]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgo/go/math/big/int.go
libgo: Upgrade to Go 1.4.2 release.
[thirdparty/gcc.git] / libgo / go / math / big / int.go
CommitLineData
7a938933
ILT
1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// This file implements signed multi-precision integers.
6
7package big
8
9import (
2fd401c8 10 "errors"
7a938933 11 "fmt"
adb0401d 12 "io"
9c63abc9 13 "math/rand"
adb0401d 14 "strings"
7a938933
ILT
15)
16
17// An Int represents a signed multi-precision integer.
18// The zero value for an Int represents the value 0.
19type Int struct {
20 neg bool // sign
21 abs nat // absolute value of the integer
22}
23
7a938933
ILT
24var intOne = &Int{false, natOne}
25
7a938933
ILT
26// Sign returns:
27//
28// -1 if x < 0
29// 0 if x == 0
30// +1 if x > 0
31//
32func (x *Int) Sign() int {
33 if len(x.abs) == 0 {
34 return 0
35 }
36 if x.neg {
37 return -1
38 }
39 return 1
40}
41
7a938933
ILT
42// SetInt64 sets z to x and returns z.
43func (z *Int) SetInt64(x int64) *Int {
44 neg := false
45 if x < 0 {
46 neg = true
47 x = -x
48 }
49 z.abs = z.abs.setUint64(uint64(x))
50 z.neg = neg
51 return z
52}
53
409a5e7e
ILT
54// SetUint64 sets z to x and returns z.
55func (z *Int) SetUint64(x uint64) *Int {
be47d6ec 56 z.abs = z.abs.setUint64(x)
409a5e7e
ILT
57 z.neg = false
58 return z
59}
60
7a938933
ILT
61// NewInt allocates and returns a new Int set to x.
62func NewInt(x int64) *Int {
63 return new(Int).SetInt64(x)
64}
65
7a938933
ILT
66// Set sets z to x and returns z.
67func (z *Int) Set(x *Int) *Int {
b740cb63
ILT
68 if z != x {
69 z.abs = z.abs.set(x.abs)
70 z.neg = x.neg
71 }
7a938933
ILT
72 return z
73}
74
94252f4b
ILT
75// Bits provides raw (unchecked but fast) access to x by returning its
76// absolute value as a little-endian Word slice. The result and x share
77// the same underlying array.
78// Bits is intended to support implementation of missing low-level Int
79// functionality outside this package; it should be avoided otherwise.
80func (x *Int) Bits() []Word {
81 return x.abs
82}
83
84// SetBits provides raw (unchecked but fast) access to z by setting its
85// value to abs, interpreted as a little-endian Word slice, and returning
86// z. The result and abs share the same underlying array.
87// SetBits is intended to support implementation of missing low-level Int
88// functionality outside this package; it should be avoided otherwise.
89func (z *Int) SetBits(abs []Word) *Int {
90 z.abs = nat(abs).norm()
91 z.neg = false
92 return z
93}
94
7a938933
ILT
95// Abs sets z to |x| (the absolute value of x) and returns z.
96func (z *Int) Abs(x *Int) *Int {
b740cb63 97 z.Set(x)
7a938933
ILT
98 z.neg = false
99 return z
100}
101
7a938933
ILT
102// Neg sets z to -x and returns z.
103func (z *Int) Neg(x *Int) *Int {
b740cb63
ILT
104 z.Set(x)
105 z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
7a938933
ILT
106 return z
107}
108
7a938933
ILT
109// Add sets z to the sum x+y and returns z.
110func (z *Int) Add(x, y *Int) *Int {
111 neg := x.neg
112 if x.neg == y.neg {
113 // x + y == x + y
114 // (-x) + (-y) == -(x + y)
115 z.abs = z.abs.add(x.abs, y.abs)
116 } else {
117 // x + (-y) == x - y == -(y - x)
118 // (-x) + y == y - x == -(x - y)
119 if x.abs.cmp(y.abs) >= 0 {
120 z.abs = z.abs.sub(x.abs, y.abs)
121 } else {
122 neg = !neg
123 z.abs = z.abs.sub(y.abs, x.abs)
124 }
125 }
126 z.neg = len(z.abs) > 0 && neg // 0 has no sign
127 return z
128}
129
7a938933
ILT
130// Sub sets z to the difference x-y and returns z.
131func (z *Int) Sub(x, y *Int) *Int {
132 neg := x.neg
133 if x.neg != y.neg {
134 // x - (-y) == x + y
135 // (-x) - y == -(x + y)
136 z.abs = z.abs.add(x.abs, y.abs)
137 } else {
138 // x - y == x - y == -(y - x)
139 // (-x) - (-y) == y - x == -(x - y)
140 if x.abs.cmp(y.abs) >= 0 {
141 z.abs = z.abs.sub(x.abs, y.abs)
142 } else {
143 neg = !neg
144 z.abs = z.abs.sub(y.abs, x.abs)
145 }
146 }
147 z.neg = len(z.abs) > 0 && neg // 0 has no sign
148 return z
149}
150
7a938933
ILT
151// Mul sets z to the product x*y and returns z.
152func (z *Int) Mul(x, y *Int) *Int {
153 // x * y == x * y
154 // x * (-y) == -(x * y)
155 // (-x) * y == -(x * y)
156 // (-x) * (-y) == x * y
157 z.abs = z.abs.mul(x.abs, y.abs)
158 z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
159 return z
160}
161
7a938933
ILT
162// MulRange sets z to the product of all integers
163// in the range [a, b] inclusively and returns z.
164// If a > b (empty range), the result is 1.
165func (z *Int) MulRange(a, b int64) *Int {
166 switch {
167 case a > b:
168 return z.SetInt64(1) // empty range
169 case a <= 0 && b >= 0:
170 return z.SetInt64(0) // range includes 0
171 }
172 // a <= b && (b < 0 || a > 0)
173
174 neg := false
175 if a < 0 {
176 neg = (b-a)&1 == 0
177 a, b = -b, -a
178 }
179
180 z.abs = z.abs.mulRange(uint64(a), uint64(b))
181 z.neg = neg
182 return z
183}
184
7a938933
ILT
185// Binomial sets z to the binomial coefficient of (n, k) and returns z.
186func (z *Int) Binomial(n, k int64) *Int {
187 var a, b Int
188 a.MulRange(n-k+1, n)
189 b.MulRange(1, k)
190 return z.Quo(&a, &b)
191}
192
7a938933
ILT
193// Quo sets z to the quotient x/y for y != 0 and returns z.
194// If y == 0, a division-by-zero run-time panic occurs.
d8f41257 195// Quo implements truncated division (like Go); see QuoRem for more details.
7a938933
ILT
196func (z *Int) Quo(x, y *Int) *Int {
197 z.abs, _ = z.abs.div(nil, x.abs, y.abs)
198 z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
199 return z
200}
201
7a938933
ILT
202// Rem sets z to the remainder x%y for y != 0 and returns z.
203// If y == 0, a division-by-zero run-time panic occurs.
d8f41257 204// Rem implements truncated modulus (like Go); see QuoRem for more details.
7a938933 205func (z *Int) Rem(x, y *Int) *Int {
ab61e9c4 206 _, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
7a938933
ILT
207 z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
208 return z
209}
210
7a938933
ILT
211// QuoRem sets z to the quotient x/y and r to the remainder x%y
212// and returns the pair (z, r) for y != 0.
213// If y == 0, a division-by-zero run-time panic occurs.
214//
215// QuoRem implements T-division and modulus (like Go):
216//
217// q = x/y with the result truncated to zero
218// r = x - y*q
219//
220// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
94252f4b 221// See DivMod for Euclidean division and modulus (unlike Go).
7a938933
ILT
222//
223func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
224 z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
225 z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
226 return z, r
227}
228
7a938933
ILT
229// Div sets z to the quotient x/y for y != 0 and returns z.
230// If y == 0, a division-by-zero run-time panic occurs.
d8f41257 231// Div implements Euclidean division (unlike Go); see DivMod for more details.
7a938933
ILT
232func (z *Int) Div(x, y *Int) *Int {
233 y_neg := y.neg // z may be an alias for y
234 var r Int
235 z.QuoRem(x, y, &r)
236 if r.neg {
237 if y_neg {
238 z.Add(z, intOne)
239 } else {
240 z.Sub(z, intOne)
241 }
242 }
243 return z
244}
245
7a938933
ILT
246// Mod sets z to the modulus x%y for y != 0 and returns z.
247// If y == 0, a division-by-zero run-time panic occurs.
d8f41257 248// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
7a938933
ILT
249func (z *Int) Mod(x, y *Int) *Int {
250 y0 := y // save y
251 if z == y || alias(z.abs, y.abs) {
252 y0 = new(Int).Set(y)
253 }
254 var q Int
255 q.QuoRem(x, y, z)
256 if z.neg {
257 if y0.neg {
258 z.Sub(z, y0)
259 } else {
260 z.Add(z, y0)
261 }
262 }
263 return z
264}
265
7a938933
ILT
266// DivMod sets z to the quotient x div y and m to the modulus x mod y
267// and returns the pair (z, m) for y != 0.
268// If y == 0, a division-by-zero run-time panic occurs.
269//
270// DivMod implements Euclidean division and modulus (unlike Go):
271//
272// q = x div y such that
273// m = x - y*q with 0 <= m < |q|
274//
275// (See Raymond T. Boute, ``The Euclidean definition of the functions
276// div and mod''. ACM Transactions on Programming Languages and
277// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
278// ACM press.)
94252f4b 279// See QuoRem for T-division and modulus (like Go).
7a938933
ILT
280//
281func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
282 y0 := y // save y
283 if z == y || alias(z.abs, y.abs) {
284 y0 = new(Int).Set(y)
285 }
286 z.QuoRem(x, y, m)
287 if m.neg {
288 if y0.neg {
289 z.Add(z, intOne)
290 m.Sub(m, y0)
291 } else {
292 z.Sub(z, intOne)
293 m.Add(m, y0)
294 }
295 }
296 return z, m
297}
298
7a938933
ILT
299// Cmp compares x and y and returns:
300//
301// -1 if x < y
302// 0 if x == y
303// +1 if x > y
304//
305func (x *Int) Cmp(y *Int) (r int) {
306 // x cmp y == x cmp y
307 // x cmp (-y) == x
308 // (-x) cmp y == y
309 // (-x) cmp (-y) == -(x cmp y)
310 switch {
311 case x.neg == y.neg:
312 r = x.abs.cmp(y.abs)
313 if x.neg {
314 r = -r
315 }
316 case x.neg:
317 r = -1
318 default:
319 r = 1
320 }
321 return
322}
323
7a938933 324func (x *Int) String() string {
adb0401d
ILT
325 switch {
326 case x == nil:
327 return "<nil>"
328 case x.neg:
329 return "-" + x.abs.decimalString()
7a938933 330 }
adb0401d 331 return x.abs.decimalString()
7a938933
ILT
332}
333
506cf9aa 334func charset(ch rune) string {
7a938933
ILT
335 switch ch {
336 case 'b':
adb0401d 337 return lowercaseDigits[0:2]
7a938933 338 case 'o':
adb0401d
ILT
339 return lowercaseDigits[0:8]
340 case 'd', 's', 'v':
341 return lowercaseDigits[0:10]
7a938933 342 case 'x':
adb0401d
ILT
343 return lowercaseDigits[0:16]
344 case 'X':
345 return uppercaseDigits[0:16]
7a938933 346 }
adb0401d 347 return "" // unknown format
7a938933
ILT
348}
349
adb0401d
ILT
350// write count copies of text to s
351func writeMultiple(s fmt.State, text string, count int) {
352 if len(text) > 0 {
353 b := []byte(text)
354 for ; count > 0; count-- {
355 s.Write(b)
356 }
357 }
358}
7a938933
ILT
359
360// Format is a support routine for fmt.Formatter. It accepts
adb0401d
ILT
361// the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x'
362// (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
363// Also supported are the full suite of package fmt's format
364// verbs for integral types, including '+', '-', and ' '
365// for sign control, '#' for leading zero in octal and for
366// hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X"
367// respectively, specification of minimum digits precision,
368// output field width, space or zero padding, and left or
369// right justification.
7a938933 370//
506cf9aa 371func (x *Int) Format(s fmt.State, ch rune) {
adb0401d
ILT
372 cs := charset(ch)
373
374 // special cases
375 switch {
376 case cs == "":
377 // unknown format
378 fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String())
379 return
380 case x == nil:
9ff56c95
ILT
381 fmt.Fprint(s, "<nil>")
382 return
383 }
adb0401d
ILT
384
385 // determine sign character
386 sign := ""
387 switch {
388 case x.neg:
389 sign = "-"
390 case s.Flag('+'): // supersedes ' ' when both specified
391 sign = "+"
392 case s.Flag(' '):
393 sign = " "
394 }
395
396 // determine prefix characters for indicating output base
397 prefix := ""
398 if s.Flag('#') {
399 switch ch {
400 case 'o': // octal
401 prefix = "0"
402 case 'x': // hexadecimal
403 prefix = "0x"
404 case 'X':
405 prefix = "0X"
406 }
407 }
408
409 // determine digits with base set by len(cs) and digit characters from cs
410 digits := x.abs.string(cs)
411
412 // number of characters for the three classes of number padding
413 var left int // space characters to left of digits for right justification ("%8d")
414 var zeroes int // zero characters (actually cs[0]) as left-most digits ("%.8d")
415 var right int // space characters to right of digits for left justification ("%-8d")
416
417 // determine number padding from precision: the least number of digits to output
418 precision, precisionSet := s.Precision()
419 if precisionSet {
420 switch {
421 case len(digits) < precision:
fabcaa8d 422 zeroes = precision - len(digits) // count of zero padding
adb0401d
ILT
423 case digits == "0" && precision == 0:
424 return // print nothing if zero value (x == 0) and zero precision ("." or ".0")
425 }
426 }
427
428 // determine field pad from width: the least number of characters to output
429 length := len(sign) + len(prefix) + zeroes + len(digits)
430 if width, widthSet := s.Width(); widthSet && length < width { // pad as specified
431 switch d := width - length; {
432 case s.Flag('-'):
433 // pad on the right with spaces; supersedes '0' when both specified
434 right = d
435 case s.Flag('0') && !precisionSet:
436 // pad with zeroes unless precision also specified
437 zeroes = d
438 default:
439 // pad on the left with spaces
440 left = d
441 }
7a938933 442 }
adb0401d
ILT
443
444 // print number as [left pad][sign][prefix][zero pad][digits][right pad]
445 writeMultiple(s, " ", left)
446 writeMultiple(s, sign, 1)
447 writeMultiple(s, prefix, 1)
448 writeMultiple(s, "0", zeroes)
449 writeMultiple(s, digits, 1)
450 writeMultiple(s, " ", right)
7a938933
ILT
451}
452
adb0401d
ILT
453// scan sets z to the integer value corresponding to the longest possible prefix
454// read from r representing a signed integer number in a given conversion base.
455// It returns z, the actual conversion base used, and an error, if any. In the
b740cb63
ILT
456// error case, the value of z is undefined but the returned value is nil. The
457// syntax follows the syntax of integer literals in Go.
adb0401d
ILT
458//
459// The base argument must be 0 or a value from 2 through MaxBase. If the base
460// is 0, the string prefix determines the actual conversion base. A prefix of
461// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
462// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
463//
2fd401c8 464func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, error) {
adb0401d
ILT
465 // determine sign
466 ch, _, err := r.ReadRune()
467 if err != nil {
b740cb63 468 return nil, 0, err
adb0401d
ILT
469 }
470 neg := false
471 switch ch {
472 case '-':
473 neg = true
474 case '+': // nothing to do
475 default:
476 r.UnreadRune()
477 }
7a938933 478
adb0401d
ILT
479 // determine mantissa
480 z.abs, base, err = z.abs.scan(r, base)
481 if err != nil {
b740cb63 482 return nil, base, err
adb0401d
ILT
483 }
484 z.neg = len(z.abs) > 0 && neg // 0 has no sign
485
486 return z, base, nil
487}
488
489// Scan is a support routine for fmt.Scanner; it sets z to the value of
490// the scanned number. It accepts the formats 'b' (binary), 'o' (octal),
491// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
2fd401c8 492func (z *Int) Scan(s fmt.ScanState, ch rune) error {
adb0401d
ILT
493 s.SkipSpace() // skip leading space characters
494 base := 0
495 switch ch {
496 case 'b':
497 base = 2
498 case 'o':
499 base = 8
500 case 'd':
501 base = 10
502 case 'x', 'X':
503 base = 16
504 case 's', 'v':
505 // let scan determine the base
506 default:
2fd401c8 507 return errors.New("Int.Scan: invalid verb")
adb0401d
ILT
508 }
509 _, _, err := z.scan(s, base)
510 return err
511}
512
f8d9fa9e
ILT
513// low32 returns the least significant 32 bits of z.
514func low32(z nat) uint32 {
515 if len(z) == 0 {
516 return 0
517 }
518 return uint32(z[0])
519}
520
521// low64 returns the least significant 64 bits of z.
522func low64(z nat) uint64 {
523 if len(z) == 0 {
524 return 0
525 }
526 v := uint64(z[0])
527 if _W == 32 && len(z) > 1 {
528 v |= uint64(z[1]) << 32
529 }
530 return v
531}
532
adb0401d
ILT
533// Int64 returns the int64 representation of x.
534// If x cannot be represented in an int64, the result is undefined.
7a938933 535func (x *Int) Int64() int64 {
f8d9fa9e 536 v := int64(low64(x.abs))
7a938933
ILT
537 if x.neg {
538 v = -v
539 }
540 return v
541}
542
d6f2922e 543// Uint64 returns the uint64 representation of x.
be47d6ec 544// If x cannot be represented in a uint64, the result is undefined.
409a5e7e 545func (x *Int) Uint64() uint64 {
f8d9fa9e 546 return low64(x.abs)
409a5e7e
ILT
547}
548
7a938933
ILT
549// SetString sets z to the value of s, interpreted in the given base,
550// and returns z and a boolean indicating success. If SetString fails,
b740cb63 551// the value of z is undefined but the returned value is nil.
7a938933 552//
adb0401d
ILT
553// The base argument must be 0 or a value from 2 through MaxBase. If the base
554// is 0, the string prefix determines the actual conversion base. A prefix of
555// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
556// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
7a938933
ILT
557//
558func (z *Int) SetString(s string, base int) (*Int, bool) {
adb0401d
ILT
559 r := strings.NewReader(s)
560 _, _, err := z.scan(r, base)
561 if err != nil {
b740cb63 562 return nil, false
7a938933 563 }
adb0401d 564 _, _, err = r.ReadRune()
2fd401c8 565 if err != io.EOF {
b740cb63
ILT
566 return nil, false
567 }
9c63abc9 568 return z, true // err == io.EOF => scan consumed all of s
7a938933
ILT
569}
570
8039ca76
ILT
571// SetBytes interprets buf as the bytes of a big-endian unsigned
572// integer, sets z to that value, and returns z.
573func (z *Int) SetBytes(buf []byte) *Int {
574 z.abs = z.abs.setBytes(buf)
7a938933
ILT
575 z.neg = false
576 return z
577}
578
f038dae6 579// Bytes returns the absolute value of x as a big-endian byte slice.
94252f4b
ILT
580func (x *Int) Bytes() []byte {
581 buf := make([]byte, len(x.abs)*_S)
582 return buf[x.abs.bytes(buf):]
7a938933
ILT
583}
584
f038dae6 585// BitLen returns the length of the absolute value of x in bits.
7a938933 586// The bit length of 0 is 0.
94252f4b
ILT
587func (x *Int) BitLen() int {
588 return x.abs.bitLen()
7a938933
ILT
589}
590
fabcaa8d 591// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
00d86ac9 592// If y <= 0, the result is 1 mod |m|; if m == nil or m == 0, z = x**y.
7a938933
ILT
593// See Knuth, volume 2, section 4.6.3.
594func (z *Int) Exp(x, y, m *Int) *Int {
00d86ac9
ILT
595 var yWords nat
596 if !y.neg {
597 yWords = y.abs
7a938933 598 }
00d86ac9 599 // y >= 0
7a938933
ILT
600
601 var mWords nat
602 if m != nil {
fabcaa8d 603 mWords = m.abs // m.abs may be nil for m == 0
7a938933
ILT
604 }
605
00d86ac9
ILT
606 z.abs = z.abs.expNN(x.abs, yWords, mWords)
607 z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
f8d9fa9e
ILT
608 if z.neg && len(mWords) > 0 {
609 // make modulus result positive
610 z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
611 z.neg = false
612 }
613
7a938933
ILT
614 return z
615}
616
4ccad563
ILT
617// GCD sets z to the greatest common divisor of a and b, which both must
618// be > 0, and returns z.
94252f4b 619// If x and y are not nil, GCD sets x and y such that z = a*x + b*y.
4ccad563 620// If either a or b is <= 0, GCD sets z = x = y = 0.
94252f4b 621func (z *Int) GCD(x, y, a, b *Int) *Int {
4ccad563 622 if a.Sign() <= 0 || b.Sign() <= 0 {
94252f4b 623 z.SetInt64(0)
7a938933
ILT
624 if x != nil {
625 x.SetInt64(0)
626 }
627 if y != nil {
628 y.SetInt64(0)
629 }
94252f4b 630 return z
7a938933 631 }
4ccad563
ILT
632 if x == nil && y == nil {
633 return z.binaryGCD(a, b)
634 }
7a938933
ILT
635
636 A := new(Int).Set(a)
637 B := new(Int).Set(b)
638
639 X := new(Int)
640 Y := new(Int).SetInt64(1)
641
642 lastX := new(Int).SetInt64(1)
643 lastY := new(Int)
644
645 q := new(Int)
646 temp := new(Int)
647
648 for len(B.abs) > 0 {
649 r := new(Int)
650 q, r = q.QuoRem(A, B, r)
651
652 A, B = B, r
653
654 temp.Set(X)
655 X.Mul(X, q)
656 X.neg = !X.neg
657 X.Add(X, lastX)
658 lastX.Set(temp)
659
660 temp.Set(Y)
661 Y.Mul(Y, q)
662 Y.neg = !Y.neg
663 Y.Add(Y, lastY)
664 lastY.Set(temp)
665 }
666
667 if x != nil {
668 *x = *lastX
669 }
670
671 if y != nil {
672 *y = *lastY
673 }
674
94252f4b
ILT
675 *z = *A
676 return z
7a938933
ILT
677}
678
4ccad563
ILT
679// binaryGCD sets z to the greatest common divisor of a and b, which both must
680// be > 0, and returns z.
681// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B.
682func (z *Int) binaryGCD(a, b *Int) *Int {
683 u := z
684 v := new(Int)
685
686 // use one Euclidean iteration to ensure that u and v are approx. the same size
687 switch {
688 case len(a.abs) > len(b.abs):
689 u.Set(b)
690 v.Rem(a, b)
691 case len(a.abs) < len(b.abs):
692 u.Set(a)
693 v.Rem(b, a)
694 default:
695 u.Set(a)
696 v.Set(b)
697 }
698
699 // v might be 0 now
700 if len(v.abs) == 0 {
701 return u
702 }
703 // u > 0 && v > 0
704
705 // determine largest k such that u = u' << k, v = v' << k
706 k := u.abs.trailingZeroBits()
707 if vk := v.abs.trailingZeroBits(); vk < k {
708 k = vk
709 }
710 u.Rsh(u, k)
711 v.Rsh(v, k)
712
713 // determine t (we know that u > 0)
714 t := new(Int)
715 if u.abs[0]&1 != 0 {
716 // u is odd
717 t.Neg(v)
718 } else {
719 t.Set(u)
720 }
721
722 for len(t.abs) > 0 {
723 // reduce t
724 t.Rsh(t, t.abs.trailingZeroBits())
725 if t.neg {
f038dae6
ILT
726 v, t = t, v
727 v.neg = len(v.abs) > 0 && !v.neg // 0 has no sign
4ccad563 728 } else {
f038dae6 729 u, t = t, u
4ccad563
ILT
730 }
731 t.Sub(u, v)
732 }
733
f038dae6 734 return z.Lsh(u, k)
4ccad563
ILT
735}
736
94252f4b
ILT
737// ProbablyPrime performs n Miller-Rabin tests to check whether x is prime.
738// If it returns true, x is prime with probability 1 - 1/4^n.
739// If it returns false, x is not prime.
740func (x *Int) ProbablyPrime(n int) bool {
741 return !x.neg && x.abs.probablyPrime(n)
7a938933
ILT
742}
743
adb0401d 744// Rand sets z to a pseudo-random number in [0, n) and returns z.
7a938933
ILT
745func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
746 z.neg = false
747 if n.neg == true || len(n.abs) == 0 {
748 z.abs = nil
749 return z
750 }
751 z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
752 return z
753}
754
f8d9fa9e
ILT
755// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
756// and returns z. If g and n are not relatively prime, the result is undefined.
757func (z *Int) ModInverse(g, n *Int) *Int {
7a938933 758 var d Int
f8d9fa9e
ILT
759 d.GCD(z, nil, g, n)
760 // x and y are such that g*x + n*y = d. Since g and n are
761 // relatively prime, d = 1. Taking that modulo n results in
762 // g*x = 1, therefore x is the inverse element.
7a938933 763 if z.neg {
f8d9fa9e 764 z.Add(z, n)
7a938933
ILT
765 }
766 return z
767}
768
7a938933
ILT
769// Lsh sets z = x << n and returns z.
770func (z *Int) Lsh(x *Int, n uint) *Int {
771 z.abs = z.abs.shl(x.abs, n)
772 z.neg = x.neg
773 return z
774}
775
7a938933
ILT
776// Rsh sets z = x >> n and returns z.
777func (z *Int) Rsh(x *Int, n uint) *Int {
778 if x.neg {
779 // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
780 t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
781 t = t.shr(t, n)
782 z.abs = t.add(t, natOne)
783 z.neg = true // z cannot be zero if x is negative
784 return z
785 }
786
787 z.abs = z.abs.shr(x.abs, n)
788 z.neg = false
789 return z
790}
791
94252f4b
ILT
792// Bit returns the value of the i'th bit of x. That is, it
793// returns (x>>i)&1. The bit index i must be >= 0.
794func (x *Int) Bit(i int) uint {
4ccad563
ILT
795 if i == 0 {
796 // optimization for common case: odd/even test of x
797 if len(x.abs) > 0 {
798 return uint(x.abs[0] & 1) // bit 0 is same for -x
799 }
800 return 0
801 }
adb0401d
ILT
802 if i < 0 {
803 panic("negative bit index")
804 }
94252f4b
ILT
805 if x.neg {
806 t := nat(nil).sub(x.abs, natOne)
adb0401d
ILT
807 return t.bit(uint(i)) ^ 1
808 }
809
94252f4b 810 return x.abs.bit(uint(i))
adb0401d
ILT
811}
812
ab61e9c4 813// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
be47d6ec
ILT
814// That is, if b is 1 SetBit sets z = x | (1 << i);
815// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
adb0401d
ILT
816// SetBit will panic.
817func (z *Int) SetBit(x *Int, i int, b uint) *Int {
818 if i < 0 {
819 panic("negative bit index")
820 }
821 if x.neg {
822 t := z.abs.sub(x.abs, natOne)
823 t = t.setBit(t, uint(i), b^1)
824 z.abs = t.add(t, natOne)
825 z.neg = len(z.abs) > 0
826 return z
827 }
828 z.abs = z.abs.setBit(x.abs, uint(i), b)
829 z.neg = false
830 return z
831}
7a938933
ILT
832
833// And sets z = x & y and returns z.
834func (z *Int) And(x, y *Int) *Int {
835 if x.neg == y.neg {
836 if x.neg {
837 // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
ab61e9c4
ILT
838 x1 := nat(nil).sub(x.abs, natOne)
839 y1 := nat(nil).sub(y.abs, natOne)
7a938933
ILT
840 z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
841 z.neg = true // z cannot be zero if x and y are negative
842 return z
843 }
844
845 // x & y == x & y
846 z.abs = z.abs.and(x.abs, y.abs)
847 z.neg = false
848 return z
849 }
850
851 // x.neg != y.neg
852 if x.neg {
853 x, y = y, x // & is symmetric
854 }
855
856 // x & (-y) == x & ^(y-1) == x &^ (y-1)
ab61e9c4 857 y1 := nat(nil).sub(y.abs, natOne)
7a938933
ILT
858 z.abs = z.abs.andNot(x.abs, y1)
859 z.neg = false
860 return z
861}
862
7a938933
ILT
863// AndNot sets z = x &^ y and returns z.
864func (z *Int) AndNot(x, y *Int) *Int {
865 if x.neg == y.neg {
866 if x.neg {
867 // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
ab61e9c4
ILT
868 x1 := nat(nil).sub(x.abs, natOne)
869 y1 := nat(nil).sub(y.abs, natOne)
7a938933
ILT
870 z.abs = z.abs.andNot(y1, x1)
871 z.neg = false
872 return z
873 }
874
875 // x &^ y == x &^ y
876 z.abs = z.abs.andNot(x.abs, y.abs)
877 z.neg = false
878 return z
879 }
880
881 if x.neg {
882 // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
ab61e9c4 883 x1 := nat(nil).sub(x.abs, natOne)
7a938933
ILT
884 z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
885 z.neg = true // z cannot be zero if x is negative and y is positive
886 return z
887 }
888
889 // x &^ (-y) == x &^ ^(y-1) == x & (y-1)
c271e224 890 y1 := nat(nil).sub(y.abs, natOne)
7a938933
ILT
891 z.abs = z.abs.and(x.abs, y1)
892 z.neg = false
893 return z
894}
895
7a938933
ILT
896// Or sets z = x | y and returns z.
897func (z *Int) Or(x, y *Int) *Int {
898 if x.neg == y.neg {
899 if x.neg {
900 // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
ab61e9c4
ILT
901 x1 := nat(nil).sub(x.abs, natOne)
902 y1 := nat(nil).sub(y.abs, natOne)
7a938933
ILT
903 z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
904 z.neg = true // z cannot be zero if x and y are negative
905 return z
906 }
907
908 // x | y == x | y
909 z.abs = z.abs.or(x.abs, y.abs)
910 z.neg = false
911 return z
912 }
913
914 // x.neg != y.neg
915 if x.neg {
916 x, y = y, x // | is symmetric
917 }
918
919 // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
ab61e9c4 920 y1 := nat(nil).sub(y.abs, natOne)
7a938933
ILT
921 z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
922 z.neg = true // z cannot be zero if one of x or y is negative
923 return z
924}
925
7a938933
ILT
926// Xor sets z = x ^ y and returns z.
927func (z *Int) Xor(x, y *Int) *Int {
928 if x.neg == y.neg {
929 if x.neg {
930 // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
ab61e9c4
ILT
931 x1 := nat(nil).sub(x.abs, natOne)
932 y1 := nat(nil).sub(y.abs, natOne)
7a938933
ILT
933 z.abs = z.abs.xor(x1, y1)
934 z.neg = false
935 return z
936 }
937
938 // x ^ y == x ^ y
939 z.abs = z.abs.xor(x.abs, y.abs)
940 z.neg = false
941 return z
942 }
943
944 // x.neg != y.neg
945 if x.neg {
946 x, y = y, x // ^ is symmetric
947 }
948
949 // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
ab61e9c4 950 y1 := nat(nil).sub(y.abs, natOne)
7a938933
ILT
951 z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
952 z.neg = true // z cannot be zero if only one of x or y is negative
953 return z
954}
955
7a938933
ILT
956// Not sets z = ^x and returns z.
957func (z *Int) Not(x *Int) *Int {
958 if x.neg {
959 // ^(-x) == ^(^(x-1)) == x-1
960 z.abs = z.abs.sub(x.abs, natOne)
961 z.neg = false
962 return z
963 }
964
965 // ^x == -x-1 == -(x+1)
966 z.abs = z.abs.add(x.abs, natOne)
967 z.neg = true // z cannot be zero if x is positive
968 return z
969}
8039ca76 970
8039ca76 971// Gob codec version. Permits backward-compatible changes to the encoding.
adb0401d 972const intGobVersion byte = 1
8039ca76
ILT
973
974// GobEncode implements the gob.GobEncoder interface.
94252f4b 975func (x *Int) GobEncode() ([]byte, error) {
f038dae6
ILT
976 if x == nil {
977 return nil, nil
978 }
94252f4b
ILT
979 buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit
980 i := x.abs.bytes(buf) - 1 // i >= 0
adb0401d 981 b := intGobVersion << 1 // make space for sign bit
94252f4b 982 if x.neg {
8039ca76
ILT
983 b |= 1
984 }
985 buf[i] = b
986 return buf[i:], nil
987}
988
8039ca76 989// GobDecode implements the gob.GobDecoder interface.
2fd401c8 990func (z *Int) GobDecode(buf []byte) error {
8039ca76 991 if len(buf) == 0 {
f038dae6
ILT
992 // Other side sent a nil or default value.
993 *z = Int{}
994 return nil
8039ca76
ILT
995 }
996 b := buf[0]
adb0401d 997 if b>>1 != intGobVersion {
2fd401c8 998 return errors.New(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1))
8039ca76
ILT
999 }
1000 z.neg = b&1 != 0
1001 z.abs = z.abs.setBytes(buf[1:])
1002 return nil
1003}
4ccad563
ILT
1004
1005// MarshalJSON implements the json.Marshaler interface.
6736ef96 1006func (z *Int) MarshalJSON() ([]byte, error) {
4ccad563 1007 // TODO(gri): get rid of the []byte/string conversions
6736ef96 1008 return []byte(z.String()), nil
4ccad563
ILT
1009}
1010
1011// UnmarshalJSON implements the json.Unmarshaler interface.
6736ef96 1012func (z *Int) UnmarshalJSON(text []byte) error {
4ccad563 1013 // TODO(gri): get rid of the []byte/string conversions
6736ef96
ILT
1014 if _, ok := z.SetString(string(text), 0); !ok {
1015 return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text)
1016 }
1017 return nil
1018}
1019
f8d9fa9e 1020// MarshalText implements the encoding.TextMarshaler interface.
6736ef96
ILT
1021func (z *Int) MarshalText() (text []byte, err error) {
1022 return []byte(z.String()), nil
1023}
1024
f8d9fa9e 1025// UnmarshalText implements the encoding.TextUnmarshaler interface.
6736ef96
ILT
1026func (z *Int) UnmarshalText(text []byte) error {
1027 if _, ok := z.SetString(string(text), 0); !ok {
1028 return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text)
4ccad563
ILT
1029 }
1030 return nil
1031}