]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgfortran/generated/sum_c17.c
libgfortran: Don't skip allocation if size is zero [PR112412]
[thirdparty/gcc.git] / libgfortran / generated / sum_c17.c
CommitLineData
49ad4d2c 1/* Implementation of the SUM intrinsic
83ffe9cd 2 Copyright (C) 2002-2023 Free Software Foundation, Inc.
49ad4d2c
TK
3 Contributed by Paul Brook <paul@nowt.org>
4
5This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7Libgfortran is free software; you can redistribute it and/or
8modify it under the terms of the GNU General Public
9License as published by the Free Software Foundation; either
10version 3 of the License, or (at your option) any later version.
11
12Libgfortran is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17Under Section 7 of GPL version 3, you are granted additional
18permissions described in the GCC Runtime Library Exception, version
193.1, as published by the Free Software Foundation.
20
21You should have received a copy of the GNU General Public License and
22a copy of the GCC Runtime Library Exception along with this program;
23see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24<http://www.gnu.org/licenses/>. */
25
26#include "libgfortran.h"
27
28
29#if defined (HAVE_GFC_COMPLEX_17) && defined (HAVE_GFC_COMPLEX_17)
30
31
32extern void sum_c17 (gfc_array_c17 * const restrict,
33 gfc_array_c17 * const restrict, const index_type * const restrict);
34export_proto(sum_c17);
35
36void
37sum_c17 (gfc_array_c17 * const restrict retarray,
38 gfc_array_c17 * const restrict array,
39 const index_type * const restrict pdim)
40{
41 index_type count[GFC_MAX_DIMENSIONS];
42 index_type extent[GFC_MAX_DIMENSIONS];
43 index_type sstride[GFC_MAX_DIMENSIONS];
44 index_type dstride[GFC_MAX_DIMENSIONS];
45 const GFC_COMPLEX_17 * restrict base;
46 GFC_COMPLEX_17 * restrict dest;
47 index_type rank;
48 index_type n;
49 index_type len;
50 index_type delta;
51 index_type dim;
52 int continue_loop;
53
54 /* Make dim zero based to avoid confusion. */
55 rank = GFC_DESCRIPTOR_RANK (array) - 1;
56 dim = (*pdim) - 1;
57
58 if (unlikely (dim < 0 || dim > rank))
59 {
60 runtime_error ("Dim argument incorrect in SUM intrinsic: "
61 "is %ld, should be between 1 and %ld",
62 (long int) dim + 1, (long int) rank + 1);
63 }
64
65 len = GFC_DESCRIPTOR_EXTENT(array,dim);
66 if (len < 0)
67 len = 0;
68 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
69
70 for (n = 0; n < dim; n++)
71 {
72 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
73 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
74
75 if (extent[n] < 0)
76 extent[n] = 0;
77 }
78 for (n = dim; n < rank; n++)
79 {
80 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
81 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
82
83 if (extent[n] < 0)
84 extent[n] = 0;
85 }
86
87 if (retarray->base_addr == NULL)
88 {
89 size_t alloc_size, str;
90
91 for (n = 0; n < rank; n++)
92 {
93 if (n == 0)
94 str = 1;
95 else
96 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
97
98 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
99
100 }
101
102 retarray->offset = 0;
103 retarray->dtype.rank = rank;
104
105 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
106
107 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_17));
108 if (alloc_size == 0)
109 {
110 /* Make sure we have a zero-sized array. */
111 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
112 return;
113
114 }
115 }
116 else
117 {
118 if (rank != GFC_DESCRIPTOR_RANK (retarray))
119 runtime_error ("rank of return array incorrect in"
120 " SUM intrinsic: is %ld, should be %ld",
121 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
122 (long int) rank);
123
124 if (unlikely (compile_options.bounds_check))
125 bounds_ifunction_return ((array_t *) retarray, extent,
126 "return value", "SUM");
127 }
128
129 for (n = 0; n < rank; n++)
130 {
131 count[n] = 0;
132 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
133 if (extent[n] <= 0)
134 return;
135 }
136
137 base = array->base_addr;
138 dest = retarray->base_addr;
139
140 continue_loop = 1;
141 while (continue_loop)
142 {
143 const GFC_COMPLEX_17 * restrict src;
144 GFC_COMPLEX_17 result;
145 src = base;
146 {
147
148 result = 0;
149 if (len <= 0)
150 *dest = 0;
151 else
152 {
153#if ! defined HAVE_BACK_ARG
154 for (n = 0; n < len; n++, src += delta)
155 {
156#endif
157
158 result += *src;
159 }
160
161 *dest = result;
162 }
163 }
164 /* Advance to the next element. */
165 count[0]++;
166 base += sstride[0];
167 dest += dstride[0];
168 n = 0;
169 while (count[n] == extent[n])
170 {
171 /* When we get to the end of a dimension, reset it and increment
172 the next dimension. */
173 count[n] = 0;
174 /* We could precalculate these products, but this is a less
175 frequently used path so probably not worth it. */
176 base -= sstride[n] * extent[n];
177 dest -= dstride[n] * extent[n];
178 n++;
179 if (n >= rank)
180 {
181 /* Break out of the loop. */
182 continue_loop = 0;
183 break;
184 }
185 else
186 {
187 count[n]++;
188 base += sstride[n];
189 dest += dstride[n];
190 }
191 }
192 }
193}
194
195
196extern void msum_c17 (gfc_array_c17 * const restrict,
197 gfc_array_c17 * const restrict, const index_type * const restrict,
198 gfc_array_l1 * const restrict);
199export_proto(msum_c17);
200
201void
202msum_c17 (gfc_array_c17 * const restrict retarray,
203 gfc_array_c17 * const restrict array,
204 const index_type * const restrict pdim,
205 gfc_array_l1 * const restrict mask)
206{
207 index_type count[GFC_MAX_DIMENSIONS];
208 index_type extent[GFC_MAX_DIMENSIONS];
209 index_type sstride[GFC_MAX_DIMENSIONS];
210 index_type dstride[GFC_MAX_DIMENSIONS];
211 index_type mstride[GFC_MAX_DIMENSIONS];
212 GFC_COMPLEX_17 * restrict dest;
213 const GFC_COMPLEX_17 * restrict base;
214 const GFC_LOGICAL_1 * restrict mbase;
215 index_type rank;
216 index_type dim;
217 index_type n;
218 index_type len;
219 index_type delta;
220 index_type mdelta;
221 int mask_kind;
222
223 if (mask == NULL)
224 {
225#ifdef HAVE_BACK_ARG
226 sum_c17 (retarray, array, pdim, back);
227#else
228 sum_c17 (retarray, array, pdim);
229#endif
230 return;
231 }
232
233 dim = (*pdim) - 1;
234 rank = GFC_DESCRIPTOR_RANK (array) - 1;
235
236
237 if (unlikely (dim < 0 || dim > rank))
238 {
239 runtime_error ("Dim argument incorrect in SUM intrinsic: "
240 "is %ld, should be between 1 and %ld",
241 (long int) dim + 1, (long int) rank + 1);
242 }
243
244 len = GFC_DESCRIPTOR_EXTENT(array,dim);
245 if (len <= 0)
246 return;
247
248 mbase = mask->base_addr;
249
250 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
251
252 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
253#ifdef HAVE_GFC_LOGICAL_16
254 || mask_kind == 16
255#endif
256 )
257 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
258 else
259 runtime_error ("Funny sized logical array");
260
261 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
262 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
263
264 for (n = 0; n < dim; n++)
265 {
266 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
267 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
268 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
269
270 if (extent[n] < 0)
271 extent[n] = 0;
272
273 }
274 for (n = dim; n < rank; n++)
275 {
276 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
277 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
278 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
279
280 if (extent[n] < 0)
281 extent[n] = 0;
282 }
283
284 if (retarray->base_addr == NULL)
285 {
286 size_t alloc_size, str;
287
288 for (n = 0; n < rank; n++)
289 {
290 if (n == 0)
291 str = 1;
292 else
293 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
294
295 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
296
297 }
298
299 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
300
301 retarray->offset = 0;
302 retarray->dtype.rank = rank;
303
d56bf419 304 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_17));
49ad4d2c
TK
305 if (alloc_size == 0)
306 {
307 /* Make sure we have a zero-sized array. */
308 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
309 return;
310 }
49ad4d2c
TK
311 }
312 else
313 {
314 if (rank != GFC_DESCRIPTOR_RANK (retarray))
315 runtime_error ("rank of return array incorrect in SUM intrinsic");
316
317 if (unlikely (compile_options.bounds_check))
318 {
319 bounds_ifunction_return ((array_t *) retarray, extent,
320 "return value", "SUM");
321 bounds_equal_extents ((array_t *) mask, (array_t *) array,
322 "MASK argument", "SUM");
323 }
324 }
325
326 for (n = 0; n < rank; n++)
327 {
328 count[n] = 0;
329 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
330 if (extent[n] <= 0)
331 return;
332 }
333
334 dest = retarray->base_addr;
335 base = array->base_addr;
336
337 while (base)
338 {
339 const GFC_COMPLEX_17 * restrict src;
340 const GFC_LOGICAL_1 * restrict msrc;
341 GFC_COMPLEX_17 result;
342 src = base;
343 msrc = mbase;
344 {
345
346 result = 0;
347 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
348 {
349
350 if (*msrc)
351 result += *src;
352 }
353 *dest = result;
354 }
355 /* Advance to the next element. */
356 count[0]++;
357 base += sstride[0];
358 mbase += mstride[0];
359 dest += dstride[0];
360 n = 0;
361 while (count[n] == extent[n])
362 {
363 /* When we get to the end of a dimension, reset it and increment
364 the next dimension. */
365 count[n] = 0;
366 /* We could precalculate these products, but this is a less
367 frequently used path so probably not worth it. */
368 base -= sstride[n] * extent[n];
369 mbase -= mstride[n] * extent[n];
370 dest -= dstride[n] * extent[n];
371 n++;
372 if (n >= rank)
373 {
374 /* Break out of the loop. */
375 base = NULL;
376 break;
377 }
378 else
379 {
380 count[n]++;
381 base += sstride[n];
382 mbase += mstride[n];
383 dest += dstride[n];
384 }
385 }
386 }
387}
388
389
390extern void ssum_c17 (gfc_array_c17 * const restrict,
391 gfc_array_c17 * const restrict, const index_type * const restrict,
392 GFC_LOGICAL_4 *);
393export_proto(ssum_c17);
394
395void
396ssum_c17 (gfc_array_c17 * const restrict retarray,
397 gfc_array_c17 * const restrict array,
398 const index_type * const restrict pdim,
399 GFC_LOGICAL_4 * mask)
400{
401 index_type count[GFC_MAX_DIMENSIONS];
402 index_type extent[GFC_MAX_DIMENSIONS];
403 index_type dstride[GFC_MAX_DIMENSIONS];
404 GFC_COMPLEX_17 * restrict dest;
405 index_type rank;
406 index_type n;
407 index_type dim;
408
409
410 if (mask == NULL || *mask)
411 {
412#ifdef HAVE_BACK_ARG
413 sum_c17 (retarray, array, pdim, back);
414#else
415 sum_c17 (retarray, array, pdim);
416#endif
417 return;
418 }
419 /* Make dim zero based to avoid confusion. */
420 dim = (*pdim) - 1;
421 rank = GFC_DESCRIPTOR_RANK (array) - 1;
422
423 if (unlikely (dim < 0 || dim > rank))
424 {
425 runtime_error ("Dim argument incorrect in SUM intrinsic: "
426 "is %ld, should be between 1 and %ld",
427 (long int) dim + 1, (long int) rank + 1);
428 }
429
430 for (n = 0; n < dim; n++)
431 {
432 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
433
434 if (extent[n] <= 0)
435 extent[n] = 0;
436 }
437
438 for (n = dim; n < rank; n++)
439 {
440 extent[n] =
441 GFC_DESCRIPTOR_EXTENT(array,n + 1);
442
443 if (extent[n] <= 0)
444 extent[n] = 0;
445 }
446
447 if (retarray->base_addr == NULL)
448 {
449 size_t alloc_size, str;
450
451 for (n = 0; n < rank; n++)
452 {
453 if (n == 0)
454 str = 1;
455 else
456 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
457
458 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
459
460 }
461
462 retarray->offset = 0;
463 retarray->dtype.rank = rank;
464
465 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
466
d56bf419 467 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_17));
49ad4d2c
TK
468 if (alloc_size == 0)
469 {
470 /* Make sure we have a zero-sized array. */
471 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
472 return;
473 }
49ad4d2c
TK
474 }
475 else
476 {
477 if (rank != GFC_DESCRIPTOR_RANK (retarray))
478 runtime_error ("rank of return array incorrect in"
479 " SUM intrinsic: is %ld, should be %ld",
480 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
481 (long int) rank);
482
483 if (unlikely (compile_options.bounds_check))
484 {
485 for (n=0; n < rank; n++)
486 {
487 index_type ret_extent;
488
489 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
490 if (extent[n] != ret_extent)
491 runtime_error ("Incorrect extent in return value of"
492 " SUM intrinsic in dimension %ld:"
493 " is %ld, should be %ld", (long int) n + 1,
494 (long int) ret_extent, (long int) extent[n]);
495 }
496 }
497 }
498
499 for (n = 0; n < rank; n++)
500 {
501 count[n] = 0;
502 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
503 }
504
505 dest = retarray->base_addr;
506
507 while(1)
508 {
509 *dest = 0;
510 count[0]++;
511 dest += dstride[0];
512 n = 0;
513 while (count[n] == extent[n])
514 {
515 /* When we get to the end of a dimension, reset it and increment
516 the next dimension. */
517 count[n] = 0;
518 /* We could precalculate these products, but this is a less
519 frequently used path so probably not worth it. */
520 dest -= dstride[n] * extent[n];
521 n++;
522 if (n >= rank)
523 return;
524 else
525 {
526 count[n]++;
527 dest += dstride[n];
528 }
529 }
530 }
531}
532
533#endif