]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgfortran/m4/unpack.m4
2009-04-09 Richard Guenther <rguenther@suse.de>
[thirdparty/gcc.git] / libgfortran / m4 / unpack.m4
CommitLineData
d3a07078 1`/* Specific implementation of the UNPACK intrinsic
2 Copyright 2008 Free Software Foundation, Inc.
3 Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
4 unpack_generic.c by Paul Brook <paul@nowt.org>.
5
6This file is part of the GNU Fortran 95 runtime library (libgfortran).
7
8Libgfortran is free software; you can redistribute it and/or
9modify it under the terms of the GNU General Public
10License as published by the Free Software Foundation; either
11version 2 of the License, or (at your option) any later version.
12
13In addition to the permissions in the GNU General Public License, the
14Free Software Foundation gives you unlimited permission to link the
15compiled version of this file into combinations with other programs,
16and to distribute those combinations without any restriction coming
17from the use of this file. (The General Public License restrictions
18do apply in other respects; for example, they cover modification of
19the file, and distribution when not linked into a combine
20executable.)
21
22Ligbfortran is distributed in the hope that it will be useful,
23but WITHOUT ANY WARRANTY; without even the implied warranty of
24MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25GNU General Public License for more details.
26
27You should have received a copy of the GNU General Public
28License along with libgfortran; see the file COPYING. If not,
29write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
30Boston, MA 02110-1301, USA. */
31
32#include "libgfortran.h"
33#include <stdlib.h>
34#include <assert.h>
35#include <string.h>'
36
37include(iparm.m4)dnl
38
39`#if defined (HAVE_'rtype_name`)
40
41void
42unpack0_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
43 const gfc_array_l1 *mask, const 'rtype_name` *fptr)
44{
45 /* r.* indicates the return array. */
46 index_type rstride[GFC_MAX_DIMENSIONS];
47 index_type rstride0;
48 index_type rs;
9d259edf 49 'rtype_name` * restrict rptr;
d3a07078 50 /* v.* indicates the vector array. */
51 index_type vstride0;
52 'rtype_name` *vptr;
53 /* Value for field, this is constant. */
54 const 'rtype_name` fval = *fptr;
55 /* m.* indicates the mask array. */
56 index_type mstride[GFC_MAX_DIMENSIONS];
57 index_type mstride0;
58 const GFC_LOGICAL_1 *mptr;
59
60 index_type count[GFC_MAX_DIMENSIONS];
61 index_type extent[GFC_MAX_DIMENSIONS];
62 index_type n;
63 index_type dim;
64
65 int empty;
66 int mask_kind;
67
68 empty = 0;
69
70 mptr = mask->data;
71
72 /* Use the same loop for all logical types, by using GFC_LOGICAL_1
73 and using shifting to address size and endian issues. */
74
75 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
76
77 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
78#ifdef HAVE_GFC_LOGICAL_16
79 || mask_kind == 16
80#endif
81 )
82 {
83 /* Do not convert a NULL pointer as we use test for NULL below. */
84 if (mptr)
85 mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
86 }
87 else
88 runtime_error ("Funny sized logical array");
89
90 if (ret->data == NULL)
91 {
92 /* The front end has signalled that we need to populate the
93 return array descriptor. */
94 dim = GFC_DESCRIPTOR_RANK (mask);
95 rs = 1;
96 for (n = 0; n < dim; n++)
97 {
98 count[n] = 0;
99 ret->dim[n].stride = rs;
100 ret->dim[n].lbound = 0;
101 ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
102 extent[n] = ret->dim[n].ubound + 1;
103 empty = empty || extent[n] <= 0;
104 rstride[n] = ret->dim[n].stride;
105 mstride[n] = mask->dim[n].stride * mask_kind;
106 rs *= extent[n];
107 }
108 ret->offset = 0;
109 ret->data = internal_malloc_size (rs * sizeof ('rtype_name`));
110 }
111 else
112 {
113 dim = GFC_DESCRIPTOR_RANK (ret);
114 for (n = 0; n < dim; n++)
115 {
116 count[n] = 0;
117 extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
118 empty = empty || extent[n] <= 0;
119 rstride[n] = ret->dim[n].stride;
120 mstride[n] = mask->dim[n].stride * mask_kind;
121 }
122 if (rstride[0] == 0)
123 rstride[0] = 1;
124 }
125
126 if (empty)
127 return;
128
129 if (mstride[0] == 0)
130 mstride[0] = 1;
131
132 vstride0 = vector->dim[0].stride;
133 if (vstride0 == 0)
134 vstride0 = 1;
135 rstride0 = rstride[0];
136 mstride0 = mstride[0];
137 rptr = ret->data;
138 vptr = vector->data;
139
140 while (rptr)
141 {
142 if (*mptr)
143 {
144 /* From vector. */
145 *rptr = *vptr;
146 vptr += vstride0;
147 }
148 else
149 {
150 /* From field. */
151 *rptr = fval;
152 }
153 /* Advance to the next element. */
154 rptr += rstride0;
155 mptr += mstride0;
156 count[0]++;
157 n = 0;
158 while (count[n] == extent[n])
159 {
160 /* When we get to the end of a dimension, reset it and increment
161 the next dimension. */
162 count[n] = 0;
163 /* We could precalculate these products, but this is a less
164 frequently used path so probably not worth it. */
165 rptr -= rstride[n] * extent[n];
166 mptr -= mstride[n] * extent[n];
167 n++;
168 if (n >= dim)
169 {
170 /* Break out of the loop. */
171 rptr = NULL;
172 break;
173 }
174 else
175 {
176 count[n]++;
177 rptr += rstride[n];
178 mptr += mstride[n];
179 }
180 }
181 }
182}
183
184void
185unpack1_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
186 const gfc_array_l1 *mask, const 'rtype` *field)
187{
188 /* r.* indicates the return array. */
189 index_type rstride[GFC_MAX_DIMENSIONS];
190 index_type rstride0;
191 index_type rs;
9d259edf 192 'rtype_name` * restrict rptr;
d3a07078 193 /* v.* indicates the vector array. */
194 index_type vstride0;
195 'rtype_name` *vptr;
196 /* f.* indicates the field array. */
197 index_type fstride[GFC_MAX_DIMENSIONS];
198 index_type fstride0;
199 const 'rtype_name` *fptr;
200 /* m.* indicates the mask array. */
201 index_type mstride[GFC_MAX_DIMENSIONS];
202 index_type mstride0;
203 const GFC_LOGICAL_1 *mptr;
204
205 index_type count[GFC_MAX_DIMENSIONS];
206 index_type extent[GFC_MAX_DIMENSIONS];
207 index_type n;
208 index_type dim;
209
210 int empty;
211 int mask_kind;
212
213 empty = 0;
214
215 mptr = mask->data;
216
217 /* Use the same loop for all logical types, by using GFC_LOGICAL_1
218 and using shifting to address size and endian issues. */
219
220 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
221
222 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
223#ifdef HAVE_GFC_LOGICAL_16
224 || mask_kind == 16
225#endif
226 )
227 {
228 /* Do not convert a NULL pointer as we use test for NULL below. */
229 if (mptr)
230 mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
231 }
232 else
233 runtime_error ("Funny sized logical array");
234
235 if (ret->data == NULL)
236 {
237 /* The front end has signalled that we need to populate the
238 return array descriptor. */
239 dim = GFC_DESCRIPTOR_RANK (mask);
240 rs = 1;
241 for (n = 0; n < dim; n++)
242 {
243 count[n] = 0;
244 ret->dim[n].stride = rs;
245 ret->dim[n].lbound = 0;
246 ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
247 extent[n] = ret->dim[n].ubound + 1;
248 empty = empty || extent[n] <= 0;
249 rstride[n] = ret->dim[n].stride;
250 fstride[n] = field->dim[n].stride;
251 mstride[n] = mask->dim[n].stride * mask_kind;
252 rs *= extent[n];
253 }
254 ret->offset = 0;
255 ret->data = internal_malloc_size (rs * sizeof ('rtype_name`));
256 }
257 else
258 {
259 dim = GFC_DESCRIPTOR_RANK (ret);
260 for (n = 0; n < dim; n++)
261 {
262 count[n] = 0;
263 extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
264 empty = empty || extent[n] <= 0;
265 rstride[n] = ret->dim[n].stride;
266 fstride[n] = field->dim[n].stride;
267 mstride[n] = mask->dim[n].stride * mask_kind;
268 }
269 if (rstride[0] == 0)
270 rstride[0] = 1;
271 }
272
273 if (empty)
274 return;
275
276 if (fstride[0] == 0)
277 fstride[0] = 1;
278 if (mstride[0] == 0)
279 mstride[0] = 1;
280
281 vstride0 = vector->dim[0].stride;
282 if (vstride0 == 0)
283 vstride0 = 1;
284 rstride0 = rstride[0];
285 fstride0 = fstride[0];
286 mstride0 = mstride[0];
287 rptr = ret->data;
288 fptr = field->data;
289 vptr = vector->data;
290
291 while (rptr)
292 {
293 if (*mptr)
294 {
295 /* From vector. */
296 *rptr = *vptr;
297 vptr += vstride0;
298 }
299 else
300 {
301 /* From field. */
302 *rptr = *fptr;
303 }
304 /* Advance to the next element. */
305 rptr += rstride0;
306 fptr += fstride0;
307 mptr += mstride0;
308 count[0]++;
309 n = 0;
310 while (count[n] == extent[n])
311 {
312 /* When we get to the end of a dimension, reset it and increment
313 the next dimension. */
314 count[n] = 0;
315 /* We could precalculate these products, but this is a less
316 frequently used path so probably not worth it. */
317 rptr -= rstride[n] * extent[n];
318 fptr -= fstride[n] * extent[n];
319 mptr -= mstride[n] * extent[n];
320 n++;
321 if (n >= dim)
322 {
323 /* Break out of the loop. */
324 rptr = NULL;
325 break;
326 }
327 else
328 {
329 count[n]++;
330 rptr += rstride[n];
331 fptr += fstride[n];
332 mptr += mstride[n];
333 }
334 }
335 }
336}
337
338#endif
339'