]> git.ipfire.org Git - thirdparty/gcc.git/blame - libstdc++-v3/include/tr1/exp_integral.tcc
Licensing changes to GPLv3 resp. GPLv3 with GCC Runtime Exception.
[thirdparty/gcc.git] / libstdc++-v3 / include / tr1 / exp_integral.tcc
CommitLineData
7c62b943
BK
1// Special functions -*- C++ -*-
2
748086b7 3// Copyright (C) 2006, 2007, 2008, 2009
7c62b943
BK
4// Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library. This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
748086b7 9// Free Software Foundation; either version 3, or (at your option)
7c62b943
BK
10// any later version.
11//
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15// GNU General Public License for more details.
16//
748086b7
JJ
17// Under Section 7 of GPL version 3, you are granted additional
18// permissions described in the GCC Runtime Library Exception, version
19// 3.1, as published by the Free Software Foundation.
20
21// You should have received a copy of the GNU General Public License and
22// a copy of the GCC Runtime Library Exception along with this program;
23// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24// <http://www.gnu.org/licenses/>.
7c62b943
BK
25
26/** @file tr1/exp_integral.tcc
27 * This is an internal header file, included by other library headers.
28 * You should not attempt to use it directly.
29 */
30
31//
32// ISO C++ 14882 TR1: 5.2 Special functions
33//
34
35// Written by Edward Smith-Rowland based on:
36//
37// (1) Handbook of Mathematical Functions,
38// Ed. by Milton Abramowitz and Irene A. Stegun,
39// Dover Publications, New-York, Section 5, pp. 228-251.
40// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
41// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
42// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
43// 2nd ed, pp. 222-225.
44//
45
e133ace8
PC
46#ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC
47#define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1
7c62b943
BK
48
49#include "special_function_util.h"
50
51namespace std
52{
e133ace8
PC
53namespace tr1
54{
7c62b943
BK
55
56 // [5.2] Special functions
57
7c62b943 58 // Implementation-space details.
7c62b943
BK
59 namespace __detail
60 {
61
62 /**
63 * @brief Return the exponential integral @f$ E_1(x) @f$
64 * by series summation. This should be good
65 * for @f$ x < 1 @f$.
66 *
67 * The exponential integral is given by
68 * \f[
69 * E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt
70 * \f]
71 *
72 * @param __x The argument of the exponential integral function.
73 * @return The exponential integral.
74 */
75 template<typename _Tp>
76 _Tp
77 __expint_E1_series(const _Tp __x)
78 {
79 const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
80 _Tp __term = _Tp(1);
81 _Tp __esum = _Tp(0);
82 _Tp __osum = _Tp(0);
83 const unsigned int __max_iter = 100;
84 for (unsigned int __i = 1; __i < __max_iter; ++__i)
85 {
86 __term *= - __x / __i;
87 if (std::abs(__term) < __eps)
88 break;
89 if (__term >= _Tp(0))
90 __esum += __term / __i;
91 else
92 __osum += __term / __i;
93 }
94
95 return - __esum - __osum
96 - __numeric_constants<_Tp>::__gamma_e() - std::log(__x);
97 }
98
99
100 /**
101 * @brief Return the exponential integral @f$ E_1(x) @f$
102 * by asymptotic expansion.
103 *
104 * The exponential integral is given by
105 * \f[
106 * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
107 * \f]
108 *
109 * @param __x The argument of the exponential integral function.
110 * @return The exponential integral.
111 */
112 template<typename _Tp>
113 _Tp
114 __expint_E1_asymp(const _Tp __x)
115 {
116 _Tp __term = _Tp(1);
117 _Tp __esum = _Tp(1);
118 _Tp __osum = _Tp(0);
119 const unsigned int __max_iter = 1000;
120 for (unsigned int __i = 1; __i < __max_iter; ++__i)
121 {
122 _Tp __prev = __term;
123 __term *= - __i / __x;
124 if (std::abs(__term) > std::abs(__prev))
125 break;
126 if (__term >= _Tp(0))
127 __esum += __term;
128 else
129 __osum += __term;
130 }
131
132 return std::exp(- __x) * (__esum + __osum) / __x;
133 }
134
135
136 /**
137 * @brief Return the exponential integral @f$ E_n(x) @f$
138 * by series summation.
139 *
140 * The exponential integral is given by
141 * \f[
142 * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
143 * \f]
144 *
145 * @param __n The order of the exponential integral function.
146 * @param __x The argument of the exponential integral function.
147 * @return The exponential integral.
148 */
149 template<typename _Tp>
150 _Tp
151 __expint_En_series(const unsigned int __n, const _Tp __x)
152 {
153 const unsigned int __max_iter = 100;
154 const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
155 const int __nm1 = __n - 1;
156 _Tp __ans = (__nm1 != 0
157 ? _Tp(1) / __nm1 : -std::log(__x)
158 - __numeric_constants<_Tp>::__gamma_e());
159 _Tp __fact = _Tp(1);
160 for (int __i = 1; __i <= __max_iter; ++__i)
161 {
162 __fact *= -__x / _Tp(__i);
163 _Tp __del;
164 if ( __i != __nm1 )
165 __del = -__fact / _Tp(__i - __nm1);
166 else
167 {
168 _Tp __psi = -_TR1_GAMMA_TCC;
169 for (int __ii = 1; __ii <= __nm1; ++__ii)
170 __psi += _Tp(1) / _Tp(__ii);
171 __del = __fact * (__psi - std::log(__x));
172 }
173 __ans += __del;
174 if (std::abs(__del) < __eps * std::abs(__ans))
175 return __ans;
176 }
177 std::__throw_runtime_error(__N("Series summation failed "
178 "in __expint_En_series."));
179 }
180
181
182 /**
183 * @brief Return the exponential integral @f$ E_n(x) @f$
184 * by continued fractions.
185 *
186 * The exponential integral is given by
187 * \f[
188 * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
189 * \f]
190 *
191 * @param __n The order of the exponential integral function.
192 * @param __x The argument of the exponential integral function.
193 * @return The exponential integral.
194 */
195 template<typename _Tp>
196 _Tp
197 __expint_En_cont_frac(const unsigned int __n, const _Tp __x)
198 {
199 const unsigned int __max_iter = 100;
200 const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
201 const _Tp __fp_min = std::numeric_limits<_Tp>::min();
202 const int __nm1 = __n - 1;
203 _Tp __b = __x + _Tp(__n);
204 _Tp __c = _Tp(1) / __fp_min;
205 _Tp __d = _Tp(1) / __b;
206 _Tp __h = __d;
207 for ( unsigned int __i = 1; __i <= __max_iter; ++__i )
208 {
209 _Tp __a = -_Tp(__i * (__nm1 + __i));
210 __b += _Tp(2);
211 __d = _Tp(1) / (__a * __d + __b);
212 __c = __b + __a / __c;
213 const _Tp __del = __c * __d;
214 __h *= __del;
215 if (std::abs(__del - _Tp(1)) < __eps)
216 {
217 const _Tp __ans = __h * std::exp(-__x);
218 return __ans;
219 }
220 }
221 std::__throw_runtime_error(__N("Continued fraction failed "
222 "in __expint_En_cont_frac."));
223 }
224
225
226 /**
227 * @brief Return the exponential integral @f$ E_n(x) @f$
228 * by recursion. Use upward recursion for @f$ x < n @f$
229 * and downward recursion (Miller's algorithm) otherwise.
230 *
231 * The exponential integral is given by
232 * \f[
233 * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
234 * \f]
235 *
236 * @param __n The order of the exponential integral function.
237 * @param __x The argument of the exponential integral function.
238 * @return The exponential integral.
239 */
240 template<typename _Tp>
241 _Tp
242 __expint_En_recursion(const unsigned int __n, const _Tp __x)
243 {
244 _Tp __En;
245 _Tp __E1 = __expint_E1(__x);
246 if (__x < _Tp(__n))
247 {
248 // Forward recursion is stable only for n < x.
249 __En = __E1;
250 for (unsigned int __j = 2; __j < __n; ++__j)
251 __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1);
252 }
253 else
254 {
255 // Backward recursion is stable only for n >= x.
256 __En = _Tp(1);
257 const int __N = __n + 20; // TODO: Check this starting number.
258 _Tp __save = _Tp(0);
259 for (int __j = __N; __j > 0; --__j)
260 {
261 __En = (std::exp(-__x) - __j * __En) / __x;
262 if (__j == __n)
263 __save = __En;
264 }
265 _Tp __norm = __En / __E1;
266 __En /= __norm;
267 }
268
269 return __En;
270 }
271
272 /**
273 * @brief Return the exponential integral @f$ Ei(x) @f$
274 * by series summation.
275 *
276 * The exponential integral is given by
277 * \f[
278 * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
279 * \f]
280 *
281 * @param __x The argument of the exponential integral function.
282 * @return The exponential integral.
283 */
284 template<typename _Tp>
285 _Tp
286 __expint_Ei_series(const _Tp __x)
287 {
288 _Tp __term = _Tp(1);
289 _Tp __sum = _Tp(0);
290 const unsigned int __max_iter = 1000;
291 for (unsigned int __i = 1; __i < __max_iter; ++__i)
292 {
293 __term *= __x / __i;
294 __sum += __term / __i;
295 if (__term < std::numeric_limits<_Tp>::epsilon() * __sum)
296 break;
297 }
298
299 return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x);
300 }
301
302
303 /**
304 * @brief Return the exponential integral @f$ Ei(x) @f$
305 * by asymptotic expansion.
306 *
307 * The exponential integral is given by
308 * \f[
309 * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
310 * \f]
311 *
312 * @param __x The argument of the exponential integral function.
313 * @return The exponential integral.
314 */
315 template<typename _Tp>
316 _Tp
317 __expint_Ei_asymp(const _Tp __x)
318 {
319 _Tp __term = _Tp(1);
320 _Tp __sum = _Tp(1);
321 const unsigned int __max_iter = 1000;
322 for (unsigned int __i = 1; __i < __max_iter; ++__i)
323 {
324 _Tp __prev = __term;
325 __term *= __i / __x;
326 if (__term < std::numeric_limits<_Tp>::epsilon())
327 break;
328 if (__term >= __prev)
329 break;
330 __sum += __term;
331 }
332
333 return std::exp(__x) * __sum / __x;
334 }
335
336
337 /**
338 * @brief Return the exponential integral @f$ Ei(x) @f$.
339 *
340 * The exponential integral is given by
341 * \f[
342 * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
343 * \f]
344 *
345 * @param __x The argument of the exponential integral function.
346 * @return The exponential integral.
347 */
348 template<typename _Tp>
349 _Tp
350 __expint_Ei(const _Tp __x)
351 {
352 if (__x < _Tp(0))
353 return -__expint_E1(-__x);
354 else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon()))
355 return __expint_Ei_series(__x);
356 else
357 return __expint_Ei_asymp(__x);
358 }
359
360
361 /**
362 * @brief Return the exponential integral @f$ E_1(x) @f$.
363 *
364 * The exponential integral is given by
365 * \f[
366 * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
367 * \f]
368 *
369 * @param __x The argument of the exponential integral function.
370 * @return The exponential integral.
371 */
372 template<typename _Tp>
373 _Tp
374 __expint_E1(const _Tp __x)
375 {
376 if (__x < _Tp(0))
377 return -__expint_Ei(-__x);
378 else if (__x < _Tp(1))
379 return __expint_E1_series(__x);
380 else if (__x < _Tp(100)) // TODO: Find a good asymptotic switch point.
381 return __expint_En_cont_frac(1, __x);
382 else
383 return __expint_E1_asymp(__x);
384 }
385
386
387 /**
388 * @brief Return the exponential integral @f$ E_n(x) @f$
389 * for large argument.
390 *
391 * The exponential integral is given by
392 * \f[
393 * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
394 * \f]
395 *
396 * This is something of an extension.
397 *
398 * @param __n The order of the exponential integral function.
399 * @param __x The argument of the exponential integral function.
400 * @return The exponential integral.
401 */
402 template<typename _Tp>
403 _Tp
404 __expint_asymp(const unsigned int __n, const _Tp __x)
405 {
406 _Tp __term = _Tp(1);
407 _Tp __sum = _Tp(1);
408 for (unsigned int __i = 1; __i <= __n; ++__i)
409 {
410 _Tp __prev = __term;
411 __term *= -(__n - __i + 1) / __x;
412 if (std::abs(__term) > std::abs(__prev))
413 break;
414 __sum += __term;
415 }
416
417 return std::exp(-__x) * __sum / __x;
418 }
419
420
421 /**
422 * @brief Return the exponential integral @f$ E_n(x) @f$
423 * for large order.
424 *
425 * The exponential integral is given by
426 * \f[
427 * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
428 * \f]
429 *
430 * This is something of an extension.
431 *
432 * @param __n The order of the exponential integral function.
433 * @param __x The argument of the exponential integral function.
434 * @return The exponential integral.
435 */
436 template<typename _Tp>
437 _Tp
438 __expint_large_n(const unsigned int __n, const _Tp __x)
439 {
440 const _Tp __xpn = __x + __n;
441 const _Tp __xpn2 = __xpn * __xpn;
442 _Tp __term = _Tp(1);
443 _Tp __sum = _Tp(1);
444 for (unsigned int __i = 1; __i <= __n; ++__i)
445 {
446 _Tp __prev = __term;
447 __term *= (__n - 2 * (__i - 1) * __x) / __xpn2;
448 if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
449 break;
450 __sum += __term;
451 }
452
453 return std::exp(-__x) * __sum / __xpn;
454 }
455
456
457 /**
458 * @brief Return the exponential integral @f$ E_n(x) @f$.
459 *
460 * The exponential integral is given by
461 * \f[
462 * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
463 * \f]
464 * This is something of an extension.
465 *
466 * @param __n The order of the exponential integral function.
467 * @param __x The argument of the exponential integral function.
468 * @return The exponential integral.
469 */
470 template<typename _Tp>
471 _Tp
472 __expint(const unsigned int __n, const _Tp __x)
473 {
474 // Return NaN on NaN input.
475 if (__isnan(__x))
476 return std::numeric_limits<_Tp>::quiet_NaN();
477 else if (__n <= 1 && __x == _Tp(0))
478 return std::numeric_limits<_Tp>::infinity();
479 else
480 {
481 _Tp __E0 = std::exp(__x) / __x;
482 if (__n == 0)
483 return __E0;
484
485 _Tp __E1 = __expint_E1(__x);
486 if (__n == 1)
487 return __E1;
488
489 if (__x == _Tp(0))
490 return _Tp(1) / static_cast<_Tp>(__n - 1);
491
492 _Tp __En = __expint_En_recursion(__n, __x);
493
494 return __En;
495 }
496 }
497
498
499 /**
6165bbdd 500 * @brief Return the exponential integral @f$ Ei(x) @f$.
7c62b943
BK
501 *
502 * The exponential integral is given by
503 * \f[
504 * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
505 * \f]
506 *
507 * @param __x The argument of the exponential integral function.
508 * @return The exponential integral.
509 */
510 template<typename _Tp>
511 inline _Tp
512 __expint(const _Tp __x)
513 {
514 if (__isnan(__x))
515 return std::numeric_limits<_Tp>::quiet_NaN();
516 else
517 return __expint_Ei(__x);
518 }
519
520 } // namespace std::tr1::__detail
e133ace8 521}
7c62b943
BK
522}
523
e133ace8 524#endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC