]> git.ipfire.org Git - thirdparty/gcc.git/blame - libstdc++-v3/include/bits/stl_map.h
Move from CPP to CXX.
[thirdparty/gcc.git] / libstdc++-v3 / include / bits / stl_map.h
CommitLineData
42526146
PE
1// Map implementation -*- C++ -*-
2
fd58f127 3// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
42526146
PE
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING. If not, write to the Free
18// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction. Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License. This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
725dc051
BK
30/*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
54 */
55
729e3d3f
PE
56/** @file stl_map.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
725dc051
BK
59 */
60
3d7c150e
BK
61#ifndef _MAP_H
62#define _MAP_H 1
725dc051 63
30a20a1e 64#include <bits/concept_check.h>
725dc051 65
d53d7f6e
PE
66namespace std
67{
224a45d0 68 /**
3971a4d2
PE
69 * @brief A standard container made up of (key,value) pairs, which can be
70 * retrieved based on a key, in logarithmic time.
224a45d0 71 *
3971a4d2
PE
72 * @ingroup Containers
73 * @ingroup Assoc_containers
224a45d0 74 *
3971a4d2
PE
75 * Meets the requirements of a <a href="tables.html#65">container</a>, a
76 * <a href="tables.html#66">reversible container</a>, and an
77 * <a href="tables.html#69">associative container</a> (using unique keys).
78 * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
79 * value_type is std::pair<const Key,T>.
224a45d0 80 *
3971a4d2 81 * Maps support bidirectional iterators.
224a45d0 82 *
3971a4d2
PE
83 * @if maint
84 * The private tree data is declared exactly the same way for map and
85 * multimap; the distinction is made entirely in how the tree functions are
86 * called (*_unique versus *_equal, same as the standard).
87 * @endif
88 */
89 template <typename _Key, typename _Tp, typename _Compare = less<_Key>,
90 typename _Alloc = allocator<pair<const _Key, _Tp> > >
91 class map
224a45d0
PE
92 {
93 // concept requirements
3d7c150e
BK
94 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
95 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept)
3971a4d2
PE
96
97 public:
98 typedef _Key key_type;
99 typedef _Tp mapped_type;
100 typedef pair<const _Key, _Tp> value_type;
101 typedef _Compare key_compare;
102
103 class value_compare
104 : public binary_function<value_type, value_type, bool>
105 {
106 friend class map<_Key,_Tp,_Compare,_Alloc>;
107 protected:
108 _Compare comp;
109 value_compare(_Compare __c) : comp(__c) {}
110 public:
111 bool operator()(const value_type& __x, const value_type& __y) const
6dc5fdfd 112 { return comp(__x.first, __y.first); }
3971a4d2
PE
113 };
114
115 private:
116 /// @if maint This turns a red-black tree into a [multi]map. @endif
117 typedef _Rb_tree<key_type, value_type,
118 _Select1st<value_type>, key_compare, _Alloc> _Rep_type;
119 /// @if maint The actual tree structure. @endif
120 _Rep_type _M_t;
121
122 public:
123 // many of these are specified differently in ISO, but the following are
124 // "functionally equivalent"
125 typedef typename _Rep_type::allocator_type allocator_type;
126 typedef typename _Rep_type::reference reference;
127 typedef typename _Rep_type::const_reference const_reference;
128 typedef typename _Rep_type::iterator iterator;
129 typedef typename _Rep_type::const_iterator const_iterator;
130 typedef typename _Rep_type::size_type size_type;
131 typedef typename _Rep_type::difference_type difference_type;
132 typedef typename _Rep_type::pointer pointer;
133 typedef typename _Rep_type::const_pointer const_pointer;
134 typedef typename _Rep_type::reverse_iterator reverse_iterator;
135 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
136
137
138 // [23.3.1.1] construct/copy/destroy
139 // (get_allocator() is normally listed in this section, but seems to have
140 // been accidentally omitted in the printed standard)
141 /**
142 * @brief Default constructor creates no elements.
143 */
144 map() : _M_t(_Compare(), allocator_type()) { }
145
146 // for some reason this was made a separate function
147 /**
148 * @brief Default constructor creates no elements.
149 */
150 explicit
151 map(const _Compare& __comp, const allocator_type& __a = allocator_type())
152 : _M_t(__comp, __a) { }
153
154 /**
155 * @brief Map copy constructor.
156 * @param x A %map of identical element and allocator types.
157 *
158 * The newly-created %map uses a copy of the allocation object used
159 * by @a x.
160 */
161 map(const map& __x)
162 : _M_t(__x._M_t) { }
163
164 /**
165 * @brief Builds a %map from a range.
166 * @param first An input iterator.
167 * @param last An input iterator.
168 *
169 * Create a %map consisting of copies of the elements from [first,last).
170 * This is linear in N if the range is already sorted, and NlogN
171 * otherwise (where N is distance(first,last)).
172 */
173 template <typename _InputIterator>
174 map(_InputIterator __first, _InputIterator __last)
175 : _M_t(_Compare(), allocator_type())
224a45d0 176 { _M_t.insert_unique(__first, __last); }
3971a4d2
PE
177
178 /**
179 * @brief Builds a %map from a range.
180 * @param first An input iterator.
181 * @param last An input iterator.
182 * @param comp A comparison functor.
183 * @param a An allocator object.
184 *
185 * Create a %map consisting of copies of the elements from [first,last).
186 * This is linear in N if the range is already sorted, and NlogN
187 * otherwise (where N is distance(first,last)).
188 */
189 template <typename _InputIterator>
190 map(_InputIterator __first, _InputIterator __last,
191 const _Compare& __comp, const allocator_type& __a = allocator_type())
192 : _M_t(__comp, __a)
193 { _M_t.insert_unique(__first, __last); }
194
195 // FIXME There is no dtor declared, but we should have something generated
196 // by Doxygen. I don't know what tags to add to this paragraph to make
197 // that happen:
198 /**
199 * The dtor only erases the elements, and note that if the elements
200 * themselves are pointers, the pointed-to memory is not touched in any
201 * way. Managing the pointer is the user's responsibilty.
202 */
203
204 /**
205 * @brief Map assignment operator.
206 * @param x A %map of identical element and allocator types.
207 *
208 * All the elements of @a x are copied, but unlike the copy constructor,
209 * the allocator object is not copied.
210 */
211 map&
212 operator=(const map& __x)
213 {
214 _M_t = __x._M_t;
215 return *this;
216 }
217
218 /// Get a copy of the memory allocation object.
219 allocator_type
220 get_allocator() const { return _M_t.get_allocator(); }
221
222 // iterators
223 /**
224 * Returns a read/write iterator that points to the first pair in the %map.
225 * Iteration is done in ascending order according to the keys.
226 */
227 iterator
228 begin() { return _M_t.begin(); }
229
230 /**
231 * Returns a read-only (constant) iterator that points to the first pair
232 * in the %map. Iteration is done in ascending order according to the
233 * keys.
234 */
235 const_iterator
236 begin() const { return _M_t.begin(); }
237
238 /**
239 * Returns a read/write iterator that points one past the last pair in the
240 * %map. Iteration is done in ascending order according to the keys.
241 */
242 iterator
243 end() { return _M_t.end(); }
244
245 /**
246 * Returns a read-only (constant) iterator that points one past the last
247 * pair in the %map. Iteration is done in ascending order according to the
248 * keys.
249 */
250 const_iterator
251 end() const { return _M_t.end(); }
252
253 /**
254 * Returns a read/write reverse iterator that points to the last pair in
255 * the %map. Iteration is done in descending order according to the keys.
256 */
257 reverse_iterator
258 rbegin() { return _M_t.rbegin(); }
259
260 /**
261 * Returns a read-only (constant) reverse iterator that points to the last
262 * pair in the %map. Iteration is done in descending order according to
263 * the keys.
264 */
265 const_reverse_iterator
266 rbegin() const { return _M_t.rbegin(); }
267
268 /**
269 * Returns a read/write reverse iterator that points to one before the
270 * first pair in the %map. Iteration is done in descending order according
271 * to the keys.
272 */
273 reverse_iterator
274 rend() { return _M_t.rend(); }
275
276 /**
277 * Returns a read-only (constant) reverse iterator that points to one
278 * before the first pair in the %map. Iteration is done in descending
279 * order according to the keys.
280 */
281 const_reverse_iterator
282 rend() const { return _M_t.rend(); }
283
284 // capacity
285 /** Returns true if the %map is empty. (Thus begin() would equal end().) */
286 bool
287 empty() const { return _M_t.empty(); }
288
289 /** Returns the size of the %map. */
290 size_type
291 size() const { return _M_t.size(); }
292
293 /** Returns the maximum size of the %map. */
294 size_type
295 max_size() const { return _M_t.max_size(); }
296
297 // [23.3.1.2] element access
298 /**
299 * @brief Subscript ( @c [] ) access to %map data.
300 * @param k The key for which data should be retrieved.
301 * @return A reference to the data of the (key,data) %pair.
302 *
303 * Allows for easy lookup with the subscript ( @c [] ) operator. Returns
304 * data associated with the key specified in subscript. If the key does
305 * not exist, a pair with that key is created using default values, which
306 * is then returned.
307 *
308 * Lookup requires logarithmic time.
309 */
310 mapped_type&
311 operator[](const key_type& __k)
312 {
313 // concept requirements
3d7c150e 314 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
3971a4d2
PE
315
316 iterator __i = lower_bound(__k);
317 // __i->first is greater than or equivalent to __k.
318 if (__i == end() || key_comp()(__k, (*__i).first))
319 __i = insert(__i, value_type(__k, mapped_type()));
320 return (*__i).second;
321 }
322
323 // modifiers
324 /**
325 * @brief Attempts to insert a std::pair into the %map.
326 * @param x Pair to be inserted (see std::make_pair for easy creation of
327 * pairs).
328 * @return A pair, of which the first element is an iterator that points
329 * to the possibly inserted pair, and the second is a bool that
330 * is true if the pair was actually inserted.
331 *
332 * This function attempts to insert a (key, value) %pair into the %map.
333 * A %map relies on unique keys and thus a %pair is only inserted if its
334 * first element (the key) is not already present in the %map.
335 *
336 * Insertion requires logarithmic time.
337 */
338 pair<iterator,bool>
339 insert(const value_type& __x)
6dc5fdfd 340 { return _M_t.insert_unique(__x); }
3971a4d2
PE
341
342 /**
343 * @brief Attempts to insert a std::pair into the %map.
344 * @param position An iterator that serves as a hint as to where the
345 * pair should be inserted.
346 * @param x Pair to be inserted (see std::make_pair for easy creation of
347 * pairs).
348 * @return An iterator that points to the element with key of @a x (may
349 * or may not be the %pair passed in).
350 *
351 * This function is not concerned about whether the insertion took place,
352 * and thus does not return a boolean like the single-argument
353 * insert() does. Note that the first parameter is only a hint and can
354 * potentially improve the performance of the insertion process. A bad
355 * hint would cause no gains in efficiency.
356 *
357 * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
358 * for more on "hinting".
359 *
360 * Insertion requires logarithmic time (if the hint is not taken).
361 */
362 iterator
363 insert(iterator position, const value_type& __x)
6dc5fdfd 364 { return _M_t.insert_unique(position, __x); }
3971a4d2
PE
365
366 /**
367 * @brief A template function that attemps to insert a range of elements.
368 * @param first Iterator pointing to the start of the range to be
369 * inserted.
370 * @param last Iterator pointing to the end of the range.
371 *
372 * Complexity similar to that of the range constructor.
373 */
374 template <typename _InputIterator>
375 void
376 insert(_InputIterator __first, _InputIterator __last)
6dc5fdfd 377 { _M_t.insert_unique(__first, __last); }
3971a4d2
PE
378
379 /**
380 * @brief Erases an element from a %map.
381 * @param position An iterator pointing to the element to be erased.
382 *
383 * This function erases an element, pointed to by the given iterator, from
384 * a %map. Note that this function only erases the element, and that if
385 * the element is itself a pointer, the pointed-to memory is not touched
386 * in any way. Managing the pointer is the user's responsibilty.
387 */
388 void
389 erase(iterator __position) { _M_t.erase(__position); }
390
391 /**
392 * @brief Erases elements according to the provided key.
393 * @param x Key of element to be erased.
394 * @return The number of elements erased.
395 *
396 * This function erases all the elements located by the given key from
397 * a %map.
398 * Note that this function only erases the element, and that if
399 * the element is itself a pointer, the pointed-to memory is not touched
400 * in any way. Managing the pointer is the user's responsibilty.
401 */
402 size_type
403 erase(const key_type& __x) { return _M_t.erase(__x); }
404
405 /**
406 * @brief Erases a [first,last) range of elements from a %map.
407 * @param first Iterator pointing to the start of the range to be erased.
408 * @param last Iterator pointing to the end of the range to be erased.
409 *
410 * This function erases a sequence of elements from a %map.
411 * Note that this function only erases the element, and that if
412 * the element is itself a pointer, the pointed-to memory is not touched
413 * in any way. Managing the pointer is the user's responsibilty.
414 */
415 void
416 erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); }
417
418 /**
419 * @brief Swaps data with another %map.
420 * @param x A %map of the same element and allocator types.
421 *
422 * This exchanges the elements between two maps in constant time.
423 * (It is only swapping a pointer, an integer, and an instance of
424 * the @c Compare type (which itself is often stateless and empty), so it
425 * should be quite fast.)
426 * Note that the global std::swap() function is specialized such that
427 * std::swap(m1,m2) will feed to this function.
428 */
429 void
430 swap(map& __x) { _M_t.swap(__x._M_t); }
431
432 /**
433 * Erases all elements in a %map. Note that this function only erases
434 * the elements, and that if the elements themselves are pointers, the
435 * pointed-to memory is not touched in any way. Managing the pointer is
436 * the user's responsibilty.
437 */
438 void
439 clear() { _M_t.clear(); }
440
441 // observers
442 /**
443 * Returns the key comparison object out of which the %map was constructed.
444 */
445 key_compare
446 key_comp() const { return _M_t.key_comp(); }
447
448 /**
449 * Returns a value comparison object, built from the key comparison
450 * object out of which the %map was constructed.
451 */
452 value_compare
453 value_comp() const { return value_compare(_M_t.key_comp()); }
454
455 // [23.3.1.3] map operations
456 /**
457 * @brief Tries to locate an element in a %map.
458 * @param x Key of (key, value) %pair to be located.
459 * @return Iterator pointing to sought-after element, or end() if not
460 * found.
461 *
462 * This function takes a key and tries to locate the element with which
463 * the key matches. If successful the function returns an iterator
464 * pointing to the sought after %pair. If unsuccessful it returns the
465 * past-the-end ( @c end() ) iterator.
466 */
467 iterator
468 find(const key_type& __x) { return _M_t.find(__x); }
469
470 /**
471 * @brief Tries to locate an element in a %map.
472 * @param x Key of (key, value) %pair to be located.
473 * @return Read-only (constant) iterator pointing to sought-after
474 * element, or end() if not found.
475 *
476 * This function takes a key and tries to locate the element with which
477 * the key matches. If successful the function returns a constant iterator
478 * pointing to the sought after %pair. If unsuccessful it returns the
479 * past-the-end ( @c end() ) iterator.
480 */
481 const_iterator
482 find(const key_type& __x) const { return _M_t.find(__x); }
483
484 /**
485 * @brief Finds the number of elements with given key.
486 * @param x Key of (key, value) pairs to be located.
487 * @return Number of elements with specified key.
488 *
489 * This function only makes sense for multimaps; for map the result will
490 * either be 0 (not present) or 1 (present).
491 */
492 size_type
493 count(const key_type& __x) const
6dc5fdfd 494 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
3971a4d2
PE
495
496 /**
497 * @brief Finds the beginning of a subsequence matching given key.
498 * @param x Key of (key, value) pair to be located.
63b1a6ba
SS
499 * @return Iterator pointing to first element equal to or greater
500 * than key, or end().
3971a4d2 501 *
63b1a6ba
SS
502 * This function returns the first element of a subsequence of elements
503 * that matches the given key. If unsuccessful it returns an iterator
504 * pointing to the first element that has a greater value than given key
505 * or end() if no such element exists.
3971a4d2
PE
506 */
507 iterator
508 lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); }
509
510 /**
511 * @brief Finds the beginning of a subsequence matching given key.
512 * @param x Key of (key, value) pair to be located.
513 * @return Read-only (constant) iterator pointing to first element
63b1a6ba 514 * equal to or greater than key, or end().
3971a4d2 515 *
63b1a6ba
SS
516 * This function returns the first element of a subsequence of elements
517 * that matches the given key. If unsuccessful it returns an iterator
518 * pointing to the first element that has a greater value than given key
519 * or end() if no such element exists.
3971a4d2
PE
520 */
521 const_iterator
522 lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); }
523
524 /**
525 * @brief Finds the end of a subsequence matching given key.
526 * @param x Key of (key, value) pair to be located.
63b1a6ba
SS
527 * @return Iterator pointing to the first element
528 * greater than key, or end().
3971a4d2
PE
529 */
530 iterator
531 upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); }
532
533 /**
534 * @brief Finds the end of a subsequence matching given key.
535 * @param x Key of (key, value) pair to be located.
63b1a6ba
SS
536 * @return Read-only (constant) iterator pointing to first iterator
537 * greater than key, or end().
3971a4d2
PE
538 */
539 const_iterator
540 upper_bound(const key_type& __x) const
6dc5fdfd 541 { return _M_t.upper_bound(__x); }
3971a4d2
PE
542
543 /**
544 * @brief Finds a subsequence matching given key.
545 * @param x Key of (key, value) pairs to be located.
546 * @return Pair of iterators that possibly points to the subsequence
547 * matching given key.
548 *
63b1a6ba
SS
549 * This function is equivalent to
550 * @code
551 * std::make_pair(c.lower_bound(val),
552 * c.upper_bound(val))
553 * @endcode
554 * (but is faster than making the calls separately).
3971a4d2 555 *
63b1a6ba 556 * This function probably only makes sense for multimaps.
3971a4d2
PE
557 */
558 pair<iterator,iterator>
559 equal_range(const key_type& __x)
6dc5fdfd 560 { return _M_t.equal_range(__x); }
3971a4d2
PE
561
562 /**
563 * @brief Finds a subsequence matching given key.
564 * @param x Key of (key, value) pairs to be located.
565 * @return Pair of read-only (constant) iterators that possibly points to
566 * the subsequence matching given key.
567 *
63b1a6ba
SS
568 * This function is equivalent to
569 * @code
570 * std::make_pair(c.lower_bound(val),
571 * c.upper_bound(val))
572 * @endcode
573 * (but is faster than making the calls separately).
3971a4d2 574 *
63b1a6ba 575 * This function probably only makes sense for multimaps.
3971a4d2
PE
576 */
577 pair<const_iterator,const_iterator>
578 equal_range(const key_type& __x) const
6dc5fdfd 579 { return _M_t.equal_range(__x); }
3971a4d2
PE
580
581 template <typename _K1, typename _T1, typename _C1, typename _A1>
582 friend bool operator== (const map<_K1,_T1,_C1,_A1>&,
583 const map<_K1,_T1,_C1,_A1>&);
584 template <typename _K1, typename _T1, typename _C1, typename _A1>
585 friend bool operator< (const map<_K1,_T1,_C1,_A1>&,
586 const map<_K1,_T1,_C1,_A1>&);
587 };
588
589
590 /**
591 * @brief Map equality comparison.
592 * @param x A %map.
593 * @param y A %map of the same type as @a x.
594 * @return True iff the size and elements of the maps are equal.
fd58f127 595 *
3971a4d2
PE
596 * This is an equivalence relation. It is linear in the size of the
597 * maps. Maps are considered equivalent if their sizes are equal,
598 * and if corresponding elements compare equal.
599 */
600 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
601 inline bool
602 operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,
603 const map<_Key,_Tp,_Compare,_Alloc>& __y)
604 { return __x._M_t == __y._M_t; }
605
606 /**
607 * @brief Map ordering relation.
608 * @param x A %map.
609 * @param y A %map of the same type as @a x.
9536ca34 610 * @return True iff @a x is lexicographically less than @a y.
fd58f127 611 *
3971a4d2
PE
612 * This is a total ordering relation. It is linear in the size of the
613 * maps. The elements must be comparable with @c <.
fd58f127 614 *
9536ca34 615 * See std::lexicographical_compare() for how the determination is made.
3971a4d2
PE
616 */
617 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
618 inline bool
619 operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,
620 const map<_Key,_Tp,_Compare,_Alloc>& __y)
621 { return __x._M_t < __y._M_t; }
622
623 /// Based on operator==
624 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
625 inline bool
626 operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
627 const map<_Key,_Tp,_Compare,_Alloc>& __y)
628 { return !(__x == __y); }
629
630 /// Based on operator<
631 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
632 inline bool
633 operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x,
634 const map<_Key,_Tp,_Compare,_Alloc>& __y)
635 { return __y < __x; }
636
637 /// Based on operator<
638 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
639 inline bool
640 operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
641 const map<_Key,_Tp,_Compare,_Alloc>& __y)
642 { return !(__y < __x); }
643
644 /// Based on operator<
645 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
646 inline bool
647 operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
648 const map<_Key,_Tp,_Compare,_Alloc>& __y)
649 { return !(__x < __y); }
650
651 /// See std::map::swap().
652 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
653 inline void
654 swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y)
655 { __x.swap(__y); }
d53d7f6e 656} // namespace std
725dc051 657
3d7c150e 658#endif /* _MAP_H */