]> git.ipfire.org Git - thirdparty/gcc.git/blame - libstdc++-v3/include/tr1/poly_laguerre.tcc
Update Copyright years for files modified in 2011 and/or 2012.
[thirdparty/gcc.git] / libstdc++-v3 / include / tr1 / poly_laguerre.tcc
CommitLineData
b34f60ac 1// Special functions -*- C++ -*-
2
71e45bc2 3// Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
b34f60ac 4// Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library. This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
6bc9506f 9// Free Software Foundation; either version 3, or (at your option)
b34f60ac 10// any later version.
11//
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15// GNU General Public License for more details.
16//
6bc9506f 17// Under Section 7 of GPL version 3, you are granted additional
18// permissions described in the GCC Runtime Library Exception, version
19// 3.1, as published by the Free Software Foundation.
20
21// You should have received a copy of the GNU General Public License and
22// a copy of the GCC Runtime Library Exception along with this program;
23// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24// <http://www.gnu.org/licenses/>.
b34f60ac 25
26/** @file tr1/poly_laguerre.tcc
27 * This is an internal header file, included by other library headers.
5846aeac 28 * Do not attempt to use it directly. @headername{tr1/cmath}
b34f60ac 29 */
30
31//
32// ISO C++ 14882 TR1: 5.2 Special functions
33//
34
35// Written by Edward Smith-Rowland based on:
36// (1) Handbook of Mathematical Functions,
37// Ed. Milton Abramowitz and Irene A. Stegun,
38// Dover Publications,
39// Section 13, pp. 509-510, Section 22 pp. 773-802
40// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
41
c17b0a1c 42#ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
43#define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1
b34f60ac 44
2948dd21 45namespace std _GLIBCXX_VISIBILITY(default)
b34f60ac 46{
c17b0a1c 47namespace tr1
48{
b34f60ac 49 // [5.2] Special functions
50
b34f60ac 51 // Implementation-space details.
b34f60ac 52 namespace __detail
53 {
2948dd21 54 _GLIBCXX_BEGIN_NAMESPACE_VERSION
b34f60ac 55
56 /**
57 * @brief This routine returns the associated Laguerre polynomial
58 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
59 * Abramowitz & Stegun, 13.5.21
60 *
61 * @param __n The order of the Laguerre function.
62 * @param __alpha The degree of the Laguerre function.
63 * @param __x The argument of the Laguerre function.
64 * @return The value of the Laguerre function of order n,
65 * degree @f$ \alpha @f$, and argument x.
66 *
67 * This is from the GNU Scientific Library.
68 */
69 template<typename _Tpa, typename _Tp>
70 _Tp
41456429 71 __poly_laguerre_large_n(const unsigned __n, const _Tpa __alpha1,
b34f60ac 72 const _Tp __x)
73 {
74 const _Tp __a = -_Tp(__n);
41456429 75 const _Tp __b = _Tp(__alpha1) + _Tp(1);
b34f60ac 76 const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
77 const _Tp __cos2th = __x / __eta;
78 const _Tp __sin2th = _Tp(1) - __cos2th;
79 const _Tp __th = std::acos(std::sqrt(__cos2th));
80 const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
81 * __numeric_constants<_Tp>::__pi_2()
82 * __eta * __eta * __cos2th * __sin2th;
83
84#if _GLIBCXX_USE_C99_MATH_TR1
c17b0a1c 85 const _Tp __lg_b = std::tr1::lgamma(_Tp(__n) + __b);
86 const _Tp __lnfact = std::tr1::lgamma(_Tp(__n + 1));
b34f60ac 87#else
88 const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
89 const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
90#endif
91
92 _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
93 * std::log(_Tp(0.25L) * __x * __eta);
94 _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
95 _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
96 + __pre_term1 - __pre_term2;
97 _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
98 _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
99 * (_Tp(2) * __th
100 - std::sin(_Tp(2) * __th))
101 + __numeric_constants<_Tp>::__pi_4());
102 _Tp __ser = __ser_term1 + __ser_term2;
103
104 return std::exp(__lnpre) * __ser;
105 }
106
107
108 /**
109 * @brief Evaluate the polynomial based on the confluent hypergeometric
110 * function in a safe way, with no restriction on the arguments.
111 *
112 * The associated Laguerre function is defined by
113 * @f[
114 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
115 * _1F_1(-n; \alpha + 1; x)
116 * @f]
117 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
118 * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
119 *
120 * This function assumes x != 0.
121 *
122 * This is from the GNU Scientific Library.
123 */
124 template<typename _Tpa, typename _Tp>
125 _Tp
41456429 126 __poly_laguerre_hyperg(const unsigned int __n, const _Tpa __alpha1,
127 const _Tp __x)
b34f60ac 128 {
41456429 129 const _Tp __b = _Tp(__alpha1) + _Tp(1);
b34f60ac 130 const _Tp __mx = -__x;
131 const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
132 : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
133 // Get |x|^n/n!
134 _Tp __tc = _Tp(1);
135 const _Tp __ax = std::abs(__x);
136 for (unsigned int __k = 1; __k <= __n; ++__k)
137 __tc *= (__ax / __k);
138
139 _Tp __term = __tc * __tc_sgn;
140 _Tp __sum = __term;
141 for (int __k = int(__n) - 1; __k >= 0; --__k)
142 {
143 __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
144 * _Tp(__k + 1) / __mx;
145 __sum += __term;
146 }
147
148 return __sum;
149 }
150
151
152 /**
153 * @brief This routine returns the associated Laguerre polynomial
154 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
155 * by recursion.
156 *
157 * The associated Laguerre function is defined by
158 * @f[
159 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
160 * _1F_1(-n; \alpha + 1; x)
161 * @f]
162 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
163 * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
164 *
165 * The associated Laguerre polynomial is defined for integral
166 * @f$ \alpha = m @f$ by:
167 * @f[
168 * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
169 * @f]
170 * where the Laguerre polynomial is defined by:
171 * @f[
172 * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
173 * @f]
174 *
175 * @param __n The order of the Laguerre function.
176 * @param __alpha The degree of the Laguerre function.
177 * @param __x The argument of the Laguerre function.
178 * @return The value of the Laguerre function of order n,
179 * degree @f$ \alpha @f$, and argument x.
180 */
181 template<typename _Tpa, typename _Tp>
182 _Tp
183 __poly_laguerre_recursion(const unsigned int __n,
41456429 184 const _Tpa __alpha1, const _Tp __x)
b34f60ac 185 {
186 // Compute l_0.
187 _Tp __l_0 = _Tp(1);
188 if (__n == 0)
189 return __l_0;
190
191 // Compute l_1^alpha.
41456429 192 _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
b34f60ac 193 if (__n == 1)
194 return __l_1;
195
196 // Compute l_n^alpha by recursion on n.
197 _Tp __l_n2 = __l_0;
198 _Tp __l_n1 = __l_1;
199 _Tp __l_n = _Tp(0);
200 for (unsigned int __nn = 2; __nn <= __n; ++__nn)
201 {
41456429 202 __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
b34f60ac 203 * __l_n1 / _Tp(__nn)
41456429 204 - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
b34f60ac 205 __l_n2 = __l_n1;
206 __l_n1 = __l_n;
207 }
208
209 return __l_n;
210 }
211
212
213 /**
214 * @brief This routine returns the associated Laguerre polynomial
215 * of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
216 *
217 * The associated Laguerre function is defined by
218 * @f[
219 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
220 * _1F_1(-n; \alpha + 1; x)
221 * @f]
222 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
223 * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
224 *
225 * The associated Laguerre polynomial is defined for integral
226 * @f$ \alpha = m @f$ by:
227 * @f[
228 * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
229 * @f]
230 * where the Laguerre polynomial is defined by:
231 * @f[
232 * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
233 * @f]
234 *
235 * @param __n The order of the Laguerre function.
236 * @param __alpha The degree of the Laguerre function.
237 * @param __x The argument of the Laguerre function.
238 * @return The value of the Laguerre function of order n,
239 * degree @f$ \alpha @f$, and argument x.
240 */
241 template<typename _Tpa, typename _Tp>
242 inline _Tp
41456429 243 __poly_laguerre(const unsigned int __n, const _Tpa __alpha1,
b34f60ac 244 const _Tp __x)
245 {
246 if (__x < _Tp(0))
247 std::__throw_domain_error(__N("Negative argument "
248 "in __poly_laguerre."));
249 // Return NaN on NaN input.
250 else if (__isnan(__x))
251 return std::numeric_limits<_Tp>::quiet_NaN();
252 else if (__n == 0)
253 return _Tp(1);
254 else if (__n == 1)
41456429 255 return _Tp(1) + _Tp(__alpha1) - __x;
b34f60ac 256 else if (__x == _Tp(0))
257 {
41456429 258 _Tp __prod = _Tp(__alpha1) + _Tp(1);
b34f60ac 259 for (unsigned int __k = 2; __k <= __n; ++__k)
41456429 260 __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
b34f60ac 261 return __prod;
262 }
41456429 263 else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
264 && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
265 return __poly_laguerre_large_n(__n, __alpha1, __x);
cbf772d6 266 else if (_Tp(__alpha1) >= _Tp(0)
41456429 267 || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
268 return __poly_laguerre_recursion(__n, __alpha1, __x);
b34f60ac 269 else
41456429 270 return __poly_laguerre_hyperg(__n, __alpha1, __x);
b34f60ac 271 }
272
273
274 /**
275 * @brief This routine returns the associated Laguerre polynomial
048ff85f 276 * of order n, degree m: @f$ L_n^m(x) @f$.
b34f60ac 277 *
278 * The associated Laguerre polynomial is defined for integral
279 * @f$ \alpha = m @f$ by:
280 * @f[
281 * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
282 * @f]
283 * where the Laguerre polynomial is defined by:
284 * @f[
285 * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
286 * @f]
287 *
288 * @param __n The order of the Laguerre polynomial.
289 * @param __m The degree of the Laguerre polynomial.
290 * @param __x The argument of the Laguerre polynomial.
291 * @return The value of the associated Laguerre polynomial of order n,
292 * degree m, and argument x.
293 */
294 template<typename _Tp>
295 inline _Tp
296 __assoc_laguerre(const unsigned int __n, const unsigned int __m,
297 const _Tp __x)
298 {
299 return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x);
300 }
301
302
303 /**
048ff85f 304 * @brief This routine returns the Laguerre polynomial
b34f60ac 305 * of order n: @f$ L_n(x) @f$.
306 *
307 * The Laguerre polynomial is defined by:
308 * @f[
309 * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
310 * @f]
311 *
312 * @param __n The order of the Laguerre polynomial.
313 * @param __x The argument of the Laguerre polynomial.
314 * @return The value of the Laguerre polynomial of order n
315 * and argument x.
316 */
317 template<typename _Tp>
318 inline _Tp
319 __laguerre(const unsigned int __n, const _Tp __x)
320 {
321 return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x);
322 }
323
2948dd21 324 _GLIBCXX_END_NAMESPACE_VERSION
b34f60ac 325 } // namespace std::tr1::__detail
c17b0a1c 326}
b34f60ac 327}
328
c17b0a1c 329#endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC