]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blame - libxfs/xfs_alloc_btree.c
xfs: create structure verifier function for short form symlinks
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_alloc_btree.c
CommitLineData
2bd0ea18 1/*
da23017d
NS
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5000d01d 4 *
da23017d
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
2bd0ea18 7 * published by the Free Software Foundation.
5000d01d 8 *
da23017d
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
5000d01d 13 *
da23017d
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
2bd0ea18 17 */
9c799827 18#include "libxfs_priv.h"
b626fb59
DC
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_sb.h"
25#include "xfs_mount.h"
26#include "xfs_btree.h"
27#include "xfs_alloc_btree.h"
28#include "xfs_alloc.h"
29#include "xfs_trace.h"
30#include "xfs_cksum.h"
31#include "xfs_trans.h"
32
2bd0ea18 33
b194c7d8
BN
34STATIC struct xfs_btree_cur *
35xfs_allocbt_dup_cursor(
36 struct xfs_btree_cur *cur)
2bd0ea18 37{
b194c7d8
BN
38 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
39 cur->bc_private.a.agbp, cur->bc_private.a.agno,
40 cur->bc_btnum);
2bd0ea18
NS
41}
42
2bd0ea18 43STATIC void
b194c7d8
BN
44xfs_allocbt_set_root(
45 struct xfs_btree_cur *cur,
46 union xfs_btree_ptr *ptr,
47 int inc)
2bd0ea18 48{
b194c7d8
BN
49 struct xfs_buf *agbp = cur->bc_private.a.agbp;
50 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
51 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
52 int btnum = cur->bc_btnum;
56b2de80 53 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
2bd0ea18 54
b194c7d8 55 ASSERT(ptr->s != 0);
2bd0ea18 56
b194c7d8
BN
57 agf->agf_roots[btnum] = ptr->s;
58 be32_add_cpu(&agf->agf_levels[btnum], inc);
56b2de80
DC
59 pag->pagf_levels[btnum] += inc;
60 xfs_perag_put(pag);
2bd0ea18 61
b194c7d8 62 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
2bd0ea18
NS
63}
64
b194c7d8
BN
65STATIC int
66xfs_allocbt_alloc_block(
67 struct xfs_btree_cur *cur,
68 union xfs_btree_ptr *start,
69 union xfs_btree_ptr *new,
b194c7d8 70 int *stat)
2bd0ea18 71{
b194c7d8
BN
72 int error;
73 xfs_agblock_t bno;
2bd0ea18 74
b194c7d8 75 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2bd0ea18 76
b194c7d8
BN
77 /* Allocate the new block from the freelist. If we can't, give up. */
78 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
79 &bno, 1);
80 if (error) {
81 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2bd0ea18 82 return error;
2bd0ea18 83 }
b194c7d8
BN
84
85 if (bno == NULLAGBLOCK) {
86 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2bd0ea18
NS
87 *stat = 0;
88 return 0;
89 }
2bd0ea18 90
a2ceac1f
DC
91 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
92
b194c7d8
BN
93 xfs_trans_agbtree_delta(cur->bc_tp, 1);
94 new->s = cpu_to_be32(bno);
2bd0ea18 95
b194c7d8 96 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2bd0ea18
NS
97 *stat = 1;
98 return 0;
2bd0ea18
NS
99}
100
b194c7d8
BN
101STATIC int
102xfs_allocbt_free_block(
103 struct xfs_btree_cur *cur,
104 struct xfs_buf *bp)
2bd0ea18 105{
b194c7d8 106 struct xfs_buf *agbp = cur->bc_private.a.agbp;
ff105f75 107 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
b194c7d8
BN
108 xfs_agblock_t bno;
109 int error;
2bd0ea18 110
56b2de80 111 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
b194c7d8 112 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
5e656dbb 113 if (error)
2bd0ea18 114 return error;
2bd0ea18 115
a2ceac1f
DC
116 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
117 XFS_EXTENT_BUSY_SKIP_DISCARD);
b194c7d8 118 xfs_trans_agbtree_delta(cur->bc_tp, -1);
2bd0ea18
NS
119 return 0;
120}
121
122/*
b194c7d8 123 * Update the longest extent in the AGF
2bd0ea18 124 */
b194c7d8
BN
125STATIC void
126xfs_allocbt_update_lastrec(
127 struct xfs_btree_cur *cur,
128 struct xfs_btree_block *block,
129 union xfs_btree_rec *rec,
130 int ptr,
131 int reason)
2bd0ea18 132{
b194c7d8
BN
133 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
134 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
56b2de80 135 struct xfs_perag *pag;
b194c7d8
BN
136 __be32 len;
137 int numrecs;
2bd0ea18 138
b194c7d8
BN
139 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
140
141 switch (reason) {
142 case LASTREC_UPDATE:
143 /*
144 * If this is the last leaf block and it's the last record,
145 * then update the size of the longest extent in the AG.
146 */
147 if (ptr != xfs_btree_get_numrecs(block))
148 return;
149 len = rec->alloc.ar_blockcount;
150 break;
151 case LASTREC_INSREC:
152 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
153 be32_to_cpu(agf->agf_longest))
154 return;
155 len = rec->alloc.ar_blockcount;
156 break;
157 case LASTREC_DELREC:
158 numrecs = xfs_btree_get_numrecs(block);
159 if (ptr <= numrecs)
160 return;
161 ASSERT(ptr == numrecs + 1);
2bd0ea18 162
b194c7d8
BN
163 if (numrecs) {
164 xfs_alloc_rec_t *rrp;
165
b3563c19 166 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
b194c7d8
BN
167 len = rrp->ar_blockcount;
168 } else {
169 len = 0;
170 }
171
172 break;
173 default:
174 ASSERT(0);
175 return;
2bd0ea18 176 }
b194c7d8
BN
177
178 agf->agf_longest = len;
56b2de80
DC
179 pag = xfs_perag_get(cur->bc_mp, seqno);
180 pag->pagf_longest = be32_to_cpu(len);
181 xfs_perag_put(pag);
b194c7d8 182 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
2bd0ea18
NS
183}
184
b194c7d8
BN
185STATIC int
186xfs_allocbt_get_minrecs(
187 struct xfs_btree_cur *cur,
188 int level)
189{
190 return cur->bc_mp->m_alloc_mnr[level != 0];
191}
2bd0ea18 192
b194c7d8
BN
193STATIC int
194xfs_allocbt_get_maxrecs(
195 struct xfs_btree_cur *cur,
196 int level)
2bd0ea18 197{
b194c7d8
BN
198 return cur->bc_mp->m_alloc_mxr[level != 0];
199}
2bd0ea18 200
b194c7d8
BN
201STATIC void
202xfs_allocbt_init_key_from_rec(
203 union xfs_btree_key *key,
204 union xfs_btree_rec *rec)
205{
b194c7d8
BN
206 key->alloc.ar_startblock = rec->alloc.ar_startblock;
207 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
2bd0ea18
NS
208}
209
46a1586d
DW
210STATIC void
211xfs_bnobt_init_high_key_from_rec(
212 union xfs_btree_key *key,
213 union xfs_btree_rec *rec)
214{
215 __u32 x;
216
217 x = be32_to_cpu(rec->alloc.ar_startblock);
218 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
219 key->alloc.ar_startblock = cpu_to_be32(x);
220 key->alloc.ar_blockcount = 0;
221}
222
223STATIC void
224xfs_cntbt_init_high_key_from_rec(
225 union xfs_btree_key *key,
226 union xfs_btree_rec *rec)
227{
228 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
229 key->alloc.ar_startblock = 0;
230}
231
b194c7d8
BN
232STATIC void
233xfs_allocbt_init_rec_from_cur(
234 struct xfs_btree_cur *cur,
235 union xfs_btree_rec *rec)
2bd0ea18 236{
b194c7d8
BN
237 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
238 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
239}
240
241STATIC void
242xfs_allocbt_init_ptr_from_cur(
243 struct xfs_btree_cur *cur,
244 union xfs_btree_ptr *ptr)
245{
246 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
2bd0ea18 247
b194c7d8
BN
248 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
249 ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
250
251 ptr->s = agf->agf_roots[cur->bc_btnum];
252}
253
4a492e72 254STATIC int64_t
46a1586d 255xfs_bnobt_key_diff(
b194c7d8
BN
256 struct xfs_btree_cur *cur,
257 union xfs_btree_key *key)
258{
259 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
260 xfs_alloc_key_t *kp = &key->alloc;
b194c7d8 261
4a492e72 262 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
46a1586d
DW
263}
264
4a492e72 265STATIC int64_t
46a1586d
DW
266xfs_cntbt_key_diff(
267 struct xfs_btree_cur *cur,
268 union xfs_btree_key *key)
269{
270 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
271 xfs_alloc_key_t *kp = &key->alloc;
4a492e72 272 int64_t diff;
b194c7d8 273
4a492e72 274 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
b194c7d8
BN
275 if (diff)
276 return diff;
277
4a492e72 278 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
2bd0ea18
NS
279}
280
4a492e72 281STATIC int64_t
46a1586d
DW
282xfs_bnobt_diff_two_keys(
283 struct xfs_btree_cur *cur,
284 union xfs_btree_key *k1,
285 union xfs_btree_key *k2)
286{
4a492e72 287 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
46a1586d
DW
288 be32_to_cpu(k2->alloc.ar_startblock);
289}
290
4a492e72 291STATIC int64_t
46a1586d
DW
292xfs_cntbt_diff_two_keys(
293 struct xfs_btree_cur *cur,
294 union xfs_btree_key *k1,
295 union xfs_btree_key *k2)
296{
4a492e72 297 int64_t diff;
46a1586d
DW
298
299 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
300 be32_to_cpu(k2->alloc.ar_blockcount);
301 if (diff)
302 return diff;
303
304 return be32_to_cpu(k1->alloc.ar_startblock) -
305 be32_to_cpu(k2->alloc.ar_startblock);
306}
307
bc01119d 308static xfs_failaddr_t
a2ceac1f
DC
309xfs_allocbt_verify(
310 struct xfs_buf *bp)
311{
312 struct xfs_mount *mp = bp->b_target->bt_mount;
313 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
314 struct xfs_perag *pag = bp->b_pag;
bc01119d 315 xfs_failaddr_t fa;
a2ceac1f 316 unsigned int level;
a2ceac1f
DC
317
318 /*
319 * magic number and level verification
320 *
5dfa5cd2
DC
321 * During growfs operations, we can't verify the exact level or owner as
322 * the perag is not fully initialised and hence not attached to the
323 * buffer. In this case, check against the maximum tree depth.
c0adfb03
DC
324 *
325 * Similarly, during log recovery we will have a perag structure
326 * attached, but the agf information will not yet have been initialised
327 * from the on disk AGF. Again, we can only check against maximum limits
328 * in this case.
a2ceac1f
DC
329 */
330 level = be16_to_cpu(block->bb_level);
c0adfb03
DC
331 switch (block->bb_magic) {
332 case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
bc01119d
DW
333 fa = xfs_btree_sblock_v5hdr_verify(bp);
334 if (fa)
335 return fa;
5dfa5cd2 336 /* fall through */
c0adfb03
DC
337 case cpu_to_be32(XFS_ABTB_MAGIC):
338 if (pag && pag->pagf_init) {
5dfa5cd2 339 if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
bc01119d 340 return __this_address;
5dfa5cd2 341 } else if (level >= mp->m_ag_maxlevels)
bc01119d 342 return __this_address;
a2ceac1f 343 break;
c0adfb03 344 case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
bc01119d
DW
345 fa = xfs_btree_sblock_v5hdr_verify(bp);
346 if (fa)
347 return fa;
5dfa5cd2 348 /* fall through */
c0adfb03
DC
349 case cpu_to_be32(XFS_ABTC_MAGIC):
350 if (pag && pag->pagf_init) {
5dfa5cd2 351 if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
bc01119d 352 return __this_address;
5dfa5cd2 353 } else if (level >= mp->m_ag_maxlevels)
bc01119d 354 return __this_address;
a2ceac1f
DC
355 break;
356 default:
bc01119d 357 return __this_address;
a2ceac1f
DC
358 }
359
dbca0167 360 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
a2ceac1f
DC
361}
362
363static void
364xfs_allocbt_read_verify(
365 struct xfs_buf *bp)
366{
1e697959
DW
367 xfs_failaddr_t fa;
368
45922933 369 if (!xfs_btree_sblock_verify_crc(bp))
1e697959
DW
370 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
371 else {
372 fa = xfs_allocbt_verify(bp);
373 if (fa)
374 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
375 }
45922933 376
7e6c95f1 377 if (bp->b_error)
45922933 378 trace_xfs_btree_corrupt(bp, _RET_IP_);
a2ceac1f
DC
379}
380
381static void
382xfs_allocbt_write_verify(
383 struct xfs_buf *bp)
384{
1e697959
DW
385 xfs_failaddr_t fa;
386
387 fa = xfs_allocbt_verify(bp);
388 if (fa) {
5dfa5cd2 389 trace_xfs_btree_corrupt(bp, _RET_IP_);
1e697959 390 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
dbf564d1 391 return;
5dfa5cd2
DC
392 }
393 xfs_btree_sblock_calc_crc(bp);
394
a2ceac1f
DC
395}
396
397const struct xfs_buf_ops xfs_allocbt_buf_ops = {
a3fac935 398 .name = "xfs_allocbt",
a2ceac1f
DC
399 .verify_read = xfs_allocbt_read_verify,
400 .verify_write = xfs_allocbt_write_verify,
401};
402
403
b194c7d8 404STATIC int
46a1586d 405xfs_bnobt_keys_inorder(
b194c7d8
BN
406 struct xfs_btree_cur *cur,
407 union xfs_btree_key *k1,
408 union xfs_btree_key *k2)
409{
46a1586d
DW
410 return be32_to_cpu(k1->alloc.ar_startblock) <
411 be32_to_cpu(k2->alloc.ar_startblock);
b194c7d8 412}
2bd0ea18 413
b194c7d8 414STATIC int
46a1586d 415xfs_bnobt_recs_inorder(
b194c7d8
BN
416 struct xfs_btree_cur *cur,
417 union xfs_btree_rec *r1,
418 union xfs_btree_rec *r2)
419{
46a1586d
DW
420 return be32_to_cpu(r1->alloc.ar_startblock) +
421 be32_to_cpu(r1->alloc.ar_blockcount) <=
422 be32_to_cpu(r2->alloc.ar_startblock);
423}
424
425STATIC int
426xfs_cntbt_keys_inorder(
427 struct xfs_btree_cur *cur,
428 union xfs_btree_key *k1,
429 union xfs_btree_key *k2)
430{
431 return be32_to_cpu(k1->alloc.ar_blockcount) <
432 be32_to_cpu(k2->alloc.ar_blockcount) ||
433 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
434 be32_to_cpu(k1->alloc.ar_startblock) <
435 be32_to_cpu(k2->alloc.ar_startblock));
2bd0ea18
NS
436}
437
46a1586d
DW
438STATIC int
439xfs_cntbt_recs_inorder(
440 struct xfs_btree_cur *cur,
441 union xfs_btree_rec *r1,
442 union xfs_btree_rec *r2)
443{
444 return be32_to_cpu(r1->alloc.ar_blockcount) <
445 be32_to_cpu(r2->alloc.ar_blockcount) ||
446 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
447 be32_to_cpu(r1->alloc.ar_startblock) <
448 be32_to_cpu(r2->alloc.ar_startblock));
449}
46a1586d
DW
450
451static const struct xfs_btree_ops xfs_bnobt_ops = {
b194c7d8
BN
452 .rec_len = sizeof(xfs_alloc_rec_t),
453 .key_len = sizeof(xfs_alloc_key_t),
454
455 .dup_cursor = xfs_allocbt_dup_cursor,
456 .set_root = xfs_allocbt_set_root,
b194c7d8
BN
457 .alloc_block = xfs_allocbt_alloc_block,
458 .free_block = xfs_allocbt_free_block,
459 .update_lastrec = xfs_allocbt_update_lastrec,
460 .get_minrecs = xfs_allocbt_get_minrecs,
461 .get_maxrecs = xfs_allocbt_get_maxrecs,
462 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
46a1586d 463 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
b194c7d8
BN
464 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
465 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
46a1586d 466 .key_diff = xfs_bnobt_key_diff,
a2ceac1f 467 .buf_ops = &xfs_allocbt_buf_ops,
46a1586d 468 .diff_two_keys = xfs_bnobt_diff_two_keys,
46a1586d
DW
469 .keys_inorder = xfs_bnobt_keys_inorder,
470 .recs_inorder = xfs_bnobt_recs_inorder,
46a1586d
DW
471};
472
473static const struct xfs_btree_ops xfs_cntbt_ops = {
474 .rec_len = sizeof(xfs_alloc_rec_t),
475 .key_len = sizeof(xfs_alloc_key_t),
476
477 .dup_cursor = xfs_allocbt_dup_cursor,
478 .set_root = xfs_allocbt_set_root,
479 .alloc_block = xfs_allocbt_alloc_block,
480 .free_block = xfs_allocbt_free_block,
481 .update_lastrec = xfs_allocbt_update_lastrec,
482 .get_minrecs = xfs_allocbt_get_minrecs,
483 .get_maxrecs = xfs_allocbt_get_maxrecs,
484 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
485 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
486 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
487 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
488 .key_diff = xfs_cntbt_key_diff,
489 .buf_ops = &xfs_allocbt_buf_ops,
490 .diff_two_keys = xfs_cntbt_diff_two_keys,
46a1586d
DW
491 .keys_inorder = xfs_cntbt_keys_inorder,
492 .recs_inorder = xfs_cntbt_recs_inorder,
b194c7d8 493};
2bd0ea18
NS
494
495/*
b194c7d8 496 * Allocate a new allocation btree cursor.
2bd0ea18 497 */
b194c7d8
BN
498struct xfs_btree_cur * /* new alloc btree cursor */
499xfs_allocbt_init_cursor(
500 struct xfs_mount *mp, /* file system mount point */
501 struct xfs_trans *tp, /* transaction pointer */
502 struct xfs_buf *agbp, /* buffer for agf structure */
503 xfs_agnumber_t agno, /* allocation group number */
504 xfs_btnum_t btnum) /* btree identifier */
2bd0ea18 505{
b194c7d8
BN
506 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
507 struct xfs_btree_cur *cur;
2bd0ea18 508
b194c7d8 509 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
2bd0ea18 510
762989ef 511 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
2bd0ea18 512
b194c7d8
BN
513 cur->bc_tp = tp;
514 cur->bc_mp = mp;
b194c7d8
BN
515 cur->bc_btnum = btnum;
516 cur->bc_blocklog = mp->m_sb.sb_blocklog;
a2ceac1f
DC
517
518 if (btnum == XFS_BTNUM_CNT) {
46a1586d
DW
519 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
520 cur->bc_ops = &xfs_cntbt_ops;
a2ceac1f 521 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
b194c7d8 522 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
a2ceac1f 523 } else {
46a1586d
DW
524 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
525 cur->bc_ops = &xfs_bnobt_ops;
a2ceac1f
DC
526 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
527 }
b194c7d8
BN
528
529 cur->bc_private.a.agbp = agbp;
530 cur->bc_private.a.agno = agno;
531
5dfa5cd2
DC
532 if (xfs_sb_version_hascrc(&mp->m_sb))
533 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
534
b194c7d8 535 return cur;
2bd0ea18 536}
b3563c19
BN
537
538/*
539 * Calculate number of records in an alloc btree block.
540 */
541int
542xfs_allocbt_maxrecs(
543 struct xfs_mount *mp,
544 int blocklen,
545 int leaf)
546{
547 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
548
549 if (leaf)
550 return blocklen / sizeof(xfs_alloc_rec_t);
551 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
552}