]> git.ipfire.org Git - thirdparty/gcc.git/blame - libsanitizer/sanitizer_common/sanitizer_allocator.cc
[PATCH] Move RTL printing code from sched-vis.c into print-rtl.c
[thirdparty/gcc.git] / libsanitizer / sanitizer_common / sanitizer_allocator.cc
CommitLineData
f35db108
WM
1//===-- sanitizer_allocator.cc --------------------------------------------===//
2//
3// This file is distributed under the University of Illinois Open Source
4// License. See LICENSE.TXT for details.
5//
6//===----------------------------------------------------------------------===//
7//
8// This file is shared between AddressSanitizer and ThreadSanitizer
9// run-time libraries.
ef1b3fda 10// This allocator is used inside run-times.
f35db108 11//===----------------------------------------------------------------------===//
ef1b3fda
KS
12#include "sanitizer_allocator.h"
13#include "sanitizer_allocator_internal.h"
f35db108 14#include "sanitizer_common.h"
ef1b3fda 15#include "sanitizer_flags.h"
f35db108 16
ef1b3fda
KS
17namespace __sanitizer {
18
19// ThreadSanitizer for Go uses libc malloc/free.
dee5ea7a 20#if defined(SANITIZER_GO) || defined(SANITIZER_USE_MALLOC)
ef1b3fda
KS
21# if SANITIZER_LINUX && !SANITIZER_ANDROID
22extern "C" void *__libc_malloc(uptr size);
f35db108 23extern "C" void __libc_free(void *ptr);
ef1b3fda
KS
24# define LIBC_MALLOC __libc_malloc
25# define LIBC_FREE __libc_free
26# else
27# include <stdlib.h>
28# define LIBC_MALLOC malloc
29# define LIBC_FREE free
30# endif
f35db108 31
ef1b3fda
KS
32static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache) {
33 (void)cache;
34 return LIBC_MALLOC(size);
35}
36
37static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) {
38 (void)cache;
39 LIBC_FREE(ptr);
40}
41
42InternalAllocator *internal_allocator() {
43 return 0;
44}
45
46#else // SANITIZER_GO
47
48static ALIGNED(64) char internal_alloc_placeholder[sizeof(InternalAllocator)];
49static atomic_uint8_t internal_allocator_initialized;
50static StaticSpinMutex internal_alloc_init_mu;
51
52static InternalAllocatorCache internal_allocator_cache;
53static StaticSpinMutex internal_allocator_cache_mu;
54
55InternalAllocator *internal_allocator() {
56 InternalAllocator *internal_allocator_instance =
57 reinterpret_cast<InternalAllocator *>(&internal_alloc_placeholder);
58 if (atomic_load(&internal_allocator_initialized, memory_order_acquire) == 0) {
59 SpinMutexLock l(&internal_alloc_init_mu);
60 if (atomic_load(&internal_allocator_initialized, memory_order_relaxed) ==
61 0) {
62 internal_allocator_instance->Init();
63 atomic_store(&internal_allocator_initialized, 1, memory_order_release);
64 }
65 }
66 return internal_allocator_instance;
67}
68
69static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache) {
70 if (cache == 0) {
71 SpinMutexLock l(&internal_allocator_cache_mu);
72 return internal_allocator()->Allocate(&internal_allocator_cache, size, 8,
73 false);
74 }
75 return internal_allocator()->Allocate(cache, size, 8, false);
76}
77
78static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) {
79 if (cache == 0) {
80 SpinMutexLock l(&internal_allocator_cache_mu);
81 return internal_allocator()->Deallocate(&internal_allocator_cache, ptr);
82 }
83 internal_allocator()->Deallocate(cache, ptr);
84}
85
86#endif // SANITIZER_GO
f35db108
WM
87
88const u64 kBlockMagic = 0x6A6CB03ABCEBC041ull;
89
ef1b3fda 90void *InternalAlloc(uptr size, InternalAllocatorCache *cache) {
f35db108
WM
91 if (size + sizeof(u64) < size)
92 return 0;
ef1b3fda 93 void *p = RawInternalAlloc(size + sizeof(u64), cache);
f35db108
WM
94 if (p == 0)
95 return 0;
96 ((u64*)p)[0] = kBlockMagic;
97 return (char*)p + sizeof(u64);
98}
99
ef1b3fda 100void InternalFree(void *addr, InternalAllocatorCache *cache) {
f35db108
WM
101 if (addr == 0)
102 return;
103 addr = (char*)addr - sizeof(u64);
ef1b3fda 104 CHECK_EQ(kBlockMagic, ((u64*)addr)[0]);
f35db108 105 ((u64*)addr)[0] = 0;
ef1b3fda 106 RawInternalFree(addr, cache);
f35db108
WM
107}
108
f35db108
WM
109// LowLevelAllocator
110static LowLevelAllocateCallback low_level_alloc_callback;
111
112void *LowLevelAllocator::Allocate(uptr size) {
113 // Align allocation size.
114 size = RoundUpTo(size, 8);
115 if (allocated_end_ - allocated_current_ < (sptr)size) {
4ba5ca46 116 uptr size_to_allocate = Max(size, GetPageSizeCached());
f35db108 117 allocated_current_ =
dee5ea7a 118 (char*)MmapOrDie(size_to_allocate, __func__);
f35db108
WM
119 allocated_end_ = allocated_current_ + size_to_allocate;
120 if (low_level_alloc_callback) {
121 low_level_alloc_callback((uptr)allocated_current_,
122 size_to_allocate);
123 }
124 }
125 CHECK(allocated_end_ - allocated_current_ >= (sptr)size);
126 void *res = allocated_current_;
127 allocated_current_ += size;
128 return res;
129}
130
131void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback) {
132 low_level_alloc_callback = callback;
133}
134
b4ab7d34
KS
135bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n) {
136 if (!size) return false;
137 uptr max = (uptr)-1L;
138 return (max / size) < n;
139}
140
ef1b3fda
KS
141void *AllocatorReturnNull() {
142 if (common_flags()->allocator_may_return_null)
143 return 0;
144 Report("%s's allocator is terminating the process instead of returning 0\n",
145 SanitizerToolName);
146 Report("If you don't like this behavior set allocator_may_return_null=1\n");
147 CHECK(0);
148 return 0;
149}
150
f35db108 151} // namespace __sanitizer