]> git.ipfire.org Git - thirdparty/gcc.git/blame - libiberty/hashtab.c
configure.in: Propagate ORIGINAL_LD_FOR_MULTILIBS to config.status.
[thirdparty/gcc.git] / libiberty / hashtab.c
CommitLineData
a2f945c6 1/* An expandable hash tables datatype.
74828682 2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
a2f945c6
VM
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5This file is part of the libiberty library.
6Libiberty is free software; you can redistribute it and/or
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9version 2 of the License, or (at your option) any later version.
10
11Libiberty is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
17License along with libiberty; see the file COPYING.LIB. If
18not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
20
21/* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34#ifdef HAVE_CONFIG_H
35#include "config.h"
36#endif
37
6de9b8ff
PDM
38#include <sys/types.h>
39
a2f945c6
VM
40#ifdef HAVE_STDLIB_H
41#include <stdlib.h>
42#endif
43
d11ec6f0
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
47
36dd3a44
JL
48#include <stdio.h>
49
a2f945c6
VM
50#include "libiberty.h"
51#include "hashtab.h"
52
a2f945c6
VM
53/* This macro defines reserved value for empty table entry. */
54
35e9340f 55#define EMPTY_ENTRY ((PTR) 0)
a2f945c6
VM
56
57/* This macro defines reserved value for table entry which contained
58 a deleted element. */
59
35e9340f 60#define DELETED_ENTRY ((PTR) 1)
a2f945c6 61
0194e877 62static unsigned long higher_prime_number PARAMS ((unsigned long));
18a94a2f
MM
63static hashval_t hash_pointer PARAMS ((const void *));
64static int eq_pointer PARAMS ((const void *, const void *));
d50d20ec 65static int htab_expand PARAMS ((htab_t));
35e9340f 66static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
18a94a2f
MM
67
68/* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71htab_hash htab_hash_pointer = hash_pointer;
72htab_eq htab_eq_pointer = eq_pointer;
0194e877 73
a4c9b97e
MM
74/* The following function returns a nearest prime number which is
75 greater than N, and near a power of two. */
a2f945c6
VM
76
77static unsigned long
5194cf08
ZW
78higher_prime_number (n)
79 unsigned long n;
a2f945c6 80{
a4c9b97e
MM
81 /* These are primes that are near, but slightly smaller than, a
82 power of two. */
0be6abca 83 static const unsigned long primes[] = {
f8a0ba8c
MM
84 (unsigned long) 7,
85 (unsigned long) 13,
86 (unsigned long) 31,
87 (unsigned long) 61,
88 (unsigned long) 127,
89 (unsigned long) 251,
90 (unsigned long) 509,
91 (unsigned long) 1021,
92 (unsigned long) 2039,
93 (unsigned long) 4093,
94 (unsigned long) 8191,
95 (unsigned long) 16381,
96 (unsigned long) 32749,
97 (unsigned long) 65521,
98 (unsigned long) 131071,
99 (unsigned long) 262139,
100 (unsigned long) 524287,
101 (unsigned long) 1048573,
102 (unsigned long) 2097143,
103 (unsigned long) 4194301,
104 (unsigned long) 8388593,
105 (unsigned long) 16777213,
106 (unsigned long) 33554393,
107 (unsigned long) 67108859,
108 (unsigned long) 134217689,
109 (unsigned long) 268435399,
110 (unsigned long) 536870909,
111 (unsigned long) 1073741789,
112 (unsigned long) 2147483647,
113 /* 4294967291L */
6e8afa99 114 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
a4c9b97e
MM
115 };
116
0be6abca
KG
117 const unsigned long *low = &primes[0];
118 const unsigned long *high = &primes[sizeof(primes) / sizeof(primes[0])];
a4c9b97e
MM
119
120 while (low != high)
121 {
0be6abca 122 const unsigned long *mid = low + (high - low) / 2;
a4c9b97e
MM
123 if (n > *mid)
124 low = mid + 1;
125 else
126 high = mid;
127 }
128
129 /* If we've run out of primes, abort. */
130 if (n > *low)
131 {
132 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
133 abort ();
134 }
135
136 return *low;
a2f945c6
VM
137}
138
18a94a2f
MM
139/* Returns a hash code for P. */
140
4feeaae3 141static hashval_t
18a94a2f 142hash_pointer (p)
35e9340f 143 const PTR p;
18a94a2f 144{
1d2da2e1 145 return (hashval_t) ((long)p >> 3);
18a94a2f
MM
146}
147
148/* Returns non-zero if P1 and P2 are equal. */
149
4feeaae3 150static int
18a94a2f 151eq_pointer (p1, p2)
35e9340f
HPN
152 const PTR p1;
153 const PTR p2;
18a94a2f
MM
154{
155 return p1 == p2;
156}
157
a2f945c6
VM
158/* This function creates table with length slightly longer than given
159 source length. Created hash table is initiated as empty (all the
160 hash table entries are EMPTY_ENTRY). The function returns the
e2500fed 161 created hash table, or NULL if memory allocation fails. */
a2f945c6 162
5194cf08 163htab_t
e2500fed 164htab_create_alloc (size, hash_f, eq_f, del_f, alloc_f, free_f)
a2f945c6 165 size_t size;
5194cf08
ZW
166 htab_hash hash_f;
167 htab_eq eq_f;
5dc9cffd 168 htab_del del_f;
e2500fed
GK
169 htab_alloc alloc_f;
170 htab_free free_f;
a2f945c6 171{
5194cf08 172 htab_t result;
a2f945c6
VM
173
174 size = higher_prime_number (size);
e2500fed 175 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
d50d20ec
HPN
176 if (result == NULL)
177 return NULL;
e2500fed 178 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
d50d20ec
HPN
179 if (result->entries == NULL)
180 {
e2500fed
GK
181 if (free_f != NULL)
182 (*free_f) (result);
d50d20ec
HPN
183 return NULL;
184 }
d50d20ec
HPN
185 result->size = size;
186 result->hash_f = hash_f;
187 result->eq_f = eq_f;
188 result->del_f = del_f;
e2500fed
GK
189 result->alloc_f = alloc_f;
190 result->free_f = free_f;
a2f945c6
VM
191 return result;
192}
193
74828682
DJ
194/* As above, but use the variants of alloc_f and free_f which accept
195 an extra argument. */
196
197htab_t
198htab_create_alloc_ex (size, hash_f, eq_f, del_f, alloc_arg, alloc_f,
199 free_f)
200 size_t size;
201 htab_hash hash_f;
202 htab_eq eq_f;
203 htab_del del_f;
204 PTR alloc_arg;
205 htab_alloc_with_arg alloc_f;
206 htab_free_with_arg free_f;
207{
208 htab_t result;
209
210 size = higher_prime_number (size);
211 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
212 if (result == NULL)
213 return NULL;
214 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
215 if (result->entries == NULL)
216 {
217 if (free_f != NULL)
218 (*free_f) (alloc_arg, result);
219 return NULL;
220 }
221 result->size = size;
222 result->hash_f = hash_f;
223 result->eq_f = eq_f;
224 result->del_f = del_f;
225 result->alloc_arg = alloc_arg;
226 result->alloc_with_arg_f = alloc_f;
227 result->free_with_arg_f = free_f;
228 return result;
229}
230
231/* Update the function pointers and allocation parameter in the htab_t. */
232
233void
234htab_set_functions_ex (htab, hash_f, eq_f, del_f, alloc_arg, alloc_f, free_f)
235 htab_t htab;
236 htab_hash hash_f;
237 htab_eq eq_f;
238 htab_del del_f;
239 PTR alloc_arg;
240 htab_alloc_with_arg alloc_f;
241 htab_free_with_arg free_f;
242{
243 htab->hash_f = hash_f;
244 htab->eq_f = eq_f;
245 htab->del_f = del_f;
246 htab->alloc_arg = alloc_arg;
247 htab->alloc_with_arg_f = alloc_f;
248 htab->free_with_arg_f = free_f;
249}
250
045b3a49
GK
251/* These functions exist solely for backward compatibility. */
252
253#undef htab_create
254htab_t
255htab_create (size, hash_f, eq_f, del_f)
256 size_t size;
257 htab_hash hash_f;
258 htab_eq eq_f;
259 htab_del del_f;
260{
261 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
262}
263
264htab_t
265htab_try_create (size, hash_f, eq_f, del_f)
266 size_t size;
267 htab_hash hash_f;
268 htab_eq eq_f;
269 htab_del del_f;
270{
271 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
272}
273
a2f945c6
VM
274/* This function frees all memory allocated for given hash table.
275 Naturally the hash table must already exist. */
276
277void
5194cf08
ZW
278htab_delete (htab)
279 htab_t htab;
a2f945c6 280{
5dc9cffd 281 int i;
e38992e8 282
5dc9cffd
ZW
283 if (htab->del_f)
284 for (i = htab->size - 1; i >= 0; i--)
e38992e8
RK
285 if (htab->entries[i] != EMPTY_ENTRY
286 && htab->entries[i] != DELETED_ENTRY)
287 (*htab->del_f) (htab->entries[i]);
5dc9cffd 288
e2500fed
GK
289 if (htab->free_f != NULL)
290 {
291 (*htab->free_f) (htab->entries);
292 (*htab->free_f) (htab);
293 }
74828682
DJ
294 else if (htab->free_with_arg_f != NULL)
295 {
296 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
297 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
298 }
a2f945c6
VM
299}
300
301/* This function clears all entries in the given hash table. */
302
303void
5194cf08
ZW
304htab_empty (htab)
305 htab_t htab;
a2f945c6 306{
5dc9cffd 307 int i;
e38992e8 308
5dc9cffd
ZW
309 if (htab->del_f)
310 for (i = htab->size - 1; i >= 0; i--)
e38992e8
RK
311 if (htab->entries[i] != EMPTY_ENTRY
312 && htab->entries[i] != DELETED_ENTRY)
313 (*htab->del_f) (htab->entries[i]);
5dc9cffd 314
35e9340f 315 memset (htab->entries, 0, htab->size * sizeof (PTR));
a2f945c6
VM
316}
317
8c5d513f
BS
318/* Similar to htab_find_slot, but without several unwanted side effects:
319 - Does not call htab->eq_f when it finds an existing entry.
320 - Does not change the count of elements/searches/collisions in the
321 hash table.
322 This function also assumes there are no deleted entries in the table.
323 HASH is the hash value for the element to be inserted. */
e38992e8 324
35e9340f 325static PTR *
8c5d513f
BS
326find_empty_slot_for_expand (htab, hash)
327 htab_t htab;
b13eb66b 328 hashval_t hash;
8c5d513f
BS
329{
330 size_t size = htab->size;
8c5d513f 331 unsigned int index = hash % size;
4fc4e478
RH
332 PTR *slot = htab->entries + index;
333 hashval_t hash2;
334
335 if (*slot == EMPTY_ENTRY)
336 return slot;
337 else if (*slot == DELETED_ENTRY)
338 abort ();
8c5d513f 339
4fc4e478 340 hash2 = 1 + hash % (size - 2);
8c5d513f
BS
341 for (;;)
342 {
4fc4e478
RH
343 index += hash2;
344 if (index >= size)
345 index -= size;
e38992e8 346
4fc4e478 347 slot = htab->entries + index;
8c5d513f
BS
348 if (*slot == EMPTY_ENTRY)
349 return slot;
e38992e8 350 else if (*slot == DELETED_ENTRY)
8c5d513f 351 abort ();
8c5d513f
BS
352 }
353}
354
a2f945c6
VM
355/* The following function changes size of memory allocated for the
356 entries and repeatedly inserts the table elements. The occupancy
357 of the table after the call will be about 50%. Naturally the hash
358 table must already exist. Remember also that the place of the
d50d20ec
HPN
359 table entries is changed. If memory allocation failures are allowed,
360 this function will return zero, indicating that the table could not be
361 expanded. If all goes well, it will return a non-zero value. */
a2f945c6 362
d50d20ec 363static int
5194cf08
ZW
364htab_expand (htab)
365 htab_t htab;
a2f945c6 366{
35e9340f
HPN
367 PTR *oentries;
368 PTR *olimit;
369 PTR *p;
e2500fed 370 PTR *nentries;
120cdf68 371 size_t nsize;
5194cf08
ZW
372
373 oentries = htab->entries;
374 olimit = oentries + htab->size;
375
120cdf68 376 nsize = higher_prime_number (htab->size * 2);
d50d20ec 377
74828682
DJ
378 if (htab->alloc_with_arg_f != NULL)
379 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
380 sizeof (PTR *));
381 else
382 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
e2500fed
GK
383 if (nentries == NULL)
384 return 0;
385 htab->entries = nentries;
120cdf68 386 htab->size = nsize;
5194cf08
ZW
387
388 htab->n_elements -= htab->n_deleted;
389 htab->n_deleted = 0;
390
391 p = oentries;
392 do
393 {
35e9340f 394 PTR x = *p;
e38992e8 395
5194cf08
ZW
396 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
397 {
35e9340f 398 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
e38992e8 399
5194cf08
ZW
400 *q = x;
401 }
e38992e8 402
5194cf08
ZW
403 p++;
404 }
405 while (p < olimit);
e38992e8 406
e2500fed
GK
407 if (htab->free_f != NULL)
408 (*htab->free_f) (oentries);
74828682
DJ
409 else if (htab->free_with_arg_f != NULL)
410 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
d50d20ec 411 return 1;
a2f945c6
VM
412}
413
5194cf08
ZW
414/* This function searches for a hash table entry equal to the given
415 element. It cannot be used to insert or delete an element. */
416
35e9340f 417PTR
8c5d513f 418htab_find_with_hash (htab, element, hash)
5194cf08 419 htab_t htab;
35e9340f 420 const PTR element;
b13eb66b 421 hashval_t hash;
a2f945c6 422{
b13eb66b
MM
423 unsigned int index;
424 hashval_t hash2;
5194cf08 425 size_t size;
35e9340f 426 PTR entry;
5194cf08
ZW
427
428 htab->searches++;
429 size = htab->size;
5194cf08 430 index = hash % size;
a2f945c6 431
0194e877
ZW
432 entry = htab->entries[index];
433 if (entry == EMPTY_ENTRY
434 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
435 return entry;
436
437 hash2 = 1 + hash % (size - 2);
438
5194cf08 439 for (;;)
a2f945c6 440 {
5194cf08
ZW
441 htab->collisions++;
442 index += hash2;
443 if (index >= size)
444 index -= size;
0194e877
ZW
445
446 entry = htab->entries[index];
447 if (entry == EMPTY_ENTRY
448 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
449 return entry;
a2f945c6 450 }
5194cf08
ZW
451}
452
8c5d513f
BS
453/* Like htab_find_slot_with_hash, but compute the hash value from the
454 element. */
e38992e8 455
35e9340f 456PTR
8c5d513f
BS
457htab_find (htab, element)
458 htab_t htab;
35e9340f 459 const PTR element;
8c5d513f
BS
460{
461 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
462}
463
5194cf08
ZW
464/* This function searches for a hash table slot containing an entry
465 equal to the given element. To delete an entry, call this with
466 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
467 after doing some checks). To insert an entry, call this with
d50d20ec
HPN
468 INSERT = 1, then write the value you want into the returned slot.
469 When inserting an entry, NULL may be returned if memory allocation
470 fails. */
5194cf08 471
35e9340f 472PTR *
8c5d513f 473htab_find_slot_with_hash (htab, element, hash, insert)
5194cf08 474 htab_t htab;
35e9340f 475 const PTR element;
b13eb66b 476 hashval_t hash;
e38992e8 477 enum insert_option insert;
5194cf08 478{
35e9340f 479 PTR *first_deleted_slot;
b13eb66b
MM
480 unsigned int index;
481 hashval_t hash2;
5194cf08 482 size_t size;
4fc4e478 483 PTR entry;
5194cf08 484
d50d20ec
HPN
485 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
486 && htab_expand (htab) == 0)
487 return NULL;
5194cf08
ZW
488
489 size = htab->size;
5194cf08
ZW
490 index = hash % size;
491
a2f945c6 492 htab->searches++;
5194cf08
ZW
493 first_deleted_slot = NULL;
494
4fc4e478
RH
495 entry = htab->entries[index];
496 if (entry == EMPTY_ENTRY)
497 goto empty_entry;
498 else if (entry == DELETED_ENTRY)
499 first_deleted_slot = &htab->entries[index];
500 else if ((*htab->eq_f) (entry, element))
501 return &htab->entries[index];
502
503 hash2 = 1 + hash % (size - 2);
5194cf08 504 for (;;)
a2f945c6 505 {
4fc4e478
RH
506 htab->collisions++;
507 index += hash2;
508 if (index >= size)
509 index -= size;
510
511 entry = htab->entries[index];
5194cf08 512 if (entry == EMPTY_ENTRY)
4fc4e478
RH
513 goto empty_entry;
514 else if (entry == DELETED_ENTRY)
5194cf08
ZW
515 {
516 if (!first_deleted_slot)
517 first_deleted_slot = &htab->entries[index];
518 }
4fc4e478 519 else if ((*htab->eq_f) (entry, element))
e38992e8 520 return &htab->entries[index];
a2f945c6 521 }
4fc4e478
RH
522
523 empty_entry:
524 if (insert == NO_INSERT)
525 return NULL;
526
527 htab->n_elements++;
528
529 if (first_deleted_slot)
530 {
531 *first_deleted_slot = EMPTY_ENTRY;
532 return first_deleted_slot;
533 }
534
535 return &htab->entries[index];
a2f945c6
VM
536}
537
8c5d513f
BS
538/* Like htab_find_slot_with_hash, but compute the hash value from the
539 element. */
e38992e8 540
35e9340f 541PTR *
8c5d513f
BS
542htab_find_slot (htab, element, insert)
543 htab_t htab;
35e9340f 544 const PTR element;
e38992e8 545 enum insert_option insert;
8c5d513f
BS
546{
547 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
548 insert);
549}
550
5194cf08
ZW
551/* This function deletes an element with the given value from hash
552 table. If there is no matching element in the hash table, this
553 function does nothing. */
a2f945c6
VM
554
555void
5194cf08
ZW
556htab_remove_elt (htab, element)
557 htab_t htab;
35e9340f 558 PTR element;
a2f945c6 559{
35e9340f 560 PTR *slot;
a2f945c6 561
e38992e8 562 slot = htab_find_slot (htab, element, NO_INSERT);
5194cf08
ZW
563 if (*slot == EMPTY_ENTRY)
564 return;
565
5dc9cffd
ZW
566 if (htab->del_f)
567 (*htab->del_f) (*slot);
568
5194cf08
ZW
569 *slot = DELETED_ENTRY;
570 htab->n_deleted++;
a2f945c6
VM
571}
572
5194cf08
ZW
573/* This function clears a specified slot in a hash table. It is
574 useful when you've already done the lookup and don't want to do it
575 again. */
ed38f5d5
ZW
576
577void
5194cf08
ZW
578htab_clear_slot (htab, slot)
579 htab_t htab;
35e9340f 580 PTR *slot;
ed38f5d5
ZW
581{
582 if (slot < htab->entries || slot >= htab->entries + htab->size
583 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
584 abort ();
e38992e8 585
5dc9cffd
ZW
586 if (htab->del_f)
587 (*htab->del_f) (*slot);
e38992e8 588
ed38f5d5 589 *slot = DELETED_ENTRY;
5194cf08 590 htab->n_deleted++;
ed38f5d5
ZW
591}
592
593/* This function scans over the entire hash table calling
594 CALLBACK for each live entry. If CALLBACK returns false,
595 the iteration stops. INFO is passed as CALLBACK's second
596 argument. */
597
598void
5194cf08
ZW
599htab_traverse (htab, callback, info)
600 htab_t htab;
601 htab_trav callback;
35e9340f 602 PTR info;
ed38f5d5 603{
35e9340f
HPN
604 PTR *slot = htab->entries;
605 PTR *limit = slot + htab->size;
e38992e8 606
5194cf08
ZW
607 do
608 {
35e9340f 609 PTR x = *slot;
e38992e8 610
5194cf08 611 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
8c5d513f 612 if (!(*callback) (slot, info))
5194cf08
ZW
613 break;
614 }
615 while (++slot < limit);
ed38f5d5
ZW
616}
617
e38992e8 618/* Return the current size of given hash table. */
a2f945c6
VM
619
620size_t
5194cf08
ZW
621htab_size (htab)
622 htab_t htab;
a2f945c6
VM
623{
624 return htab->size;
625}
626
e38992e8 627/* Return the current number of elements in given hash table. */
a2f945c6
VM
628
629size_t
5194cf08
ZW
630htab_elements (htab)
631 htab_t htab;
a2f945c6 632{
5194cf08 633 return htab->n_elements - htab->n_deleted;
a2f945c6
VM
634}
635
e38992e8
RK
636/* Return the fraction of fixed collisions during all work with given
637 hash table. */
a2f945c6 638
5194cf08
ZW
639double
640htab_collisions (htab)
641 htab_t htab;
a2f945c6 642{
e38992e8 643 if (htab->searches == 0)
5194cf08 644 return 0.0;
e38992e8
RK
645
646 return (double) htab->collisions / (double) htab->searches;
a2f945c6 647}
9e0ba685 648
0ed5305d
RH
649/* Hash P as a null-terminated string.
650
651 Copied from gcc/hashtable.c. Zack had the following to say with respect
652 to applicability, though note that unlike hashtable.c, this hash table
653 implementation re-hashes rather than chain buckets.
654
655 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
656 From: Zack Weinberg <zackw@panix.com>
657 Date: Fri, 17 Aug 2001 02:15:56 -0400
658
659 I got it by extracting all the identifiers from all the source code
660 I had lying around in mid-1999, and testing many recurrences of
661 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
662 prime numbers or the appropriate identity. This was the best one.
663 I don't remember exactly what constituted "best", except I was
664 looking at bucket-length distributions mostly.
665
666 So it should be very good at hashing identifiers, but might not be
667 as good at arbitrary strings.
668
669 I'll add that it thoroughly trounces the hash functions recommended
670 for this use at http://burtleburtle.net/bob/hash/index.html, both
671 on speed and bucket distribution. I haven't tried it against the
672 function they just started using for Perl's hashes. */
9e0ba685
RH
673
674hashval_t
675htab_hash_string (p)
676 const PTR p;
677{
678 const unsigned char *str = (const unsigned char *) p;
679 hashval_t r = 0;
680 unsigned char c;
681
682 while ((c = *str++) != 0)
683 r = r * 67 + c - 113;
684
685 return r;
686}