]> git.ipfire.org Git - thirdparty/gcc.git/blame - libquadmath/quadmath-imp.h
rs6000: build constant via li;rotldi
[thirdparty/gcc.git] / libquadmath / quadmath-imp.h
CommitLineData
545a5cb6 1/* GCC Quad-Precision Math Library
1b78544f 2 Copyright (C) 2010, 2011 Free Software Foundation, Inc.
545a5cb6
TB
3 Written by Francois-Xavier Coudert <fxcoudert@gcc.gnu.org>
4
b5d4b580
TB
5This file is part of the libquadmath library.
6Libquadmath is free software; you can redistribute it and/or
545a5cb6
TB
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9version 2 of the License, or (at your option) any later version.
10
b5d4b580 11Libquadmath is distributed in the hope that it will be useful,
545a5cb6
TB
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
b5d4b580 17License along with libquadmath; see the file COPYING.LIB. If
545a5cb6
TB
18not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
19Boston, MA 02110-1301, USA. */
20
1ec601bf
FXC
21#ifndef QUADMATH_IMP_H
22#define QUADMATH_IMP_H
23
4239f144
JM
24#include <errno.h>
25#include <limits.h>
26#include <stdbool.h>
1ec601bf
FXC
27#include <stdint.h>
28#include <stdlib.h>
29#include "quadmath.h"
e8d42d28 30#include "config.h"
4239f144
JM
31#ifdef HAVE_FENV_H
32# include <fenv.h>
33#endif
1ec601bf
FXC
34
35
f029f4be
TB
36/* Under IEEE 754, an architecture may determine tininess of
37 floating-point results either "before rounding" or "after
38 rounding", but must do so in the same way for all operations
39 returning binary results. Define TININESS_AFTER_ROUNDING to 1 for
40 "after rounding" architectures, 0 for "before rounding"
41 architectures. */
42
43#define TININESS_AFTER_ROUNDING 1
44
4239f144
JM
45#define HIGH_ORDER_BIT_IS_SET_FOR_SNAN 0
46
47#define FIX_FLT128_LONG_CONVERT_OVERFLOW 0
48#define FIX_FLT128_LLONG_CONVERT_OVERFLOW 0
f029f4be 49
b5d4b580 50/* Prototypes for internal functions. */
f0c2df63
TB
51extern int32_t __quadmath_rem_pio2q (__float128, __float128 *);
52extern void __quadmath_kernel_sincosq (__float128, __float128, __float128 *,
53 __float128 *, int);
54extern __float128 __quadmath_kernel_sinq (__float128, __float128, int);
55extern __float128 __quadmath_kernel_cosq (__float128, __float128);
4239f144
JM
56extern __float128 __quadmath_kernel_tanq (__float128, __float128, int);
57extern __float128 __quadmath_gamma_productq (__float128, __float128, int,
58 __float128 *);
59extern __float128 __quadmath_gammaq_r (__float128, int *);
60extern __float128 __quadmath_lgamma_negq (__float128, int *);
61extern __float128 __quadmath_lgamma_productq (__float128, __float128,
62 __float128, int);
63extern __float128 __quadmath_lgammaq_r (__float128, int *);
f029f4be 64extern __float128 __quadmath_x2y2m1q (__float128 x, __float128 y);
4239f144 65extern __complex128 __quadmath_kernel_casinhq (__complex128, int);
f029f4be 66
4239f144
JM
67static inline void
68mul_splitq (__float128 *hi, __float128 *lo, __float128 x, __float128 y)
69{
70 /* Fast built-in fused multiply-add. */
71 *hi = x * y;
72 *lo = fmaq (x, y, -*hi);
73}
f029f4be 74
1ec601bf
FXC
75
76
77
b5d4b580 78/* Frankly, if you have __float128, you have 64-bit integers, right? */
1ec601bf
FXC
79#ifndef UINT64_C
80# error "No way!"
81#endif
82
83
b5d4b580 84/* Main union type we use to manipulate the floating-point type. */
1ec601bf
FXC
85typedef union
86{
87 __float128 value;
88
89 struct
744bbef1
KT
90#ifdef __MINGW32__
91 /* On mingw targets the ms-bitfields option is active by default.
92 Therefore enforce gnu-bitfield style. */
93 __attribute__ ((gcc_struct))
94#endif
1ec601bf 95 {
dbc9f6c6 96#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1ec601bf
FXC
97 unsigned negative:1;
98 unsigned exponent:15;
667b3ec1
JM
99 unsigned mantissa0:16;
100 unsigned mantissa1:32;
101 unsigned mantissa2:32;
102 unsigned mantissa3:32;
dbc9f6c6 103#else
667b3ec1
JM
104 unsigned mantissa3:32;
105 unsigned mantissa2:32;
106 unsigned mantissa1:32;
107 unsigned mantissa0:16;
1ec601bf
FXC
108 unsigned exponent:15;
109 unsigned negative:1;
110#endif
111 } ieee;
112
113 struct
114 {
dbc9f6c6 115#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1ec601bf
FXC
116 uint64_t high;
117 uint64_t low;
dbc9f6c6 118#else
1ec601bf
FXC
119 uint64_t low;
120 uint64_t high;
121#endif
122 } words64;
123
124 struct
125 {
dbc9f6c6 126#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1ec601bf
FXC
127 uint32_t w0;
128 uint32_t w1;
129 uint32_t w2;
130 uint32_t w3;
dbc9f6c6 131#else
1ec601bf
FXC
132 uint32_t w3;
133 uint32_t w2;
134 uint32_t w1;
135 uint32_t w0;
136#endif
137 } words32;
138
139 struct
744bbef1
KT
140#ifdef __MINGW32__
141 /* Make sure we are using gnu-style bitfield handling. */
142 __attribute__ ((gcc_struct))
143#endif
1ec601bf 144 {
dbc9f6c6 145#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1ec601bf
FXC
146 unsigned negative:1;
147 unsigned exponent:15;
148 unsigned quiet_nan:1;
667b3ec1
JM
149 unsigned mantissa0:15;
150 unsigned mantissa1:32;
151 unsigned mantissa2:32;
152 unsigned mantissa3:32;
dbc9f6c6 153#else
667b3ec1
JM
154 unsigned mantissa3:32;
155 unsigned mantissa2:32;
156 unsigned mantissa1:32;
157 unsigned mantissa0:15;
1ec601bf
FXC
158 unsigned quiet_nan:1;
159 unsigned exponent:15;
160 unsigned negative:1;
161#endif
667b3ec1 162 } ieee_nan;
1ec601bf
FXC
163
164} ieee854_float128;
165
166
167/* Get two 64 bit ints from a long double. */
168#define GET_FLT128_WORDS64(ix0,ix1,d) \
169do { \
170 ieee854_float128 u; \
171 u.value = (d); \
172 (ix0) = u.words64.high; \
173 (ix1) = u.words64.low; \
174} while (0)
175
176/* Set a long double from two 64 bit ints. */
177#define SET_FLT128_WORDS64(d,ix0,ix1) \
178do { \
179 ieee854_float128 u; \
180 u.words64.high = (ix0); \
181 u.words64.low = (ix1); \
182 (d) = u.value; \
183} while (0)
184
185/* Get the more significant 64 bits of a long double mantissa. */
186#define GET_FLT128_MSW64(v,d) \
187do { \
188 ieee854_float128 u; \
189 u.value = (d); \
190 (v) = u.words64.high; \
191} while (0)
192
193/* Set the more significant 64 bits of a long double mantissa from an int. */
194#define SET_FLT128_MSW64(d,v) \
195do { \
196 ieee854_float128 u; \
197 u.value = (d); \
198 u.words64.high = (v); \
199 (d) = u.value; \
200} while (0)
201
202/* Get the least significant 64 bits of a long double mantissa. */
203#define GET_FLT128_LSW64(v,d) \
204do { \
205 ieee854_float128 u; \
206 u.value = (d); \
207 (v) = u.words64.low; \
208} while (0)
209
210
211#define IEEE854_FLOAT128_BIAS 0x3fff
212
fa23b182
JJ
213#define QUADFP_NAN 0
214#define QUADFP_INFINITE 1
215#define QUADFP_ZERO 2
216#define QUADFP_SUBNORMAL 3
217#define QUADFP_NORMAL 4
218#define fpclassifyq(x) \
219 __builtin_fpclassify (QUADFP_NAN, QUADFP_INFINITE, QUADFP_NORMAL, \
220 QUADFP_SUBNORMAL, QUADFP_ZERO, x)
1ec601bf 221
1eba0867
JJ
222#ifndef math_opt_barrier
223# define math_opt_barrier(x) \
224({ __typeof (x) __x = (x); __asm ("" : "+m" (__x)); __x; })
225# define math_force_eval(x) \
226({ __typeof (x) __x = (x); __asm __volatile__ ("" : : "m" (__x)); })
227#endif
228
229/* math_narrow_eval reduces its floating-point argument to the range
230 and precision of its semantic type. (The original evaluation may
231 still occur with excess range and precision, so the result may be
232 affected by double rounding.) */
233#define math_narrow_eval(x) (x)
234
235/* If X (which is not a NaN) is subnormal, force an underflow
236 exception. */
237#define math_check_force_underflow(x) \
238 do \
239 { \
240 __float128 force_underflow_tmp = (x); \
241 if (fabsq (force_underflow_tmp) < FLT128_MIN) \
242 { \
243 __float128 force_underflow_tmp2 \
244 = force_underflow_tmp * force_underflow_tmp; \
245 math_force_eval (force_underflow_tmp2); \
246 } \
247 } \
248 while (0)
249/* Likewise, but X is also known to be nonnegative. */
250#define math_check_force_underflow_nonneg(x) \
251 do \
252 { \
253 __float128 force_underflow_tmp = (x); \
254 if (force_underflow_tmp < FLT128_MIN) \
255 { \
256 __float128 force_underflow_tmp2 \
257 = force_underflow_tmp * force_underflow_tmp; \
258 math_force_eval (force_underflow_tmp2); \
259 } \
260 } \
261 while (0)
262
4239f144
JM
263/* Likewise, for both real and imaginary parts of a complex
264 result. */
265#define math_check_force_underflow_complex(x) \
266 do \
267 { \
268 __typeof (x) force_underflow_complex_tmp = (x); \
269 math_check_force_underflow (__real__ force_underflow_complex_tmp); \
270 math_check_force_underflow (__imag__ force_underflow_complex_tmp); \
271 } \
272 while (0)
273
274#ifndef HAVE_FENV_H
275# define feraiseexcept(arg) ((void) 0)
276typedef int fenv_t;
277# define feholdexcept(arg) ((void) 0)
278# define fesetround(arg) ((void) 0)
279# define feupdateenv(arg) ((void) (arg))
280# define fesetenv(arg) ((void) (arg))
281# define fetestexcept(arg) 0
282# define feclearexcept(arg) ((void) 0)
283#else
284# ifndef HAVE_FEHOLDEXCEPT
285# define feholdexcept(arg) ((void) 0)
286# endif
287# ifndef HAVE_FESETROUND
288# define fesetround(arg) ((void) 0)
289# endif
290# ifndef HAVE_FEUPDATEENV
291# define feupdateenv(arg) ((void) (arg))
292# endif
293# ifndef HAVE_FESETENV
294# define fesetenv(arg) ((void) (arg))
295# endif
296# ifndef HAVE_FETESTEXCEPT
297# define fetestexcept(arg) 0
298# endif
299#endif
300
301#ifndef __glibc_likely
302# define __glibc_likely(cond) __builtin_expect ((cond), 1)
303#endif
304
305#ifndef __glibc_unlikely
306# define __glibc_unlikely(cond) __builtin_expect ((cond), 0)
307#endif
308
309#if defined HAVE_FENV_H && defined HAVE_FESETROUND && defined HAVE_FEUPDATEENV
310struct rm_ctx
311{
312 fenv_t env;
313 bool updated_status;
314};
315
316# define SET_RESTORE_ROUNDF128(RM) \
317 struct rm_ctx ctx __attribute__((cleanup (libc_feresetround_ctx))); \
318 libc_feholdsetround_ctx (&ctx, (RM))
319
320static inline __attribute__ ((always_inline)) void
321libc_feholdsetround_ctx (struct rm_ctx *ctx, int round)
322{
323 ctx->updated_status = false;
324
325 /* Update rounding mode only if different. */
326 if (__glibc_unlikely (round != fegetround ()))
327 {
328 ctx->updated_status = true;
329 fegetenv (&ctx->env);
330 fesetround (round);
331 }
332}
333
334static inline __attribute__ ((always_inline)) void
335libc_feresetround_ctx (struct rm_ctx *ctx)
336{
337 /* Restore the rounding mode if updated. */
338 if (__glibc_unlikely (ctx->updated_status))
339 feupdateenv (&ctx->env);
340}
341#else
342# define SET_RESTORE_ROUNDF128(RM) ((void) 0)
343#endif
344
1ec601bf 345#endif