]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgfortran/generated/matmul_i16.c
re PR target/80687 (VLA usage in libgfortran; nvptx target: "sorry, unimplemented...
[thirdparty/gcc.git] / libgfortran / generated / matmul_i16.c
CommitLineData
644cb69f 1/* Implementation of the MATMUL intrinsic
cbe34bb5 2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
644cb69f
FXC
3 Contributed by Paul Brook <paul@nowt.org>
4
21d1335b 5This file is part of the GNU Fortran runtime library (libgfortran).
644cb69f
FXC
6
7Libgfortran is free software; you can redistribute it and/or
8modify it under the terms of the GNU General Public
9License as published by the Free Software Foundation; either
748086b7 10version 3 of the License, or (at your option) any later version.
644cb69f
FXC
11
12Libgfortran is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
748086b7
JJ
17Under Section 7 of GPL version 3, you are granted additional
18permissions described in the GCC Runtime Library Exception, version
193.1, as published by the Free Software Foundation.
20
21You should have received a copy of the GNU General Public License and
22a copy of the GCC Runtime Library Exception along with this program;
23see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24<http://www.gnu.org/licenses/>. */
644cb69f 25
36ae8a61 26#include "libgfortran.h"
644cb69f
FXC
27#include <string.h>
28#include <assert.h>
36ae8a61 29
644cb69f
FXC
30
31#if defined (HAVE_GFC_INTEGER_16)
32
5a0aad31 33/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
5d70ab07 34 passed to us by the front-end, in which case we call it for large
5a0aad31
FXC
35 matrices. */
36
37typedef void (*blas_call)(const char *, const char *, const int *, const int *,
38 const int *, const GFC_INTEGER_16 *, const GFC_INTEGER_16 *,
39 const int *, const GFC_INTEGER_16 *, const int *,
40 const GFC_INTEGER_16 *, GFC_INTEGER_16 *, const int *,
41 int, int);
42
1524f80b
RS
43/* The order of loops is different in the case of plain matrix
44 multiplication C=MATMUL(A,B), and in the frequent special case where
45 the argument A is the temporary result of a TRANSPOSE intrinsic:
46 C=MATMUL(TRANSPOSE(A),B). Transposed temporaries are detected by
47 looking at their strides.
48
49 The equivalent Fortran pseudo-code is:
644cb69f
FXC
50
51 DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
1524f80b
RS
52 IF (.NOT.IS_TRANSPOSED(A)) THEN
53 C = 0
54 DO J=1,N
55 DO K=1,COUNT
56 DO I=1,M
57 C(I,J) = C(I,J)+A(I,K)*B(K,J)
58 ELSE
59 DO J=1,N
644cb69f 60 DO I=1,M
1524f80b
RS
61 S = 0
62 DO K=1,COUNT
5a0aad31 63 S = S+A(I,K)*B(K,J)
1524f80b
RS
64 C(I,J) = S
65 ENDIF
644cb69f
FXC
66*/
67
5a0aad31
FXC
68/* If try_blas is set to a nonzero value, then the matmul function will
69 see if there is a way to perform the matrix multiplication by a call
70 to the BLAS gemm function. */
71
85206901 72extern void matmul_i16 (gfc_array_i16 * const restrict retarray,
5a0aad31
FXC
73 gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
74 int blas_limit, blas_call gemm);
644cb69f
FXC
75export_proto(matmul_i16);
76
31cfd832
TK
77/* Put exhaustive list of possible architectures here here, ORed together. */
78
79#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
80
81#ifdef HAVE_AVX
82static void
83matmul_i16_avx (gfc_array_i16 * const restrict retarray,
84 gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
85 int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
86static void
87matmul_i16_avx (gfc_array_i16 * const restrict retarray,
88 gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
89 int blas_limit, blas_call gemm)
90{
91 const GFC_INTEGER_16 * restrict abase;
92 const GFC_INTEGER_16 * restrict bbase;
93 GFC_INTEGER_16 * restrict dest;
94
95 index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
96 index_type x, y, n, count, xcount, ycount;
97
98 assert (GFC_DESCRIPTOR_RANK (a) == 2
99 || GFC_DESCRIPTOR_RANK (b) == 2);
100
101/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
102
103 Either A or B (but not both) can be rank 1:
104
105 o One-dimensional argument A is implicitly treated as a row matrix
106 dimensioned [1,count], so xcount=1.
107
108 o One-dimensional argument B is implicitly treated as a column matrix
109 dimensioned [count, 1], so ycount=1.
110*/
111
112 if (retarray->base_addr == NULL)
113 {
114 if (GFC_DESCRIPTOR_RANK (a) == 1)
115 {
116 GFC_DIMENSION_SET(retarray->dim[0], 0,
117 GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
118 }
119 else if (GFC_DESCRIPTOR_RANK (b) == 1)
120 {
121 GFC_DIMENSION_SET(retarray->dim[0], 0,
122 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
123 }
124 else
125 {
126 GFC_DIMENSION_SET(retarray->dim[0], 0,
127 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
128
129 GFC_DIMENSION_SET(retarray->dim[1], 0,
130 GFC_DESCRIPTOR_EXTENT(b,1) - 1,
131 GFC_DESCRIPTOR_EXTENT(retarray,0));
132 }
133
134 retarray->base_addr
135 = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16));
136 retarray->offset = 0;
137 }
138 else if (unlikely (compile_options.bounds_check))
139 {
140 index_type ret_extent, arg_extent;
141
142 if (GFC_DESCRIPTOR_RANK (a) == 1)
143 {
144 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
145 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
146 if (arg_extent != ret_extent)
147 runtime_error ("Incorrect extent in return array in"
148 " MATMUL intrinsic: is %ld, should be %ld",
149 (long int) ret_extent, (long int) arg_extent);
150 }
151 else if (GFC_DESCRIPTOR_RANK (b) == 1)
152 {
153 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
154 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
155 if (arg_extent != ret_extent)
156 runtime_error ("Incorrect extent in return array in"
157 " MATMUL intrinsic: is %ld, should be %ld",
158 (long int) ret_extent, (long int) arg_extent);
159 }
160 else
161 {
162 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
163 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
164 if (arg_extent != ret_extent)
165 runtime_error ("Incorrect extent in return array in"
166 " MATMUL intrinsic for dimension 1:"
167 " is %ld, should be %ld",
168 (long int) ret_extent, (long int) arg_extent);
169
170 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
171 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
172 if (arg_extent != ret_extent)
173 runtime_error ("Incorrect extent in return array in"
174 " MATMUL intrinsic for dimension 2:"
175 " is %ld, should be %ld",
176 (long int) ret_extent, (long int) arg_extent);
177 }
178 }
179
180
181 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
182 {
183 /* One-dimensional result may be addressed in the code below
184 either as a row or a column matrix. We want both cases to
185 work. */
186 rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
187 }
188 else
189 {
190 rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
191 rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
192 }
193
194
195 if (GFC_DESCRIPTOR_RANK (a) == 1)
196 {
197 /* Treat it as a a row matrix A[1,count]. */
198 axstride = GFC_DESCRIPTOR_STRIDE(a,0);
199 aystride = 1;
200
201 xcount = 1;
202 count = GFC_DESCRIPTOR_EXTENT(a,0);
203 }
204 else
205 {
206 axstride = GFC_DESCRIPTOR_STRIDE(a,0);
207 aystride = GFC_DESCRIPTOR_STRIDE(a,1);
208
209 count = GFC_DESCRIPTOR_EXTENT(a,1);
210 xcount = GFC_DESCRIPTOR_EXTENT(a,0);
211 }
212
213 if (count != GFC_DESCRIPTOR_EXTENT(b,0))
214 {
215 if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
216 runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
217 }
218
219 if (GFC_DESCRIPTOR_RANK (b) == 1)
220 {
221 /* Treat it as a column matrix B[count,1] */
222 bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
223
224 /* bystride should never be used for 1-dimensional b.
225 in case it is we want it to cause a segfault, rather than
226 an incorrect result. */
227 bystride = 0xDEADBEEF;
228 ycount = 1;
229 }
230 else
231 {
232 bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
233 bystride = GFC_DESCRIPTOR_STRIDE(b,1);
234 ycount = GFC_DESCRIPTOR_EXTENT(b,1);
235 }
236
237 abase = a->base_addr;
238 bbase = b->base_addr;
239 dest = retarray->base_addr;
240
241 /* Now that everything is set up, we perform the multiplication
242 itself. */
243
244#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
245#define min(a,b) ((a) <= (b) ? (a) : (b))
246#define max(a,b) ((a) >= (b) ? (a) : (b))
247
248 if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
249 && (bxstride == 1 || bystride == 1)
250 && (((float) xcount) * ((float) ycount) * ((float) count)
251 > POW3(blas_limit)))
252 {
253 const int m = xcount, n = ycount, k = count, ldc = rystride;
254 const GFC_INTEGER_16 one = 1, zero = 0;
255 const int lda = (axstride == 1) ? aystride : axstride,
256 ldb = (bxstride == 1) ? bystride : bxstride;
257
258 if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
259 {
260 assert (gemm != NULL);
261 gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
262 &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
263 &ldc, 1, 1);
264 return;
265 }
266 }
267
268 if (rxstride == 1 && axstride == 1 && bxstride == 1)
269 {
270 /* This block of code implements a tuned matmul, derived from
271 Superscalar GEMM-based level 3 BLAS, Beta version 0.1
272
273 Bo Kagstrom and Per Ling
274 Department of Computing Science
275 Umea University
276 S-901 87 Umea, Sweden
277
278 from netlib.org, translated to C, and modified for matmul.m4. */
279
280 const GFC_INTEGER_16 *a, *b;
281 GFC_INTEGER_16 *c;
282 const index_type m = xcount, n = ycount, k = count;
283
284 /* System generated locals */
285 index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
286 i1, i2, i3, i4, i5, i6;
287
288 /* Local variables */
fd991039 289 GFC_INTEGER_16 f11, f12, f21, f22, f31, f32, f41, f42,
31cfd832
TK
290 f13, f14, f23, f24, f33, f34, f43, f44;
291 index_type i, j, l, ii, jj, ll;
292 index_type isec, jsec, lsec, uisec, ujsec, ulsec;
8e5f30dc 293 GFC_INTEGER_16 *t1;
31cfd832
TK
294
295 a = abase;
296 b = bbase;
297 c = retarray->base_addr;
298
299 /* Parameter adjustments */
300 c_dim1 = rystride;
301 c_offset = 1 + c_dim1;
302 c -= c_offset;
303 a_dim1 = aystride;
304 a_offset = 1 + a_dim1;
305 a -= a_offset;
306 b_dim1 = bystride;
307 b_offset = 1 + b_dim1;
308 b -= b_offset;
309
310 /* Early exit if possible */
311 if (m == 0 || n == 0 || k == 0)
312 return;
313
fd991039
TK
314 /* Adjust size of t1 to what is needed. */
315 index_type t1_dim;
316 t1_dim = (a_dim1-1) * 256 + b_dim1;
317 if (t1_dim > 65536)
318 t1_dim = 65536;
319
8e5f30dc 320 t1 = malloc (t1_dim * sizeof(GFC_INTEGER_16));
fd991039 321
31cfd832
TK
322 /* Empty c first. */
323 for (j=1; j<=n; j++)
324 for (i=1; i<=m; i++)
325 c[i + j * c_dim1] = (GFC_INTEGER_16)0;
326
327 /* Start turning the crank. */
328 i1 = n;
329 for (jj = 1; jj <= i1; jj += 512)
330 {
331 /* Computing MIN */
332 i2 = 512;
333 i3 = n - jj + 1;
334 jsec = min(i2,i3);
335 ujsec = jsec - jsec % 4;
336 i2 = k;
337 for (ll = 1; ll <= i2; ll += 256)
338 {
339 /* Computing MIN */
340 i3 = 256;
341 i4 = k - ll + 1;
342 lsec = min(i3,i4);
343 ulsec = lsec - lsec % 2;
344
345 i3 = m;
346 for (ii = 1; ii <= i3; ii += 256)
347 {
348 /* Computing MIN */
349 i4 = 256;
350 i5 = m - ii + 1;
351 isec = min(i4,i5);
352 uisec = isec - isec % 2;
353 i4 = ll + ulsec - 1;
354 for (l = ll; l <= i4; l += 2)
355 {
356 i5 = ii + uisec - 1;
357 for (i = ii; i <= i5; i += 2)
358 {
359 t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
360 a[i + l * a_dim1];
361 t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
362 a[i + (l + 1) * a_dim1];
363 t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
364 a[i + 1 + l * a_dim1];
365 t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
366 a[i + 1 + (l + 1) * a_dim1];
367 }
368 if (uisec < isec)
369 {
370 t1[l - ll + 1 + (isec << 8) - 257] =
371 a[ii + isec - 1 + l * a_dim1];
372 t1[l - ll + 2 + (isec << 8) - 257] =
373 a[ii + isec - 1 + (l + 1) * a_dim1];
374 }
375 }
376 if (ulsec < lsec)
377 {
378 i4 = ii + isec - 1;
379 for (i = ii; i<= i4; ++i)
380 {
381 t1[lsec + ((i - ii + 1) << 8) - 257] =
382 a[i + (ll + lsec - 1) * a_dim1];
383 }
384 }
385
386 uisec = isec - isec % 4;
387 i4 = jj + ujsec - 1;
388 for (j = jj; j <= i4; j += 4)
389 {
390 i5 = ii + uisec - 1;
391 for (i = ii; i <= i5; i += 4)
392 {
393 f11 = c[i + j * c_dim1];
394 f21 = c[i + 1 + j * c_dim1];
395 f12 = c[i + (j + 1) * c_dim1];
396 f22 = c[i + 1 + (j + 1) * c_dim1];
397 f13 = c[i + (j + 2) * c_dim1];
398 f23 = c[i + 1 + (j + 2) * c_dim1];
399 f14 = c[i + (j + 3) * c_dim1];
400 f24 = c[i + 1 + (j + 3) * c_dim1];
401 f31 = c[i + 2 + j * c_dim1];
402 f41 = c[i + 3 + j * c_dim1];
403 f32 = c[i + 2 + (j + 1) * c_dim1];
404 f42 = c[i + 3 + (j + 1) * c_dim1];
405 f33 = c[i + 2 + (j + 2) * c_dim1];
406 f43 = c[i + 3 + (j + 2) * c_dim1];
407 f34 = c[i + 2 + (j + 3) * c_dim1];
408 f44 = c[i + 3 + (j + 3) * c_dim1];
409 i6 = ll + lsec - 1;
410 for (l = ll; l <= i6; ++l)
411 {
412 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
413 * b[l + j * b_dim1];
414 f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
415 * b[l + j * b_dim1];
416 f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
417 * b[l + (j + 1) * b_dim1];
418 f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
419 * b[l + (j + 1) * b_dim1];
420 f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
421 * b[l + (j + 2) * b_dim1];
422 f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
423 * b[l + (j + 2) * b_dim1];
424 f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
425 * b[l + (j + 3) * b_dim1];
426 f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
427 * b[l + (j + 3) * b_dim1];
428 f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
429 * b[l + j * b_dim1];
430 f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
431 * b[l + j * b_dim1];
432 f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
433 * b[l + (j + 1) * b_dim1];
434 f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
435 * b[l + (j + 1) * b_dim1];
436 f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
437 * b[l + (j + 2) * b_dim1];
438 f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
439 * b[l + (j + 2) * b_dim1];
440 f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
441 * b[l + (j + 3) * b_dim1];
442 f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
443 * b[l + (j + 3) * b_dim1];
444 }
445 c[i + j * c_dim1] = f11;
446 c[i + 1 + j * c_dim1] = f21;
447 c[i + (j + 1) * c_dim1] = f12;
448 c[i + 1 + (j + 1) * c_dim1] = f22;
449 c[i + (j + 2) * c_dim1] = f13;
450 c[i + 1 + (j + 2) * c_dim1] = f23;
451 c[i + (j + 3) * c_dim1] = f14;
452 c[i + 1 + (j + 3) * c_dim1] = f24;
453 c[i + 2 + j * c_dim1] = f31;
454 c[i + 3 + j * c_dim1] = f41;
455 c[i + 2 + (j + 1) * c_dim1] = f32;
456 c[i + 3 + (j + 1) * c_dim1] = f42;
457 c[i + 2 + (j + 2) * c_dim1] = f33;
458 c[i + 3 + (j + 2) * c_dim1] = f43;
459 c[i + 2 + (j + 3) * c_dim1] = f34;
460 c[i + 3 + (j + 3) * c_dim1] = f44;
461 }
462 if (uisec < isec)
463 {
464 i5 = ii + isec - 1;
465 for (i = ii + uisec; i <= i5; ++i)
466 {
467 f11 = c[i + j * c_dim1];
468 f12 = c[i + (j + 1) * c_dim1];
469 f13 = c[i + (j + 2) * c_dim1];
470 f14 = c[i + (j + 3) * c_dim1];
471 i6 = ll + lsec - 1;
472 for (l = ll; l <= i6; ++l)
473 {
474 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
475 257] * b[l + j * b_dim1];
476 f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
477 257] * b[l + (j + 1) * b_dim1];
478 f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
479 257] * b[l + (j + 2) * b_dim1];
480 f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
481 257] * b[l + (j + 3) * b_dim1];
482 }
483 c[i + j * c_dim1] = f11;
484 c[i + (j + 1) * c_dim1] = f12;
485 c[i + (j + 2) * c_dim1] = f13;
486 c[i + (j + 3) * c_dim1] = f14;
487 }
488 }
489 }
490 if (ujsec < jsec)
491 {
492 i4 = jj + jsec - 1;
493 for (j = jj + ujsec; j <= i4; ++j)
494 {
495 i5 = ii + uisec - 1;
496 for (i = ii; i <= i5; i += 4)
497 {
498 f11 = c[i + j * c_dim1];
499 f21 = c[i + 1 + j * c_dim1];
500 f31 = c[i + 2 + j * c_dim1];
501 f41 = c[i + 3 + j * c_dim1];
502 i6 = ll + lsec - 1;
503 for (l = ll; l <= i6; ++l)
504 {
505 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
506 257] * b[l + j * b_dim1];
507 f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
508 257] * b[l + j * b_dim1];
509 f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
510 257] * b[l + j * b_dim1];
511 f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
512 257] * b[l + j * b_dim1];
513 }
514 c[i + j * c_dim1] = f11;
515 c[i + 1 + j * c_dim1] = f21;
516 c[i + 2 + j * c_dim1] = f31;
517 c[i + 3 + j * c_dim1] = f41;
518 }
519 i5 = ii + isec - 1;
520 for (i = ii + uisec; i <= i5; ++i)
521 {
522 f11 = c[i + j * c_dim1];
523 i6 = ll + lsec - 1;
524 for (l = ll; l <= i6; ++l)
525 {
526 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
527 257] * b[l + j * b_dim1];
528 }
529 c[i + j * c_dim1] = f11;
530 }
531 }
532 }
533 }
534 }
535 }
8e5f30dc 536 free(t1);
31cfd832
TK
537 return;
538 }
539 else if (rxstride == 1 && aystride == 1 && bxstride == 1)
540 {
541 if (GFC_DESCRIPTOR_RANK (a) != 1)
542 {
543 const GFC_INTEGER_16 *restrict abase_x;
544 const GFC_INTEGER_16 *restrict bbase_y;
545 GFC_INTEGER_16 *restrict dest_y;
546 GFC_INTEGER_16 s;
547
548 for (y = 0; y < ycount; y++)
549 {
550 bbase_y = &bbase[y*bystride];
551 dest_y = &dest[y*rystride];
552 for (x = 0; x < xcount; x++)
553 {
554 abase_x = &abase[x*axstride];
555 s = (GFC_INTEGER_16) 0;
556 for (n = 0; n < count; n++)
557 s += abase_x[n] * bbase_y[n];
558 dest_y[x] = s;
559 }
560 }
561 }
562 else
563 {
564 const GFC_INTEGER_16 *restrict bbase_y;
565 GFC_INTEGER_16 s;
566
567 for (y = 0; y < ycount; y++)
568 {
569 bbase_y = &bbase[y*bystride];
570 s = (GFC_INTEGER_16) 0;
571 for (n = 0; n < count; n++)
572 s += abase[n*axstride] * bbase_y[n];
573 dest[y*rystride] = s;
574 }
575 }
576 }
577 else if (axstride < aystride)
578 {
579 for (y = 0; y < ycount; y++)
580 for (x = 0; x < xcount; x++)
581 dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0;
582
583 for (y = 0; y < ycount; y++)
584 for (n = 0; n < count; n++)
585 for (x = 0; x < xcount; x++)
586 /* dest[x,y] += a[x,n] * b[n,y] */
587 dest[x*rxstride + y*rystride] +=
588 abase[x*axstride + n*aystride] *
589 bbase[n*bxstride + y*bystride];
590 }
591 else if (GFC_DESCRIPTOR_RANK (a) == 1)
592 {
593 const GFC_INTEGER_16 *restrict bbase_y;
594 GFC_INTEGER_16 s;
595
596 for (y = 0; y < ycount; y++)
597 {
598 bbase_y = &bbase[y*bystride];
599 s = (GFC_INTEGER_16) 0;
600 for (n = 0; n < count; n++)
601 s += abase[n*axstride] * bbase_y[n*bxstride];
602 dest[y*rxstride] = s;
603 }
604 }
605 else
606 {
607 const GFC_INTEGER_16 *restrict abase_x;
608 const GFC_INTEGER_16 *restrict bbase_y;
609 GFC_INTEGER_16 *restrict dest_y;
610 GFC_INTEGER_16 s;
611
612 for (y = 0; y < ycount; y++)
613 {
614 bbase_y = &bbase[y*bystride];
615 dest_y = &dest[y*rystride];
616 for (x = 0; x < xcount; x++)
617 {
618 abase_x = &abase[x*axstride];
619 s = (GFC_INTEGER_16) 0;
620 for (n = 0; n < count; n++)
621 s += abase_x[n*aystride] * bbase_y[n*bxstride];
622 dest_y[x*rxstride] = s;
623 }
624 }
625 }
626}
627#undef POW3
628#undef min
629#undef max
630
631#endif /* HAVE_AVX */
632
633#ifdef HAVE_AVX2
634static void
635matmul_i16_avx2 (gfc_array_i16 * const restrict retarray,
636 gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
6d03bdcc 637 int blas_limit, blas_call gemm) __attribute__((__target__("avx2,fma")));
31cfd832
TK
638static void
639matmul_i16_avx2 (gfc_array_i16 * const restrict retarray,
640 gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
641 int blas_limit, blas_call gemm)
642{
643 const GFC_INTEGER_16 * restrict abase;
644 const GFC_INTEGER_16 * restrict bbase;
645 GFC_INTEGER_16 * restrict dest;
646
647 index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
648 index_type x, y, n, count, xcount, ycount;
649
650 assert (GFC_DESCRIPTOR_RANK (a) == 2
651 || GFC_DESCRIPTOR_RANK (b) == 2);
652
653/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
654
655 Either A or B (but not both) can be rank 1:
656
657 o One-dimensional argument A is implicitly treated as a row matrix
658 dimensioned [1,count], so xcount=1.
659
660 o One-dimensional argument B is implicitly treated as a column matrix
661 dimensioned [count, 1], so ycount=1.
662*/
663
664 if (retarray->base_addr == NULL)
665 {
666 if (GFC_DESCRIPTOR_RANK (a) == 1)
667 {
668 GFC_DIMENSION_SET(retarray->dim[0], 0,
669 GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
670 }
671 else if (GFC_DESCRIPTOR_RANK (b) == 1)
672 {
673 GFC_DIMENSION_SET(retarray->dim[0], 0,
674 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
675 }
676 else
677 {
678 GFC_DIMENSION_SET(retarray->dim[0], 0,
679 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
680
681 GFC_DIMENSION_SET(retarray->dim[1], 0,
682 GFC_DESCRIPTOR_EXTENT(b,1) - 1,
683 GFC_DESCRIPTOR_EXTENT(retarray,0));
684 }
685
686 retarray->base_addr
687 = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16));
688 retarray->offset = 0;
689 }
690 else if (unlikely (compile_options.bounds_check))
691 {
692 index_type ret_extent, arg_extent;
693
694 if (GFC_DESCRIPTOR_RANK (a) == 1)
695 {
696 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
697 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
698 if (arg_extent != ret_extent)
699 runtime_error ("Incorrect extent in return array in"
700 " MATMUL intrinsic: is %ld, should be %ld",
701 (long int) ret_extent, (long int) arg_extent);
702 }
703 else if (GFC_DESCRIPTOR_RANK (b) == 1)
704 {
705 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
706 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
707 if (arg_extent != ret_extent)
708 runtime_error ("Incorrect extent in return array in"
709 " MATMUL intrinsic: is %ld, should be %ld",
710 (long int) ret_extent, (long int) arg_extent);
711 }
712 else
713 {
714 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
715 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
716 if (arg_extent != ret_extent)
717 runtime_error ("Incorrect extent in return array in"
718 " MATMUL intrinsic for dimension 1:"
719 " is %ld, should be %ld",
720 (long int) ret_extent, (long int) arg_extent);
721
722 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
723 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
724 if (arg_extent != ret_extent)
725 runtime_error ("Incorrect extent in return array in"
726 " MATMUL intrinsic for dimension 2:"
727 " is %ld, should be %ld",
728 (long int) ret_extent, (long int) arg_extent);
729 }
730 }
731
732
733 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
734 {
735 /* One-dimensional result may be addressed in the code below
736 either as a row or a column matrix. We want both cases to
737 work. */
738 rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
739 }
740 else
741 {
742 rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
743 rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
744 }
745
746
747 if (GFC_DESCRIPTOR_RANK (a) == 1)
748 {
749 /* Treat it as a a row matrix A[1,count]. */
750 axstride = GFC_DESCRIPTOR_STRIDE(a,0);
751 aystride = 1;
752
753 xcount = 1;
754 count = GFC_DESCRIPTOR_EXTENT(a,0);
755 }
756 else
757 {
758 axstride = GFC_DESCRIPTOR_STRIDE(a,0);
759 aystride = GFC_DESCRIPTOR_STRIDE(a,1);
760
761 count = GFC_DESCRIPTOR_EXTENT(a,1);
762 xcount = GFC_DESCRIPTOR_EXTENT(a,0);
763 }
764
765 if (count != GFC_DESCRIPTOR_EXTENT(b,0))
766 {
767 if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
768 runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
769 }
770
771 if (GFC_DESCRIPTOR_RANK (b) == 1)
772 {
773 /* Treat it as a column matrix B[count,1] */
774 bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
775
776 /* bystride should never be used for 1-dimensional b.
777 in case it is we want it to cause a segfault, rather than
778 an incorrect result. */
779 bystride = 0xDEADBEEF;
780 ycount = 1;
781 }
782 else
783 {
784 bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
785 bystride = GFC_DESCRIPTOR_STRIDE(b,1);
786 ycount = GFC_DESCRIPTOR_EXTENT(b,1);
787 }
788
789 abase = a->base_addr;
790 bbase = b->base_addr;
791 dest = retarray->base_addr;
792
793 /* Now that everything is set up, we perform the multiplication
794 itself. */
795
796#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
797#define min(a,b) ((a) <= (b) ? (a) : (b))
798#define max(a,b) ((a) >= (b) ? (a) : (b))
799
800 if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
801 && (bxstride == 1 || bystride == 1)
802 && (((float) xcount) * ((float) ycount) * ((float) count)
803 > POW3(blas_limit)))
804 {
805 const int m = xcount, n = ycount, k = count, ldc = rystride;
806 const GFC_INTEGER_16 one = 1, zero = 0;
807 const int lda = (axstride == 1) ? aystride : axstride,
808 ldb = (bxstride == 1) ? bystride : bxstride;
809
810 if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
811 {
812 assert (gemm != NULL);
813 gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
814 &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
815 &ldc, 1, 1);
816 return;
817 }
818 }
819
820 if (rxstride == 1 && axstride == 1 && bxstride == 1)
821 {
822 /* This block of code implements a tuned matmul, derived from
823 Superscalar GEMM-based level 3 BLAS, Beta version 0.1
824
825 Bo Kagstrom and Per Ling
826 Department of Computing Science
827 Umea University
828 S-901 87 Umea, Sweden
829
830 from netlib.org, translated to C, and modified for matmul.m4. */
831
832 const GFC_INTEGER_16 *a, *b;
833 GFC_INTEGER_16 *c;
834 const index_type m = xcount, n = ycount, k = count;
835
836 /* System generated locals */
837 index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
838 i1, i2, i3, i4, i5, i6;
839
840 /* Local variables */
fd991039 841 GFC_INTEGER_16 f11, f12, f21, f22, f31, f32, f41, f42,
31cfd832
TK
842 f13, f14, f23, f24, f33, f34, f43, f44;
843 index_type i, j, l, ii, jj, ll;
844 index_type isec, jsec, lsec, uisec, ujsec, ulsec;
8e5f30dc 845 GFC_INTEGER_16 *t1;
31cfd832
TK
846
847 a = abase;
848 b = bbase;
849 c = retarray->base_addr;
850
851 /* Parameter adjustments */
852 c_dim1 = rystride;
853 c_offset = 1 + c_dim1;
854 c -= c_offset;
855 a_dim1 = aystride;
856 a_offset = 1 + a_dim1;
857 a -= a_offset;
858 b_dim1 = bystride;
859 b_offset = 1 + b_dim1;
860 b -= b_offset;
861
862 /* Early exit if possible */
863 if (m == 0 || n == 0 || k == 0)
864 return;
865
fd991039
TK
866 /* Adjust size of t1 to what is needed. */
867 index_type t1_dim;
868 t1_dim = (a_dim1-1) * 256 + b_dim1;
869 if (t1_dim > 65536)
870 t1_dim = 65536;
871
8e5f30dc 872 t1 = malloc (t1_dim * sizeof(GFC_INTEGER_16));
fd991039 873
31cfd832
TK
874 /* Empty c first. */
875 for (j=1; j<=n; j++)
876 for (i=1; i<=m; i++)
877 c[i + j * c_dim1] = (GFC_INTEGER_16)0;
878
879 /* Start turning the crank. */
880 i1 = n;
881 for (jj = 1; jj <= i1; jj += 512)
882 {
883 /* Computing MIN */
884 i2 = 512;
885 i3 = n - jj + 1;
886 jsec = min(i2,i3);
887 ujsec = jsec - jsec % 4;
888 i2 = k;
889 for (ll = 1; ll <= i2; ll += 256)
890 {
891 /* Computing MIN */
892 i3 = 256;
893 i4 = k - ll + 1;
894 lsec = min(i3,i4);
895 ulsec = lsec - lsec % 2;
896
897 i3 = m;
898 for (ii = 1; ii <= i3; ii += 256)
899 {
900 /* Computing MIN */
901 i4 = 256;
902 i5 = m - ii + 1;
903 isec = min(i4,i5);
904 uisec = isec - isec % 2;
905 i4 = ll + ulsec - 1;
906 for (l = ll; l <= i4; l += 2)
907 {
908 i5 = ii + uisec - 1;
909 for (i = ii; i <= i5; i += 2)
910 {
911 t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
912 a[i + l * a_dim1];
913 t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
914 a[i + (l + 1) * a_dim1];
915 t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
916 a[i + 1 + l * a_dim1];
917 t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
918 a[i + 1 + (l + 1) * a_dim1];
919 }
920 if (uisec < isec)
921 {
922 t1[l - ll + 1 + (isec << 8) - 257] =
923 a[ii + isec - 1 + l * a_dim1];
924 t1[l - ll + 2 + (isec << 8) - 257] =
925 a[ii + isec - 1 + (l + 1) * a_dim1];
926 }
927 }
928 if (ulsec < lsec)
929 {
930 i4 = ii + isec - 1;
931 for (i = ii; i<= i4; ++i)
932 {
933 t1[lsec + ((i - ii + 1) << 8) - 257] =
934 a[i + (ll + lsec - 1) * a_dim1];
935 }
936 }
937
938 uisec = isec - isec % 4;
939 i4 = jj + ujsec - 1;
940 for (j = jj; j <= i4; j += 4)
941 {
942 i5 = ii + uisec - 1;
943 for (i = ii; i <= i5; i += 4)
944 {
945 f11 = c[i + j * c_dim1];
946 f21 = c[i + 1 + j * c_dim1];
947 f12 = c[i + (j + 1) * c_dim1];
948 f22 = c[i + 1 + (j + 1) * c_dim1];
949 f13 = c[i + (j + 2) * c_dim1];
950 f23 = c[i + 1 + (j + 2) * c_dim1];
951 f14 = c[i + (j + 3) * c_dim1];
952 f24 = c[i + 1 + (j + 3) * c_dim1];
953 f31 = c[i + 2 + j * c_dim1];
954 f41 = c[i + 3 + j * c_dim1];
955 f32 = c[i + 2 + (j + 1) * c_dim1];
956 f42 = c[i + 3 + (j + 1) * c_dim1];
957 f33 = c[i + 2 + (j + 2) * c_dim1];
958 f43 = c[i + 3 + (j + 2) * c_dim1];
959 f34 = c[i + 2 + (j + 3) * c_dim1];
960 f44 = c[i + 3 + (j + 3) * c_dim1];
961 i6 = ll + lsec - 1;
962 for (l = ll; l <= i6; ++l)
963 {
964 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
965 * b[l + j * b_dim1];
966 f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
967 * b[l + j * b_dim1];
968 f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
969 * b[l + (j + 1) * b_dim1];
970 f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
971 * b[l + (j + 1) * b_dim1];
972 f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
973 * b[l + (j + 2) * b_dim1];
974 f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
975 * b[l + (j + 2) * b_dim1];
976 f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
977 * b[l + (j + 3) * b_dim1];
978 f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
979 * b[l + (j + 3) * b_dim1];
980 f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
981 * b[l + j * b_dim1];
982 f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
983 * b[l + j * b_dim1];
984 f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
985 * b[l + (j + 1) * b_dim1];
986 f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
987 * b[l + (j + 1) * b_dim1];
988 f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
989 * b[l + (j + 2) * b_dim1];
990 f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
991 * b[l + (j + 2) * b_dim1];
992 f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
993 * b[l + (j + 3) * b_dim1];
994 f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
995 * b[l + (j + 3) * b_dim1];
996 }
997 c[i + j * c_dim1] = f11;
998 c[i + 1 + j * c_dim1] = f21;
999 c[i + (j + 1) * c_dim1] = f12;
1000 c[i + 1 + (j + 1) * c_dim1] = f22;
1001 c[i + (j + 2) * c_dim1] = f13;
1002 c[i + 1 + (j + 2) * c_dim1] = f23;
1003 c[i + (j + 3) * c_dim1] = f14;
1004 c[i + 1 + (j + 3) * c_dim1] = f24;
1005 c[i + 2 + j * c_dim1] = f31;
1006 c[i + 3 + j * c_dim1] = f41;
1007 c[i + 2 + (j + 1) * c_dim1] = f32;
1008 c[i + 3 + (j + 1) * c_dim1] = f42;
1009 c[i + 2 + (j + 2) * c_dim1] = f33;
1010 c[i + 3 + (j + 2) * c_dim1] = f43;
1011 c[i + 2 + (j + 3) * c_dim1] = f34;
1012 c[i + 3 + (j + 3) * c_dim1] = f44;
1013 }
1014 if (uisec < isec)
1015 {
1016 i5 = ii + isec - 1;
1017 for (i = ii + uisec; i <= i5; ++i)
1018 {
1019 f11 = c[i + j * c_dim1];
1020 f12 = c[i + (j + 1) * c_dim1];
1021 f13 = c[i + (j + 2) * c_dim1];
1022 f14 = c[i + (j + 3) * c_dim1];
1023 i6 = ll + lsec - 1;
1024 for (l = ll; l <= i6; ++l)
1025 {
1026 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
1027 257] * b[l + j * b_dim1];
1028 f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
1029 257] * b[l + (j + 1) * b_dim1];
1030 f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
1031 257] * b[l + (j + 2) * b_dim1];
1032 f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
1033 257] * b[l + (j + 3) * b_dim1];
1034 }
1035 c[i + j * c_dim1] = f11;
1036 c[i + (j + 1) * c_dim1] = f12;
1037 c[i + (j + 2) * c_dim1] = f13;
1038 c[i + (j + 3) * c_dim1] = f14;
1039 }
1040 }
1041 }
1042 if (ujsec < jsec)
1043 {
1044 i4 = jj + jsec - 1;
1045 for (j = jj + ujsec; j <= i4; ++j)
1046 {
1047 i5 = ii + uisec - 1;
1048 for (i = ii; i <= i5; i += 4)
1049 {
1050 f11 = c[i + j * c_dim1];
1051 f21 = c[i + 1 + j * c_dim1];
1052 f31 = c[i + 2 + j * c_dim1];
1053 f41 = c[i + 3 + j * c_dim1];
1054 i6 = ll + lsec - 1;
1055 for (l = ll; l <= i6; ++l)
1056 {
1057 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
1058 257] * b[l + j * b_dim1];
1059 f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
1060 257] * b[l + j * b_dim1];
1061 f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
1062 257] * b[l + j * b_dim1];
1063 f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
1064 257] * b[l + j * b_dim1];
1065 }
1066 c[i + j * c_dim1] = f11;
1067 c[i + 1 + j * c_dim1] = f21;
1068 c[i + 2 + j * c_dim1] = f31;
1069 c[i + 3 + j * c_dim1] = f41;
1070 }
1071 i5 = ii + isec - 1;
1072 for (i = ii + uisec; i <= i5; ++i)
1073 {
1074 f11 = c[i + j * c_dim1];
1075 i6 = ll + lsec - 1;
1076 for (l = ll; l <= i6; ++l)
1077 {
1078 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
1079 257] * b[l + j * b_dim1];
1080 }
1081 c[i + j * c_dim1] = f11;
1082 }
1083 }
1084 }
1085 }
1086 }
1087 }
8e5f30dc 1088 free(t1);
31cfd832
TK
1089 return;
1090 }
1091 else if (rxstride == 1 && aystride == 1 && bxstride == 1)
1092 {
1093 if (GFC_DESCRIPTOR_RANK (a) != 1)
1094 {
1095 const GFC_INTEGER_16 *restrict abase_x;
1096 const GFC_INTEGER_16 *restrict bbase_y;
1097 GFC_INTEGER_16 *restrict dest_y;
1098 GFC_INTEGER_16 s;
1099
1100 for (y = 0; y < ycount; y++)
1101 {
1102 bbase_y = &bbase[y*bystride];
1103 dest_y = &dest[y*rystride];
1104 for (x = 0; x < xcount; x++)
1105 {
1106 abase_x = &abase[x*axstride];
1107 s = (GFC_INTEGER_16) 0;
1108 for (n = 0; n < count; n++)
1109 s += abase_x[n] * bbase_y[n];
1110 dest_y[x] = s;
1111 }
1112 }
1113 }
1114 else
1115 {
1116 const GFC_INTEGER_16 *restrict bbase_y;
1117 GFC_INTEGER_16 s;
1118
1119 for (y = 0; y < ycount; y++)
1120 {
1121 bbase_y = &bbase[y*bystride];
1122 s = (GFC_INTEGER_16) 0;
1123 for (n = 0; n < count; n++)
1124 s += abase[n*axstride] * bbase_y[n];
1125 dest[y*rystride] = s;
1126 }
1127 }
1128 }
1129 else if (axstride < aystride)
1130 {
1131 for (y = 0; y < ycount; y++)
1132 for (x = 0; x < xcount; x++)
1133 dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0;
1134
1135 for (y = 0; y < ycount; y++)
1136 for (n = 0; n < count; n++)
1137 for (x = 0; x < xcount; x++)
1138 /* dest[x,y] += a[x,n] * b[n,y] */
1139 dest[x*rxstride + y*rystride] +=
1140 abase[x*axstride + n*aystride] *
1141 bbase[n*bxstride + y*bystride];
1142 }
1143 else if (GFC_DESCRIPTOR_RANK (a) == 1)
1144 {
1145 const GFC_INTEGER_16 *restrict bbase_y;
1146 GFC_INTEGER_16 s;
1147
1148 for (y = 0; y < ycount; y++)
1149 {
1150 bbase_y = &bbase[y*bystride];
1151 s = (GFC_INTEGER_16) 0;
1152 for (n = 0; n < count; n++)
1153 s += abase[n*axstride] * bbase_y[n*bxstride];
1154 dest[y*rxstride] = s;
1155 }
1156 }
1157 else
1158 {
1159 const GFC_INTEGER_16 *restrict abase_x;
1160 const GFC_INTEGER_16 *restrict bbase_y;
1161 GFC_INTEGER_16 *restrict dest_y;
1162 GFC_INTEGER_16 s;
1163
1164 for (y = 0; y < ycount; y++)
1165 {
1166 bbase_y = &bbase[y*bystride];
1167 dest_y = &dest[y*rystride];
1168 for (x = 0; x < xcount; x++)
1169 {
1170 abase_x = &abase[x*axstride];
1171 s = (GFC_INTEGER_16) 0;
1172 for (n = 0; n < count; n++)
1173 s += abase_x[n*aystride] * bbase_y[n*bxstride];
1174 dest_y[x*rxstride] = s;
1175 }
1176 }
1177 }
1178}
1179#undef POW3
1180#undef min
1181#undef max
1182
1183#endif /* HAVE_AVX2 */
1184
1185#ifdef HAVE_AVX512F
1186static void
1187matmul_i16_avx512f (gfc_array_i16 * const restrict retarray,
1188 gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
1189 int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
1190static void
1191matmul_i16_avx512f (gfc_array_i16 * const restrict retarray,
1192 gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
1193 int blas_limit, blas_call gemm)
1194{
1195 const GFC_INTEGER_16 * restrict abase;
1196 const GFC_INTEGER_16 * restrict bbase;
1197 GFC_INTEGER_16 * restrict dest;
1198
1199 index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
1200 index_type x, y, n, count, xcount, ycount;
1201
1202 assert (GFC_DESCRIPTOR_RANK (a) == 2
1203 || GFC_DESCRIPTOR_RANK (b) == 2);
1204
1205/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
1206
1207 Either A or B (but not both) can be rank 1:
1208
1209 o One-dimensional argument A is implicitly treated as a row matrix
1210 dimensioned [1,count], so xcount=1.
1211
1212 o One-dimensional argument B is implicitly treated as a column matrix
1213 dimensioned [count, 1], so ycount=1.
1214*/
1215
1216 if (retarray->base_addr == NULL)
1217 {
1218 if (GFC_DESCRIPTOR_RANK (a) == 1)
1219 {
1220 GFC_DIMENSION_SET(retarray->dim[0], 0,
1221 GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
1222 }
1223 else if (GFC_DESCRIPTOR_RANK (b) == 1)
1224 {
1225 GFC_DIMENSION_SET(retarray->dim[0], 0,
1226 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
1227 }
1228 else
1229 {
1230 GFC_DIMENSION_SET(retarray->dim[0], 0,
1231 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
1232
1233 GFC_DIMENSION_SET(retarray->dim[1], 0,
1234 GFC_DESCRIPTOR_EXTENT(b,1) - 1,
1235 GFC_DESCRIPTOR_EXTENT(retarray,0));
1236 }
1237
1238 retarray->base_addr
1239 = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16));
1240 retarray->offset = 0;
1241 }
1242 else if (unlikely (compile_options.bounds_check))
1243 {
1244 index_type ret_extent, arg_extent;
1245
1246 if (GFC_DESCRIPTOR_RANK (a) == 1)
1247 {
1248 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
1249 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
1250 if (arg_extent != ret_extent)
1251 runtime_error ("Incorrect extent in return array in"
1252 " MATMUL intrinsic: is %ld, should be %ld",
1253 (long int) ret_extent, (long int) arg_extent);
1254 }
1255 else if (GFC_DESCRIPTOR_RANK (b) == 1)
1256 {
1257 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
1258 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
1259 if (arg_extent != ret_extent)
1260 runtime_error ("Incorrect extent in return array in"
1261 " MATMUL intrinsic: is %ld, should be %ld",
1262 (long int) ret_extent, (long int) arg_extent);
1263 }
1264 else
1265 {
1266 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
1267 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
1268 if (arg_extent != ret_extent)
1269 runtime_error ("Incorrect extent in return array in"
1270 " MATMUL intrinsic for dimension 1:"
1271 " is %ld, should be %ld",
1272 (long int) ret_extent, (long int) arg_extent);
1273
1274 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
1275 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
1276 if (arg_extent != ret_extent)
1277 runtime_error ("Incorrect extent in return array in"
1278 " MATMUL intrinsic for dimension 2:"
1279 " is %ld, should be %ld",
1280 (long int) ret_extent, (long int) arg_extent);
1281 }
1282 }
1283
1284
1285 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
1286 {
1287 /* One-dimensional result may be addressed in the code below
1288 either as a row or a column matrix. We want both cases to
1289 work. */
1290 rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
1291 }
1292 else
1293 {
1294 rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
1295 rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
1296 }
1297
1298
1299 if (GFC_DESCRIPTOR_RANK (a) == 1)
1300 {
1301 /* Treat it as a a row matrix A[1,count]. */
1302 axstride = GFC_DESCRIPTOR_STRIDE(a,0);
1303 aystride = 1;
1304
1305 xcount = 1;
1306 count = GFC_DESCRIPTOR_EXTENT(a,0);
1307 }
1308 else
1309 {
1310 axstride = GFC_DESCRIPTOR_STRIDE(a,0);
1311 aystride = GFC_DESCRIPTOR_STRIDE(a,1);
1312
1313 count = GFC_DESCRIPTOR_EXTENT(a,1);
1314 xcount = GFC_DESCRIPTOR_EXTENT(a,0);
1315 }
1316
1317 if (count != GFC_DESCRIPTOR_EXTENT(b,0))
1318 {
1319 if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
1320 runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
1321 }
1322
1323 if (GFC_DESCRIPTOR_RANK (b) == 1)
1324 {
1325 /* Treat it as a column matrix B[count,1] */
1326 bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
1327
1328 /* bystride should never be used for 1-dimensional b.
1329 in case it is we want it to cause a segfault, rather than
1330 an incorrect result. */
1331 bystride = 0xDEADBEEF;
1332 ycount = 1;
1333 }
1334 else
1335 {
1336 bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
1337 bystride = GFC_DESCRIPTOR_STRIDE(b,1);
1338 ycount = GFC_DESCRIPTOR_EXTENT(b,1);
1339 }
1340
1341 abase = a->base_addr;
1342 bbase = b->base_addr;
1343 dest = retarray->base_addr;
1344
1345 /* Now that everything is set up, we perform the multiplication
1346 itself. */
1347
1348#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
1349#define min(a,b) ((a) <= (b) ? (a) : (b))
1350#define max(a,b) ((a) >= (b) ? (a) : (b))
1351
1352 if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
1353 && (bxstride == 1 || bystride == 1)
1354 && (((float) xcount) * ((float) ycount) * ((float) count)
1355 > POW3(blas_limit)))
1356 {
1357 const int m = xcount, n = ycount, k = count, ldc = rystride;
1358 const GFC_INTEGER_16 one = 1, zero = 0;
1359 const int lda = (axstride == 1) ? aystride : axstride,
1360 ldb = (bxstride == 1) ? bystride : bxstride;
1361
1362 if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
1363 {
1364 assert (gemm != NULL);
1365 gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
1366 &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
1367 &ldc, 1, 1);
1368 return;
1369 }
1370 }
1371
1372 if (rxstride == 1 && axstride == 1 && bxstride == 1)
1373 {
1374 /* This block of code implements a tuned matmul, derived from
1375 Superscalar GEMM-based level 3 BLAS, Beta version 0.1
1376
1377 Bo Kagstrom and Per Ling
1378 Department of Computing Science
1379 Umea University
1380 S-901 87 Umea, Sweden
1381
1382 from netlib.org, translated to C, and modified for matmul.m4. */
1383
1384 const GFC_INTEGER_16 *a, *b;
1385 GFC_INTEGER_16 *c;
1386 const index_type m = xcount, n = ycount, k = count;
1387
1388 /* System generated locals */
1389 index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
1390 i1, i2, i3, i4, i5, i6;
1391
1392 /* Local variables */
fd991039 1393 GFC_INTEGER_16 f11, f12, f21, f22, f31, f32, f41, f42,
31cfd832
TK
1394 f13, f14, f23, f24, f33, f34, f43, f44;
1395 index_type i, j, l, ii, jj, ll;
1396 index_type isec, jsec, lsec, uisec, ujsec, ulsec;
8e5f30dc 1397 GFC_INTEGER_16 *t1;
31cfd832
TK
1398
1399 a = abase;
1400 b = bbase;
1401 c = retarray->base_addr;
1402
1403 /* Parameter adjustments */
1404 c_dim1 = rystride;
1405 c_offset = 1 + c_dim1;
1406 c -= c_offset;
1407 a_dim1 = aystride;
1408 a_offset = 1 + a_dim1;
1409 a -= a_offset;
1410 b_dim1 = bystride;
1411 b_offset = 1 + b_dim1;
1412 b -= b_offset;
1413
1414 /* Early exit if possible */
1415 if (m == 0 || n == 0 || k == 0)
1416 return;
1417
fd991039
TK
1418 /* Adjust size of t1 to what is needed. */
1419 index_type t1_dim;
1420 t1_dim = (a_dim1-1) * 256 + b_dim1;
1421 if (t1_dim > 65536)
1422 t1_dim = 65536;
1423
8e5f30dc 1424 t1 = malloc (t1_dim * sizeof(GFC_INTEGER_16));
fd991039 1425
31cfd832
TK
1426 /* Empty c first. */
1427 for (j=1; j<=n; j++)
1428 for (i=1; i<=m; i++)
1429 c[i + j * c_dim1] = (GFC_INTEGER_16)0;
1430
1431 /* Start turning the crank. */
1432 i1 = n;
1433 for (jj = 1; jj <= i1; jj += 512)
1434 {
1435 /* Computing MIN */
1436 i2 = 512;
1437 i3 = n - jj + 1;
1438 jsec = min(i2,i3);
1439 ujsec = jsec - jsec % 4;
1440 i2 = k;
1441 for (ll = 1; ll <= i2; ll += 256)
1442 {
1443 /* Computing MIN */
1444 i3 = 256;
1445 i4 = k - ll + 1;
1446 lsec = min(i3,i4);
1447 ulsec = lsec - lsec % 2;
1448
1449 i3 = m;
1450 for (ii = 1; ii <= i3; ii += 256)
1451 {
1452 /* Computing MIN */
1453 i4 = 256;
1454 i5 = m - ii + 1;
1455 isec = min(i4,i5);
1456 uisec = isec - isec % 2;
1457 i4 = ll + ulsec - 1;
1458 for (l = ll; l <= i4; l += 2)
1459 {
1460 i5 = ii + uisec - 1;
1461 for (i = ii; i <= i5; i += 2)
1462 {
1463 t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
1464 a[i + l * a_dim1];
1465 t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
1466 a[i + (l + 1) * a_dim1];
1467 t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
1468 a[i + 1 + l * a_dim1];
1469 t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
1470 a[i + 1 + (l + 1) * a_dim1];
1471 }
1472 if (uisec < isec)
1473 {
1474 t1[l - ll + 1 + (isec << 8) - 257] =
1475 a[ii + isec - 1 + l * a_dim1];
1476 t1[l - ll + 2 + (isec << 8) - 257] =
1477 a[ii + isec - 1 + (l + 1) * a_dim1];
1478 }
1479 }
1480 if (ulsec < lsec)
1481 {
1482 i4 = ii + isec - 1;
1483 for (i = ii; i<= i4; ++i)
1484 {
1485 t1[lsec + ((i - ii + 1) << 8) - 257] =
1486 a[i + (ll + lsec - 1) * a_dim1];
1487 }
1488 }
1489
1490 uisec = isec - isec % 4;
1491 i4 = jj + ujsec - 1;
1492 for (j = jj; j <= i4; j += 4)
1493 {
1494 i5 = ii + uisec - 1;
1495 for (i = ii; i <= i5; i += 4)
1496 {
1497 f11 = c[i + j * c_dim1];
1498 f21 = c[i + 1 + j * c_dim1];
1499 f12 = c[i + (j + 1) * c_dim1];
1500 f22 = c[i + 1 + (j + 1) * c_dim1];
1501 f13 = c[i + (j + 2) * c_dim1];
1502 f23 = c[i + 1 + (j + 2) * c_dim1];
1503 f14 = c[i + (j + 3) * c_dim1];
1504 f24 = c[i + 1 + (j + 3) * c_dim1];
1505 f31 = c[i + 2 + j * c_dim1];
1506 f41 = c[i + 3 + j * c_dim1];
1507 f32 = c[i + 2 + (j + 1) * c_dim1];
1508 f42 = c[i + 3 + (j + 1) * c_dim1];
1509 f33 = c[i + 2 + (j + 2) * c_dim1];
1510 f43 = c[i + 3 + (j + 2) * c_dim1];
1511 f34 = c[i + 2 + (j + 3) * c_dim1];
1512 f44 = c[i + 3 + (j + 3) * c_dim1];
1513 i6 = ll + lsec - 1;
1514 for (l = ll; l <= i6; ++l)
1515 {
1516 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
1517 * b[l + j * b_dim1];
1518 f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
1519 * b[l + j * b_dim1];
1520 f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
1521 * b[l + (j + 1) * b_dim1];
1522 f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
1523 * b[l + (j + 1) * b_dim1];
1524 f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
1525 * b[l + (j + 2) * b_dim1];
1526 f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
1527 * b[l + (j + 2) * b_dim1];
1528 f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
1529 * b[l + (j + 3) * b_dim1];
1530 f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
1531 * b[l + (j + 3) * b_dim1];
1532 f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
1533 * b[l + j * b_dim1];
1534 f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
1535 * b[l + j * b_dim1];
1536 f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
1537 * b[l + (j + 1) * b_dim1];
1538 f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
1539 * b[l + (j + 1) * b_dim1];
1540 f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
1541 * b[l + (j + 2) * b_dim1];
1542 f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
1543 * b[l + (j + 2) * b_dim1];
1544 f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
1545 * b[l + (j + 3) * b_dim1];
1546 f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
1547 * b[l + (j + 3) * b_dim1];
1548 }
1549 c[i + j * c_dim1] = f11;
1550 c[i + 1 + j * c_dim1] = f21;
1551 c[i + (j + 1) * c_dim1] = f12;
1552 c[i + 1 + (j + 1) * c_dim1] = f22;
1553 c[i + (j + 2) * c_dim1] = f13;
1554 c[i + 1 + (j + 2) * c_dim1] = f23;
1555 c[i + (j + 3) * c_dim1] = f14;
1556 c[i + 1 + (j + 3) * c_dim1] = f24;
1557 c[i + 2 + j * c_dim1] = f31;
1558 c[i + 3 + j * c_dim1] = f41;
1559 c[i + 2 + (j + 1) * c_dim1] = f32;
1560 c[i + 3 + (j + 1) * c_dim1] = f42;
1561 c[i + 2 + (j + 2) * c_dim1] = f33;
1562 c[i + 3 + (j + 2) * c_dim1] = f43;
1563 c[i + 2 + (j + 3) * c_dim1] = f34;
1564 c[i + 3 + (j + 3) * c_dim1] = f44;
1565 }
1566 if (uisec < isec)
1567 {
1568 i5 = ii + isec - 1;
1569 for (i = ii + uisec; i <= i5; ++i)
1570 {
1571 f11 = c[i + j * c_dim1];
1572 f12 = c[i + (j + 1) * c_dim1];
1573 f13 = c[i + (j + 2) * c_dim1];
1574 f14 = c[i + (j + 3) * c_dim1];
1575 i6 = ll + lsec - 1;
1576 for (l = ll; l <= i6; ++l)
1577 {
1578 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
1579 257] * b[l + j * b_dim1];
1580 f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
1581 257] * b[l + (j + 1) * b_dim1];
1582 f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
1583 257] * b[l + (j + 2) * b_dim1];
1584 f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
1585 257] * b[l + (j + 3) * b_dim1];
1586 }
1587 c[i + j * c_dim1] = f11;
1588 c[i + (j + 1) * c_dim1] = f12;
1589 c[i + (j + 2) * c_dim1] = f13;
1590 c[i + (j + 3) * c_dim1] = f14;
1591 }
1592 }
1593 }
1594 if (ujsec < jsec)
1595 {
1596 i4 = jj + jsec - 1;
1597 for (j = jj + ujsec; j <= i4; ++j)
1598 {
1599 i5 = ii + uisec - 1;
1600 for (i = ii; i <= i5; i += 4)
1601 {
1602 f11 = c[i + j * c_dim1];
1603 f21 = c[i + 1 + j * c_dim1];
1604 f31 = c[i + 2 + j * c_dim1];
1605 f41 = c[i + 3 + j * c_dim1];
1606 i6 = ll + lsec - 1;
1607 for (l = ll; l <= i6; ++l)
1608 {
1609 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
1610 257] * b[l + j * b_dim1];
1611 f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
1612 257] * b[l + j * b_dim1];
1613 f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
1614 257] * b[l + j * b_dim1];
1615 f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
1616 257] * b[l + j * b_dim1];
1617 }
1618 c[i + j * c_dim1] = f11;
1619 c[i + 1 + j * c_dim1] = f21;
1620 c[i + 2 + j * c_dim1] = f31;
1621 c[i + 3 + j * c_dim1] = f41;
1622 }
1623 i5 = ii + isec - 1;
1624 for (i = ii + uisec; i <= i5; ++i)
1625 {
1626 f11 = c[i + j * c_dim1];
1627 i6 = ll + lsec - 1;
1628 for (l = ll; l <= i6; ++l)
1629 {
1630 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
1631 257] * b[l + j * b_dim1];
1632 }
1633 c[i + j * c_dim1] = f11;
1634 }
1635 }
1636 }
1637 }
1638 }
1639 }
8e5f30dc 1640 free(t1);
31cfd832
TK
1641 return;
1642 }
1643 else if (rxstride == 1 && aystride == 1 && bxstride == 1)
1644 {
1645 if (GFC_DESCRIPTOR_RANK (a) != 1)
1646 {
1647 const GFC_INTEGER_16 *restrict abase_x;
1648 const GFC_INTEGER_16 *restrict bbase_y;
1649 GFC_INTEGER_16 *restrict dest_y;
1650 GFC_INTEGER_16 s;
1651
1652 for (y = 0; y < ycount; y++)
1653 {
1654 bbase_y = &bbase[y*bystride];
1655 dest_y = &dest[y*rystride];
1656 for (x = 0; x < xcount; x++)
1657 {
1658 abase_x = &abase[x*axstride];
1659 s = (GFC_INTEGER_16) 0;
1660 for (n = 0; n < count; n++)
1661 s += abase_x[n] * bbase_y[n];
1662 dest_y[x] = s;
1663 }
1664 }
1665 }
1666 else
1667 {
1668 const GFC_INTEGER_16 *restrict bbase_y;
1669 GFC_INTEGER_16 s;
1670
1671 for (y = 0; y < ycount; y++)
1672 {
1673 bbase_y = &bbase[y*bystride];
1674 s = (GFC_INTEGER_16) 0;
1675 for (n = 0; n < count; n++)
1676 s += abase[n*axstride] * bbase_y[n];
1677 dest[y*rystride] = s;
1678 }
1679 }
1680 }
1681 else if (axstride < aystride)
1682 {
1683 for (y = 0; y < ycount; y++)
1684 for (x = 0; x < xcount; x++)
1685 dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0;
1686
1687 for (y = 0; y < ycount; y++)
1688 for (n = 0; n < count; n++)
1689 for (x = 0; x < xcount; x++)
1690 /* dest[x,y] += a[x,n] * b[n,y] */
1691 dest[x*rxstride + y*rystride] +=
1692 abase[x*axstride + n*aystride] *
1693 bbase[n*bxstride + y*bystride];
1694 }
1695 else if (GFC_DESCRIPTOR_RANK (a) == 1)
1696 {
1697 const GFC_INTEGER_16 *restrict bbase_y;
1698 GFC_INTEGER_16 s;
1699
1700 for (y = 0; y < ycount; y++)
1701 {
1702 bbase_y = &bbase[y*bystride];
1703 s = (GFC_INTEGER_16) 0;
1704 for (n = 0; n < count; n++)
1705 s += abase[n*axstride] * bbase_y[n*bxstride];
1706 dest[y*rxstride] = s;
1707 }
1708 }
1709 else
1710 {
1711 const GFC_INTEGER_16 *restrict abase_x;
1712 const GFC_INTEGER_16 *restrict bbase_y;
1713 GFC_INTEGER_16 *restrict dest_y;
1714 GFC_INTEGER_16 s;
1715
1716 for (y = 0; y < ycount; y++)
1717 {
1718 bbase_y = &bbase[y*bystride];
1719 dest_y = &dest[y*rystride];
1720 for (x = 0; x < xcount; x++)
1721 {
1722 abase_x = &abase[x*axstride];
1723 s = (GFC_INTEGER_16) 0;
1724 for (n = 0; n < count; n++)
1725 s += abase_x[n*aystride] * bbase_y[n*bxstride];
1726 dest_y[x*rxstride] = s;
1727 }
1728 }
1729 }
1730}
1731#undef POW3
1732#undef min
1733#undef max
1734
1735#endif /* HAVE_AVX512F */
1736
1737/* Function to fall back to if there is no special processor-specific version. */
1738static void
1739matmul_i16_vanilla (gfc_array_i16 * const restrict retarray,
1740 gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
1741 int blas_limit, blas_call gemm)
1742{
1743 const GFC_INTEGER_16 * restrict abase;
1744 const GFC_INTEGER_16 * restrict bbase;
1745 GFC_INTEGER_16 * restrict dest;
1746
1747 index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
1748 index_type x, y, n, count, xcount, ycount;
1749
1750 assert (GFC_DESCRIPTOR_RANK (a) == 2
1751 || GFC_DESCRIPTOR_RANK (b) == 2);
1752
1753/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
1754
1755 Either A or B (but not both) can be rank 1:
1756
1757 o One-dimensional argument A is implicitly treated as a row matrix
1758 dimensioned [1,count], so xcount=1.
1759
1760 o One-dimensional argument B is implicitly treated as a column matrix
1761 dimensioned [count, 1], so ycount=1.
1762*/
1763
1764 if (retarray->base_addr == NULL)
1765 {
1766 if (GFC_DESCRIPTOR_RANK (a) == 1)
1767 {
1768 GFC_DIMENSION_SET(retarray->dim[0], 0,
1769 GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
1770 }
1771 else if (GFC_DESCRIPTOR_RANK (b) == 1)
1772 {
1773 GFC_DIMENSION_SET(retarray->dim[0], 0,
1774 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
1775 }
1776 else
1777 {
1778 GFC_DIMENSION_SET(retarray->dim[0], 0,
1779 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
1780
1781 GFC_DIMENSION_SET(retarray->dim[1], 0,
1782 GFC_DESCRIPTOR_EXTENT(b,1) - 1,
1783 GFC_DESCRIPTOR_EXTENT(retarray,0));
1784 }
1785
1786 retarray->base_addr
1787 = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16));
1788 retarray->offset = 0;
1789 }
1790 else if (unlikely (compile_options.bounds_check))
1791 {
1792 index_type ret_extent, arg_extent;
1793
1794 if (GFC_DESCRIPTOR_RANK (a) == 1)
1795 {
1796 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
1797 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
1798 if (arg_extent != ret_extent)
1799 runtime_error ("Incorrect extent in return array in"
1800 " MATMUL intrinsic: is %ld, should be %ld",
1801 (long int) ret_extent, (long int) arg_extent);
1802 }
1803 else if (GFC_DESCRIPTOR_RANK (b) == 1)
1804 {
1805 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
1806 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
1807 if (arg_extent != ret_extent)
1808 runtime_error ("Incorrect extent in return array in"
1809 " MATMUL intrinsic: is %ld, should be %ld",
1810 (long int) ret_extent, (long int) arg_extent);
1811 }
1812 else
1813 {
1814 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
1815 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
1816 if (arg_extent != ret_extent)
1817 runtime_error ("Incorrect extent in return array in"
1818 " MATMUL intrinsic for dimension 1:"
1819 " is %ld, should be %ld",
1820 (long int) ret_extent, (long int) arg_extent);
1821
1822 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
1823 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
1824 if (arg_extent != ret_extent)
1825 runtime_error ("Incorrect extent in return array in"
1826 " MATMUL intrinsic for dimension 2:"
1827 " is %ld, should be %ld",
1828 (long int) ret_extent, (long int) arg_extent);
1829 }
1830 }
1831
1832
1833 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
1834 {
1835 /* One-dimensional result may be addressed in the code below
1836 either as a row or a column matrix. We want both cases to
1837 work. */
1838 rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
1839 }
1840 else
1841 {
1842 rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
1843 rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
1844 }
1845
1846
1847 if (GFC_DESCRIPTOR_RANK (a) == 1)
1848 {
1849 /* Treat it as a a row matrix A[1,count]. */
1850 axstride = GFC_DESCRIPTOR_STRIDE(a,0);
1851 aystride = 1;
1852
1853 xcount = 1;
1854 count = GFC_DESCRIPTOR_EXTENT(a,0);
1855 }
1856 else
1857 {
1858 axstride = GFC_DESCRIPTOR_STRIDE(a,0);
1859 aystride = GFC_DESCRIPTOR_STRIDE(a,1);
1860
1861 count = GFC_DESCRIPTOR_EXTENT(a,1);
1862 xcount = GFC_DESCRIPTOR_EXTENT(a,0);
1863 }
1864
1865 if (count != GFC_DESCRIPTOR_EXTENT(b,0))
1866 {
1867 if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
1868 runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
1869 }
1870
1871 if (GFC_DESCRIPTOR_RANK (b) == 1)
1872 {
1873 /* Treat it as a column matrix B[count,1] */
1874 bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
1875
1876 /* bystride should never be used for 1-dimensional b.
1877 in case it is we want it to cause a segfault, rather than
1878 an incorrect result. */
1879 bystride = 0xDEADBEEF;
1880 ycount = 1;
1881 }
1882 else
1883 {
1884 bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
1885 bystride = GFC_DESCRIPTOR_STRIDE(b,1);
1886 ycount = GFC_DESCRIPTOR_EXTENT(b,1);
1887 }
1888
1889 abase = a->base_addr;
1890 bbase = b->base_addr;
1891 dest = retarray->base_addr;
1892
1893 /* Now that everything is set up, we perform the multiplication
1894 itself. */
1895
1896#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
1897#define min(a,b) ((a) <= (b) ? (a) : (b))
1898#define max(a,b) ((a) >= (b) ? (a) : (b))
1899
1900 if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
1901 && (bxstride == 1 || bystride == 1)
1902 && (((float) xcount) * ((float) ycount) * ((float) count)
1903 > POW3(blas_limit)))
1904 {
1905 const int m = xcount, n = ycount, k = count, ldc = rystride;
1906 const GFC_INTEGER_16 one = 1, zero = 0;
1907 const int lda = (axstride == 1) ? aystride : axstride,
1908 ldb = (bxstride == 1) ? bystride : bxstride;
1909
1910 if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
1911 {
1912 assert (gemm != NULL);
1913 gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
1914 &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
1915 &ldc, 1, 1);
1916 return;
1917 }
1918 }
1919
1920 if (rxstride == 1 && axstride == 1 && bxstride == 1)
1921 {
1922 /* This block of code implements a tuned matmul, derived from
1923 Superscalar GEMM-based level 3 BLAS, Beta version 0.1
1924
1925 Bo Kagstrom and Per Ling
1926 Department of Computing Science
1927 Umea University
1928 S-901 87 Umea, Sweden
1929
1930 from netlib.org, translated to C, and modified for matmul.m4. */
1931
1932 const GFC_INTEGER_16 *a, *b;
1933 GFC_INTEGER_16 *c;
1934 const index_type m = xcount, n = ycount, k = count;
1935
1936 /* System generated locals */
1937 index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
1938 i1, i2, i3, i4, i5, i6;
1939
1940 /* Local variables */
fd991039 1941 GFC_INTEGER_16 f11, f12, f21, f22, f31, f32, f41, f42,
31cfd832
TK
1942 f13, f14, f23, f24, f33, f34, f43, f44;
1943 index_type i, j, l, ii, jj, ll;
1944 index_type isec, jsec, lsec, uisec, ujsec, ulsec;
8e5f30dc 1945 GFC_INTEGER_16 *t1;
31cfd832
TK
1946
1947 a = abase;
1948 b = bbase;
1949 c = retarray->base_addr;
1950
1951 /* Parameter adjustments */
1952 c_dim1 = rystride;
1953 c_offset = 1 + c_dim1;
1954 c -= c_offset;
1955 a_dim1 = aystride;
1956 a_offset = 1 + a_dim1;
1957 a -= a_offset;
1958 b_dim1 = bystride;
1959 b_offset = 1 + b_dim1;
1960 b -= b_offset;
1961
1962 /* Early exit if possible */
1963 if (m == 0 || n == 0 || k == 0)
1964 return;
1965
fd991039
TK
1966 /* Adjust size of t1 to what is needed. */
1967 index_type t1_dim;
1968 t1_dim = (a_dim1-1) * 256 + b_dim1;
1969 if (t1_dim > 65536)
1970 t1_dim = 65536;
1971
8e5f30dc 1972 t1 = malloc (t1_dim * sizeof(GFC_INTEGER_16));
fd991039 1973
31cfd832
TK
1974 /* Empty c first. */
1975 for (j=1; j<=n; j++)
1976 for (i=1; i<=m; i++)
1977 c[i + j * c_dim1] = (GFC_INTEGER_16)0;
1978
1979 /* Start turning the crank. */
1980 i1 = n;
1981 for (jj = 1; jj <= i1; jj += 512)
1982 {
1983 /* Computing MIN */
1984 i2 = 512;
1985 i3 = n - jj + 1;
1986 jsec = min(i2,i3);
1987 ujsec = jsec - jsec % 4;
1988 i2 = k;
1989 for (ll = 1; ll <= i2; ll += 256)
1990 {
1991 /* Computing MIN */
1992 i3 = 256;
1993 i4 = k - ll + 1;
1994 lsec = min(i3,i4);
1995 ulsec = lsec - lsec % 2;
1996
1997 i3 = m;
1998 for (ii = 1; ii <= i3; ii += 256)
1999 {
2000 /* Computing MIN */
2001 i4 = 256;
2002 i5 = m - ii + 1;
2003 isec = min(i4,i5);
2004 uisec = isec - isec % 2;
2005 i4 = ll + ulsec - 1;
2006 for (l = ll; l <= i4; l += 2)
2007 {
2008 i5 = ii + uisec - 1;
2009 for (i = ii; i <= i5; i += 2)
2010 {
2011 t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
2012 a[i + l * a_dim1];
2013 t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
2014 a[i + (l + 1) * a_dim1];
2015 t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
2016 a[i + 1 + l * a_dim1];
2017 t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
2018 a[i + 1 + (l + 1) * a_dim1];
2019 }
2020 if (uisec < isec)
2021 {
2022 t1[l - ll + 1 + (isec << 8) - 257] =
2023 a[ii + isec - 1 + l * a_dim1];
2024 t1[l - ll + 2 + (isec << 8) - 257] =
2025 a[ii + isec - 1 + (l + 1) * a_dim1];
2026 }
2027 }
2028 if (ulsec < lsec)
2029 {
2030 i4 = ii + isec - 1;
2031 for (i = ii; i<= i4; ++i)
2032 {
2033 t1[lsec + ((i - ii + 1) << 8) - 257] =
2034 a[i + (ll + lsec - 1) * a_dim1];
2035 }
2036 }
2037
2038 uisec = isec - isec % 4;
2039 i4 = jj + ujsec - 1;
2040 for (j = jj; j <= i4; j += 4)
2041 {
2042 i5 = ii + uisec - 1;
2043 for (i = ii; i <= i5; i += 4)
2044 {
2045 f11 = c[i + j * c_dim1];
2046 f21 = c[i + 1 + j * c_dim1];
2047 f12 = c[i + (j + 1) * c_dim1];
2048 f22 = c[i + 1 + (j + 1) * c_dim1];
2049 f13 = c[i + (j + 2) * c_dim1];
2050 f23 = c[i + 1 + (j + 2) * c_dim1];
2051 f14 = c[i + (j + 3) * c_dim1];
2052 f24 = c[i + 1 + (j + 3) * c_dim1];
2053 f31 = c[i + 2 + j * c_dim1];
2054 f41 = c[i + 3 + j * c_dim1];
2055 f32 = c[i + 2 + (j + 1) * c_dim1];
2056 f42 = c[i + 3 + (j + 1) * c_dim1];
2057 f33 = c[i + 2 + (j + 2) * c_dim1];
2058 f43 = c[i + 3 + (j + 2) * c_dim1];
2059 f34 = c[i + 2 + (j + 3) * c_dim1];
2060 f44 = c[i + 3 + (j + 3) * c_dim1];
2061 i6 = ll + lsec - 1;
2062 for (l = ll; l <= i6; ++l)
2063 {
2064 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
2065 * b[l + j * b_dim1];
2066 f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
2067 * b[l + j * b_dim1];
2068 f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
2069 * b[l + (j + 1) * b_dim1];
2070 f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
2071 * b[l + (j + 1) * b_dim1];
2072 f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
2073 * b[l + (j + 2) * b_dim1];
2074 f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
2075 * b[l + (j + 2) * b_dim1];
2076 f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
2077 * b[l + (j + 3) * b_dim1];
2078 f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
2079 * b[l + (j + 3) * b_dim1];
2080 f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
2081 * b[l + j * b_dim1];
2082 f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
2083 * b[l + j * b_dim1];
2084 f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
2085 * b[l + (j + 1) * b_dim1];
2086 f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
2087 * b[l + (j + 1) * b_dim1];
2088 f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
2089 * b[l + (j + 2) * b_dim1];
2090 f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
2091 * b[l + (j + 2) * b_dim1];
2092 f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
2093 * b[l + (j + 3) * b_dim1];
2094 f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
2095 * b[l + (j + 3) * b_dim1];
2096 }
2097 c[i + j * c_dim1] = f11;
2098 c[i + 1 + j * c_dim1] = f21;
2099 c[i + (j + 1) * c_dim1] = f12;
2100 c[i + 1 + (j + 1) * c_dim1] = f22;
2101 c[i + (j + 2) * c_dim1] = f13;
2102 c[i + 1 + (j + 2) * c_dim1] = f23;
2103 c[i + (j + 3) * c_dim1] = f14;
2104 c[i + 1 + (j + 3) * c_dim1] = f24;
2105 c[i + 2 + j * c_dim1] = f31;
2106 c[i + 3 + j * c_dim1] = f41;
2107 c[i + 2 + (j + 1) * c_dim1] = f32;
2108 c[i + 3 + (j + 1) * c_dim1] = f42;
2109 c[i + 2 + (j + 2) * c_dim1] = f33;
2110 c[i + 3 + (j + 2) * c_dim1] = f43;
2111 c[i + 2 + (j + 3) * c_dim1] = f34;
2112 c[i + 3 + (j + 3) * c_dim1] = f44;
2113 }
2114 if (uisec < isec)
2115 {
2116 i5 = ii + isec - 1;
2117 for (i = ii + uisec; i <= i5; ++i)
2118 {
2119 f11 = c[i + j * c_dim1];
2120 f12 = c[i + (j + 1) * c_dim1];
2121 f13 = c[i + (j + 2) * c_dim1];
2122 f14 = c[i + (j + 3) * c_dim1];
2123 i6 = ll + lsec - 1;
2124 for (l = ll; l <= i6; ++l)
2125 {
2126 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
2127 257] * b[l + j * b_dim1];
2128 f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
2129 257] * b[l + (j + 1) * b_dim1];
2130 f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
2131 257] * b[l + (j + 2) * b_dim1];
2132 f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
2133 257] * b[l + (j + 3) * b_dim1];
2134 }
2135 c[i + j * c_dim1] = f11;
2136 c[i + (j + 1) * c_dim1] = f12;
2137 c[i + (j + 2) * c_dim1] = f13;
2138 c[i + (j + 3) * c_dim1] = f14;
2139 }
2140 }
2141 }
2142 if (ujsec < jsec)
2143 {
2144 i4 = jj + jsec - 1;
2145 for (j = jj + ujsec; j <= i4; ++j)
2146 {
2147 i5 = ii + uisec - 1;
2148 for (i = ii; i <= i5; i += 4)
2149 {
2150 f11 = c[i + j * c_dim1];
2151 f21 = c[i + 1 + j * c_dim1];
2152 f31 = c[i + 2 + j * c_dim1];
2153 f41 = c[i + 3 + j * c_dim1];
2154 i6 = ll + lsec - 1;
2155 for (l = ll; l <= i6; ++l)
2156 {
2157 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
2158 257] * b[l + j * b_dim1];
2159 f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
2160 257] * b[l + j * b_dim1];
2161 f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
2162 257] * b[l + j * b_dim1];
2163 f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
2164 257] * b[l + j * b_dim1];
2165 }
2166 c[i + j * c_dim1] = f11;
2167 c[i + 1 + j * c_dim1] = f21;
2168 c[i + 2 + j * c_dim1] = f31;
2169 c[i + 3 + j * c_dim1] = f41;
2170 }
2171 i5 = ii + isec - 1;
2172 for (i = ii + uisec; i <= i5; ++i)
2173 {
2174 f11 = c[i + j * c_dim1];
2175 i6 = ll + lsec - 1;
2176 for (l = ll; l <= i6; ++l)
2177 {
2178 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
2179 257] * b[l + j * b_dim1];
2180 }
2181 c[i + j * c_dim1] = f11;
2182 }
2183 }
2184 }
2185 }
2186 }
2187 }
8e5f30dc 2188 free(t1);
31cfd832
TK
2189 return;
2190 }
2191 else if (rxstride == 1 && aystride == 1 && bxstride == 1)
2192 {
2193 if (GFC_DESCRIPTOR_RANK (a) != 1)
2194 {
2195 const GFC_INTEGER_16 *restrict abase_x;
2196 const GFC_INTEGER_16 *restrict bbase_y;
2197 GFC_INTEGER_16 *restrict dest_y;
2198 GFC_INTEGER_16 s;
2199
2200 for (y = 0; y < ycount; y++)
2201 {
2202 bbase_y = &bbase[y*bystride];
2203 dest_y = &dest[y*rystride];
2204 for (x = 0; x < xcount; x++)
2205 {
2206 abase_x = &abase[x*axstride];
2207 s = (GFC_INTEGER_16) 0;
2208 for (n = 0; n < count; n++)
2209 s += abase_x[n] * bbase_y[n];
2210 dest_y[x] = s;
2211 }
2212 }
2213 }
2214 else
2215 {
2216 const GFC_INTEGER_16 *restrict bbase_y;
2217 GFC_INTEGER_16 s;
2218
2219 for (y = 0; y < ycount; y++)
2220 {
2221 bbase_y = &bbase[y*bystride];
2222 s = (GFC_INTEGER_16) 0;
2223 for (n = 0; n < count; n++)
2224 s += abase[n*axstride] * bbase_y[n];
2225 dest[y*rystride] = s;
2226 }
2227 }
2228 }
2229 else if (axstride < aystride)
2230 {
2231 for (y = 0; y < ycount; y++)
2232 for (x = 0; x < xcount; x++)
2233 dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0;
2234
2235 for (y = 0; y < ycount; y++)
2236 for (n = 0; n < count; n++)
2237 for (x = 0; x < xcount; x++)
2238 /* dest[x,y] += a[x,n] * b[n,y] */
2239 dest[x*rxstride + y*rystride] +=
2240 abase[x*axstride + n*aystride] *
2241 bbase[n*bxstride + y*bystride];
2242 }
2243 else if (GFC_DESCRIPTOR_RANK (a) == 1)
2244 {
2245 const GFC_INTEGER_16 *restrict bbase_y;
2246 GFC_INTEGER_16 s;
2247
2248 for (y = 0; y < ycount; y++)
2249 {
2250 bbase_y = &bbase[y*bystride];
2251 s = (GFC_INTEGER_16) 0;
2252 for (n = 0; n < count; n++)
2253 s += abase[n*axstride] * bbase_y[n*bxstride];
2254 dest[y*rxstride] = s;
2255 }
2256 }
2257 else
2258 {
2259 const GFC_INTEGER_16 *restrict abase_x;
2260 const GFC_INTEGER_16 *restrict bbase_y;
2261 GFC_INTEGER_16 *restrict dest_y;
2262 GFC_INTEGER_16 s;
2263
2264 for (y = 0; y < ycount; y++)
2265 {
2266 bbase_y = &bbase[y*bystride];
2267 dest_y = &dest[y*rystride];
2268 for (x = 0; x < xcount; x++)
2269 {
2270 abase_x = &abase[x*axstride];
2271 s = (GFC_INTEGER_16) 0;
2272 for (n = 0; n < count; n++)
2273 s += abase_x[n*aystride] * bbase_y[n*bxstride];
2274 dest_y[x*rxstride] = s;
2275 }
2276 }
2277 }
2278}
2279#undef POW3
2280#undef min
2281#undef max
2282
2283
2284/* Compiling main function, with selection code for the processor. */
2285
2286/* Currently, this is i386 only. Adjust for other architectures. */
2287
2288#include <config/i386/cpuinfo.h>
2289void matmul_i16 (gfc_array_i16 * const restrict retarray,
2290 gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
2291 int blas_limit, blas_call gemm)
2292{
2293 static void (*matmul_p) (gfc_array_i16 * const restrict retarray,
2294 gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
f03e9217
TK
2295 int blas_limit, blas_call gemm);
2296
2297 void (*matmul_fn) (gfc_array_i16 * const restrict retarray,
2298 gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
2299 int blas_limit, blas_call gemm);
31cfd832 2300
f03e9217
TK
2301 matmul_fn = __atomic_load_n (&matmul_p, __ATOMIC_RELAXED);
2302 if (matmul_fn == NULL)
31cfd832 2303 {
f03e9217 2304 matmul_fn = matmul_i16_vanilla;
31cfd832
TK
2305 if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
2306 {
2307 /* Run down the available processors in order of preference. */
2308#ifdef HAVE_AVX512F
2309 if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
2310 {
f03e9217
TK
2311 matmul_fn = matmul_i16_avx512f;
2312 goto store;
31cfd832
TK
2313 }
2314
2315#endif /* HAVE_AVX512F */
2316
2317#ifdef HAVE_AVX2
6d03bdcc
TK
2318 if ((__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
2319 && (__cpu_model.__cpu_features[0] & (1 << FEATURE_FMA)))
31cfd832 2320 {
f03e9217
TK
2321 matmul_fn = matmul_i16_avx2;
2322 goto store;
31cfd832
TK
2323 }
2324
2325#endif
2326
2327#ifdef HAVE_AVX
2328 if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
2329 {
f03e9217
TK
2330 matmul_fn = matmul_i16_avx;
2331 goto store;
31cfd832
TK
2332 }
2333#endif /* HAVE_AVX */
2334 }
f03e9217
TK
2335 store:
2336 __atomic_store_n (&matmul_p, matmul_fn, __ATOMIC_RELAXED);
31cfd832
TK
2337 }
2338
f03e9217 2339 (*matmul_fn) (retarray, a, b, try_blas, blas_limit, gemm);
31cfd832
TK
2340}
2341
2342#else /* Just the vanilla function. */
2343
644cb69f 2344void
85206901 2345matmul_i16 (gfc_array_i16 * const restrict retarray,
5a0aad31
FXC
2346 gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
2347 int blas_limit, blas_call gemm)
644cb69f 2348{
85206901
JB
2349 const GFC_INTEGER_16 * restrict abase;
2350 const GFC_INTEGER_16 * restrict bbase;
2351 GFC_INTEGER_16 * restrict dest;
644cb69f
FXC
2352
2353 index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
2354 index_type x, y, n, count, xcount, ycount;
2355
2356 assert (GFC_DESCRIPTOR_RANK (a) == 2
2357 || GFC_DESCRIPTOR_RANK (b) == 2);
2358
2359/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
2360
2361 Either A or B (but not both) can be rank 1:
2362
2363 o One-dimensional argument A is implicitly treated as a row matrix
2364 dimensioned [1,count], so xcount=1.
2365
2366 o One-dimensional argument B is implicitly treated as a column matrix
2367 dimensioned [count, 1], so ycount=1.
5d70ab07 2368*/
644cb69f 2369
21d1335b 2370 if (retarray->base_addr == NULL)
644cb69f
FXC
2371 {
2372 if (GFC_DESCRIPTOR_RANK (a) == 1)
2373 {
dfb55fdc
TK
2374 GFC_DIMENSION_SET(retarray->dim[0], 0,
2375 GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
644cb69f
FXC
2376 }
2377 else if (GFC_DESCRIPTOR_RANK (b) == 1)
2378 {
dfb55fdc
TK
2379 GFC_DIMENSION_SET(retarray->dim[0], 0,
2380 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
644cb69f
FXC
2381 }
2382 else
2383 {
dfb55fdc
TK
2384 GFC_DIMENSION_SET(retarray->dim[0], 0,
2385 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
644cb69f 2386
dfb55fdc
TK
2387 GFC_DIMENSION_SET(retarray->dim[1], 0,
2388 GFC_DESCRIPTOR_EXTENT(b,1) - 1,
2389 GFC_DESCRIPTOR_EXTENT(retarray,0));
644cb69f
FXC
2390 }
2391
21d1335b 2392 retarray->base_addr
92e6f3a4 2393 = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16));
644cb69f
FXC
2394 retarray->offset = 0;
2395 }
5d70ab07
JD
2396 else if (unlikely (compile_options.bounds_check))
2397 {
2398 index_type ret_extent, arg_extent;
2399
2400 if (GFC_DESCRIPTOR_RANK (a) == 1)
2401 {
2402 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
2403 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
2404 if (arg_extent != ret_extent)
2405 runtime_error ("Incorrect extent in return array in"
2406 " MATMUL intrinsic: is %ld, should be %ld",
2407 (long int) ret_extent, (long int) arg_extent);
2408 }
2409 else if (GFC_DESCRIPTOR_RANK (b) == 1)
2410 {
2411 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
2412 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
2413 if (arg_extent != ret_extent)
2414 runtime_error ("Incorrect extent in return array in"
2415 " MATMUL intrinsic: is %ld, should be %ld",
2416 (long int) ret_extent, (long int) arg_extent);
2417 }
2418 else
2419 {
2420 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
2421 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
2422 if (arg_extent != ret_extent)
2423 runtime_error ("Incorrect extent in return array in"
2424 " MATMUL intrinsic for dimension 1:"
2425 " is %ld, should be %ld",
2426 (long int) ret_extent, (long int) arg_extent);
2427
2428 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
2429 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
2430 if (arg_extent != ret_extent)
2431 runtime_error ("Incorrect extent in return array in"
2432 " MATMUL intrinsic for dimension 2:"
2433 " is %ld, should be %ld",
2434 (long int) ret_extent, (long int) arg_extent);
2435 }
2436 }
644cb69f 2437
644cb69f
FXC
2438
2439 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
2440 {
2441 /* One-dimensional result may be addressed in the code below
2442 either as a row or a column matrix. We want both cases to
2443 work. */
dfb55fdc 2444 rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
644cb69f
FXC
2445 }
2446 else
2447 {
dfb55fdc
TK
2448 rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
2449 rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
644cb69f
FXC
2450 }
2451
2452
2453 if (GFC_DESCRIPTOR_RANK (a) == 1)
2454 {
2455 /* Treat it as a a row matrix A[1,count]. */
dfb55fdc 2456 axstride = GFC_DESCRIPTOR_STRIDE(a,0);
644cb69f
FXC
2457 aystride = 1;
2458
2459 xcount = 1;
dfb55fdc 2460 count = GFC_DESCRIPTOR_EXTENT(a,0);
644cb69f
FXC
2461 }
2462 else
2463 {
dfb55fdc
TK
2464 axstride = GFC_DESCRIPTOR_STRIDE(a,0);
2465 aystride = GFC_DESCRIPTOR_STRIDE(a,1);
644cb69f 2466
dfb55fdc
TK
2467 count = GFC_DESCRIPTOR_EXTENT(a,1);
2468 xcount = GFC_DESCRIPTOR_EXTENT(a,0);
644cb69f
FXC
2469 }
2470
dfb55fdc 2471 if (count != GFC_DESCRIPTOR_EXTENT(b,0))
7edc89d4 2472 {
dfb55fdc 2473 if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
7edc89d4
TK
2474 runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
2475 }
644cb69f
FXC
2476
2477 if (GFC_DESCRIPTOR_RANK (b) == 1)
2478 {
2479 /* Treat it as a column matrix B[count,1] */
dfb55fdc 2480 bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
644cb69f
FXC
2481
2482 /* bystride should never be used for 1-dimensional b.
2483 in case it is we want it to cause a segfault, rather than
2484 an incorrect result. */
2485 bystride = 0xDEADBEEF;
2486 ycount = 1;
2487 }
2488 else
2489 {
dfb55fdc
TK
2490 bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
2491 bystride = GFC_DESCRIPTOR_STRIDE(b,1);
2492 ycount = GFC_DESCRIPTOR_EXTENT(b,1);
644cb69f
FXC
2493 }
2494
21d1335b
TB
2495 abase = a->base_addr;
2496 bbase = b->base_addr;
2497 dest = retarray->base_addr;
644cb69f 2498
5d70ab07 2499 /* Now that everything is set up, we perform the multiplication
5a0aad31
FXC
2500 itself. */
2501
2502#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
5d70ab07
JD
2503#define min(a,b) ((a) <= (b) ? (a) : (b))
2504#define max(a,b) ((a) >= (b) ? (a) : (b))
5a0aad31
FXC
2505
2506 if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
2507 && (bxstride == 1 || bystride == 1)
2508 && (((float) xcount) * ((float) ycount) * ((float) count)
2509 > POW3(blas_limit)))
644cb69f 2510 {
5d70ab07
JD
2511 const int m = xcount, n = ycount, k = count, ldc = rystride;
2512 const GFC_INTEGER_16 one = 1, zero = 0;
2513 const int lda = (axstride == 1) ? aystride : axstride,
2514 ldb = (bxstride == 1) ? bystride : bxstride;
644cb69f 2515
5d70ab07 2516 if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
644cb69f 2517 {
5d70ab07
JD
2518 assert (gemm != NULL);
2519 gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
2520 &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
2521 &ldc, 1, 1);
2522 return;
644cb69f 2523 }
5d70ab07 2524 }
644cb69f 2525
5d70ab07
JD
2526 if (rxstride == 1 && axstride == 1 && bxstride == 1)
2527 {
2528 /* This block of code implements a tuned matmul, derived from
2529 Superscalar GEMM-based level 3 BLAS, Beta version 0.1
2530
2531 Bo Kagstrom and Per Ling
2532 Department of Computing Science
2533 Umea University
2534 S-901 87 Umea, Sweden
2535
2536 from netlib.org, translated to C, and modified for matmul.m4. */
2537
2538 const GFC_INTEGER_16 *a, *b;
2539 GFC_INTEGER_16 *c;
2540 const index_type m = xcount, n = ycount, k = count;
2541
2542 /* System generated locals */
2543 index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
2544 i1, i2, i3, i4, i5, i6;
2545
2546 /* Local variables */
fd991039 2547 GFC_INTEGER_16 f11, f12, f21, f22, f31, f32, f41, f42,
5d70ab07
JD
2548 f13, f14, f23, f24, f33, f34, f43, f44;
2549 index_type i, j, l, ii, jj, ll;
2550 index_type isec, jsec, lsec, uisec, ujsec, ulsec;
8e5f30dc 2551 GFC_INTEGER_16 *t1;
5d70ab07
JD
2552
2553 a = abase;
2554 b = bbase;
2555 c = retarray->base_addr;
2556
2557 /* Parameter adjustments */
2558 c_dim1 = rystride;
2559 c_offset = 1 + c_dim1;
2560 c -= c_offset;
2561 a_dim1 = aystride;
2562 a_offset = 1 + a_dim1;
2563 a -= a_offset;
2564 b_dim1 = bystride;
2565 b_offset = 1 + b_dim1;
2566 b -= b_offset;
2567
2568 /* Early exit if possible */
2569 if (m == 0 || n == 0 || k == 0)
2570 return;
2571
fd991039
TK
2572 /* Adjust size of t1 to what is needed. */
2573 index_type t1_dim;
2574 t1_dim = (a_dim1-1) * 256 + b_dim1;
2575 if (t1_dim > 65536)
2576 t1_dim = 65536;
2577
8e5f30dc 2578 t1 = malloc (t1_dim * sizeof(GFC_INTEGER_16));
fd991039 2579
5d70ab07
JD
2580 /* Empty c first. */
2581 for (j=1; j<=n; j++)
2582 for (i=1; i<=m; i++)
2583 c[i + j * c_dim1] = (GFC_INTEGER_16)0;
2584
2585 /* Start turning the crank. */
2586 i1 = n;
2587 for (jj = 1; jj <= i1; jj += 512)
644cb69f 2588 {
5d70ab07
JD
2589 /* Computing MIN */
2590 i2 = 512;
2591 i3 = n - jj + 1;
2592 jsec = min(i2,i3);
2593 ujsec = jsec - jsec % 4;
2594 i2 = k;
2595 for (ll = 1; ll <= i2; ll += 256)
644cb69f 2596 {
5d70ab07
JD
2597 /* Computing MIN */
2598 i3 = 256;
2599 i4 = k - ll + 1;
2600 lsec = min(i3,i4);
2601 ulsec = lsec - lsec % 2;
2602
2603 i3 = m;
2604 for (ii = 1; ii <= i3; ii += 256)
644cb69f 2605 {
5d70ab07
JD
2606 /* Computing MIN */
2607 i4 = 256;
2608 i5 = m - ii + 1;
2609 isec = min(i4,i5);
2610 uisec = isec - isec % 2;
2611 i4 = ll + ulsec - 1;
2612 for (l = ll; l <= i4; l += 2)
2613 {
2614 i5 = ii + uisec - 1;
2615 for (i = ii; i <= i5; i += 2)
2616 {
2617 t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
2618 a[i + l * a_dim1];
2619 t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
2620 a[i + (l + 1) * a_dim1];
2621 t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
2622 a[i + 1 + l * a_dim1];
2623 t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
2624 a[i + 1 + (l + 1) * a_dim1];
2625 }
2626 if (uisec < isec)
2627 {
2628 t1[l - ll + 1 + (isec << 8) - 257] =
2629 a[ii + isec - 1 + l * a_dim1];
2630 t1[l - ll + 2 + (isec << 8) - 257] =
2631 a[ii + isec - 1 + (l + 1) * a_dim1];
2632 }
2633 }
2634 if (ulsec < lsec)
2635 {
2636 i4 = ii + isec - 1;
2637 for (i = ii; i<= i4; ++i)
2638 {
2639 t1[lsec + ((i - ii + 1) << 8) - 257] =
2640 a[i + (ll + lsec - 1) * a_dim1];
2641 }
2642 }
2643
2644 uisec = isec - isec % 4;
2645 i4 = jj + ujsec - 1;
2646 for (j = jj; j <= i4; j += 4)
2647 {
2648 i5 = ii + uisec - 1;
2649 for (i = ii; i <= i5; i += 4)
2650 {
2651 f11 = c[i + j * c_dim1];
2652 f21 = c[i + 1 + j * c_dim1];
2653 f12 = c[i + (j + 1) * c_dim1];
2654 f22 = c[i + 1 + (j + 1) * c_dim1];
2655 f13 = c[i + (j + 2) * c_dim1];
2656 f23 = c[i + 1 + (j + 2) * c_dim1];
2657 f14 = c[i + (j + 3) * c_dim1];
2658 f24 = c[i + 1 + (j + 3) * c_dim1];
2659 f31 = c[i + 2 + j * c_dim1];
2660 f41 = c[i + 3 + j * c_dim1];
2661 f32 = c[i + 2 + (j + 1) * c_dim1];
2662 f42 = c[i + 3 + (j + 1) * c_dim1];
2663 f33 = c[i + 2 + (j + 2) * c_dim1];
2664 f43 = c[i + 3 + (j + 2) * c_dim1];
2665 f34 = c[i + 2 + (j + 3) * c_dim1];
2666 f44 = c[i + 3 + (j + 3) * c_dim1];
2667 i6 = ll + lsec - 1;
2668 for (l = ll; l <= i6; ++l)
2669 {
2670 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
2671 * b[l + j * b_dim1];
2672 f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
2673 * b[l + j * b_dim1];
2674 f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
2675 * b[l + (j + 1) * b_dim1];
2676 f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
2677 * b[l + (j + 1) * b_dim1];
2678 f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
2679 * b[l + (j + 2) * b_dim1];
2680 f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
2681 * b[l + (j + 2) * b_dim1];
2682 f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
2683 * b[l + (j + 3) * b_dim1];
2684 f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
2685 * b[l + (j + 3) * b_dim1];
2686 f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
2687 * b[l + j * b_dim1];
2688 f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
2689 * b[l + j * b_dim1];
2690 f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
2691 * b[l + (j + 1) * b_dim1];
2692 f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
2693 * b[l + (j + 1) * b_dim1];
2694 f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
2695 * b[l + (j + 2) * b_dim1];
2696 f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
2697 * b[l + (j + 2) * b_dim1];
2698 f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
2699 * b[l + (j + 3) * b_dim1];
2700 f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
2701 * b[l + (j + 3) * b_dim1];
2702 }
2703 c[i + j * c_dim1] = f11;
2704 c[i + 1 + j * c_dim1] = f21;
2705 c[i + (j + 1) * c_dim1] = f12;
2706 c[i + 1 + (j + 1) * c_dim1] = f22;
2707 c[i + (j + 2) * c_dim1] = f13;
2708 c[i + 1 + (j + 2) * c_dim1] = f23;
2709 c[i + (j + 3) * c_dim1] = f14;
2710 c[i + 1 + (j + 3) * c_dim1] = f24;
2711 c[i + 2 + j * c_dim1] = f31;
2712 c[i + 3 + j * c_dim1] = f41;
2713 c[i + 2 + (j + 1) * c_dim1] = f32;
2714 c[i + 3 + (j + 1) * c_dim1] = f42;
2715 c[i + 2 + (j + 2) * c_dim1] = f33;
2716 c[i + 3 + (j + 2) * c_dim1] = f43;
2717 c[i + 2 + (j + 3) * c_dim1] = f34;
2718 c[i + 3 + (j + 3) * c_dim1] = f44;
2719 }
2720 if (uisec < isec)
2721 {
2722 i5 = ii + isec - 1;
2723 for (i = ii + uisec; i <= i5; ++i)
2724 {
2725 f11 = c[i + j * c_dim1];
2726 f12 = c[i + (j + 1) * c_dim1];
2727 f13 = c[i + (j + 2) * c_dim1];
2728 f14 = c[i + (j + 3) * c_dim1];
2729 i6 = ll + lsec - 1;
2730 for (l = ll; l <= i6; ++l)
2731 {
2732 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
2733 257] * b[l + j * b_dim1];
2734 f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
2735 257] * b[l + (j + 1) * b_dim1];
2736 f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
2737 257] * b[l + (j + 2) * b_dim1];
2738 f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
2739 257] * b[l + (j + 3) * b_dim1];
2740 }
2741 c[i + j * c_dim1] = f11;
2742 c[i + (j + 1) * c_dim1] = f12;
2743 c[i + (j + 2) * c_dim1] = f13;
2744 c[i + (j + 3) * c_dim1] = f14;
2745 }
2746 }
2747 }
2748 if (ujsec < jsec)
2749 {
2750 i4 = jj + jsec - 1;
2751 for (j = jj + ujsec; j <= i4; ++j)
2752 {
2753 i5 = ii + uisec - 1;
2754 for (i = ii; i <= i5; i += 4)
2755 {
2756 f11 = c[i + j * c_dim1];
2757 f21 = c[i + 1 + j * c_dim1];
2758 f31 = c[i + 2 + j * c_dim1];
2759 f41 = c[i + 3 + j * c_dim1];
2760 i6 = ll + lsec - 1;
2761 for (l = ll; l <= i6; ++l)
2762 {
2763 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
2764 257] * b[l + j * b_dim1];
2765 f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
2766 257] * b[l + j * b_dim1];
2767 f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
2768 257] * b[l + j * b_dim1];
2769 f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
2770 257] * b[l + j * b_dim1];
2771 }
2772 c[i + j * c_dim1] = f11;
2773 c[i + 1 + j * c_dim1] = f21;
2774 c[i + 2 + j * c_dim1] = f31;
2775 c[i + 3 + j * c_dim1] = f41;
2776 }
2777 i5 = ii + isec - 1;
2778 for (i = ii + uisec; i <= i5; ++i)
2779 {
2780 f11 = c[i + j * c_dim1];
2781 i6 = ll + lsec - 1;
2782 for (l = ll; l <= i6; ++l)
2783 {
2784 f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
2785 257] * b[l + j * b_dim1];
2786 }
2787 c[i + j * c_dim1] = f11;
2788 }
2789 }
2790 }
644cb69f
FXC
2791 }
2792 }
2793 }
8e5f30dc 2794 free(t1);
5d70ab07 2795 return;
644cb69f 2796 }
1524f80b
RS
2797 else if (rxstride == 1 && aystride == 1 && bxstride == 1)
2798 {
a4a11197
PT
2799 if (GFC_DESCRIPTOR_RANK (a) != 1)
2800 {
2801 const GFC_INTEGER_16 *restrict abase_x;
2802 const GFC_INTEGER_16 *restrict bbase_y;
2803 GFC_INTEGER_16 *restrict dest_y;
2804 GFC_INTEGER_16 s;
1524f80b 2805
a4a11197
PT
2806 for (y = 0; y < ycount; y++)
2807 {
2808 bbase_y = &bbase[y*bystride];
2809 dest_y = &dest[y*rystride];
2810 for (x = 0; x < xcount; x++)
2811 {
2812 abase_x = &abase[x*axstride];
2813 s = (GFC_INTEGER_16) 0;
2814 for (n = 0; n < count; n++)
2815 s += abase_x[n] * bbase_y[n];
2816 dest_y[x] = s;
2817 }
2818 }
2819 }
2820 else
1524f80b 2821 {
a4a11197
PT
2822 const GFC_INTEGER_16 *restrict bbase_y;
2823 GFC_INTEGER_16 s;
2824
2825 for (y = 0; y < ycount; y++)
1524f80b 2826 {
a4a11197 2827 bbase_y = &bbase[y*bystride];
1524f80b
RS
2828 s = (GFC_INTEGER_16) 0;
2829 for (n = 0; n < count; n++)
a4a11197
PT
2830 s += abase[n*axstride] * bbase_y[n];
2831 dest[y*rystride] = s;
1524f80b
RS
2832 }
2833 }
2834 }
2835 else if (axstride < aystride)
644cb69f
FXC
2836 {
2837 for (y = 0; y < ycount; y++)
2838 for (x = 0; x < xcount; x++)
2839 dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0;
2840
2841 for (y = 0; y < ycount; y++)
2842 for (n = 0; n < count; n++)
2843 for (x = 0; x < xcount; x++)
2844 /* dest[x,y] += a[x,n] * b[n,y] */
5d70ab07
JD
2845 dest[x*rxstride + y*rystride] +=
2846 abase[x*axstride + n*aystride] *
2847 bbase[n*bxstride + y*bystride];
644cb69f 2848 }
f0e871d6
PT
2849 else if (GFC_DESCRIPTOR_RANK (a) == 1)
2850 {
2851 const GFC_INTEGER_16 *restrict bbase_y;
2852 GFC_INTEGER_16 s;
2853
2854 for (y = 0; y < ycount; y++)
2855 {
2856 bbase_y = &bbase[y*bystride];
2857 s = (GFC_INTEGER_16) 0;
2858 for (n = 0; n < count; n++)
2859 s += abase[n*axstride] * bbase_y[n*bxstride];
2860 dest[y*rxstride] = s;
2861 }
2862 }
1524f80b
RS
2863 else
2864 {
2865 const GFC_INTEGER_16 *restrict abase_x;
2866 const GFC_INTEGER_16 *restrict bbase_y;
2867 GFC_INTEGER_16 *restrict dest_y;
2868 GFC_INTEGER_16 s;
2869
2870 for (y = 0; y < ycount; y++)
2871 {
2872 bbase_y = &bbase[y*bystride];
2873 dest_y = &dest[y*rystride];
2874 for (x = 0; x < xcount; x++)
2875 {
2876 abase_x = &abase[x*axstride];
2877 s = (GFC_INTEGER_16) 0;
2878 for (n = 0; n < count; n++)
2879 s += abase_x[n*aystride] * bbase_y[n*bxstride];
2880 dest_y[x*rxstride] = s;
2881 }
2882 }
2883 }
644cb69f 2884}
31cfd832
TK
2885#undef POW3
2886#undef min
2887#undef max
2888
644cb69f 2889#endif
31cfd832
TK
2890#endif
2891