]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blame - libxfs/xfs_ialloc.c
xfs: only free allocated regions of inode chunks
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_ialloc.c
CommitLineData
2bd0ea18 1/*
da23017d
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5000d01d 4 *
da23017d
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
2bd0ea18 7 * published by the Free Software Foundation.
5000d01d 8 *
da23017d
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
5000d01d 13 *
da23017d
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
2bd0ea18 17 */
9c799827 18#include "libxfs_priv.h"
b626fb59
DC
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_inode.h"
28#include "xfs_btree.h"
29#include "xfs_ialloc.h"
30#include "xfs_ialloc_btree.h"
31#include "xfs_alloc.h"
32#include "xfs_bmap.h"
33#include "xfs_cksum.h"
34#include "xfs_trans.h"
35#include "xfs_trace.h"
2bd0ea18 36
2bd0ea18
NS
37
38/*
39 * Allocation group level functions.
40 */
5e656dbb
BN
41static inline int
42xfs_ialloc_cluster_alignment(
5a35bf2c 43 struct xfs_mount *mp)
5e656dbb 44{
5a35bf2c
DC
45 if (xfs_sb_version_hasalign(&mp->m_sb) &&
46 mp->m_sb.sb_inoalignmt >=
47 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
48 return mp->m_sb.sb_inoalignmt;
5e656dbb
BN
49 return 1;
50}
2bd0ea18 51
b194c7d8 52/*
56b2de80 53 * Lookup a record by ino in the btree given by cur.
b194c7d8
BN
54 */
55int /* error */
56b2de80 56xfs_inobt_lookup(
b194c7d8
BN
57 struct xfs_btree_cur *cur, /* btree cursor */
58 xfs_agino_t ino, /* starting inode of chunk */
56b2de80 59 xfs_lookup_t dir, /* <=, >=, == */
b194c7d8
BN
60 int *stat) /* success/failure */
61{
62 cur->bc_rec.i.ir_startino = ino;
11640e30
BF
63 cur->bc_rec.i.ir_holemask = 0;
64 cur->bc_rec.i.ir_count = 0;
56b2de80
DC
65 cur->bc_rec.i.ir_freecount = 0;
66 cur->bc_rec.i.ir_free = 0;
67 return xfs_btree_lookup(cur, dir, stat);
b194c7d8
BN
68}
69
70/*
56b2de80 71 * Update the record referred to by cur to the value given.
b194c7d8
BN
72 * This either works (return 0) or gets an EFSCORRUPTED error.
73 */
74STATIC int /* error */
75xfs_inobt_update(
76 struct xfs_btree_cur *cur, /* btree cursor */
56b2de80 77 xfs_inobt_rec_incore_t *irec) /* btree record */
b194c7d8
BN
78{
79 union xfs_btree_rec rec;
80
56b2de80 81 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
11640e30
BF
82 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
83 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
84 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
85 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
86 } else {
87 /* ir_holemask/ir_count not supported on-disk */
88 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
89 }
56b2de80 90 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
b194c7d8
BN
91 return xfs_btree_update(cur, &rec);
92}
93
94/*
95 * Get the data from the pointed-to record.
96 */
97int /* error */
98xfs_inobt_get_rec(
99 struct xfs_btree_cur *cur, /* btree cursor */
56b2de80 100 xfs_inobt_rec_incore_t *irec, /* btree record */
b194c7d8
BN
101 int *stat) /* output: success/failure */
102{
103 union xfs_btree_rec *rec;
104 int error;
105
106 error = xfs_btree_get_rec(cur, &rec, stat);
11640e30
BF
107 if (error || *stat == 0)
108 return error;
109
110 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
111 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
112 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
113 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
114 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
115 } else {
116 /*
117 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
118 * values for full inode chunks.
119 */
120 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
121 irec->ir_count = XFS_INODES_PER_CHUNK;
122 irec->ir_freecount =
123 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
b194c7d8 124 }
11640e30
BF
125 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
126
127 return 0;
b194c7d8
BN
128}
129
3c699279
BF
130/*
131 * Insert a single inobt record. Cursor must already point to desired location.
132 */
133STATIC int
134xfs_inobt_insert_rec(
135 struct xfs_btree_cur *cur,
11640e30
BF
136 __uint16_t holemask,
137 __uint8_t count,
3c699279
BF
138 __int32_t freecount,
139 xfs_inofree_t free,
140 int *stat)
141{
11640e30
BF
142 cur->bc_rec.i.ir_holemask = holemask;
143 cur->bc_rec.i.ir_count = count;
3c699279
BF
144 cur->bc_rec.i.ir_freecount = freecount;
145 cur->bc_rec.i.ir_free = free;
146 return xfs_btree_insert(cur, stat);
147}
148
149/*
150 * Insert records describing a newly allocated inode chunk into the inobt.
151 */
152STATIC int
153xfs_inobt_insert(
154 struct xfs_mount *mp,
155 struct xfs_trans *tp,
156 struct xfs_buf *agbp,
157 xfs_agino_t newino,
158 xfs_agino_t newlen,
159 xfs_btnum_t btnum)
160{
161 struct xfs_btree_cur *cur;
162 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
163 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
164 xfs_agino_t thisino;
165 int i;
166 int error;
167
168 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
169
170 for (thisino = newino;
171 thisino < newino + newlen;
172 thisino += XFS_INODES_PER_CHUNK) {
173 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
174 if (error) {
175 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
176 return error;
177 }
178 ASSERT(i == 0);
179
11640e30
BF
180 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
181 XFS_INODES_PER_CHUNK,
182 XFS_INODES_PER_CHUNK,
3c699279
BF
183 XFS_INOBT_ALL_FREE, &i);
184 if (error) {
185 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
186 return error;
187 }
188 ASSERT(i == 1);
189 }
190
191 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
192
193 return 0;
194}
195
56b2de80
DC
196/*
197 * Verify that the number of free inodes in the AGI is correct.
198 */
199#ifdef DEBUG
200STATIC int
201xfs_check_agi_freecount(
202 struct xfs_btree_cur *cur,
203 struct xfs_agi *agi)
204{
205 if (cur->bc_nlevels == 1) {
206 xfs_inobt_rec_incore_t rec;
207 int freecount = 0;
208 int error;
209 int i;
210
211 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
212 if (error)
213 return error;
214
215 do {
216 error = xfs_inobt_get_rec(cur, &rec, &i);
217 if (error)
218 return error;
219
220 if (i) {
221 freecount += rec.ir_freecount;
222 error = xfs_btree_increment(cur, 0, &i);
223 if (error)
224 return error;
225 }
226 } while (i == 1);
227
228 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
229 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
230 }
231 return 0;
232}
233#else
234#define xfs_check_agi_freecount(cur, agi) 0
235#endif
236
237/*
e9d35108
DC
238 * Initialise a new set of inodes. When called without a transaction context
239 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
240 * than logging them (which in a transaction context puts them into the AIL
241 * for writeback rather than the xfsbufd queue).
56b2de80 242 */
e9d35108 243int
56b2de80
DC
244xfs_ialloc_inode_init(
245 struct xfs_mount *mp,
246 struct xfs_trans *tp,
e9d35108 247 struct list_head *buffer_list,
fe8d48ac 248 int icount,
56b2de80
DC
249 xfs_agnumber_t agno,
250 xfs_agblock_t agbno,
251 xfs_agblock_t length,
252 unsigned int gen)
253{
254 struct xfs_buf *fbuf;
255 struct xfs_dinode *free;
ff105f75 256 int nbufs, blks_per_cluster, inodes_per_cluster;
56b2de80
DC
257 int version;
258 int i, j;
259 xfs_daddr_t d;
41ce5f36 260 xfs_ino_t ino = 0;
56b2de80
DC
261
262 /*
ff105f75
DC
263 * Loop over the new block(s), filling in the inodes. For small block
264 * sizes, manipulate the inodes in buffers which are multiples of the
265 * blocks size.
56b2de80 266 */
ff105f75
DC
267 blks_per_cluster = xfs_icluster_size_fsb(mp);
268 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
269 nbufs = length / blks_per_cluster;
56b2de80
DC
270
271 /*
e9d35108
DC
272 * Figure out what version number to use in the inodes we create. If
273 * the superblock version has caught up to the one that supports the new
274 * inode format, then use the new inode version. Otherwise use the old
275 * version so that old kernels will continue to be able to use the file
276 * system.
41ce5f36
DC
277 *
278 * For v3 inodes, we also need to write the inode number into the inode,
279 * so calculate the first inode number of the chunk here as
e9d35108
DC
280 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
281 * across multiple filesystem blocks (such as a cluster) and so cannot
282 * be used in the cluster buffer loop below.
283 *
284 * Further, because we are writing the inode directly into the buffer
285 * and calculating a CRC on the entire inode, we have ot log the entire
286 * inode so that the entire range the CRC covers is present in the log.
287 * That means for v3 inode we log the entire buffer rather than just the
288 * inode cores.
56b2de80 289 */
41ce5f36
DC
290 if (xfs_sb_version_hascrc(&mp->m_sb)) {
291 version = 3;
292 ino = XFS_AGINO_TO_INO(mp, agno,
293 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
e9d35108
DC
294
295 /*
296 * log the initialisation that is about to take place as an
297 * logical operation. This means the transaction does not
298 * need to log the physical changes to the inode buffers as log
299 * recovery will know what initialisation is actually needed.
300 * Hence we only need to log the buffers as "ordered" buffers so
301 * they track in the AIL as if they were physically logged.
302 */
303 if (tp)
fe8d48ac 304 xfs_icreate_log(tp, agno, agbno, icount,
e9d35108 305 mp->m_sb.sb_inodesize, length, gen);
ff105f75 306 } else
56b2de80 307 version = 2;
56b2de80
DC
308
309 for (j = 0; j < nbufs; j++) {
310 /*
311 * Get the block.
312 */
313 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
314 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
315 mp->m_bsize * blks_per_cluster,
a2ceac1f
DC
316 XBF_UNMAPPED);
317 if (!fbuf)
12b53197 318 return -ENOMEM;
e9d35108
DC
319
320 /* Initialize the inode buffers and log them appropriately. */
a2ceac1f 321 fbuf->b_ops = &xfs_inode_buf_ops;
e9d35108 322 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
ff105f75 323 for (i = 0; i < inodes_per_cluster; i++) {
56b2de80 324 int ioffset = i << mp->m_sb.sb_inodelog;
41ce5f36 325 uint isize = xfs_dinode_size(version);
56b2de80
DC
326
327 free = xfs_make_iptr(mp, fbuf, i);
328 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
329 free->di_version = version;
330 free->di_gen = cpu_to_be32(gen);
331 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
41ce5f36
DC
332
333 if (version == 3) {
334 free->di_ino = cpu_to_be64(ino);
335 ino++;
336 uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
337 xfs_dinode_calc_crc(mp, free);
e9d35108
DC
338 } else if (tp) {
339 /* just log the inode core */
340 xfs_trans_log_buf(tp, fbuf, ioffset,
341 ioffset + isize - 1);
41ce5f36 342 }
e9d35108 343 }
41ce5f36 344
e9d35108
DC
345 if (tp) {
346 /*
347 * Mark the buffer as an inode allocation buffer so it
348 * sticks in AIL at the point of this allocation
349 * transaction. This ensures the they are on disk before
350 * the tail of the log can be moved past this
351 * transaction (i.e. by preventing relogging from moving
352 * it forward in the log).
353 */
354 xfs_trans_inode_alloc_buf(tp, fbuf);
355 if (version == 3) {
356 /*
357 * Mark the buffer as ordered so that they are
358 * not physically logged in the transaction but
359 * still tracked in the AIL as part of the
360 * transaction and pin the log appropriately.
361 */
362 xfs_trans_ordered_buf(tp, fbuf);
363 xfs_trans_log_buf(tp, fbuf, 0,
364 BBTOB(fbuf->b_length) - 1);
365 }
366 } else {
367 fbuf->b_flags |= XBF_DONE;
368 xfs_buf_delwri_queue(fbuf, buffer_list);
369 xfs_buf_relse(fbuf);
56b2de80 370 }
56b2de80 371 }
a2ceac1f 372 return 0;
56b2de80
DC
373}
374
6f4c54a4
BF
375/*
376 * Align startino and allocmask for a recently allocated sparse chunk such that
377 * they are fit for insertion (or merge) into the on-disk inode btrees.
378 *
379 * Background:
380 *
381 * When enabled, sparse inode support increases the inode alignment from cluster
382 * size to inode chunk size. This means that the minimum range between two
383 * non-adjacent inode records in the inobt is large enough for a full inode
384 * record. This allows for cluster sized, cluster aligned block allocation
385 * without need to worry about whether the resulting inode record overlaps with
386 * another record in the tree. Without this basic rule, we would have to deal
387 * with the consequences of overlap by potentially undoing recent allocations in
388 * the inode allocation codepath.
389 *
390 * Because of this alignment rule (which is enforced on mount), there are two
391 * inobt possibilities for newly allocated sparse chunks. One is that the
392 * aligned inode record for the chunk covers a range of inodes not already
393 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
394 * other is that a record already exists at the aligned startino that considers
395 * the newly allocated range as sparse. In the latter case, record content is
396 * merged in hope that sparse inode chunks fill to full chunks over time.
397 */
398STATIC void
399xfs_align_sparse_ino(
400 struct xfs_mount *mp,
401 xfs_agino_t *startino,
402 uint16_t *allocmask)
403{
404 xfs_agblock_t agbno;
405 xfs_agblock_t mod;
406 int offset;
407
408 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
409 mod = agbno % mp->m_sb.sb_inoalignmt;
410 if (!mod)
411 return;
412
413 /* calculate the inode offset and align startino */
414 offset = mod << mp->m_sb.sb_inopblog;
415 *startino -= offset;
416
417 /*
418 * Since startino has been aligned down, left shift allocmask such that
419 * it continues to represent the same physical inodes relative to the
420 * new startino.
421 */
422 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
423}
424
425/*
426 * Determine whether the source inode record can merge into the target. Both
427 * records must be sparse, the inode ranges must match and there must be no
428 * allocation overlap between the records.
429 */
430STATIC bool
431__xfs_inobt_can_merge(
432 struct xfs_inobt_rec_incore *trec, /* tgt record */
433 struct xfs_inobt_rec_incore *srec) /* src record */
434{
435 uint64_t talloc;
436 uint64_t salloc;
437
438 /* records must cover the same inode range */
439 if (trec->ir_startino != srec->ir_startino)
440 return false;
441
442 /* both records must be sparse */
443 if (!xfs_inobt_issparse(trec->ir_holemask) ||
444 !xfs_inobt_issparse(srec->ir_holemask))
445 return false;
446
447 /* both records must track some inodes */
448 if (!trec->ir_count || !srec->ir_count)
449 return false;
450
451 /* can't exceed capacity of a full record */
452 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
453 return false;
454
455 /* verify there is no allocation overlap */
456 talloc = xfs_inobt_irec_to_allocmask(trec);
457 salloc = xfs_inobt_irec_to_allocmask(srec);
458 if (talloc & salloc)
459 return false;
460
461 return true;
462}
463
464/*
465 * Merge the source inode record into the target. The caller must call
466 * __xfs_inobt_can_merge() to ensure the merge is valid.
467 */
468STATIC void
469__xfs_inobt_rec_merge(
470 struct xfs_inobt_rec_incore *trec, /* target */
471 struct xfs_inobt_rec_incore *srec) /* src */
472{
473 ASSERT(trec->ir_startino == srec->ir_startino);
474
475 /* combine the counts */
476 trec->ir_count += srec->ir_count;
477 trec->ir_freecount += srec->ir_freecount;
478
479 /*
480 * Merge the holemask and free mask. For both fields, 0 bits refer to
481 * allocated inodes. We combine the allocated ranges with bitwise AND.
482 */
483 trec->ir_holemask &= srec->ir_holemask;
484 trec->ir_free &= srec->ir_free;
485}
486
487/*
488 * Insert a new sparse inode chunk into the associated inode btree. The inode
489 * record for the sparse chunk is pre-aligned to a startino that should match
490 * any pre-existing sparse inode record in the tree. This allows sparse chunks
491 * to fill over time.
492 *
493 * This function supports two modes of handling preexisting records depending on
494 * the merge flag. If merge is true, the provided record is merged with the
495 * existing record and updated in place. The merged record is returned in nrec.
496 * If merge is false, an existing record is replaced with the provided record.
497 * If no preexisting record exists, the provided record is always inserted.
498 *
499 * It is considered corruption if a merge is requested and not possible. Given
500 * the sparse inode alignment constraints, this should never happen.
501 */
502STATIC int
503xfs_inobt_insert_sprec(
504 struct xfs_mount *mp,
505 struct xfs_trans *tp,
506 struct xfs_buf *agbp,
507 int btnum,
508 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
509 bool merge) /* merge or replace */
510{
511 struct xfs_btree_cur *cur;
512 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
513 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
514 int error;
515 int i;
516 struct xfs_inobt_rec_incore rec;
517
518 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
519
520 /* the new record is pre-aligned so we know where to look */
521 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
522 if (error)
523 goto error;
524 /* if nothing there, insert a new record and return */
525 if (i == 0) {
526 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
527 nrec->ir_count, nrec->ir_freecount,
528 nrec->ir_free, &i);
529 if (error)
530 goto error;
531 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
532
533 goto out;
534 }
535
536 /*
537 * A record exists at this startino. Merge or replace the record
538 * depending on what we've been asked to do.
539 */
540 if (merge) {
541 error = xfs_inobt_get_rec(cur, &rec, &i);
542 if (error)
543 goto error;
544 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
545 XFS_WANT_CORRUPTED_GOTO(mp,
546 rec.ir_startino == nrec->ir_startino,
547 error);
548
549 /*
550 * This should never fail. If we have coexisting records that
551 * cannot merge, something is seriously wrong.
552 */
553 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
554 error);
555
556 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
557 rec.ir_holemask, nrec->ir_startino,
558 nrec->ir_holemask);
559
560 /* merge to nrec to output the updated record */
561 __xfs_inobt_rec_merge(nrec, &rec);
562
563 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
564 nrec->ir_holemask);
565
566 error = xfs_inobt_rec_check_count(mp, nrec);
567 if (error)
568 goto error;
569 }
570
571 error = xfs_inobt_update(cur, nrec);
572 if (error)
573 goto error;
574
575out:
576 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
577 return 0;
578error:
579 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
580 return error;
581}
582
2bd0ea18
NS
583/*
584 * Allocate new inodes in the allocation group specified by agbp.
585 * Return 0 for success, else error code.
586 */
587STATIC int /* error code or 0 */
588xfs_ialloc_ag_alloc(
589 xfs_trans_t *tp, /* transaction pointer */
590 xfs_buf_t *agbp, /* alloc group buffer */
591 int *alloc)
592{
593 xfs_agi_t *agi; /* allocation group header */
dfc130f3 594 xfs_alloc_arg_t args; /* allocation argument structure */
5e656dbb 595 xfs_agnumber_t agno;
2bd0ea18 596 int error;
2bd0ea18
NS
597 xfs_agino_t newino; /* new first inode's number */
598 xfs_agino_t newlen; /* new number of inodes */
5e656dbb 599 int isaligned = 0; /* inode allocation at stripe unit */
2bd0ea18 600 /* boundary */
6f4c54a4
BF
601 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
602 struct xfs_inobt_rec_incore rec;
56b2de80 603 struct xfs_perag *pag;
5000d01d 604
c9005f41
BF
605 int do_sparse = 0;
606
607#ifdef DEBUG
608 /* randomly do sparse inode allocations */
609 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb))
610 do_sparse = prandom_u32() & 1;
611#endif
612
a2ceac1f 613 memset(&args, 0, sizeof(args));
2bd0ea18
NS
614 args.tp = tp;
615 args.mp = tp->t_mountp;
c9005f41 616 args.fsbno = NULLFSBLOCK;
2bd0ea18
NS
617
618 /*
619 * Locking will ensure that we don't have two callers in here
620 * at one time.
621 */
ff105f75 622 newlen = args.mp->m_ialloc_inos;
2bd0ea18 623 if (args.mp->m_maxicount &&
19ebedcf
DC
624 percpu_counter_read(&args.mp->m_icount) + newlen >
625 args.mp->m_maxicount)
12b53197 626 return -ENOSPC;
ff105f75 627 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
2bd0ea18 628 /*
5e656dbb
BN
629 * First try to allocate inodes contiguous with the last-allocated
630 * chunk of inodes. If the filesystem is striped, this will fill
631 * an entire stripe unit with inodes.
3439d03a 632 */
2bd0ea18 633 agi = XFS_BUF_TO_AGI(agbp);
5e656dbb 634 newino = be32_to_cpu(agi->agi_newino);
56b2de80 635 agno = be32_to_cpu(agi->agi_seqno);
5e656dbb 636 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
ff105f75 637 args.mp->m_ialloc_blks;
c9005f41
BF
638 if (do_sparse)
639 goto sparse_alloc;
5e656dbb
BN
640 if (likely(newino != NULLAGINO &&
641 (args.agbno < be32_to_cpu(agi->agi_length)))) {
56b2de80 642 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
5e656dbb 643 args.type = XFS_ALLOCTYPE_THIS_BNO;
5e656dbb
BN
644 args.prod = 1;
645
646 /*
647 * We need to take into account alignment here to ensure that
648 * we don't modify the free list if we fail to have an exact
649 * block. If we don't have an exact match, and every oher
650 * attempt allocation attempt fails, we'll end up cancelling
651 * a dirty transaction and shutting down.
652 *
653 * For an exact allocation, alignment must be 1,
654 * however we need to take cluster alignment into account when
655 * fixing up the freelist. Use the minalignslop field to
656 * indicate that extra blocks might be required for alignment,
657 * but not to use them in the actual exact allocation.
658 */
659 args.alignment = 1;
5a35bf2c 660 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
5e656dbb
BN
661
662 /* Allow space for the inode btree to split. */
56b2de80 663 args.minleft = args.mp->m_in_maxlevels - 1;
5e656dbb
BN
664 if ((error = xfs_alloc_vextent(&args)))
665 return error;
ff105f75
DC
666
667 /*
668 * This request might have dirtied the transaction if the AG can
669 * satisfy the request, but the exact block was not available.
670 * If the allocation did fail, subsequent requests will relax
671 * the exact agbno requirement and increase the alignment
672 * instead. It is critical that the total size of the request
673 * (len + alignment + slop) does not increase from this point
674 * on, so reset minalignslop to ensure it is not included in
675 * subsequent requests.
676 */
677 args.minalignslop = 0;
c9005f41 678 }
5e656dbb
BN
679
680 if (unlikely(args.fsbno == NULLFSBLOCK)) {
681 /*
682 * Set the alignment for the allocation.
683 * If stripe alignment is turned on then align at stripe unit
684 * boundary.
685 * If the cluster size is smaller than a filesystem block
686 * then we're doing I/O for inodes in filesystem block size
687 * pieces, so don't need alignment anyway.
688 */
689 isaligned = 0;
690 if (args.mp->m_sinoalign) {
691 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
692 args.alignment = args.mp->m_dalign;
693 isaligned = 1;
694 } else
5a35bf2c 695 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
5e656dbb
BN
696 /*
697 * Need to figure out where to allocate the inode blocks.
698 * Ideally they should be spaced out through the a.g.
699 * For now, just allocate blocks up front.
700 */
701 args.agbno = be32_to_cpu(agi->agi_root);
56b2de80 702 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
5e656dbb
BN
703 /*
704 * Allocate a fixed-size extent of inodes.
705 */
706 args.type = XFS_ALLOCTYPE_NEAR_BNO;
5e656dbb
BN
707 args.prod = 1;
708 /*
709 * Allow space for the inode btree to split.
710 */
56b2de80 711 args.minleft = args.mp->m_in_maxlevels - 1;
5e656dbb
BN
712 if ((error = xfs_alloc_vextent(&args)))
713 return error;
714 }
2bd0ea18
NS
715
716 /*
717 * If stripe alignment is turned on, then try again with cluster
718 * alignment.
719 */
720 if (isaligned && args.fsbno == NULLFSBLOCK) {
721 args.type = XFS_ALLOCTYPE_NEAR_BNO;
6e3140c7 722 args.agbno = be32_to_cpu(agi->agi_root);
56b2de80 723 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
5a35bf2c 724 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
0e266570 725 if ((error = xfs_alloc_vextent(&args)))
dfc130f3 726 return error;
2bd0ea18 727 }
5000d01d 728
6f4c54a4
BF
729 /*
730 * Finally, try a sparse allocation if the filesystem supports it and
731 * the sparse allocation length is smaller than a full chunk.
732 */
733 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
734 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
735 args.fsbno == NULLFSBLOCK) {
c9005f41 736sparse_alloc:
6f4c54a4
BF
737 args.type = XFS_ALLOCTYPE_NEAR_BNO;
738 args.agbno = be32_to_cpu(agi->agi_root);
739 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
740 args.alignment = args.mp->m_sb.sb_spino_align;
741 args.prod = 1;
742
743 args.minlen = args.mp->m_ialloc_min_blks;
744 args.maxlen = args.minlen;
745
746 /*
747 * The inode record will be aligned to full chunk size. We must
748 * prevent sparse allocation from AG boundaries that result in
749 * invalid inode records, such as records that start at agbno 0
750 * or extend beyond the AG.
751 *
752 * Set min agbno to the first aligned, non-zero agbno and max to
753 * the last aligned agbno that is at least one full chunk from
754 * the end of the AG.
755 */
756 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
757 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
758 args.mp->m_sb.sb_inoalignmt) -
759 args.mp->m_ialloc_blks;
760
761 error = xfs_alloc_vextent(&args);
762 if (error)
763 return error;
764
765 newlen = args.len << args.mp->m_sb.sb_inopblog;
766 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
767 }
768
2bd0ea18
NS
769 if (args.fsbno == NULLFSBLOCK) {
770 *alloc = 0;
771 return 0;
772 }
773 ASSERT(args.len == args.minlen);
a562a63b 774
5e656dbb 775 /*
56b2de80
DC
776 * Stamp and write the inode buffers.
777 *
5e656dbb
BN
778 * Seed the new inode cluster with a random generation number. This
779 * prevents short-term reuse of generation numbers if a chunk is
780 * freed and then immediately reallocated. We use random numbers
781 * rather than a linear progression to prevent the next generation
782 * number from being easily guessable.
783 */
fe8d48ac
BF
784 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
785 args.agbno, args.len, prandom_u32());
56b2de80 786
a2ceac1f
DC
787 if (error)
788 return error;
56b2de80
DC
789 /*
790 * Convert the results.
791 */
792 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
6f4c54a4
BF
793
794 if (xfs_inobt_issparse(~allocmask)) {
795 /*
796 * We've allocated a sparse chunk. Align the startino and mask.
797 */
798 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
799
800 rec.ir_startino = newino;
801 rec.ir_holemask = ~allocmask;
802 rec.ir_count = newlen;
803 rec.ir_freecount = newlen;
804 rec.ir_free = XFS_INOBT_ALL_FREE;
805
806 /*
807 * Insert the sparse record into the inobt and allow for a merge
808 * if necessary. If a merge does occur, rec is updated to the
809 * merged record.
810 */
811 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
812 &rec, true);
813 if (error == -EFSCORRUPTED) {
814 xfs_alert(args.mp,
815 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
816 XFS_AGINO_TO_INO(args.mp, agno,
817 rec.ir_startino),
818 rec.ir_holemask, rec.ir_count);
819 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
820 }
821 if (error)
822 return error;
823
824 /*
825 * We can't merge the part we've just allocated as for the inobt
826 * due to finobt semantics. The original record may or may not
827 * exist independent of whether physical inodes exist in this
828 * sparse chunk.
829 *
830 * We must update the finobt record based on the inobt record.
831 * rec contains the fully merged and up to date inobt record
832 * from the previous call. Set merge false to replace any
833 * existing record with this one.
834 */
835 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
836 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
837 XFS_BTNUM_FINO, &rec,
838 false);
839 if (error)
840 return error;
841 }
842 } else {
843 /* full chunk - insert new records to both btrees */
844 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
845 XFS_BTNUM_INO);
846 if (error)
847 return error;
848
849 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
850 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
851 newlen, XFS_BTNUM_FINO);
852 if (error)
853 return error;
854 }
855 }
856
857 /*
858 * Update AGI counts and newino.
859 */
5e656dbb
BN
860 be32_add_cpu(&agi->agi_count, newlen);
861 be32_add_cpu(&agi->agi_freecount, newlen);
56b2de80
DC
862 pag = xfs_perag_get(args.mp, agno);
863 pag->pagi_freecount += newlen;
864 xfs_perag_put(pag);
6e3140c7 865 agi->agi_newino = cpu_to_be32(newino);
56b2de80 866
2bd0ea18
NS
867 /*
868 * Log allocation group header fields
869 */
870 xfs_ialloc_log_agi(tp, agbp,
871 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
872 /*
873 * Modify/log superblock values for inode count and inode free count.
874 */
875 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
876 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
877 *alloc = 1;
878 return 0;
879}
880
56b2de80 881STATIC xfs_agnumber_t
321717ae
NS
882xfs_ialloc_next_ag(
883 xfs_mount_t *mp)
884{
885 xfs_agnumber_t agno;
886
887 spin_lock(&mp->m_agirotor_lock);
888 agno = mp->m_agirotor;
a2ceac1f 889 if (++mp->m_agirotor >= mp->m_maxagi)
321717ae
NS
890 mp->m_agirotor = 0;
891 spin_unlock(&mp->m_agirotor_lock);
892
893 return agno;
894}
895
2bd0ea18
NS
896/*
897 * Select an allocation group to look for a free inode in, based on the parent
e6d77a21 898 * inode and the mode. Return the allocation group buffer.
2bd0ea18 899 */
a2ceac1f 900STATIC xfs_agnumber_t
2bd0ea18
NS
901xfs_ialloc_ag_select(
902 xfs_trans_t *tp, /* transaction pointer */
903 xfs_ino_t parent, /* parent directory inode number */
a2ceac1f 904 umode_t mode, /* bits set to indicate file type */
2bd0ea18
NS
905 int okalloc) /* ok to allocate more space */
906{
2bd0ea18
NS
907 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
908 xfs_agnumber_t agno; /* current ag number */
909 int flags; /* alloc buffer locking flags */
910 xfs_extlen_t ineed; /* blocks needed for inode allocation */
275ae71f 911 xfs_extlen_t longest = 0; /* longest extent available */
2bd0ea18
NS
912 xfs_mount_t *mp; /* mount point structure */
913 int needspace; /* file mode implies space allocated */
914 xfs_perag_t *pag; /* per allocation group data */
915 xfs_agnumber_t pagno; /* parent (starting) ag number */
a2ceac1f 916 int error;
2bd0ea18
NS
917
918 /*
919 * Files of these types need at least one block if length > 0
920 * (and they won't fit in the inode, but that's hard to figure out).
921 */
922 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
923 mp = tp->t_mountp;
34317449 924 agcount = mp->m_maxagi;
2bd0ea18 925 if (S_ISDIR(mode))
321717ae 926 pagno = xfs_ialloc_next_ag(mp);
5ce1d1f7 927 else {
2bd0ea18 928 pagno = XFS_INO_TO_AGNO(mp, parent);
5ce1d1f7
NS
929 if (pagno >= agcount)
930 pagno = 0;
931 }
a2ceac1f 932
2bd0ea18 933 ASSERT(pagno < agcount);
a2ceac1f 934
2bd0ea18
NS
935 /*
936 * Loop through allocation groups, looking for one with a little
937 * free space in it. Note we don't look for free inodes, exactly.
938 * Instead, we include whether there is a need to allocate inodes
5000d01d 939 * to mean that blocks must be allocated for them,
2bd0ea18
NS
940 * if none are currently free.
941 */
942 agno = pagno;
943 flags = XFS_ALLOC_FLAG_TRYLOCK;
944 for (;;) {
56b2de80 945 pag = xfs_perag_get(mp, agno);
a2ceac1f
DC
946 if (!pag->pagi_inodeok) {
947 xfs_ialloc_next_ag(mp);
948 goto nextag;
949 }
950
2bd0ea18 951 if (!pag->pagi_init) {
a2ceac1f
DC
952 error = xfs_ialloc_pagi_init(mp, tp, agno);
953 if (error)
2bd0ea18 954 goto nextag;
a2ceac1f 955 }
34317449 956
a2ceac1f
DC
957 if (pag->pagi_freecount) {
958 xfs_perag_put(pag);
959 return agno;
34317449
NS
960 }
961
a2ceac1f
DC
962 if (!okalloc)
963 goto nextag;
964
965 if (!pag->pagf_init) {
966 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
967 if (error)
2bd0ea18 968 goto nextag;
2bd0ea18 969 }
a2ceac1f
DC
970
971 /*
5a35bf2c
DC
972 * Check that there is enough free space for the file plus a
973 * chunk of inodes if we need to allocate some. If this is the
974 * first pass across the AGs, take into account the potential
975 * space needed for alignment of inode chunks when checking the
976 * longest contiguous free space in the AG - this prevents us
977 * from getting ENOSPC because we have free space larger than
978 * m_ialloc_blks but alignment constraints prevent us from using
979 * it.
980 *
981 * If we can't find an AG with space for full alignment slack to
982 * be taken into account, we must be near ENOSPC in all AGs.
983 * Hence we don't include alignment for the second pass and so
984 * if we fail allocation due to alignment issues then it is most
985 * likely a real ENOSPC condition.
a2ceac1f 986 */
62dc6cdb 987 ineed = mp->m_ialloc_min_blks;
5a35bf2c
DC
988 if (flags && ineed > 1)
989 ineed += xfs_ialloc_cluster_alignment(mp);
a2ceac1f
DC
990 longest = pag->pagf_longest;
991 if (!longest)
992 longest = pag->pagf_flcount > 0;
993
994 if (pag->pagf_freeblks >= needspace + ineed &&
995 longest >= ineed) {
996 xfs_perag_put(pag);
997 return agno;
2bd0ea18 998 }
5000d01d 999nextag:
56b2de80 1000 xfs_perag_put(pag);
5000d01d 1001 /*
2bd0ea18
NS
1002 * No point in iterating over the rest, if we're shutting
1003 * down.
1004 */
56b2de80 1005 if (XFS_FORCED_SHUTDOWN(mp))
a2ceac1f 1006 return NULLAGNUMBER;
2bd0ea18 1007 agno++;
5ce1d1f7 1008 if (agno >= agcount)
2bd0ea18
NS
1009 agno = 0;
1010 if (agno == pagno) {
56b2de80 1011 if (flags == 0)
a2ceac1f 1012 return NULLAGNUMBER;
2bd0ea18
NS
1013 flags = 0;
1014 }
1015 }
1016}
1017
56b2de80
DC
1018/*
1019 * Try to retrieve the next record to the left/right from the current one.
1020 */
1021STATIC int
1022xfs_ialloc_next_rec(
1023 struct xfs_btree_cur *cur,
1024 xfs_inobt_rec_incore_t *rec,
1025 int *done,
1026 int left)
1027{
1028 int error;
1029 int i;
1030
1031 if (left)
1032 error = xfs_btree_decrement(cur, 0, &i);
1033 else
1034 error = xfs_btree_increment(cur, 0, &i);
1035
1036 if (error)
1037 return error;
1038 *done = !i;
1039 if (i) {
1040 error = xfs_inobt_get_rec(cur, rec, &i);
1041 if (error)
1042 return error;
19ebedcf 1043 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
56b2de80
DC
1044 }
1045
1046 return 0;
1047}
1048
1049STATIC int
1050xfs_ialloc_get_rec(
1051 struct xfs_btree_cur *cur,
1052 xfs_agino_t agino,
1053 xfs_inobt_rec_incore_t *rec,
3439d03a 1054 int *done)
56b2de80
DC
1055{
1056 int error;
1057 int i;
1058
1059 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1060 if (error)
1061 return error;
1062 *done = !i;
1063 if (i) {
1064 error = xfs_inobt_get_rec(cur, rec, &i);
1065 if (error)
1066 return error;
19ebedcf 1067 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
56b2de80
DC
1068 }
1069
1070 return 0;
1071}
1072
01792d3b 1073/*
fa58183c
BF
1074 * Return the offset of the first free inode in the record. If the inode chunk
1075 * is sparsely allocated, we convert the record holemask to inode granularity
1076 * and mask off the unallocated regions from the inode free mask.
01792d3b
BF
1077 */
1078STATIC int
1079xfs_inobt_first_free_inode(
1080 struct xfs_inobt_rec_incore *rec)
1081{
fa58183c
BF
1082 xfs_inofree_t realfree;
1083
1084 /* if there are no holes, return the first available offset */
1085 if (!xfs_inobt_issparse(rec->ir_holemask))
1086 return xfs_lowbit64(rec->ir_free);
1087
1088 realfree = xfs_inobt_irec_to_allocmask(rec);
1089 realfree &= rec->ir_free;
1090
1091 return xfs_lowbit64(realfree);
01792d3b
BF
1092}
1093
5000d01d 1094/*
ff105f75 1095 * Allocate an inode using the inobt-only algorithm.
2bd0ea18 1096 */
a2ceac1f 1097STATIC int
ff105f75 1098xfs_dialloc_ag_inobt(
a2ceac1f
DC
1099 struct xfs_trans *tp,
1100 struct xfs_buf *agbp,
1101 xfs_ino_t parent,
1102 xfs_ino_t *inop)
2bd0ea18 1103{
a2ceac1f
DC
1104 struct xfs_mount *mp = tp->t_mountp;
1105 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1106 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1107 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1108 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1109 struct xfs_perag *pag;
1110 struct xfs_btree_cur *cur, *tcur;
1111 struct xfs_inobt_rec_incore rec, trec;
1112 xfs_ino_t ino;
1113 int error;
1114 int offset;
1115 int i, j;
2bd0ea18 1116
56b2de80
DC
1117 pag = xfs_perag_get(mp, agno);
1118
a2ceac1f
DC
1119 ASSERT(pag->pagi_init);
1120 ASSERT(pag->pagi_inodeok);
1121 ASSERT(pag->pagi_freecount > 0);
1122
56b2de80 1123 restart_pagno:
70eb7337 1124 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2bd0ea18
NS
1125 /*
1126 * If pagino is 0 (this is the root inode allocation) use newino.
1127 * This must work because we've just allocated some.
1128 */
1129 if (!pagino)
6e3140c7 1130 pagino = be32_to_cpu(agi->agi_newino);
2bd0ea18 1131
56b2de80
DC
1132 error = xfs_check_agi_freecount(cur, agi);
1133 if (error)
1134 goto error0;
2bd0ea18 1135
2bd0ea18 1136 /*
56b2de80 1137 * If in the same AG as the parent, try to get near the parent.
2bd0ea18
NS
1138 */
1139 if (pagno == agno) {
56b2de80
DC
1140 int doneleft; /* done, to the left */
1141 int doneright; /* done, to the right */
1142 int searchdistance = 10;
1143
1144 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1145 if (error)
2bd0ea18 1146 goto error0;
19ebedcf 1147 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
56b2de80
DC
1148
1149 error = xfs_inobt_get_rec(cur, &rec, &j);
1150 if (error)
1151 goto error0;
19ebedcf 1152 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
56b2de80
DC
1153
1154 if (rec.ir_freecount > 0) {
2bd0ea18
NS
1155 /*
1156 * Found a free inode in the same chunk
56b2de80 1157 * as the parent, done.
2bd0ea18 1158 */
56b2de80 1159 goto alloc_inode;
2bd0ea18 1160 }
56b2de80
DC
1161
1162
1163 /*
1164 * In the same AG as parent, but parent's chunk is full.
1165 */
1166
1167 /* duplicate the cursor, search left & right simultaneously */
1168 error = xfs_btree_dup_cursor(cur, &tcur);
1169 if (error)
1170 goto error0;
1171
2bd0ea18 1172 /*
56b2de80 1173 * Skip to last blocks looked up if same parent inode.
2bd0ea18 1174 */
56b2de80
DC
1175 if (pagino != NULLAGINO &&
1176 pag->pagl_pagino == pagino &&
1177 pag->pagl_leftrec != NULLAGINO &&
1178 pag->pagl_rightrec != NULLAGINO) {
1179 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
3439d03a 1180 &trec, &doneleft);
56b2de80
DC
1181 if (error)
1182 goto error1;
2bd0ea18 1183
56b2de80 1184 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
3439d03a 1185 &rec, &doneright);
2bd0ea18 1186 if (error)
2bd0ea18 1187 goto error1;
56b2de80
DC
1188 } else {
1189 /* search left with tcur, back up 1 record */
1190 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1191 if (error)
2bd0ea18 1192 goto error1;
2bd0ea18 1193
56b2de80
DC
1194 /* search right with cur, go forward 1 record. */
1195 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1196 if (error)
1197 goto error1;
1198 }
1199
1200 /*
1201 * Loop until we find an inode chunk with a free inode.
1202 */
1203 while (!doneleft || !doneright) {
1204 int useleft; /* using left inode chunk this time */
1205
1206 if (!--searchdistance) {
2bd0ea18 1207 /*
56b2de80
DC
1208 * Not in range - save last search
1209 * location and allocate a new inode
2bd0ea18 1210 */
56b2de80
DC
1211 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1212 pag->pagl_leftrec = trec.ir_startino;
1213 pag->pagl_rightrec = rec.ir_startino;
1214 pag->pagl_pagino = pagino;
1215 goto newino;
2bd0ea18 1216 }
56b2de80
DC
1217
1218 /* figure out the closer block if both are valid. */
1219 if (!doneleft && !doneright) {
1220 useleft = pagino -
1221 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1222 rec.ir_startino - pagino;
1223 } else {
1224 useleft = !doneleft;
1225 }
1226
1227 /* free inodes to the left? */
1228 if (useleft && trec.ir_freecount) {
1229 rec = trec;
1230 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1231 cur = tcur;
1232
1233 pag->pagl_leftrec = trec.ir_startino;
1234 pag->pagl_rightrec = rec.ir_startino;
1235 pag->pagl_pagino = pagino;
1236 goto alloc_inode;
1237 }
1238
1239 /* free inodes to the right? */
1240 if (!useleft && rec.ir_freecount) {
1241 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1242
1243 pag->pagl_leftrec = trec.ir_startino;
1244 pag->pagl_rightrec = rec.ir_startino;
1245 pag->pagl_pagino = pagino;
1246 goto alloc_inode;
1247 }
1248
1249 /* get next record to check */
1250 if (useleft) {
1251 error = xfs_ialloc_next_rec(tcur, &trec,
1252 &doneleft, 1);
1253 } else {
1254 error = xfs_ialloc_next_rec(cur, &rec,
1255 &doneright, 0);
1256 }
1257 if (error)
1258 goto error1;
2bd0ea18 1259 }
56b2de80
DC
1260
1261 /*
1262 * We've reached the end of the btree. because
1263 * we are only searching a small chunk of the
1264 * btree each search, there is obviously free
1265 * inodes closer to the parent inode than we
1266 * are now. restart the search again.
1267 */
1268 pag->pagl_pagino = NULLAGINO;
1269 pag->pagl_leftrec = NULLAGINO;
1270 pag->pagl_rightrec = NULLAGINO;
1271 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1272 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1273 goto restart_pagno;
2bd0ea18 1274 }
56b2de80 1275
2bd0ea18 1276 /*
56b2de80 1277 * In a different AG from the parent.
2bd0ea18
NS
1278 * See if the most recently allocated block has any free.
1279 */
56b2de80 1280newino:
a2ceac1f 1281 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
56b2de80
DC
1282 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1283 XFS_LOOKUP_EQ, &i);
1284 if (error)
2bd0ea18 1285 goto error0;
56b2de80
DC
1286
1287 if (i == 1) {
1288 error = xfs_inobt_get_rec(cur, &rec, &j);
2bd0ea18
NS
1289 if (error)
1290 goto error0;
56b2de80
DC
1291
1292 if (j == 1 && rec.ir_freecount > 0) {
1293 /*
1294 * The last chunk allocated in the group
1295 * still has a free inode.
1296 */
1297 goto alloc_inode;
2bd0ea18
NS
1298 }
1299 }
1300 }
56b2de80
DC
1301
1302 /*
1303 * None left in the last group, search the whole AG
1304 */
1305 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1306 if (error)
1307 goto error0;
19ebedcf 1308 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
56b2de80
DC
1309
1310 for (;;) {
1311 error = xfs_inobt_get_rec(cur, &rec, &i);
1312 if (error)
1313 goto error0;
19ebedcf 1314 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
56b2de80
DC
1315 if (rec.ir_freecount > 0)
1316 break;
1317 error = xfs_btree_increment(cur, 0, &i);
1318 if (error)
1319 goto error0;
19ebedcf 1320 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
56b2de80
DC
1321 }
1322
1323alloc_inode:
01792d3b 1324 offset = xfs_inobt_first_free_inode(&rec);
2bd0ea18
NS
1325 ASSERT(offset >= 0);
1326 ASSERT(offset < XFS_INODES_PER_CHUNK);
1327 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1328 XFS_INODES_PER_CHUNK) == 0);
1329 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
56b2de80 1330 rec.ir_free &= ~XFS_INOBT_MASK(offset);
2bd0ea18 1331 rec.ir_freecount--;
56b2de80
DC
1332 error = xfs_inobt_update(cur, &rec);
1333 if (error)
2bd0ea18 1334 goto error0;
5e656dbb 1335 be32_add_cpu(&agi->agi_freecount, -1);
2bd0ea18 1336 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
56b2de80
DC
1337 pag->pagi_freecount--;
1338
1339 error = xfs_check_agi_freecount(cur, agi);
1340 if (error)
1341 goto error0;
2bd0ea18 1342
2bd0ea18
NS
1343 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1344 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
56b2de80 1345 xfs_perag_put(pag);
2bd0ea18
NS
1346 *inop = ino;
1347 return 0;
1348error1:
1349 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1350error0:
1351 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
56b2de80 1352 xfs_perag_put(pag);
2bd0ea18
NS
1353 return error;
1354}
1355
ff105f75
DC
1356/*
1357 * Use the free inode btree to allocate an inode based on distance from the
1358 * parent. Note that the provided cursor may be deleted and replaced.
1359 */
1360STATIC int
1361xfs_dialloc_ag_finobt_near(
1362 xfs_agino_t pagino,
1363 struct xfs_btree_cur **ocur,
1364 struct xfs_inobt_rec_incore *rec)
1365{
1366 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1367 struct xfs_btree_cur *rcur; /* right search cursor */
1368 struct xfs_inobt_rec_incore rrec;
1369 int error;
1370 int i, j;
1371
1372 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1373 if (error)
1374 return error;
1375
1376 if (i == 1) {
1377 error = xfs_inobt_get_rec(lcur, rec, &i);
1378 if (error)
1379 return error;
19ebedcf 1380 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
ff105f75
DC
1381
1382 /*
1383 * See if we've landed in the parent inode record. The finobt
1384 * only tracks chunks with at least one free inode, so record
1385 * existence is enough.
1386 */
1387 if (pagino >= rec->ir_startino &&
1388 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1389 return 0;
1390 }
1391
1392 error = xfs_btree_dup_cursor(lcur, &rcur);
1393 if (error)
1394 return error;
1395
1396 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1397 if (error)
1398 goto error_rcur;
1399 if (j == 1) {
1400 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1401 if (error)
1402 goto error_rcur;
19ebedcf 1403 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
ff105f75
DC
1404 }
1405
19ebedcf 1406 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
ff105f75
DC
1407 if (i == 1 && j == 1) {
1408 /*
1409 * Both the left and right records are valid. Choose the closer
1410 * inode chunk to the target.
1411 */
1412 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1413 (rrec.ir_startino - pagino)) {
1414 *rec = rrec;
1415 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1416 *ocur = rcur;
1417 } else {
1418 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1419 }
1420 } else if (j == 1) {
1421 /* only the right record is valid */
1422 *rec = rrec;
1423 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1424 *ocur = rcur;
1425 } else if (i == 1) {
1426 /* only the left record is valid */
1427 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1428 }
1429
1430 return 0;
1431
1432error_rcur:
1433 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1434 return error;
1435}
1436
1437/*
1438 * Use the free inode btree to find a free inode based on a newino hint. If
1439 * the hint is NULL, find the first free inode in the AG.
1440 */
1441STATIC int
1442xfs_dialloc_ag_finobt_newino(
1443 struct xfs_agi *agi,
1444 struct xfs_btree_cur *cur,
1445 struct xfs_inobt_rec_incore *rec)
1446{
1447 int error;
1448 int i;
1449
1450 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1451 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1452 XFS_LOOKUP_EQ, &i);
1453 if (error)
1454 return error;
1455 if (i == 1) {
1456 error = xfs_inobt_get_rec(cur, rec, &i);
1457 if (error)
1458 return error;
19ebedcf 1459 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
ff105f75
DC
1460 return 0;
1461 }
1462 }
1463
1464 /*
1465 * Find the first inode available in the AG.
1466 */
1467 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1468 if (error)
1469 return error;
19ebedcf 1470 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
ff105f75
DC
1471
1472 error = xfs_inobt_get_rec(cur, rec, &i);
1473 if (error)
1474 return error;
19ebedcf 1475 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
ff105f75
DC
1476
1477 return 0;
1478}
1479
1480/*
1481 * Update the inobt based on a modification made to the finobt. Also ensure that
1482 * the records from both trees are equivalent post-modification.
1483 */
1484STATIC int
1485xfs_dialloc_ag_update_inobt(
1486 struct xfs_btree_cur *cur, /* inobt cursor */
1487 struct xfs_inobt_rec_incore *frec, /* finobt record */
1488 int offset) /* inode offset */
1489{
1490 struct xfs_inobt_rec_incore rec;
1491 int error;
1492 int i;
1493
1494 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1495 if (error)
1496 return error;
19ebedcf 1497 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
ff105f75
DC
1498
1499 error = xfs_inobt_get_rec(cur, &rec, &i);
1500 if (error)
1501 return error;
19ebedcf 1502 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
ff105f75
DC
1503 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1504 XFS_INODES_PER_CHUNK) == 0);
1505
1506 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1507 rec.ir_freecount--;
1508
19ebedcf 1509 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
ff105f75
DC
1510 (rec.ir_freecount == frec->ir_freecount));
1511
5a35bf2c 1512 return xfs_inobt_update(cur, &rec);
ff105f75
DC
1513}
1514
1515/*
1516 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1517 * back to the inobt search algorithm.
1518 *
1519 * The caller selected an AG for us, and made sure that free inodes are
1520 * available.
1521 */
88fc7306
BF
1522STATIC int
1523xfs_dialloc_ag(
1524 struct xfs_trans *tp,
1525 struct xfs_buf *agbp,
1526 xfs_ino_t parent,
1527 xfs_ino_t *inop)
1528{
1529 struct xfs_mount *mp = tp->t_mountp;
1530 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1531 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1532 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1533 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1534 struct xfs_perag *pag;
ff105f75
DC
1535 struct xfs_btree_cur *cur; /* finobt cursor */
1536 struct xfs_btree_cur *icur; /* inobt cursor */
88fc7306 1537 struct xfs_inobt_rec_incore rec;
88fc7306
BF
1538 xfs_ino_t ino;
1539 int error;
1540 int offset;
ff105f75 1541 int i;
88fc7306
BF
1542
1543 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
ff105f75 1544 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
88fc7306
BF
1545
1546 pag = xfs_perag_get(mp, agno);
1547
1548 /*
1549 * If pagino is 0 (this is the root inode allocation) use newino.
1550 * This must work because we've just allocated some.
1551 */
1552 if (!pagino)
1553 pagino = be32_to_cpu(agi->agi_newino);
1554
1555 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1556
1557 error = xfs_check_agi_freecount(cur, agi);
1558 if (error)
1559 goto error_cur;
1560
ff105f75
DC
1561 /*
1562 * The search algorithm depends on whether we're in the same AG as the
1563 * parent. If so, find the closest available inode to the parent. If
1564 * not, consider the agi hint or find the first free inode in the AG.
1565 */
1566 if (agno == pagno)
1567 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1568 else
1569 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1570 if (error)
1571 goto error_cur;
88fc7306 1572
01792d3b 1573 offset = xfs_inobt_first_free_inode(&rec);
88fc7306
BF
1574 ASSERT(offset >= 0);
1575 ASSERT(offset < XFS_INODES_PER_CHUNK);
1576 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1577 XFS_INODES_PER_CHUNK) == 0);
1578 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1579
1580 /*
1581 * Modify or remove the finobt record.
1582 */
1583 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1584 rec.ir_freecount--;
ff105f75 1585 if (rec.ir_freecount)
88fc7306
BF
1586 error = xfs_inobt_update(cur, &rec);
1587 else
1588 error = xfs_btree_delete(cur, &i);
1589 if (error)
1590 goto error_cur;
1591
1592 /*
ff105f75
DC
1593 * The finobt has now been updated appropriately. We haven't updated the
1594 * agi and superblock yet, so we can create an inobt cursor and validate
1595 * the original freecount. If all is well, make the equivalent update to
1596 * the inobt using the finobt record and offset information.
88fc7306 1597 */
ff105f75 1598 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
88fc7306 1599
ff105f75 1600 error = xfs_check_agi_freecount(icur, agi);
88fc7306 1601 if (error)
ff105f75 1602 goto error_icur;
88fc7306 1603
ff105f75 1604 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
88fc7306 1605 if (error)
ff105f75 1606 goto error_icur;
88fc7306
BF
1607
1608 /*
ff105f75
DC
1609 * Both trees have now been updated. We must update the perag and
1610 * superblock before we can check the freecount for each btree.
88fc7306
BF
1611 */
1612 be32_add_cpu(&agi->agi_freecount, -1);
1613 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1614 pag->pagi_freecount--;
1615
1616 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1617
ff105f75 1618 error = xfs_check_agi_freecount(icur, agi);
88fc7306 1619 if (error)
ff105f75 1620 goto error_icur;
88fc7306
BF
1621 error = xfs_check_agi_freecount(cur, agi);
1622 if (error)
ff105f75 1623 goto error_icur;
88fc7306 1624
ff105f75 1625 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
88fc7306
BF
1626 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1627 xfs_perag_put(pag);
1628 *inop = ino;
1629 return 0;
1630
ff105f75
DC
1631error_icur:
1632 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
88fc7306
BF
1633error_cur:
1634 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1635 xfs_perag_put(pag);
1636 return error;
1637}
1638
a2ceac1f
DC
1639/*
1640 * Allocate an inode on disk.
1641 *
1642 * Mode is used to tell whether the new inode will need space, and whether it
1643 * is a directory.
1644 *
1645 * This function is designed to be called twice if it has to do an allocation
1646 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1647 * If an inode is available without having to performn an allocation, an inode
1648 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1649 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1650 * The caller should then commit the current transaction, allocate a
1651 * new transaction, and call xfs_dialloc() again, passing in the previous value
1652 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1653 * buffer is locked across the two calls, the second call is guaranteed to have
1654 * a free inode available.
1655 *
1656 * Once we successfully pick an inode its number is returned and the on-disk
1657 * data structures are updated. The inode itself is not read in, since doing so
1658 * would break ordering constraints with xfs_reclaim.
1659 */
1660int
1661xfs_dialloc(
1662 struct xfs_trans *tp,
1663 xfs_ino_t parent,
1664 umode_t mode,
1665 int okalloc,
1666 struct xfs_buf **IO_agbp,
1667 xfs_ino_t *inop)
1668{
1669 struct xfs_mount *mp = tp->t_mountp;
1670 struct xfs_buf *agbp;
1671 xfs_agnumber_t agno;
1672 int error;
1673 int ialloced;
1674 int noroom = 0;
1675 xfs_agnumber_t start_agno;
1676 struct xfs_perag *pag;
1677
1678 if (*IO_agbp) {
1679 /*
1680 * If the caller passes in a pointer to the AGI buffer,
1681 * continue where we left off before. In this case, we
1682 * know that the allocation group has free inodes.
1683 */
1684 agbp = *IO_agbp;
1685 goto out_alloc;
1686 }
1687
1688 /*
1689 * We do not have an agbp, so select an initial allocation
1690 * group for inode allocation.
1691 */
1692 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1693 if (start_agno == NULLAGNUMBER) {
1694 *inop = NULLFSINO;
1695 return 0;
1696 }
1697
1698 /*
1699 * If we have already hit the ceiling of inode blocks then clear
1700 * okalloc so we scan all available agi structures for a free
1701 * inode.
1702 */
1703 if (mp->m_maxicount &&
19ebedcf
DC
1704 percpu_counter_read(&mp->m_icount) + mp->m_ialloc_inos >
1705 mp->m_maxicount) {
a2ceac1f
DC
1706 noroom = 1;
1707 okalloc = 0;
1708 }
1709
1710 /*
1711 * Loop until we find an allocation group that either has free inodes
1712 * or in which we can allocate some inodes. Iterate through the
1713 * allocation groups upward, wrapping at the end.
1714 */
1715 agno = start_agno;
1716 for (;;) {
1717 pag = xfs_perag_get(mp, agno);
1718 if (!pag->pagi_inodeok) {
1719 xfs_ialloc_next_ag(mp);
1720 goto nextag;
1721 }
1722
1723 if (!pag->pagi_init) {
1724 error = xfs_ialloc_pagi_init(mp, tp, agno);
1725 if (error)
1726 goto out_error;
1727 }
1728
1729 /*
1730 * Do a first racy fast path check if this AG is usable.
1731 */
1732 if (!pag->pagi_freecount && !okalloc)
1733 goto nextag;
1734
1735 /*
1736 * Then read in the AGI buffer and recheck with the AGI buffer
1737 * lock held.
1738 */
1739 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1740 if (error)
1741 goto out_error;
1742
1743 if (pag->pagi_freecount) {
1744 xfs_perag_put(pag);
1745 goto out_alloc;
1746 }
1747
1748 if (!okalloc)
1749 goto nextag_relse_buffer;
1750
1751
1752 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1753 if (error) {
1754 xfs_trans_brelse(tp, agbp);
1755
12b53197 1756 if (error != -ENOSPC)
a2ceac1f
DC
1757 goto out_error;
1758
1759 xfs_perag_put(pag);
1760 *inop = NULLFSINO;
1761 return 0;
1762 }
1763
1764 if (ialloced) {
1765 /*
1766 * We successfully allocated some inodes, return
1767 * the current context to the caller so that it
1768 * can commit the current transaction and call
1769 * us again where we left off.
1770 */
1771 ASSERT(pag->pagi_freecount > 0);
1772 xfs_perag_put(pag);
1773
1774 *IO_agbp = agbp;
1775 *inop = NULLFSINO;
1776 return 0;
1777 }
1778
1779nextag_relse_buffer:
1780 xfs_trans_brelse(tp, agbp);
1781nextag:
1782 xfs_perag_put(pag);
1783 if (++agno == mp->m_sb.sb_agcount)
1784 agno = 0;
1785 if (agno == start_agno) {
1786 *inop = NULLFSINO;
12b53197 1787 return noroom ? -ENOSPC : 0;
a2ceac1f
DC
1788 }
1789 }
1790
1791out_alloc:
1792 *IO_agbp = NULL;
1793 return xfs_dialloc_ag(tp, agbp, parent, inop);
1794out_error:
1795 xfs_perag_put(pag);
1e68581b 1796 return error;
a2ceac1f
DC
1797}
1798
7338c4b8
BF
1799/*
1800 * Free the blocks of an inode chunk. We must consider that the inode chunk
1801 * might be sparse and only free the regions that are allocated as part of the
1802 * chunk.
1803 */
1804STATIC void
1805xfs_difree_inode_chunk(
1806 struct xfs_mount *mp,
1807 xfs_agnumber_t agno,
1808 struct xfs_inobt_rec_incore *rec,
1809 struct xfs_bmap_free *flist)
1810{
1811 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1812 int startidx, endidx;
1813 int nextbit;
1814 xfs_agblock_t agbno;
1815 int contigblk;
1816 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1817
1818 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1819 /* not sparse, calculate extent info directly */
1820 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1821 XFS_AGINO_TO_AGBNO(mp, rec->ir_startino)),
1822 mp->m_ialloc_blks, flist, mp);
1823 return;
1824 }
1825
1826 /* holemask is only 16-bits (fits in an unsigned long) */
1827 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1828 holemask[0] = rec->ir_holemask;
1829
1830 /*
1831 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1832 * holemask and convert the start/end index of each range to an extent.
1833 * We start with the start and end index both pointing at the first 0 in
1834 * the mask.
1835 */
1836 startidx = endidx = find_first_zero_bit(holemask,
1837 XFS_INOBT_HOLEMASK_BITS);
1838 nextbit = startidx + 1;
1839 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1840 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1841 nextbit);
1842 /*
1843 * If the next zero bit is contiguous, update the end index of
1844 * the current range and continue.
1845 */
1846 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1847 nextbit == endidx + 1) {
1848 endidx = nextbit;
1849 goto next;
1850 }
1851
1852 /*
1853 * nextbit is not contiguous with the current end index. Convert
1854 * the current start/end to an extent and add it to the free
1855 * list.
1856 */
1857 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1858 mp->m_sb.sb_inopblock;
1859 contigblk = ((endidx - startidx + 1) *
1860 XFS_INODES_PER_HOLEMASK_BIT) /
1861 mp->m_sb.sb_inopblock;
1862
1863 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1864 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1865 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1866 flist, mp);
1867
1868 /* reset range to current bit and carry on... */
1869 startidx = endidx = nextbit;
1870
1871next:
1872 nextbit++;
1873 }
1874}
1875
eb9a297a
BF
1876STATIC int
1877xfs_difree_inobt(
1878 struct xfs_mount *mp,
1879 struct xfs_trans *tp,
1880 struct xfs_buf *agbp,
1881 xfs_agino_t agino,
1882 struct xfs_bmap_free *flist,
1883 int *deleted,
1884 xfs_ino_t *first_ino,
1885 struct xfs_inobt_rec_incore *orec)
3439d03a 1886{
eb9a297a
BF
1887 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1888 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1889 struct xfs_perag *pag;
1890 struct xfs_btree_cur *cur;
1891 struct xfs_inobt_rec_incore rec;
1892 int ilen;
1893 int error;
1894 int i;
1895 int off;
3439d03a 1896
3439d03a 1897 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
eb9a297a
BF
1898 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1899
3439d03a
DC
1900 /*
1901 * Initialize the cursor.
1902 */
70eb7337 1903 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
3439d03a
DC
1904
1905 error = xfs_check_agi_freecount(cur, agi);
1906 if (error)
1907 goto error0;
1908
1909 /*
1910 * Look for the entry describing this inode.
1911 */
1912 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1913 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1914 __func__, error);
1915 goto error0;
1916 }
19ebedcf 1917 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
3439d03a
DC
1918 error = xfs_inobt_get_rec(cur, &rec, &i);
1919 if (error) {
1920 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1921 __func__, error);
1922 goto error0;
1923 }
19ebedcf 1924 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
3439d03a
DC
1925 /*
1926 * Get the offset in the inode chunk.
1927 */
1928 off = agino - rec.ir_startino;
1929 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1930 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1931 /*
1932 * Mark the inode free & increment the count.
1933 */
1934 rec.ir_free |= XFS_INOBT_MASK(off);
1935 rec.ir_freecount++;
1936
1937 /*
f6580bcf
BF
1938 * When an inode chunk is free, it becomes eligible for removal. Don't
1939 * remove the chunk if the block size is large enough for multiple inode
1940 * chunks (that might not be free).
3439d03a
DC
1941 */
1942 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
f6580bcf
BF
1943 rec.ir_free == XFS_INOBT_ALL_FREE &&
1944 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
3439d03a 1945
66260204 1946 *deleted = 1;
3439d03a
DC
1947 *first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1948
1949 /*
1950 * Remove the inode cluster from the AGI B+Tree, adjust the
1951 * AGI and Superblock inode counts, and mark the disk space
1952 * to be freed when the transaction is committed.
1953 */
f6580bcf 1954 ilen = rec.ir_freecount;
3439d03a
DC
1955 be32_add_cpu(&agi->agi_count, -ilen);
1956 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1957 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1958 pag = xfs_perag_get(mp, agno);
1959 pag->pagi_freecount -= ilen - 1;
1960 xfs_perag_put(pag);
1961 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1962 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1963
1964 if ((error = xfs_btree_delete(cur, &i))) {
1965 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1966 __func__, error);
1967 goto error0;
1968 }
1969
7338c4b8 1970 xfs_difree_inode_chunk(mp, agno, &rec, flist);
3439d03a 1971 } else {
66260204 1972 *deleted = 0;
3439d03a
DC
1973
1974 error = xfs_inobt_update(cur, &rec);
1975 if (error) {
1976 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1977 __func__, error);
1978 goto error0;
1979 }
1980
1981 /*
1982 * Change the inode free counts and log the ag/sb changes.
1983 */
1984 be32_add_cpu(&agi->agi_freecount, 1);
1985 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1986 pag = xfs_perag_get(mp, agno);
1987 pag->pagi_freecount++;
1988 xfs_perag_put(pag);
1989 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1990 }
1991
1992 error = xfs_check_agi_freecount(cur, agi);
1993 if (error)
1994 goto error0;
1995
eb9a297a 1996 *orec = rec;
3439d03a
DC
1997 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1998 return 0;
1999
2000error0:
2001 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2002 return error;
2003}
2004
1bb93fd1
BF
2005/*
2006 * Free an inode in the free inode btree.
2007 */
2008STATIC int
2009xfs_difree_finobt(
2010 struct xfs_mount *mp,
2011 struct xfs_trans *tp,
2012 struct xfs_buf *agbp,
2013 xfs_agino_t agino,
2014 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2015{
2016 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2017 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2018 struct xfs_btree_cur *cur;
2019 struct xfs_inobt_rec_incore rec;
2020 int offset = agino - ibtrec->ir_startino;
2021 int error;
2022 int i;
2023
2024 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2025
2026 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2027 if (error)
2028 goto error;
2029 if (i == 0) {
2030 /*
2031 * If the record does not exist in the finobt, we must have just
2032 * freed an inode in a previously fully allocated chunk. If not,
2033 * something is out of sync.
2034 */
19ebedcf 2035 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
1bb93fd1 2036
11640e30
BF
2037 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2038 ibtrec->ir_count,
2039 ibtrec->ir_freecount,
1bb93fd1
BF
2040 ibtrec->ir_free, &i);
2041 if (error)
2042 goto error;
2043 ASSERT(i == 1);
2044
2045 goto out;
2046 }
2047
2048 /*
ff105f75
DC
2049 * Read and update the existing record. We could just copy the ibtrec
2050 * across here, but that would defeat the purpose of having redundant
2051 * metadata. By making the modifications independently, we can catch
2052 * corruptions that we wouldn't see if we just copied from one record
2053 * to another.
1bb93fd1
BF
2054 */
2055 error = xfs_inobt_get_rec(cur, &rec, &i);
2056 if (error)
2057 goto error;
19ebedcf 2058 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
1bb93fd1
BF
2059
2060 rec.ir_free |= XFS_INOBT_MASK(offset);
2061 rec.ir_freecount++;
2062
19ebedcf 2063 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
1bb93fd1
BF
2064 (rec.ir_freecount == ibtrec->ir_freecount),
2065 error);
2066
2067 /*
2068 * The content of inobt records should always match between the inobt
2069 * and finobt. The lifecycle of records in the finobt is different from
2070 * the inobt in that the finobt only tracks records with at least one
ff105f75
DC
2071 * free inode. Hence, if all of the inodes are free and we aren't
2072 * keeping inode chunks permanently on disk, remove the record.
2073 * Otherwise, update the record with the new information.
f6580bcf
BF
2074 *
2075 * Note that we currently can't free chunks when the block size is large
2076 * enough for multiple chunks. Leave the finobt record to remain in sync
2077 * with the inobt.
1bb93fd1 2078 */
f6580bcf
BF
2079 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2080 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
1bb93fd1 2081 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
1bb93fd1
BF
2082 error = xfs_btree_delete(cur, &i);
2083 if (error)
2084 goto error;
2085 ASSERT(i == 1);
2086 } else {
1bb93fd1
BF
2087 error = xfs_inobt_update(cur, &rec);
2088 if (error)
2089 goto error;
2090 }
2091
2092out:
2093 error = xfs_check_agi_freecount(cur, agi);
2094 if (error)
2095 goto error;
2096
2097 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2098 return 0;
2099
2100error:
2101 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2102 return error;
2103}
2104
eb9a297a
BF
2105/*
2106 * Free disk inode. Carefully avoids touching the incore inode, all
2107 * manipulations incore are the caller's responsibility.
2108 * The on-disk inode is not changed by this operation, only the
2109 * btree (free inode mask) is changed.
2110 */
2111int
2112xfs_difree(
2113 struct xfs_trans *tp, /* transaction pointer */
2114 xfs_ino_t inode, /* inode to be freed */
2115 struct xfs_bmap_free *flist, /* extents to free */
2116 int *deleted,/* set if inode cluster was deleted */
2117 xfs_ino_t *first_ino)/* first inode in deleted cluster */
2118{
2119 /* REFERENCED */
2120 xfs_agblock_t agbno; /* block number containing inode */
2121 struct xfs_buf *agbp; /* buffer for allocation group header */
2122 xfs_agino_t agino; /* allocation group inode number */
2123 xfs_agnumber_t agno; /* allocation group number */
2124 int error; /* error return value */
2125 struct xfs_mount *mp; /* mount structure for filesystem */
2126 struct xfs_inobt_rec_incore rec;/* btree record */
2127
2128 mp = tp->t_mountp;
2129
2130 /*
2131 * Break up inode number into its components.
2132 */
2133 agno = XFS_INO_TO_AGNO(mp, inode);
2134 if (agno >= mp->m_sb.sb_agcount) {
2135 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2136 __func__, agno, mp->m_sb.sb_agcount);
2137 ASSERT(0);
12b53197 2138 return -EINVAL;
eb9a297a
BF
2139 }
2140 agino = XFS_INO_TO_AGINO(mp, inode);
2141 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2142 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2143 __func__, (unsigned long long)inode,
2144 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2145 ASSERT(0);
12b53197 2146 return -EINVAL;
eb9a297a
BF
2147 }
2148 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2149 if (agbno >= mp->m_sb.sb_agblocks) {
2150 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2151 __func__, agbno, mp->m_sb.sb_agblocks);
2152 ASSERT(0);
12b53197 2153 return -EINVAL;
eb9a297a
BF
2154 }
2155 /*
2156 * Get the allocation group header.
2157 */
2158 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2159 if (error) {
2160 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2161 __func__, error);
2162 return error;
2163 }
2164
2165 /*
2166 * Fix up the inode allocation btree.
2167 */
2168 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, deleted, first_ino,
2169 &rec);
2170 if (error)
2171 goto error0;
2172
1bb93fd1
BF
2173 /*
2174 * Fix up the free inode btree.
2175 */
2176 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2177 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2178 if (error)
2179 goto error0;
2180 }
2181
eb9a297a
BF
2182 return 0;
2183
2184error0:
2185 return error;
2186}
2187
56b2de80
DC
2188STATIC int
2189xfs_imap_lookup(
2190 struct xfs_mount *mp,
2191 struct xfs_trans *tp,
2192 xfs_agnumber_t agno,
2193 xfs_agino_t agino,
2194 xfs_agblock_t agbno,
2195 xfs_agblock_t *chunk_agbno,
2196 xfs_agblock_t *offset_agbno,
2197 int flags)
2198{
2199 struct xfs_inobt_rec_incore rec;
2200 struct xfs_btree_cur *cur;
2201 struct xfs_buf *agbp;
2202 int error;
2203 int i;
2204
2205 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2206 if (error) {
a2ceac1f
DC
2207 xfs_alert(mp,
2208 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2209 __func__, error, agno);
56b2de80
DC
2210 return error;
2211 }
2212
2213 /*
2214 * Lookup the inode record for the given agino. If the record cannot be
2215 * found, then it's an invalid inode number and we should abort. Once
2216 * we have a record, we need to ensure it contains the inode number
2217 * we are looking up.
2218 */
70eb7337 2219 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
56b2de80
DC
2220 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2221 if (!error) {
2222 if (i)
2223 error = xfs_inobt_get_rec(cur, &rec, &i);
2224 if (!error && i == 0)
12b53197 2225 error = -EINVAL;
56b2de80
DC
2226 }
2227
2228 xfs_trans_brelse(tp, agbp);
2229 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2230 if (error)
2231 return error;
2232
2233 /* check that the returned record contains the required inode */
2234 if (rec.ir_startino > agino ||
ff105f75 2235 rec.ir_startino + mp->m_ialloc_inos <= agino)
12b53197 2236 return -EINVAL;
56b2de80
DC
2237
2238 /* for untrusted inodes check it is allocated first */
2239 if ((flags & XFS_IGET_UNTRUSTED) &&
2240 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
12b53197 2241 return -EINVAL;
56b2de80
DC
2242
2243 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2244 *offset_agbno = agbno - *chunk_agbno;
2245 return 0;
2246}
2bd0ea18
NS
2247
2248/*
56b2de80 2249 * Return the location of the inode in imap, for mapping it into a buffer.
2bd0ea18 2250 */
2bd0ea18 2251int
56b2de80
DC
2252xfs_imap(
2253 xfs_mount_t *mp, /* file system mount structure */
2254 xfs_trans_t *tp, /* transaction pointer */
2bd0ea18 2255 xfs_ino_t ino, /* inode to locate */
56b2de80
DC
2256 struct xfs_imap *imap, /* location map structure */
2257 uint flags) /* flags for inode btree lookup */
2bd0ea18
NS
2258{
2259 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2bd0ea18
NS
2260 xfs_agino_t agino; /* inode number within alloc group */
2261 xfs_agnumber_t agno; /* allocation group number */
2262 int blks_per_cluster; /* num blocks per inode cluster */
2263 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2bd0ea18 2264 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2bd0ea18 2265 int error; /* error code */
dfc130f3 2266 int offset; /* index of inode in its buffer */
6bddecbc 2267 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2bd0ea18
NS
2268
2269 ASSERT(ino != NULLFSINO);
56b2de80 2270
2bd0ea18
NS
2271 /*
2272 * Split up the inode number into its parts.
2273 */
2274 agno = XFS_INO_TO_AGNO(mp, ino);
2275 agino = XFS_INO_TO_AGINO(mp, ino);
2276 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2277 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
63518810
NS
2278 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2279#ifdef DEBUG
56b2de80
DC
2280 /*
2281 * Don't output diagnostic information for untrusted inodes
2282 * as they can be invalid without implying corruption.
2283 */
2284 if (flags & XFS_IGET_UNTRUSTED)
12b53197 2285 return -EINVAL;
5000d01d 2286 if (agno >= mp->m_sb.sb_agcount) {
a2ceac1f
DC
2287 xfs_alert(mp,
2288 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2289 __func__, agno, mp->m_sb.sb_agcount);
63518810
NS
2290 }
2291 if (agbno >= mp->m_sb.sb_agblocks) {
a2ceac1f
DC
2292 xfs_alert(mp,
2293 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2294 __func__, (unsigned long long)agbno,
2295 (unsigned long)mp->m_sb.sb_agblocks);
63518810
NS
2296 }
2297 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
a2ceac1f
DC
2298 xfs_alert(mp,
2299 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2300 __func__, ino,
2301 XFS_AGINO_TO_INO(mp, agno, agino));
63518810 2302 }
5e656dbb 2303 xfs_stack_trace();
63518810 2304#endif /* DEBUG */
12b53197 2305 return -EINVAL;
63518810 2306 }
56b2de80 2307
ff105f75 2308 blks_per_cluster = xfs_icluster_size_fsb(mp);
56b2de80
DC
2309
2310 /*
2311 * For bulkstat and handle lookups, we have an untrusted inode number
2312 * that we have to verify is valid. We cannot do this just by reading
2313 * the inode buffer as it may have been unlinked and removed leaving
2314 * inodes in stale state on disk. Hence we have to do a btree lookup
2315 * in all cases where an untrusted inode number is passed.
2316 */
2317 if (flags & XFS_IGET_UNTRUSTED) {
2318 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2319 &chunk_agbno, &offset_agbno, flags);
2320 if (error)
2321 return error;
2322 goto out_map;
2323 }
2324
2325 /*
2326 * If the inode cluster size is the same as the blocksize or
2327 * smaller we get to the buffer by simple arithmetics.
2328 */
ff105f75 2329 if (blks_per_cluster == 1) {
2bd0ea18
NS
2330 offset = XFS_INO_TO_OFFSET(mp, ino);
2331 ASSERT(offset < mp->m_sb.sb_inopblock);
56b2de80
DC
2332
2333 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2334 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2335 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2bd0ea18
NS
2336 return 0;
2337 }
56b2de80
DC
2338
2339 /*
2340 * If the inode chunks are aligned then use simple maths to
2341 * find the location. Otherwise we have to do a btree
2342 * lookup to find the location.
2343 */
2bd0ea18
NS
2344 if (mp->m_inoalign_mask) {
2345 offset_agbno = agbno & mp->m_inoalign_mask;
2346 chunk_agbno = agbno - offset_agbno;
2347 } else {
56b2de80
DC
2348 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2349 &chunk_agbno, &offset_agbno, flags);
2bd0ea18
NS
2350 if (error)
2351 return error;
2bd0ea18 2352 }
56b2de80
DC
2353
2354out_map:
2bd0ea18
NS
2355 ASSERT(agbno >= chunk_agbno);
2356 cluster_agbno = chunk_agbno +
2357 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2358 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2359 XFS_INO_TO_OFFSET(mp, ino);
56b2de80
DC
2360
2361 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2362 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2363 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2364
2365 /*
2366 * If the inode number maps to a block outside the bounds
2367 * of the file system then return NULL rather than calling
2368 * read_buf and panicing when we get an error from the
2369 * driver.
2370 */
2371 if ((imap->im_blkno + imap->im_len) >
2372 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
a2ceac1f
DC
2373 xfs_alert(mp,
2374 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2375 __func__, (unsigned long long) imap->im_blkno,
56b2de80
DC
2376 (unsigned long long) imap->im_len,
2377 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
12b53197 2378 return -EINVAL;
56b2de80 2379 }
2bd0ea18 2380 return 0;
2bd0ea18
NS
2381}
2382
2383/*
2384 * Compute and fill in value of m_in_maxlevels.
2385 */
2386void
2387xfs_ialloc_compute_maxlevels(
2388 xfs_mount_t *mp) /* file system mount structure */
2389{
2390 int level;
2391 uint maxblocks;
2392 uint maxleafents;
2393 int minleafrecs;
2394 int minnoderecs;
2395
2396 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
2397 XFS_INODES_PER_CHUNK_LOG;
2398 minleafrecs = mp->m_alloc_mnr[0];
2399 minnoderecs = mp->m_alloc_mnr[1];
2400 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
2401 for (level = 1; maxblocks > 1; level++)
2402 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
2403 mp->m_in_maxlevels = level;
2404}
2405
2406/*
ff105f75
DC
2407 * Log specified fields for the ag hdr (inode section). The growth of the agi
2408 * structure over time requires that we interpret the buffer as two logical
2409 * regions delineated by the end of the unlinked list. This is due to the size
2410 * of the hash table and its location in the middle of the agi.
2411 *
2412 * For example, a request to log a field before agi_unlinked and a field after
2413 * agi_unlinked could cause us to log the entire hash table and use an excessive
2414 * amount of log space. To avoid this behavior, log the region up through
2415 * agi_unlinked in one call and the region after agi_unlinked through the end of
2416 * the structure in another.
2bd0ea18
NS
2417 */
2418void
2419xfs_ialloc_log_agi(
2420 xfs_trans_t *tp, /* transaction pointer */
2421 xfs_buf_t *bp, /* allocation group header buffer */
2422 int fields) /* bitmask of fields to log */
2423{
2424 int first; /* first byte number */
2425 int last; /* last byte number */
2426 static const short offsets[] = { /* field starting offsets */
2427 /* keep in sync with bit definitions */
2428 offsetof(xfs_agi_t, agi_magicnum),
2429 offsetof(xfs_agi_t, agi_versionnum),
2430 offsetof(xfs_agi_t, agi_seqno),
2431 offsetof(xfs_agi_t, agi_length),
2432 offsetof(xfs_agi_t, agi_count),
2433 offsetof(xfs_agi_t, agi_root),
2434 offsetof(xfs_agi_t, agi_level),
2435 offsetof(xfs_agi_t, agi_freecount),
2436 offsetof(xfs_agi_t, agi_newino),
2437 offsetof(xfs_agi_t, agi_dirino),
2438 offsetof(xfs_agi_t, agi_unlinked),
c0a4c227
BF
2439 offsetof(xfs_agi_t, agi_free_root),
2440 offsetof(xfs_agi_t, agi_free_level),
2bd0ea18
NS
2441 sizeof(xfs_agi_t)
2442 };
2443#ifdef DEBUG
2444 xfs_agi_t *agi; /* allocation group header */
2445
2446 agi = XFS_BUF_TO_AGI(bp);
a2ceac1f 2447 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2bd0ea18 2448#endif
ff105f75 2449
c0a4c227
BF
2450 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2451
2bd0ea18 2452 /*
c0a4c227 2453 * Compute byte offsets for the first and last fields in the first
ff105f75
DC
2454 * region and log the agi buffer. This only logs up through
2455 * agi_unlinked.
2bd0ea18 2456 */
c0a4c227
BF
2457 if (fields & XFS_AGI_ALL_BITS_R1) {
2458 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2459 &first, &last);
2460 xfs_trans_log_buf(tp, bp, first, last);
2461 }
2462
2463 /*
ff105f75
DC
2464 * Mask off the bits in the first region and calculate the first and
2465 * last field offsets for any bits in the second region.
c0a4c227
BF
2466 */
2467 fields &= ~XFS_AGI_ALL_BITS_R1;
2468 if (fields) {
2469 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2470 &first, &last);
2471 xfs_trans_log_buf(tp, bp, first, last);
2472 }
2bd0ea18
NS
2473}
2474
56b2de80
DC
2475#ifdef DEBUG
2476STATIC void
2477xfs_check_agi_unlinked(
2478 struct xfs_agi *agi)
2479{
2480 int i;
2481
2482 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2483 ASSERT(agi->agi_unlinked[i]);
2484}
2485#else
2486#define xfs_check_agi_unlinked(agi)
2487#endif
2488
dd5b876e 2489static bool
a2ceac1f
DC
2490xfs_agi_verify(
2491 struct xfs_buf *bp)
2492{
2493 struct xfs_mount *mp = bp->b_target->bt_mount;
2494 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
a2ceac1f 2495
dd5b876e
DC
2496 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2497 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid))
2498 return false;
a2ceac1f
DC
2499 /*
2500 * Validate the magic number of the agi block.
2501 */
dd5b876e
DC
2502 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2503 return false;
2504 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2505 return false;
a2ceac1f 2506
5a35bf2c
DC
2507 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2508 return false;
a2ceac1f
DC
2509 /*
2510 * during growfs operations, the perag is not fully initialised,
2511 * so we can't use it for any useful checking. growfs ensures we can't
2512 * use it by using uncached buffers that don't have the perag attached
2513 * so we can detect and avoid this problem.
2514 */
dd5b876e
DC
2515 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2516 return false;
a2ceac1f 2517
a2ceac1f 2518 xfs_check_agi_unlinked(agi);
dd5b876e 2519 return true;
a2ceac1f
DC
2520}
2521
2522static void
2523xfs_agi_read_verify(
2524 struct xfs_buf *bp)
2525{
dd5b876e 2526 struct xfs_mount *mp = bp->b_target->bt_mount;
dd5b876e 2527
45922933
DC
2528 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2529 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
12b53197 2530 xfs_buf_ioerror(bp, -EFSBADCRC);
45922933
DC
2531 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2532 XFS_ERRTAG_IALLOC_READ_AGI,
2533 XFS_RANDOM_IALLOC_READ_AGI))
12b53197 2534 xfs_buf_ioerror(bp, -EFSCORRUPTED);
45922933
DC
2535
2536 if (bp->b_error)
2537 xfs_verifier_error(bp);
a2ceac1f
DC
2538}
2539
2540static void
2541xfs_agi_write_verify(
2542 struct xfs_buf *bp)
2543{
dd5b876e
DC
2544 struct xfs_mount *mp = bp->b_target->bt_mount;
2545 struct xfs_buf_log_item *bip = bp->b_fspriv;
2546
2547 if (!xfs_agi_verify(bp)) {
12b53197 2548 xfs_buf_ioerror(bp, -EFSCORRUPTED);
45922933 2549 xfs_verifier_error(bp);
dd5b876e
DC
2550 return;
2551 }
2552
2553 if (!xfs_sb_version_hascrc(&mp->m_sb))
2554 return;
2555
2556 if (bip)
2557 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
43b5aeed 2558 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
a2ceac1f
DC
2559}
2560
2561const struct xfs_buf_ops xfs_agi_buf_ops = {
2562 .verify_read = xfs_agi_read_verify,
2563 .verify_write = xfs_agi_write_verify,
2564};
2565
2bd0ea18
NS
2566/*
2567 * Read in the allocation group header (inode allocation section)
2568 */
2569int
56b2de80
DC
2570xfs_read_agi(
2571 struct xfs_mount *mp, /* file system mount structure */
2572 struct xfs_trans *tp, /* transaction pointer */
2573 xfs_agnumber_t agno, /* allocation group number */
2574 struct xfs_buf **bpp) /* allocation group hdr buf */
2bd0ea18 2575{
56b2de80 2576 int error;
2bd0ea18 2577
ff105f75 2578 trace_xfs_read_agi(mp, agno);
56b2de80 2579
ff105f75 2580 ASSERT(agno != NULLAGNUMBER);
56b2de80 2581 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
9440d84d 2582 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
a2ceac1f 2583 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
9440d84d 2584 if (error)
2bd0ea18 2585 return error;
56b2de80 2586
a2ceac1f 2587 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
56b2de80
DC
2588 return 0;
2589}
2590
2591int
2592xfs_ialloc_read_agi(
2593 struct xfs_mount *mp, /* file system mount structure */
2594 struct xfs_trans *tp, /* transaction pointer */
2595 xfs_agnumber_t agno, /* allocation group number */
2596 struct xfs_buf **bpp) /* allocation group hdr buf */
2597{
2598 struct xfs_agi *agi; /* allocation group header */
2599 struct xfs_perag *pag; /* per allocation group data */
2600 int error;
2601
ff105f75
DC
2602 trace_xfs_ialloc_read_agi(mp, agno);
2603
56b2de80
DC
2604 error = xfs_read_agi(mp, tp, agno, bpp);
2605 if (error)
2606 return error;
2607
2608 agi = XFS_BUF_TO_AGI(*bpp);
2609 pag = xfs_perag_get(mp, agno);
2bd0ea18 2610 if (!pag->pagi_init) {
6e3140c7 2611 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
cdded3d8 2612 pag->pagi_count = be32_to_cpu(agi->agi_count);
2bd0ea18 2613 pag->pagi_init = 1;
9440d84d 2614 }
9440d84d 2615
56b2de80
DC
2616 /*
2617 * It's possible for these to be out of sync if
2618 * we are in the middle of a forced shutdown.
2619 */
2620 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2621 XFS_FORCED_SHUTDOWN(mp));
2622 xfs_perag_put(pag);
2bd0ea18
NS
2623 return 0;
2624}
cdded3d8
DC
2625
2626/*
2627 * Read in the agi to initialise the per-ag data in the mount structure
2628 */
2629int
2630xfs_ialloc_pagi_init(
2631 xfs_mount_t *mp, /* file system mount structure */
2632 xfs_trans_t *tp, /* transaction pointer */
2633 xfs_agnumber_t agno) /* allocation group number */
2634{
2635 xfs_buf_t *bp = NULL;
2636 int error;
2637
5e656dbb
BN
2638 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2639 if (error)
cdded3d8
DC
2640 return error;
2641 if (bp)
2642 xfs_trans_brelse(tp, bp);
2643 return 0;
2644}