.from_array)
956 {
957 fde **p = ob->u.array;
958 for (; *p; ++p)
959 classify_object_over_fdes (ncob, *p, range);
960 }
961 else
962 {
963 classify_object_over_fdes (ncob, ob->u.single, range);
964 }
965}
966#endif
967
e1f9550a
RH
968/* A linear search through a set of FDEs for the given PC. This is
969 used when there was insufficient memory to allocate and sort an
970 array. */
971
a30794da
AJ
972static const fde *
973linear_search_fdes (struct object *ob, const fde *this_fde, void *pc)
0021b564 974{
a30794da 975 const struct dwarf_cie *last_cie = 0;
e1f9550a
RH
976 int encoding = ob->s.b.encoding;
977 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
978
3cfe49da 979 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
e1f9550a 980 {
a30794da 981 const struct dwarf_cie *this_cie;
e1f9550a
RH
982 _Unwind_Ptr pc_begin, pc_range;
983
984 /* Skip CIEs. */
985 if (this_fde->CIE_delta == 0)
986 continue;
987
988 if (ob->s.b.mixed_encoding)
989 {
990 /* Determine the encoding for this FDE. Note mixed encoded
991 objects for later. */
992 this_cie = get_cie (this_fde);
993 if (this_cie != last_cie)
994 {
995 last_cie = this_cie;
996 encoding = get_cie_encoding (this_cie);
997 base = base_from_object (encoding, ob);
998 }
999 }
1000
1001 if (encoding == DW_EH_PE_absptr)
1002 {
ce883f54
BE
1003 const _Unwind_Ptr *pc_array = (const _Unwind_Ptr *) this_fde->pc_begin;
1004 pc_begin = pc_array[0];
1005 pc_range = pc_array[1];
e1f9550a
RH
1006 if (pc_begin == 0)
1007 continue;
1008 }
1009 else
1010 {
1011 _Unwind_Ptr mask;
ca29916b 1012 const unsigned char *p;
e1f9550a
RH
1013
1014 p = read_encoded_value_with_base (encoding, base,
1015 this_fde->pc_begin, &pc_begin);
1016 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
1017
1018 /* Take care to ignore link-once functions that were removed.
1019 In these cases, the function address will be NULL, but if
1020 the encoding is smaller than a pointer a true NULL may not
1021 be representable. Assume 0 in the representable bits is NULL. */
1022 mask = size_of_encoded_value (encoding);
1023 if (mask < sizeof (void *))
0b1d7060 1024 mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
e1f9550a
RH
1025 else
1026 mask = -1;
1027
1028 if ((pc_begin & mask) == 0)
1029 continue;
1030 }
1031
e9d1b155 1032 if ((_Unwind_Ptr) pc - pc_begin < pc_range)
41077ce4 1033 return this_fde;
e1f9550a
RH
1034 }
1035
1036 return NULL;
1037}
1038
1039/* Binary search for an FDE containing the given PC. Here are three
1040 implementations of increasing complexity. */
1041
a30794da 1042static inline const fde *
e1f9550a
RH
1043binary_search_unencoded_fdes (struct object *ob, void *pc)
1044{
1045 struct fde_vector *vec = ob->u.sort;
52a11cbf 1046 size_t lo, hi;
41077ce4 1047
e1f9550a
RH
1048 for (lo = 0, hi = vec->count; lo < hi; )
1049 {
1050 size_t i = (lo + hi) / 2;
5f754896 1051 const fde *const f = vec->array[i];
ce883f54
BE
1052 void *pc_begin;
1053 uaddr pc_range;
1054 memcpy (&pc_begin, (const void * const *) f->pc_begin, sizeof (void *));
1055 memcpy (&pc_range, (const uaddr *) f->pc_begin + 1, sizeof (uaddr));
e1f9550a
RH
1056
1057 if (pc < pc_begin)
1058 hi = i;
1059 else if (pc >= pc_begin + pc_range)
1060 lo = i + 1;
1061 else
1062 return f;
1063 }
0021b564 1064
e1f9550a
RH
1065 return NULL;
1066}
154bba13 1067
a30794da 1068static inline const fde *
e1f9550a
RH
1069binary_search_single_encoding_fdes (struct object *ob, void *pc)
1070{
1071 struct fde_vector *vec = ob->u.sort;
1072 int encoding = ob->s.b.encoding;
1073 _Unwind_Ptr base = base_from_object (encoding, ob);
1074 size_t lo, hi;
41077ce4 1075
e1f9550a 1076 for (lo = 0, hi = vec->count; lo < hi; )
0021b564 1077 {
e1f9550a 1078 size_t i = (lo + hi) / 2;
a30794da 1079 const fde *f = vec->array[i];
e1f9550a 1080 _Unwind_Ptr pc_begin, pc_range;
ca29916b 1081 const unsigned char *p;
e1f9550a
RH
1082
1083 p = read_encoded_value_with_base (encoding, base, f->pc_begin,
1084 &pc_begin);
1085 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
1086
e9d1b155 1087 if ((_Unwind_Ptr) pc < pc_begin)
e1f9550a 1088 hi = i;
e9d1b155 1089 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
e1f9550a
RH
1090 lo = i + 1;
1091 else
1092 return f;
52a11cbf 1093 }
0021b564 1094
e1f9550a
RH
1095 return NULL;
1096}
1097
a30794da 1098static inline const fde *
e1f9550a
RH
1099binary_search_mixed_encoding_fdes (struct object *ob, void *pc)
1100{
1101 struct fde_vector *vec = ob->u.sort;
1102 size_t lo, hi;
41077ce4 1103
e1f9550a 1104 for (lo = 0, hi = vec->count; lo < hi; )
52a11cbf 1105 {
e1f9550a 1106 size_t i = (lo + hi) / 2;
a30794da 1107 const fde *f = vec->array[i];
e1f9550a 1108 _Unwind_Ptr pc_begin, pc_range;
ca29916b 1109 const unsigned char *p;
e1f9550a
RH
1110 int encoding;
1111
1112 encoding = get_fde_encoding (f);
1113 p = read_encoded_value_with_base (encoding,
1114 base_from_object (encoding, ob),
1115 f->pc_begin, &pc_begin);
1116 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
1117
e9d1b155 1118 if ((_Unwind_Ptr) pc < pc_begin)
e1f9550a 1119 hi = i;
e9d1b155 1120 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
e1f9550a
RH
1121 lo = i + 1;
1122 else
1123 return f;
52a11cbf 1124 }
0021b564 1125
e1f9550a
RH
1126 return NULL;
1127}
52a11cbf 1128
a30794da 1129static const fde *
e1f9550a
RH
1130search_object (struct object* ob, void *pc)
1131{
6e80a1d1
TN
1132 /* The fast path initializes objects eagerly to avoid locking.
1133 * On the slow path we initialize them now */
1134#ifndef ATOMIC_FDE_FAST_PATH
e1f9550a
RH
1135 /* If the data hasn't been sorted, try to do this now. We may have
1136 more memory available than last time we tried. */
1137 if (! ob->s.b.sorted)
52a11cbf 1138 {
e1f9550a 1139 init_object (ob);
52a11cbf 1140
e1f9550a
RH
1141 /* Despite the above comment, the normal reason to get here is
1142 that we've not processed this object before. A quick range
1143 check is in order. */
1144 if (pc < ob->pc_begin)
1145 return NULL;
1146 }
6e80a1d1 1147#endif
e1f9550a
RH
1148
1149 if (ob->s.b.sorted)
1150 {
1151 if (ob->s.b.mixed_encoding)
1152 return binary_search_mixed_encoding_fdes (ob, pc);
1153 else if (ob->s.b.encoding == DW_EH_PE_absptr)
1154 return binary_search_unencoded_fdes (ob, pc);
1155 else
1156 return binary_search_single_encoding_fdes (ob, pc);
0021b564 1157 }
52a11cbf
RH
1158 else
1159 {
fa10beec 1160 /* Long slow laborious linear search, cos we've no memory. */
e1f9550a 1161 if (ob->s.b.from_array)
41077ce4
KH
1162 {
1163 fde **p;
e1f9550a
RH
1164 for (p = ob->u.array; *p ; p++)
1165 {
a30794da 1166 const fde *f = linear_search_fdes (ob, *p, pc);
41077ce4 1167 if (f)
e1f9550a 1168 return f;
41077ce4 1169 }
e1f9550a
RH
1170 return NULL;
1171 }
52a11cbf 1172 else
e1f9550a
RH
1173 return linear_search_fdes (ob, ob->u.single, pc);
1174 }
1175}
1176
6e56633d
TN
1177#ifdef ATOMIC_FDE_FAST_PATH
1178
1179// Check if the object was already initialized
1180static inline bool
1181is_object_initialized (struct object *ob)
1182{
1183 // We have to use acquire atomics for the read, which
1184 // is a bit involved as we read from a bitfield
1185 struct object tmp;
1186 __atomic_load (&(ob->s.b), &(tmp.s.b), __ATOMIC_ACQUIRE);
1187 return tmp.s.b.sorted;
1188}
1189
1190#endif
1191
a30794da 1192const fde *
e1f9550a
RH
1193_Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
1194{
1195 struct object *ob;
a30794da 1196 const fde *f = NULL;
e1f9550a 1197
29991048 1198#ifdef ATOMIC_FDE_FAST_PATH
d458f806 1199 ob = btree_lookup (&registered_frames, (uintptr_type) pc);
6e80a1d1 1200 if (!ob)
29991048 1201 return NULL;
6e80a1d1 1202
6e56633d
TN
1203 // Initialize the object lazily
1204 if (!is_object_initialized (ob))
1205 {
1206 // Check again under mutex
1207 init_object_mutex_once ();
1208 __gthread_mutex_lock (&object_mutex);
1209
1210 if (!ob->s.b.sorted)
1211 {
1212 init_object (ob);
1213 }
1214
1215 __gthread_mutex_unlock (&object_mutex);
1216 }
1217
6e80a1d1
TN
1218 f = search_object (ob, pc);
1219#else
29991048 1220
e1f9550a
RH
1221 init_object_mutex_once ();
1222 __gthread_mutex_lock (&object_mutex);
1223
1224 /* Linear search through the classified objects, to find the one
e3aafbad 1225 containing the pc. Note that pc_begin is sorted descending, and
e1f9550a
RH
1226 we expect objects to be non-overlapping. */
1227 for (ob = seen_objects; ob; ob = ob->next)
1228 if (pc >= ob->pc_begin)
1229 {
1230 f = search_object (ob, pc);
1231 if (f)
1232 goto fini;
1233 break;
1234 }
1235
1236 /* Classify and search the objects we've not yet processed. */
1237 while ((ob = unseen_objects))
1238 {
1239 struct object **p;
1240
1241 unseen_objects = ob->next;
1242 f = search_object (ob, pc);
1243
1244 /* Insert the object into the classified list. */
1245 for (p = &seen_objects; *p ; p = &(*p)->next)
1246 if ((*p)->pc_begin < ob->pc_begin)
1247 break;
1248 ob->next = *p;
1249 *p = ob;
1250
1251 if (f)
1252 goto fini;
1253 }
1254
1255 fini:
1256 __gthread_mutex_unlock (&object_mutex);
6e80a1d1 1257#endif
e1f9550a
RH
1258
1259 if (f)
1260 {
1261 int encoding;
950ccbc4 1262 _Unwind_Ptr func;
e1f9550a
RH
1263
1264 bases->tbase = ob->tbase;
1265 bases->dbase = ob->dbase;
154bba13 1266
e1f9550a
RH
1267 encoding = ob->s.b.encoding;
1268 if (ob->s.b.mixed_encoding)
1269 encoding = get_fde_encoding (f);
1270 read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
950ccbc4
NS
1271 f->pc_begin, &func);
1272 bases->func = (void *) func;
52a11cbf 1273 }
0021b564 1274
e1f9550a 1275 return f;
a3fd4e75 1276}