]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgfortran/generated/matmul_c16.c
natVMNetworkInterfaceWin32.cc: Include java/net/VMNetworkInterface.h.
[thirdparty/gcc.git] / libgfortran / generated / matmul_c16.c
CommitLineData
644cb69f
FXC
1/* Implementation of the MATMUL intrinsic
2 Copyright 2002, 2005 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7Libgfortran is free software; you can redistribute it and/or
8modify it under the terms of the GNU General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12In addition to the permissions in the GNU General Public License, the
13Free Software Foundation gives you unlimited permission to link the
14compiled version of this file into combinations with other programs,
15and to distribute those combinations without any restriction coming
16from the use of this file. (The General Public License restrictions
17do apply in other respects; for example, they cover modification of
18the file, and distribution when not linked into a combine
19executable.)
20
21Libgfortran is distributed in the hope that it will be useful,
22but WITHOUT ANY WARRANTY; without even the implied warranty of
23MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24GNU General Public License for more details.
25
26You should have received a copy of the GNU General Public
27License along with libgfortran; see the file COPYING. If not,
28write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29Boston, MA 02110-1301, USA. */
30
31#include "config.h"
32#include <stdlib.h>
33#include <string.h>
34#include <assert.h>
35#include "libgfortran.h"
36
37#if defined (HAVE_GFC_COMPLEX_16)
38
39/* This is a C version of the following fortran pseudo-code. The key
40 point is the loop order -- we access all arrays column-first, which
41 improves the performance enough to boost galgel spec score by 50%.
42
43 DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
44 C = 0
45 DO J=1,N
46 DO K=1,COUNT
47 DO I=1,M
48 C(I,J) = C(I,J)+A(I,K)*B(K,J)
49*/
50
51extern void matmul_c16 (gfc_array_c16 * retarray, gfc_array_c16 * a, gfc_array_c16 * b);
52export_proto(matmul_c16);
53
54void
55matmul_c16 (gfc_array_c16 * retarray, gfc_array_c16 * a, gfc_array_c16 * b)
56{
57 GFC_COMPLEX_16 *abase;
58 GFC_COMPLEX_16 *bbase;
59 GFC_COMPLEX_16 *dest;
60
61 index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
62 index_type x, y, n, count, xcount, ycount;
63
64 assert (GFC_DESCRIPTOR_RANK (a) == 2
65 || GFC_DESCRIPTOR_RANK (b) == 2);
66
67/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
68
69 Either A or B (but not both) can be rank 1:
70
71 o One-dimensional argument A is implicitly treated as a row matrix
72 dimensioned [1,count], so xcount=1.
73
74 o One-dimensional argument B is implicitly treated as a column matrix
75 dimensioned [count, 1], so ycount=1.
76 */
77
78 if (retarray->data == NULL)
79 {
80 if (GFC_DESCRIPTOR_RANK (a) == 1)
81 {
82 retarray->dim[0].lbound = 0;
83 retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
84 retarray->dim[0].stride = 1;
85 }
86 else if (GFC_DESCRIPTOR_RANK (b) == 1)
87 {
88 retarray->dim[0].lbound = 0;
89 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
90 retarray->dim[0].stride = 1;
91 }
92 else
93 {
94 retarray->dim[0].lbound = 0;
95 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
96 retarray->dim[0].stride = 1;
97
98 retarray->dim[1].lbound = 0;
99 retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
100 retarray->dim[1].stride = retarray->dim[0].ubound+1;
101 }
102
103 retarray->data
104 = internal_malloc_size (sizeof (GFC_COMPLEX_16) * size0 ((array_t *) retarray));
105 retarray->offset = 0;
106 }
107
108 abase = a->data;
109 bbase = b->data;
110 dest = retarray->data;
111
112 if (retarray->dim[0].stride == 0)
113 retarray->dim[0].stride = 1;
114 if (a->dim[0].stride == 0)
115 a->dim[0].stride = 1;
116 if (b->dim[0].stride == 0)
117 b->dim[0].stride = 1;
118
119
120 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
121 {
122 /* One-dimensional result may be addressed in the code below
123 either as a row or a column matrix. We want both cases to
124 work. */
125 rxstride = rystride = retarray->dim[0].stride;
126 }
127 else
128 {
129 rxstride = retarray->dim[0].stride;
130 rystride = retarray->dim[1].stride;
131 }
132
133
134 if (GFC_DESCRIPTOR_RANK (a) == 1)
135 {
136 /* Treat it as a a row matrix A[1,count]. */
137 axstride = a->dim[0].stride;
138 aystride = 1;
139
140 xcount = 1;
141 count = a->dim[0].ubound + 1 - a->dim[0].lbound;
142 }
143 else
144 {
145 axstride = a->dim[0].stride;
146 aystride = a->dim[1].stride;
147
148 count = a->dim[1].ubound + 1 - a->dim[1].lbound;
149 xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
150 }
151
152 assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
153
154 if (GFC_DESCRIPTOR_RANK (b) == 1)
155 {
156 /* Treat it as a column matrix B[count,1] */
157 bxstride = b->dim[0].stride;
158
159 /* bystride should never be used for 1-dimensional b.
160 in case it is we want it to cause a segfault, rather than
161 an incorrect result. */
162 bystride = 0xDEADBEEF;
163 ycount = 1;
164 }
165 else
166 {
167 bxstride = b->dim[0].stride;
168 bystride = b->dim[1].stride;
169 ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
170 }
171
172 abase = a->data;
173 bbase = b->data;
174 dest = retarray->data;
175
176 if (rxstride == 1 && axstride == 1 && bxstride == 1)
177 {
178 GFC_COMPLEX_16 *bbase_y;
179 GFC_COMPLEX_16 *dest_y;
180 GFC_COMPLEX_16 *abase_n;
181 GFC_COMPLEX_16 bbase_yn;
182
183 if (rystride == ycount)
184 memset (dest, 0, (sizeof (GFC_COMPLEX_16) * size0((array_t *) retarray)));
185 else
186 {
187 for (y = 0; y < ycount; y++)
188 for (x = 0; x < xcount; x++)
189 dest[x + y*rystride] = (GFC_COMPLEX_16)0;
190 }
191
192 for (y = 0; y < ycount; y++)
193 {
194 bbase_y = bbase + y*bystride;
195 dest_y = dest + y*rystride;
196 for (n = 0; n < count; n++)
197 {
198 abase_n = abase + n*aystride;
199 bbase_yn = bbase_y[n];
200 for (x = 0; x < xcount; x++)
201 {
202 dest_y[x] += abase_n[x] * bbase_yn;
203 }
204 }
205 }
206 }
207 else
208 {
209 for (y = 0; y < ycount; y++)
210 for (x = 0; x < xcount; x++)
211 dest[x*rxstride + y*rystride] = (GFC_COMPLEX_16)0;
212
213 for (y = 0; y < ycount; y++)
214 for (n = 0; n < count; n++)
215 for (x = 0; x < xcount; x++)
216 /* dest[x,y] += a[x,n] * b[n,y] */
217 dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
218 }
219}
220
221#endif