]>
Commit | Line | Data |
---|---|---|
ddc9995b | 1 | /* Implementation of the MAXLOC intrinsic |
85ec4feb | 2 | Copyright (C) 2017-2018 Free Software Foundation, Inc. |
ddc9995b TK |
3 | Contributed by Thomas Koenig |
4 | ||
5 | This file is part of the GNU Fortran runtime library (libgfortran). | |
6 | ||
7 | Libgfortran is free software; you can redistribute it and/or | |
8 | modify it under the terms of the GNU General Public | |
9 | License as published by the Free Software Foundation; either | |
10 | version 3 of the License, or (at your option) any later version. | |
11 | ||
12 | Libgfortran is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | Under Section 7 of GPL version 3, you are granted additional | |
18 | permissions described in the GCC Runtime Library Exception, version | |
19 | 3.1, as published by the Free Software Foundation. | |
20 | ||
21 | You should have received a copy of the GNU General Public License and | |
22 | a copy of the GCC Runtime Library Exception along with this program; | |
23 | see the files COPYING3 and COPYING.RUNTIME respectively. If not, see | |
24 | <http://www.gnu.org/licenses/>. */ | |
25 | ||
26 | #include "libgfortran.h" | |
27 | ||
28 | ||
29 | #if defined (HAVE_GFC_INTEGER_4) && defined (HAVE_GFC_INTEGER_8) | |
30 | ||
31 | #include <string.h> | |
32 | ||
33 | static inline int | |
34 | compare_fcn (const GFC_INTEGER_4 *a, const GFC_INTEGER_4 *b, gfc_charlen_type n) | |
35 | { | |
36 | if (sizeof (GFC_INTEGER_4) == 1) | |
37 | return memcmp (a, b, n); | |
38 | else | |
39 | return memcmp_char4 (a, b, n); | |
40 | } | |
41 | ||
42 | extern void maxloc1_8_s4 (gfc_array_i8 * const restrict, | |
43 | gfc_array_s4 * const restrict, const index_type * const restrict, | |
44 | gfc_charlen_type); | |
45 | export_proto(maxloc1_8_s4); | |
46 | ||
47 | void | |
48 | maxloc1_8_s4 (gfc_array_i8 * const restrict retarray, | |
49 | gfc_array_s4 * const restrict array, | |
50 | const index_type * const restrict pdim, gfc_charlen_type string_len) | |
51 | { | |
52 | index_type count[GFC_MAX_DIMENSIONS]; | |
53 | index_type extent[GFC_MAX_DIMENSIONS]; | |
54 | index_type sstride[GFC_MAX_DIMENSIONS]; | |
55 | index_type dstride[GFC_MAX_DIMENSIONS]; | |
56 | const GFC_INTEGER_4 * restrict base; | |
57 | GFC_INTEGER_8 * restrict dest; | |
58 | index_type rank; | |
59 | index_type n; | |
60 | index_type len; | |
61 | index_type delta; | |
62 | index_type dim; | |
63 | int continue_loop; | |
64 | ||
65 | /* Make dim zero based to avoid confusion. */ | |
66 | rank = GFC_DESCRIPTOR_RANK (array) - 1; | |
67 | dim = (*pdim) - 1; | |
68 | ||
69 | if (unlikely (dim < 0 || dim > rank)) | |
70 | { | |
71 | runtime_error ("Dim argument incorrect in MAXLOC intrinsic: " | |
72 | "is %ld, should be between 1 and %ld", | |
73 | (long int) dim + 1, (long int) rank + 1); | |
74 | } | |
75 | ||
76 | len = GFC_DESCRIPTOR_EXTENT(array,dim); | |
77 | if (len < 0) | |
78 | len = 0; | |
79 | delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len; | |
80 | ||
81 | for (n = 0; n < dim; n++) | |
82 | { | |
83 | sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len; | |
84 | extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | |
85 | ||
86 | if (extent[n] < 0) | |
87 | extent[n] = 0; | |
88 | } | |
89 | for (n = dim; n < rank; n++) | |
90 | { | |
91 | sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1) * string_len; | |
92 | extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); | |
93 | ||
94 | if (extent[n] < 0) | |
95 | extent[n] = 0; | |
96 | } | |
97 | ||
98 | if (retarray->base_addr == NULL) | |
99 | { | |
100 | size_t alloc_size, str; | |
101 | ||
102 | for (n = 0; n < rank; n++) | |
103 | { | |
104 | if (n == 0) | |
105 | str = 1; | |
106 | else | |
107 | str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; | |
108 | ||
109 | GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); | |
110 | ||
111 | } | |
112 | ||
113 | retarray->offset = 0; | |
114 | retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; | |
115 | ||
116 | alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; | |
117 | ||
118 | retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_8)); | |
119 | if (alloc_size == 0) | |
120 | { | |
121 | /* Make sure we have a zero-sized array. */ | |
122 | GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); | |
123 | return; | |
124 | ||
125 | } | |
126 | } | |
127 | else | |
128 | { | |
129 | if (rank != GFC_DESCRIPTOR_RANK (retarray)) | |
130 | runtime_error ("rank of return array incorrect in" | |
131 | " MAXLOC intrinsic: is %ld, should be %ld", | |
132 | (long int) (GFC_DESCRIPTOR_RANK (retarray)), | |
133 | (long int) rank); | |
134 | ||
135 | if (unlikely (compile_options.bounds_check)) | |
136 | bounds_ifunction_return ((array_t *) retarray, extent, | |
137 | "return value", "MAXLOC"); | |
138 | } | |
139 | ||
140 | for (n = 0; n < rank; n++) | |
141 | { | |
142 | count[n] = 0; | |
143 | dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); | |
144 | if (extent[n] <= 0) | |
145 | return; | |
146 | } | |
147 | ||
148 | base = array->base_addr; | |
149 | dest = retarray->base_addr; | |
150 | ||
151 | continue_loop = 1; | |
152 | while (continue_loop) | |
153 | { | |
154 | const GFC_INTEGER_4 * restrict src; | |
155 | GFC_INTEGER_8 result; | |
156 | src = base; | |
157 | { | |
158 | ||
159 | const GFC_INTEGER_4 *maxval; | |
160 | maxval = base; | |
161 | result = 1; | |
162 | if (len <= 0) | |
163 | *dest = 0; | |
164 | else | |
165 | { | |
166 | for (n = 0; n < len; n++, src += delta) | |
167 | { | |
168 | ||
169 | if (compare_fcn (src, maxval, string_len) > 0) | |
170 | { | |
171 | maxval = src; | |
172 | result = (GFC_INTEGER_8)n + 1; | |
173 | } | |
174 | } | |
175 | ||
176 | *dest = result; | |
177 | } | |
178 | } | |
179 | /* Advance to the next element. */ | |
180 | count[0]++; | |
181 | base += sstride[0]; | |
182 | dest += dstride[0]; | |
183 | n = 0; | |
184 | while (count[n] == extent[n]) | |
185 | { | |
186 | /* When we get to the end of a dimension, reset it and increment | |
187 | the next dimension. */ | |
188 | count[n] = 0; | |
189 | /* We could precalculate these products, but this is a less | |
190 | frequently used path so probably not worth it. */ | |
191 | base -= sstride[n] * extent[n]; | |
192 | dest -= dstride[n] * extent[n]; | |
193 | n++; | |
194 | if (n >= rank) | |
195 | { | |
196 | /* Break out of the loop. */ | |
197 | continue_loop = 0; | |
198 | break; | |
199 | } | |
200 | else | |
201 | { | |
202 | count[n]++; | |
203 | base += sstride[n]; | |
204 | dest += dstride[n]; | |
205 | } | |
206 | } | |
207 | } | |
208 | } | |
209 | ||
210 | ||
211 | extern void mmaxloc1_8_s4 (gfc_array_i8 * const restrict, | |
212 | gfc_array_s4 * const restrict, const index_type * const restrict, | |
213 | gfc_array_l1 * const restrict, gfc_charlen_type); | |
214 | export_proto(mmaxloc1_8_s4); | |
215 | ||
216 | void | |
217 | mmaxloc1_8_s4 (gfc_array_i8 * const restrict retarray, | |
218 | gfc_array_s4 * const restrict array, | |
219 | const index_type * const restrict pdim, | |
220 | gfc_array_l1 * const restrict mask, gfc_charlen_type string_len) | |
221 | { | |
222 | index_type count[GFC_MAX_DIMENSIONS]; | |
223 | index_type extent[GFC_MAX_DIMENSIONS]; | |
224 | index_type sstride[GFC_MAX_DIMENSIONS]; | |
225 | index_type dstride[GFC_MAX_DIMENSIONS]; | |
226 | index_type mstride[GFC_MAX_DIMENSIONS]; | |
227 | GFC_INTEGER_8 * restrict dest; | |
228 | const GFC_INTEGER_4 * restrict base; | |
229 | const GFC_LOGICAL_1 * restrict mbase; | |
230 | index_type rank; | |
231 | index_type dim; | |
232 | index_type n; | |
233 | index_type len; | |
234 | index_type delta; | |
235 | index_type mdelta; | |
236 | int mask_kind; | |
237 | ||
238 | dim = (*pdim) - 1; | |
239 | rank = GFC_DESCRIPTOR_RANK (array) - 1; | |
240 | ||
241 | ||
242 | if (unlikely (dim < 0 || dim > rank)) | |
243 | { | |
244 | runtime_error ("Dim argument incorrect in MAXLOC intrinsic: " | |
245 | "is %ld, should be between 1 and %ld", | |
246 | (long int) dim + 1, (long int) rank + 1); | |
247 | } | |
248 | ||
249 | len = GFC_DESCRIPTOR_EXTENT(array,dim); | |
250 | if (len <= 0) | |
251 | return; | |
252 | ||
253 | mbase = mask->base_addr; | |
254 | ||
255 | mask_kind = GFC_DESCRIPTOR_SIZE (mask); | |
256 | ||
257 | if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 | |
258 | #ifdef HAVE_GFC_LOGICAL_16 | |
259 | || mask_kind == 16 | |
260 | #endif | |
261 | ) | |
262 | mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); | |
263 | else | |
264 | runtime_error ("Funny sized logical array"); | |
265 | ||
266 | delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len; | |
267 | mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim); | |
268 | ||
269 | for (n = 0; n < dim; n++) | |
270 | { | |
271 | sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len; | |
272 | mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); | |
273 | extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | |
274 | ||
275 | if (extent[n] < 0) | |
276 | extent[n] = 0; | |
277 | ||
278 | } | |
279 | for (n = dim; n < rank; n++) | |
280 | { | |
281 | sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1) * string_len; | |
282 | mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1); | |
283 | extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); | |
284 | ||
285 | if (extent[n] < 0) | |
286 | extent[n] = 0; | |
287 | } | |
288 | ||
289 | if (retarray->base_addr == NULL) | |
290 | { | |
291 | size_t alloc_size, str; | |
292 | ||
293 | for (n = 0; n < rank; n++) | |
294 | { | |
295 | if (n == 0) | |
296 | str = 1; | |
297 | else | |
298 | str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; | |
299 | ||
300 | GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); | |
301 | ||
302 | } | |
303 | ||
304 | alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; | |
305 | ||
306 | retarray->offset = 0; | |
307 | retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; | |
308 | ||
309 | if (alloc_size == 0) | |
310 | { | |
311 | /* Make sure we have a zero-sized array. */ | |
312 | GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); | |
313 | return; | |
314 | } | |
315 | else | |
316 | retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_8)); | |
317 | ||
318 | } | |
319 | else | |
320 | { | |
321 | if (rank != GFC_DESCRIPTOR_RANK (retarray)) | |
322 | runtime_error ("rank of return array incorrect in MAXLOC intrinsic"); | |
323 | ||
324 | if (unlikely (compile_options.bounds_check)) | |
325 | { | |
326 | bounds_ifunction_return ((array_t *) retarray, extent, | |
327 | "return value", "MAXLOC"); | |
328 | bounds_equal_extents ((array_t *) mask, (array_t *) array, | |
329 | "MASK argument", "MAXLOC"); | |
330 | } | |
331 | } | |
332 | ||
333 | for (n = 0; n < rank; n++) | |
334 | { | |
335 | count[n] = 0; | |
336 | dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); | |
337 | if (extent[n] <= 0) | |
338 | return; | |
339 | } | |
340 | ||
341 | dest = retarray->base_addr; | |
342 | base = array->base_addr; | |
343 | ||
344 | while (base) | |
345 | { | |
346 | const GFC_INTEGER_4 * restrict src; | |
347 | const GFC_LOGICAL_1 * restrict msrc; | |
348 | GFC_INTEGER_8 result; | |
349 | src = base; | |
350 | msrc = mbase; | |
351 | { | |
352 | ||
353 | const GFC_INTEGER_4 *maxval; | |
354 | maxval = base; | |
355 | result = 0; | |
356 | for (n = 0; n < len; n++, src += delta, msrc += mdelta) | |
357 | { | |
358 | ||
359 | if (*msrc) | |
360 | { | |
361 | maxval = src; | |
362 | result = (GFC_INTEGER_8)n + 1; | |
363 | break; | |
364 | } | |
365 | } | |
366 | for (; n < len; n++, src += delta, msrc += mdelta) | |
367 | { | |
368 | if (*msrc && compare_fcn (src, maxval, string_len) > 0) | |
369 | { | |
370 | maxval = src; | |
371 | result = (GFC_INTEGER_8)n + 1; | |
372 | } | |
373 | ||
374 | } | |
375 | *dest = result; | |
376 | } | |
377 | /* Advance to the next element. */ | |
378 | count[0]++; | |
379 | base += sstride[0]; | |
380 | mbase += mstride[0]; | |
381 | dest += dstride[0]; | |
382 | n = 0; | |
383 | while (count[n] == extent[n]) | |
384 | { | |
385 | /* When we get to the end of a dimension, reset it and increment | |
386 | the next dimension. */ | |
387 | count[n] = 0; | |
388 | /* We could precalculate these products, but this is a less | |
389 | frequently used path so probably not worth it. */ | |
390 | base -= sstride[n] * extent[n]; | |
391 | mbase -= mstride[n] * extent[n]; | |
392 | dest -= dstride[n] * extent[n]; | |
393 | n++; | |
394 | if (n >= rank) | |
395 | { | |
396 | /* Break out of the loop. */ | |
397 | base = NULL; | |
398 | break; | |
399 | } | |
400 | else | |
401 | { | |
402 | count[n]++; | |
403 | base += sstride[n]; | |
404 | mbase += mstride[n]; | |
405 | dest += dstride[n]; | |
406 | } | |
407 | } | |
408 | } | |
409 | } | |
410 | ||
411 | ||
412 | extern void smaxloc1_8_s4 (gfc_array_i8 * const restrict, | |
413 | gfc_array_s4 * const restrict, const index_type * const restrict, | |
414 | GFC_LOGICAL_4 *, gfc_charlen_type); | |
415 | export_proto(smaxloc1_8_s4); | |
416 | ||
417 | void | |
418 | smaxloc1_8_s4 (gfc_array_i8 * const restrict retarray, | |
419 | gfc_array_s4 * const restrict array, | |
420 | const index_type * const restrict pdim, | |
421 | GFC_LOGICAL_4 * mask, gfc_charlen_type string_len) | |
422 | { | |
423 | index_type count[GFC_MAX_DIMENSIONS]; | |
424 | index_type extent[GFC_MAX_DIMENSIONS]; | |
425 | index_type dstride[GFC_MAX_DIMENSIONS]; | |
426 | GFC_INTEGER_8 * restrict dest; | |
427 | index_type rank; | |
428 | index_type n; | |
429 | index_type dim; | |
430 | ||
431 | ||
432 | if (*mask) | |
433 | { | |
434 | maxloc1_8_s4 (retarray, array, pdim, string_len); | |
435 | return; | |
436 | } | |
437 | /* Make dim zero based to avoid confusion. */ | |
438 | dim = (*pdim) - 1; | |
439 | rank = GFC_DESCRIPTOR_RANK (array) - 1; | |
440 | ||
441 | if (unlikely (dim < 0 || dim > rank)) | |
442 | { | |
443 | runtime_error ("Dim argument incorrect in MAXLOC intrinsic: " | |
444 | "is %ld, should be between 1 and %ld", | |
445 | (long int) dim + 1, (long int) rank + 1); | |
446 | } | |
447 | ||
448 | for (n = 0; n < dim; n++) | |
449 | { | |
450 | extent[n] = GFC_DESCRIPTOR_EXTENT(array,n) * string_len; | |
451 | ||
452 | if (extent[n] <= 0) | |
453 | extent[n] = 0; | |
454 | } | |
455 | ||
456 | for (n = dim; n < rank; n++) | |
457 | { | |
458 | extent[n] = | |
459 | GFC_DESCRIPTOR_EXTENT(array,n + 1) * string_len; | |
460 | ||
461 | if (extent[n] <= 0) | |
462 | extent[n] = 0; | |
463 | } | |
464 | ||
465 | if (retarray->base_addr == NULL) | |
466 | { | |
467 | size_t alloc_size, str; | |
468 | ||
469 | for (n = 0; n < rank; n++) | |
470 | { | |
471 | if (n == 0) | |
472 | str = 1; | |
473 | else | |
474 | str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; | |
475 | ||
476 | GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); | |
477 | ||
478 | } | |
479 | ||
480 | retarray->offset = 0; | |
481 | retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; | |
482 | ||
483 | alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; | |
484 | ||
485 | if (alloc_size == 0) | |
486 | { | |
487 | /* Make sure we have a zero-sized array. */ | |
488 | GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); | |
489 | return; | |
490 | } | |
491 | else | |
492 | retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_8)); | |
493 | } | |
494 | else | |
495 | { | |
496 | if (rank != GFC_DESCRIPTOR_RANK (retarray)) | |
497 | runtime_error ("rank of return array incorrect in" | |
498 | " MAXLOC intrinsic: is %ld, should be %ld", | |
499 | (long int) (GFC_DESCRIPTOR_RANK (retarray)), | |
500 | (long int) rank); | |
501 | ||
502 | if (unlikely (compile_options.bounds_check)) | |
503 | { | |
504 | for (n=0; n < rank; n++) | |
505 | { | |
506 | index_type ret_extent; | |
507 | ||
508 | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n); | |
509 | if (extent[n] != ret_extent) | |
510 | runtime_error ("Incorrect extent in return value of" | |
511 | " MAXLOC intrinsic in dimension %ld:" | |
512 | " is %ld, should be %ld", (long int) n + 1, | |
513 | (long int) ret_extent, (long int) extent[n]); | |
514 | } | |
515 | } | |
516 | } | |
517 | ||
518 | for (n = 0; n < rank; n++) | |
519 | { | |
520 | count[n] = 0; | |
521 | dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); | |
522 | } | |
523 | ||
524 | dest = retarray->base_addr; | |
525 | ||
526 | while(1) | |
527 | { | |
528 | *dest = 0; | |
529 | count[0]++; | |
530 | dest += dstride[0]; | |
531 | n = 0; | |
532 | while (count[n] == extent[n]) | |
533 | { | |
534 | /* When we get to the end of a dimension, reset it and increment | |
535 | the next dimension. */ | |
536 | count[n] = 0; | |
537 | /* We could precalculate these products, but this is a less | |
538 | frequently used path so probably not worth it. */ | |
539 | dest -= dstride[n] * extent[n]; | |
540 | n++; | |
541 | if (n >= rank) | |
542 | return; | |
543 | else | |
544 | { | |
545 | count[n]++; | |
546 | dest += dstride[n]; | |
547 | } | |
548 | } | |
549 | } | |
550 | } | |
551 | ||
552 | #endif |