]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgfortran/generated/minloc1_16_r8.c
acinclude.m4 (GLIBCXX_CHECK_SYSTEM_ERROR): Add ENOLINK, EPROTO for netbsd.
[thirdparty/gcc.git] / libgfortran / generated / minloc1_16_r8.c
CommitLineData
644cb69f
FXC
1/* Implementation of the MINLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7Libgfortran is free software; you can redistribute it and/or
8modify it under the terms of the GNU General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12In addition to the permissions in the GNU General Public License, the
13Free Software Foundation gives you unlimited permission to link the
14compiled version of this file into combinations with other programs,
15and to distribute those combinations without any restriction coming
16from the use of this file. (The General Public License restrictions
17do apply in other respects; for example, they cover modification of
18the file, and distribution when not linked into a combine
19executable.)
20
21Libgfortran is distributed in the hope that it will be useful,
22but WITHOUT ANY WARRANTY; without even the implied warranty of
23MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24GNU General Public License for more details.
25
26You should have received a copy of the GNU General Public
27License along with libgfortran; see the file COPYING. If not,
28write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29Boston, MA 02110-1301, USA. */
30
31#include "config.h"
32#include <stdlib.h>
33#include <assert.h>
644cb69f
FXC
34#include <limits.h>
35#include "libgfortran.h"
36
37
38#if defined (HAVE_GFC_REAL_8) && defined (HAVE_GFC_INTEGER_16)
39
40
64acfd99
JB
41extern void minloc1_16_r8 (gfc_array_i16 * const restrict,
42 gfc_array_r8 * const restrict, const index_type * const restrict);
644cb69f
FXC
43export_proto(minloc1_16_r8);
44
45void
64acfd99
JB
46minloc1_16_r8 (gfc_array_i16 * const restrict retarray,
47 gfc_array_r8 * const restrict array,
48 const index_type * const restrict pdim)
644cb69f
FXC
49{
50 index_type count[GFC_MAX_DIMENSIONS];
51 index_type extent[GFC_MAX_DIMENSIONS];
52 index_type sstride[GFC_MAX_DIMENSIONS];
53 index_type dstride[GFC_MAX_DIMENSIONS];
64acfd99
JB
54 const GFC_REAL_8 * restrict base;
55 GFC_INTEGER_16 * restrict dest;
644cb69f
FXC
56 index_type rank;
57 index_type n;
58 index_type len;
59 index_type delta;
60 index_type dim;
61
62 /* Make dim zero based to avoid confusion. */
63 dim = (*pdim) - 1;
64 rank = GFC_DESCRIPTOR_RANK (array) - 1;
65
644cb69f
FXC
66 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
67 delta = array->dim[dim].stride;
68
69 for (n = 0; n < dim; n++)
70 {
71 sstride[n] = array->dim[n].stride;
72 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
80ee04b9
TK
73
74 if (extent[n] < 0)
75 extent[n] = 0;
644cb69f
FXC
76 }
77 for (n = dim; n < rank; n++)
78 {
79 sstride[n] = array->dim[n + 1].stride;
80 extent[n] =
81 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
80ee04b9
TK
82
83 if (extent[n] < 0)
84 extent[n] = 0;
644cb69f
FXC
85 }
86
87 if (retarray->data == NULL)
88 {
80ee04b9
TK
89 size_t alloc_size;
90
644cb69f
FXC
91 for (n = 0; n < rank; n++)
92 {
93 retarray->dim[n].lbound = 0;
94 retarray->dim[n].ubound = extent[n]-1;
95 if (n == 0)
96 retarray->dim[n].stride = 1;
97 else
98 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
99 }
100
644cb69f
FXC
101 retarray->offset = 0;
102 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
80ee04b9
TK
103
104 alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
105 * extent[rank-1];
106
107 if (alloc_size == 0)
108 {
109 /* Make sure we have a zero-sized array. */
110 retarray->dim[0].lbound = 0;
111 retarray->dim[0].ubound = -1;
112 return;
113 }
114 else
115 retarray->data = internal_malloc_size (alloc_size);
644cb69f
FXC
116 }
117 else
118 {
644cb69f
FXC
119 if (rank != GFC_DESCRIPTOR_RANK (retarray))
120 runtime_error ("rank of return array incorrect");
121 }
122
123 for (n = 0; n < rank; n++)
124 {
125 count[n] = 0;
126 dstride[n] = retarray->dim[n].stride;
127 if (extent[n] <= 0)
128 len = 0;
129 }
130
131 base = array->data;
132 dest = retarray->data;
133
134 while (base)
135 {
64acfd99 136 const GFC_REAL_8 * restrict src;
644cb69f
FXC
137 GFC_INTEGER_16 result;
138 src = base;
139 {
140
141 GFC_REAL_8 minval;
142 minval = GFC_REAL_8_HUGE;
a4b9e93e 143 result = 0;
644cb69f
FXC
144 if (len <= 0)
145 *dest = 0;
146 else
147 {
148 for (n = 0; n < len; n++, src += delta)
149 {
150
a4b9e93e 151 if (*src < minval || !result)
644cb69f
FXC
152 {
153 minval = *src;
154 result = (GFC_INTEGER_16)n + 1;
155 }
156 }
157 *dest = result;
158 }
159 }
160 /* Advance to the next element. */
161 count[0]++;
162 base += sstride[0];
163 dest += dstride[0];
164 n = 0;
165 while (count[n] == extent[n])
166 {
167 /* When we get to the end of a dimension, reset it and increment
168 the next dimension. */
169 count[n] = 0;
170 /* We could precalculate these products, but this is a less
5d7adf7a 171 frequently used path so probably not worth it. */
644cb69f
FXC
172 base -= sstride[n] * extent[n];
173 dest -= dstride[n] * extent[n];
174 n++;
175 if (n == rank)
176 {
177 /* Break out of the look. */
178 base = NULL;
179 break;
180 }
181 else
182 {
183 count[n]++;
184 base += sstride[n];
185 dest += dstride[n];
186 }
187 }
188 }
189}
190
191
64acfd99
JB
192extern void mminloc1_16_r8 (gfc_array_i16 * const restrict,
193 gfc_array_r8 * const restrict, const index_type * const restrict,
194 gfc_array_l4 * const restrict);
644cb69f
FXC
195export_proto(mminloc1_16_r8);
196
197void
64acfd99
JB
198mminloc1_16_r8 (gfc_array_i16 * const restrict retarray,
199 gfc_array_r8 * const restrict array,
200 const index_type * const restrict pdim,
201 gfc_array_l4 * const restrict mask)
644cb69f
FXC
202{
203 index_type count[GFC_MAX_DIMENSIONS];
204 index_type extent[GFC_MAX_DIMENSIONS];
205 index_type sstride[GFC_MAX_DIMENSIONS];
206 index_type dstride[GFC_MAX_DIMENSIONS];
207 index_type mstride[GFC_MAX_DIMENSIONS];
64acfd99
JB
208 GFC_INTEGER_16 * restrict dest;
209 const GFC_REAL_8 * restrict base;
210 const GFC_LOGICAL_4 * restrict mbase;
644cb69f
FXC
211 int rank;
212 int dim;
213 index_type n;
214 index_type len;
215 index_type delta;
216 index_type mdelta;
217
218 dim = (*pdim) - 1;
219 rank = GFC_DESCRIPTOR_RANK (array) - 1;
220
644cb69f
FXC
221 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
222 if (len <= 0)
223 return;
224 delta = array->dim[dim].stride;
225 mdelta = mask->dim[dim].stride;
226
227 for (n = 0; n < dim; n++)
228 {
229 sstride[n] = array->dim[n].stride;
230 mstride[n] = mask->dim[n].stride;
231 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
80ee04b9
TK
232
233 if (extent[n] < 0)
234 extent[n] = 0;
235
644cb69f
FXC
236 }
237 for (n = dim; n < rank; n++)
238 {
239 sstride[n] = array->dim[n + 1].stride;
240 mstride[n] = mask->dim[n + 1].stride;
241 extent[n] =
242 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
80ee04b9
TK
243
244 if (extent[n] < 0)
245 extent[n] = 0;
644cb69f
FXC
246 }
247
248 if (retarray->data == NULL)
249 {
80ee04b9
TK
250 size_t alloc_size;
251
644cb69f
FXC
252 for (n = 0; n < rank; n++)
253 {
254 retarray->dim[n].lbound = 0;
255 retarray->dim[n].ubound = extent[n]-1;
256 if (n == 0)
257 retarray->dim[n].stride = 1;
258 else
259 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
260 }
261
80ee04b9
TK
262 alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
263 * extent[rank-1];
264
644cb69f
FXC
265 retarray->offset = 0;
266 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
80ee04b9
TK
267
268 if (alloc_size == 0)
269 {
270 /* Make sure we have a zero-sized array. */
271 retarray->dim[0].lbound = 0;
272 retarray->dim[0].ubound = -1;
273 return;
274 }
275 else
276 retarray->data = internal_malloc_size (alloc_size);
277
644cb69f
FXC
278 }
279 else
280 {
644cb69f
FXC
281 if (rank != GFC_DESCRIPTOR_RANK (retarray))
282 runtime_error ("rank of return array incorrect");
283 }
284
285 for (n = 0; n < rank; n++)
286 {
287 count[n] = 0;
288 dstride[n] = retarray->dim[n].stride;
289 if (extent[n] <= 0)
290 return;
291 }
292
293 dest = retarray->data;
294 base = array->data;
295 mbase = mask->data;
296
297 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
298 {
299 /* This allows the same loop to be used for all logical types. */
300 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
301 for (n = 0; n < rank; n++)
302 mstride[n] <<= 1;
303 mdelta <<= 1;
304 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
305 }
306
307 while (base)
308 {
64acfd99
JB
309 const GFC_REAL_8 * restrict src;
310 const GFC_LOGICAL_4 * restrict msrc;
644cb69f
FXC
311 GFC_INTEGER_16 result;
312 src = base;
313 msrc = mbase;
314 {
315
316 GFC_REAL_8 minval;
317 minval = GFC_REAL_8_HUGE;
a4b9e93e 318 result = 0;
644cb69f
FXC
319 if (len <= 0)
320 *dest = 0;
321 else
322 {
323 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
324 {
325
a4b9e93e 326 if (*msrc && (*src < minval || !result))
644cb69f
FXC
327 {
328 minval = *src;
329 result = (GFC_INTEGER_16)n + 1;
330 }
331 }
332 *dest = result;
333 }
334 }
335 /* Advance to the next element. */
336 count[0]++;
337 base += sstride[0];
338 mbase += mstride[0];
339 dest += dstride[0];
340 n = 0;
341 while (count[n] == extent[n])
342 {
343 /* When we get to the end of a dimension, reset it and increment
344 the next dimension. */
345 count[n] = 0;
346 /* We could precalculate these products, but this is a less
5d7adf7a 347 frequently used path so probably not worth it. */
644cb69f
FXC
348 base -= sstride[n] * extent[n];
349 mbase -= mstride[n] * extent[n];
350 dest -= dstride[n] * extent[n];
351 n++;
352 if (n == rank)
353 {
354 /* Break out of the look. */
355 base = NULL;
356 break;
357 }
358 else
359 {
360 count[n]++;
361 base += sstride[n];
362 mbase += mstride[n];
363 dest += dstride[n];
364 }
365 }
366 }
367}
368
97a62038
TK
369
370extern void sminloc1_16_r8 (gfc_array_i16 * const restrict,
371 gfc_array_r8 * const restrict, const index_type * const restrict,
372 GFC_LOGICAL_4 *);
373export_proto(sminloc1_16_r8);
374
375void
376sminloc1_16_r8 (gfc_array_i16 * const restrict retarray,
377 gfc_array_r8 * const restrict array,
378 const index_type * const restrict pdim,
379 GFC_LOGICAL_4 * mask)
380{
381 index_type rank;
382 index_type n;
383 index_type dstride;
384 GFC_INTEGER_16 *dest;
385
386 if (*mask)
387 {
388 minloc1_16_r8 (retarray, array, pdim);
389 return;
390 }
391 rank = GFC_DESCRIPTOR_RANK (array);
392 if (rank <= 0)
393 runtime_error ("Rank of array needs to be > 0");
394
395 if (retarray->data == NULL)
396 {
397 retarray->dim[0].lbound = 0;
398 retarray->dim[0].ubound = rank-1;
399 retarray->dim[0].stride = 1;
400 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
401 retarray->offset = 0;
402 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
403 }
404 else
405 {
406 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
407 runtime_error ("rank of return array does not equal 1");
408
409 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
410 runtime_error ("dimension of return array incorrect");
97a62038
TK
411 }
412
413 dstride = retarray->dim[0].stride;
414 dest = retarray->data;
415
416 for (n = 0; n < rank; n++)
417 dest[n * dstride] = 0 ;
418}
419
644cb69f 420#endif