]> git.ipfire.org Git - thirdparty/gcc.git/blame - libstdc++-v3/include/bits/stl_vector.h
Licensing changes to GPLv3 resp. GPLv3 with GCC Runtime Exception.
[thirdparty/gcc.git] / libstdc++-v3 / include / bits / stl_vector.h
CommitLineData
42526146
PE
1// Vector implementation -*- C++ -*-
2
bc2631e0 3// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
31905f34 4// Free Software Foundation, Inc.
42526146
PE
5//
6// This file is part of the GNU ISO C++ Library. This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
748086b7 9// Free Software Foundation; either version 3, or (at your option)
42526146
PE
10// any later version.
11
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15// GNU General Public License for more details.
16
748086b7
JJ
17// Under Section 7 of GPL version 3, you are granted additional
18// permissions described in the GCC Runtime Library Exception, version
19// 3.1, as published by the Free Software Foundation.
42526146 20
748086b7
JJ
21// You should have received a copy of the GNU General Public License and
22// a copy of the GCC Runtime Library Exception along with this program;
23// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24// <http://www.gnu.org/licenses/>.
42526146 25
725dc051
BK
26/*
27 *
28 * Copyright (c) 1994
29 * Hewlett-Packard Company
30 *
31 * Permission to use, copy, modify, distribute and sell this software
32 * and its documentation for any purpose is hereby granted without fee,
33 * provided that the above copyright notice appear in all copies and
34 * that both that copyright notice and this permission notice appear
35 * in supporting documentation. Hewlett-Packard Company makes no
36 * representations about the suitability of this software for any
37 * purpose. It is provided "as is" without express or implied warranty.
38 *
39 *
40 * Copyright (c) 1996
41 * Silicon Graphics Computer Systems, Inc.
42 *
43 * Permission to use, copy, modify, distribute and sell this software
44 * and its documentation for any purpose is hereby granted without fee,
45 * provided that the above copyright notice appear in all copies and
46 * that both that copyright notice and this permission notice appear
47 * in supporting documentation. Silicon Graphics makes no
48 * representations about the suitability of this software for any
49 * purpose. It is provided "as is" without express or implied warranty.
50 */
51
729e3d3f
PE
52/** @file stl_vector.h
53 * This is an internal header file, included by other library headers.
54 * You should not attempt to use it directly.
725dc051
BK
55 */
56
046d30f4
PC
57#ifndef _STL_VECTOR_H
58#define _STL_VECTOR_H 1
725dc051 59
30a20a1e 60#include <bits/stl_iterator_base_funcs.h>
e2c09482 61#include <bits/functexcept.h>
30a20a1e 62#include <bits/concept_check.h>
988499f4 63#include <initializer_list>
725dc051 64
c2ba9709 65_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
3cbc7af0 66
4312e020 67 /// See bits/stl_deque.h's _Deque_base for an explanation.
af5fb6ab 68 template<typename _Tp, typename _Alloc>
3971a4d2 69 struct _Vector_base
83144cfc 70 {
4fd20a8f
PC
71 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
72
03f9ea44 73 struct _Vector_impl
4fd20a8f 74 : public _Tp_alloc_type
874e7baa 75 {
08bf5bb3
BW
76 typename _Tp_alloc_type::pointer _M_start;
77 typename _Tp_alloc_type::pointer _M_finish;
78 typename _Tp_alloc_type::pointer _M_end_of_storage;
78b36b70
PC
79
80 _Vector_impl()
81 : _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
82 { }
83
4fd20a8f
PC
84 _Vector_impl(_Tp_alloc_type const& __a)
85 : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
03f9ea44
DM
86 { }
87 };
88
af5fb6ab 89 public:
8a1d8dd9
MA
90 typedef _Alloc allocator_type;
91
8d46ce60
PC
92 _Tp_alloc_type&
93 _M_get_Tp_allocator()
94 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
95
96 const _Tp_alloc_type&
4fd20a8f
PC
97 _M_get_Tp_allocator() const
98 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
99
8a1d8dd9 100 allocator_type
874e7baa 101 get_allocator() const
31905f34 102 { return allocator_type(_M_get_Tp_allocator()); }
af5fb6ab 103
78b36b70
PC
104 _Vector_base()
105 : _M_impl() { }
106
874e7baa 107 _Vector_base(const allocator_type& __a)
78b36b70 108 : _M_impl(__a) { }
ed6814f7 109
af5fb6ab 110 _Vector_base(size_t __n, const allocator_type& __a)
874e7baa 111 : _M_impl(__a)
af5fb6ab 112 {
03f9ea44
DM
113 this->_M_impl._M_start = this->_M_allocate(__n);
114 this->_M_impl._M_finish = this->_M_impl._M_start;
115 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
af5fb6ab 116 }
ed6814f7 117
053cc380
PC
118#ifdef __GXX_EXPERIMENTAL_CXX0X__
119 _Vector_base(_Vector_base&& __x)
120 : _M_impl(__x._M_get_Tp_allocator())
121 {
122 this->_M_impl._M_start = __x._M_impl._M_start;
123 this->_M_impl._M_finish = __x._M_impl._M_finish;
124 this->_M_impl._M_end_of_storage = __x._M_impl._M_end_of_storage;
125 __x._M_impl._M_start = 0;
126 __x._M_impl._M_finish = 0;
127 __x._M_impl._M_end_of_storage = 0;
128 }
129#endif
130
ed6814f7 131 ~_Vector_base()
874e7baa
PC
132 { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
133 - this->_M_impl._M_start); }
8a1d8dd9
MA
134
135 public:
03f9ea44 136 _Vector_impl _M_impl;
ed6814f7 137
08bf5bb3 138 typename _Tp_alloc_type::pointer
874e7baa 139 _M_allocate(size_t __n)
ccd04b9f 140 { return __n != 0 ? _M_impl.allocate(__n) : 0; }
ed6814f7 141
8a1d8dd9 142 void
08bf5bb3 143 _M_deallocate(typename _Tp_alloc_type::pointer __p, size_t __n)
368b7a30
PC
144 {
145 if (__p)
874e7baa
PC
146 _M_impl.deallocate(__p, __n);
147 }
af5fb6ab 148 };
ed6814f7
BI
149
150
3971a4d2 151 /**
e135a038
BK
152 * @brief A standard container which offers fixed time access to
153 * individual elements in any order.
ad2a4e2b 154 *
aac2878e 155 * @ingroup sequences
ad2a4e2b 156 *
3971a4d2
PE
157 * Meets the requirements of a <a href="tables.html#65">container</a>, a
158 * <a href="tables.html#66">reversible container</a>, and a
159 * <a href="tables.html#67">sequence</a>, including the
160 * <a href="tables.html#68">optional sequence requirements</a> with the
161 * %exception of @c push_front and @c pop_front.
ad2a4e2b 162 *
e135a038
BK
163 * In some terminology a %vector can be described as a dynamic
164 * C-style array, it offers fast and efficient access to individual
165 * elements in any order and saves the user from worrying about
166 * memory and size allocation. Subscripting ( @c [] ) access is
167 * also provided as with C-style arrays.
ad2a4e2b 168 */
6323b34e 169 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
3971a4d2 170 class vector : protected _Vector_base<_Tp, _Alloc>
af5fb6ab
BK
171 {
172 // Concept requirements.
4fd20a8f 173 typedef typename _Alloc::value_type _Alloc_value_type;
3d7c150e 174 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
4fd20a8f
PC
175 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
176
177 typedef _Vector_base<_Tp, _Alloc> _Base;
4fd20a8f 178 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
ed6814f7 179
af5fb6ab 180 public:
7338fc64 181 typedef _Tp value_type;
4fd20a8f
PC
182 typedef typename _Tp_alloc_type::pointer pointer;
183 typedef typename _Tp_alloc_type::const_pointer const_pointer;
184 typedef typename _Tp_alloc_type::reference reference;
185 typedef typename _Tp_alloc_type::const_reference const_reference;
37d5c6ba
BK
186 typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
187 typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
af5fb6ab 188 const_iterator;
7338fc64
PC
189 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
190 typedef std::reverse_iterator<iterator> reverse_iterator;
191 typedef size_t size_type;
192 typedef ptrdiff_t difference_type;
4fd20a8f 193 typedef _Alloc allocator_type;
ed6814f7 194
af5fb6ab 195 protected:
af5fb6ab
BK
196 using _Base::_M_allocate;
197 using _Base::_M_deallocate;
03f9ea44 198 using _Base::_M_impl;
4fd20a8f 199 using _Base::_M_get_Tp_allocator;
ed6814f7 200
af5fb6ab
BK
201 public:
202 // [23.2.4.1] construct/copy/destroy
203 // (assign() and get_allocator() are also listed in this section)
204 /**
205 * @brief Default constructor creates no elements.
206 */
78b36b70
PC
207 vector()
208 : _Base() { }
209
210 /**
211 * @brief Creates a %vector with no elements.
212 * @param a An allocator object.
213 */
af5fb6ab 214 explicit
78b36b70
PC
215 vector(const allocator_type& __a)
216 : _Base(__a) { }
ed6814f7 217
af5fb6ab 218 /**
78b36b70 219 * @brief Creates a %vector with copies of an exemplar element.
af5fb6ab
BK
220 * @param n The number of elements to initially create.
221 * @param value An element to copy.
78b36b70 222 * @param a An allocator.
ed6814f7 223 *
af5fb6ab
BK
224 * This constructor fills the %vector with @a n copies of @a value.
225 */
2fecaef4
PC
226 explicit
227 vector(size_type __n, const value_type& __value = value_type(),
af5fb6ab 228 const allocator_type& __a = allocator_type())
3971a4d2 229 : _Base(__n, __a)
f4c5578f 230 { _M_fill_initialize(__n, __value); }
ed6814f7 231
af5fb6ab
BK
232 /**
233 * @brief %Vector copy constructor.
234 * @param x A %vector of identical element and allocator types.
ed6814f7 235 *
af5fb6ab
BK
236 * The newly-created %vector uses a copy of the allocation
237 * object used by @a x. All the elements of @a x are copied,
238 * but any extra memory in
239 * @a x (for fast expansion) will not be copied.
240 */
241 vector(const vector& __x)
d2cc7f92 242 : _Base(__x.size(), __x._M_get_Tp_allocator())
1985f1cd
MA
243 { this->_M_impl._M_finish =
244 std::__uninitialized_copy_a(__x.begin(), __x.end(),
245 this->_M_impl._M_start,
4fd20a8f 246 _M_get_Tp_allocator());
1985f1cd 247 }
ed6814f7 248
78b36b70
PC
249#ifdef __GXX_EXPERIMENTAL_CXX0X__
250 /**
251 * @brief %Vector move constructor.
252 * @param x A %vector of identical element and allocator types.
253 *
254 * The newly-created %vector contains the exact contents of @a x.
255 * The contents of @a x are a valid, but unspecified %vector.
256 */
257 vector(vector&& __x)
053cc380 258 : _Base(std::forward<_Base>(__x)) { }
988499f4
JM
259
260 /**
261 * @brief Builds a %vector from an initializer list.
262 * @param l An initializer_list.
263 * @param a An allocator.
264 *
265 * Create a %vector consisting of copies of the elements in the
266 * initializer_list @a l.
267 *
268 * This will call the element type's copy constructor N times
269 * (where N is @a l.size()) and do no memory reallocation.
270 */
271 vector(initializer_list<value_type> __l,
272 const allocator_type& __a = allocator_type())
b798df05
PC
273 : _Base(__a)
274 {
275 _M_range_initialize(__l.begin(), __l.end(),
276 random_access_iterator_tag());
277 }
78b36b70
PC
278#endif
279
af5fb6ab
BK
280 /**
281 * @brief Builds a %vector from a range.
282 * @param first An input iterator.
283 * @param last An input iterator.
78b36b70 284 * @param a An allocator.
ed6814f7 285 *
af5fb6ab
BK
286 * Create a %vector consisting of copies of the elements from
287 * [first,last).
288 *
e135a038
BK
289 * If the iterators are forward, bidirectional, or
290 * random-access, then this will call the elements' copy
291 * constructor N times (where N is distance(first,last)) and do
292 * no memory reallocation. But if only input iterators are
293 * used, then this will do at most 2N calls to the copy
294 * constructor, and logN memory reallocations.
af5fb6ab
BK
295 */
296 template<typename _InputIterator>
297 vector(_InputIterator __first, _InputIterator __last,
298 const allocator_type& __a = allocator_type())
299 : _Base(__a)
3971a4d2 300 {
af5fb6ab 301 // Check whether it's an integral type. If so, it's not an iterator.
c0736a9d 302 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
af5fb6ab
BK
303 _M_initialize_dispatch(__first, __last, _Integral());
304 }
ed6814f7 305
af5fb6ab 306 /**
e135a038
BK
307 * The dtor only erases the elements, and note that if the
308 * elements themselves are pointers, the pointed-to memory is
309 * not touched in any way. Managing the pointer is the user's
28dac70a 310 * responsibility.
af5fb6ab 311 */
874e7baa 312 ~vector()
1985f1cd 313 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
bc9053ab 314 _M_get_Tp_allocator()); }
ed6814f7 315
af5fb6ab
BK
316 /**
317 * @brief %Vector assignment operator.
318 * @param x A %vector of identical element and allocator types.
ed6814f7 319 *
af5fb6ab
BK
320 * All the elements of @a x are copied, but any extra memory in
321 * @a x (for fast expansion) will not be copied. Unlike the
322 * copy constructor, the allocator object is not copied.
323 */
324 vector&
325 operator=(const vector& __x);
ed6814f7 326
78b36b70
PC
327#ifdef __GXX_EXPERIMENTAL_CXX0X__
328 /**
329 * @brief %Vector move assignment operator.
330 * @param x A %vector of identical element and allocator types.
331 *
332 * The contents of @a x are moved into this %vector (without copying).
333 * @a x is a valid, but unspecified %vector.
334 */
335 vector&
336 operator=(vector&& __x)
cbc6c888
PC
337 {
338 // NB: DR 675.
339 this->clear();
78b36b70
PC
340 this->swap(__x);
341 return *this;
342 }
988499f4
JM
343
344 /**
345 * @brief %Vector list assignment operator.
346 * @param l An initializer_list.
347 *
348 * This function fills a %vector with copies of the elements in the
349 * initializer list @a l.
350 *
351 * Note that the assignment completely changes the %vector and
352 * that the resulting %vector's size is the same as the number
353 * of elements assigned. Old data may be lost.
354 */
355 vector&
356 operator=(initializer_list<value_type> __l)
357 {
358 this->assign(__l.begin(), __l.end());
359 return *this;
360 }
78b36b70
PC
361#endif
362
af5fb6ab
BK
363 /**
364 * @brief Assigns a given value to a %vector.
365 * @param n Number of elements to be assigned.
366 * @param val Value to be assigned.
367 *
368 * This function fills a %vector with @a n copies of the given
369 * value. Note that the assignment completely changes the
370 * %vector and that the resulting %vector's size is the same as
371 * the number of elements assigned. Old data may be lost.
372 */
373 void
ed6814f7 374 assign(size_type __n, const value_type& __val)
af5fb6ab 375 { _M_fill_assign(__n, __val); }
ed6814f7 376
af5fb6ab
BK
377 /**
378 * @brief Assigns a range to a %vector.
379 * @param first An input iterator.
380 * @param last An input iterator.
381 *
382 * This function fills a %vector with copies of the elements in the
383 * range [first,last).
384 *
385 * Note that the assignment completely changes the %vector and
386 * that the resulting %vector's size is the same as the number
387 * of elements assigned. Old data may be lost.
388 */
389 template<typename _InputIterator>
390 void
391 assign(_InputIterator __first, _InputIterator __last)
3971a4d2 392 {
af5fb6ab 393 // Check whether it's an integral type. If so, it's not an iterator.
c0736a9d 394 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
af5fb6ab
BK
395 _M_assign_dispatch(__first, __last, _Integral());
396 }
ed6814f7 397
988499f4
JM
398#ifdef __GXX_EXPERIMENTAL_CXX0X__
399 /**
400 * @brief Assigns an initializer list to a %vector.
401 * @param l An initializer_list.
402 *
403 * This function fills a %vector with copies of the elements in the
404 * initializer list @a l.
405 *
406 * Note that the assignment completely changes the %vector and
407 * that the resulting %vector's size is the same as the number
408 * of elements assigned. Old data may be lost.
409 */
410 void
411 assign(initializer_list<value_type> __l)
412 { this->assign(__l.begin(), __l.end()); }
413#endif
414
af5fb6ab 415 /// Get a copy of the memory allocation object.
8a1d8dd9 416 using _Base::get_allocator;
ed6814f7 417
af5fb6ab
BK
418 // iterators
419 /**
e135a038
BK
420 * Returns a read/write iterator that points to the first
421 * element in the %vector. Iteration is done in ordinary
422 * element order.
af5fb6ab
BK
423 */
424 iterator
874e7baa 425 begin()
bc9053ab 426 { return iterator(this->_M_impl._M_start); }
ed6814f7 427
af5fb6ab
BK
428 /**
429 * Returns a read-only (constant) iterator that points to the
430 * first element in the %vector. Iteration is done in ordinary
431 * element order.
432 */
433 const_iterator
874e7baa 434 begin() const
bc9053ab 435 { return const_iterator(this->_M_impl._M_start); }
ed6814f7 436
af5fb6ab
BK
437 /**
438 * Returns a read/write iterator that points one past the last
439 * element in the %vector. Iteration is done in ordinary
440 * element order.
441 */
442 iterator
874e7baa 443 end()
bc9053ab 444 { return iterator(this->_M_impl._M_finish); }
ed6814f7 445
af5fb6ab 446 /**
e135a038
BK
447 * Returns a read-only (constant) iterator that points one past
448 * the last element in the %vector. Iteration is done in
449 * ordinary element order.
af5fb6ab
BK
450 */
451 const_iterator
874e7baa 452 end() const
bc9053ab 453 { return const_iterator(this->_M_impl._M_finish); }
ed6814f7 454
af5fb6ab
BK
455 /**
456 * Returns a read/write reverse iterator that points to the
457 * last element in the %vector. Iteration is done in reverse
458 * element order.
459 */
460 reverse_iterator
874e7baa
PC
461 rbegin()
462 { return reverse_iterator(end()); }
ed6814f7 463
af5fb6ab
BK
464 /**
465 * Returns a read-only (constant) reverse iterator that points
466 * to the last element in the %vector. Iteration is done in
467 * reverse element order.
468 */
469 const_reverse_iterator
874e7baa
PC
470 rbegin() const
471 { return const_reverse_iterator(end()); }
ed6814f7 472
af5fb6ab 473 /**
e135a038
BK
474 * Returns a read/write reverse iterator that points to one
475 * before the first element in the %vector. Iteration is done
476 * in reverse element order.
af5fb6ab
BK
477 */
478 reverse_iterator
874e7baa
PC
479 rend()
480 { return reverse_iterator(begin()); }
ed6814f7 481
af5fb6ab
BK
482 /**
483 * Returns a read-only (constant) reverse iterator that points
484 * to one before the first element in the %vector. Iteration
485 * is done in reverse element order.
486 */
487 const_reverse_iterator
874e7baa
PC
488 rend() const
489 { return const_reverse_iterator(begin()); }
ed6814f7 490
0cd50f89
PC
491#ifdef __GXX_EXPERIMENTAL_CXX0X__
492 /**
493 * Returns a read-only (constant) iterator that points to the
494 * first element in the %vector. Iteration is done in ordinary
495 * element order.
496 */
497 const_iterator
498 cbegin() const
499 { return const_iterator(this->_M_impl._M_start); }
500
501 /**
502 * Returns a read-only (constant) iterator that points one past
503 * the last element in the %vector. Iteration is done in
504 * ordinary element order.
505 */
506 const_iterator
507 cend() const
508 { return const_iterator(this->_M_impl._M_finish); }
509
510 /**
511 * Returns a read-only (constant) reverse iterator that points
512 * to the last element in the %vector. Iteration is done in
513 * reverse element order.
514 */
515 const_reverse_iterator
516 crbegin() const
517 { return const_reverse_iterator(end()); }
518
519 /**
520 * Returns a read-only (constant) reverse iterator that points
521 * to one before the first element in the %vector. Iteration
522 * is done in reverse element order.
523 */
524 const_reverse_iterator
525 crend() const
526 { return const_reverse_iterator(begin()); }
527#endif
528
af5fb6ab
BK
529 // [23.2.4.2] capacity
530 /** Returns the number of elements in the %vector. */
531 size_type
874e7baa 532 size() const
bc9053ab 533 { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
ed6814f7 534
af5fb6ab
BK
535 /** Returns the size() of the largest possible %vector. */
536 size_type
874e7baa 537 max_size() const
1f9c69a9 538 { return _M_get_Tp_allocator().max_size(); }
ed6814f7 539
af5fb6ab
BK
540 /**
541 * @brief Resizes the %vector to the specified number of elements.
542 * @param new_size Number of elements the %vector should contain.
543 * @param x Data with which new elements should be populated.
544 *
545 * This function will %resize the %vector to the specified
546 * number of elements. If the number is smaller than the
547 * %vector's current size the %vector is truncated, otherwise
548 * the %vector is extended and new elements are populated with
549 * given data.
550 */
3971a4d2 551 void
2fecaef4 552 resize(size_type __new_size, value_type __x = value_type())
3971a4d2 553 {
af5fb6ab 554 if (__new_size < size())
bc9053ab 555 _M_erase_at_end(this->_M_impl._M_start + __new_size);
af5fb6ab
BK
556 else
557 insert(end(), __new_size - size(), __x);
3971a4d2 558 }
ed6814f7 559
af5fb6ab 560 /**
e135a038
BK
561 * Returns the total number of elements that the %vector can
562 * hold before needing to allocate more memory.
af5fb6ab
BK
563 */
564 size_type
565 capacity() const
bc9053ab
PC
566 { return size_type(this->_M_impl._M_end_of_storage
567 - this->_M_impl._M_start); }
ed6814f7 568
af5fb6ab
BK
569 /**
570 * Returns true if the %vector is empty. (Thus begin() would
571 * equal end().)
572 */
573 bool
874e7baa
PC
574 empty() const
575 { return begin() == end(); }
ed6814f7 576
af5fb6ab
BK
577 /**
578 * @brief Attempt to preallocate enough memory for specified number of
579 * elements.
580 * @param n Number of elements required.
581 * @throw std::length_error If @a n exceeds @c max_size().
582 *
583 * This function attempts to reserve enough memory for the
584 * %vector to hold the specified number of elements. If the
585 * number requested is more than max_size(), length_error is
586 * thrown.
587 *
588 * The advantage of this function is that if optimal code is a
589 * necessity and the user can determine the number of elements
590 * that will be required, the user can reserve the memory in
591 * %advance, and thus prevent a possible reallocation of memory
592 * and copying of %vector data.
593 */
594 void
595 reserve(size_type __n);
ed6814f7 596
af5fb6ab
BK
597 // element access
598 /**
599 * @brief Subscript access to the data contained in the %vector.
e135a038
BK
600 * @param n The index of the element for which data should be
601 * accessed.
af5fb6ab
BK
602 * @return Read/write reference to data.
603 *
604 * This operator allows for easy, array-style, data access.
605 * Note that data access with this operator is unchecked and
606 * out_of_range lookups are not defined. (For checked lookups
607 * see at().)
608 */
609 reference
874e7baa 610 operator[](size_type __n)
bc9053ab 611 { return *(this->_M_impl._M_start + __n); }
ed6814f7 612
af5fb6ab
BK
613 /**
614 * @brief Subscript access to the data contained in the %vector.
615 * @param n The index of the element for which data should be
616 * accessed.
617 * @return Read-only (constant) reference to data.
618 *
619 * This operator allows for easy, array-style, data access.
620 * Note that data access with this operator is unchecked and
621 * out_of_range lookups are not defined. (For checked lookups
622 * see at().)
623 */
624 const_reference
874e7baa 625 operator[](size_type __n) const
bc9053ab 626 { return *(this->_M_impl._M_start + __n); }
ed6814f7 627
af5fb6ab 628 protected:
4312e020 629 /// Safety check used only from at().
3971a4d2 630 void
af5fb6ab 631 _M_range_check(size_type __n) const
3971a4d2 632 {
af5fb6ab 633 if (__n >= this->size())
988ad90d 634 __throw_out_of_range(__N("vector::_M_range_check"));
3971a4d2 635 }
ed6814f7 636
af5fb6ab
BK
637 public:
638 /**
639 * @brief Provides access to the data contained in the %vector.
640 * @param n The index of the element for which data should be
641 * accessed.
642 * @return Read/write reference to data.
643 * @throw std::out_of_range If @a n is an invalid index.
644 *
e135a038
BK
645 * This function provides for safer data access. The parameter
646 * is first checked that it is in the range of the vector. The
647 * function throws out_of_range if the check fails.
af5fb6ab
BK
648 */
649 reference
874e7baa
PC
650 at(size_type __n)
651 {
652 _M_range_check(__n);
653 return (*this)[__n];
654 }
ed6814f7 655
af5fb6ab
BK
656 /**
657 * @brief Provides access to the data contained in the %vector.
658 * @param n The index of the element for which data should be
659 * accessed.
660 * @return Read-only (constant) reference to data.
661 * @throw std::out_of_range If @a n is an invalid index.
662 *
663 * This function provides for safer data access. The parameter
664 * is first checked that it is in the range of the vector. The
665 * function throws out_of_range if the check fails.
666 */
667 const_reference
874e7baa
PC
668 at(size_type __n) const
669 {
670 _M_range_check(__n);
671 return (*this)[__n];
672 }
ed6814f7 673
af5fb6ab
BK
674 /**
675 * Returns a read/write reference to the data at the first
676 * element of the %vector.
677 */
678 reference
874e7baa
PC
679 front()
680 { return *begin(); }
ed6814f7 681
af5fb6ab
BK
682 /**
683 * Returns a read-only (constant) reference to the data at the first
684 * element of the %vector.
685 */
686 const_reference
874e7baa
PC
687 front() const
688 { return *begin(); }
ed6814f7 689
af5fb6ab 690 /**
e135a038
BK
691 * Returns a read/write reference to the data at the last
692 * element of the %vector.
af5fb6ab
BK
693 */
694 reference
874e7baa
PC
695 back()
696 { return *(end() - 1); }
697
af5fb6ab 698 /**
e135a038
BK
699 * Returns a read-only (constant) reference to the data at the
700 * last element of the %vector.
af5fb6ab
BK
701 */
702 const_reference
874e7baa
PC
703 back() const
704 { return *(end() - 1); }
ed6814f7 705
8b5f07a2
PC
706 // _GLIBCXX_RESOLVE_LIB_DEFECTS
707 // DR 464. Suggestion for new member functions in standard containers.
708 // data access
709 /**
710 * Returns a pointer such that [data(), data() + size()) is a valid
711 * range. For a non-empty %vector, data() == &front().
712 */
713 pointer
714 data()
715 { return pointer(this->_M_impl._M_start); }
716
717 const_pointer
718 data() const
719 { return const_pointer(this->_M_impl._M_start); }
720
af5fb6ab
BK
721 // [23.2.4.3] modifiers
722 /**
723 * @brief Add data to the end of the %vector.
724 * @param x Data to be added.
725 *
726 * This is a typical stack operation. The function creates an
727 * element at the end of the %vector and assigns the given data
728 * to it. Due to the nature of a %vector this operation can be
729 * done in constant time if the %vector has preallocated space
730 * available.
731 */
3971a4d2 732 void
af5fb6ab 733 push_back(const value_type& __x)
3971a4d2 734 {
03f9ea44 735 if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
af5fb6ab 736 {
1985f1cd 737 this->_M_impl.construct(this->_M_impl._M_finish, __x);
03f9ea44 738 ++this->_M_impl._M_finish;
af5fb6ab
BK
739 }
740 else
741 _M_insert_aux(end(), __x);
3971a4d2 742 }
4dc3e453
PC
743
744#ifdef __GXX_EXPERIMENTAL_CXX0X__
745 void
746 push_back(value_type&& __x)
747 { emplace_back(std::move(__x)); }
748
6eef7402
CJ
749 template<typename... _Args>
750 void
4dc3e453 751 emplace_back(_Args&&... __args);
6eef7402 752#endif
ed6814f7 753
af5fb6ab
BK
754 /**
755 * @brief Removes last element.
756 *
757 * This is a typical stack operation. It shrinks the %vector by one.
758 *
e135a038
BK
759 * Note that no data is returned, and if the last element's
760 * data is needed, it should be retrieved before pop_back() is
761 * called.
af5fb6ab 762 */
3971a4d2 763 void
af5fb6ab 764 pop_back()
3971a4d2 765 {
03f9ea44 766 --this->_M_impl._M_finish;
1985f1cd 767 this->_M_impl.destroy(this->_M_impl._M_finish);
3971a4d2 768 }
ed6814f7 769
6eef7402
CJ
770#ifdef __GXX_EXPERIMENTAL_CXX0X__
771 /**
772 * @brief Inserts an object in %vector before specified iterator.
773 * @param position An iterator into the %vector.
774 * @param args Arguments.
775 * @return An iterator that points to the inserted data.
776 *
777 * This function will insert an object of type T constructed
778 * with T(std::forward<Args>(args)...) before the specified location.
779 * Note that this kind of operation could be expensive for a %vector
780 * and if it is frequently used the user should consider using
781 * std::list.
782 */
783 template<typename... _Args>
784 iterator
785 emplace(iterator __position, _Args&&... __args);
786#endif
787
af5fb6ab
BK
788 /**
789 * @brief Inserts given value into %vector before specified iterator.
790 * @param position An iterator into the %vector.
791 * @param x Data to be inserted.
792 * @return An iterator that points to the inserted data.
793 *
794 * This function will insert a copy of the given value before
795 * the specified location. Note that this kind of operation
796 * could be expensive for a %vector and if it is frequently
797 * used the user should consider using std::list.
798 */
799 iterator
800 insert(iterator __position, const value_type& __x);
3a9fdf30 801
6eef7402
CJ
802#ifdef __GXX_EXPERIMENTAL_CXX0X__
803 /**
804 * @brief Inserts given rvalue into %vector before specified iterator.
805 * @param position An iterator into the %vector.
806 * @param x Data to be inserted.
807 * @return An iterator that points to the inserted data.
808 *
809 * This function will insert a copy of the given rvalue before
810 * the specified location. Note that this kind of operation
811 * could be expensive for a %vector and if it is frequently
812 * used the user should consider using std::list.
813 */
814 iterator
360b7bff
PC
815 insert(iterator __position, value_type&& __x)
816 { return emplace(__position, std::move(__x)); }
988499f4
JM
817
818 /**
819 * @brief Inserts an initializer_list into the %vector.
820 * @param position An iterator into the %vector.
821 * @param l An initializer_list.
822 *
823 * This function will insert copies of the data in the
824 * initializer_list @a l into the %vector before the location
825 * specified by @a position.
826 *
827 * Note that this kind of operation could be expensive for a
828 * %vector and if it is frequently used the user should
829 * consider using std::list.
830 */
831 void
832 insert(iterator __position, initializer_list<value_type> __l)
833 { this->insert(__position, __l.begin(), __l.end()); }
6eef7402
CJ
834#endif
835
af5fb6ab
BK
836 /**
837 * @brief Inserts a number of copies of given data into the %vector.
838 * @param position An iterator into the %vector.
839 * @param n Number of elements to be inserted.
840 * @param x Data to be inserted.
841 *
842 * This function will insert a specified number of copies of
843 * the given data before the location specified by @a position.
844 *
845 * Note that this kind of operation could be expensive for a
846 * %vector and if it is frequently used the user should
847 * consider using std::list.
848 */
849 void
08addde6
PE
850 insert(iterator __position, size_type __n, const value_type& __x)
851 { _M_fill_insert(__position, __n, __x); }
ed6814f7 852
af5fb6ab
BK
853 /**
854 * @brief Inserts a range into the %vector.
08addde6 855 * @param position An iterator into the %vector.
af5fb6ab
BK
856 * @param first An input iterator.
857 * @param last An input iterator.
858 *
859 * This function will insert copies of the data in the range
860 * [first,last) into the %vector before the location specified
861 * by @a pos.
862 *
863 * Note that this kind of operation could be expensive for a
864 * %vector and if it is frequently used the user should
865 * consider using std::list.
866 */
867 template<typename _InputIterator>
868 void
ed6814f7 869 insert(iterator __position, _InputIterator __first,
e135a038 870 _InputIterator __last)
af5fb6ab
BK
871 {
872 // Check whether it's an integral type. If so, it's not an iterator.
c0736a9d 873 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
08addde6 874 _M_insert_dispatch(__position, __first, __last, _Integral());
af5fb6ab 875 }
ed6814f7 876
af5fb6ab
BK
877 /**
878 * @brief Remove element at given position.
879 * @param position Iterator pointing to element to be erased.
880 * @return An iterator pointing to the next element (or end()).
881 *
882 * This function will erase the element at the given position and thus
883 * shorten the %vector by one.
884 *
885 * Note This operation could be expensive and if it is
886 * frequently used the user should consider using std::list.
887 * The user is also cautioned that this function only erases
888 * the element, and that if the element is itself a pointer,
889 * the pointed-to memory is not touched in any way. Managing
28dac70a 890 * the pointer is the user's responsibility.
af5fb6ab
BK
891 */
892 iterator
893 erase(iterator __position);
ed6814f7 894
af5fb6ab
BK
895 /**
896 * @brief Remove a range of elements.
897 * @param first Iterator pointing to the first element to be erased.
898 * @param last Iterator pointing to one past the last element to be
899 * erased.
900 * @return An iterator pointing to the element pointed to by @a last
901 * prior to erasing (or end()).
902 *
903 * This function will erase the elements in the range [first,last) and
904 * shorten the %vector accordingly.
905 *
906 * Note This operation could be expensive and if it is
907 * frequently used the user should consider using std::list.
908 * The user is also cautioned that this function only erases
909 * the elements, and that if the elements themselves are
910 * pointers, the pointed-to memory is not touched in any way.
28dac70a 911 * Managing the pointer is the user's responsibility.
af5fb6ab
BK
912 */
913 iterator
914 erase(iterator __first, iterator __last);
ed6814f7 915
af5fb6ab
BK
916 /**
917 * @brief Swaps data with another %vector.
918 * @param x A %vector of the same element and allocator types.
919 *
920 * This exchanges the elements between two vectors in constant time.
921 * (Three pointers, so it should be quite fast.)
922 * Note that the global std::swap() function is specialized such that
923 * std::swap(v1,v2) will feed to this function.
924 */
3971a4d2 925 void
78b36b70
PC
926#ifdef __GXX_EXPERIMENTAL_CXX0X__
927 swap(vector&& __x)
928#else
af5fb6ab 929 swap(vector& __x)
78b36b70 930#endif
3971a4d2 931 {
03f9ea44
DM
932 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
933 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
874e7baa
PC
934 std::swap(this->_M_impl._M_end_of_storage,
935 __x._M_impl._M_end_of_storage);
f7ace77f
PC
936
937 // _GLIBCXX_RESOLVE_LIB_DEFECTS
938 // 431. Swapping containers with unequal allocators.
939 std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
940 __x._M_get_Tp_allocator());
3971a4d2 941 }
ed6814f7 942
af5fb6ab
BK
943 /**
944 * Erases all the elements. Note that this function only erases the
945 * elements, and that if the elements themselves are pointers, the
946 * pointed-to memory is not touched in any way. Managing the pointer is
28dac70a 947 * the user's responsibility.
af5fb6ab 948 */
3971a4d2 949 void
874e7baa 950 clear()
bc9053ab 951 { _M_erase_at_end(this->_M_impl._M_start); }
ed6814f7 952
af5fb6ab
BK
953 protected:
954 /**
af5fb6ab
BK
955 * Memory expansion handler. Uses the member allocation function to
956 * obtain @a n bytes of memory, and then copies [first,last) into it.
af5fb6ab
BK
957 */
958 template<typename _ForwardIterator>
959 pointer
960 _M_allocate_and_copy(size_type __n,
961 _ForwardIterator __first, _ForwardIterator __last)
962 {
f2ffecb1 963 pointer __result = this->_M_allocate(__n);
bc2631e0 964 __try
af5fb6ab 965 {
1985f1cd 966 std::__uninitialized_copy_a(__first, __last, __result,
4fd20a8f 967 _M_get_Tp_allocator());
af5fb6ab
BK
968 return __result;
969 }
bc2631e0 970 __catch(...)
af5fb6ab
BK
971 {
972 _M_deallocate(__result, __n);
973 __throw_exception_again;
974 }
975 }
ed6814f7
BI
976
977
af5fb6ab 978 // Internal constructor functions follow.
ed6814f7 979
af5fb6ab 980 // Called by the range constructor to implement [23.1.1]/9
25959e29
PC
981
982 // _GLIBCXX_RESOLVE_LIB_DEFECTS
983 // 438. Ambiguity in the "do the right thing" clause
af5fb6ab
BK
984 template<typename _Integer>
985 void
986 _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
987 {
25959e29
PC
988 this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
989 this->_M_impl._M_end_of_storage =
990 this->_M_impl._M_start + static_cast<size_type>(__n);
f4c5578f 991 _M_fill_initialize(static_cast<size_type>(__n), __value);
af5fb6ab 992 }
ed6814f7 993
af5fb6ab 994 // Called by the range constructor to implement [23.1.1]/9
08addde6 995 template<typename _InputIterator>
af5fb6ab 996 void
08addde6 997 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
af5fb6ab
BK
998 __false_type)
999 {
6323b34e
PC
1000 typedef typename std::iterator_traits<_InputIterator>::
1001 iterator_category _IterCategory;
af5fb6ab
BK
1002 _M_range_initialize(__first, __last, _IterCategory());
1003 }
ed6814f7 1004
af5fb6ab
BK
1005 // Called by the second initialize_dispatch above
1006 template<typename _InputIterator>
1007 void
1008 _M_range_initialize(_InputIterator __first,
6323b34e 1009 _InputIterator __last, std::input_iterator_tag)
af5fb6ab 1010 {
43da93a7 1011 for (; __first != __last; ++__first)
af5fb6ab
BK
1012 push_back(*__first);
1013 }
ed6814f7 1014
af5fb6ab
BK
1015 // Called by the second initialize_dispatch above
1016 template<typename _ForwardIterator>
ed6814f7 1017 void
af5fb6ab 1018 _M_range_initialize(_ForwardIterator __first,
6323b34e 1019 _ForwardIterator __last, std::forward_iterator_tag)
af5fb6ab 1020 {
43da93a7 1021 const size_type __n = std::distance(__first, __last);
03f9ea44
DM
1022 this->_M_impl._M_start = this->_M_allocate(__n);
1023 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
1985f1cd
MA
1024 this->_M_impl._M_finish =
1025 std::__uninitialized_copy_a(__first, __last,
1026 this->_M_impl._M_start,
4fd20a8f 1027 _M_get_Tp_allocator());
af5fb6ab 1028 }
ed6814f7 1029
f4c5578f
PC
1030 // Called by the first initialize_dispatch above and by the
1031 // vector(n,value,a) constructor.
266a2cba 1032 void
f4c5578f
PC
1033 _M_fill_initialize(size_type __n, const value_type& __value)
1034 {
1035 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
1036 _M_get_Tp_allocator());
1037 this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1038 }
1039
ed6814f7 1040
af5fb6ab
BK
1041 // Internal assign functions follow. The *_aux functions do the actual
1042 // assignment work for the range versions.
ed6814f7 1043
af5fb6ab 1044 // Called by the range assign to implement [23.1.1]/9
25959e29
PC
1045
1046 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1047 // 438. Ambiguity in the "do the right thing" clause
af5fb6ab
BK
1048 template<typename _Integer>
1049 void
1050 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
25959e29 1051 { _M_fill_assign(__n, __val); }
ed6814f7 1052
af5fb6ab 1053 // Called by the range assign to implement [23.1.1]/9
08addde6 1054 template<typename _InputIterator>
af5fb6ab 1055 void
ed6814f7 1056 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
e135a038 1057 __false_type)
af5fb6ab 1058 {
6323b34e
PC
1059 typedef typename std::iterator_traits<_InputIterator>::
1060 iterator_category _IterCategory;
af5fb6ab
BK
1061 _M_assign_aux(__first, __last, _IterCategory());
1062 }
ed6814f7 1063
af5fb6ab
BK
1064 // Called by the second assign_dispatch above
1065 template<typename _InputIterator>
ed6814f7 1066 void
af5fb6ab 1067 _M_assign_aux(_InputIterator __first, _InputIterator __last,
6323b34e 1068 std::input_iterator_tag);
ed6814f7 1069
af5fb6ab
BK
1070 // Called by the second assign_dispatch above
1071 template<typename _ForwardIterator>
ed6814f7 1072 void
af5fb6ab 1073 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
6323b34e 1074 std::forward_iterator_tag);
ed6814f7 1075
af5fb6ab
BK
1076 // Called by assign(n,t), and the range assign when it turns out
1077 // to be the same thing.
3971a4d2 1078 void
af5fb6ab 1079 _M_fill_assign(size_type __n, const value_type& __val);
ed6814f7
BI
1080
1081
af5fb6ab 1082 // Internal insert functions follow.
ed6814f7 1083
af5fb6ab 1084 // Called by the range insert to implement [23.1.1]/9
25959e29
PC
1085
1086 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1087 // 438. Ambiguity in the "do the right thing" clause
af5fb6ab
BK
1088 template<typename _Integer>
1089 void
1090 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1091 __true_type)
25959e29 1092 { _M_fill_insert(__pos, __n, __val); }
ed6814f7 1093
af5fb6ab
BK
1094 // Called by the range insert to implement [23.1.1]/9
1095 template<typename _InputIterator>
1096 void
1097 _M_insert_dispatch(iterator __pos, _InputIterator __first,
1098 _InputIterator __last, __false_type)
1099 {
6323b34e
PC
1100 typedef typename std::iterator_traits<_InputIterator>::
1101 iterator_category _IterCategory;
af5fb6ab
BK
1102 _M_range_insert(__pos, __first, __last, _IterCategory());
1103 }
ed6814f7 1104
af5fb6ab
BK
1105 // Called by the second insert_dispatch above
1106 template<typename _InputIterator>
1107 void
ed6814f7 1108 _M_range_insert(iterator __pos, _InputIterator __first,
6323b34e 1109 _InputIterator __last, std::input_iterator_tag);
ed6814f7 1110
af5fb6ab
BK
1111 // Called by the second insert_dispatch above
1112 template<typename _ForwardIterator>
1113 void
ed6814f7 1114 _M_range_insert(iterator __pos, _ForwardIterator __first,
6323b34e 1115 _ForwardIterator __last, std::forward_iterator_tag);
ed6814f7 1116
af5fb6ab
BK
1117 // Called by insert(p,n,x), and the range insert when it turns out to be
1118 // the same thing.
1119 void
1120 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
ed6814f7 1121
af5fb6ab 1122 // Called by insert(p,x)
6eef7402 1123#ifndef __GXX_EXPERIMENTAL_CXX0X__
af5fb6ab
BK
1124 void
1125 _M_insert_aux(iterator __position, const value_type& __x);
6eef7402
CJ
1126#else
1127 template<typename... _Args>
1128 void
1129 _M_insert_aux(iterator __position, _Args&&... __args);
1130#endif
bc9053ab 1131
be1088fa
ML
1132 // Called by the latter.
1133 size_type
1134 _M_check_len(size_type __n, const char* __s) const
1135 {
1136 if (max_size() - size() < __n)
1137 __throw_length_error(__N(__s));
1138
1139 const size_type __len = size() + std::max(size(), __n);
1140 return (__len < size() || __len > max_size()) ? max_size() : __len;
1141 }
1142
bc9053ab
PC
1143 // Internal erase functions follow.
1144
1145 // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1146 // _M_assign_aux.
1147 void
1148 _M_erase_at_end(pointer __pos)
1149 {
1150 std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
1151 this->_M_impl._M_finish = __pos;
1152 }
af5fb6ab 1153 };
ed6814f7
BI
1154
1155
3971a4d2
PE
1156 /**
1157 * @brief Vector equality comparison.
1158 * @param x A %vector.
1159 * @param y A %vector of the same type as @a x.
1160 * @return True iff the size and elements of the vectors are equal.
1161 *
1162 * This is an equivalence relation. It is linear in the size of the
1163 * vectors. Vectors are considered equivalent if their sizes are equal,
1164 * and if corresponding elements compare equal.
1165 */
af5fb6ab 1166 template<typename _Tp, typename _Alloc>
3971a4d2 1167 inline bool
874e7baa
PC
1168 operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1169 { return (__x.size() == __y.size()
1170 && std::equal(__x.begin(), __x.end(), __y.begin())); }
ed6814f7 1171
3971a4d2
PE
1172 /**
1173 * @brief Vector ordering relation.
1174 * @param x A %vector.
1175 * @param y A %vector of the same type as @a x.
9536ca34 1176 * @return True iff @a x is lexicographically less than @a y.
3971a4d2
PE
1177 *
1178 * This is a total ordering relation. It is linear in the size of the
1179 * vectors. The elements must be comparable with @c <.
1180 *
9536ca34 1181 * See std::lexicographical_compare() for how the determination is made.
3971a4d2 1182 */
af5fb6ab 1183 template<typename _Tp, typename _Alloc>
3971a4d2 1184 inline bool
874e7baa
PC
1185 operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1186 { return std::lexicographical_compare(__x.begin(), __x.end(),
1187 __y.begin(), __y.end()); }
ed6814f7 1188
3971a4d2 1189 /// Based on operator==
af5fb6ab 1190 template<typename _Tp, typename _Alloc>
3971a4d2 1191 inline bool
874e7baa 1192 operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
3971a4d2 1193 { return !(__x == __y); }
ed6814f7 1194
3971a4d2 1195 /// Based on operator<
af5fb6ab 1196 template<typename _Tp, typename _Alloc>
3971a4d2 1197 inline bool
874e7baa 1198 operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
3971a4d2 1199 { return __y < __x; }
ed6814f7 1200
3971a4d2 1201 /// Based on operator<
af5fb6ab 1202 template<typename _Tp, typename _Alloc>
3971a4d2 1203 inline bool
874e7baa 1204 operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
3971a4d2 1205 { return !(__y < __x); }
ed6814f7 1206
3971a4d2 1207 /// Based on operator<
af5fb6ab 1208 template<typename _Tp, typename _Alloc>
3971a4d2 1209 inline bool
874e7baa 1210 operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
3971a4d2 1211 { return !(__x < __y); }
ed6814f7 1212
3971a4d2 1213 /// See std::vector::swap().
af5fb6ab 1214 template<typename _Tp, typename _Alloc>
3971a4d2 1215 inline void
874e7baa 1216 swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
3971a4d2 1217 { __x.swap(__y); }
3cbc7af0 1218
78b36b70
PC
1219#ifdef __GXX_EXPERIMENTAL_CXX0X__
1220 template<typename _Tp, typename _Alloc>
1221 inline void
1222 swap(vector<_Tp, _Alloc>&& __x, vector<_Tp, _Alloc>& __y)
1223 { __x.swap(__y); }
1224
1225 template<typename _Tp, typename _Alloc>
1226 inline void
1227 swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>&& __y)
1228 { __x.swap(__y); }
1229#endif
1230
3cbc7af0 1231_GLIBCXX_END_NESTED_NAMESPACE
725dc051 1232
046d30f4 1233#endif /* _STL_VECTOR_H */