]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blame - libxfs/xfs_btree.c
xfs: detect agfl count corruption and reset agfl
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_btree.c
CommitLineData
2bd0ea18 1/*
da23017d
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5000d01d 4 *
da23017d
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
2bd0ea18 7 * published by the Free Software Foundation.
5000d01d 8 *
da23017d
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
5000d01d 13 *
da23017d
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
2bd0ea18 17 */
9c799827 18#include "libxfs_priv.h"
b626fb59
DC
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_mount.h"
f944d3d0 26#include "xfs_defer.h"
b626fb59
DC
27#include "xfs_inode.h"
28#include "xfs_trans.h"
29#include "xfs_btree.h"
56d3fc2b 30#include "xfs_errortag.h"
b626fb59
DC
31#include "xfs_trace.h"
32#include "xfs_cksum.h"
33#include "xfs_alloc.h"
2bd0ea18
NS
34
35/*
36 * Cursor allocation zone.
37 */
5e656dbb 38kmem_zone_t *xfs_btree_cur_zone;
2bd0ea18
NS
39
40/*
41 * Btree magic numbers.
42 */
4a492e72 43static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
e37838e5 44 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
88ce0792 45 XFS_FIBT_MAGIC, 0 },
e37838e5 46 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
88ce0792
DW
47 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
48 XFS_REFC_CRC_MAGIC }
2bd0ea18 49};
4c6b3277 50
4a492e72 51uint32_t
4c6b3277
ES
52xfs_btree_magic(
53 int crc,
54 xfs_btnum_t btnum)
55{
4a492e72 56 uint32_t magic = xfs_magics[crc][btnum];
4c6b3277
ES
57
58 /* Ensure we asked for crc for crc-only magics. */
59 ASSERT(magic != 0);
60 return magic;
61}
2bd0ea18 62
b47beff8
DW
63/*
64 * Check a long btree block header. Return the address of the failing check,
65 * or NULL if everything is ok.
66 */
67xfs_failaddr_t
68__xfs_btree_check_lblock(
69 struct xfs_btree_cur *cur,
70 struct xfs_btree_block *block,
71 int level,
72 struct xfs_buf *bp)
2bd0ea18 73{
b47beff8 74 struct xfs_mount *mp = cur->bc_mp;
4c6b3277 75 xfs_btnum_t btnum = cur->bc_btnum;
b47beff8 76 int crc = xfs_sb_version_hascrc(&mp->m_sb);
5dfa5cd2 77
4c6b3277 78 if (crc) {
b47beff8
DW
79 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
80 return __this_address;
81 if (block->bb_u.l.bb_blkno !=
82 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
83 return __this_address;
84 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
85 return __this_address;
5dfa5cd2
DC
86 }
87
b47beff8
DW
88 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
89 return __this_address;
90 if (be16_to_cpu(block->bb_level) != level)
91 return __this_address;
92 if (be16_to_cpu(block->bb_numrecs) >
93 cur->bc_ops->get_maxrecs(cur, level))
94 return __this_address;
95 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
96 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
97 level + 1))
98 return __this_address;
99 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
100 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
101 level + 1))
102 return __this_address;
103
104 return NULL;
105}
106
107/* Check a long btree block header. */
246486c1 108static int
b47beff8
DW
109xfs_btree_check_lblock(
110 struct xfs_btree_cur *cur,
111 struct xfs_btree_block *block,
112 int level,
113 struct xfs_buf *bp)
114{
115 struct xfs_mount *mp = cur->bc_mp;
116 xfs_failaddr_t fa;
117
118 fa = __xfs_btree_check_lblock(cur, block, level, bp);
119 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
e2a190dd 120 XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
2bd0ea18 121 if (bp)
56b2de80 122 trace_xfs_btree_corrupt(bp, _RET_IP_);
5dfa5cd2 123 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
12b53197 124 return -EFSCORRUPTED;
2bd0ea18
NS
125 }
126 return 0;
127}
128
b47beff8
DW
129/*
130 * Check a short btree block header. Return the address of the failing check,
131 * or NULL if everything is ok.
132 */
133xfs_failaddr_t
134__xfs_btree_check_sblock(
135 struct xfs_btree_cur *cur,
136 struct xfs_btree_block *block,
137 int level,
138 struct xfs_buf *bp)
2bd0ea18 139{
b47beff8 140 struct xfs_mount *mp = cur->bc_mp;
4c6b3277 141 xfs_btnum_t btnum = cur->bc_btnum;
b47beff8 142 int crc = xfs_sb_version_hascrc(&mp->m_sb);
5dfa5cd2 143
4c6b3277 144 if (crc) {
b47beff8
DW
145 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
146 return __this_address;
147 if (block->bb_u.s.bb_blkno !=
148 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
149 return __this_address;
5dfa5cd2
DC
150 }
151
b47beff8
DW
152 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
153 return __this_address;
154 if (be16_to_cpu(block->bb_level) != level)
155 return __this_address;
156 if (be16_to_cpu(block->bb_numrecs) >
157 cur->bc_ops->get_maxrecs(cur, level))
158 return __this_address;
159 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
160 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
161 level + 1))
162 return __this_address;
163 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
164 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
165 level + 1))
166 return __this_address;
167
168 return NULL;
169}
170
171/* Check a short btree block header. */
172STATIC int
173xfs_btree_check_sblock(
174 struct xfs_btree_cur *cur,
175 struct xfs_btree_block *block,
176 int level,
177 struct xfs_buf *bp)
178{
179 struct xfs_mount *mp = cur->bc_mp;
180 xfs_failaddr_t fa;
181
182 fa = __xfs_btree_check_sblock(cur, block, level, bp);
183 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
e2a190dd 184 XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
2bd0ea18 185 if (bp)
56b2de80 186 trace_xfs_btree_corrupt(bp, _RET_IP_);
5dfa5cd2 187 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
12b53197 188 return -EFSCORRUPTED;
2bd0ea18
NS
189 }
190 return 0;
191}
192
193/*
b194c7d8
BN
194 * Debug routine: check that block header is ok.
195 */
196int
197xfs_btree_check_block(
198 struct xfs_btree_cur *cur, /* btree cursor */
199 struct xfs_btree_block *block, /* generic btree block pointer */
200 int level, /* level of the btree block */
201 struct xfs_buf *bp) /* buffer containing block, if any */
202{
b3563c19
BN
203 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
204 return xfs_btree_check_lblock(cur, block, level, bp);
205 else
206 return xfs_btree_check_sblock(cur, block, level, bp);
b194c7d8
BN
207}
208
d5c546df
DW
209/* Check that this long pointer is valid and points within the fs. */
210bool
b194c7d8 211xfs_btree_check_lptr(
d5c546df
DW
212 struct xfs_btree_cur *cur,
213 xfs_fsblock_t fsbno,
214 int level)
b194c7d8 215{
d5c546df
DW
216 if (level <= 0)
217 return false;
218 return xfs_verify_fsbno(cur->bc_mp, fsbno);
b194c7d8
BN
219}
220
d5c546df
DW
221/* Check that this short pointer is valid and points within the AG. */
222bool
2bd0ea18 223xfs_btree_check_sptr(
d5c546df
DW
224 struct xfs_btree_cur *cur,
225 xfs_agblock_t agbno,
226 int level)
2bd0ea18 227{
d5c546df
DW
228 if (level <= 0)
229 return false;
230 return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
2bd0ea18
NS
231}
232
d5c546df 233#ifdef DEBUG
b194c7d8 234/*
d5c546df
DW
235 * Check that a given (indexed) btree pointer at a certain level of a
236 * btree is valid and doesn't point past where it should.
b194c7d8 237 */
246486c1 238static int
b194c7d8 239xfs_btree_check_ptr(
d5c546df
DW
240 struct xfs_btree_cur *cur,
241 union xfs_btree_ptr *ptr,
242 int index,
243 int level)
b194c7d8
BN
244{
245 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
d5c546df
DW
246 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
247 xfs_btree_check_lptr(cur,
248 be64_to_cpu((&ptr->l)[index]), level));
b194c7d8 249 } else {
d5c546df
DW
250 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
251 xfs_btree_check_sptr(cur,
252 be32_to_cpu((&ptr->s)[index]), level));
b194c7d8 253 }
d5c546df
DW
254
255 return 0;
b194c7d8 256}
870d4cbc 257#endif
b194c7d8 258
5dfa5cd2
DC
259/*
260 * Calculate CRC on the whole btree block and stuff it into the
261 * long-form btree header.
262 *
263 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
eab16f4c 264 * it into the buffer so recovery knows what the last modification was that made
5dfa5cd2
DC
265 * it to disk.
266 */
267void
268xfs_btree_lblock_calc_crc(
269 struct xfs_buf *bp)
270{
271 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
37d086ca 272 struct xfs_buf_log_item *bip = bp->b_log_item;
5dfa5cd2
DC
273
274 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
275 return;
276 if (bip)
277 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
43b5aeed 278 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
5dfa5cd2
DC
279}
280
281bool
282xfs_btree_lblock_verify_crc(
283 struct xfs_buf *bp)
284{
a65d8d29
BF
285 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
286 struct xfs_mount *mp = bp->b_target->bt_mount;
287
4ca4eb89 288 if (xfs_sb_version_hascrc(&mp->m_sb)) {
a65d8d29
BF
289 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
290 return false;
d21ca64d 291 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
a65d8d29 292 }
d21ca64d 293
5dfa5cd2
DC
294 return true;
295}
296
297/*
298 * Calculate CRC on the whole btree block and stuff it into the
299 * short-form btree header.
300 *
301 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
eab16f4c 302 * it into the buffer so recovery knows what the last modification was that made
5dfa5cd2
DC
303 * it to disk.
304 */
305void
306xfs_btree_sblock_calc_crc(
307 struct xfs_buf *bp)
308{
309 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
37d086ca 310 struct xfs_buf_log_item *bip = bp->b_log_item;
5dfa5cd2
DC
311
312 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
313 return;
314 if (bip)
315 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
43b5aeed 316 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
5dfa5cd2
DC
317}
318
319bool
320xfs_btree_sblock_verify_crc(
321 struct xfs_buf *bp)
322{
a65d8d29
BF
323 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
324 struct xfs_mount *mp = bp->b_target->bt_mount;
325
4ca4eb89 326 if (xfs_sb_version_hascrc(&mp->m_sb)) {
a65d8d29 327 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
bc01119d 328 return __this_address;
d21ca64d 329 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
a65d8d29 330 }
d21ca64d 331
5dfa5cd2
DC
332 return true;
333}
334
c261f8c0
CH
335static int
336xfs_btree_free_block(
337 struct xfs_btree_cur *cur,
338 struct xfs_buf *bp)
339{
340 int error;
341
342 error = cur->bc_ops->free_block(cur, bp);
08caf14f
CH
343 if (!error) {
344 xfs_trans_binval(cur->bc_tp, bp);
c261f8c0 345 XFS_BTREE_STATS_INC(cur, free);
08caf14f 346 }
c261f8c0
CH
347 return error;
348}
349
2bd0ea18
NS
350/*
351 * Delete the btree cursor.
352 */
353void
354xfs_btree_del_cursor(
dfc130f3 355 xfs_btree_cur_t *cur, /* btree cursor */
2bd0ea18
NS
356 int error) /* del because of error */
357{
358 int i; /* btree level */
359
360 /*
361 * Clear the buffer pointers, and release the buffers.
362 * If we're doing this in the face of an error, we
363 * need to make sure to inspect all of the entries
364 * in the bc_bufs array for buffers to be unlocked.
365 * This is because some of the btree code works from
366 * level n down to 0, and if we get an error along
367 * the way we won't have initialized all the entries
368 * down to 0.
369 */
370 for (i = 0; i < cur->bc_nlevels; i++) {
371 if (cur->bc_bufs[i])
56b2de80 372 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
2bd0ea18
NS
373 else if (!error)
374 break;
375 }
376 /*
5000d01d 377 * Can't free a bmap cursor without having dealt with the
2bd0ea18
NS
378 * allocated indirect blocks' accounting.
379 */
380 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
381 cur->bc_private.b.allocated == 0);
382 /*
383 * Free the cursor.
384 */
385 kmem_zone_free(xfs_btree_cur_zone, cur);
386}
387
388/*
389 * Duplicate the btree cursor.
390 * Allocate a new one, copy the record, re-get the buffers.
391 */
392int /* error */
393xfs_btree_dup_cursor(
dfc130f3
RC
394 xfs_btree_cur_t *cur, /* input cursor */
395 xfs_btree_cur_t **ncur) /* output cursor */
2bd0ea18
NS
396{
397 xfs_buf_t *bp; /* btree block's buffer pointer */
5000d01d 398 int error; /* error return value */
2bd0ea18
NS
399 int i; /* level number of btree block */
400 xfs_mount_t *mp; /* mount structure for filesystem */
dfc130f3 401 xfs_btree_cur_t *new; /* new cursor value */
2bd0ea18
NS
402 xfs_trans_t *tp; /* transaction pointer, can be NULL */
403
404 tp = cur->bc_tp;
405 mp = cur->bc_mp;
b194c7d8 406
2bd0ea18
NS
407 /*
408 * Allocate a new cursor like the old one.
409 */
b194c7d8
BN
410 new = cur->bc_ops->dup_cursor(cur);
411
2bd0ea18
NS
412 /*
413 * Copy the record currently in the cursor.
414 */
415 new->bc_rec = cur->bc_rec;
b194c7d8 416
2bd0ea18
NS
417 /*
418 * For each level current, re-get the buffer and copy the ptr value.
419 */
420 for (i = 0; i < new->bc_nlevels; i++) {
421 new->bc_ptrs[i] = cur->bc_ptrs[i];
422 new->bc_ra[i] = cur->bc_ra[i];
a2ceac1f
DC
423 bp = cur->bc_bufs[i];
424 if (bp) {
425 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
426 XFS_BUF_ADDR(bp), mp->m_bsize,
427 0, &bp,
428 cur->bc_ops->buf_ops);
429 if (error) {
2bd0ea18
NS
430 xfs_btree_del_cursor(new, error);
431 *ncur = NULL;
432 return error;
433 }
5dfa5cd2
DC
434 }
435 new->bc_bufs[i] = bp;
2bd0ea18 436 }
2bd0ea18
NS
437 *ncur = new;
438 return 0;
439}
440
b194c7d8
BN
441/*
442 * XFS btree block layout and addressing:
443 *
444 * There are two types of blocks in the btree: leaf and non-leaf blocks.
445 *
446 * The leaf record start with a header then followed by records containing
447 * the values. A non-leaf block also starts with the same header, and
448 * then first contains lookup keys followed by an equal number of pointers
449 * to the btree blocks at the previous level.
450 *
451 * +--------+-------+-------+-------+-------+-------+-------+
452 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
453 * +--------+-------+-------+-------+-------+-------+-------+
454 *
455 * +--------+-------+-------+-------+-------+-------+-------+
456 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
457 * +--------+-------+-------+-------+-------+-------+-------+
458 *
459 * The header is called struct xfs_btree_block for reasons better left unknown
460 * and comes in different versions for short (32bit) and long (64bit) block
461 * pointers. The record and key structures are defined by the btree instances
462 * and opaque to the btree core. The block pointers are simple disk endian
463 * integers, available in a short (32bit) and long (64bit) variant.
464 *
465 * The helpers below calculate the offset of a given record, key or pointer
466 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
467 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
468 * inside the btree block is done using indices starting at one, not zero!
13e831e0
DW
469 *
470 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
471 * overlapping intervals. In such a tree, records are still sorted lowest to
472 * highest and indexed by the smallest key value that refers to the record.
473 * However, nodes are different: each pointer has two associated keys -- one
474 * indexing the lowest key available in the block(s) below (the same behavior
475 * as the key in a regular btree) and another indexing the highest key
476 * available in the block(s) below. Because records are /not/ sorted by the
477 * highest key, all leaf block updates require us to compute the highest key
478 * that matches any record in the leaf and to recursively update the high keys
479 * in the nodes going further up in the tree, if necessary. Nodes look like
480 * this:
481 *
482 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
483 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
484 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
485 *
486 * To perform an interval query on an overlapped tree, perform the usual
487 * depth-first search and use the low and high keys to decide if we can skip
488 * that particular node. If a leaf node is reached, return the records that
489 * intersect the interval. Note that an interval query may return numerous
490 * entries. For a non-overlapped tree, simply search for the record associated
491 * with the lowest key and iterate forward until a non-matching record is
492 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
493 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
494 * more detail.
495 *
496 * Why do we care about overlapping intervals? Let's say you have a bunch of
497 * reverse mapping records on a reflink filesystem:
498 *
499 * 1: +- file A startblock B offset C length D -----------+
500 * 2: +- file E startblock F offset G length H --------------+
501 * 3: +- file I startblock F offset J length K --+
502 * 4: +- file L... --+
503 *
504 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
505 * we'd simply increment the length of record 1. But how do we find the record
506 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
507 * record 3 because the keys are ordered first by startblock. An interval
508 * query would return records 1 and 2 because they both overlap (B+D-1), and
509 * from that we can pick out record 1 as the appropriate left neighbor.
510 *
511 * In the non-overlapped case you can do a LE lookup and decrement the cursor
512 * because a record's interval must end before the next record.
b194c7d8
BN
513 */
514
515/*
516 * Return size of the btree block header for this btree instance.
517 */
518static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
519{
e0607266
DC
520 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
521 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
522 return XFS_BTREE_LBLOCK_CRC_LEN;
523 return XFS_BTREE_LBLOCK_LEN;
524 }
5dfa5cd2 525 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
e0607266
DC
526 return XFS_BTREE_SBLOCK_CRC_LEN;
527 return XFS_BTREE_SBLOCK_LEN;
b194c7d8
BN
528}
529
530/*
531 * Return size of btree block pointers for this btree instance.
532 */
533static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
534{
535 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
536 sizeof(__be64) : sizeof(__be32);
537}
538
539/*
540 * Calculate offset of the n-th record in a btree block.
541 */
542STATIC size_t
543xfs_btree_rec_offset(
544 struct xfs_btree_cur *cur,
545 int n)
546{
547 return xfs_btree_block_len(cur) +
548 (n - 1) * cur->bc_ops->rec_len;
549}
550
551/*
552 * Calculate offset of the n-th key in a btree block.
553 */
554STATIC size_t
555xfs_btree_key_offset(
556 struct xfs_btree_cur *cur,
557 int n)
558{
559 return xfs_btree_block_len(cur) +
560 (n - 1) * cur->bc_ops->key_len;
561}
562
13e831e0
DW
563/*
564 * Calculate offset of the n-th high key in a btree block.
565 */
566STATIC size_t
567xfs_btree_high_key_offset(
568 struct xfs_btree_cur *cur,
569 int n)
570{
571 return xfs_btree_block_len(cur) +
572 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
573}
574
b194c7d8
BN
575/*
576 * Calculate offset of the n-th block pointer in a btree block.
577 */
578STATIC size_t
579xfs_btree_ptr_offset(
580 struct xfs_btree_cur *cur,
581 int n,
582 int level)
583{
584 return xfs_btree_block_len(cur) +
585 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
586 (n - 1) * xfs_btree_ptr_len(cur);
587}
588
589/*
590 * Return a pointer to the n-th record in the btree block.
591 */
50bb67d6 592union xfs_btree_rec *
b194c7d8
BN
593xfs_btree_rec_addr(
594 struct xfs_btree_cur *cur,
595 int n,
596 struct xfs_btree_block *block)
597{
598 return (union xfs_btree_rec *)
599 ((char *)block + xfs_btree_rec_offset(cur, n));
600}
601
602/*
603 * Return a pointer to the n-th key in the btree block.
604 */
50bb67d6 605union xfs_btree_key *
b194c7d8
BN
606xfs_btree_key_addr(
607 struct xfs_btree_cur *cur,
608 int n,
609 struct xfs_btree_block *block)
610{
611 return (union xfs_btree_key *)
612 ((char *)block + xfs_btree_key_offset(cur, n));
613}
614
13e831e0
DW
615/*
616 * Return a pointer to the n-th high key in the btree block.
617 */
50bb67d6 618union xfs_btree_key *
13e831e0
DW
619xfs_btree_high_key_addr(
620 struct xfs_btree_cur *cur,
621 int n,
622 struct xfs_btree_block *block)
623{
624 return (union xfs_btree_key *)
625 ((char *)block + xfs_btree_high_key_offset(cur, n));
626}
627
b194c7d8
BN
628/*
629 * Return a pointer to the n-th block pointer in the btree block.
630 */
50bb67d6 631union xfs_btree_ptr *
b194c7d8
BN
632xfs_btree_ptr_addr(
633 struct xfs_btree_cur *cur,
634 int n,
635 struct xfs_btree_block *block)
636{
637 int level = xfs_btree_get_level(block);
638
639 ASSERT(block->bb_level != 0);
640
641 return (union xfs_btree_ptr *)
642 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
643}
644
645/*
10851b18 646 * Get the root block which is stored in the inode.
b194c7d8
BN
647 *
648 * For now this btree implementation assumes the btree root is always
649 * stored in the if_broot field of an inode fork.
650 */
651STATIC struct xfs_btree_block *
652xfs_btree_get_iroot(
dcaff8ac 653 struct xfs_btree_cur *cur)
b194c7d8 654{
dcaff8ac 655 struct xfs_ifork *ifp;
b194c7d8 656
dcaff8ac
KN
657 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
658 return (struct xfs_btree_block *)ifp->if_broot;
b194c7d8
BN
659}
660
5000d01d 661/*
2bd0ea18 662 * Retrieve the block pointer from the cursor at the given level.
b194c7d8 663 * This may be an inode btree root or from a buffer.
2bd0ea18 664 */
50bb67d6 665struct xfs_btree_block * /* generic btree block pointer */
2bd0ea18 666xfs_btree_get_block(
b194c7d8 667 struct xfs_btree_cur *cur, /* btree cursor */
2bd0ea18 668 int level, /* level in btree */
b194c7d8
BN
669 struct xfs_buf **bpp) /* buffer containing the block */
670{
671 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
672 (level == cur->bc_nlevels - 1)) {
673 *bpp = NULL;
674 return xfs_btree_get_iroot(cur);
2bd0ea18 675 }
b194c7d8
BN
676
677 *bpp = cur->bc_bufs[level];
678 return XFS_BUF_TO_BLOCK(*bpp);
2bd0ea18
NS
679}
680
681/*
682 * Get a buffer for the block, return it with no data read.
683 * Long-form addressing.
684 */
685xfs_buf_t * /* buffer for fsbno */
686xfs_btree_get_bufl(
687 xfs_mount_t *mp, /* file system mount point */
688 xfs_trans_t *tp, /* transaction pointer */
689 xfs_fsblock_t fsbno, /* file system block number */
690 uint lock) /* lock flags for get_buf */
691{
2bd0ea18
NS
692 xfs_daddr_t d; /* real disk block address */
693
694 ASSERT(fsbno != NULLFSBLOCK);
695 d = XFS_FSB_TO_DADDR(mp, fsbno);
ff105f75 696 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
2bd0ea18
NS
697}
698
699/*
700 * Get a buffer for the block, return it with no data read.
701 * Short-form addressing.
702 */
703xfs_buf_t * /* buffer for agno/agbno */
704xfs_btree_get_bufs(
705 xfs_mount_t *mp, /* file system mount point */
706 xfs_trans_t *tp, /* transaction pointer */
707 xfs_agnumber_t agno, /* allocation group number */
708 xfs_agblock_t agbno, /* allocation group block number */
709 uint lock) /* lock flags for get_buf */
710{
2bd0ea18
NS
711 xfs_daddr_t d; /* real disk block address */
712
713 ASSERT(agno != NULLAGNUMBER);
714 ASSERT(agbno != NULLAGBLOCK);
715 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
ff105f75 716 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
2bd0ea18
NS
717}
718
2bd0ea18
NS
719/*
720 * Check for the cursor referring to the last block at the given level.
721 */
722int /* 1=is last block, 0=not last block */
723xfs_btree_islastblock(
724 xfs_btree_cur_t *cur, /* btree cursor */
725 int level) /* level to check */
726{
b3563c19 727 struct xfs_btree_block *block; /* generic btree block pointer */
2bd0ea18
NS
728 xfs_buf_t *bp; /* buffer containing block */
729
730 block = xfs_btree_get_block(cur, level, &bp);
731 xfs_btree_check_block(cur, block, level, bp);
b194c7d8 732 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5a35bf2c 733 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
2bd0ea18 734 else
a2ceac1f 735 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
2bd0ea18
NS
736}
737
5e656dbb
BN
738/*
739 * Change the cursor to point to the first record at the given level.
740 * Other levels are unaffected.
741 */
b194c7d8 742STATIC int /* success=1, failure=0 */
5e656dbb
BN
743xfs_btree_firstrec(
744 xfs_btree_cur_t *cur, /* btree cursor */
745 int level) /* level to change */
746{
b3563c19 747 struct xfs_btree_block *block; /* generic btree block pointer */
5e656dbb
BN
748 xfs_buf_t *bp; /* buffer containing block */
749
750 /*
751 * Get the block pointer for this level.
752 */
753 block = xfs_btree_get_block(cur, level, &bp);
c3d6d07a
DW
754 if (xfs_btree_check_block(cur, block, level, bp))
755 return 0;
5e656dbb
BN
756 /*
757 * It's empty, there is no such record.
758 */
b194c7d8 759 if (!block->bb_numrecs)
5e656dbb
BN
760 return 0;
761 /*
762 * Set the ptr value to 1, that's the first record/key.
763 */
764 cur->bc_ptrs[level] = 1;
765 return 1;
766}
767
2bd0ea18
NS
768/*
769 * Change the cursor to point to the last record in the current block
dfc130f3 770 * at the given level. Other levels are unaffected.
2bd0ea18 771 */
b194c7d8 772STATIC int /* success=1, failure=0 */
2bd0ea18
NS
773xfs_btree_lastrec(
774 xfs_btree_cur_t *cur, /* btree cursor */
775 int level) /* level to change */
776{
b3563c19 777 struct xfs_btree_block *block; /* generic btree block pointer */
2bd0ea18
NS
778 xfs_buf_t *bp; /* buffer containing block */
779
780 /*
781 * Get the block pointer for this level.
782 */
783 block = xfs_btree_get_block(cur, level, &bp);
c3d6d07a
DW
784 if (xfs_btree_check_block(cur, block, level, bp))
785 return 0;
2bd0ea18
NS
786 /*
787 * It's empty, there is no such record.
788 */
b194c7d8 789 if (!block->bb_numrecs)
2bd0ea18
NS
790 return 0;
791 /*
792 * Set the ptr value to numrecs, that's the last record/key.
793 */
b194c7d8 794 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
2bd0ea18
NS
795 return 1;
796}
797
798/*
799 * Compute first and last byte offsets for the fields given.
800 * Interprets the offsets table, which contains struct field offsets.
801 */
802void
803xfs_btree_offsets(
4a492e72 804 int64_t fields, /* bitmask of fields */
2bd0ea18
NS
805 const short *offsets, /* table of field offsets */
806 int nbits, /* number of bits to inspect */
807 int *first, /* output: first byte offset */
808 int *last) /* output: last byte offset */
809{
810 int i; /* current bit number */
4a492e72 811 int64_t imask; /* mask for current bit number */
2bd0ea18
NS
812
813 ASSERT(fields != 0);
814 /*
815 * Find the lowest bit, so the first byte offset.
816 */
817 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
818 if (imask & fields) {
819 *first = offsets[i];
820 break;
821 }
822 }
823 /*
824 * Find the highest bit, so the last byte offset.
825 */
826 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
827 if (imask & fields) {
828 *last = offsets[i + 1] - 1;
829 break;
830 }
831 }
832}
833
834/*
835 * Get a buffer for the block, return it read in.
836 * Long-form addressing.
837 */
a2ceac1f 838int
2bd0ea18 839xfs_btree_read_bufl(
a2ceac1f
DC
840 struct xfs_mount *mp, /* file system mount point */
841 struct xfs_trans *tp, /* transaction pointer */
842 xfs_fsblock_t fsbno, /* file system block number */
843 uint lock, /* lock flags for read_buf */
844 struct xfs_buf **bpp, /* buffer for fsbno */
845 int refval, /* ref count value for buffer */
846 const struct xfs_buf_ops *ops)
2bd0ea18 847{
a2ceac1f 848 struct xfs_buf *bp; /* return value */
2bd0ea18 849 xfs_daddr_t d; /* real disk block address */
a2ceac1f 850 int error;
2bd0ea18 851
ecdc52ff 852 if (!xfs_verify_fsbno(mp, fsbno))
e2376544 853 return -EFSCORRUPTED;
2bd0ea18 854 d = XFS_FSB_TO_DADDR(mp, fsbno);
a2ceac1f
DC
855 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
856 mp->m_bsize, lock, &bp, ops);
857 if (error)
2bd0ea18 858 return error;
a2ceac1f
DC
859 if (bp)
860 xfs_buf_set_ref(bp, refval);
2bd0ea18
NS
861 *bpp = bp;
862 return 0;
863}
864
10851b18
DC
865/*
866 * Read-ahead the block, don't wait for it, don't return a buffer.
867 * Long-form addressing.
868 */
869/* ARGSUSED */
870void
871xfs_btree_reada_bufl(
872 struct xfs_mount *mp, /* file system mount point */
873 xfs_fsblock_t fsbno, /* file system block number */
874 xfs_extlen_t count, /* count of filesystem blocks */
875 const struct xfs_buf_ops *ops)
876{
877 xfs_daddr_t d;
878
879 ASSERT(fsbno != NULLFSBLOCK);
880 d = XFS_FSB_TO_DADDR(mp, fsbno);
881 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
882}
883
884/*
885 * Read-ahead the block, don't wait for it, don't return a buffer.
886 * Short-form addressing.
887 */
888/* ARGSUSED */
889void
890xfs_btree_reada_bufs(
891 struct xfs_mount *mp, /* file system mount point */
892 xfs_agnumber_t agno, /* allocation group number */
893 xfs_agblock_t agbno, /* allocation group block number */
894 xfs_extlen_t count, /* count of filesystem blocks */
895 const struct xfs_buf_ops *ops)
896{
897 xfs_daddr_t d;
898
899 ASSERT(agno != NULLAGNUMBER);
900 ASSERT(agbno != NULLAGBLOCK);
901 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
902 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
903}
904
b194c7d8
BN
905STATIC int
906xfs_btree_readahead_lblock(
907 struct xfs_btree_cur *cur,
908 int lr,
909 struct xfs_btree_block *block)
2bd0ea18 910{
2bd0ea18 911 int rval = 0;
5a35bf2c
DC
912 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
913 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
2bd0ea18 914
5a35bf2c 915 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
a2ceac1f
DC
916 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
917 cur->bc_ops->buf_ops);
b194c7d8
BN
918 rval++;
919 }
920
5a35bf2c 921 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
a2ceac1f
DC
922 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
923 cur->bc_ops->buf_ops);
b194c7d8 924 rval++;
2bd0ea18 925 }
b194c7d8 926
2bd0ea18
NS
927 return rval;
928}
929
b194c7d8
BN
930STATIC int
931xfs_btree_readahead_sblock(
932 struct xfs_btree_cur *cur,
933 int lr,
934 struct xfs_btree_block *block)
2bd0ea18 935{
b194c7d8
BN
936 int rval = 0;
937 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
938 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
2bd0ea18 939
b194c7d8
BN
940
941 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
942 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
a2ceac1f 943 left, 1, cur->bc_ops->buf_ops);
b194c7d8
BN
944 rval++;
945 }
946
947 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
948 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
a2ceac1f 949 right, 1, cur->bc_ops->buf_ops);
b194c7d8
BN
950 rval++;
951 }
952
953 return rval;
954}
955
956/*
957 * Read-ahead btree blocks, at the given level.
958 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
959 */
960STATIC int
961xfs_btree_readahead(
962 struct xfs_btree_cur *cur, /* btree cursor */
963 int lev, /* level in btree */
964 int lr) /* left/right bits */
965{
966 struct xfs_btree_block *block;
967
968 /*
969 * No readahead needed if we are at the root level and the
970 * btree root is stored in the inode.
971 */
972 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
973 (lev == cur->bc_nlevels - 1))
974 return 0;
975
976 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
977 return 0;
978
979 cur->bc_ra[lev] |= lr;
980 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
981
982 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
983 return xfs_btree_readahead_lblock(cur, lr, block);
984 return xfs_btree_readahead_sblock(cur, lr, block);
985}
986
9c6ebc42
DC
987STATIC xfs_daddr_t
988xfs_btree_ptr_to_daddr(
989 struct xfs_btree_cur *cur,
990 union xfs_btree_ptr *ptr)
991{
992 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
5a35bf2c 993 ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
9c6ebc42
DC
994
995 return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
996 } else {
997 ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
998 ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
999
1000 return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1001 be32_to_cpu(ptr->s));
1002 }
1003}
1004
1005/*
1006 * Readahead @count btree blocks at the given @ptr location.
1007 *
1008 * We don't need to care about long or short form btrees here as we have a
1009 * method of converting the ptr directly to a daddr available to us.
1010 */
1011STATIC void
1012xfs_btree_readahead_ptr(
1013 struct xfs_btree_cur *cur,
1014 union xfs_btree_ptr *ptr,
1015 xfs_extlen_t count)
1016{
1017 xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
1018 xfs_btree_ptr_to_daddr(cur, ptr),
1019 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1020}
1021
b194c7d8
BN
1022/*
1023 * Set the buffer for level "lev" in the cursor to bp, releasing
1024 * any previous buffer.
1025 */
56b2de80 1026STATIC void
b194c7d8
BN
1027xfs_btree_setbuf(
1028 xfs_btree_cur_t *cur, /* btree cursor */
1029 int lev, /* level in btree */
1030 xfs_buf_t *bp) /* new buffer to set */
1031{
b3563c19 1032 struct xfs_btree_block *b; /* btree block */
b194c7d8 1033
56b2de80
DC
1034 if (cur->bc_bufs[lev])
1035 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
2bd0ea18
NS
1036 cur->bc_bufs[lev] = bp;
1037 cur->bc_ra[lev] = 0;
56b2de80 1038
2bd0ea18 1039 b = XFS_BUF_TO_BLOCK(bp);
b194c7d8 1040 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
5a35bf2c 1041 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
2bd0ea18 1042 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
5a35bf2c 1043 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
2bd0ea18
NS
1044 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1045 } else {
a2ceac1f 1046 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
2bd0ea18 1047 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
a2ceac1f 1048 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
2bd0ea18
NS
1049 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1050 }
1051}
b194c7d8 1052
15c4e6e4 1053bool
b194c7d8
BN
1054xfs_btree_ptr_is_null(
1055 struct xfs_btree_cur *cur,
1056 union xfs_btree_ptr *ptr)
1057{
1058 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5a35bf2c 1059 return ptr->l == cpu_to_be64(NULLFSBLOCK);
b194c7d8 1060 else
a2ceac1f 1061 return ptr->s == cpu_to_be32(NULLAGBLOCK);
b194c7d8
BN
1062}
1063
1064STATIC void
1065xfs_btree_set_ptr_null(
1066 struct xfs_btree_cur *cur,
1067 union xfs_btree_ptr *ptr)
1068{
1069 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5a35bf2c 1070 ptr->l = cpu_to_be64(NULLFSBLOCK);
b194c7d8
BN
1071 else
1072 ptr->s = cpu_to_be32(NULLAGBLOCK);
1073}
1074
1075/*
1076 * Get/set/init sibling pointers
1077 */
15c4e6e4 1078void
b194c7d8
BN
1079xfs_btree_get_sibling(
1080 struct xfs_btree_cur *cur,
1081 struct xfs_btree_block *block,
1082 union xfs_btree_ptr *ptr,
1083 int lr)
1084{
1085 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1086
1087 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1088 if (lr == XFS_BB_RIGHTSIB)
1089 ptr->l = block->bb_u.l.bb_rightsib;
1090 else
1091 ptr->l = block->bb_u.l.bb_leftsib;
1092 } else {
1093 if (lr == XFS_BB_RIGHTSIB)
1094 ptr->s = block->bb_u.s.bb_rightsib;
1095 else
1096 ptr->s = block->bb_u.s.bb_leftsib;
1097 }
1098}
1099
1100STATIC void
1101xfs_btree_set_sibling(
1102 struct xfs_btree_cur *cur,
1103 struct xfs_btree_block *block,
1104 union xfs_btree_ptr *ptr,
1105 int lr)
1106{
1107 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1108
1109 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1110 if (lr == XFS_BB_RIGHTSIB)
1111 block->bb_u.l.bb_rightsib = ptr->l;
1112 else
1113 block->bb_u.l.bb_leftsib = ptr->l;
1114 } else {
1115 if (lr == XFS_BB_RIGHTSIB)
1116 block->bb_u.s.bb_rightsib = ptr->s;
1117 else
1118 block->bb_u.s.bb_leftsib = ptr->s;
1119 }
1120}
1121
5dfa5cd2
DC
1122void
1123xfs_btree_init_block_int(
1124 struct xfs_mount *mp,
1125 struct xfs_btree_block *buf,
1126 xfs_daddr_t blkno,
e394a4b1 1127 xfs_btnum_t btnum,
5dfa5cd2
DC
1128 __u16 level,
1129 __u16 numrecs,
1130 __u64 owner,
1131 unsigned int flags)
1132{
f4241a08 1133 int crc = xfs_sb_version_hascrc(&mp->m_sb);
e394a4b1 1134 __u32 magic = xfs_btree_magic(crc, btnum);
f4241a08 1135
5dfa5cd2
DC
1136 buf->bb_magic = cpu_to_be32(magic);
1137 buf->bb_level = cpu_to_be16(level);
1138 buf->bb_numrecs = cpu_to_be16(numrecs);
1139
1140 if (flags & XFS_BTREE_LONG_PTRS) {
5a35bf2c
DC
1141 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1142 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
f4241a08 1143 if (crc) {
5dfa5cd2
DC
1144 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1145 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
9c4e12fb 1146 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
5dfa5cd2 1147 buf->bb_u.l.bb_pad = 0;
6f9ea829 1148 buf->bb_u.l.bb_lsn = 0;
5dfa5cd2
DC
1149 }
1150 } else {
1151 /* owner is a 32 bit value on short blocks */
1152 __u32 __owner = (__u32)owner;
1153
1154 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1155 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
f4241a08 1156 if (crc) {
5dfa5cd2
DC
1157 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1158 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
9c4e12fb 1159 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
6f9ea829 1160 buf->bb_u.s.bb_lsn = 0;
5dfa5cd2
DC
1161 }
1162 }
1163}
1164
a2ceac1f 1165void
b194c7d8 1166xfs_btree_init_block(
a2ceac1f
DC
1167 struct xfs_mount *mp,
1168 struct xfs_buf *bp,
e394a4b1 1169 xfs_btnum_t btnum,
a2ceac1f
DC
1170 __u16 level,
1171 __u16 numrecs,
5dfa5cd2 1172 __u64 owner,
a2ceac1f 1173 unsigned int flags)
b194c7d8 1174{
5dfa5cd2 1175 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
e394a4b1 1176 btnum, level, numrecs, owner, flags);
b194c7d8
BN
1177}
1178
a2ceac1f
DC
1179STATIC void
1180xfs_btree_init_block_cur(
1181 struct xfs_btree_cur *cur,
5dfa5cd2 1182 struct xfs_buf *bp,
a2ceac1f 1183 int level,
5dfa5cd2 1184 int numrecs)
a2ceac1f 1185{
4c6b3277 1186 __u64 owner;
5dfa5cd2
DC
1187
1188 /*
1189 * we can pull the owner from the cursor right now as the different
1190 * owners align directly with the pointer size of the btree. This may
1191 * change in future, but is safe for current users of the generic btree
1192 * code.
1193 */
1194 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1195 owner = cur->bc_private.b.ip->i_ino;
1196 else
1197 owner = cur->bc_private.a.agno;
1198
1199 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
e394a4b1 1200 cur->bc_btnum, level, numrecs,
5dfa5cd2 1201 owner, cur->bc_flags);
a2ceac1f
DC
1202}
1203
b194c7d8
BN
1204/*
1205 * Return true if ptr is the last record in the btree and
5dfa5cd2 1206 * we need to track updates to this record. The decision
b194c7d8
BN
1207 * will be further refined in the update_lastrec method.
1208 */
1209STATIC int
1210xfs_btree_is_lastrec(
1211 struct xfs_btree_cur *cur,
1212 struct xfs_btree_block *block,
1213 int level)
1214{
1215 union xfs_btree_ptr ptr;
1216
1217 if (level > 0)
1218 return 0;
1219 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1220 return 0;
1221
1222 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1223 if (!xfs_btree_ptr_is_null(cur, &ptr))
1224 return 0;
1225 return 1;
1226}
1227
1228STATIC void
1229xfs_btree_buf_to_ptr(
1230 struct xfs_btree_cur *cur,
1231 struct xfs_buf *bp,
1232 union xfs_btree_ptr *ptr)
1233{
1234 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1235 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1236 XFS_BUF_ADDR(bp)));
1237 else {
56b2de80 1238 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
b194c7d8
BN
1239 XFS_BUF_ADDR(bp)));
1240 }
1241}
1242
b194c7d8
BN
1243STATIC void
1244xfs_btree_set_refs(
1245 struct xfs_btree_cur *cur,
1246 struct xfs_buf *bp)
1247{
1248 switch (cur->bc_btnum) {
1249 case XFS_BTNUM_BNO:
1250 case XFS_BTNUM_CNT:
a2ceac1f 1251 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
b194c7d8
BN
1252 break;
1253 case XFS_BTNUM_INO:
c0a4c227 1254 case XFS_BTNUM_FINO:
a2ceac1f 1255 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
b194c7d8
BN
1256 break;
1257 case XFS_BTNUM_BMAP:
a2ceac1f 1258 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
b194c7d8 1259 break;
b3a96b46
DW
1260 case XFS_BTNUM_RMAP:
1261 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1262 break;
d8079fe0
DW
1263 case XFS_BTNUM_REFC:
1264 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1265 break;
b194c7d8
BN
1266 default:
1267 ASSERT(0);
1268 }
1269}
1270
1271STATIC int
1272xfs_btree_get_buf_block(
1273 struct xfs_btree_cur *cur,
1274 union xfs_btree_ptr *ptr,
1275 int flags,
1276 struct xfs_btree_block **block,
1277 struct xfs_buf **bpp)
1278{
1279 struct xfs_mount *mp = cur->bc_mp;
1280 xfs_daddr_t d;
1281
1282 /* need to sort out how callers deal with failures first */
56b2de80 1283 ASSERT(!(flags & XBF_TRYLOCK));
b194c7d8
BN
1284
1285 d = xfs_btree_ptr_to_daddr(cur, ptr);
1286 *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1287 mp->m_bsize, flags);
1288
a2ceac1f 1289 if (!*bpp)
12b53197 1290 return -ENOMEM;
b194c7d8 1291
a2ceac1f 1292 (*bpp)->b_ops = cur->bc_ops->buf_ops;
b194c7d8
BN
1293 *block = XFS_BUF_TO_BLOCK(*bpp);
1294 return 0;
1295}
1296
1297/*
1298 * Read in the buffer at the given ptr and return the buffer and
1299 * the block pointer within the buffer.
1300 */
1301STATIC int
1302xfs_btree_read_buf_block(
1303 struct xfs_btree_cur *cur,
1304 union xfs_btree_ptr *ptr,
b194c7d8
BN
1305 int flags,
1306 struct xfs_btree_block **block,
1307 struct xfs_buf **bpp)
1308{
1309 struct xfs_mount *mp = cur->bc_mp;
1310 xfs_daddr_t d;
1311 int error;
1312
1313 /* need to sort out how callers deal with failures first */
56b2de80 1314 ASSERT(!(flags & XBF_TRYLOCK));
b194c7d8
BN
1315
1316 d = xfs_btree_ptr_to_daddr(cur, ptr);
1317 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
a2ceac1f
DC
1318 mp->m_bsize, flags, bpp,
1319 cur->bc_ops->buf_ops);
b194c7d8
BN
1320 if (error)
1321 return error;
1322
b194c7d8
BN
1323 xfs_btree_set_refs(cur, *bpp);
1324 *block = XFS_BUF_TO_BLOCK(*bpp);
a2ceac1f 1325 return 0;
b194c7d8
BN
1326}
1327
1328/*
1329 * Copy keys from one btree block to another.
1330 */
1331STATIC void
1332xfs_btree_copy_keys(
1333 struct xfs_btree_cur *cur,
1334 union xfs_btree_key *dst_key,
1335 union xfs_btree_key *src_key,
1336 int numkeys)
1337{
1338 ASSERT(numkeys >= 0);
1339 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1340}
1341
1342/*
1343 * Copy records from one btree block to another.
1344 */
1345STATIC void
1346xfs_btree_copy_recs(
1347 struct xfs_btree_cur *cur,
1348 union xfs_btree_rec *dst_rec,
1349 union xfs_btree_rec *src_rec,
1350 int numrecs)
1351{
1352 ASSERT(numrecs >= 0);
1353 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1354}
1355
1356/*
1357 * Copy block pointers from one btree block to another.
1358 */
1359STATIC void
1360xfs_btree_copy_ptrs(
1361 struct xfs_btree_cur *cur,
1362 union xfs_btree_ptr *dst_ptr,
1363 union xfs_btree_ptr *src_ptr,
1364 int numptrs)
1365{
1366 ASSERT(numptrs >= 0);
1367 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1368}
1369
1370/*
1371 * Shift keys one index left/right inside a single btree block.
1372 */
1373STATIC void
1374xfs_btree_shift_keys(
1375 struct xfs_btree_cur *cur,
1376 union xfs_btree_key *key,
1377 int dir,
1378 int numkeys)
1379{
1380 char *dst_key;
1381
1382 ASSERT(numkeys >= 0);
1383 ASSERT(dir == 1 || dir == -1);
1384
1385 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1386 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1387}
1388
1389/*
1390 * Shift records one index left/right inside a single btree block.
1391 */
1392STATIC void
1393xfs_btree_shift_recs(
1394 struct xfs_btree_cur *cur,
1395 union xfs_btree_rec *rec,
1396 int dir,
1397 int numrecs)
1398{
1399 char *dst_rec;
1400
1401 ASSERT(numrecs >= 0);
1402 ASSERT(dir == 1 || dir == -1);
1403
1404 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1405 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1406}
1407
1408/*
1409 * Shift block pointers one index left/right inside a single btree block.
1410 */
1411STATIC void
1412xfs_btree_shift_ptrs(
1413 struct xfs_btree_cur *cur,
1414 union xfs_btree_ptr *ptr,
1415 int dir,
1416 int numptrs)
1417{
1418 char *dst_ptr;
1419
1420 ASSERT(numptrs >= 0);
1421 ASSERT(dir == 1 || dir == -1);
1422
1423 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1424 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1425}
1426
1427/*
1428 * Log key values from the btree block.
1429 */
1430STATIC void
1431xfs_btree_log_keys(
1432 struct xfs_btree_cur *cur,
1433 struct xfs_buf *bp,
1434 int first,
1435 int last)
1436{
b194c7d8
BN
1437
1438 if (bp) {
bdc16ee5 1439 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
b194c7d8
BN
1440 xfs_trans_log_buf(cur->bc_tp, bp,
1441 xfs_btree_key_offset(cur, first),
1442 xfs_btree_key_offset(cur, last + 1) - 1);
1443 } else {
1444 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1445 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1446 }
b194c7d8
BN
1447}
1448
1449/*
1450 * Log record values from the btree block.
1451 */
1452void
1453xfs_btree_log_recs(
1454 struct xfs_btree_cur *cur,
1455 struct xfs_buf *bp,
1456 int first,
1457 int last)
1458{
b194c7d8 1459
bdc16ee5 1460 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
b194c7d8
BN
1461 xfs_trans_log_buf(cur->bc_tp, bp,
1462 xfs_btree_rec_offset(cur, first),
1463 xfs_btree_rec_offset(cur, last + 1) - 1);
1464
b194c7d8
BN
1465}
1466
1467/*
1468 * Log block pointer fields from a btree block (nonleaf).
1469 */
1470STATIC void
1471xfs_btree_log_ptrs(
1472 struct xfs_btree_cur *cur, /* btree cursor */
1473 struct xfs_buf *bp, /* buffer containing btree block */
1474 int first, /* index of first pointer to log */
1475 int last) /* index of last pointer to log */
1476{
b194c7d8
BN
1477
1478 if (bp) {
1479 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1480 int level = xfs_btree_get_level(block);
1481
bdc16ee5 1482 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
b194c7d8
BN
1483 xfs_trans_log_buf(cur->bc_tp, bp,
1484 xfs_btree_ptr_offset(cur, first, level),
1485 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1486 } else {
1487 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1488 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1489 }
1490
b194c7d8
BN
1491}
1492
1493/*
1494 * Log fields from a btree block header.
1495 */
1496void
1497xfs_btree_log_block(
1498 struct xfs_btree_cur *cur, /* btree cursor */
1499 struct xfs_buf *bp, /* buffer containing btree block */
1500 int fields) /* mask of fields: XFS_BB_... */
1501{
1502 int first; /* first byte offset logged */
1503 int last; /* last byte offset logged */
1504 static const short soffsets[] = { /* table of offsets (short) */
b3563c19
BN
1505 offsetof(struct xfs_btree_block, bb_magic),
1506 offsetof(struct xfs_btree_block, bb_level),
1507 offsetof(struct xfs_btree_block, bb_numrecs),
1508 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1509 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
5dfa5cd2
DC
1510 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1511 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1512 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1513 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1514 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
e0607266 1515 XFS_BTREE_SBLOCK_CRC_LEN
b194c7d8
BN
1516 };
1517 static const short loffsets[] = { /* table of offsets (long) */
b3563c19
BN
1518 offsetof(struct xfs_btree_block, bb_magic),
1519 offsetof(struct xfs_btree_block, bb_level),
1520 offsetof(struct xfs_btree_block, bb_numrecs),
1521 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1522 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
5dfa5cd2
DC
1523 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1524 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1525 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1526 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1527 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1528 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
e0607266 1529 XFS_BTREE_LBLOCK_CRC_LEN
b194c7d8
BN
1530 };
1531
b194c7d8 1532 if (bp) {
5dfa5cd2
DC
1533 int nbits;
1534
1535 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1536 /*
1537 * We don't log the CRC when updating a btree
1538 * block but instead recreate it during log
1539 * recovery. As the log buffers have checksums
10851b18 1540 * of their own this is safe and avoids logging a crc
5dfa5cd2
DC
1541 * update in a lot of places.
1542 */
1543 if (fields == XFS_BB_ALL_BITS)
1544 fields = XFS_BB_ALL_BITS_CRC;
1545 nbits = XFS_BB_NUM_BITS_CRC;
1546 } else {
1547 nbits = XFS_BB_NUM_BITS;
1548 }
b194c7d8
BN
1549 xfs_btree_offsets(fields,
1550 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1551 loffsets : soffsets,
5dfa5cd2 1552 nbits, &first, &last);
bdc16ee5 1553 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
b194c7d8
BN
1554 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1555 } else {
1556 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1557 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1558 }
b194c7d8
BN
1559}
1560
1561/*
1562 * Increment cursor by one record at the level.
1563 * For nonzero levels the leaf-ward information is untouched.
1564 */
1565int /* error */
1566xfs_btree_increment(
1567 struct xfs_btree_cur *cur,
1568 int level,
1569 int *stat) /* success/failure */
1570{
1571 struct xfs_btree_block *block;
1572 union xfs_btree_ptr ptr;
1573 struct xfs_buf *bp;
1574 int error; /* error return value */
1575 int lev;
1576
b194c7d8
BN
1577 ASSERT(level < cur->bc_nlevels);
1578
1579 /* Read-ahead to the right at this level. */
1580 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1581
1582 /* Get a pointer to the btree block. */
1583 block = xfs_btree_get_block(cur, level, &bp);
1584
1585#ifdef DEBUG
1586 error = xfs_btree_check_block(cur, block, level, bp);
1587 if (error)
1588 goto error0;
1589#endif
1590
1591 /* We're done if we remain in the block after the increment. */
1592 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1593 goto out1;
1594
1595 /* Fail if we just went off the right edge of the tree. */
1596 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1597 if (xfs_btree_ptr_is_null(cur, &ptr))
1598 goto out0;
1599
1600 XFS_BTREE_STATS_INC(cur, increment);
1601
1602 /*
1603 * March up the tree incrementing pointers.
1604 * Stop when we don't go off the right edge of a block.
1605 */
1606 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1607 block = xfs_btree_get_block(cur, lev, &bp);
1608
1609#ifdef DEBUG
1610 error = xfs_btree_check_block(cur, block, lev, bp);
1611 if (error)
1612 goto error0;
1613#endif
1614
1615 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1616 break;
1617
1618 /* Read-ahead the right block for the next loop. */
1619 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1620 }
1621
1622 /*
1623 * If we went off the root then we are either seriously
1624 * confused or have the tree root in an inode.
1625 */
1626 if (lev == cur->bc_nlevels) {
1627 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1628 goto out0;
1629 ASSERT(0);
12b53197 1630 error = -EFSCORRUPTED;
b194c7d8
BN
1631 goto error0;
1632 }
1633 ASSERT(lev < cur->bc_nlevels);
1634
1635 /*
1636 * Now walk back down the tree, fixing up the cursor's buffer
1637 * pointers and key numbers.
1638 */
1639 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1640 union xfs_btree_ptr *ptrp;
1641
1642 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
ff105f75
DC
1643 --lev;
1644 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
b194c7d8
BN
1645 if (error)
1646 goto error0;
1647
1648 xfs_btree_setbuf(cur, lev, bp);
1649 cur->bc_ptrs[lev] = 1;
1650 }
1651out1:
b194c7d8
BN
1652 *stat = 1;
1653 return 0;
1654
1655out0:
b194c7d8
BN
1656 *stat = 0;
1657 return 0;
1658
1659error0:
b194c7d8
BN
1660 return error;
1661}
1662
1663/*
1664 * Decrement cursor by one record at the level.
1665 * For nonzero levels the leaf-ward information is untouched.
1666 */
1667int /* error */
1668xfs_btree_decrement(
1669 struct xfs_btree_cur *cur,
1670 int level,
1671 int *stat) /* success/failure */
1672{
1673 struct xfs_btree_block *block;
1674 xfs_buf_t *bp;
1675 int error; /* error return value */
1676 int lev;
1677 union xfs_btree_ptr ptr;
1678
b194c7d8
BN
1679 ASSERT(level < cur->bc_nlevels);
1680
1681 /* Read-ahead to the left at this level. */
1682 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1683
1684 /* We're done if we remain in the block after the decrement. */
1685 if (--cur->bc_ptrs[level] > 0)
1686 goto out1;
1687
1688 /* Get a pointer to the btree block. */
1689 block = xfs_btree_get_block(cur, level, &bp);
1690
1691#ifdef DEBUG
1692 error = xfs_btree_check_block(cur, block, level, bp);
1693 if (error)
1694 goto error0;
1695#endif
1696
1697 /* Fail if we just went off the left edge of the tree. */
1698 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1699 if (xfs_btree_ptr_is_null(cur, &ptr))
1700 goto out0;
1701
1702 XFS_BTREE_STATS_INC(cur, decrement);
1703
1704 /*
1705 * March up the tree decrementing pointers.
1706 * Stop when we don't go off the left edge of a block.
1707 */
1708 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1709 if (--cur->bc_ptrs[lev] > 0)
1710 break;
1711 /* Read-ahead the left block for the next loop. */
1712 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1713 }
1714
1715 /*
1716 * If we went off the root then we are seriously confused.
1717 * or the root of the tree is in an inode.
1718 */
1719 if (lev == cur->bc_nlevels) {
1720 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1721 goto out0;
1722 ASSERT(0);
12b53197 1723 error = -EFSCORRUPTED;
b194c7d8
BN
1724 goto error0;
1725 }
1726 ASSERT(lev < cur->bc_nlevels);
1727
1728 /*
1729 * Now walk back down the tree, fixing up the cursor's buffer
1730 * pointers and key numbers.
1731 */
1732 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1733 union xfs_btree_ptr *ptrp;
1734
1735 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
ff105f75
DC
1736 --lev;
1737 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
b194c7d8
BN
1738 if (error)
1739 goto error0;
1740 xfs_btree_setbuf(cur, lev, bp);
1741 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1742 }
1743out1:
b194c7d8
BN
1744 *stat = 1;
1745 return 0;
1746
1747out0:
b194c7d8
BN
1748 *stat = 0;
1749 return 0;
1750
1751error0:
b194c7d8
BN
1752 return error;
1753}
1754
50bb67d6 1755int
b194c7d8
BN
1756xfs_btree_lookup_get_block(
1757 struct xfs_btree_cur *cur, /* btree cursor */
1758 int level, /* level in the btree */
1759 union xfs_btree_ptr *pp, /* ptr to btree block */
1760 struct xfs_btree_block **blkp) /* return btree block */
1761{
1762 struct xfs_buf *bp; /* buffer pointer for btree block */
1763 int error = 0;
1764
1765 /* special case the root block if in an inode */
1766 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1767 (level == cur->bc_nlevels - 1)) {
1768 *blkp = xfs_btree_get_iroot(cur);
1769 return 0;
1770 }
1771
1772 /*
1773 * If the old buffer at this level for the disk address we are
1774 * looking for re-use it.
1775 *
1776 * Otherwise throw it away and get a new one.
1777 */
1778 bp = cur->bc_bufs[level];
1779 if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1780 *blkp = XFS_BUF_TO_BLOCK(bp);
1781 return 0;
1782 }
1783
ff105f75 1784 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
b194c7d8
BN
1785 if (error)
1786 return error;
1787
312eea24
DW
1788 /* Check the inode owner since the verifiers don't. */
1789 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
c7ba1731 1790 !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
312eea24
DW
1791 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1792 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1793 cur->bc_private.b.ip->i_ino)
1794 goto out_bad;
1795
1796 /* Did we get the level we were looking for? */
1797 if (be16_to_cpu((*blkp)->bb_level) != level)
1798 goto out_bad;
1799
1800 /* Check that internal nodes have at least one record. */
1801 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1802 goto out_bad;
1803
b194c7d8
BN
1804 xfs_btree_setbuf(cur, level, bp);
1805 return 0;
312eea24
DW
1806
1807out_bad:
1808 *blkp = NULL;
1809 xfs_trans_brelse(cur->bc_tp, bp);
1810 return -EFSCORRUPTED;
b194c7d8
BN
1811}
1812
1813/*
1814 * Get current search key. For level 0 we don't actually have a key
1815 * structure so we make one up from the record. For all other levels
1816 * we just return the right key.
1817 */
1818STATIC union xfs_btree_key *
1819xfs_lookup_get_search_key(
1820 struct xfs_btree_cur *cur,
1821 int level,
1822 int keyno,
1823 struct xfs_btree_block *block,
1824 union xfs_btree_key *kp)
1825{
1826 if (level == 0) {
1827 cur->bc_ops->init_key_from_rec(kp,
1828 xfs_btree_rec_addr(cur, keyno, block));
1829 return kp;
1830 }
1831
1832 return xfs_btree_key_addr(cur, keyno, block);
1833}
1834
1835/*
1836 * Lookup the record. The cursor is made to point to it, based on dir.
10851b18 1837 * stat is set to 0 if can't find any such record, 1 for success.
b194c7d8
BN
1838 */
1839int /* error */
1840xfs_btree_lookup(
1841 struct xfs_btree_cur *cur, /* btree cursor */
1842 xfs_lookup_t dir, /* <=, ==, or >= */
1843 int *stat) /* success/failure */
1844{
1845 struct xfs_btree_block *block; /* current btree block */
4a492e72 1846 int64_t diff; /* difference for the current key */
b194c7d8
BN
1847 int error; /* error return value */
1848 int keyno; /* current key number */
1849 int level; /* level in the btree */
1850 union xfs_btree_ptr *pp; /* ptr to btree block */
1851 union xfs_btree_ptr ptr; /* ptr to btree block */
1852
b194c7d8
BN
1853 XFS_BTREE_STATS_INC(cur, lookup);
1854
574b4153
DW
1855 /* No such thing as a zero-level tree. */
1856 if (cur->bc_nlevels == 0)
1857 return -EFSCORRUPTED;
1858
b194c7d8
BN
1859 block = NULL;
1860 keyno = 0;
1861
1862 /* initialise start pointer from cursor */
1863 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1864 pp = &ptr;
1865
1866 /*
1867 * Iterate over each level in the btree, starting at the root.
1868 * For each level above the leaves, find the key we need, based
1869 * on the lookup record, then follow the corresponding block
1870 * pointer down to the next level.
1871 */
1872 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1873 /* Get the block we need to do the lookup on. */
1874 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1875 if (error)
1876 goto error0;
1877
1878 if (diff == 0) {
1879 /*
1880 * If we already had a key match at a higher level, we
1881 * know we need to use the first entry in this block.
1882 */
1883 keyno = 1;
1884 } else {
1885 /* Otherwise search this block. Do a binary search. */
1886
1887 int high; /* high entry number */
1888 int low; /* low entry number */
1889
1890 /* Set low and high entry numbers, 1-based. */
1891 low = 1;
1892 high = xfs_btree_get_numrecs(block);
1893 if (!high) {
1894 /* Block is empty, must be an empty leaf. */
1895 ASSERT(level == 0 && cur->bc_nlevels == 1);
1896
1897 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
b194c7d8
BN
1898 *stat = 0;
1899 return 0;
1900 }
1901
1902 /* Binary search the block. */
1903 while (low <= high) {
1904 union xfs_btree_key key;
1905 union xfs_btree_key *kp;
1906
1907 XFS_BTREE_STATS_INC(cur, compare);
1908
1909 /* keyno is average of low and high. */
1910 keyno = (low + high) >> 1;
1911
1912 /* Get current search key */
1913 kp = xfs_lookup_get_search_key(cur, level,
1914 keyno, block, &key);
1915
1916 /*
1917 * Compute difference to get next direction:
1918 * - less than, move right
1919 * - greater than, move left
1920 * - equal, we're done
1921 */
1922 diff = cur->bc_ops->key_diff(cur, kp);
1923 if (diff < 0)
1924 low = keyno + 1;
1925 else if (diff > 0)
1926 high = keyno - 1;
1927 else
1928 break;
1929 }
1930 }
1931
1932 /*
1933 * If there are more levels, set up for the next level
1934 * by getting the block number and filling in the cursor.
1935 */
1936 if (level > 0) {
1937 /*
1938 * If we moved left, need the previous key number,
1939 * unless there isn't one.
1940 */
1941 if (diff > 0 && --keyno < 1)
1942 keyno = 1;
1943 pp = xfs_btree_ptr_addr(cur, keyno, block);
1944
1945#ifdef DEBUG
1946 error = xfs_btree_check_ptr(cur, pp, 0, level);
1947 if (error)
1948 goto error0;
1949#endif
1950 cur->bc_ptrs[level] = keyno;
1951 }
1952 }
1953
1954 /* Done with the search. See if we need to adjust the results. */
1955 if (dir != XFS_LOOKUP_LE && diff < 0) {
1956 keyno++;
1957 /*
1958 * If ge search and we went off the end of the block, but it's
1959 * not the last block, we're in the wrong block.
1960 */
1961 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1962 if (dir == XFS_LOOKUP_GE &&
1963 keyno > xfs_btree_get_numrecs(block) &&
1964 !xfs_btree_ptr_is_null(cur, &ptr)) {
1965 int i;
1966
1967 cur->bc_ptrs[0] = keyno;
1968 error = xfs_btree_increment(cur, 0, &i);
1969 if (error)
1970 goto error0;
19ebedcf 1971 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
b194c7d8
BN
1972 *stat = 1;
1973 return 0;
1974 }
1975 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1976 keyno--;
1977 cur->bc_ptrs[0] = keyno;
1978
1979 /* Return if we succeeded or not. */
1980 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1981 *stat = 0;
1982 else if (dir != XFS_LOOKUP_EQ || diff == 0)
1983 *stat = 1;
1984 else
1985 *stat = 0;
b194c7d8
BN
1986 return 0;
1987
1988error0:
b194c7d8
BN
1989 return error;
1990}
1991
13e831e0 1992/* Find the high key storage area from a regular key. */
0ad12e7f 1993union xfs_btree_key *
13e831e0
DW
1994xfs_btree_high_key_from_key(
1995 struct xfs_btree_cur *cur,
1996 union xfs_btree_key *key)
1997{
1998 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1999 return (union xfs_btree_key *)((char *)key +
2000 (cur->bc_ops->key_len / 2));
2001}
2002
64dbe047
DW
2003/* Determine the low (and high if overlapped) keys of a leaf block */
2004STATIC void
2005xfs_btree_get_leaf_keys(
13e831e0
DW
2006 struct xfs_btree_cur *cur,
2007 struct xfs_btree_block *block,
2008 union xfs_btree_key *key)
2009{
13e831e0
DW
2010 union xfs_btree_key max_hkey;
2011 union xfs_btree_key hkey;
64dbe047 2012 union xfs_btree_rec *rec;
13e831e0 2013 union xfs_btree_key *high;
64dbe047 2014 int n;
13e831e0 2015
13e831e0
DW
2016 rec = xfs_btree_rec_addr(cur, 1, block);
2017 cur->bc_ops->init_key_from_rec(key, rec);
2018
64dbe047
DW
2019 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2020
2021 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2022 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2023 rec = xfs_btree_rec_addr(cur, n, block);
2024 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2025 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2026 > 0)
2027 max_hkey = hkey;
2028 }
13e831e0 2029
64dbe047
DW
2030 high = xfs_btree_high_key_from_key(cur, key);
2031 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2032 }
13e831e0
DW
2033}
2034
64dbe047
DW
2035/* Determine the low (and high if overlapped) keys of a node block */
2036STATIC void
2037xfs_btree_get_node_keys(
13e831e0
DW
2038 struct xfs_btree_cur *cur,
2039 struct xfs_btree_block *block,
2040 union xfs_btree_key *key)
2041{
13e831e0
DW
2042 union xfs_btree_key *hkey;
2043 union xfs_btree_key *max_hkey;
2044 union xfs_btree_key *high;
64dbe047 2045 int n;
13e831e0 2046
64dbe047
DW
2047 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2048 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2049 cur->bc_ops->key_len / 2);
2050
2051 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2052 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2053 hkey = xfs_btree_high_key_addr(cur, n, block);
2054 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2055 max_hkey = hkey;
2056 }
13e831e0 2057
64dbe047
DW
2058 high = xfs_btree_high_key_from_key(cur, key);
2059 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2060 } else {
2061 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2062 cur->bc_ops->key_len);
13e831e0 2063 }
13e831e0
DW
2064}
2065
a3c9cb10 2066/* Derive the keys for any btree block. */
0ad12e7f 2067void
a3c9cb10
DW
2068xfs_btree_get_keys(
2069 struct xfs_btree_cur *cur,
2070 struct xfs_btree_block *block,
2071 union xfs_btree_key *key)
2072{
2073 if (be16_to_cpu(block->bb_level) == 0)
64dbe047 2074 xfs_btree_get_leaf_keys(cur, block, key);
a3c9cb10 2075 else
64dbe047 2076 xfs_btree_get_node_keys(cur, block, key);
a3c9cb10
DW
2077}
2078
b194c7d8 2079/*
a3c9cb10
DW
2080 * Decide if we need to update the parent keys of a btree block. For
2081 * a standard btree this is only necessary if we're updating the first
13e831e0
DW
2082 * record/key. For an overlapping btree, we must always update the
2083 * keys because the highest key can be in any of the records or keys
2084 * in the block.
b194c7d8 2085 */
a3c9cb10
DW
2086static inline bool
2087xfs_btree_needs_key_update(
2088 struct xfs_btree_cur *cur,
2089 int ptr)
2090{
13e831e0
DW
2091 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2092}
2093
2094/*
2095 * Update the low and high parent keys of the given level, progressing
2096 * towards the root. If force_all is false, stop if the keys for a given
2097 * level do not need updating.
2098 */
2099STATIC int
2100__xfs_btree_updkeys(
2101 struct xfs_btree_cur *cur,
2102 int level,
2103 struct xfs_btree_block *block,
2104 struct xfs_buf *bp0,
2105 bool force_all)
2106{
45413937 2107 union xfs_btree_key key; /* keys from current level */
13e831e0
DW
2108 union xfs_btree_key *lkey; /* keys from the next level up */
2109 union xfs_btree_key *hkey;
2110 union xfs_btree_key *nlkey; /* keys from the next level up */
2111 union xfs_btree_key *nhkey;
2112 struct xfs_buf *bp;
2113 int ptr;
2114
2115 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2116
2117 /* Exit if there aren't any parent levels to update. */
2118 if (level + 1 >= cur->bc_nlevels)
2119 return 0;
2120
2121 trace_xfs_btree_updkeys(cur, level, bp0);
2122
45413937 2123 lkey = &key;
13e831e0
DW
2124 hkey = xfs_btree_high_key_from_key(cur, lkey);
2125 xfs_btree_get_keys(cur, block, lkey);
2126 for (level++; level < cur->bc_nlevels; level++) {
2127#ifdef DEBUG
2128 int error;
2129#endif
2130 block = xfs_btree_get_block(cur, level, &bp);
2131 trace_xfs_btree_updkeys(cur, level, bp);
2132#ifdef DEBUG
2133 error = xfs_btree_check_block(cur, block, level, bp);
97b3ffd0 2134 if (error)
13e831e0 2135 return error;
13e831e0
DW
2136#endif
2137 ptr = cur->bc_ptrs[level];
2138 nlkey = xfs_btree_key_addr(cur, ptr, block);
2139 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2140 if (!force_all &&
2141 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2142 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2143 break;
2144 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2145 xfs_btree_log_keys(cur, bp, ptr, ptr);
2146 if (level + 1 >= cur->bc_nlevels)
2147 break;
64dbe047 2148 xfs_btree_get_node_keys(cur, block, lkey);
13e831e0
DW
2149 }
2150
2151 return 0;
2152}
2153
13e831e0
DW
2154/* Update all the keys from some level in cursor back to the root. */
2155STATIC int
2156xfs_btree_updkeys_force(
2157 struct xfs_btree_cur *cur,
2158 int level)
2159{
2160 struct xfs_buf *bp;
2161 struct xfs_btree_block *block;
2162
2163 block = xfs_btree_get_block(cur, level, &bp);
2164 return __xfs_btree_updkeys(cur, level, block, bp, true);
a3c9cb10
DW
2165}
2166
2167/*
2168 * Update the parent keys of the given level, progressing towards the root.
2169 */
64dbe047 2170STATIC int
a3c9cb10 2171xfs_btree_update_keys(
b194c7d8 2172 struct xfs_btree_cur *cur,
b194c7d8
BN
2173 int level)
2174{
2175 struct xfs_btree_block *block;
2176 struct xfs_buf *bp;
2177 union xfs_btree_key *kp;
a3c9cb10 2178 union xfs_btree_key key;
b194c7d8
BN
2179 int ptr;
2180
64dbe047
DW
2181 ASSERT(level >= 0);
2182
2183 block = xfs_btree_get_block(cur, level, &bp);
2184 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2185 return __xfs_btree_updkeys(cur, level, block, bp, false);
13e831e0 2186
b194c7d8
BN
2187 /*
2188 * Go up the tree from this level toward the root.
2189 * At each level, update the key value to the value input.
2190 * Stop when we reach a level where the cursor isn't pointing
2191 * at the first entry in the block.
2192 */
a3c9cb10
DW
2193 xfs_btree_get_keys(cur, block, &key);
2194 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
b194c7d8
BN
2195#ifdef DEBUG
2196 int error;
2197#endif
2198 block = xfs_btree_get_block(cur, level, &bp);
2199#ifdef DEBUG
2200 error = xfs_btree_check_block(cur, block, level, bp);
97b3ffd0 2201 if (error)
b194c7d8 2202 return error;
b194c7d8
BN
2203#endif
2204 ptr = cur->bc_ptrs[level];
2205 kp = xfs_btree_key_addr(cur, ptr, block);
a3c9cb10 2206 xfs_btree_copy_keys(cur, kp, &key, 1);
b194c7d8
BN
2207 xfs_btree_log_keys(cur, bp, ptr, ptr);
2208 }
2209
b194c7d8
BN
2210 return 0;
2211}
2212
2213/*
2214 * Update the record referred to by cur to the value in the
2215 * given record. This either works (return 0) or gets an
2216 * EFSCORRUPTED error.
2217 */
2218int
2219xfs_btree_update(
2220 struct xfs_btree_cur *cur,
2221 union xfs_btree_rec *rec)
2222{
2223 struct xfs_btree_block *block;
2224 struct xfs_buf *bp;
2225 int error;
2226 int ptr;
2227 union xfs_btree_rec *rp;
2228
b194c7d8
BN
2229 /* Pick up the current block. */
2230 block = xfs_btree_get_block(cur, 0, &bp);
2231
2232#ifdef DEBUG
2233 error = xfs_btree_check_block(cur, block, 0, bp);
2234 if (error)
2235 goto error0;
2236#endif
2237 /* Get the address of the rec to be updated. */
2238 ptr = cur->bc_ptrs[0];
2239 rp = xfs_btree_rec_addr(cur, ptr, block);
2240
2241 /* Fill in the new contents and log them. */
2242 xfs_btree_copy_recs(cur, rp, rec, 1);
2243 xfs_btree_log_recs(cur, bp, ptr, ptr);
2244
2245 /*
2246 * If we are tracking the last record in the tree and
2247 * we are at the far right edge of the tree, update it.
2248 */
2249 if (xfs_btree_is_lastrec(cur, block, 0)) {
2250 cur->bc_ops->update_lastrec(cur, block, rec,
2251 ptr, LASTREC_UPDATE);
2252 }
2253
13e831e0 2254 /* Pass new key value up to our parent. */
a3c9cb10 2255 if (xfs_btree_needs_key_update(cur, ptr)) {
64dbe047 2256 error = xfs_btree_update_keys(cur, 0);
b194c7d8
BN
2257 if (error)
2258 goto error0;
2259 }
2260
b194c7d8
BN
2261 return 0;
2262
2263error0:
b194c7d8
BN
2264 return error;
2265}
2266
2267/*
2268 * Move 1 record left from cur/level if possible.
2269 * Update cur to reflect the new path.
2270 */
2271STATIC int /* error */
2272xfs_btree_lshift(
2273 struct xfs_btree_cur *cur,
2274 int level,
2275 int *stat) /* success/failure */
2276{
b194c7d8
BN
2277 struct xfs_buf *lbp; /* left buffer pointer */
2278 struct xfs_btree_block *left; /* left btree block */
2279 int lrecs; /* left record count */
2280 struct xfs_buf *rbp; /* right buffer pointer */
2281 struct xfs_btree_block *right; /* right btree block */
13e831e0 2282 struct xfs_btree_cur *tcur; /* temporary btree cursor */
b194c7d8
BN
2283 int rrecs; /* right record count */
2284 union xfs_btree_ptr lptr; /* left btree pointer */
2285 union xfs_btree_key *rkp = NULL; /* right btree key */
2286 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2287 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2288 int error; /* error return value */
13e831e0 2289 int i;
b194c7d8 2290
b194c7d8
BN
2291 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2292 level == cur->bc_nlevels - 1)
2293 goto out0;
2294
2295 /* Set up variables for this block as "right". */
2296 right = xfs_btree_get_block(cur, level, &rbp);
2297
2298#ifdef DEBUG
2299 error = xfs_btree_check_block(cur, right, level, rbp);
2300 if (error)
2301 goto error0;
2302#endif
2303
2304 /* If we've got no left sibling then we can't shift an entry left. */
2305 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2306 if (xfs_btree_ptr_is_null(cur, &lptr))
2307 goto out0;
2308
2309 /*
2310 * If the cursor entry is the one that would be moved, don't
2311 * do it... it's too complicated.
2312 */
2313 if (cur->bc_ptrs[level] <= 1)
2314 goto out0;
2315
2316 /* Set up the left neighbor as "left". */
ff105f75 2317 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
b194c7d8
BN
2318 if (error)
2319 goto error0;
2320
2321 /* If it's full, it can't take another entry. */
2322 lrecs = xfs_btree_get_numrecs(left);
2323 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2324 goto out0;
2325
2326 rrecs = xfs_btree_get_numrecs(right);
2327
2328 /*
2329 * We add one entry to the left side and remove one for the right side.
56b2de80 2330 * Account for it here, the changes will be updated on disk and logged
b194c7d8
BN
2331 * later.
2332 */
2333 lrecs++;
2334 rrecs--;
2335
2336 XFS_BTREE_STATS_INC(cur, lshift);
2337 XFS_BTREE_STATS_ADD(cur, moves, 1);
2338
2339 /*
2340 * If non-leaf, copy a key and a ptr to the left block.
2341 * Log the changes to the left block.
2342 */
2343 if (level > 0) {
2344 /* It's a non-leaf. Move keys and pointers. */
2345 union xfs_btree_key *lkp; /* left btree key */
2346 union xfs_btree_ptr *lpp; /* left address pointer */
2347
2348 lkp = xfs_btree_key_addr(cur, lrecs, left);
2349 rkp = xfs_btree_key_addr(cur, 1, right);
2350
2351 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2352 rpp = xfs_btree_ptr_addr(cur, 1, right);
2353#ifdef DEBUG
2354 error = xfs_btree_check_ptr(cur, rpp, 0, level);
2355 if (error)
2356 goto error0;
2357#endif
2358 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2359 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2360
2361 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2362 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2363
2364 ASSERT(cur->bc_ops->keys_inorder(cur,
2365 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2366 } else {
2367 /* It's a leaf. Move records. */
2368 union xfs_btree_rec *lrp; /* left record pointer */
2369
2370 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2371 rrp = xfs_btree_rec_addr(cur, 1, right);
2372
2373 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2374 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2375
2376 ASSERT(cur->bc_ops->recs_inorder(cur,
2377 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2378 }
2379
2380 xfs_btree_set_numrecs(left, lrecs);
2381 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2382
2383 xfs_btree_set_numrecs(right, rrecs);
2384 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2385
2386 /*
2387 * Slide the contents of right down one entry.
2388 */
2389 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2390 if (level > 0) {
2391 /* It's a nonleaf. operate on keys and ptrs */
2392#ifdef DEBUG
2393 int i; /* loop index */
2394
2395 for (i = 0; i < rrecs; i++) {
2396 error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2397 if (error)
2398 goto error0;
2399 }
2400#endif
2401 xfs_btree_shift_keys(cur,
2402 xfs_btree_key_addr(cur, 2, right),
2403 -1, rrecs);
2404 xfs_btree_shift_ptrs(cur,
2405 xfs_btree_ptr_addr(cur, 2, right),
2406 -1, rrecs);
2407
2408 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2409 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2410 } else {
2411 /* It's a leaf. operate on records */
2412 xfs_btree_shift_recs(cur,
2413 xfs_btree_rec_addr(cur, 2, right),
2414 -1, rrecs);
2415 xfs_btree_log_recs(cur, rbp, 1, rrecs);
b194c7d8
BN
2416 }
2417
13e831e0
DW
2418 /*
2419 * Using a temporary cursor, update the parent key values of the
2420 * block on the left.
2421 */
e6358021
DW
2422 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2423 error = xfs_btree_dup_cursor(cur, &tcur);
2424 if (error)
2425 goto error0;
2426 i = xfs_btree_firstrec(tcur, level);
2427 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
13e831e0 2428
e6358021
DW
2429 error = xfs_btree_decrement(tcur, level, &i);
2430 if (error)
2431 goto error1;
13e831e0 2432
e6358021 2433 /* Update the parent high keys of the left block, if needed. */
64dbe047 2434 error = xfs_btree_update_keys(tcur, level);
13e831e0
DW
2435 if (error)
2436 goto error1;
e6358021
DW
2437
2438 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
13e831e0
DW
2439 }
2440
e6358021
DW
2441 /* Update the parent keys of the right block. */
2442 error = xfs_btree_update_keys(cur, level);
2443 if (error)
2444 goto error0;
b194c7d8
BN
2445
2446 /* Slide the cursor value left one. */
2447 cur->bc_ptrs[level]--;
2448
b194c7d8
BN
2449 *stat = 1;
2450 return 0;
2451
2452out0:
b194c7d8
BN
2453 *stat = 0;
2454 return 0;
2455
2456error0:
b194c7d8 2457 return error;
13e831e0
DW
2458
2459error1:
13e831e0
DW
2460 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2461 return error;
b194c7d8
BN
2462}
2463
2464/*
2465 * Move 1 record right from cur/level if possible.
2466 * Update cur to reflect the new path.
2467 */
2468STATIC int /* error */
2469xfs_btree_rshift(
2470 struct xfs_btree_cur *cur,
2471 int level,
2472 int *stat) /* success/failure */
2473{
b194c7d8
BN
2474 struct xfs_buf *lbp; /* left buffer pointer */
2475 struct xfs_btree_block *left; /* left btree block */
2476 struct xfs_buf *rbp; /* right buffer pointer */
2477 struct xfs_btree_block *right; /* right btree block */
2478 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2479 union xfs_btree_ptr rptr; /* right block pointer */
2480 union xfs_btree_key *rkp; /* right btree key */
2481 int rrecs; /* right record count */
2482 int lrecs; /* left record count */
2483 int error; /* error return value */
2484 int i; /* loop counter */
2485
b194c7d8
BN
2486 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2487 (level == cur->bc_nlevels - 1))
2488 goto out0;
2489
2490 /* Set up variables for this block as "left". */
2491 left = xfs_btree_get_block(cur, level, &lbp);
2492
2493#ifdef DEBUG
2494 error = xfs_btree_check_block(cur, left, level, lbp);
2495 if (error)
2496 goto error0;
2497#endif
2498
2499 /* If we've got no right sibling then we can't shift an entry right. */
2500 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2501 if (xfs_btree_ptr_is_null(cur, &rptr))
2502 goto out0;
2503
2504 /*
2505 * If the cursor entry is the one that would be moved, don't
2506 * do it... it's too complicated.
2507 */
2508 lrecs = xfs_btree_get_numrecs(left);
2509 if (cur->bc_ptrs[level] >= lrecs)
2510 goto out0;
2511
2512 /* Set up the right neighbor as "right". */
ff105f75 2513 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
b194c7d8
BN
2514 if (error)
2515 goto error0;
2516
2517 /* If it's full, it can't take another entry. */
2518 rrecs = xfs_btree_get_numrecs(right);
2519 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2520 goto out0;
2521
2522 XFS_BTREE_STATS_INC(cur, rshift);
2523 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2524
2525 /*
2526 * Make a hole at the start of the right neighbor block, then
2527 * copy the last left block entry to the hole.
2528 */
2529 if (level > 0) {
2530 /* It's a nonleaf. make a hole in the keys and ptrs */
2531 union xfs_btree_key *lkp;
2532 union xfs_btree_ptr *lpp;
2533 union xfs_btree_ptr *rpp;
2534
2535 lkp = xfs_btree_key_addr(cur, lrecs, left);
2536 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2537 rkp = xfs_btree_key_addr(cur, 1, right);
2538 rpp = xfs_btree_ptr_addr(cur, 1, right);
2539
2540#ifdef DEBUG
2541 for (i = rrecs - 1; i >= 0; i--) {
2542 error = xfs_btree_check_ptr(cur, rpp, i, level);
2543 if (error)
2544 goto error0;
2545 }
2546#endif
2547
2548 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2549 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2550
2551#ifdef DEBUG
2552 error = xfs_btree_check_ptr(cur, lpp, 0, level);
2553 if (error)
2554 goto error0;
2555#endif
2556
2557 /* Now put the new data in, and log it. */
2558 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2559 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2560
2561 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2562 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2563
2564 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2565 xfs_btree_key_addr(cur, 2, right)));
2566 } else {
2567 /* It's a leaf. make a hole in the records */
2568 union xfs_btree_rec *lrp;
2569 union xfs_btree_rec *rrp;
2570
2571 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2572 rrp = xfs_btree_rec_addr(cur, 1, right);
2573
2574 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2575
2576 /* Now put the new data in, and log it. */
2577 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2578 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
b194c7d8
BN
2579 }
2580
2581 /*
2582 * Decrement and log left's numrecs, bump and log right's numrecs.
2583 */
2584 xfs_btree_set_numrecs(left, --lrecs);
2585 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2586
2587 xfs_btree_set_numrecs(right, ++rrecs);
2588 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2589
2590 /*
2591 * Using a temporary cursor, update the parent key values of the
2592 * block on the right.
2593 */
2594 error = xfs_btree_dup_cursor(cur, &tcur);
2595 if (error)
2596 goto error0;
2597 i = xfs_btree_lastrec(tcur, level);
e6358021 2598 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
b194c7d8
BN
2599
2600 error = xfs_btree_increment(tcur, level, &i);
2601 if (error)
2602 goto error1;
2603
13e831e0
DW
2604 /* Update the parent high keys of the left block, if needed. */
2605 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
64dbe047 2606 error = xfs_btree_update_keys(cur, level);
13e831e0
DW
2607 if (error)
2608 goto error1;
2609 }
2610
a3c9cb10 2611 /* Update the parent keys of the right block. */
64dbe047 2612 error = xfs_btree_update_keys(tcur, level);
b194c7d8
BN
2613 if (error)
2614 goto error1;
2615
2616 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2617
b194c7d8
BN
2618 *stat = 1;
2619 return 0;
2620
2621out0:
b194c7d8
BN
2622 *stat = 0;
2623 return 0;
2624
2625error0:
b194c7d8
BN
2626 return error;
2627
2628error1:
b194c7d8
BN
2629 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2630 return error;
2631}
2632
2633/*
2634 * Split cur/level block in half.
2635 * Return new block number and the key to its first
2636 * record (to be inserted into parent).
2637 */
2638STATIC int /* error */
ff105f75 2639__xfs_btree_split(
b194c7d8
BN
2640 struct xfs_btree_cur *cur,
2641 int level,
2642 union xfs_btree_ptr *ptrp,
2643 union xfs_btree_key *key,
2644 struct xfs_btree_cur **curp,
2645 int *stat) /* success/failure */
2646{
2647 union xfs_btree_ptr lptr; /* left sibling block ptr */
2648 struct xfs_buf *lbp; /* left buffer pointer */
2649 struct xfs_btree_block *left; /* left btree block */
2650 union xfs_btree_ptr rptr; /* right sibling block ptr */
2651 struct xfs_buf *rbp; /* right buffer pointer */
2652 struct xfs_btree_block *right; /* right btree block */
2653 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2654 struct xfs_buf *rrbp; /* right-right buffer pointer */
2655 struct xfs_btree_block *rrblock; /* right-right btree block */
2656 int lrecs;
2657 int rrecs;
2658 int src_index;
2659 int error; /* error return value */
2660#ifdef DEBUG
2661 int i;
2662#endif
2663
b194c7d8
BN
2664 XFS_BTREE_STATS_INC(cur, split);
2665
2666 /* Set up left block (current one). */
2667 left = xfs_btree_get_block(cur, level, &lbp);
2668
2669#ifdef DEBUG
2670 error = xfs_btree_check_block(cur, left, level, lbp);
2671 if (error)
2672 goto error0;
2673#endif
2674
2675 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2676
2677 /* Allocate the new block. If we can't do it, we're toast. Give up. */
ff105f75 2678 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
b194c7d8
BN
2679 if (error)
2680 goto error0;
2681 if (*stat == 0)
2682 goto out0;
2683 XFS_BTREE_STATS_INC(cur, alloc);
2684
2685 /* Set up the new block as "right". */
2686 error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2687 if (error)
2688 goto error0;
2689
2690 /* Fill in the btree header for the new right block. */
5dfa5cd2 2691 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
b194c7d8
BN
2692
2693 /*
2694 * Split the entries between the old and the new block evenly.
2695 * Make sure that if there's an odd number of entries now, that
2696 * each new block will have the same number of entries.
2697 */
2698 lrecs = xfs_btree_get_numrecs(left);
2699 rrecs = lrecs / 2;
2700 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2701 rrecs++;
2702 src_index = (lrecs - rrecs + 1);
2703
2704 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2705
a3c9cb10
DW
2706 /* Adjust numrecs for the later get_*_keys() calls. */
2707 lrecs -= rrecs;
2708 xfs_btree_set_numrecs(left, lrecs);
2709 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2710
b194c7d8
BN
2711 /*
2712 * Copy btree block entries from the left block over to the
2713 * new block, the right. Update the right block and log the
2714 * changes.
2715 */
2716 if (level > 0) {
2717 /* It's a non-leaf. Move keys and pointers. */
2718 union xfs_btree_key *lkp; /* left btree key */
2719 union xfs_btree_ptr *lpp; /* left address pointer */
2720 union xfs_btree_key *rkp; /* right btree key */
2721 union xfs_btree_ptr *rpp; /* right address pointer */
2722
2723 lkp = xfs_btree_key_addr(cur, src_index, left);
2724 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2725 rkp = xfs_btree_key_addr(cur, 1, right);
2726 rpp = xfs_btree_ptr_addr(cur, 1, right);
2727
2728#ifdef DEBUG
2729 for (i = src_index; i < rrecs; i++) {
2730 error = xfs_btree_check_ptr(cur, lpp, i, level);
2731 if (error)
2732 goto error0;
2733 }
2734#endif
2735
a3c9cb10 2736 /* Copy the keys & pointers to the new block. */
b194c7d8
BN
2737 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2738 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2739
2740 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2741 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2742
a3c9cb10 2743 /* Stash the keys of the new block for later insertion. */
64dbe047 2744 xfs_btree_get_node_keys(cur, right, key);
b194c7d8
BN
2745 } else {
2746 /* It's a leaf. Move records. */
2747 union xfs_btree_rec *lrp; /* left record pointer */
2748 union xfs_btree_rec *rrp; /* right record pointer */
2749
2750 lrp = xfs_btree_rec_addr(cur, src_index, left);
2751 rrp = xfs_btree_rec_addr(cur, 1, right);
2752
a3c9cb10 2753 /* Copy records to the new block. */
b194c7d8
BN
2754 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2755 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2756
a3c9cb10 2757 /* Stash the keys of the new block for later insertion. */
64dbe047 2758 xfs_btree_get_leaf_keys(cur, right, key);
b194c7d8
BN
2759 }
2760
b194c7d8
BN
2761 /*
2762 * Find the left block number by looking in the buffer.
a3c9cb10 2763 * Adjust sibling pointers.
b194c7d8
BN
2764 */
2765 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2766 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2767 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2768 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2769
b194c7d8
BN
2770 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2771 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2772
2773 /*
2774 * If there's a block to the new block's right, make that block
2775 * point back to right instead of to left.
2776 */
2777 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
ff105f75 2778 error = xfs_btree_read_buf_block(cur, &rrptr,
b194c7d8
BN
2779 0, &rrblock, &rrbp);
2780 if (error)
2781 goto error0;
2782 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2783 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2784 }
13e831e0
DW
2785
2786 /* Update the parent high keys of the left block, if needed. */
2787 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
64dbe047 2788 error = xfs_btree_update_keys(cur, level);
13e831e0
DW
2789 if (error)
2790 goto error0;
2791 }
2792
b194c7d8
BN
2793 /*
2794 * If the cursor is really in the right block, move it there.
2795 * If it's just pointing past the last entry in left, then we'll
2796 * insert there, so don't change anything in that case.
2797 */
2798 if (cur->bc_ptrs[level] > lrecs + 1) {
2799 xfs_btree_setbuf(cur, level, rbp);
2800 cur->bc_ptrs[level] -= lrecs;
2801 }
2802 /*
2803 * If there are more levels, we'll need another cursor which refers
2804 * the right block, no matter where this cursor was.
2805 */
2806 if (level + 1 < cur->bc_nlevels) {
2807 error = xfs_btree_dup_cursor(cur, curp);
2808 if (error)
2809 goto error0;
2810 (*curp)->bc_ptrs[level + 1]++;
2811 }
2812 *ptrp = rptr;
b194c7d8
BN
2813 *stat = 1;
2814 return 0;
2815out0:
b194c7d8
BN
2816 *stat = 0;
2817 return 0;
2818
2819error0:
b194c7d8
BN
2820 return error;
2821}
2822
19ebedcf 2823#ifdef __KERNEL__
ff105f75
DC
2824struct xfs_btree_split_args {
2825 struct xfs_btree_cur *cur;
2826 int level;
2827 union xfs_btree_ptr *ptrp;
2828 union xfs_btree_key *key;
2829 struct xfs_btree_cur **curp;
2830 int *stat; /* success/failure */
2831 int result;
2832 bool kswapd; /* allocation in kswapd context */
2833 struct completion *done;
2834 struct work_struct work;
2835};
2836
2837/*
2838 * Stack switching interfaces for allocation
2839 */
2840static void
2841xfs_btree_split_worker(
2842 struct work_struct *work)
2843{
2844 struct xfs_btree_split_args *args = container_of(work,
2845 struct xfs_btree_split_args, work);
2846 unsigned long pflags;
b455713b 2847 unsigned long new_pflags = PF_MEMALLOC_NOFS;
ff105f75
DC
2848
2849 /*
2850 * we are in a transaction context here, but may also be doing work
2851 * in kswapd context, and hence we may need to inherit that state
2852 * temporarily to ensure that we don't block waiting for memory reclaim
2853 * in any way.
2854 */
2855 if (args->kswapd)
2856 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2857
2858 current_set_flags_nested(&pflags, new_pflags);
2859
2860 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2861 args->key, args->curp, args->stat);
2862 complete(args->done);
2863
2864 current_restore_flags_nested(&pflags, new_pflags);
2865}
ff105f75
DC
2866
2867/*
2868 * BMBT split requests often come in with little stack to work on. Push
2869 * them off to a worker thread so there is lots of stack to use. For the other
2870 * btree types, just call directly to avoid the context switch overhead here.
2871 */
2872STATIC int /* error */
2873xfs_btree_split(
2874 struct xfs_btree_cur *cur,
2875 int level,
2876 union xfs_btree_ptr *ptrp,
2877 union xfs_btree_key *key,
2878 struct xfs_btree_cur **curp,
2879 int *stat) /* success/failure */
2880{
ff105f75
DC
2881 struct xfs_btree_split_args args;
2882 DECLARE_COMPLETION_ONSTACK(done);
2883
2884 if (cur->bc_btnum != XFS_BTNUM_BMAP)
ff105f75
DC
2885 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2886
ff105f75
DC
2887 args.cur = cur;
2888 args.level = level;
2889 args.ptrp = ptrp;
2890 args.key = key;
2891 args.curp = curp;
2892 args.stat = stat;
2893 args.done = &done;
2894 args.kswapd = current_is_kswapd();
2895 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2896 queue_work(xfs_alloc_wq, &args.work);
2897 wait_for_completion(&done);
2898 destroy_work_on_stack(&args.work);
2899 return args.result;
ff105f75 2900}
19ebedcf
DC
2901#else /* !KERNEL */
2902#define xfs_btree_split __xfs_btree_split
2903#endif
ff105f75
DC
2904
2905
b194c7d8
BN
2906/*
2907 * Copy the old inode root contents into a real block and make the
2908 * broot point to it.
2909 */
2910int /* error */
2911xfs_btree_new_iroot(
2912 struct xfs_btree_cur *cur, /* btree cursor */
2913 int *logflags, /* logging flags for inode */
2914 int *stat) /* return status - 0 fail */
2915{
2916 struct xfs_buf *cbp; /* buffer for cblock */
2917 struct xfs_btree_block *block; /* btree block */
2918 struct xfs_btree_block *cblock; /* child btree block */
2919 union xfs_btree_key *ckp; /* child key pointer */
2920 union xfs_btree_ptr *cpp; /* child ptr pointer */
2921 union xfs_btree_key *kp; /* pointer to btree key */
2922 union xfs_btree_ptr *pp; /* pointer to block addr */
2923 union xfs_btree_ptr nptr; /* new block addr */
2924 int level; /* btree level */
2925 int error; /* error return code */
2926#ifdef DEBUG
2927 int i; /* loop counter */
2928#endif
2929
b194c7d8
BN
2930 XFS_BTREE_STATS_INC(cur, newroot);
2931
2932 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2933
2934 level = cur->bc_nlevels - 1;
2935
2936 block = xfs_btree_get_iroot(cur);
2937 pp = xfs_btree_ptr_addr(cur, 1, block);
2938
2939 /* Allocate the new block. If we can't do it, we're toast. Give up. */
ff105f75 2940 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
b194c7d8
BN
2941 if (error)
2942 goto error0;
97b3ffd0 2943 if (*stat == 0)
b194c7d8 2944 return 0;
97b3ffd0 2945
b194c7d8
BN
2946 XFS_BTREE_STATS_INC(cur, alloc);
2947
2948 /* Copy the root into a real block. */
2949 error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2950 if (error)
2951 goto error0;
2952
77ec5ff4
DC
2953 /*
2954 * we can't just memcpy() the root in for CRC enabled btree blocks.
2955 * In that case have to also ensure the blkno remains correct
2956 */
b194c7d8 2957 memcpy(cblock, block, xfs_btree_block_len(cur));
77ec5ff4
DC
2958 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2959 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2960 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2961 else
2962 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2963 }
b194c7d8
BN
2964
2965 be16_add_cpu(&block->bb_level, 1);
2966 xfs_btree_set_numrecs(block, 1);
2967 cur->bc_nlevels++;
2968 cur->bc_ptrs[level + 1] = 1;
2969
2970 kp = xfs_btree_key_addr(cur, 1, block);
2971 ckp = xfs_btree_key_addr(cur, 1, cblock);
2972 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2973
2974 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2975#ifdef DEBUG
2976 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2977 error = xfs_btree_check_ptr(cur, pp, i, level);
2978 if (error)
2979 goto error0;
2980 }
2981#endif
2982 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2983
2984#ifdef DEBUG
2985 error = xfs_btree_check_ptr(cur, &nptr, 0, level);
2986 if (error)
2987 goto error0;
2988#endif
2989 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2990
2991 xfs_iroot_realloc(cur->bc_private.b.ip,
2992 1 - xfs_btree_get_numrecs(cblock),
2993 cur->bc_private.b.whichfork);
2994
2995 xfs_btree_setbuf(cur, level, cbp);
2996
2997 /*
2998 * Do all this logging at the end so that
2999 * the root is at the right level.
3000 */
3001 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3002 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3003 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3004
3005 *logflags |=
56b2de80 3006 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
b194c7d8 3007 *stat = 1;
b194c7d8
BN
3008 return 0;
3009error0:
b194c7d8
BN
3010 return error;
3011}
3012
3013/*
3014 * Allocate a new root block, fill it in.
3015 */
3016STATIC int /* error */
3017xfs_btree_new_root(
3018 struct xfs_btree_cur *cur, /* btree cursor */
3019 int *stat) /* success/failure */
3020{
3021 struct xfs_btree_block *block; /* one half of the old root block */
3022 struct xfs_buf *bp; /* buffer containing block */
3023 int error; /* error return value */
3024 struct xfs_buf *lbp; /* left buffer pointer */
3025 struct xfs_btree_block *left; /* left btree block */
3026 struct xfs_buf *nbp; /* new (root) buffer */
3027 struct xfs_btree_block *new; /* new (root) btree block */
3028 int nptr; /* new value for key index, 1 or 2 */
3029 struct xfs_buf *rbp; /* right buffer pointer */
3030 struct xfs_btree_block *right; /* right btree block */
3031 union xfs_btree_ptr rptr;
3032 union xfs_btree_ptr lptr;
3033
b194c7d8
BN
3034 XFS_BTREE_STATS_INC(cur, newroot);
3035
3036 /* initialise our start point from the cursor */
3037 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3038
3039 /* Allocate the new block. If we can't do it, we're toast. Give up. */
ff105f75 3040 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
b194c7d8
BN
3041 if (error)
3042 goto error0;
3043 if (*stat == 0)
3044 goto out0;
3045 XFS_BTREE_STATS_INC(cur, alloc);
3046
3047 /* Set up the new block. */
3048 error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3049 if (error)
3050 goto error0;
3051
3052 /* Set the root in the holding structure increasing the level by 1. */
3053 cur->bc_ops->set_root(cur, &lptr, 1);
3054
3055 /*
3056 * At the previous root level there are now two blocks: the old root,
3057 * and the new block generated when it was split. We don't know which
3058 * one the cursor is pointing at, so we set up variables "left" and
3059 * "right" for each case.
3060 */
3061 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3062
3063#ifdef DEBUG
3064 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3065 if (error)
3066 goto error0;
3067#endif
3068
3069 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3070 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3071 /* Our block is left, pick up the right block. */
3072 lbp = bp;
3073 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3074 left = block;
ff105f75 3075 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
b194c7d8
BN
3076 if (error)
3077 goto error0;
3078 bp = rbp;
3079 nptr = 1;
3080 } else {
3081 /* Our block is right, pick up the left block. */
3082 rbp = bp;
3083 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3084 right = block;
3085 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
ff105f75 3086 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
b194c7d8
BN
3087 if (error)
3088 goto error0;
3089 bp = lbp;
3090 nptr = 2;
3091 }
a3c9cb10 3092
b194c7d8 3093 /* Fill in the new block's btree header and log it. */
5dfa5cd2 3094 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
b194c7d8
BN
3095 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3096 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3097 !xfs_btree_ptr_is_null(cur, &rptr));
3098
3099 /* Fill in the key data in the new root. */
3100 if (xfs_btree_get_level(left) > 0) {
a3c9cb10
DW
3101 /*
3102 * Get the keys for the left block's keys and put them directly
3103 * in the parent block. Do the same for the right block.
3104 */
64dbe047 3105 xfs_btree_get_node_keys(cur, left,
a3c9cb10 3106 xfs_btree_key_addr(cur, 1, new));
64dbe047 3107 xfs_btree_get_node_keys(cur, right,
a3c9cb10 3108 xfs_btree_key_addr(cur, 2, new));
b194c7d8 3109 } else {
a3c9cb10
DW
3110 /*
3111 * Get the keys for the left block's records and put them
3112 * directly in the parent block. Do the same for the right
3113 * block.
3114 */
64dbe047 3115 xfs_btree_get_leaf_keys(cur, left,
a3c9cb10 3116 xfs_btree_key_addr(cur, 1, new));
64dbe047 3117 xfs_btree_get_leaf_keys(cur, right,
a3c9cb10 3118 xfs_btree_key_addr(cur, 2, new));
b194c7d8
BN
3119 }
3120 xfs_btree_log_keys(cur, nbp, 1, 2);
3121
3122 /* Fill in the pointer data in the new root. */
3123 xfs_btree_copy_ptrs(cur,
3124 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3125 xfs_btree_copy_ptrs(cur,
3126 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3127 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3128
3129 /* Fix up the cursor. */
3130 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3131 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3132 cur->bc_nlevels++;
b194c7d8
BN
3133 *stat = 1;
3134 return 0;
3135error0:
b194c7d8
BN
3136 return error;
3137out0:
b194c7d8
BN
3138 *stat = 0;
3139 return 0;
3140}
3141
3142STATIC int
3143xfs_btree_make_block_unfull(
3144 struct xfs_btree_cur *cur, /* btree cursor */
3145 int level, /* btree level */
3146 int numrecs,/* # of recs in block */
3147 int *oindex,/* old tree index */
3148 int *index, /* new tree index */
3149 union xfs_btree_ptr *nptr, /* new btree ptr */
3150 struct xfs_btree_cur **ncur, /* new btree cursor */
a3c9cb10 3151 union xfs_btree_key *key, /* key of new block */
b194c7d8
BN
3152 int *stat)
3153{
b194c7d8
BN
3154 int error = 0;
3155
3156 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3157 level == cur->bc_nlevels - 1) {
97b3ffd0 3158 struct xfs_inode *ip = cur->bc_private.b.ip;
b194c7d8
BN
3159
3160 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3161 /* A root block that can be made bigger. */
b194c7d8 3162 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
cff8bf94 3163 *stat = 1;
b194c7d8
BN
3164 } else {
3165 /* A root block that needs replacing */
3166 int logflags = 0;
3167
3168 error = xfs_btree_new_iroot(cur, &logflags, stat);
3169 if (error || *stat == 0)
3170 return error;
3171
3172 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3173 }
3174
3175 return 0;
3176 }
3177
3178 /* First, try shifting an entry to the right neighbor. */
3179 error = xfs_btree_rshift(cur, level, stat);
3180 if (error || *stat)
3181 return error;
3182
3183 /* Next, try shifting an entry to the left neighbor. */
3184 error = xfs_btree_lshift(cur, level, stat);
3185 if (error)
3186 return error;
3187
3188 if (*stat) {
3189 *oindex = *index = cur->bc_ptrs[level];
3190 return 0;
3191 }
3192
3193 /*
3194 * Next, try splitting the current block in half.
3195 *
3196 * If this works we have to re-set our variables because we
3197 * could be in a different block now.
3198 */
d3cd7a27 3199 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
b194c7d8
BN
3200 if (error || *stat == 0)
3201 return error;
3202
3203
3204 *index = cur->bc_ptrs[level];
b194c7d8
BN
3205 return 0;
3206}
3207
3208/*
3209 * Insert one record/level. Return information to the caller
3210 * allowing the next level up to proceed if necessary.
3211 */
3212STATIC int
3213xfs_btree_insrec(
3214 struct xfs_btree_cur *cur, /* btree cursor */
3215 int level, /* level to insert record at */
3216 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
d3cd7a27
DW
3217 union xfs_btree_rec *rec, /* record to insert */
3218 union xfs_btree_key *key, /* i/o: block key for ptrp */
b194c7d8
BN
3219 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3220 int *stat) /* success/failure */
3221{
3222 struct xfs_btree_block *block; /* btree block */
3223 struct xfs_buf *bp; /* buffer for block */
b194c7d8
BN
3224 union xfs_btree_ptr nptr; /* new block ptr */
3225 struct xfs_btree_cur *ncur; /* new btree cursor */
45413937 3226 union xfs_btree_key nkey; /* new block key */
13e831e0 3227 union xfs_btree_key *lkey;
b194c7d8
BN
3228 int optr; /* old key/record index */
3229 int ptr; /* key/record index */
3230 int numrecs;/* number of records */
3231 int error; /* error return value */
3232#ifdef DEBUG
3233 int i;
3234#endif
13e831e0 3235 xfs_daddr_t old_bn;
b194c7d8 3236
b194c7d8 3237 ncur = NULL;
45413937 3238 lkey = &nkey;
b194c7d8
BN
3239
3240 /*
3241 * If we have an external root pointer, and we've made it to the
3242 * root level, allocate a new root block and we're done.
3243 */
3244 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3245 (level >= cur->bc_nlevels)) {
3246 error = xfs_btree_new_root(cur, stat);
3247 xfs_btree_set_ptr_null(cur, ptrp);
3248
b194c7d8
BN
3249 return error;
3250 }
3251
3252 /* If we're off the left edge, return failure. */
3253 ptr = cur->bc_ptrs[level];
3254 if (ptr == 0) {
b194c7d8
BN
3255 *stat = 0;
3256 return 0;
3257 }
3258
b194c7d8
BN
3259 optr = ptr;
3260
3261 XFS_BTREE_STATS_INC(cur, insrec);
3262
3263 /* Get pointers to the btree buffer and block. */
3264 block = xfs_btree_get_block(cur, level, &bp);
13e831e0 3265 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
b194c7d8
BN
3266 numrecs = xfs_btree_get_numrecs(block);
3267
3268#ifdef DEBUG
3269 error = xfs_btree_check_block(cur, block, level, bp);
3270 if (error)
3271 goto error0;
3272
3273 /* Check that the new entry is being inserted in the right place. */
3274 if (ptr <= numrecs) {
3275 if (level == 0) {
d3cd7a27 3276 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
b194c7d8
BN
3277 xfs_btree_rec_addr(cur, ptr, block)));
3278 } else {
d3cd7a27 3279 ASSERT(cur->bc_ops->keys_inorder(cur, key,
b194c7d8
BN
3280 xfs_btree_key_addr(cur, ptr, block)));
3281 }
3282 }
3283#endif
3284
3285 /*
3286 * If the block is full, we can't insert the new entry until we
3287 * make the block un-full.
3288 */
3289 xfs_btree_set_ptr_null(cur, &nptr);
3290 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3291 error = xfs_btree_make_block_unfull(cur, level, numrecs,
13e831e0 3292 &optr, &ptr, &nptr, &ncur, lkey, stat);
b194c7d8
BN
3293 if (error || *stat == 0)
3294 goto error0;
3295 }
3296
3297 /*
3298 * The current block may have changed if the block was
3299 * previously full and we have just made space in it.
3300 */
3301 block = xfs_btree_get_block(cur, level, &bp);
3302 numrecs = xfs_btree_get_numrecs(block);
3303
3304#ifdef DEBUG
3305 error = xfs_btree_check_block(cur, block, level, bp);
3306 if (error)
3307 return error;
3308#endif
3309
3310 /*
3311 * At this point we know there's room for our new entry in the block
3312 * we're pointing at.
3313 */
3314 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3315
3316 if (level > 0) {
3317 /* It's a nonleaf. make a hole in the keys and ptrs */
3318 union xfs_btree_key *kp;
3319 union xfs_btree_ptr *pp;
3320
3321 kp = xfs_btree_key_addr(cur, ptr, block);
3322 pp = xfs_btree_ptr_addr(cur, ptr, block);
3323
3324#ifdef DEBUG
3325 for (i = numrecs - ptr; i >= 0; i--) {
3326 error = xfs_btree_check_ptr(cur, pp, i, level);
3327 if (error)
3328 return error;
3329 }
3330#endif
3331
3332 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3333 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3334
3335#ifdef DEBUG
3336 error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3337 if (error)
3338 goto error0;
3339#endif
3340
3341 /* Now put the new data in, bump numrecs and log it. */
d3cd7a27 3342 xfs_btree_copy_keys(cur, kp, key, 1);
b194c7d8
BN
3343 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3344 numrecs++;
3345 xfs_btree_set_numrecs(block, numrecs);
3346 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3347 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3348#ifdef DEBUG
3349 if (ptr < numrecs) {
3350 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3351 xfs_btree_key_addr(cur, ptr + 1, block)));
3352 }
3353#endif
3354 } else {
3355 /* It's a leaf. make a hole in the records */
3356 union xfs_btree_rec *rp;
3357
3358 rp = xfs_btree_rec_addr(cur, ptr, block);
3359
3360 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3361
3362 /* Now put the new data in, bump numrecs and log it. */
d3cd7a27 3363 xfs_btree_copy_recs(cur, rp, rec, 1);
b194c7d8
BN
3364 xfs_btree_set_numrecs(block, ++numrecs);
3365 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3366#ifdef DEBUG
3367 if (ptr < numrecs) {
3368 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3369 xfs_btree_rec_addr(cur, ptr + 1, block)));
3370 }
3371#endif
3372 }
3373
3374 /* Log the new number of records in the btree header. */
3375 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3376
13e831e0
DW
3377 /*
3378 * If we just inserted into a new tree block, we have to
3379 * recalculate nkey here because nkey is out of date.
3380 *
3381 * Otherwise we're just updating an existing block (having shoved
3382 * some records into the new tree block), so use the regular key
3383 * update mechanism.
3384 */
3385 if (bp && bp->b_bn != old_bn) {
3386 xfs_btree_get_keys(cur, block, lkey);
3387 } else if (xfs_btree_needs_key_update(cur, optr)) {
64dbe047 3388 error = xfs_btree_update_keys(cur, level);
b194c7d8
BN
3389 if (error)
3390 goto error0;
3391 }
3392
3393 /*
3394 * If we are tracking the last record in the tree and
3395 * we are at the far right edge of the tree, update it.
3396 */
3397 if (xfs_btree_is_lastrec(cur, block, level)) {
d3cd7a27 3398 cur->bc_ops->update_lastrec(cur, block, rec,
b194c7d8
BN
3399 ptr, LASTREC_INSREC);
3400 }
3401
3402 /*
3403 * Return the new block number, if any.
3404 * If there is one, give back a record value and a cursor too.
3405 */
3406 *ptrp = nptr;
3407 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
13e831e0 3408 xfs_btree_copy_keys(cur, key, lkey, 1);
b194c7d8
BN
3409 *curp = ncur;
3410 }
3411
b194c7d8
BN
3412 *stat = 1;
3413 return 0;
3414
3415error0:
b194c7d8
BN
3416 return error;
3417}
3418
3419/*
3420 * Insert the record at the point referenced by cur.
3421 *
3422 * A multi-level split of the tree on insert will invalidate the original
3423 * cursor. All callers of this function should assume that the cursor is
3424 * no longer valid and revalidate it.
3425 */
3426int
3427xfs_btree_insert(
3428 struct xfs_btree_cur *cur,
3429 int *stat)
3430{
3431 int error; /* error return value */
3432 int i; /* result value, 0 for failure */
3433 int level; /* current level number in btree */
3434 union xfs_btree_ptr nptr; /* new block number (split result) */
3435 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3436 struct xfs_btree_cur *pcur; /* previous level's cursor */
45413937 3437 union xfs_btree_key bkey; /* key of block to insert */
13e831e0 3438 union xfs_btree_key *key;
b194c7d8
BN
3439 union xfs_btree_rec rec; /* record to insert */
3440
3441 level = 0;
3442 ncur = NULL;
3443 pcur = cur;
45413937 3444 key = &bkey;
b194c7d8
BN
3445
3446 xfs_btree_set_ptr_null(cur, &nptr);
d3cd7a27
DW
3447
3448 /* Make a key out of the record data to be inserted, and save it. */
b194c7d8 3449 cur->bc_ops->init_rec_from_cur(cur, &rec);
13e831e0 3450 cur->bc_ops->init_key_from_rec(key, &rec);
b194c7d8
BN
3451
3452 /*
3453 * Loop going up the tree, starting at the leaf level.
3454 * Stop when we don't get a split block, that must mean that
3455 * the insert is finished with this level.
3456 */
3457 do {
3458 /*
3459 * Insert nrec/nptr into this level of the tree.
3460 * Note if we fail, nptr will be null.
3461 */
13e831e0 3462 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
d3cd7a27 3463 &ncur, &i);
b194c7d8
BN
3464 if (error) {
3465 if (pcur != cur)
3466 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3467 goto error0;
3468 }
3469
19ebedcf 3470 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
b194c7d8
BN
3471 level++;
3472
3473 /*
3474 * See if the cursor we just used is trash.
3475 * Can't trash the caller's cursor, but otherwise we should
3476 * if ncur is a new cursor or we're about to be done.
3477 */
3478 if (pcur != cur &&
3479 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3480 /* Save the state from the cursor before we trash it */
3481 if (cur->bc_ops->update_cursor)
3482 cur->bc_ops->update_cursor(pcur, cur);
3483 cur->bc_nlevels = pcur->bc_nlevels;
3484 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3485 }
3486 /* If we got a new cursor, switch to it. */
3487 if (ncur) {
3488 pcur = ncur;
3489 ncur = NULL;
3490 }
3491 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3492
b194c7d8
BN
3493 *stat = i;
3494 return 0;
3495error0:
b194c7d8
BN
3496 return error;
3497}
3498
3499/*
3500 * Try to merge a non-leaf block back into the inode root.
3501 *
3502 * Note: the killroot names comes from the fact that we're effectively
3503 * killing the old root block. But because we can't just delete the
3504 * inode we have to copy the single block it was pointing to into the
3505 * inode.
3506 */
56b2de80 3507STATIC int
b194c7d8
BN
3508xfs_btree_kill_iroot(
3509 struct xfs_btree_cur *cur)
3510{
3511 int whichfork = cur->bc_private.b.whichfork;
3512 struct xfs_inode *ip = cur->bc_private.b.ip;
3513 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3514 struct xfs_btree_block *block;
3515 struct xfs_btree_block *cblock;
3516 union xfs_btree_key *kp;
3517 union xfs_btree_key *ckp;
3518 union xfs_btree_ptr *pp;
3519 union xfs_btree_ptr *cpp;
3520 struct xfs_buf *cbp;
3521 int level;
3522 int index;
3523 int numrecs;
410c3de5 3524 int error;
b194c7d8
BN
3525#ifdef DEBUG
3526 union xfs_btree_ptr ptr;
3527 int i;
3528#endif
3529
b194c7d8
BN
3530 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3531 ASSERT(cur->bc_nlevels > 1);
3532
3533 /*
3534 * Don't deal with the root block needs to be a leaf case.
3535 * We're just going to turn the thing back into extents anyway.
3536 */
3537 level = cur->bc_nlevels - 1;
3538 if (level == 1)
3539 goto out0;
3540
3541 /*
3542 * Give up if the root has multiple children.
3543 */
3544 block = xfs_btree_get_iroot(cur);
3545 if (xfs_btree_get_numrecs(block) != 1)
3546 goto out0;
3547
3548 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3549 numrecs = xfs_btree_get_numrecs(cblock);
3550
3551 /*
3552 * Only do this if the next level will fit.
3553 * Then the data must be copied up to the inode,
3554 * instead of freeing the root you free the next level.
3555 */
3556 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3557 goto out0;
3558
3559 XFS_BTREE_STATS_INC(cur, killroot);
3560
3561#ifdef DEBUG
3562 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3563 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3564 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3565 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3566#endif
3567
3568 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3569 if (index) {
3570 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3571 cur->bc_private.b.whichfork);
b3563c19 3572 block = ifp->if_broot;
b194c7d8
BN
3573 }
3574
3575 be16_add_cpu(&block->bb_numrecs, index);
3576 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3577
3578 kp = xfs_btree_key_addr(cur, 1, block);
3579 ckp = xfs_btree_key_addr(cur, 1, cblock);
3580 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3581
3582 pp = xfs_btree_ptr_addr(cur, 1, block);
3583 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3584#ifdef DEBUG
3585 for (i = 0; i < numrecs; i++) {
b194c7d8 3586 error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
97b3ffd0 3587 if (error)
b194c7d8 3588 return error;
b194c7d8
BN
3589 }
3590#endif
3591 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3592
c261f8c0 3593 error = xfs_btree_free_block(cur, cbp);
97b3ffd0 3594 if (error)
410c3de5 3595 return error;
b194c7d8
BN
3596
3597 cur->bc_bufs[level - 1] = NULL;
3598 be16_add_cpu(&block->bb_level, -1);
3599 xfs_trans_log_inode(cur->bc_tp, ip,
56b2de80 3600 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
b194c7d8
BN
3601 cur->bc_nlevels--;
3602out0:
b194c7d8
BN
3603 return 0;
3604}
3605
56b2de80
DC
3606/*
3607 * Kill the current root node, and replace it with it's only child node.
3608 */
3609STATIC int
3610xfs_btree_kill_root(
3611 struct xfs_btree_cur *cur,
3612 struct xfs_buf *bp,
3613 int level,
3614 union xfs_btree_ptr *newroot)
3615{
3616 int error;
3617
56b2de80
DC
3618 XFS_BTREE_STATS_INC(cur, killroot);
3619
3620 /*
3621 * Update the root pointer, decreasing the level by 1 and then
3622 * free the old root.
3623 */
3624 cur->bc_ops->set_root(cur, newroot, -1);
3625
c261f8c0 3626 error = xfs_btree_free_block(cur, bp);
97b3ffd0 3627 if (error)
56b2de80 3628 return error;
56b2de80 3629
56b2de80
DC
3630 cur->bc_bufs[level] = NULL;
3631 cur->bc_ra[level] = 0;
3632 cur->bc_nlevels--;
3633
56b2de80
DC
3634 return 0;
3635}
3636
b194c7d8
BN
3637STATIC int
3638xfs_btree_dec_cursor(
3639 struct xfs_btree_cur *cur,
3640 int level,
3641 int *stat)
3642{
3643 int error;
3644 int i;
3645
3646 if (level > 0) {
3647 error = xfs_btree_decrement(cur, level, &i);
3648 if (error)
3649 return error;
3650 }
3651
b194c7d8
BN
3652 *stat = 1;
3653 return 0;
3654}
3655
3656/*
3657 * Single level of the btree record deletion routine.
3658 * Delete record pointed to by cur/level.
3659 * Remove the record from its block then rebalance the tree.
3660 * Return 0 for error, 1 for done, 2 to go on to the next level.
3661 */
3662STATIC int /* error */
3663xfs_btree_delrec(
3664 struct xfs_btree_cur *cur, /* btree cursor */
3665 int level, /* level removing record from */
3666 int *stat) /* fail/done/go-on */
3667{
3668 struct xfs_btree_block *block; /* btree block */
3669 union xfs_btree_ptr cptr; /* current block ptr */
3670 struct xfs_buf *bp; /* buffer for block */
3671 int error; /* error return value */
3672 int i; /* loop counter */
b194c7d8
BN
3673 union xfs_btree_ptr lptr; /* left sibling block ptr */
3674 struct xfs_buf *lbp; /* left buffer pointer */
3675 struct xfs_btree_block *left; /* left btree block */
3676 int lrecs = 0; /* left record count */
3677 int ptr; /* key/record index */
3678 union xfs_btree_ptr rptr; /* right sibling block ptr */
3679 struct xfs_buf *rbp; /* right buffer pointer */
3680 struct xfs_btree_block *right; /* right btree block */
3681 struct xfs_btree_block *rrblock; /* right-right btree block */
3682 struct xfs_buf *rrbp; /* right-right buffer pointer */
3683 int rrecs = 0; /* right record count */
3684 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3685 int numrecs; /* temporary numrec count */
3686
b194c7d8
BN
3687 tcur = NULL;
3688
3689 /* Get the index of the entry being deleted, check for nothing there. */
3690 ptr = cur->bc_ptrs[level];
3691 if (ptr == 0) {
b194c7d8
BN
3692 *stat = 0;
3693 return 0;
3694 }
3695
3696 /* Get the buffer & block containing the record or key/ptr. */
3697 block = xfs_btree_get_block(cur, level, &bp);
3698 numrecs = xfs_btree_get_numrecs(block);
3699
3700#ifdef DEBUG
3701 error = xfs_btree_check_block(cur, block, level, bp);
3702 if (error)
3703 goto error0;
3704#endif
3705
3706 /* Fail if we're off the end of the block. */
3707 if (ptr > numrecs) {
b194c7d8
BN
3708 *stat = 0;
3709 return 0;
3710 }
3711
3712 XFS_BTREE_STATS_INC(cur, delrec);
3713 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3714
3715 /* Excise the entries being deleted. */
3716 if (level > 0) {
3717 /* It's a nonleaf. operate on keys and ptrs */
3718 union xfs_btree_key *lkp;
3719 union xfs_btree_ptr *lpp;
3720
3721 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3722 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3723
3724#ifdef DEBUG
3725 for (i = 0; i < numrecs - ptr; i++) {
3726 error = xfs_btree_check_ptr(cur, lpp, i, level);
3727 if (error)
3728 goto error0;
3729 }
3730#endif
3731
3732 if (ptr < numrecs) {
3733 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3734 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3735 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3736 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3737 }
b194c7d8
BN
3738 } else {
3739 /* It's a leaf. operate on records */
3740 if (ptr < numrecs) {
3741 xfs_btree_shift_recs(cur,
3742 xfs_btree_rec_addr(cur, ptr + 1, block),
3743 -1, numrecs - ptr);
3744 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3745 }
b194c7d8
BN
3746 }
3747
3748 /*
3749 * Decrement and log the number of entries in the block.
3750 */
3751 xfs_btree_set_numrecs(block, --numrecs);
3752 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3753
3754 /*
3755 * If we are tracking the last record in the tree and
3756 * we are at the far right edge of the tree, update it.
3757 */
3758 if (xfs_btree_is_lastrec(cur, block, level)) {
3759 cur->bc_ops->update_lastrec(cur, block, NULL,
3760 ptr, LASTREC_DELREC);
3761 }
3762
3763 /*
3764 * We're at the root level. First, shrink the root block in-memory.
3765 * Try to get rid of the next level down. If we can't then there's
3766 * nothing left to do.
3767 */
3768 if (level == cur->bc_nlevels - 1) {
3769 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3770 xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3771 cur->bc_private.b.whichfork);
3772
3773 error = xfs_btree_kill_iroot(cur);
3774 if (error)
3775 goto error0;
3776
3777 error = xfs_btree_dec_cursor(cur, level, stat);
3778 if (error)
3779 goto error0;
3780 *stat = 1;
3781 return 0;
3782 }
3783
3784 /*
3785 * If this is the root level, and there's only one entry left,
3786 * and it's NOT the leaf level, then we can get rid of this
3787 * level.
3788 */
3789 if (numrecs == 1 && level > 0) {
3790 union xfs_btree_ptr *pp;
3791 /*
3792 * pp is still set to the first pointer in the block.
3793 * Make it the new root of the btree.
3794 */
3795 pp = xfs_btree_ptr_addr(cur, 1, block);
56b2de80 3796 error = xfs_btree_kill_root(cur, bp, level, pp);
b194c7d8
BN
3797 if (error)
3798 goto error0;
3799 } else if (level > 0) {
3800 error = xfs_btree_dec_cursor(cur, level, stat);
3801 if (error)
3802 goto error0;
3803 }
3804 *stat = 1;
3805 return 0;
3806 }
3807
3808 /*
3809 * If we deleted the leftmost entry in the block, update the
3810 * key values above us in the tree.
3811 */
a3c9cb10 3812 if (xfs_btree_needs_key_update(cur, ptr)) {
64dbe047 3813 error = xfs_btree_update_keys(cur, level);
b194c7d8
BN
3814 if (error)
3815 goto error0;
3816 }
3817
3818 /*
3819 * If the number of records remaining in the block is at least
3820 * the minimum, we're done.
3821 */
3822 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3823 error = xfs_btree_dec_cursor(cur, level, stat);
3824 if (error)
3825 goto error0;
3826 return 0;
3827 }
3828
3829 /*
3830 * Otherwise, we have to move some records around to keep the
3831 * tree balanced. Look at the left and right sibling blocks to
3832 * see if we can re-balance by moving only one record.
3833 */
3834 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3835 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3836
3837 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3838 /*
3839 * One child of root, need to get a chance to copy its contents
3840 * into the root and delete it. Can't go up to next level,
3841 * there's nothing to delete there.
3842 */
3843 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3844 xfs_btree_ptr_is_null(cur, &lptr) &&
3845 level == cur->bc_nlevels - 2) {
3846 error = xfs_btree_kill_iroot(cur);
3847 if (!error)
3848 error = xfs_btree_dec_cursor(cur, level, stat);
3849 if (error)
3850 goto error0;
3851 return 0;
3852 }
3853 }
3854
3855 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3856 !xfs_btree_ptr_is_null(cur, &lptr));
3857
3858 /*
3859 * Duplicate the cursor so our btree manipulations here won't
3860 * disrupt the next level up.
3861 */
3862 error = xfs_btree_dup_cursor(cur, &tcur);
3863 if (error)
3864 goto error0;
3865
3866 /*
3867 * If there's a right sibling, see if it's ok to shift an entry
3868 * out of it.
3869 */
3870 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3871 /*
3872 * Move the temp cursor to the last entry in the next block.
3873 * Actually any entry but the first would suffice.
3874 */
3875 i = xfs_btree_lastrec(tcur, level);
19ebedcf 3876 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
b194c7d8
BN
3877
3878 error = xfs_btree_increment(tcur, level, &i);
3879 if (error)
3880 goto error0;
19ebedcf 3881 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
b194c7d8
BN
3882
3883 i = xfs_btree_lastrec(tcur, level);
19ebedcf 3884 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
b194c7d8
BN
3885
3886 /* Grab a pointer to the block. */
3887 right = xfs_btree_get_block(tcur, level, &rbp);
3888#ifdef DEBUG
3889 error = xfs_btree_check_block(tcur, right, level, rbp);
3890 if (error)
3891 goto error0;
3892#endif
3893 /* Grab the current block number, for future use. */
3894 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3895
3896 /*
3897 * If right block is full enough so that removing one entry
3898 * won't make it too empty, and left-shifting an entry out
3899 * of right to us works, we're done.
3900 */
3901 if (xfs_btree_get_numrecs(right) - 1 >=
3902 cur->bc_ops->get_minrecs(tcur, level)) {
3903 error = xfs_btree_lshift(tcur, level, &i);
3904 if (error)
3905 goto error0;
3906 if (i) {
3907 ASSERT(xfs_btree_get_numrecs(block) >=
3908 cur->bc_ops->get_minrecs(tcur, level));
3909
3910 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3911 tcur = NULL;
3912
3913 error = xfs_btree_dec_cursor(cur, level, stat);
3914 if (error)
3915 goto error0;
3916 return 0;
3917 }
3918 }
3919
3920 /*
3921 * Otherwise, grab the number of records in right for
3922 * future reference, and fix up the temp cursor to point
3923 * to our block again (last record).
3924 */
3925 rrecs = xfs_btree_get_numrecs(right);
3926 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3927 i = xfs_btree_firstrec(tcur, level);
19ebedcf 3928 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
b194c7d8
BN
3929
3930 error = xfs_btree_decrement(tcur, level, &i);
3931 if (error)
3932 goto error0;
19ebedcf 3933 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
b194c7d8
BN
3934 }
3935 }
3936
3937 /*
3938 * If there's a left sibling, see if it's ok to shift an entry
3939 * out of it.
3940 */
3941 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3942 /*
3943 * Move the temp cursor to the first entry in the
3944 * previous block.
3945 */
3946 i = xfs_btree_firstrec(tcur, level);
19ebedcf 3947 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
b194c7d8
BN
3948
3949 error = xfs_btree_decrement(tcur, level, &i);
3950 if (error)
3951 goto error0;
3952 i = xfs_btree_firstrec(tcur, level);
19ebedcf 3953 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
b194c7d8
BN
3954
3955 /* Grab a pointer to the block. */
3956 left = xfs_btree_get_block(tcur, level, &lbp);
3957#ifdef DEBUG
3958 error = xfs_btree_check_block(cur, left, level, lbp);
3959 if (error)
3960 goto error0;
3961#endif
3962 /* Grab the current block number, for future use. */
3963 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3964
3965 /*
3966 * If left block is full enough so that removing one entry
3967 * won't make it too empty, and right-shifting an entry out
3968 * of left to us works, we're done.
3969 */
3970 if (xfs_btree_get_numrecs(left) - 1 >=
3971 cur->bc_ops->get_minrecs(tcur, level)) {
3972 error = xfs_btree_rshift(tcur, level, &i);
3973 if (error)
3974 goto error0;
3975 if (i) {
3976 ASSERT(xfs_btree_get_numrecs(block) >=
3977 cur->bc_ops->get_minrecs(tcur, level));
3978 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3979 tcur = NULL;
3980 if (level == 0)
3981 cur->bc_ptrs[0]++;
97b3ffd0 3982
b194c7d8
BN
3983 *stat = 1;
3984 return 0;
3985 }
3986 }
3987
3988 /*
3989 * Otherwise, grab the number of records in right for
3990 * future reference.
3991 */
3992 lrecs = xfs_btree_get_numrecs(left);
3993 }
3994
3995 /* Delete the temp cursor, we're done with it. */
3996 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3997 tcur = NULL;
3998
3999 /* If here, we need to do a join to keep the tree balanced. */
4000 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4001
4002 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4003 lrecs + xfs_btree_get_numrecs(block) <=
4004 cur->bc_ops->get_maxrecs(cur, level)) {
4005 /*
4006 * Set "right" to be the starting block,
4007 * "left" to be the left neighbor.
4008 */
4009 rptr = cptr;
4010 right = block;
4011 rbp = bp;
ff105f75 4012 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
b194c7d8
BN
4013 if (error)
4014 goto error0;
4015
4016 /*
4017 * If that won't work, see if we can join with the right neighbor block.
4018 */
4019 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4020 rrecs + xfs_btree_get_numrecs(block) <=
4021 cur->bc_ops->get_maxrecs(cur, level)) {
4022 /*
4023 * Set "left" to be the starting block,
4024 * "right" to be the right neighbor.
4025 */
4026 lptr = cptr;
4027 left = block;
4028 lbp = bp;
ff105f75 4029 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
b194c7d8
BN
4030 if (error)
4031 goto error0;
4032
4033 /*
4034 * Otherwise, we can't fix the imbalance.
4035 * Just return. This is probably a logic error, but it's not fatal.
4036 */
4037 } else {
4038 error = xfs_btree_dec_cursor(cur, level, stat);
4039 if (error)
4040 goto error0;
4041 return 0;
4042 }
4043
4044 rrecs = xfs_btree_get_numrecs(right);
4045 lrecs = xfs_btree_get_numrecs(left);
4046
4047 /*
4048 * We're now going to join "left" and "right" by moving all the stuff
4049 * in "right" to "left" and deleting "right".
4050 */
4051 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4052 if (level > 0) {
4053 /* It's a non-leaf. Move keys and pointers. */
4054 union xfs_btree_key *lkp; /* left btree key */
4055 union xfs_btree_ptr *lpp; /* left address pointer */
4056 union xfs_btree_key *rkp; /* right btree key */
4057 union xfs_btree_ptr *rpp; /* right address pointer */
4058
4059 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4060 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4061 rkp = xfs_btree_key_addr(cur, 1, right);
4062 rpp = xfs_btree_ptr_addr(cur, 1, right);
4063#ifdef DEBUG
4064 for (i = 1; i < rrecs; i++) {
4065 error = xfs_btree_check_ptr(cur, rpp, i, level);
4066 if (error)
4067 goto error0;
4068 }
4069#endif
4070 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4071 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4072
4073 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4074 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4075 } else {
4076 /* It's a leaf. Move records. */
4077 union xfs_btree_rec *lrp; /* left record pointer */
4078 union xfs_btree_rec *rrp; /* right record pointer */
4079
4080 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4081 rrp = xfs_btree_rec_addr(cur, 1, right);
4082
4083 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4084 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4085 }
4086
4087 XFS_BTREE_STATS_INC(cur, join);
4088
4089 /*
56b2de80 4090 * Fix up the number of records and right block pointer in the
b194c7d8
BN
4091 * surviving block, and log it.
4092 */
4093 xfs_btree_set_numrecs(left, lrecs + rrecs);
4094 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4095 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4096 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4097
4098 /* If there is a right sibling, point it to the remaining block. */
4099 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4100 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
ff105f75 4101 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
b194c7d8
BN
4102 if (error)
4103 goto error0;
4104 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4105 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4106 }
4107
4108 /* Free the deleted block. */
c261f8c0 4109 error = xfs_btree_free_block(cur, rbp);
b194c7d8
BN
4110 if (error)
4111 goto error0;
b194c7d8
BN
4112
4113 /*
4114 * If we joined with the left neighbor, set the buffer in the
4115 * cursor to the left block, and fix up the index.
4116 */
4117 if (bp != lbp) {
4118 cur->bc_bufs[level] = lbp;
4119 cur->bc_ptrs[level] += lrecs;
4120 cur->bc_ra[level] = 0;
4121 }
4122 /*
4123 * If we joined with the right neighbor and there's a level above
4124 * us, increment the cursor at that level.
4125 */
4126 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4127 (level + 1 < cur->bc_nlevels)) {
4128 error = xfs_btree_increment(cur, level + 1, &i);
4129 if (error)
4130 goto error0;
4131 }
4132
4133 /*
4134 * Readjust the ptr at this level if it's not a leaf, since it's
4135 * still pointing at the deletion point, which makes the cursor
4136 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4137 * We can't use decrement because it would change the next level up.
4138 */
4139 if (level > 0)
4140 cur->bc_ptrs[level]--;
4141
13e831e0
DW
4142 /*
4143 * We combined blocks, so we have to update the parent keys if the
4144 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4145 * points to the old block so that the caller knows which record to
4146 * delete. Therefore, the caller must be savvy enough to call updkeys
4147 * for us if we return stat == 2. The other exit points from this
4148 * function don't require deletions further up the tree, so they can
4149 * call updkeys directly.
4150 */
4151
b194c7d8
BN
4152 /* Return value means the next level up has something to do. */
4153 *stat = 2;
4154 return 0;
4155
4156error0:
b194c7d8
BN
4157 if (tcur)
4158 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4159 return error;
4160}
4161
4162/*
4163 * Delete the record pointed to by cur.
4164 * The cursor refers to the place where the record was (could be inserted)
4165 * when the operation returns.
4166 */
4167int /* error */
4168xfs_btree_delete(
4169 struct xfs_btree_cur *cur,
4170 int *stat) /* success/failure */
4171{
4172 int error; /* error return value */
4173 int level;
4174 int i;
13e831e0 4175 bool joined = false;
b194c7d8 4176
b194c7d8
BN
4177 /*
4178 * Go up the tree, starting at leaf level.
4179 *
4180 * If 2 is returned then a join was done; go to the next level.
4181 * Otherwise we are done.
4182 */
4183 for (level = 0, i = 2; i == 2; level++) {
4184 error = xfs_btree_delrec(cur, level, &i);
4185 if (error)
4186 goto error0;
13e831e0
DW
4187 if (i == 2)
4188 joined = true;
4189 }
4190
4191 /*
4192 * If we combined blocks as part of deleting the record, delrec won't
4193 * have updated the parent high keys so we have to do that here.
4194 */
4195 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4196 error = xfs_btree_updkeys_force(cur, 0);
4197 if (error)
4198 goto error0;
b194c7d8
BN
4199 }
4200
4201 if (i == 0) {
4202 for (level = 1; level < cur->bc_nlevels; level++) {
4203 if (cur->bc_ptrs[level] == 0) {
4204 error = xfs_btree_decrement(cur, level, &i);
4205 if (error)
4206 goto error0;
4207 break;
4208 }
4209 }
4210 }
4211
b194c7d8
BN
4212 *stat = i;
4213 return 0;
4214error0:
b194c7d8
BN
4215 return error;
4216}
4217
4218/*
4219 * Get the data from the pointed-to record.
4220 */
4221int /* error */
4222xfs_btree_get_rec(
4223 struct xfs_btree_cur *cur, /* btree cursor */
4224 union xfs_btree_rec **recp, /* output: btree record */
4225 int *stat) /* output: success/failure */
4226{
4227 struct xfs_btree_block *block; /* btree block */
4228 struct xfs_buf *bp; /* buffer pointer */
4229 int ptr; /* record number */
4230#ifdef DEBUG
4231 int error; /* error return value */
4232#endif
4233
4234 ptr = cur->bc_ptrs[0];
4235 block = xfs_btree_get_block(cur, 0, &bp);
4236
4237#ifdef DEBUG
4238 error = xfs_btree_check_block(cur, block, 0, bp);
4239 if (error)
4240 return error;
4241#endif
4242
4243 /*
4244 * Off the right end or left end, return failure.
4245 */
4246 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4247 *stat = 0;
4248 return 0;
4249 }
4250
4251 /*
4252 * Point to the record and extract its data.
4253 */
4254 *recp = xfs_btree_rec_addr(cur, ptr, block);
4255 *stat = 1;
4256 return 0;
4257}
9c6ebc42 4258
f31736bf
DW
4259/* Visit a block in a btree. */
4260STATIC int
4261xfs_btree_visit_block(
4262 struct xfs_btree_cur *cur,
4263 int level,
4264 xfs_btree_visit_blocks_fn fn,
4265 void *data)
4266{
4267 struct xfs_btree_block *block;
4268 struct xfs_buf *bp;
4269 union xfs_btree_ptr rptr;
4270 int error;
4271
4272 /* do right sibling readahead */
4273 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4274 block = xfs_btree_get_block(cur, level, &bp);
4275
4276 /* process the block */
4277 error = fn(cur, level, data);
4278 if (error)
4279 return error;
4280
4281 /* now read rh sibling block for next iteration */
4282 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4283 if (xfs_btree_ptr_is_null(cur, &rptr))
4284 return -ENOENT;
4285
4286 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4287}
4288
4289
4290/* Visit every block in a btree. */
4291int
4292xfs_btree_visit_blocks(
4293 struct xfs_btree_cur *cur,
4294 xfs_btree_visit_blocks_fn fn,
4295 void *data)
4296{
4297 union xfs_btree_ptr lptr;
4298 int level;
4299 struct xfs_btree_block *block = NULL;
4300 int error = 0;
4301
4302 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4303
4304 /* for each level */
4305 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4306 /* grab the left hand block */
4307 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4308 if (error)
4309 return error;
4310
4311 /* readahead the left most block for the next level down */
4312 if (level > 0) {
4313 union xfs_btree_ptr *ptr;
4314
4315 ptr = xfs_btree_ptr_addr(cur, 1, block);
4316 xfs_btree_readahead_ptr(cur, ptr, 1);
4317
4318 /* save for the next iteration of the loop */
f9a6d642 4319 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
f31736bf
DW
4320 }
4321
4322 /* for each buffer in the level */
4323 do {
4324 error = xfs_btree_visit_block(cur, level, fn, data);
4325 } while (!error);
4326
4327 if (error != -ENOENT)
4328 return error;
4329 }
4330
4331 return 0;
4332}
4333
9c6ebc42
DC
4334/*
4335 * Change the owner of a btree.
4336 *
4337 * The mechanism we use here is ordered buffer logging. Because we don't know
4338 * how many buffers were are going to need to modify, we don't really want to
4339 * have to make transaction reservations for the worst case of every buffer in a
4340 * full size btree as that may be more space that we can fit in the log....
4341 *
4342 * We do the btree walk in the most optimal manner possible - we have sibling
4343 * pointers so we can just walk all the blocks on each level from left to right
4344 * in a single pass, and then move to the next level and do the same. We can
4345 * also do readahead on the sibling pointers to get IO moving more quickly,
4346 * though for slow disks this is unlikely to make much difference to performance
4347 * as the amount of CPU work we have to do before moving to the next block is
4348 * relatively small.
4349 *
4350 * For each btree block that we load, modify the owner appropriately, set the
4351 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4352 * we mark the region we change dirty so that if the buffer is relogged in
4353 * a subsequent transaction the changes we make here as an ordered buffer are
4354 * correctly relogged in that transaction. If we are in recovery context, then
4355 * just queue the modified buffer as delayed write buffer so the transaction
4356 * recovery completion writes the changes to disk.
4357 */
f31736bf 4358struct xfs_btree_block_change_owner_info {
4a492e72 4359 uint64_t new_owner;
f31736bf
DW
4360 struct list_head *buffer_list;
4361};
4362
9c6ebc42
DC
4363static int
4364xfs_btree_block_change_owner(
4365 struct xfs_btree_cur *cur,
4366 int level,
f31736bf 4367 void *data)
9c6ebc42 4368{
f31736bf 4369 struct xfs_btree_block_change_owner_info *bbcoi = data;
9c6ebc42
DC
4370 struct xfs_btree_block *block;
4371 struct xfs_buf *bp;
9c6ebc42
DC
4372
4373 /* modify the owner */
4374 block = xfs_btree_get_block(cur, level, &bp);
38fa71a7
BF
4375 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4376 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4377 return 0;
f31736bf 4378 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
38fa71a7
BF
4379 } else {
4380 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4381 return 0;
f31736bf 4382 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
38fa71a7 4383 }
9c6ebc42
DC
4384
4385 /*
4386 * If the block is a root block hosted in an inode, we might not have a
4387 * buffer pointer here and we shouldn't attempt to log the change as the
4388 * information is already held in the inode and discarded when the root
4389 * block is formatted into the on-disk inode fork. We still change it,
4390 * though, so everything is consistent in memory.
4391 */
38fa71a7 4392 if (!bp) {
9c6ebc42
DC
4393 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4394 ASSERT(level == cur->bc_nlevels - 1);
38fa71a7
BF
4395 return 0;
4396 }
4397
4398 if (cur->bc_tp) {
4399 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4400 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4401 return -EAGAIN;
4402 }
4403 } else {
4404 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
9c6ebc42
DC
4405 }
4406
f31736bf 4407 return 0;
9c6ebc42
DC
4408}
4409
4410int
4411xfs_btree_change_owner(
4412 struct xfs_btree_cur *cur,
4a492e72 4413 uint64_t new_owner,
9c6ebc42
DC
4414 struct list_head *buffer_list)
4415{
f31736bf 4416 struct xfs_btree_block_change_owner_info bbcoi;
9c6ebc42 4417
f31736bf
DW
4418 bbcoi.new_owner = new_owner;
4419 bbcoi.buffer_list = buffer_list;
9c6ebc42 4420
f31736bf
DW
4421 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4422 &bbcoi);
9c6ebc42 4423}
dbca0167 4424
fb75464f 4425/* Verify the v5 fields of a long-format btree block. */
bc01119d 4426xfs_failaddr_t
fb75464f
DW
4427xfs_btree_lblock_v5hdr_verify(
4428 struct xfs_buf *bp,
4429 uint64_t owner)
4430{
4431 struct xfs_mount *mp = bp->b_target->bt_mount;
4432 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4433
4434 if (!xfs_sb_version_hascrc(&mp->m_sb))
bc01119d 4435 return __this_address;
fb75464f 4436 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
bc01119d 4437 return __this_address;
fb75464f 4438 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
bc01119d 4439 return __this_address;
fb75464f
DW
4440 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4441 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
bc01119d
DW
4442 return __this_address;
4443 return NULL;
fb75464f
DW
4444}
4445
4446/* Verify a long-format btree block. */
bc01119d 4447xfs_failaddr_t
fb75464f
DW
4448xfs_btree_lblock_verify(
4449 struct xfs_buf *bp,
4450 unsigned int max_recs)
4451{
4452 struct xfs_mount *mp = bp->b_target->bt_mount;
4453 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4454
4455 /* numrecs verification */
4456 if (be16_to_cpu(block->bb_numrecs) > max_recs)
bc01119d 4457 return __this_address;
fb75464f
DW
4458
4459 /* sibling pointer verification */
4460 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4461 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
bc01119d 4462 return __this_address;
fb75464f
DW
4463 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4464 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
bc01119d 4465 return __this_address;
fb75464f 4466
bc01119d 4467 return NULL;
fb75464f
DW
4468}
4469
dbca0167
DW
4470/**
4471 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4472 * btree block
4473 *
4474 * @bp: buffer containing the btree block
4475 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4476 * @pag_max_level: pointer to the per-ag max level field
4477 */
bc01119d 4478xfs_failaddr_t
dbca0167
DW
4479xfs_btree_sblock_v5hdr_verify(
4480 struct xfs_buf *bp)
4481{
4482 struct xfs_mount *mp = bp->b_target->bt_mount;
4483 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4484 struct xfs_perag *pag = bp->b_pag;
4485
4486 if (!xfs_sb_version_hascrc(&mp->m_sb))
bc01119d 4487 return __this_address;
dbca0167 4488 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
bc01119d 4489 return __this_address;
dbca0167 4490 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
bc01119d 4491 return __this_address;
dbca0167 4492 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
bc01119d
DW
4493 return __this_address;
4494 return NULL;
dbca0167
DW
4495}
4496
4497/**
4498 * xfs_btree_sblock_verify() -- verify a short-format btree block
4499 *
4500 * @bp: buffer containing the btree block
4501 * @max_recs: maximum records allowed in this btree node
4502 */
bc01119d 4503xfs_failaddr_t
dbca0167
DW
4504xfs_btree_sblock_verify(
4505 struct xfs_buf *bp,
4506 unsigned int max_recs)
4507{
4508 struct xfs_mount *mp = bp->b_target->bt_mount;
4509 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
bb2a125a 4510 xfs_agblock_t agno;
dbca0167
DW
4511
4512 /* numrecs verification */
4513 if (be16_to_cpu(block->bb_numrecs) > max_recs)
bc01119d 4514 return __this_address;
dbca0167
DW
4515
4516 /* sibling pointer verification */
bb2a125a
DW
4517 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4518 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4519 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
bc01119d 4520 return __this_address;
bb2a125a
DW
4521 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4522 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
bc01119d 4523 return __this_address;
dbca0167 4524
bc01119d 4525 return NULL;
dbca0167 4526}
730e2a19
DW
4527
4528/*
4529 * Calculate the number of btree levels needed to store a given number of
4530 * records in a short-format btree.
4531 */
4532uint
4533xfs_btree_compute_maxlevels(
4534 struct xfs_mount *mp,
4535 uint *limits,
4536 unsigned long len)
4537{
4538 uint level;
4539 unsigned long maxblocks;
4540
4541 maxblocks = (len + limits[0] - 1) / limits[0];
4542 for (level = 1; maxblocks > 1; level++)
4543 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4544 return level;
4545}
5d3b7fe1
DW
4546
4547/*
4548 * Query a regular btree for all records overlapping a given interval.
4549 * Start with a LE lookup of the key of low_rec and return all records
4550 * until we find a record with a key greater than the key of high_rec.
4551 */
4552STATIC int
4553xfs_btree_simple_query_range(
4554 struct xfs_btree_cur *cur,
4555 union xfs_btree_key *low_key,
4556 union xfs_btree_key *high_key,
4557 xfs_btree_query_range_fn fn,
4558 void *priv)
4559{
4560 union xfs_btree_rec *recp;
4561 union xfs_btree_key rec_key;
4a492e72 4562 int64_t diff;
5d3b7fe1
DW
4563 int stat;
4564 bool firstrec = true;
4565 int error;
4566
4567 ASSERT(cur->bc_ops->init_high_key_from_rec);
4568 ASSERT(cur->bc_ops->diff_two_keys);
4569
4570 /*
4571 * Find the leftmost record. The btree cursor must be set
4572 * to the low record used to generate low_key.
4573 */
4574 stat = 0;
4575 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4576 if (error)
4577 goto out;
4578
a3654981
DW
4579 /* Nothing? See if there's anything to the right. */
4580 if (!stat) {
4581 error = xfs_btree_increment(cur, 0, &stat);
4582 if (error)
4583 goto out;
4584 }
4585
5d3b7fe1
DW
4586 while (stat) {
4587 /* Find the record. */
4588 error = xfs_btree_get_rec(cur, &recp, &stat);
4589 if (error || !stat)
4590 break;
5d3b7fe1
DW
4591
4592 /* Skip if high_key(rec) < low_key. */
4593 if (firstrec) {
94a22dec 4594 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
5d3b7fe1
DW
4595 firstrec = false;
4596 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4597 &rec_key);
4598 if (diff > 0)
4599 goto advloop;
4600 }
4601
4602 /* Stop if high_key < low_key(rec). */
94a22dec 4603 cur->bc_ops->init_key_from_rec(&rec_key, recp);
5d3b7fe1
DW
4604 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4605 if (diff > 0)
4606 break;
4607
4608 /* Callback */
4609 error = fn(cur, recp, priv);
4610 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4611 break;
4612
4613advloop:
4614 /* Move on to the next record. */
4615 error = xfs_btree_increment(cur, 0, &stat);
4616 if (error)
4617 break;
4618 }
4619
4620out:
4621 return error;
4622}
4623
4624/*
4625 * Query an overlapped interval btree for all records overlapping a given
4626 * interval. This function roughly follows the algorithm given in
4627 * "Interval Trees" of _Introduction to Algorithms_, which is section
4628 * 14.3 in the 2nd and 3rd editions.
4629 *
4630 * First, generate keys for the low and high records passed in.
4631 *
4632 * For any leaf node, generate the high and low keys for the record.
4633 * If the record keys overlap with the query low/high keys, pass the
4634 * record to the function iterator.
4635 *
4636 * For any internal node, compare the low and high keys of each
4637 * pointer against the query low/high keys. If there's an overlap,
4638 * follow the pointer.
4639 *
4640 * As an optimization, we stop scanning a block when we find a low key
4641 * that is greater than the query's high key.
4642 */
4643STATIC int
4644xfs_btree_overlapped_query_range(
4645 struct xfs_btree_cur *cur,
4646 union xfs_btree_key *low_key,
4647 union xfs_btree_key *high_key,
4648 xfs_btree_query_range_fn fn,
4649 void *priv)
4650{
4651 union xfs_btree_ptr ptr;
4652 union xfs_btree_ptr *pp;
4653 union xfs_btree_key rec_key;
4654 union xfs_btree_key rec_hkey;
4655 union xfs_btree_key *lkp;
4656 union xfs_btree_key *hkp;
4657 union xfs_btree_rec *recp;
4658 struct xfs_btree_block *block;
4a492e72
DW
4659 int64_t ldiff;
4660 int64_t hdiff;
5d3b7fe1
DW
4661 int level;
4662 struct xfs_buf *bp;
4663 int i;
4664 int error;
4665
4666 /* Load the root of the btree. */
4667 level = cur->bc_nlevels - 1;
4668 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4669 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4670 if (error)
4671 return error;
4672 xfs_btree_get_block(cur, level, &bp);
4673 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4674#ifdef DEBUG
4675 error = xfs_btree_check_block(cur, block, level, bp);
4676 if (error)
4677 goto out;
4678#endif
4679 cur->bc_ptrs[level] = 1;
4680
4681 while (level < cur->bc_nlevels) {
4682 block = xfs_btree_get_block(cur, level, &bp);
4683
4684 /* End of node, pop back towards the root. */
4685 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4686pop_up:
4687 if (level < cur->bc_nlevels - 1)
4688 cur->bc_ptrs[level + 1]++;
4689 level++;
4690 continue;
4691 }
4692
4693 if (level == 0) {
4694 /* Handle a leaf node. */
4695 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4696
4697 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4698 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4699 low_key);
4700
4701 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4702 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4703 &rec_key);
4704
4705 /*
4706 * If (record's high key >= query's low key) and
4707 * (query's high key >= record's low key), then
4708 * this record overlaps the query range; callback.
4709 */
4710 if (ldiff >= 0 && hdiff >= 0) {
4711 error = fn(cur, recp, priv);
4712 if (error < 0 ||
4713 error == XFS_BTREE_QUERY_RANGE_ABORT)
4714 break;
4715 } else if (hdiff < 0) {
4716 /* Record is larger than high key; pop. */
4717 goto pop_up;
4718 }
4719 cur->bc_ptrs[level]++;
4720 continue;
4721 }
4722
4723 /* Handle an internal node. */
4724 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4725 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4726 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4727
4728 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4729 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4730
4731 /*
4732 * If (pointer's high key >= query's low key) and
4733 * (query's high key >= pointer's low key), then
4734 * this record overlaps the query range; follow pointer.
4735 */
4736 if (ldiff >= 0 && hdiff >= 0) {
4737 level--;
4738 error = xfs_btree_lookup_get_block(cur, level, pp,
4739 &block);
4740 if (error)
4741 goto out;
4742 xfs_btree_get_block(cur, level, &bp);
4743 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4744#ifdef DEBUG
4745 error = xfs_btree_check_block(cur, block, level, bp);
4746 if (error)
4747 goto out;
4748#endif
4749 cur->bc_ptrs[level] = 1;
4750 continue;
4751 } else if (hdiff < 0) {
4752 /* The low key is larger than the upper range; pop. */
4753 goto pop_up;
4754 }
4755 cur->bc_ptrs[level]++;
4756 }
4757
4758out:
4759 /*
4760 * If we don't end this function with the cursor pointing at a record
4761 * block, a subsequent non-error cursor deletion will not release
4762 * node-level buffers, causing a buffer leak. This is quite possible
4763 * with a zero-results range query, so release the buffers if we
4764 * failed to return any results.
4765 */
4766 if (cur->bc_bufs[0] == NULL) {
4767 for (i = 0; i < cur->bc_nlevels; i++) {
4768 if (cur->bc_bufs[i]) {
4769 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4770 cur->bc_bufs[i] = NULL;
4771 cur->bc_ptrs[i] = 0;
4772 cur->bc_ra[i] = 0;
4773 }
4774 }
4775 }
4776
4777 return error;
4778}
4779
4780/*
4781 * Query a btree for all records overlapping a given interval of keys. The
4782 * supplied function will be called with each record found; return one of the
4783 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4784 * code. This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4785 * negative error code.
4786 */
4787int
4788xfs_btree_query_range(
4789 struct xfs_btree_cur *cur,
4790 union xfs_btree_irec *low_rec,
4791 union xfs_btree_irec *high_rec,
4792 xfs_btree_query_range_fn fn,
4793 void *priv)
4794{
4795 union xfs_btree_rec rec;
4796 union xfs_btree_key low_key;
4797 union xfs_btree_key high_key;
4798
4799 /* Find the keys of both ends of the interval. */
4800 cur->bc_rec = *high_rec;
4801 cur->bc_ops->init_rec_from_cur(cur, &rec);
4802 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4803
4804 cur->bc_rec = *low_rec;
4805 cur->bc_ops->init_rec_from_cur(cur, &rec);
4806 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4807
4808 /* Enforce low key < high key. */
4809 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4810 return -EINVAL;
4811
4812 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4813 return xfs_btree_simple_query_range(cur, &low_key,
4814 &high_key, fn, priv);
4815 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4816 fn, priv);
4817}
fc8c849d 4818
7e05e856
DW
4819/* Query a btree for all records. */
4820int
4821xfs_btree_query_all(
4822 struct xfs_btree_cur *cur,
4823 xfs_btree_query_range_fn fn,
4824 void *priv)
4825{
f296858d
DW
4826 union xfs_btree_key low_key;
4827 union xfs_btree_key high_key;
4828
4829 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4830 memset(&low_key, 0, sizeof(low_key));
4831 memset(&high_key, 0xFF, sizeof(high_key));
7e05e856 4832
f296858d 4833 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
7e05e856
DW
4834}
4835
fc8c849d
DW
4836/*
4837 * Calculate the number of blocks needed to store a given number of records
4838 * in a short-format (per-AG metadata) btree.
4839 */
4840xfs_extlen_t
4841xfs_btree_calc_size(
4842 struct xfs_mount *mp,
4843 uint *limits,
4844 unsigned long long len)
4845{
4846 int level;
4847 int maxrecs;
4848 xfs_extlen_t rval;
4849
4850 maxrecs = limits[0];
4851 for (level = 0, rval = 0; len > 1; level++) {
4852 len += maxrecs - 1;
4853 do_div(len, maxrecs);
4854 maxrecs = limits[1];
4855 rval += len;
4856 }
4857 return rval;
4858}
2cccc8ce 4859
1e85c20d 4860static int
2cccc8ce
DW
4861xfs_btree_count_blocks_helper(
4862 struct xfs_btree_cur *cur,
4863 int level,
4864 void *data)
4865{
4866 xfs_extlen_t *blocks = data;
4867 (*blocks)++;
4868
4869 return 0;
4870}
4871
4872/* Count the blocks in a btree and return the result in *blocks. */
4873int
4874xfs_btree_count_blocks(
4875 struct xfs_btree_cur *cur,
4876 xfs_extlen_t *blocks)
4877{
4878 *blocks = 0;
4879 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4880 blocks);
4881}
15c4e6e4
DW
4882
4883/* Compare two btree pointers. */
4884int64_t
4885xfs_btree_diff_two_ptrs(
4886 struct xfs_btree_cur *cur,
4887 const union xfs_btree_ptr *a,
4888 const union xfs_btree_ptr *b)
4889{
4890 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4891 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4892 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4893}
1fe41a73
DW
4894
4895/* If there's an extent, we're done. */
4896STATIC int
4897xfs_btree_has_record_helper(
4898 struct xfs_btree_cur *cur,
4899 union xfs_btree_rec *rec,
4900 void *priv)
4901{
4902 return XFS_BTREE_QUERY_RANGE_ABORT;
4903}
4904
4905/* Is there a record covering a given range of keys? */
4906int
4907xfs_btree_has_record(
4908 struct xfs_btree_cur *cur,
4909 union xfs_btree_irec *low,
4910 union xfs_btree_irec *high,
4911 bool *exists)
4912{
4913 int error;
4914
4915 error = xfs_btree_query_range(cur, low, high,
4916 &xfs_btree_has_record_helper, NULL);
4917 if (error == XFS_BTREE_QUERY_RANGE_ABORT) {
4918 *exists = true;
4919 return 0;
4920 }
4921 *exists = false;
4922 return error;
4923}