]>
Commit | Line | Data |
---|---|---|
37b3b4d6 | 1 | // SPDX-License-Identifier: GPL-2.0 |
2bd0ea18 | 2 | /* |
da23017d NS |
3 | * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
4 | * All Rights Reserved. | |
2bd0ea18 | 5 | */ |
9c799827 | 6 | #include "libxfs_priv.h" |
b626fb59 DC |
7 | #include "xfs_fs.h" |
8 | #include "xfs_shared.h" | |
9 | #include "xfs_format.h" | |
10 | #include "xfs_log_format.h" | |
11 | #include "xfs_trans_resv.h" | |
12 | #include "xfs_bit.h" | |
b626fb59 DC |
13 | #include "xfs_mount.h" |
14 | #include "xfs_inode.h" | |
15 | #include "xfs_btree.h" | |
16 | #include "xfs_ialloc.h" | |
17 | #include "xfs_ialloc_btree.h" | |
18 | #include "xfs_alloc.h" | |
2cf10e4c | 19 | #include "xfs_errortag.h" |
b626fb59 | 20 | #include "xfs_bmap.h" |
b626fb59 DC |
21 | #include "xfs_trans.h" |
22 | #include "xfs_trace.h" | |
85aec44f | 23 | #include "xfs_rmap.h" |
f93d2173 | 24 | #include "xfs_ag.h" |
ad6fabbe | 25 | #include "xfs_health.h" |
2bd0ea18 | 26 | |
b194c7d8 | 27 | /* |
56b2de80 | 28 | * Lookup a record by ino in the btree given by cur. |
b194c7d8 BN |
29 | */ |
30 | int /* error */ | |
56b2de80 | 31 | xfs_inobt_lookup( |
b194c7d8 BN |
32 | struct xfs_btree_cur *cur, /* btree cursor */ |
33 | xfs_agino_t ino, /* starting inode of chunk */ | |
56b2de80 | 34 | xfs_lookup_t dir, /* <=, >=, == */ |
b194c7d8 BN |
35 | int *stat) /* success/failure */ |
36 | { | |
37 | cur->bc_rec.i.ir_startino = ino; | |
11640e30 BF |
38 | cur->bc_rec.i.ir_holemask = 0; |
39 | cur->bc_rec.i.ir_count = 0; | |
56b2de80 DC |
40 | cur->bc_rec.i.ir_freecount = 0; |
41 | cur->bc_rec.i.ir_free = 0; | |
42 | return xfs_btree_lookup(cur, dir, stat); | |
b194c7d8 BN |
43 | } |
44 | ||
45 | /* | |
56b2de80 | 46 | * Update the record referred to by cur to the value given. |
b194c7d8 BN |
47 | * This either works (return 0) or gets an EFSCORRUPTED error. |
48 | */ | |
49 | STATIC int /* error */ | |
50 | xfs_inobt_update( | |
51 | struct xfs_btree_cur *cur, /* btree cursor */ | |
56b2de80 | 52 | xfs_inobt_rec_incore_t *irec) /* btree record */ |
b194c7d8 BN |
53 | { |
54 | union xfs_btree_rec rec; | |
55 | ||
56b2de80 | 56 | rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); |
b16a427a | 57 | if (xfs_has_sparseinodes(cur->bc_mp)) { |
11640e30 BF |
58 | rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); |
59 | rec.inobt.ir_u.sp.ir_count = irec->ir_count; | |
60 | rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; | |
61 | } else { | |
62 | /* ir_holemask/ir_count not supported on-disk */ | |
63 | rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); | |
64 | } | |
56b2de80 | 65 | rec.inobt.ir_free = cpu_to_be64(irec->ir_free); |
b194c7d8 BN |
66 | return xfs_btree_update(cur, &rec); |
67 | } | |
68 | ||
b5f6747c DW |
69 | /* Convert on-disk btree record to incore inobt record. */ |
70 | void | |
71 | xfs_inobt_btrec_to_irec( | |
72 | struct xfs_mount *mp, | |
e62318a3 | 73 | const union xfs_btree_rec *rec, |
b5f6747c | 74 | struct xfs_inobt_rec_incore *irec) |
b194c7d8 | 75 | { |
11640e30 | 76 | irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); |
b16a427a | 77 | if (xfs_has_sparseinodes(mp)) { |
11640e30 BF |
78 | irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); |
79 | irec->ir_count = rec->inobt.ir_u.sp.ir_count; | |
80 | irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; | |
81 | } else { | |
82 | /* | |
83 | * ir_holemask/ir_count not supported on-disk. Fill in hardcoded | |
84 | * values for full inode chunks. | |
85 | */ | |
86 | irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; | |
87 | irec->ir_count = XFS_INODES_PER_CHUNK; | |
88 | irec->ir_freecount = | |
89 | be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); | |
b194c7d8 | 90 | } |
11640e30 | 91 | irec->ir_free = be64_to_cpu(rec->inobt.ir_free); |
b5f6747c DW |
92 | } |
93 | ||
5f8e3af0 DW |
94 | /* Compute the freecount of an incore inode record. */ |
95 | uint8_t | |
96 | xfs_inobt_rec_freecount( | |
97 | const struct xfs_inobt_rec_incore *irec) | |
98 | { | |
99 | uint64_t realfree = irec->ir_free; | |
100 | ||
101 | if (xfs_inobt_issparse(irec->ir_holemask)) | |
102 | realfree &= xfs_inobt_irec_to_allocmask(irec); | |
103 | return hweight64(realfree); | |
104 | } | |
105 | ||
349aa687 DW |
106 | /* Simple checks for inode records. */ |
107 | xfs_failaddr_t | |
108 | xfs_inobt_check_irec( | |
5f8e3af0 | 109 | struct xfs_perag *pag, |
349aa687 DW |
110 | const struct xfs_inobt_rec_incore *irec) |
111 | { | |
71ba9fcc | 112 | /* Record has to be properly aligned within the AG. */ |
5f8e3af0 | 113 | if (!xfs_verify_agino(pag, irec->ir_startino)) |
349aa687 | 114 | return __this_address; |
5f8e3af0 | 115 | if (!xfs_verify_agino(pag, |
71ba9fcc DW |
116 | irec->ir_startino + XFS_INODES_PER_CHUNK - 1)) |
117 | return __this_address; | |
349aa687 DW |
118 | if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || |
119 | irec->ir_count > XFS_INODES_PER_CHUNK) | |
120 | return __this_address; | |
121 | if (irec->ir_freecount > XFS_INODES_PER_CHUNK) | |
122 | return __this_address; | |
123 | ||
5f8e3af0 | 124 | if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount) |
349aa687 DW |
125 | return __this_address; |
126 | ||
127 | return NULL; | |
128 | } | |
129 | ||
e70bf9ba DW |
130 | static inline int |
131 | xfs_inobt_complain_bad_rec( | |
132 | struct xfs_btree_cur *cur, | |
133 | xfs_failaddr_t fa, | |
134 | const struct xfs_inobt_rec_incore *irec) | |
135 | { | |
136 | struct xfs_mount *mp = cur->bc_mp; | |
137 | ||
138 | xfs_warn(mp, | |
b85f26f6 | 139 | "%sbt record corruption in AG %d detected at %pS!", |
1fa5e300 | 140 | cur->bc_ops->name, cur->bc_group->xg_gno, fa); |
e70bf9ba DW |
141 | xfs_warn(mp, |
142 | "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", | |
143 | irec->ir_startino, irec->ir_count, irec->ir_freecount, | |
144 | irec->ir_free, irec->ir_holemask); | |
e30bad41 | 145 | xfs_btree_mark_sick(cur); |
e70bf9ba DW |
146 | return -EFSCORRUPTED; |
147 | } | |
148 | ||
b5f6747c DW |
149 | /* |
150 | * Get the data from the pointed-to record. | |
151 | */ | |
152 | int | |
153 | xfs_inobt_get_rec( | |
154 | struct xfs_btree_cur *cur, | |
155 | struct xfs_inobt_rec_incore *irec, | |
156 | int *stat) | |
157 | { | |
ec291989 | 158 | struct xfs_mount *mp = cur->bc_mp; |
b5f6747c | 159 | union xfs_btree_rec *rec; |
349aa687 | 160 | xfs_failaddr_t fa; |
b5f6747c DW |
161 | int error; |
162 | ||
163 | error = xfs_btree_get_rec(cur, &rec, stat); | |
164 | if (error || *stat == 0) | |
165 | return error; | |
166 | ||
ec291989 | 167 | xfs_inobt_btrec_to_irec(mp, rec, irec); |
1fa5e300 | 168 | fa = xfs_inobt_check_irec(to_perag(cur->bc_group), irec); |
349aa687 | 169 | if (fa) |
e70bf9ba | 170 | return xfs_inobt_complain_bad_rec(cur, fa, irec); |
11640e30 BF |
171 | |
172 | return 0; | |
b194c7d8 BN |
173 | } |
174 | ||
3c699279 BF |
175 | /* |
176 | * Insert a single inobt record. Cursor must already point to desired location. | |
177 | */ | |
aa465192 | 178 | int |
3c699279 BF |
179 | xfs_inobt_insert_rec( |
180 | struct xfs_btree_cur *cur, | |
4a492e72 DW |
181 | uint16_t holemask, |
182 | uint8_t count, | |
183 | int32_t freecount, | |
3c699279 BF |
184 | xfs_inofree_t free, |
185 | int *stat) | |
186 | { | |
11640e30 BF |
187 | cur->bc_rec.i.ir_holemask = holemask; |
188 | cur->bc_rec.i.ir_count = count; | |
3c699279 BF |
189 | cur->bc_rec.i.ir_freecount = freecount; |
190 | cur->bc_rec.i.ir_free = free; | |
191 | return xfs_btree_insert(cur, stat); | |
192 | } | |
193 | ||
194 | /* | |
195 | * Insert records describing a newly allocated inode chunk into the inobt. | |
196 | */ | |
197 | STATIC int | |
198 | xfs_inobt_insert( | |
90e549b5 | 199 | struct xfs_perag *pag, |
3c699279 BF |
200 | struct xfs_trans *tp, |
201 | struct xfs_buf *agbp, | |
202 | xfs_agino_t newino, | |
203 | xfs_agino_t newlen, | |
53430ebb | 204 | bool is_finobt) |
3c699279 BF |
205 | { |
206 | struct xfs_btree_cur *cur; | |
3c699279 BF |
207 | xfs_agino_t thisino; |
208 | int i; | |
209 | int error; | |
210 | ||
53430ebb | 211 | if (is_finobt) |
7199f984 CH |
212 | cur = xfs_finobt_init_cursor(pag, tp, agbp); |
213 | else | |
214 | cur = xfs_inobt_init_cursor(pag, tp, agbp); | |
3c699279 BF |
215 | |
216 | for (thisino = newino; | |
217 | thisino < newino + newlen; | |
218 | thisino += XFS_INODES_PER_CHUNK) { | |
219 | error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); | |
220 | if (error) { | |
221 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
222 | return error; | |
223 | } | |
224 | ASSERT(i == 0); | |
225 | ||
11640e30 BF |
226 | error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, |
227 | XFS_INODES_PER_CHUNK, | |
228 | XFS_INODES_PER_CHUNK, | |
3c699279 BF |
229 | XFS_INOBT_ALL_FREE, &i); |
230 | if (error) { | |
231 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
232 | return error; | |
233 | } | |
234 | ASSERT(i == 1); | |
235 | } | |
236 | ||
237 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
238 | ||
239 | return 0; | |
240 | } | |
241 | ||
56b2de80 DC |
242 | /* |
243 | * Verify that the number of free inodes in the AGI is correct. | |
244 | */ | |
245 | #ifdef DEBUG | |
1dbf114f | 246 | static int |
56b2de80 | 247 | xfs_check_agi_freecount( |
1dbf114f | 248 | struct xfs_btree_cur *cur) |
56b2de80 DC |
249 | { |
250 | if (cur->bc_nlevels == 1) { | |
251 | xfs_inobt_rec_incore_t rec; | |
252 | int freecount = 0; | |
253 | int error; | |
254 | int i; | |
255 | ||
256 | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | |
257 | if (error) | |
258 | return error; | |
259 | ||
260 | do { | |
261 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
262 | if (error) | |
263 | return error; | |
264 | ||
265 | if (i) { | |
266 | freecount += rec.ir_freecount; | |
267 | error = xfs_btree_increment(cur, 0, &i); | |
268 | if (error) | |
269 | return error; | |
270 | } | |
271 | } while (i == 1); | |
272 | ||
1fa5e300 CH |
273 | if (!xfs_is_shutdown(cur->bc_mp)) { |
274 | ASSERT(freecount == | |
275 | to_perag(cur->bc_group)->pagi_freecount); | |
276 | } | |
56b2de80 DC |
277 | } |
278 | return 0; | |
279 | } | |
280 | #else | |
1dbf114f | 281 | #define xfs_check_agi_freecount(cur) 0 |
56b2de80 DC |
282 | #endif |
283 | ||
284 | /* | |
e9d35108 DC |
285 | * Initialise a new set of inodes. When called without a transaction context |
286 | * (e.g. from recovery) we initiate a delayed write of the inode buffers rather | |
287 | * than logging them (which in a transaction context puts them into the AIL | |
288 | * for writeback rather than the xfsbufd queue). | |
56b2de80 | 289 | */ |
e9d35108 | 290 | int |
56b2de80 DC |
291 | xfs_ialloc_inode_init( |
292 | struct xfs_mount *mp, | |
293 | struct xfs_trans *tp, | |
e9d35108 | 294 | struct list_head *buffer_list, |
fe8d48ac | 295 | int icount, |
56b2de80 DC |
296 | xfs_agnumber_t agno, |
297 | xfs_agblock_t agbno, | |
298 | xfs_agblock_t length, | |
299 | unsigned int gen) | |
300 | { | |
301 | struct xfs_buf *fbuf; | |
302 | struct xfs_dinode *free; | |
42d896cf | 303 | int nbufs; |
56b2de80 DC |
304 | int version; |
305 | int i, j; | |
306 | xfs_daddr_t d; | |
41ce5f36 | 307 | xfs_ino_t ino = 0; |
7f15a547 | 308 | int error; |
56b2de80 DC |
309 | |
310 | /* | |
ff105f75 DC |
311 | * Loop over the new block(s), filling in the inodes. For small block |
312 | * sizes, manipulate the inodes in buffers which are multiples of the | |
313 | * blocks size. | |
56b2de80 | 314 | */ |
e7fd2b6f | 315 | nbufs = length / M_IGEO(mp)->blocks_per_cluster; |
56b2de80 DC |
316 | |
317 | /* | |
e9d35108 DC |
318 | * Figure out what version number to use in the inodes we create. If |
319 | * the superblock version has caught up to the one that supports the new | |
320 | * inode format, then use the new inode version. Otherwise use the old | |
321 | * version so that old kernels will continue to be able to use the file | |
322 | * system. | |
41ce5f36 DC |
323 | * |
324 | * For v3 inodes, we also need to write the inode number into the inode, | |
325 | * so calculate the first inode number of the chunk here as | |
7516da71 | 326 | * XFS_AGB_TO_AGINO() only works within a filesystem block, not |
e9d35108 DC |
327 | * across multiple filesystem blocks (such as a cluster) and so cannot |
328 | * be used in the cluster buffer loop below. | |
329 | * | |
330 | * Further, because we are writing the inode directly into the buffer | |
331 | * and calculating a CRC on the entire inode, we have ot log the entire | |
332 | * inode so that the entire range the CRC covers is present in the log. | |
333 | * That means for v3 inode we log the entire buffer rather than just the | |
334 | * inode cores. | |
56b2de80 | 335 | */ |
94541a16 | 336 | if (xfs_has_v3inodes(mp)) { |
41ce5f36 | 337 | version = 3; |
7516da71 | 338 | ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno)); |
e9d35108 DC |
339 | |
340 | /* | |
341 | * log the initialisation that is about to take place as an | |
342 | * logical operation. This means the transaction does not | |
343 | * need to log the physical changes to the inode buffers as log | |
344 | * recovery will know what initialisation is actually needed. | |
345 | * Hence we only need to log the buffers as "ordered" buffers so | |
346 | * they track in the AIL as if they were physically logged. | |
347 | */ | |
348 | if (tp) | |
fe8d48ac | 349 | xfs_icreate_log(tp, agno, agbno, icount, |
e9d35108 | 350 | mp->m_sb.sb_inodesize, length, gen); |
ff105f75 | 351 | } else |
56b2de80 | 352 | version = 2; |
56b2de80 DC |
353 | |
354 | for (j = 0; j < nbufs; j++) { | |
355 | /* | |
356 | * Get the block. | |
357 | */ | |
42d896cf | 358 | d = XFS_AGB_TO_DADDR(mp, agno, agbno + |
e7fd2b6f | 359 | (j * M_IGEO(mp)->blocks_per_cluster)); |
7f15a547 DW |
360 | error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, |
361 | mp->m_bsize * M_IGEO(mp)->blocks_per_cluster, | |
94ef61b5 | 362 | 0, &fbuf); |
7f15a547 DW |
363 | if (error) |
364 | return error; | |
e9d35108 DC |
365 | |
366 | /* Initialize the inode buffers and log them appropriately. */ | |
a2ceac1f | 367 | fbuf->b_ops = &xfs_inode_buf_ops; |
e9d35108 | 368 | xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); |
e7fd2b6f | 369 | for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) { |
56b2de80 | 370 | int ioffset = i << mp->m_sb.sb_inodelog; |
56b2de80 DC |
371 | |
372 | free = xfs_make_iptr(mp, fbuf, i); | |
373 | free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); | |
374 | free->di_version = version; | |
375 | free->di_gen = cpu_to_be32(gen); | |
376 | free->di_next_unlinked = cpu_to_be32(NULLAGINO); | |
41ce5f36 DC |
377 | |
378 | if (version == 3) { | |
379 | free->di_ino = cpu_to_be64(ino); | |
380 | ino++; | |
9c4e12fb ES |
381 | uuid_copy(&free->di_uuid, |
382 | &mp->m_sb.sb_meta_uuid); | |
41ce5f36 | 383 | xfs_dinode_calc_crc(mp, free); |
e9d35108 DC |
384 | } else if (tp) { |
385 | /* just log the inode core */ | |
386 | xfs_trans_log_buf(tp, fbuf, ioffset, | |
03d8044d | 387 | ioffset + XFS_DINODE_SIZE(mp) - 1); |
41ce5f36 | 388 | } |
e9d35108 | 389 | } |
41ce5f36 | 390 | |
e9d35108 DC |
391 | if (tp) { |
392 | /* | |
393 | * Mark the buffer as an inode allocation buffer so it | |
394 | * sticks in AIL at the point of this allocation | |
395 | * transaction. This ensures the they are on disk before | |
396 | * the tail of the log can be moved past this | |
397 | * transaction (i.e. by preventing relogging from moving | |
398 | * it forward in the log). | |
399 | */ | |
400 | xfs_trans_inode_alloc_buf(tp, fbuf); | |
401 | if (version == 3) { | |
402 | /* | |
403 | * Mark the buffer as ordered so that they are | |
404 | * not physically logged in the transaction but | |
405 | * still tracked in the AIL as part of the | |
406 | * transaction and pin the log appropriately. | |
407 | */ | |
408 | xfs_trans_ordered_buf(tp, fbuf); | |
e9d35108 DC |
409 | } |
410 | } else { | |
411 | fbuf->b_flags |= XBF_DONE; | |
412 | xfs_buf_delwri_queue(fbuf, buffer_list); | |
413 | xfs_buf_relse(fbuf); | |
56b2de80 | 414 | } |
56b2de80 | 415 | } |
a2ceac1f | 416 | return 0; |
56b2de80 DC |
417 | } |
418 | ||
6f4c54a4 BF |
419 | /* |
420 | * Align startino and allocmask for a recently allocated sparse chunk such that | |
421 | * they are fit for insertion (or merge) into the on-disk inode btrees. | |
422 | * | |
423 | * Background: | |
424 | * | |
425 | * When enabled, sparse inode support increases the inode alignment from cluster | |
426 | * size to inode chunk size. This means that the minimum range between two | |
427 | * non-adjacent inode records in the inobt is large enough for a full inode | |
428 | * record. This allows for cluster sized, cluster aligned block allocation | |
429 | * without need to worry about whether the resulting inode record overlaps with | |
430 | * another record in the tree. Without this basic rule, we would have to deal | |
431 | * with the consequences of overlap by potentially undoing recent allocations in | |
432 | * the inode allocation codepath. | |
433 | * | |
434 | * Because of this alignment rule (which is enforced on mount), there are two | |
435 | * inobt possibilities for newly allocated sparse chunks. One is that the | |
436 | * aligned inode record for the chunk covers a range of inodes not already | |
437 | * covered in the inobt (i.e., it is safe to insert a new sparse record). The | |
438 | * other is that a record already exists at the aligned startino that considers | |
439 | * the newly allocated range as sparse. In the latter case, record content is | |
440 | * merged in hope that sparse inode chunks fill to full chunks over time. | |
441 | */ | |
442 | STATIC void | |
443 | xfs_align_sparse_ino( | |
444 | struct xfs_mount *mp, | |
445 | xfs_agino_t *startino, | |
446 | uint16_t *allocmask) | |
447 | { | |
448 | xfs_agblock_t agbno; | |
449 | xfs_agblock_t mod; | |
450 | int offset; | |
451 | ||
452 | agbno = XFS_AGINO_TO_AGBNO(mp, *startino); | |
453 | mod = agbno % mp->m_sb.sb_inoalignmt; | |
454 | if (!mod) | |
455 | return; | |
456 | ||
457 | /* calculate the inode offset and align startino */ | |
7516da71 | 458 | offset = XFS_AGB_TO_AGINO(mp, mod); |
6f4c54a4 BF |
459 | *startino -= offset; |
460 | ||
461 | /* | |
462 | * Since startino has been aligned down, left shift allocmask such that | |
463 | * it continues to represent the same physical inodes relative to the | |
464 | * new startino. | |
465 | */ | |
466 | *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; | |
467 | } | |
468 | ||
469 | /* | |
470 | * Determine whether the source inode record can merge into the target. Both | |
471 | * records must be sparse, the inode ranges must match and there must be no | |
472 | * allocation overlap between the records. | |
473 | */ | |
474 | STATIC bool | |
475 | __xfs_inobt_can_merge( | |
476 | struct xfs_inobt_rec_incore *trec, /* tgt record */ | |
477 | struct xfs_inobt_rec_incore *srec) /* src record */ | |
478 | { | |
479 | uint64_t talloc; | |
480 | uint64_t salloc; | |
481 | ||
482 | /* records must cover the same inode range */ | |
483 | if (trec->ir_startino != srec->ir_startino) | |
484 | return false; | |
485 | ||
486 | /* both records must be sparse */ | |
487 | if (!xfs_inobt_issparse(trec->ir_holemask) || | |
488 | !xfs_inobt_issparse(srec->ir_holemask)) | |
489 | return false; | |
490 | ||
491 | /* both records must track some inodes */ | |
492 | if (!trec->ir_count || !srec->ir_count) | |
493 | return false; | |
494 | ||
495 | /* can't exceed capacity of a full record */ | |
496 | if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) | |
497 | return false; | |
498 | ||
499 | /* verify there is no allocation overlap */ | |
500 | talloc = xfs_inobt_irec_to_allocmask(trec); | |
501 | salloc = xfs_inobt_irec_to_allocmask(srec); | |
502 | if (talloc & salloc) | |
503 | return false; | |
504 | ||
505 | return true; | |
506 | } | |
507 | ||
508 | /* | |
509 | * Merge the source inode record into the target. The caller must call | |
510 | * __xfs_inobt_can_merge() to ensure the merge is valid. | |
511 | */ | |
512 | STATIC void | |
513 | __xfs_inobt_rec_merge( | |
514 | struct xfs_inobt_rec_incore *trec, /* target */ | |
515 | struct xfs_inobt_rec_incore *srec) /* src */ | |
516 | { | |
517 | ASSERT(trec->ir_startino == srec->ir_startino); | |
518 | ||
519 | /* combine the counts */ | |
520 | trec->ir_count += srec->ir_count; | |
521 | trec->ir_freecount += srec->ir_freecount; | |
522 | ||
523 | /* | |
524 | * Merge the holemask and free mask. For both fields, 0 bits refer to | |
525 | * allocated inodes. We combine the allocated ranges with bitwise AND. | |
526 | */ | |
527 | trec->ir_holemask &= srec->ir_holemask; | |
528 | trec->ir_free &= srec->ir_free; | |
529 | } | |
530 | ||
531 | /* | |
9763e890 CH |
532 | * Insert a new sparse inode chunk into the associated inode allocation btree. |
533 | * The inode record for the sparse chunk is pre-aligned to a startino that | |
534 | * should match any pre-existing sparse inode record in the tree. This allows | |
535 | * sparse chunks to fill over time. | |
6f4c54a4 | 536 | * |
9763e890 CH |
537 | * If no preexisting record exists, the provided record is inserted. |
538 | * If there is a preexisting record, the provided record is merged with the | |
6f4c54a4 | 539 | * existing record and updated in place. The merged record is returned in nrec. |
6f4c54a4 BF |
540 | * |
541 | * It is considered corruption if a merge is requested and not possible. Given | |
542 | * the sparse inode alignment constraints, this should never happen. | |
543 | */ | |
544 | STATIC int | |
545 | xfs_inobt_insert_sprec( | |
90e549b5 | 546 | struct xfs_perag *pag, |
6f4c54a4 BF |
547 | struct xfs_trans *tp, |
548 | struct xfs_buf *agbp, | |
9763e890 | 549 | struct xfs_inobt_rec_incore *nrec) /* in/out: new/merged rec. */ |
6f4c54a4 | 550 | { |
6a271c73 | 551 | struct xfs_mount *mp = pag_mount(pag); |
6f4c54a4 | 552 | struct xfs_btree_cur *cur; |
6f4c54a4 BF |
553 | int error; |
554 | int i; | |
555 | struct xfs_inobt_rec_incore rec; | |
556 | ||
7199f984 | 557 | cur = xfs_inobt_init_cursor(pag, tp, agbp); |
6f4c54a4 BF |
558 | |
559 | /* the new record is pre-aligned so we know where to look */ | |
560 | error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); | |
561 | if (error) | |
562 | goto error; | |
563 | /* if nothing there, insert a new record and return */ | |
564 | if (i == 0) { | |
565 | error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, | |
566 | nrec->ir_count, nrec->ir_freecount, | |
567 | nrec->ir_free, &i); | |
568 | if (error) | |
569 | goto error; | |
fbb4fa7f | 570 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
4467a60a | 571 | xfs_btree_mark_sick(cur); |
fbb4fa7f DW |
572 | error = -EFSCORRUPTED; |
573 | goto error; | |
574 | } | |
6f4c54a4 BF |
575 | |
576 | goto out; | |
577 | } | |
578 | ||
579 | /* | |
9763e890 | 580 | * A record exists at this startino. Merge the records. |
6f4c54a4 | 581 | */ |
9763e890 CH |
582 | error = xfs_inobt_get_rec(cur, &rec, &i); |
583 | if (error) | |
584 | goto error; | |
585 | if (XFS_IS_CORRUPT(mp, i != 1)) { | |
586 | xfs_btree_mark_sick(cur); | |
587 | error = -EFSCORRUPTED; | |
588 | goto error; | |
589 | } | |
590 | if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) { | |
591 | xfs_btree_mark_sick(cur); | |
592 | error = -EFSCORRUPTED; | |
593 | goto error; | |
594 | } | |
6f4c54a4 | 595 | |
9763e890 CH |
596 | /* |
597 | * This should never fail. If we have coexisting records that | |
598 | * cannot merge, something is seriously wrong. | |
599 | */ | |
600 | if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) { | |
601 | xfs_btree_mark_sick(cur); | |
602 | error = -EFSCORRUPTED; | |
603 | goto error; | |
604 | } | |
6f4c54a4 | 605 | |
0601845b | 606 | trace_xfs_irec_merge_pre(pag, &rec, nrec); |
6f4c54a4 | 607 | |
9763e890 CH |
608 | /* merge to nrec to output the updated record */ |
609 | __xfs_inobt_rec_merge(nrec, &rec); | |
6f4c54a4 | 610 | |
0601845b | 611 | trace_xfs_irec_merge_post(pag, nrec); |
6f4c54a4 | 612 | |
9763e890 CH |
613 | error = xfs_inobt_rec_check_count(mp, nrec); |
614 | if (error) | |
615 | goto error; | |
6f4c54a4 BF |
616 | |
617 | error = xfs_inobt_update(cur, nrec); | |
618 | if (error) | |
619 | goto error; | |
620 | ||
621 | out: | |
622 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
623 | return 0; | |
624 | error: | |
625 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
626 | return error; | |
627 | } | |
628 | ||
9763e890 CH |
629 | /* |
630 | * Insert a new sparse inode chunk into the free inode btree. The inode | |
631 | * record for the sparse chunk is pre-aligned to a startino that should match | |
632 | * any pre-existing sparse inode record in the tree. This allows sparse chunks | |
633 | * to fill over time. | |
634 | * | |
635 | * The new record is always inserted, overwriting a pre-existing record if | |
636 | * there is one. | |
637 | */ | |
638 | STATIC int | |
639 | xfs_finobt_insert_sprec( | |
640 | struct xfs_perag *pag, | |
641 | struct xfs_trans *tp, | |
642 | struct xfs_buf *agbp, | |
643 | struct xfs_inobt_rec_incore *nrec) /* in/out: new rec. */ | |
644 | { | |
6a271c73 | 645 | struct xfs_mount *mp = pag_mount(pag); |
9763e890 CH |
646 | struct xfs_btree_cur *cur; |
647 | int error; | |
648 | int i; | |
649 | ||
7199f984 | 650 | cur = xfs_finobt_init_cursor(pag, tp, agbp); |
9763e890 CH |
651 | |
652 | /* the new record is pre-aligned so we know where to look */ | |
653 | error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); | |
654 | if (error) | |
655 | goto error; | |
656 | /* if nothing there, insert a new record and return */ | |
657 | if (i == 0) { | |
658 | error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, | |
659 | nrec->ir_count, nrec->ir_freecount, | |
660 | nrec->ir_free, &i); | |
661 | if (error) | |
662 | goto error; | |
663 | if (XFS_IS_CORRUPT(mp, i != 1)) { | |
664 | xfs_btree_mark_sick(cur); | |
665 | error = -EFSCORRUPTED; | |
666 | goto error; | |
667 | } | |
668 | } else { | |
669 | error = xfs_inobt_update(cur, nrec); | |
670 | if (error) | |
671 | goto error; | |
672 | } | |
673 | ||
674 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
675 | return 0; | |
676 | error: | |
677 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
678 | return error; | |
679 | } | |
680 | ||
681 | ||
2bd0ea18 | 682 | /* |
771d0670 DC |
683 | * Allocate new inodes in the allocation group specified by agbp. Returns 0 if |
684 | * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so | |
685 | * the caller knows it can try another AG, a hard -ENOSPC when over the maximum | |
686 | * inode count threshold, or the usual negative error code for other errors. | |
2bd0ea18 | 687 | */ |
e7fd2b6f | 688 | STATIC int |
2bd0ea18 | 689 | xfs_ialloc_ag_alloc( |
90e549b5 | 690 | struct xfs_perag *pag, |
e7fd2b6f | 691 | struct xfs_trans *tp, |
90e549b5 | 692 | struct xfs_buf *agbp) |
2bd0ea18 | 693 | { |
e7fd2b6f DW |
694 | struct xfs_agi *agi; |
695 | struct xfs_alloc_arg args; | |
e7fd2b6f DW |
696 | int error; |
697 | xfs_agino_t newino; /* new first inode's number */ | |
698 | xfs_agino_t newlen; /* new number of inodes */ | |
699 | int isaligned = 0; /* inode allocation at stripe */ | |
700 | /* unit boundary */ | |
701 | /* init. to full chunk */ | |
6f4c54a4 | 702 | struct xfs_inobt_rec_incore rec; |
e7fd2b6f | 703 | struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp); |
a426d0e1 | 704 | uint16_t allocmask = (uint16_t) -1; |
e7fd2b6f | 705 | int do_sparse = 0; |
c9005f41 | 706 | |
a2ceac1f | 707 | memset(&args, 0, sizeof(args)); |
2bd0ea18 NS |
708 | args.tp = tp; |
709 | args.mp = tp->t_mountp; | |
c9005f41 | 710 | args.fsbno = NULLFSBLOCK; |
007347e3 | 711 | args.oinfo = XFS_RMAP_OINFO_INODES; |
04215b9f | 712 | args.pag = pag; |
2bd0ea18 | 713 | |
0d995d03 BF |
714 | #ifdef DEBUG |
715 | /* randomly do sparse inode allocations */ | |
94541a16 | 716 | if (xfs_has_sparseinodes(tp->t_mountp) && |
e7fd2b6f | 717 | igeo->ialloc_min_blks < igeo->ialloc_blks) |
9a046f96 | 718 | do_sparse = get_random_u32_below(2); |
0d995d03 BF |
719 | #endif |
720 | ||
2bd0ea18 NS |
721 | /* |
722 | * Locking will ensure that we don't have two callers in here | |
723 | * at one time. | |
724 | */ | |
e7fd2b6f DW |
725 | newlen = igeo->ialloc_inos; |
726 | if (igeo->maxicount && | |
cbf3beaa | 727 | percpu_counter_read_positive(&args.mp->m_icount) + newlen > |
e7fd2b6f | 728 | igeo->maxicount) |
12b53197 | 729 | return -ENOSPC; |
e7fd2b6f | 730 | args.minlen = args.maxlen = igeo->ialloc_blks; |
2bd0ea18 | 731 | /* |
5e656dbb BN |
732 | * First try to allocate inodes contiguous with the last-allocated |
733 | * chunk of inodes. If the filesystem is striped, this will fill | |
734 | * an entire stripe unit with inodes. | |
3439d03a | 735 | */ |
c99cea5c | 736 | agi = agbp->b_addr; |
5e656dbb BN |
737 | newino = be32_to_cpu(agi->agi_newino); |
738 | args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + | |
e7fd2b6f | 739 | igeo->ialloc_blks; |
c9005f41 BF |
740 | if (do_sparse) |
741 | goto sparse_alloc; | |
5e656dbb BN |
742 | if (likely(newino != NULLAGINO && |
743 | (args.agbno < be32_to_cpu(agi->agi_length)))) { | |
5e656dbb BN |
744 | args.prod = 1; |
745 | ||
746 | /* | |
747 | * We need to take into account alignment here to ensure that | |
748 | * we don't modify the free list if we fail to have an exact | |
749 | * block. If we don't have an exact match, and every oher | |
750 | * attempt allocation attempt fails, we'll end up cancelling | |
751 | * a dirty transaction and shutting down. | |
752 | * | |
753 | * For an exact allocation, alignment must be 1, | |
754 | * however we need to take cluster alignment into account when | |
755 | * fixing up the freelist. Use the minalignslop field to | |
756 | * indicate that extra blocks might be required for alignment, | |
757 | * but not to use them in the actual exact allocation. | |
758 | */ | |
759 | args.alignment = 1; | |
e7fd2b6f | 760 | args.minalignslop = igeo->cluster_align - 1; |
5e656dbb BN |
761 | |
762 | /* Allow space for the inode btree to split. */ | |
d6e8deb1 | 763 | args.minleft = igeo->inobt_maxlevels; |
c4e10f2b | 764 | error = xfs_alloc_vextent_exact_bno(&args, |
25e0d559 | 765 | xfs_agbno_to_fsb(pag, args.agbno)); |
04215b9f | 766 | if (error) |
5e656dbb | 767 | return error; |
ff105f75 DC |
768 | |
769 | /* | |
770 | * This request might have dirtied the transaction if the AG can | |
771 | * satisfy the request, but the exact block was not available. | |
772 | * If the allocation did fail, subsequent requests will relax | |
773 | * the exact agbno requirement and increase the alignment | |
774 | * instead. It is critical that the total size of the request | |
775 | * (len + alignment + slop) does not increase from this point | |
776 | * on, so reset minalignslop to ensure it is not included in | |
777 | * subsequent requests. | |
778 | */ | |
779 | args.minalignslop = 0; | |
c9005f41 | 780 | } |
5e656dbb BN |
781 | |
782 | if (unlikely(args.fsbno == NULLFSBLOCK)) { | |
783 | /* | |
784 | * Set the alignment for the allocation. | |
785 | * If stripe alignment is turned on then align at stripe unit | |
786 | * boundary. | |
787 | * If the cluster size is smaller than a filesystem block | |
788 | * then we're doing I/O for inodes in filesystem block size | |
789 | * pieces, so don't need alignment anyway. | |
790 | */ | |
791 | isaligned = 0; | |
e7fd2b6f | 792 | if (igeo->ialloc_align) { |
914e2a04 | 793 | ASSERT(!xfs_has_noalign(args.mp)); |
5e656dbb BN |
794 | args.alignment = args.mp->m_dalign; |
795 | isaligned = 1; | |
796 | } else | |
e7fd2b6f | 797 | args.alignment = igeo->cluster_align; |
5e656dbb BN |
798 | /* |
799 | * Allocate a fixed-size extent of inodes. | |
800 | */ | |
5e656dbb BN |
801 | args.prod = 1; |
802 | /* | |
803 | * Allow space for the inode btree to split. | |
804 | */ | |
d6e8deb1 | 805 | args.minleft = igeo->inobt_maxlevels; |
15653695 | 806 | error = xfs_alloc_vextent_near_bno(&args, |
25e0d559 CH |
807 | xfs_agbno_to_fsb(pag, |
808 | be32_to_cpu(agi->agi_root))); | |
04215b9f | 809 | if (error) |
5e656dbb BN |
810 | return error; |
811 | } | |
2bd0ea18 NS |
812 | |
813 | /* | |
814 | * If stripe alignment is turned on, then try again with cluster | |
815 | * alignment. | |
816 | */ | |
817 | if (isaligned && args.fsbno == NULLFSBLOCK) { | |
e7fd2b6f | 818 | args.alignment = igeo->cluster_align; |
15653695 | 819 | error = xfs_alloc_vextent_near_bno(&args, |
25e0d559 CH |
820 | xfs_agbno_to_fsb(pag, |
821 | be32_to_cpu(agi->agi_root))); | |
15653695 | 822 | if (error) |
dfc130f3 | 823 | return error; |
2bd0ea18 | 824 | } |
5000d01d | 825 | |
6f4c54a4 BF |
826 | /* |
827 | * Finally, try a sparse allocation if the filesystem supports it and | |
828 | * the sparse allocation length is smaller than a full chunk. | |
829 | */ | |
94541a16 | 830 | if (xfs_has_sparseinodes(args.mp) && |
e7fd2b6f | 831 | igeo->ialloc_min_blks < igeo->ialloc_blks && |
6f4c54a4 | 832 | args.fsbno == NULLFSBLOCK) { |
c9005f41 | 833 | sparse_alloc: |
6f4c54a4 BF |
834 | args.alignment = args.mp->m_sb.sb_spino_align; |
835 | args.prod = 1; | |
836 | ||
e7fd2b6f | 837 | args.minlen = igeo->ialloc_min_blks; |
6f4c54a4 BF |
838 | args.maxlen = args.minlen; |
839 | ||
840 | /* | |
841 | * The inode record will be aligned to full chunk size. We must | |
842 | * prevent sparse allocation from AG boundaries that result in | |
843 | * invalid inode records, such as records that start at agbno 0 | |
844 | * or extend beyond the AG. | |
845 | * | |
846 | * Set min agbno to the first aligned, non-zero agbno and max to | |
847 | * the last aligned agbno that is at least one full chunk from | |
848 | * the end of the AG. | |
849 | */ | |
850 | args.min_agbno = args.mp->m_sb.sb_inoalignmt; | |
12a11a2b DC |
851 | args.max_agbno = round_down(xfs_ag_block_count(args.mp, |
852 | pag_agno(pag)), | |
6f4c54a4 | 853 | args.mp->m_sb.sb_inoalignmt) - |
e7fd2b6f | 854 | igeo->ialloc_blks; |
6f4c54a4 | 855 | |
15653695 | 856 | error = xfs_alloc_vextent_near_bno(&args, |
25e0d559 CH |
857 | xfs_agbno_to_fsb(pag, |
858 | be32_to_cpu(agi->agi_root))); | |
6f4c54a4 BF |
859 | if (error) |
860 | return error; | |
861 | ||
7516da71 | 862 | newlen = XFS_AGB_TO_AGINO(args.mp, args.len); |
0d995d03 | 863 | ASSERT(newlen <= XFS_INODES_PER_CHUNK); |
6f4c54a4 BF |
864 | allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; |
865 | } | |
866 | ||
2cdc6e56 | 867 | if (args.fsbno == NULLFSBLOCK) |
771d0670 | 868 | return -EAGAIN; |
2cdc6e56 | 869 | |
2bd0ea18 | 870 | ASSERT(args.len == args.minlen); |
a562a63b | 871 | |
5e656dbb | 872 | /* |
56b2de80 DC |
873 | * Stamp and write the inode buffers. |
874 | * | |
5e656dbb BN |
875 | * Seed the new inode cluster with a random generation number. This |
876 | * prevents short-term reuse of generation numbers if a chunk is | |
877 | * freed and then immediately reallocated. We use random numbers | |
878 | * rather than a linear progression to prevent the next generation | |
879 | * number from being easily guessable. | |
880 | */ | |
6a271c73 | 881 | error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag_agno(pag), |
11d2f5af | 882 | args.agbno, args.len, get_random_u32()); |
56b2de80 | 883 | |
a2ceac1f DC |
884 | if (error) |
885 | return error; | |
56b2de80 DC |
886 | /* |
887 | * Convert the results. | |
888 | */ | |
7516da71 | 889 | newino = XFS_AGB_TO_AGINO(args.mp, args.agbno); |
6f4c54a4 BF |
890 | |
891 | if (xfs_inobt_issparse(~allocmask)) { | |
892 | /* | |
893 | * We've allocated a sparse chunk. Align the startino and mask. | |
894 | */ | |
895 | xfs_align_sparse_ino(args.mp, &newino, &allocmask); | |
896 | ||
897 | rec.ir_startino = newino; | |
898 | rec.ir_holemask = ~allocmask; | |
899 | rec.ir_count = newlen; | |
900 | rec.ir_freecount = newlen; | |
901 | rec.ir_free = XFS_INOBT_ALL_FREE; | |
902 | ||
903 | /* | |
904 | * Insert the sparse record into the inobt and allow for a merge | |
905 | * if necessary. If a merge does occur, rec is updated to the | |
906 | * merged record. | |
907 | */ | |
9763e890 | 908 | error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec); |
6f4c54a4 BF |
909 | if (error == -EFSCORRUPTED) { |
910 | xfs_alert(args.mp, | |
911 | "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", | |
ef7499e4 | 912 | xfs_agino_to_ino(pag, rec.ir_startino), |
6f4c54a4 BF |
913 | rec.ir_holemask, rec.ir_count); |
914 | xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); | |
915 | } | |
916 | if (error) | |
917 | return error; | |
918 | ||
919 | /* | |
920 | * We can't merge the part we've just allocated as for the inobt | |
921 | * due to finobt semantics. The original record may or may not | |
922 | * exist independent of whether physical inodes exist in this | |
923 | * sparse chunk. | |
924 | * | |
925 | * We must update the finobt record based on the inobt record. | |
926 | * rec contains the fully merged and up to date inobt record | |
927 | * from the previous call. Set merge false to replace any | |
928 | * existing record with this one. | |
929 | */ | |
94541a16 | 930 | if (xfs_has_finobt(args.mp)) { |
9763e890 | 931 | error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec); |
6f4c54a4 BF |
932 | if (error) |
933 | return error; | |
934 | } | |
935 | } else { | |
936 | /* full chunk - insert new records to both btrees */ | |
53430ebb | 937 | error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false); |
6f4c54a4 BF |
938 | if (error) |
939 | return error; | |
940 | ||
94541a16 | 941 | if (xfs_has_finobt(args.mp)) { |
90e549b5 | 942 | error = xfs_inobt_insert(pag, tp, agbp, newino, |
53430ebb | 943 | newlen, true); |
6f4c54a4 BF |
944 | if (error) |
945 | return error; | |
946 | } | |
947 | } | |
948 | ||
949 | /* | |
950 | * Update AGI counts and newino. | |
951 | */ | |
5e656dbb BN |
952 | be32_add_cpu(&agi->agi_count, newlen); |
953 | be32_add_cpu(&agi->agi_freecount, newlen); | |
56b2de80 | 954 | pag->pagi_freecount += newlen; |
a3204ee7 | 955 | pag->pagi_count += newlen; |
6e3140c7 | 956 | agi->agi_newino = cpu_to_be32(newino); |
56b2de80 | 957 | |
2bd0ea18 NS |
958 | /* |
959 | * Log allocation group header fields | |
960 | */ | |
961 | xfs_ialloc_log_agi(tp, agbp, | |
962 | XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); | |
963 | /* | |
964 | * Modify/log superblock values for inode count and inode free count. | |
965 | */ | |
966 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); | |
967 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); | |
2bd0ea18 NS |
968 | return 0; |
969 | } | |
970 | ||
56b2de80 DC |
971 | /* |
972 | * Try to retrieve the next record to the left/right from the current one. | |
973 | */ | |
974 | STATIC int | |
975 | xfs_ialloc_next_rec( | |
976 | struct xfs_btree_cur *cur, | |
977 | xfs_inobt_rec_incore_t *rec, | |
978 | int *done, | |
979 | int left) | |
980 | { | |
981 | int error; | |
982 | int i; | |
983 | ||
984 | if (left) | |
985 | error = xfs_btree_decrement(cur, 0, &i); | |
986 | else | |
987 | error = xfs_btree_increment(cur, 0, &i); | |
988 | ||
989 | if (error) | |
990 | return error; | |
991 | *done = !i; | |
992 | if (i) { | |
993 | error = xfs_inobt_get_rec(cur, rec, &i); | |
994 | if (error) | |
995 | return error; | |
4467a60a DW |
996 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
997 | xfs_btree_mark_sick(cur); | |
fbb4fa7f | 998 | return -EFSCORRUPTED; |
4467a60a | 999 | } |
56b2de80 DC |
1000 | } |
1001 | ||
1002 | return 0; | |
1003 | } | |
1004 | ||
1005 | STATIC int | |
1006 | xfs_ialloc_get_rec( | |
1007 | struct xfs_btree_cur *cur, | |
1008 | xfs_agino_t agino, | |
1009 | xfs_inobt_rec_incore_t *rec, | |
3439d03a | 1010 | int *done) |
56b2de80 DC |
1011 | { |
1012 | int error; | |
1013 | int i; | |
1014 | ||
1015 | error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); | |
1016 | if (error) | |
1017 | return error; | |
1018 | *done = !i; | |
1019 | if (i) { | |
1020 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1021 | if (error) | |
1022 | return error; | |
4467a60a DW |
1023 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
1024 | xfs_btree_mark_sick(cur); | |
fbb4fa7f | 1025 | return -EFSCORRUPTED; |
4467a60a | 1026 | } |
56b2de80 DC |
1027 | } |
1028 | ||
1029 | return 0; | |
1030 | } | |
1031 | ||
01792d3b | 1032 | /* |
fa58183c BF |
1033 | * Return the offset of the first free inode in the record. If the inode chunk |
1034 | * is sparsely allocated, we convert the record holemask to inode granularity | |
1035 | * and mask off the unallocated regions from the inode free mask. | |
01792d3b BF |
1036 | */ |
1037 | STATIC int | |
1038 | xfs_inobt_first_free_inode( | |
1039 | struct xfs_inobt_rec_incore *rec) | |
1040 | { | |
fa58183c BF |
1041 | xfs_inofree_t realfree; |
1042 | ||
1043 | /* if there are no holes, return the first available offset */ | |
1044 | if (!xfs_inobt_issparse(rec->ir_holemask)) | |
1045 | return xfs_lowbit64(rec->ir_free); | |
1046 | ||
1047 | realfree = xfs_inobt_irec_to_allocmask(rec); | |
1048 | realfree &= rec->ir_free; | |
1049 | ||
1050 | return xfs_lowbit64(realfree); | |
01792d3b BF |
1051 | } |
1052 | ||
c9d6544c DW |
1053 | /* |
1054 | * If this AG has corrupt inodes, check if allocating this inode would fail | |
1055 | * with corruption errors. Returns 0 if we're clear, or EAGAIN to try again | |
1056 | * somewhere else. | |
1057 | */ | |
1058 | static int | |
1059 | xfs_dialloc_check_ino( | |
1060 | struct xfs_perag *pag, | |
1061 | struct xfs_trans *tp, | |
1062 | xfs_ino_t ino) | |
1063 | { | |
1064 | struct xfs_imap imap; | |
1065 | struct xfs_buf *bp; | |
1066 | int error; | |
1067 | ||
1068 | error = xfs_imap(pag, tp, ino, &imap, 0); | |
1069 | if (error) | |
1070 | return -EAGAIN; | |
1071 | ||
6a271c73 | 1072 | error = xfs_imap_to_bp(pag_mount(pag), tp, &imap, &bp); |
c9d6544c DW |
1073 | if (error) |
1074 | return -EAGAIN; | |
1075 | ||
1076 | xfs_trans_brelse(tp, bp); | |
1077 | return 0; | |
1078 | } | |
1079 | ||
5000d01d | 1080 | /* |
ff105f75 | 1081 | * Allocate an inode using the inobt-only algorithm. |
2bd0ea18 | 1082 | */ |
a2ceac1f | 1083 | STATIC int |
ff105f75 | 1084 | xfs_dialloc_ag_inobt( |
90e549b5 | 1085 | struct xfs_perag *pag, |
a2ceac1f DC |
1086 | struct xfs_trans *tp, |
1087 | struct xfs_buf *agbp, | |
1088 | xfs_ino_t parent, | |
1089 | xfs_ino_t *inop) | |
2bd0ea18 | 1090 | { |
a2ceac1f | 1091 | struct xfs_mount *mp = tp->t_mountp; |
c99cea5c | 1092 | struct xfs_agi *agi = agbp->b_addr; |
a2ceac1f DC |
1093 | xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); |
1094 | xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); | |
a2ceac1f DC |
1095 | struct xfs_btree_cur *cur, *tcur; |
1096 | struct xfs_inobt_rec_incore rec, trec; | |
1097 | xfs_ino_t ino; | |
1098 | int error; | |
1099 | int offset; | |
1100 | int i, j; | |
d8c47890 | 1101 | int searchdistance = 10; |
2bd0ea18 | 1102 | |
03dc2ef2 DC |
1103 | ASSERT(xfs_perag_initialised_agi(pag)); |
1104 | ASSERT(xfs_perag_allows_inodes(pag)); | |
a2ceac1f DC |
1105 | ASSERT(pag->pagi_freecount > 0); |
1106 | ||
56b2de80 | 1107 | restart_pagno: |
7199f984 | 1108 | cur = xfs_inobt_init_cursor(pag, tp, agbp); |
2bd0ea18 NS |
1109 | /* |
1110 | * If pagino is 0 (this is the root inode allocation) use newino. | |
1111 | * This must work because we've just allocated some. | |
1112 | */ | |
1113 | if (!pagino) | |
6e3140c7 | 1114 | pagino = be32_to_cpu(agi->agi_newino); |
2bd0ea18 | 1115 | |
1dbf114f | 1116 | error = xfs_check_agi_freecount(cur); |
56b2de80 DC |
1117 | if (error) |
1118 | goto error0; | |
2bd0ea18 | 1119 | |
2bd0ea18 | 1120 | /* |
56b2de80 | 1121 | * If in the same AG as the parent, try to get near the parent. |
2bd0ea18 | 1122 | */ |
6a271c73 | 1123 | if (pagno == pag_agno(pag)) { |
56b2de80 DC |
1124 | int doneleft; /* done, to the left */ |
1125 | int doneright; /* done, to the right */ | |
56b2de80 DC |
1126 | |
1127 | error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); | |
1128 | if (error) | |
2bd0ea18 | 1129 | goto error0; |
fbb4fa7f | 1130 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
4467a60a | 1131 | xfs_btree_mark_sick(cur); |
fbb4fa7f DW |
1132 | error = -EFSCORRUPTED; |
1133 | goto error0; | |
1134 | } | |
56b2de80 DC |
1135 | |
1136 | error = xfs_inobt_get_rec(cur, &rec, &j); | |
1137 | if (error) | |
1138 | goto error0; | |
fbb4fa7f | 1139 | if (XFS_IS_CORRUPT(mp, j != 1)) { |
4467a60a | 1140 | xfs_btree_mark_sick(cur); |
fbb4fa7f DW |
1141 | error = -EFSCORRUPTED; |
1142 | goto error0; | |
1143 | } | |
56b2de80 DC |
1144 | |
1145 | if (rec.ir_freecount > 0) { | |
2bd0ea18 NS |
1146 | /* |
1147 | * Found a free inode in the same chunk | |
56b2de80 | 1148 | * as the parent, done. |
2bd0ea18 | 1149 | */ |
56b2de80 | 1150 | goto alloc_inode; |
2bd0ea18 | 1151 | } |
56b2de80 DC |
1152 | |
1153 | ||
1154 | /* | |
1155 | * In the same AG as parent, but parent's chunk is full. | |
1156 | */ | |
1157 | ||
1158 | /* duplicate the cursor, search left & right simultaneously */ | |
1159 | error = xfs_btree_dup_cursor(cur, &tcur); | |
1160 | if (error) | |
1161 | goto error0; | |
1162 | ||
2bd0ea18 | 1163 | /* |
56b2de80 | 1164 | * Skip to last blocks looked up if same parent inode. |
2bd0ea18 | 1165 | */ |
56b2de80 DC |
1166 | if (pagino != NULLAGINO && |
1167 | pag->pagl_pagino == pagino && | |
1168 | pag->pagl_leftrec != NULLAGINO && | |
1169 | pag->pagl_rightrec != NULLAGINO) { | |
1170 | error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, | |
3439d03a | 1171 | &trec, &doneleft); |
56b2de80 DC |
1172 | if (error) |
1173 | goto error1; | |
2bd0ea18 | 1174 | |
56b2de80 | 1175 | error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, |
3439d03a | 1176 | &rec, &doneright); |
2bd0ea18 | 1177 | if (error) |
2bd0ea18 | 1178 | goto error1; |
56b2de80 DC |
1179 | } else { |
1180 | /* search left with tcur, back up 1 record */ | |
1181 | error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); | |
1182 | if (error) | |
2bd0ea18 | 1183 | goto error1; |
2bd0ea18 | 1184 | |
56b2de80 DC |
1185 | /* search right with cur, go forward 1 record. */ |
1186 | error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); | |
1187 | if (error) | |
1188 | goto error1; | |
1189 | } | |
1190 | ||
1191 | /* | |
1192 | * Loop until we find an inode chunk with a free inode. | |
1193 | */ | |
d8c47890 | 1194 | while (--searchdistance > 0 && (!doneleft || !doneright)) { |
56b2de80 DC |
1195 | int useleft; /* using left inode chunk this time */ |
1196 | ||
56b2de80 DC |
1197 | /* figure out the closer block if both are valid. */ |
1198 | if (!doneleft && !doneright) { | |
1199 | useleft = pagino - | |
1200 | (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < | |
1201 | rec.ir_startino - pagino; | |
1202 | } else { | |
1203 | useleft = !doneleft; | |
1204 | } | |
1205 | ||
1206 | /* free inodes to the left? */ | |
1207 | if (useleft && trec.ir_freecount) { | |
56b2de80 DC |
1208 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
1209 | cur = tcur; | |
1210 | ||
1211 | pag->pagl_leftrec = trec.ir_startino; | |
1212 | pag->pagl_rightrec = rec.ir_startino; | |
1213 | pag->pagl_pagino = pagino; | |
ef54efb5 | 1214 | rec = trec; |
56b2de80 DC |
1215 | goto alloc_inode; |
1216 | } | |
1217 | ||
1218 | /* free inodes to the right? */ | |
1219 | if (!useleft && rec.ir_freecount) { | |
1220 | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | |
1221 | ||
1222 | pag->pagl_leftrec = trec.ir_startino; | |
1223 | pag->pagl_rightrec = rec.ir_startino; | |
1224 | pag->pagl_pagino = pagino; | |
1225 | goto alloc_inode; | |
1226 | } | |
1227 | ||
1228 | /* get next record to check */ | |
1229 | if (useleft) { | |
1230 | error = xfs_ialloc_next_rec(tcur, &trec, | |
1231 | &doneleft, 1); | |
1232 | } else { | |
1233 | error = xfs_ialloc_next_rec(cur, &rec, | |
1234 | &doneright, 0); | |
1235 | } | |
1236 | if (error) | |
1237 | goto error1; | |
2bd0ea18 | 1238 | } |
56b2de80 | 1239 | |
d8c47890 CM |
1240 | if (searchdistance <= 0) { |
1241 | /* | |
1242 | * Not in range - save last search | |
1243 | * location and allocate a new inode | |
1244 | */ | |
1245 | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | |
1246 | pag->pagl_leftrec = trec.ir_startino; | |
1247 | pag->pagl_rightrec = rec.ir_startino; | |
1248 | pag->pagl_pagino = pagino; | |
1249 | ||
1250 | } else { | |
1251 | /* | |
1252 | * We've reached the end of the btree. because | |
1253 | * we are only searching a small chunk of the | |
1254 | * btree each search, there is obviously free | |
1255 | * inodes closer to the parent inode than we | |
1256 | * are now. restart the search again. | |
1257 | */ | |
1258 | pag->pagl_pagino = NULLAGINO; | |
1259 | pag->pagl_leftrec = NULLAGINO; | |
1260 | pag->pagl_rightrec = NULLAGINO; | |
1261 | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | |
1262 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
1263 | goto restart_pagno; | |
1264 | } | |
2bd0ea18 | 1265 | } |
56b2de80 | 1266 | |
2bd0ea18 | 1267 | /* |
56b2de80 | 1268 | * In a different AG from the parent. |
2bd0ea18 NS |
1269 | * See if the most recently allocated block has any free. |
1270 | */ | |
a2ceac1f | 1271 | if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { |
56b2de80 DC |
1272 | error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), |
1273 | XFS_LOOKUP_EQ, &i); | |
1274 | if (error) | |
2bd0ea18 | 1275 | goto error0; |
56b2de80 DC |
1276 | |
1277 | if (i == 1) { | |
1278 | error = xfs_inobt_get_rec(cur, &rec, &j); | |
2bd0ea18 NS |
1279 | if (error) |
1280 | goto error0; | |
56b2de80 DC |
1281 | |
1282 | if (j == 1 && rec.ir_freecount > 0) { | |
1283 | /* | |
1284 | * The last chunk allocated in the group | |
1285 | * still has a free inode. | |
1286 | */ | |
1287 | goto alloc_inode; | |
2bd0ea18 NS |
1288 | } |
1289 | } | |
1290 | } | |
56b2de80 DC |
1291 | |
1292 | /* | |
1293 | * None left in the last group, search the whole AG | |
1294 | */ | |
1295 | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | |
1296 | if (error) | |
1297 | goto error0; | |
fbb4fa7f | 1298 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
4467a60a | 1299 | xfs_btree_mark_sick(cur); |
fbb4fa7f DW |
1300 | error = -EFSCORRUPTED; |
1301 | goto error0; | |
1302 | } | |
56b2de80 DC |
1303 | |
1304 | for (;;) { | |
1305 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
1306 | if (error) | |
1307 | goto error0; | |
fbb4fa7f | 1308 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
4467a60a | 1309 | xfs_btree_mark_sick(cur); |
fbb4fa7f DW |
1310 | error = -EFSCORRUPTED; |
1311 | goto error0; | |
1312 | } | |
56b2de80 DC |
1313 | if (rec.ir_freecount > 0) |
1314 | break; | |
1315 | error = xfs_btree_increment(cur, 0, &i); | |
1316 | if (error) | |
1317 | goto error0; | |
fbb4fa7f | 1318 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
4467a60a | 1319 | xfs_btree_mark_sick(cur); |
fbb4fa7f DW |
1320 | error = -EFSCORRUPTED; |
1321 | goto error0; | |
1322 | } | |
56b2de80 DC |
1323 | } |
1324 | ||
1325 | alloc_inode: | |
01792d3b | 1326 | offset = xfs_inobt_first_free_inode(&rec); |
2bd0ea18 NS |
1327 | ASSERT(offset >= 0); |
1328 | ASSERT(offset < XFS_INODES_PER_CHUNK); | |
1329 | ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % | |
1330 | XFS_INODES_PER_CHUNK) == 0); | |
ef7499e4 | 1331 | ino = xfs_agino_to_ino(pag, rec.ir_startino + offset); |
c9d6544c DW |
1332 | |
1333 | if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) { | |
1334 | error = xfs_dialloc_check_ino(pag, tp, ino); | |
1335 | if (error) | |
1336 | goto error0; | |
1337 | } | |
1338 | ||
56b2de80 | 1339 | rec.ir_free &= ~XFS_INOBT_MASK(offset); |
2bd0ea18 | 1340 | rec.ir_freecount--; |
56b2de80 DC |
1341 | error = xfs_inobt_update(cur, &rec); |
1342 | if (error) | |
2bd0ea18 | 1343 | goto error0; |
5e656dbb | 1344 | be32_add_cpu(&agi->agi_freecount, -1); |
2bd0ea18 | 1345 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); |
56b2de80 DC |
1346 | pag->pagi_freecount--; |
1347 | ||
1dbf114f | 1348 | error = xfs_check_agi_freecount(cur); |
56b2de80 DC |
1349 | if (error) |
1350 | goto error0; | |
2bd0ea18 | 1351 | |
2bd0ea18 NS |
1352 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
1353 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); | |
1354 | *inop = ino; | |
1355 | return 0; | |
1356 | error1: | |
1357 | xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); | |
1358 | error0: | |
1359 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
1360 | return error; | |
1361 | } | |
1362 | ||
ff105f75 DC |
1363 | /* |
1364 | * Use the free inode btree to allocate an inode based on distance from the | |
1365 | * parent. Note that the provided cursor may be deleted and replaced. | |
1366 | */ | |
1367 | STATIC int | |
1368 | xfs_dialloc_ag_finobt_near( | |
1369 | xfs_agino_t pagino, | |
1370 | struct xfs_btree_cur **ocur, | |
1371 | struct xfs_inobt_rec_incore *rec) | |
1372 | { | |
1373 | struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ | |
1374 | struct xfs_btree_cur *rcur; /* right search cursor */ | |
1375 | struct xfs_inobt_rec_incore rrec; | |
1376 | int error; | |
1377 | int i, j; | |
1378 | ||
1379 | error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); | |
1380 | if (error) | |
1381 | return error; | |
1382 | ||
1383 | if (i == 1) { | |
1384 | error = xfs_inobt_get_rec(lcur, rec, &i); | |
1385 | if (error) | |
1386 | return error; | |
4467a60a DW |
1387 | if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) { |
1388 | xfs_btree_mark_sick(lcur); | |
fbb4fa7f | 1389 | return -EFSCORRUPTED; |
4467a60a | 1390 | } |
ff105f75 DC |
1391 | |
1392 | /* | |
1393 | * See if we've landed in the parent inode record. The finobt | |
1394 | * only tracks chunks with at least one free inode, so record | |
1395 | * existence is enough. | |
1396 | */ | |
1397 | if (pagino >= rec->ir_startino && | |
1398 | pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) | |
1399 | return 0; | |
1400 | } | |
1401 | ||
1402 | error = xfs_btree_dup_cursor(lcur, &rcur); | |
1403 | if (error) | |
1404 | return error; | |
1405 | ||
1406 | error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); | |
1407 | if (error) | |
1408 | goto error_rcur; | |
1409 | if (j == 1) { | |
1410 | error = xfs_inobt_get_rec(rcur, &rrec, &j); | |
1411 | if (error) | |
1412 | goto error_rcur; | |
fbb4fa7f | 1413 | if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) { |
4467a60a | 1414 | xfs_btree_mark_sick(lcur); |
fbb4fa7f DW |
1415 | error = -EFSCORRUPTED; |
1416 | goto error_rcur; | |
1417 | } | |
ff105f75 DC |
1418 | } |
1419 | ||
fbb4fa7f | 1420 | if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) { |
4467a60a | 1421 | xfs_btree_mark_sick(lcur); |
fbb4fa7f DW |
1422 | error = -EFSCORRUPTED; |
1423 | goto error_rcur; | |
1424 | } | |
ff105f75 DC |
1425 | if (i == 1 && j == 1) { |
1426 | /* | |
1427 | * Both the left and right records are valid. Choose the closer | |
1428 | * inode chunk to the target. | |
1429 | */ | |
1430 | if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > | |
1431 | (rrec.ir_startino - pagino)) { | |
1432 | *rec = rrec; | |
1433 | xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); | |
1434 | *ocur = rcur; | |
1435 | } else { | |
1436 | xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); | |
1437 | } | |
1438 | } else if (j == 1) { | |
1439 | /* only the right record is valid */ | |
1440 | *rec = rrec; | |
1441 | xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); | |
1442 | *ocur = rcur; | |
1443 | } else if (i == 1) { | |
1444 | /* only the left record is valid */ | |
1445 | xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); | |
1446 | } | |
1447 | ||
1448 | return 0; | |
1449 | ||
1450 | error_rcur: | |
1451 | xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); | |
1452 | return error; | |
1453 | } | |
1454 | ||
1455 | /* | |
1456 | * Use the free inode btree to find a free inode based on a newino hint. If | |
1457 | * the hint is NULL, find the first free inode in the AG. | |
1458 | */ | |
1459 | STATIC int | |
1460 | xfs_dialloc_ag_finobt_newino( | |
1461 | struct xfs_agi *agi, | |
1462 | struct xfs_btree_cur *cur, | |
1463 | struct xfs_inobt_rec_incore *rec) | |
1464 | { | |
1465 | int error; | |
1466 | int i; | |
1467 | ||
1468 | if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { | |
1469 | error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), | |
1470 | XFS_LOOKUP_EQ, &i); | |
1471 | if (error) | |
1472 | return error; | |
1473 | if (i == 1) { | |
1474 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1475 | if (error) | |
1476 | return error; | |
4467a60a DW |
1477 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
1478 | xfs_btree_mark_sick(cur); | |
fbb4fa7f | 1479 | return -EFSCORRUPTED; |
4467a60a | 1480 | } |
ff105f75 DC |
1481 | return 0; |
1482 | } | |
1483 | } | |
1484 | ||
1485 | /* | |
1486 | * Find the first inode available in the AG. | |
1487 | */ | |
1488 | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | |
1489 | if (error) | |
1490 | return error; | |
4467a60a DW |
1491 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
1492 | xfs_btree_mark_sick(cur); | |
fbb4fa7f | 1493 | return -EFSCORRUPTED; |
4467a60a | 1494 | } |
ff105f75 DC |
1495 | |
1496 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1497 | if (error) | |
1498 | return error; | |
4467a60a DW |
1499 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
1500 | xfs_btree_mark_sick(cur); | |
fbb4fa7f | 1501 | return -EFSCORRUPTED; |
4467a60a | 1502 | } |
ff105f75 DC |
1503 | |
1504 | return 0; | |
1505 | } | |
1506 | ||
1507 | /* | |
1508 | * Update the inobt based on a modification made to the finobt. Also ensure that | |
1509 | * the records from both trees are equivalent post-modification. | |
1510 | */ | |
1511 | STATIC int | |
1512 | xfs_dialloc_ag_update_inobt( | |
1513 | struct xfs_btree_cur *cur, /* inobt cursor */ | |
1514 | struct xfs_inobt_rec_incore *frec, /* finobt record */ | |
1515 | int offset) /* inode offset */ | |
1516 | { | |
1517 | struct xfs_inobt_rec_incore rec; | |
1518 | int error; | |
1519 | int i; | |
1520 | ||
1521 | error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); | |
1522 | if (error) | |
1523 | return error; | |
4467a60a DW |
1524 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
1525 | xfs_btree_mark_sick(cur); | |
fbb4fa7f | 1526 | return -EFSCORRUPTED; |
4467a60a | 1527 | } |
ff105f75 DC |
1528 | |
1529 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
1530 | if (error) | |
1531 | return error; | |
4467a60a DW |
1532 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
1533 | xfs_btree_mark_sick(cur); | |
fbb4fa7f | 1534 | return -EFSCORRUPTED; |
4467a60a | 1535 | } |
ff105f75 DC |
1536 | ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % |
1537 | XFS_INODES_PER_CHUNK) == 0); | |
1538 | ||
1539 | rec.ir_free &= ~XFS_INOBT_MASK(offset); | |
1540 | rec.ir_freecount--; | |
1541 | ||
fbb4fa7f DW |
1542 | if (XFS_IS_CORRUPT(cur->bc_mp, |
1543 | rec.ir_free != frec->ir_free || | |
4467a60a DW |
1544 | rec.ir_freecount != frec->ir_freecount)) { |
1545 | xfs_btree_mark_sick(cur); | |
fbb4fa7f | 1546 | return -EFSCORRUPTED; |
4467a60a | 1547 | } |
ff105f75 | 1548 | |
5a35bf2c | 1549 | return xfs_inobt_update(cur, &rec); |
ff105f75 DC |
1550 | } |
1551 | ||
1552 | /* | |
1553 | * Allocate an inode using the free inode btree, if available. Otherwise, fall | |
1554 | * back to the inobt search algorithm. | |
1555 | * | |
1556 | * The caller selected an AG for us, and made sure that free inodes are | |
1557 | * available. | |
1558 | */ | |
51b1e167 | 1559 | static int |
88fc7306 | 1560 | xfs_dialloc_ag( |
90e549b5 | 1561 | struct xfs_perag *pag, |
88fc7306 BF |
1562 | struct xfs_trans *tp, |
1563 | struct xfs_buf *agbp, | |
1564 | xfs_ino_t parent, | |
1565 | xfs_ino_t *inop) | |
1566 | { | |
1567 | struct xfs_mount *mp = tp->t_mountp; | |
c99cea5c | 1568 | struct xfs_agi *agi = agbp->b_addr; |
88fc7306 BF |
1569 | xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); |
1570 | xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); | |
ff105f75 DC |
1571 | struct xfs_btree_cur *cur; /* finobt cursor */ |
1572 | struct xfs_btree_cur *icur; /* inobt cursor */ | |
88fc7306 | 1573 | struct xfs_inobt_rec_incore rec; |
88fc7306 BF |
1574 | xfs_ino_t ino; |
1575 | int error; | |
1576 | int offset; | |
ff105f75 | 1577 | int i; |
88fc7306 | 1578 | |
94541a16 | 1579 | if (!xfs_has_finobt(mp)) |
90e549b5 | 1580 | return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop); |
88fc7306 | 1581 | |
88fc7306 BF |
1582 | /* |
1583 | * If pagino is 0 (this is the root inode allocation) use newino. | |
1584 | * This must work because we've just allocated some. | |
1585 | */ | |
1586 | if (!pagino) | |
1587 | pagino = be32_to_cpu(agi->agi_newino); | |
1588 | ||
7199f984 | 1589 | cur = xfs_finobt_init_cursor(pag, tp, agbp); |
88fc7306 | 1590 | |
1dbf114f | 1591 | error = xfs_check_agi_freecount(cur); |
88fc7306 BF |
1592 | if (error) |
1593 | goto error_cur; | |
1594 | ||
ff105f75 DC |
1595 | /* |
1596 | * The search algorithm depends on whether we're in the same AG as the | |
1597 | * parent. If so, find the closest available inode to the parent. If | |
1598 | * not, consider the agi hint or find the first free inode in the AG. | |
1599 | */ | |
6a271c73 | 1600 | if (pag_agno(pag) == pagno) |
ff105f75 DC |
1601 | error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); |
1602 | else | |
1603 | error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); | |
1604 | if (error) | |
1605 | goto error_cur; | |
88fc7306 | 1606 | |
01792d3b | 1607 | offset = xfs_inobt_first_free_inode(&rec); |
88fc7306 BF |
1608 | ASSERT(offset >= 0); |
1609 | ASSERT(offset < XFS_INODES_PER_CHUNK); | |
1610 | ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % | |
1611 | XFS_INODES_PER_CHUNK) == 0); | |
ef7499e4 | 1612 | ino = xfs_agino_to_ino(pag, rec.ir_startino + offset); |
88fc7306 | 1613 | |
c9d6544c DW |
1614 | if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) { |
1615 | error = xfs_dialloc_check_ino(pag, tp, ino); | |
1616 | if (error) | |
1617 | goto error_cur; | |
1618 | } | |
1619 | ||
88fc7306 BF |
1620 | /* |
1621 | * Modify or remove the finobt record. | |
1622 | */ | |
1623 | rec.ir_free &= ~XFS_INOBT_MASK(offset); | |
1624 | rec.ir_freecount--; | |
ff105f75 | 1625 | if (rec.ir_freecount) |
88fc7306 BF |
1626 | error = xfs_inobt_update(cur, &rec); |
1627 | else | |
1628 | error = xfs_btree_delete(cur, &i); | |
1629 | if (error) | |
1630 | goto error_cur; | |
1631 | ||
1632 | /* | |
ff105f75 DC |
1633 | * The finobt has now been updated appropriately. We haven't updated the |
1634 | * agi and superblock yet, so we can create an inobt cursor and validate | |
1635 | * the original freecount. If all is well, make the equivalent update to | |
1636 | * the inobt using the finobt record and offset information. | |
88fc7306 | 1637 | */ |
7199f984 | 1638 | icur = xfs_inobt_init_cursor(pag, tp, agbp); |
88fc7306 | 1639 | |
1dbf114f | 1640 | error = xfs_check_agi_freecount(icur); |
88fc7306 | 1641 | if (error) |
ff105f75 | 1642 | goto error_icur; |
88fc7306 | 1643 | |
ff105f75 | 1644 | error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); |
88fc7306 | 1645 | if (error) |
ff105f75 | 1646 | goto error_icur; |
88fc7306 BF |
1647 | |
1648 | /* | |
ff105f75 DC |
1649 | * Both trees have now been updated. We must update the perag and |
1650 | * superblock before we can check the freecount for each btree. | |
88fc7306 BF |
1651 | */ |
1652 | be32_add_cpu(&agi->agi_freecount, -1); | |
1653 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); | |
a426d0e1 | 1654 | pag->pagi_freecount--; |
88fc7306 BF |
1655 | |
1656 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); | |
1657 | ||
1dbf114f | 1658 | error = xfs_check_agi_freecount(icur); |
88fc7306 | 1659 | if (error) |
ff105f75 | 1660 | goto error_icur; |
1dbf114f | 1661 | error = xfs_check_agi_freecount(cur); |
88fc7306 | 1662 | if (error) |
ff105f75 | 1663 | goto error_icur; |
88fc7306 | 1664 | |
ff105f75 | 1665 | xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); |
88fc7306 | 1666 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
88fc7306 BF |
1667 | *inop = ino; |
1668 | return 0; | |
1669 | ||
ff105f75 DC |
1670 | error_icur: |
1671 | xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); | |
88fc7306 BF |
1672 | error_cur: |
1673 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
88fc7306 BF |
1674 | return error; |
1675 | } | |
1676 | ||
f7e5a7ae | 1677 | static int |
9543cb30 DC |
1678 | xfs_dialloc_roll( |
1679 | struct xfs_trans **tpp, | |
1680 | struct xfs_buf *agibp) | |
1681 | { | |
1682 | struct xfs_trans *tp = *tpp; | |
1683 | struct xfs_dquot_acct *dqinfo; | |
1684 | int error; | |
1685 | ||
1686 | /* | |
1687 | * Hold to on to the agibp across the commit so no other allocation can | |
1688 | * come in and take the free inodes we just allocated for our caller. | |
1689 | */ | |
1690 | xfs_trans_bhold(tp, agibp); | |
1691 | ||
1692 | /* | |
1693 | * We want the quota changes to be associated with the next transaction, | |
1694 | * NOT this one. So, detach the dqinfo from this and attach it to the | |
1695 | * next transaction. | |
1696 | */ | |
1697 | dqinfo = tp->t_dqinfo; | |
1698 | tp->t_dqinfo = NULL; | |
1699 | ||
1700 | error = xfs_trans_roll(&tp); | |
1701 | ||
1702 | /* Re-attach the quota info that we detached from prev trx. */ | |
1703 | tp->t_dqinfo = dqinfo; | |
1704 | ||
771d0670 DC |
1705 | /* |
1706 | * Join the buffer even on commit error so that the buffer is released | |
1707 | * when the caller cancels the transaction and doesn't have to handle | |
1708 | * this error case specially. | |
1709 | */ | |
9543cb30 | 1710 | xfs_trans_bjoin(tp, agibp); |
771d0670 DC |
1711 | *tpp = tp; |
1712 | return error; | |
9543cb30 DC |
1713 | } |
1714 | ||
771d0670 DC |
1715 | static bool |
1716 | xfs_dialloc_good_ag( | |
771d0670 | 1717 | struct xfs_perag *pag, |
90e549b5 | 1718 | struct xfs_trans *tp, |
771d0670 DC |
1719 | umode_t mode, |
1720 | int flags, | |
1721 | bool ok_alloc) | |
1722 | { | |
1723 | struct xfs_mount *mp = tp->t_mountp; | |
1724 | xfs_extlen_t ineed; | |
1725 | xfs_extlen_t longest = 0; | |
1726 | int needspace; | |
1727 | int error; | |
1728 | ||
90e549b5 DC |
1729 | if (!pag) |
1730 | return false; | |
03dc2ef2 | 1731 | if (!xfs_perag_allows_inodes(pag)) |
771d0670 DC |
1732 | return false; |
1733 | ||
03dc2ef2 | 1734 | if (!xfs_perag_initialised_agi(pag)) { |
fd841d7c | 1735 | error = xfs_ialloc_read_agi(pag, tp, 0, NULL); |
771d0670 DC |
1736 | if (error) |
1737 | return false; | |
1738 | } | |
1739 | ||
1740 | if (pag->pagi_freecount) | |
1741 | return true; | |
1742 | if (!ok_alloc) | |
1743 | return false; | |
1744 | ||
03dc2ef2 | 1745 | if (!xfs_perag_initialised_agf(pag)) { |
f9084bd9 | 1746 | error = xfs_alloc_read_agf(pag, tp, flags, NULL); |
771d0670 DC |
1747 | if (error) |
1748 | return false; | |
1749 | } | |
1750 | ||
1751 | /* | |
1752 | * Check that there is enough free space for the file plus a chunk of | |
1753 | * inodes if we need to allocate some. If this is the first pass across | |
1754 | * the AGs, take into account the potential space needed for alignment | |
1755 | * of inode chunks when checking the longest contiguous free space in | |
1756 | * the AG - this prevents us from getting ENOSPC because we have free | |
1757 | * space larger than ialloc_blks but alignment constraints prevent us | |
1758 | * from using it. | |
1759 | * | |
1760 | * If we can't find an AG with space for full alignment slack to be | |
1761 | * taken into account, we must be near ENOSPC in all AGs. Hence we | |
1762 | * don't include alignment for the second pass and so if we fail | |
1763 | * allocation due to alignment issues then it is most likely a real | |
1764 | * ENOSPC condition. | |
1765 | * | |
1766 | * XXX(dgc): this calculation is now bogus thanks to the per-ag | |
1767 | * reservations that xfs_alloc_fix_freelist() now does via | |
1768 | * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will | |
1769 | * be more than large enough for the check below to succeed, but | |
1770 | * xfs_alloc_space_available() will fail because of the non-zero | |
1771 | * metadata reservation and hence we won't actually be able to allocate | |
1772 | * more inodes in this AG. We do soooo much unnecessary work near ENOSPC | |
1773 | * because of this. | |
1774 | */ | |
1775 | ineed = M_IGEO(mp)->ialloc_min_blks; | |
1776 | if (flags && ineed > 1) | |
1777 | ineed += M_IGEO(mp)->cluster_align; | |
1778 | longest = pag->pagf_longest; | |
1779 | if (!longest) | |
1780 | longest = pag->pagf_flcount > 0; | |
1781 | needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); | |
1782 | ||
1783 | if (pag->pagf_freeblks < needspace + ineed || longest < ineed) | |
1784 | return false; | |
1785 | return true; | |
1786 | } | |
1787 | ||
1788 | static int | |
1789 | xfs_dialloc_try_ag( | |
771d0670 | 1790 | struct xfs_perag *pag, |
90e549b5 | 1791 | struct xfs_trans **tpp, |
771d0670 DC |
1792 | xfs_ino_t parent, |
1793 | xfs_ino_t *new_ino, | |
1794 | bool ok_alloc) | |
1795 | { | |
1796 | struct xfs_buf *agbp; | |
1797 | xfs_ino_t ino; | |
1798 | int error; | |
1799 | ||
1800 | /* | |
1801 | * Then read in the AGI buffer and recheck with the AGI buffer | |
1802 | * lock held. | |
1803 | */ | |
fd841d7c | 1804 | error = xfs_ialloc_read_agi(pag, *tpp, 0, &agbp); |
771d0670 DC |
1805 | if (error) |
1806 | return error; | |
1807 | ||
1808 | if (!pag->pagi_freecount) { | |
1809 | if (!ok_alloc) { | |
1810 | error = -EAGAIN; | |
1811 | goto out_release; | |
1812 | } | |
1813 | ||
90e549b5 | 1814 | error = xfs_ialloc_ag_alloc(pag, *tpp, agbp); |
771d0670 DC |
1815 | if (error < 0) |
1816 | goto out_release; | |
1817 | ||
1818 | /* | |
1819 | * We successfully allocated space for an inode cluster in this | |
1820 | * AG. Roll the transaction so that we can allocate one of the | |
1821 | * new inodes. | |
1822 | */ | |
1823 | ASSERT(pag->pagi_freecount > 0); | |
1824 | error = xfs_dialloc_roll(tpp, agbp); | |
1825 | if (error) | |
1826 | goto out_release; | |
1827 | } | |
1828 | ||
1829 | /* Allocate an inode in the found AG */ | |
90e549b5 | 1830 | error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino); |
771d0670 DC |
1831 | if (!error) |
1832 | *new_ino = ino; | |
1833 | return error; | |
1834 | ||
1835 | out_release: | |
1836 | xfs_trans_brelse(*tpp, agbp); | |
1837 | return error; | |
1838 | } | |
1839 | ||
da7865a2 DW |
1840 | /* |
1841 | * Pick an AG for the new inode. | |
1842 | * | |
1843 | * Directories, symlinks, and regular files frequently allocate at least one | |
1844 | * block, so factor that potential expansion when we examine whether an AG has | |
1845 | * enough space for file creation. Try to keep metadata files all in the same | |
1846 | * AG. | |
1847 | */ | |
1848 | static inline xfs_agnumber_t | |
1849 | xfs_dialloc_pick_ag( | |
1850 | struct xfs_mount *mp, | |
1851 | struct xfs_inode *dp, | |
1852 | umode_t mode) | |
1853 | { | |
1854 | xfs_agnumber_t start_agno; | |
1855 | ||
1856 | if (!dp) | |
1857 | return 0; | |
1858 | if (xfs_is_metadir_inode(dp)) { | |
1859 | if (mp->m_sb.sb_logstart) | |
1860 | return XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart); | |
1861 | return 0; | |
1862 | } | |
1863 | ||
1864 | if (S_ISDIR(mode)) | |
1865 | return (atomic_inc_return(&mp->m_agirotor) - 1) % mp->m_maxagi; | |
1866 | ||
1867 | start_agno = XFS_INO_TO_AGNO(mp, dp->i_ino); | |
1868 | if (start_agno >= mp->m_maxagi) | |
1869 | start_agno = 0; | |
1870 | ||
1871 | return start_agno; | |
1872 | } | |
1873 | ||
a2ceac1f | 1874 | /* |
771d0670 | 1875 | * Allocate an on-disk inode. |
a2ceac1f | 1876 | * |
8f1e9017 | 1877 | * Mode is used to tell whether the new inode is a directory and hence where to |
771d0670 DC |
1878 | * locate it. The on-disk inode that is allocated will be returned in @new_ino |
1879 | * on success, otherwise an error will be set to indicate the failure (e.g. | |
1880 | * -ENOSPC). | |
a2ceac1f DC |
1881 | */ |
1882 | int | |
51b1e167 | 1883 | xfs_dialloc( |
f7e5a7ae | 1884 | struct xfs_trans **tpp, |
bca9de39 | 1885 | const struct xfs_icreate_args *args, |
51b1e167 | 1886 | xfs_ino_t *new_ino) |
a2ceac1f | 1887 | { |
f7e5a7ae | 1888 | struct xfs_mount *mp = (*tpp)->t_mountp; |
da7865a2 DW |
1889 | struct xfs_perag *pag; |
1890 | struct xfs_ino_geometry *igeo = M_IGEO(mp); | |
1891 | xfs_ino_t ino = NULLFSINO; | |
bca9de39 | 1892 | xfs_ino_t parent = args->pip ? args->pip->i_ino : 0; |
a2ceac1f | 1893 | xfs_agnumber_t agno; |
a2ceac1f | 1894 | xfs_agnumber_t start_agno; |
da7865a2 | 1895 | umode_t mode = args->mode & S_IFMT; |
771d0670 | 1896 | bool ok_alloc = true; |
33f3aac8 | 1897 | bool low_space = false; |
d38ed6a9 | 1898 | int flags; |
da7865a2 | 1899 | int error = 0; |
8f1e9017 | 1900 | |
da7865a2 | 1901 | start_agno = xfs_dialloc_pick_ag(mp, args->pip, mode); |
a2ceac1f DC |
1902 | |
1903 | /* | |
1904 | * If we have already hit the ceiling of inode blocks then clear | |
771d0670 | 1905 | * ok_alloc so we scan all available agi structures for a free |
a2ceac1f | 1906 | * inode. |
cbf3beaa GW |
1907 | * |
1908 | * Read rough value of mp->m_icount by percpu_counter_read_positive, | |
1909 | * which will sacrifice the preciseness but improve the performance. | |
a2ceac1f | 1910 | */ |
e7fd2b6f DW |
1911 | if (igeo->maxicount && |
1912 | percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos | |
1913 | > igeo->maxicount) { | |
771d0670 | 1914 | ok_alloc = false; |
a2ceac1f DC |
1915 | } |
1916 | ||
33f3aac8 DC |
1917 | /* |
1918 | * If we are near to ENOSPC, we want to prefer allocation from AGs that | |
1919 | * have free inodes in them rather than use up free space allocating new | |
1920 | * inode chunks. Hence we turn off allocation for the first non-blocking | |
1921 | * pass through the AGs if we are near ENOSPC to consume free inodes | |
1922 | * that we can immediately allocate, but then we allow allocation on the | |
1923 | * second pass if we fail to find an AG with free inodes in it. | |
1924 | */ | |
91643efd | 1925 | if (xfs_estimate_freecounter(mp, XC_FREE_BLOCKS) < |
33f3aac8 DC |
1926 | mp->m_low_space[XFS_LOWSP_1_PCNT]) { |
1927 | ok_alloc = false; | |
1928 | low_space = true; | |
1929 | } | |
1930 | ||
a2ceac1f DC |
1931 | /* |
1932 | * Loop until we find an allocation group that either has free inodes | |
1933 | * or in which we can allocate some inodes. Iterate through the | |
1934 | * allocation groups upward, wrapping at the end. | |
1935 | */ | |
d38ed6a9 | 1936 | flags = XFS_ALLOC_FLAG_TRYLOCK; |
5cb4ffc8 DC |
1937 | retry: |
1938 | for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) { | |
90e549b5 DC |
1939 | if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) { |
1940 | error = xfs_dialloc_try_ag(pag, tpp, parent, | |
771d0670 DC |
1941 | &ino, ok_alloc); |
1942 | if (error != -EAGAIN) | |
3fbe9fa3 | 1943 | break; |
5cb4ffc8 | 1944 | error = 0; |
a2ceac1f DC |
1945 | } |
1946 | ||
93adb06a | 1947 | if (xfs_is_shutdown(mp)) { |
d38ed6a9 | 1948 | error = -EFSCORRUPTED; |
3fbe9fa3 | 1949 | break; |
d38ed6a9 | 1950 | } |
5cb4ffc8 DC |
1951 | } |
1952 | if (pag) | |
1953 | xfs_perag_rele(pag); | |
1954 | if (error) | |
1955 | return error; | |
1956 | if (ino == NULLFSINO) { | |
1957 | if (flags) { | |
d38ed6a9 | 1958 | flags = 0; |
33f3aac8 DC |
1959 | if (low_space) |
1960 | ok_alloc = true; | |
5cb4ffc8 | 1961 | goto retry; |
d38ed6a9 | 1962 | } |
5cb4ffc8 | 1963 | return -ENOSPC; |
a2ceac1f | 1964 | } |
02df7258 DW |
1965 | |
1966 | /* | |
1967 | * Protect against obviously corrupt allocation btree records. Later | |
1968 | * xfs_iget checks will catch re-allocation of other active in-memory | |
1969 | * and on-disk inodes. If we don't catch reallocating the parent inode | |
1970 | * here we will deadlock in xfs_iget() so we have to do these checks | |
1971 | * first. | |
1972 | */ | |
1973 | if (ino == parent || !xfs_verify_dir_ino(mp, ino)) { | |
1974 | xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); | |
1975 | xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino), | |
1976 | XFS_SICK_AG_INOBT); | |
1977 | return -EFSCORRUPTED; | |
1978 | } | |
1979 | ||
5cb4ffc8 DC |
1980 | *new_ino = ino; |
1981 | return 0; | |
a2ceac1f DC |
1982 | } |
1983 | ||
7338c4b8 BF |
1984 | /* |
1985 | * Free the blocks of an inode chunk. We must consider that the inode chunk | |
1986 | * might be sparse and only free the regions that are allocated as part of the | |
1987 | * chunk. | |
1988 | */ | |
cd3e5d3c | 1989 | static int |
7338c4b8 | 1990 | xfs_difree_inode_chunk( |
21375e5d | 1991 | struct xfs_trans *tp, |
b3cdbd92 | 1992 | struct xfs_perag *pag, |
21375e5d | 1993 | struct xfs_inobt_rec_incore *rec) |
7338c4b8 | 1994 | { |
21375e5d BF |
1995 | struct xfs_mount *mp = tp->t_mountp; |
1996 | xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, | |
1997 | rec->ir_startino); | |
1998 | int startidx, endidx; | |
1999 | int nextbit; | |
2000 | xfs_agblock_t agbno; | |
2001 | int contigblk; | |
7338c4b8 BF |
2002 | DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); |
2003 | ||
2004 | if (!xfs_inobt_issparse(rec->ir_holemask)) { | |
2005 | /* not sparse, calculate extent info directly */ | |
25e0d559 | 2006 | return xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, sagbno), |
ef16737e | 2007 | M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES, |
ad2fb6bc | 2008 | XFS_AG_RESV_NONE, 0); |
7338c4b8 BF |
2009 | } |
2010 | ||
2011 | /* holemask is only 16-bits (fits in an unsigned long) */ | |
2012 | ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); | |
2013 | holemask[0] = rec->ir_holemask; | |
2014 | ||
2015 | /* | |
2016 | * Find contiguous ranges of zeroes (i.e., allocated regions) in the | |
2017 | * holemask and convert the start/end index of each range to an extent. | |
2018 | * We start with the start and end index both pointing at the first 0 in | |
2019 | * the mask. | |
2020 | */ | |
2021 | startidx = endidx = find_first_zero_bit(holemask, | |
2022 | XFS_INOBT_HOLEMASK_BITS); | |
2023 | nextbit = startidx + 1; | |
2024 | while (startidx < XFS_INOBT_HOLEMASK_BITS) { | |
cd3e5d3c DC |
2025 | int error; |
2026 | ||
7338c4b8 BF |
2027 | nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, |
2028 | nextbit); | |
2029 | /* | |
2030 | * If the next zero bit is contiguous, update the end index of | |
2031 | * the current range and continue. | |
2032 | */ | |
2033 | if (nextbit != XFS_INOBT_HOLEMASK_BITS && | |
2034 | nextbit == endidx + 1) { | |
2035 | endidx = nextbit; | |
2036 | goto next; | |
2037 | } | |
2038 | ||
2039 | /* | |
2040 | * nextbit is not contiguous with the current end index. Convert | |
2041 | * the current start/end to an extent and add it to the free | |
2042 | * list. | |
2043 | */ | |
2044 | agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / | |
2045 | mp->m_sb.sb_inopblock; | |
2046 | contigblk = ((endidx - startidx + 1) * | |
2047 | XFS_INODES_PER_HOLEMASK_BIT) / | |
2048 | mp->m_sb.sb_inopblock; | |
2049 | ||
2050 | ASSERT(agbno % mp->m_sb.sb_spino_align == 0); | |
2051 | ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); | |
25e0d559 CH |
2052 | error = xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, agbno), |
2053 | contigblk, &XFS_RMAP_OINFO_INODES, | |
2054 | XFS_AG_RESV_NONE, 0); | |
cd3e5d3c DC |
2055 | if (error) |
2056 | return error; | |
7338c4b8 BF |
2057 | |
2058 | /* reset range to current bit and carry on... */ | |
2059 | startidx = endidx = nextbit; | |
2060 | ||
2061 | next: | |
2062 | nextbit++; | |
2063 | } | |
cd3e5d3c | 2064 | return 0; |
7338c4b8 BF |
2065 | } |
2066 | ||
eb9a297a BF |
2067 | STATIC int |
2068 | xfs_difree_inobt( | |
90e549b5 | 2069 | struct xfs_perag *pag, |
eb9a297a BF |
2070 | struct xfs_trans *tp, |
2071 | struct xfs_buf *agbp, | |
2072 | xfs_agino_t agino, | |
5a3b2e0a | 2073 | struct xfs_icluster *xic, |
eb9a297a | 2074 | struct xfs_inobt_rec_incore *orec) |
3439d03a | 2075 | { |
6a271c73 | 2076 | struct xfs_mount *mp = pag_mount(pag); |
c99cea5c | 2077 | struct xfs_agi *agi = agbp->b_addr; |
eb9a297a BF |
2078 | struct xfs_btree_cur *cur; |
2079 | struct xfs_inobt_rec_incore rec; | |
2080 | int ilen; | |
2081 | int error; | |
2082 | int i; | |
2083 | int off; | |
3439d03a | 2084 | |
3439d03a | 2085 | ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); |
eb9a297a BF |
2086 | ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); |
2087 | ||
3439d03a DC |
2088 | /* |
2089 | * Initialize the cursor. | |
2090 | */ | |
7199f984 | 2091 | cur = xfs_inobt_init_cursor(pag, tp, agbp); |
3439d03a | 2092 | |
1dbf114f | 2093 | error = xfs_check_agi_freecount(cur); |
3439d03a DC |
2094 | if (error) |
2095 | goto error0; | |
2096 | ||
2097 | /* | |
2098 | * Look for the entry describing this inode. | |
2099 | */ | |
2100 | if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { | |
2101 | xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", | |
2102 | __func__, error); | |
2103 | goto error0; | |
2104 | } | |
fbb4fa7f | 2105 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
4467a60a | 2106 | xfs_btree_mark_sick(cur); |
fbb4fa7f DW |
2107 | error = -EFSCORRUPTED; |
2108 | goto error0; | |
2109 | } | |
3439d03a DC |
2110 | error = xfs_inobt_get_rec(cur, &rec, &i); |
2111 | if (error) { | |
2112 | xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", | |
2113 | __func__, error); | |
2114 | goto error0; | |
2115 | } | |
fbb4fa7f | 2116 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
4467a60a | 2117 | xfs_btree_mark_sick(cur); |
fbb4fa7f DW |
2118 | error = -EFSCORRUPTED; |
2119 | goto error0; | |
2120 | } | |
3439d03a DC |
2121 | /* |
2122 | * Get the offset in the inode chunk. | |
2123 | */ | |
2124 | off = agino - rec.ir_startino; | |
2125 | ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); | |
2126 | ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); | |
2127 | /* | |
2128 | * Mark the inode free & increment the count. | |
2129 | */ | |
2130 | rec.ir_free |= XFS_INOBT_MASK(off); | |
2131 | rec.ir_freecount++; | |
2132 | ||
2133 | /* | |
f6580bcf BF |
2134 | * When an inode chunk is free, it becomes eligible for removal. Don't |
2135 | * remove the chunk if the block size is large enough for multiple inode | |
2136 | * chunks (that might not be free). | |
3439d03a | 2137 | */ |
914e2a04 | 2138 | if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && |
f6580bcf | 2139 | mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { |
180d3cd8 | 2140 | xic->deleted = true; |
ef7499e4 | 2141 | xic->first_ino = xfs_agino_to_ino(pag, rec.ir_startino); |
5a3b2e0a | 2142 | xic->alloc = xfs_inobt_irec_to_allocmask(&rec); |
3439d03a DC |
2143 | |
2144 | /* | |
2145 | * Remove the inode cluster from the AGI B+Tree, adjust the | |
2146 | * AGI and Superblock inode counts, and mark the disk space | |
2147 | * to be freed when the transaction is committed. | |
2148 | */ | |
f6580bcf | 2149 | ilen = rec.ir_freecount; |
3439d03a DC |
2150 | be32_add_cpu(&agi->agi_count, -ilen); |
2151 | be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); | |
2152 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); | |
3439d03a | 2153 | pag->pagi_freecount -= ilen - 1; |
a3204ee7 | 2154 | pag->pagi_count -= ilen; |
3439d03a DC |
2155 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); |
2156 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); | |
2157 | ||
2158 | if ((error = xfs_btree_delete(cur, &i))) { | |
2159 | xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", | |
2160 | __func__, error); | |
2161 | goto error0; | |
2162 | } | |
2163 | ||
b3cdbd92 | 2164 | error = xfs_difree_inode_chunk(tp, pag, &rec); |
cd3e5d3c DC |
2165 | if (error) |
2166 | goto error0; | |
3439d03a | 2167 | } else { |
180d3cd8 | 2168 | xic->deleted = false; |
3439d03a DC |
2169 | |
2170 | error = xfs_inobt_update(cur, &rec); | |
2171 | if (error) { | |
2172 | xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", | |
2173 | __func__, error); | |
2174 | goto error0; | |
2175 | } | |
2176 | ||
f8149110 | 2177 | /* |
3439d03a DC |
2178 | * Change the inode free counts and log the ag/sb changes. |
2179 | */ | |
2180 | be32_add_cpu(&agi->agi_freecount, 1); | |
2181 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); | |
a426d0e1 | 2182 | pag->pagi_freecount++; |
3439d03a DC |
2183 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); |
2184 | } | |
2185 | ||
1dbf114f | 2186 | error = xfs_check_agi_freecount(cur); |
3439d03a DC |
2187 | if (error) |
2188 | goto error0; | |
2189 | ||
eb9a297a | 2190 | *orec = rec; |
3439d03a DC |
2191 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
2192 | return 0; | |
2193 | ||
2194 | error0: | |
2195 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
2196 | return error; | |
2197 | } | |
2198 | ||
1bb93fd1 BF |
2199 | /* |
2200 | * Free an inode in the free inode btree. | |
2201 | */ | |
2202 | STATIC int | |
2203 | xfs_difree_finobt( | |
90e549b5 | 2204 | struct xfs_perag *pag, |
1bb93fd1 BF |
2205 | struct xfs_trans *tp, |
2206 | struct xfs_buf *agbp, | |
2207 | xfs_agino_t agino, | |
2208 | struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ | |
2209 | { | |
6a271c73 | 2210 | struct xfs_mount *mp = pag_mount(pag); |
1bb93fd1 BF |
2211 | struct xfs_btree_cur *cur; |
2212 | struct xfs_inobt_rec_incore rec; | |
2213 | int offset = agino - ibtrec->ir_startino; | |
2214 | int error; | |
2215 | int i; | |
2216 | ||
7199f984 | 2217 | cur = xfs_finobt_init_cursor(pag, tp, agbp); |
1bb93fd1 BF |
2218 | |
2219 | error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); | |
2220 | if (error) | |
2221 | goto error; | |
2222 | if (i == 0) { | |
2223 | /* | |
2224 | * If the record does not exist in the finobt, we must have just | |
2225 | * freed an inode in a previously fully allocated chunk. If not, | |
2226 | * something is out of sync. | |
2227 | */ | |
fbb4fa7f | 2228 | if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) { |
4467a60a | 2229 | xfs_btree_mark_sick(cur); |
fbb4fa7f DW |
2230 | error = -EFSCORRUPTED; |
2231 | goto error; | |
2232 | } | |
1bb93fd1 | 2233 | |
11640e30 BF |
2234 | error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, |
2235 | ibtrec->ir_count, | |
2236 | ibtrec->ir_freecount, | |
1bb93fd1 BF |
2237 | ibtrec->ir_free, &i); |
2238 | if (error) | |
2239 | goto error; | |
2240 | ASSERT(i == 1); | |
2241 | ||
2242 | goto out; | |
2243 | } | |
2244 | ||
2245 | /* | |
ff105f75 DC |
2246 | * Read and update the existing record. We could just copy the ibtrec |
2247 | * across here, but that would defeat the purpose of having redundant | |
2248 | * metadata. By making the modifications independently, we can catch | |
2249 | * corruptions that we wouldn't see if we just copied from one record | |
2250 | * to another. | |
1bb93fd1 BF |
2251 | */ |
2252 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
2253 | if (error) | |
2254 | goto error; | |
fbb4fa7f | 2255 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
4467a60a | 2256 | xfs_btree_mark_sick(cur); |
fbb4fa7f DW |
2257 | error = -EFSCORRUPTED; |
2258 | goto error; | |
2259 | } | |
1bb93fd1 BF |
2260 | |
2261 | rec.ir_free |= XFS_INOBT_MASK(offset); | |
2262 | rec.ir_freecount++; | |
2263 | ||
fbb4fa7f DW |
2264 | if (XFS_IS_CORRUPT(mp, |
2265 | rec.ir_free != ibtrec->ir_free || | |
2266 | rec.ir_freecount != ibtrec->ir_freecount)) { | |
4467a60a | 2267 | xfs_btree_mark_sick(cur); |
fbb4fa7f DW |
2268 | error = -EFSCORRUPTED; |
2269 | goto error; | |
2270 | } | |
1bb93fd1 BF |
2271 | |
2272 | /* | |
2273 | * The content of inobt records should always match between the inobt | |
2274 | * and finobt. The lifecycle of records in the finobt is different from | |
2275 | * the inobt in that the finobt only tracks records with at least one | |
ff105f75 DC |
2276 | * free inode. Hence, if all of the inodes are free and we aren't |
2277 | * keeping inode chunks permanently on disk, remove the record. | |
2278 | * Otherwise, update the record with the new information. | |
f6580bcf BF |
2279 | * |
2280 | * Note that we currently can't free chunks when the block size is large | |
2281 | * enough for multiple chunks. Leave the finobt record to remain in sync | |
2282 | * with the inobt. | |
1bb93fd1 | 2283 | */ |
914e2a04 DC |
2284 | if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && |
2285 | mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { | |
1bb93fd1 BF |
2286 | error = xfs_btree_delete(cur, &i); |
2287 | if (error) | |
2288 | goto error; | |
2289 | ASSERT(i == 1); | |
2290 | } else { | |
1bb93fd1 BF |
2291 | error = xfs_inobt_update(cur, &rec); |
2292 | if (error) | |
2293 | goto error; | |
2294 | } | |
2295 | ||
2296 | out: | |
1dbf114f | 2297 | error = xfs_check_agi_freecount(cur); |
1bb93fd1 BF |
2298 | if (error) |
2299 | goto error; | |
2300 | ||
2301 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
2302 | return 0; | |
2303 | ||
2304 | error: | |
2305 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
2306 | return error; | |
2307 | } | |
2308 | ||
eb9a297a BF |
2309 | /* |
2310 | * Free disk inode. Carefully avoids touching the incore inode, all | |
2311 | * manipulations incore are the caller's responsibility. | |
2312 | * The on-disk inode is not changed by this operation, only the | |
2313 | * btree (free inode mask) is changed. | |
2314 | */ | |
2315 | int | |
2316 | xfs_difree( | |
b8268cdd DC |
2317 | struct xfs_trans *tp, |
2318 | struct xfs_perag *pag, | |
2319 | xfs_ino_t inode, | |
2320 | struct xfs_icluster *xic) | |
eb9a297a BF |
2321 | { |
2322 | /* REFERENCED */ | |
2323 | xfs_agblock_t agbno; /* block number containing inode */ | |
2324 | struct xfs_buf *agbp; /* buffer for allocation group header */ | |
2325 | xfs_agino_t agino; /* allocation group inode number */ | |
eb9a297a | 2326 | int error; /* error return value */ |
a426d0e1 | 2327 | struct xfs_mount *mp = tp->t_mountp; |
eb9a297a | 2328 | struct xfs_inobt_rec_incore rec;/* btree record */ |
eb9a297a BF |
2329 | |
2330 | /* | |
2331 | * Break up inode number into its components. | |
2332 | */ | |
6a271c73 CH |
2333 | if (pag_agno(pag) != XFS_INO_TO_AGNO(mp, inode)) { |
2334 | xfs_warn(mp, "%s: agno != pag_agno(pag) (%d != %d).", | |
2335 | __func__, XFS_INO_TO_AGNO(mp, inode), pag_agno(pag)); | |
eb9a297a | 2336 | ASSERT(0); |
12b53197 | 2337 | return -EINVAL; |
eb9a297a BF |
2338 | } |
2339 | agino = XFS_INO_TO_AGINO(mp, inode); | |
ef7499e4 CH |
2340 | if (inode != xfs_agino_to_ino(pag, agino)) { |
2341 | xfs_warn(mp, "%s: inode != xfs_agino_to_ino() (%llu != %llu).", | |
eb9a297a | 2342 | __func__, (unsigned long long)inode, |
ef7499e4 | 2343 | (unsigned long long)xfs_agino_to_ino(pag, agino)); |
eb9a297a | 2344 | ASSERT(0); |
12b53197 | 2345 | return -EINVAL; |
eb9a297a BF |
2346 | } |
2347 | agbno = XFS_AGINO_TO_AGBNO(mp, agino); | |
12a11a2b DC |
2348 | if (agbno >= xfs_ag_block_count(mp, pag_agno(pag))) { |
2349 | xfs_warn(mp, "%s: agbno >= xfs_ag_block_count (%d >= %d).", | |
2350 | __func__, agbno, xfs_ag_block_count(mp, pag_agno(pag))); | |
eb9a297a | 2351 | ASSERT(0); |
12b53197 | 2352 | return -EINVAL; |
eb9a297a BF |
2353 | } |
2354 | /* | |
2355 | * Get the allocation group header. | |
2356 | */ | |
fd841d7c | 2357 | error = xfs_ialloc_read_agi(pag, tp, 0, &agbp); |
eb9a297a BF |
2358 | if (error) { |
2359 | xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", | |
2360 | __func__, error); | |
2361 | return error; | |
2362 | } | |
2363 | ||
2364 | /* | |
2365 | * Fix up the inode allocation btree. | |
2366 | */ | |
90e549b5 | 2367 | error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec); |
eb9a297a BF |
2368 | if (error) |
2369 | goto error0; | |
2370 | ||
1bb93fd1 BF |
2371 | /* |
2372 | * Fix up the free inode btree. | |
2373 | */ | |
94541a16 | 2374 | if (xfs_has_finobt(mp)) { |
90e549b5 | 2375 | error = xfs_difree_finobt(pag, tp, agbp, agino, &rec); |
1bb93fd1 BF |
2376 | if (error) |
2377 | goto error0; | |
2378 | } | |
2379 | ||
eb9a297a BF |
2380 | return 0; |
2381 | ||
2382 | error0: | |
2383 | return error; | |
2384 | } | |
2385 | ||
56b2de80 DC |
2386 | STATIC int |
2387 | xfs_imap_lookup( | |
a426d0e1 | 2388 | struct xfs_perag *pag, |
e7722e28 | 2389 | struct xfs_trans *tp, |
56b2de80 DC |
2390 | xfs_agino_t agino, |
2391 | xfs_agblock_t agbno, | |
2392 | xfs_agblock_t *chunk_agbno, | |
2393 | xfs_agblock_t *offset_agbno, | |
2394 | int flags) | |
2395 | { | |
6a271c73 | 2396 | struct xfs_mount *mp = pag_mount(pag); |
56b2de80 DC |
2397 | struct xfs_inobt_rec_incore rec; |
2398 | struct xfs_btree_cur *cur; | |
2399 | struct xfs_buf *agbp; | |
2400 | int error; | |
2401 | int i; | |
2402 | ||
fd841d7c | 2403 | error = xfs_ialloc_read_agi(pag, tp, 0, &agbp); |
56b2de80 | 2404 | if (error) { |
a2ceac1f DC |
2405 | xfs_alert(mp, |
2406 | "%s: xfs_ialloc_read_agi() returned error %d, agno %d", | |
6a271c73 | 2407 | __func__, error, pag_agno(pag)); |
56b2de80 DC |
2408 | return error; |
2409 | } | |
2410 | ||
2411 | /* | |
2412 | * Lookup the inode record for the given agino. If the record cannot be | |
2413 | * found, then it's an invalid inode number and we should abort. Once | |
2414 | * we have a record, we need to ensure it contains the inode number | |
2415 | * we are looking up. | |
2416 | */ | |
7199f984 | 2417 | cur = xfs_inobt_init_cursor(pag, tp, agbp); |
56b2de80 DC |
2418 | error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); |
2419 | if (!error) { | |
2420 | if (i) | |
2421 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
2422 | if (!error && i == 0) | |
12b53197 | 2423 | error = -EINVAL; |
56b2de80 DC |
2424 | } |
2425 | ||
2426 | xfs_trans_brelse(tp, agbp); | |
660265b7 | 2427 | xfs_btree_del_cursor(cur, error); |
56b2de80 DC |
2428 | if (error) |
2429 | return error; | |
2430 | ||
2431 | /* check that the returned record contains the required inode */ | |
2432 | if (rec.ir_startino > agino || | |
e7fd2b6f | 2433 | rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino) |
12b53197 | 2434 | return -EINVAL; |
56b2de80 DC |
2435 | |
2436 | /* for untrusted inodes check it is allocated first */ | |
2437 | if ((flags & XFS_IGET_UNTRUSTED) && | |
2438 | (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) | |
12b53197 | 2439 | return -EINVAL; |
56b2de80 DC |
2440 | |
2441 | *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); | |
2442 | *offset_agbno = agbno - *chunk_agbno; | |
2443 | return 0; | |
2444 | } | |
2bd0ea18 NS |
2445 | |
2446 | /* | |
56b2de80 | 2447 | * Return the location of the inode in imap, for mapping it into a buffer. |
2bd0ea18 | 2448 | */ |
2bd0ea18 | 2449 | int |
56b2de80 | 2450 | xfs_imap( |
e7722e28 DC |
2451 | struct xfs_perag *pag, |
2452 | struct xfs_trans *tp, | |
a426d0e1 DC |
2453 | xfs_ino_t ino, /* inode to locate */ |
2454 | struct xfs_imap *imap, /* location map structure */ | |
2455 | uint flags) /* flags for inode btree lookup */ | |
2bd0ea18 | 2456 | { |
6a271c73 | 2457 | struct xfs_mount *mp = pag_mount(pag); |
a426d0e1 DC |
2458 | xfs_agblock_t agbno; /* block number of inode in the alloc group */ |
2459 | xfs_agino_t agino; /* inode number within alloc group */ | |
2460 | xfs_agblock_t chunk_agbno; /* first block in inode chunk */ | |
2461 | xfs_agblock_t cluster_agbno; /* first block in inode cluster */ | |
2462 | int error; /* error code */ | |
2463 | int offset; /* index of inode in its buffer */ | |
2464 | xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ | |
2bd0ea18 NS |
2465 | |
2466 | ASSERT(ino != NULLFSINO); | |
56b2de80 | 2467 | |
2bd0ea18 NS |
2468 | /* |
2469 | * Split up the inode number into its parts. | |
2470 | */ | |
2bd0ea18 NS |
2471 | agino = XFS_INO_TO_AGINO(mp, ino); |
2472 | agbno = XFS_AGINO_TO_AGBNO(mp, agino); | |
12a11a2b | 2473 | if (agbno >= xfs_ag_block_count(mp, pag_agno(pag)) || |
ef7499e4 | 2474 | ino != xfs_agino_to_ino(pag, agino)) { |
a426d0e1 | 2475 | error = -EINVAL; |
63518810 | 2476 | #ifdef DEBUG |
56b2de80 DC |
2477 | /* |
2478 | * Don't output diagnostic information for untrusted inodes | |
2479 | * as they can be invalid without implying corruption. | |
2480 | */ | |
2481 | if (flags & XFS_IGET_UNTRUSTED) | |
e7722e28 | 2482 | return error; |
12a11a2b | 2483 | if (agbno >= xfs_ag_block_count(mp, pag_agno(pag))) { |
a2ceac1f DC |
2484 | xfs_alert(mp, |
2485 | "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", | |
2486 | __func__, (unsigned long long)agbno, | |
12a11a2b DC |
2487 | (unsigned long)xfs_ag_block_count(mp, |
2488 | pag_agno(pag))); | |
63518810 | 2489 | } |
ef7499e4 | 2490 | if (ino != xfs_agino_to_ino(pag, agino)) { |
a2ceac1f | 2491 | xfs_alert(mp, |
ef7499e4 | 2492 | "%s: ino (0x%llx) != xfs_agino_to_ino() (0x%llx)", |
a2ceac1f | 2493 | __func__, ino, |
ef7499e4 | 2494 | xfs_agino_to_ino(pag, agino)); |
63518810 | 2495 | } |
5e656dbb | 2496 | xfs_stack_trace(); |
63518810 | 2497 | #endif /* DEBUG */ |
e7722e28 | 2498 | return error; |
63518810 | 2499 | } |
56b2de80 | 2500 | |
56b2de80 DC |
2501 | /* |
2502 | * For bulkstat and handle lookups, we have an untrusted inode number | |
2503 | * that we have to verify is valid. We cannot do this just by reading | |
2504 | * the inode buffer as it may have been unlinked and removed leaving | |
2505 | * inodes in stale state on disk. Hence we have to do a btree lookup | |
2506 | * in all cases where an untrusted inode number is passed. | |
2507 | */ | |
2508 | if (flags & XFS_IGET_UNTRUSTED) { | |
e7722e28 | 2509 | error = xfs_imap_lookup(pag, tp, agino, agbno, |
56b2de80 DC |
2510 | &chunk_agbno, &offset_agbno, flags); |
2511 | if (error) | |
e7722e28 | 2512 | return error; |
56b2de80 DC |
2513 | goto out_map; |
2514 | } | |
2515 | ||
2516 | /* | |
2517 | * If the inode cluster size is the same as the blocksize or | |
2518 | * smaller we get to the buffer by simple arithmetics. | |
2519 | */ | |
e7fd2b6f | 2520 | if (M_IGEO(mp)->blocks_per_cluster == 1) { |
2bd0ea18 NS |
2521 | offset = XFS_INO_TO_OFFSET(mp, ino); |
2522 | ASSERT(offset < mp->m_sb.sb_inopblock); | |
56b2de80 | 2523 | |
25e0d559 | 2524 | imap->im_blkno = xfs_agbno_to_daddr(pag, agbno); |
56b2de80 | 2525 | imap->im_len = XFS_FSB_TO_BB(mp, 1); |
187f8c22 DW |
2526 | imap->im_boffset = (unsigned short)(offset << |
2527 | mp->m_sb.sb_inodelog); | |
e7722e28 | 2528 | return 0; |
2bd0ea18 | 2529 | } |
56b2de80 DC |
2530 | |
2531 | /* | |
2532 | * If the inode chunks are aligned then use simple maths to | |
2533 | * find the location. Otherwise we have to do a btree | |
2534 | * lookup to find the location. | |
2535 | */ | |
e7fd2b6f DW |
2536 | if (M_IGEO(mp)->inoalign_mask) { |
2537 | offset_agbno = agbno & M_IGEO(mp)->inoalign_mask; | |
2bd0ea18 NS |
2538 | chunk_agbno = agbno - offset_agbno; |
2539 | } else { | |
e7722e28 | 2540 | error = xfs_imap_lookup(pag, tp, agino, agbno, |
56b2de80 | 2541 | &chunk_agbno, &offset_agbno, flags); |
2bd0ea18 | 2542 | if (error) |
e7722e28 | 2543 | return error; |
2bd0ea18 | 2544 | } |
56b2de80 DC |
2545 | |
2546 | out_map: | |
2bd0ea18 NS |
2547 | ASSERT(agbno >= chunk_agbno); |
2548 | cluster_agbno = chunk_agbno + | |
e7fd2b6f DW |
2549 | ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) * |
2550 | M_IGEO(mp)->blocks_per_cluster); | |
2bd0ea18 NS |
2551 | offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + |
2552 | XFS_INO_TO_OFFSET(mp, ino); | |
56b2de80 | 2553 | |
25e0d559 | 2554 | imap->im_blkno = xfs_agbno_to_daddr(pag, cluster_agbno); |
e7fd2b6f | 2555 | imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster); |
919dbc78 | 2556 | imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); |
56b2de80 DC |
2557 | |
2558 | /* | |
2559 | * If the inode number maps to a block outside the bounds | |
2560 | * of the file system then return NULL rather than calling | |
2561 | * read_buf and panicing when we get an error from the | |
2562 | * driver. | |
2563 | */ | |
2564 | if ((imap->im_blkno + imap->im_len) > | |
2565 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | |
a2ceac1f DC |
2566 | xfs_alert(mp, |
2567 | "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", | |
2568 | __func__, (unsigned long long) imap->im_blkno, | |
56b2de80 DC |
2569 | (unsigned long long) imap->im_len, |
2570 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); | |
e7722e28 | 2571 | return -EINVAL; |
56b2de80 | 2572 | } |
e7722e28 | 2573 | return 0; |
2bd0ea18 NS |
2574 | } |
2575 | ||
2bd0ea18 | 2576 | /* |
ff105f75 DC |
2577 | * Log specified fields for the ag hdr (inode section). The growth of the agi |
2578 | * structure over time requires that we interpret the buffer as two logical | |
2579 | * regions delineated by the end of the unlinked list. This is due to the size | |
2580 | * of the hash table and its location in the middle of the agi. | |
2581 | * | |
2582 | * For example, a request to log a field before agi_unlinked and a field after | |
2583 | * agi_unlinked could cause us to log the entire hash table and use an excessive | |
2584 | * amount of log space. To avoid this behavior, log the region up through | |
2585 | * agi_unlinked in one call and the region after agi_unlinked through the end of | |
2586 | * the structure in another. | |
2bd0ea18 NS |
2587 | */ |
2588 | void | |
2589 | xfs_ialloc_log_agi( | |
a8f712a6 DC |
2590 | struct xfs_trans *tp, |
2591 | struct xfs_buf *bp, | |
2592 | uint32_t fields) | |
2bd0ea18 NS |
2593 | { |
2594 | int first; /* first byte number */ | |
2595 | int last; /* last byte number */ | |
2596 | static const short offsets[] = { /* field starting offsets */ | |
2597 | /* keep in sync with bit definitions */ | |
2598 | offsetof(xfs_agi_t, agi_magicnum), | |
2599 | offsetof(xfs_agi_t, agi_versionnum), | |
2600 | offsetof(xfs_agi_t, agi_seqno), | |
2601 | offsetof(xfs_agi_t, agi_length), | |
2602 | offsetof(xfs_agi_t, agi_count), | |
2603 | offsetof(xfs_agi_t, agi_root), | |
2604 | offsetof(xfs_agi_t, agi_level), | |
2605 | offsetof(xfs_agi_t, agi_freecount), | |
2606 | offsetof(xfs_agi_t, agi_newino), | |
2607 | offsetof(xfs_agi_t, agi_dirino), | |
2608 | offsetof(xfs_agi_t, agi_unlinked), | |
c0a4c227 BF |
2609 | offsetof(xfs_agi_t, agi_free_root), |
2610 | offsetof(xfs_agi_t, agi_free_level), | |
177c81e2 | 2611 | offsetof(xfs_agi_t, agi_iblocks), |
2bd0ea18 NS |
2612 | sizeof(xfs_agi_t) |
2613 | }; | |
2614 | #ifdef DEBUG | |
c99cea5c | 2615 | struct xfs_agi *agi = bp->b_addr; |
2bd0ea18 | 2616 | |
a2ceac1f | 2617 | ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); |
2bd0ea18 | 2618 | #endif |
ff105f75 | 2619 | |
2bd0ea18 | 2620 | /* |
c0a4c227 | 2621 | * Compute byte offsets for the first and last fields in the first |
ff105f75 DC |
2622 | * region and log the agi buffer. This only logs up through |
2623 | * agi_unlinked. | |
2bd0ea18 | 2624 | */ |
c0a4c227 BF |
2625 | if (fields & XFS_AGI_ALL_BITS_R1) { |
2626 | xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, | |
2627 | &first, &last); | |
2628 | xfs_trans_log_buf(tp, bp, first, last); | |
2629 | } | |
2630 | ||
2631 | /* | |
ff105f75 DC |
2632 | * Mask off the bits in the first region and calculate the first and |
2633 | * last field offsets for any bits in the second region. | |
c0a4c227 BF |
2634 | */ |
2635 | fields &= ~XFS_AGI_ALL_BITS_R1; | |
2636 | if (fields) { | |
2637 | xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, | |
2638 | &first, &last); | |
2639 | xfs_trans_log_buf(tp, bp, first, last); | |
2640 | } | |
2bd0ea18 NS |
2641 | } |
2642 | ||
bc01119d | 2643 | static xfs_failaddr_t |
a2ceac1f | 2644 | xfs_agi_verify( |
98572f41 | 2645 | struct xfs_buf *bp) |
a2ceac1f | 2646 | { |
98572f41 DW |
2647 | struct xfs_mount *mp = bp->b_mount; |
2648 | struct xfs_agi *agi = bp->b_addr; | |
2649 | xfs_failaddr_t fa; | |
2650 | uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno); | |
2651 | uint32_t agi_length = be32_to_cpu(agi->agi_length); | |
2652 | int i; | |
a2ceac1f | 2653 | |
b16a427a | 2654 | if (xfs_has_crc(mp)) { |
a65d8d29 | 2655 | if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) |
bc01119d | 2656 | return __this_address; |
c99cea5c | 2657 | if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn))) |
bc01119d | 2658 | return __this_address; |
a65d8d29 BF |
2659 | } |
2660 | ||
a2ceac1f DC |
2661 | /* |
2662 | * Validate the magic number of the agi block. | |
2663 | */ | |
68dbe77f | 2664 | if (!xfs_verify_magic(bp, agi->agi_magicnum)) |
bc01119d | 2665 | return __this_address; |
dd5b876e | 2666 | if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) |
bc01119d | 2667 | return __this_address; |
a2ceac1f | 2668 | |
98572f41 DW |
2669 | fa = xfs_validate_ag_length(bp, agi_seqno, agi_length); |
2670 | if (fa) | |
2671 | return fa; | |
2672 | ||
00795aae | 2673 | if (be32_to_cpu(agi->agi_level) < 1 || |
55369096 | 2674 | be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels) |
bc01119d | 2675 | return __this_address; |
00795aae | 2676 | |
b16a427a | 2677 | if (xfs_has_finobt(mp) && |
00795aae | 2678 | (be32_to_cpu(agi->agi_free_level) < 1 || |
55369096 | 2679 | be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels)) |
bc01119d | 2680 | return __this_address; |
00795aae | 2681 | |
2d653064 | 2682 | for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { |
e66d0a46 | 2683 | if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) |
2d653064 DC |
2684 | continue; |
2685 | if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) | |
2686 | return __this_address; | |
2687 | } | |
2688 | ||
bc01119d | 2689 | return NULL; |
a2ceac1f DC |
2690 | } |
2691 | ||
2692 | static void | |
2693 | xfs_agi_read_verify( | |
2694 | struct xfs_buf *bp) | |
2695 | { | |
7861ef77 | 2696 | struct xfs_mount *mp = bp->b_mount; |
1e697959 | 2697 | xfs_failaddr_t fa; |
dd5b876e | 2698 | |
b16a427a | 2699 | if (xfs_has_crc(mp) && |
45922933 | 2700 | !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) |
1e697959 DW |
2701 | xfs_verifier_error(bp, -EFSBADCRC, __this_address); |
2702 | else { | |
2703 | fa = xfs_agi_verify(bp); | |
2704 | if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) | |
2705 | xfs_verifier_error(bp, -EFSCORRUPTED, fa); | |
2706 | } | |
a2ceac1f DC |
2707 | } |
2708 | ||
2709 | static void | |
2710 | xfs_agi_write_verify( | |
2711 | struct xfs_buf *bp) | |
2712 | { | |
7861ef77 | 2713 | struct xfs_mount *mp = bp->b_mount; |
37d086ca | 2714 | struct xfs_buf_log_item *bip = bp->b_log_item; |
c99cea5c | 2715 | struct xfs_agi *agi = bp->b_addr; |
1e697959 | 2716 | xfs_failaddr_t fa; |
dd5b876e | 2717 | |
1e697959 DW |
2718 | fa = xfs_agi_verify(bp); |
2719 | if (fa) { | |
2720 | xfs_verifier_error(bp, -EFSCORRUPTED, fa); | |
dd5b876e DC |
2721 | return; |
2722 | } | |
2723 | ||
b16a427a | 2724 | if (!xfs_has_crc(mp)) |
dd5b876e DC |
2725 | return; |
2726 | ||
2727 | if (bip) | |
c99cea5c | 2728 | agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); |
43b5aeed | 2729 | xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); |
a2ceac1f DC |
2730 | } |
2731 | ||
2732 | const struct xfs_buf_ops xfs_agi_buf_ops = { | |
a3fac935 | 2733 | .name = "xfs_agi", |
68dbe77f | 2734 | .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) }, |
a2ceac1f DC |
2735 | .verify_read = xfs_agi_read_verify, |
2736 | .verify_write = xfs_agi_write_verify, | |
95d9582b | 2737 | .verify_struct = xfs_agi_verify, |
a2ceac1f DC |
2738 | }; |
2739 | ||
2bd0ea18 NS |
2740 | /* |
2741 | * Read in the allocation group header (inode allocation section) | |
2742 | */ | |
2743 | int | |
56b2de80 | 2744 | xfs_read_agi( |
bc87af99 DC |
2745 | struct xfs_perag *pag, |
2746 | struct xfs_trans *tp, | |
fd841d7c | 2747 | xfs_buf_flags_t flags, |
bc87af99 | 2748 | struct xfs_buf **agibpp) |
2bd0ea18 | 2749 | { |
6a271c73 | 2750 | struct xfs_mount *mp = pag_mount(pag); |
56b2de80 | 2751 | int error; |
2bd0ea18 | 2752 | |
ffae013e | 2753 | trace_xfs_read_agi(pag); |
56b2de80 DC |
2754 | |
2755 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, | |
6a271c73 | 2756 | XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGI_DADDR(mp)), |
fd841d7c | 2757 | XFS_FSS_TO_BB(mp, 1), flags, agibpp, &xfs_agi_buf_ops); |
ad6fabbe DW |
2758 | if (xfs_metadata_is_sick(error)) |
2759 | xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); | |
9440d84d | 2760 | if (error) |
2bd0ea18 | 2761 | return error; |
1b521475 | 2762 | if (tp) |
bc87af99 | 2763 | xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF); |
56b2de80 | 2764 | |
bc87af99 | 2765 | xfs_buf_set_ref(*agibpp, XFS_AGI_REF); |
56b2de80 DC |
2766 | return 0; |
2767 | } | |
2768 | ||
37dc5890 DC |
2769 | /* |
2770 | * Read in the agi and initialise the per-ag data. If the caller supplies a | |
2771 | * @agibpp, return the locked AGI buffer to them, otherwise release it. | |
2772 | */ | |
56b2de80 DC |
2773 | int |
2774 | xfs_ialloc_read_agi( | |
4330a9e0 DC |
2775 | struct xfs_perag *pag, |
2776 | struct xfs_trans *tp, | |
fd841d7c | 2777 | int flags, |
37dc5890 | 2778 | struct xfs_buf **agibpp) |
56b2de80 | 2779 | { |
37dc5890 | 2780 | struct xfs_buf *agibp; |
4330a9e0 | 2781 | struct xfs_agi *agi; |
56b2de80 DC |
2782 | int error; |
2783 | ||
ffae013e | 2784 | trace_xfs_ialloc_read_agi(pag); |
ff105f75 | 2785 | |
fd841d7c DW |
2786 | error = xfs_read_agi(pag, tp, |
2787 | (flags & XFS_IALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0, | |
2788 | &agibp); | |
56b2de80 DC |
2789 | if (error) |
2790 | return error; | |
2791 | ||
37dc5890 | 2792 | agi = agibp->b_addr; |
03dc2ef2 | 2793 | if (!xfs_perag_initialised_agi(pag)) { |
6e3140c7 | 2794 | pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); |
cdded3d8 | 2795 | pag->pagi_count = be32_to_cpu(agi->agi_count); |
03dc2ef2 | 2796 | set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); |
9440d84d | 2797 | } |
9440d84d | 2798 | |
56b2de80 DC |
2799 | /* |
2800 | * It's possible for these to be out of sync if | |
2801 | * we are in the middle of a forced shutdown. | |
2802 | */ | |
2803 | ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || | |
6a271c73 | 2804 | xfs_is_shutdown(pag_mount(pag))); |
37dc5890 DC |
2805 | if (agibpp) |
2806 | *agibpp = agibp; | |
2807 | else | |
2808 | xfs_trans_brelse(tp, agibp); | |
cdded3d8 DC |
2809 | return 0; |
2810 | } | |
be3bf25c | 2811 | |
fc78c405 DW |
2812 | /* How many inodes are backed by inode clusters ondisk? */ |
2813 | STATIC int | |
2814 | xfs_ialloc_count_ondisk( | |
2815 | struct xfs_btree_cur *cur, | |
2816 | xfs_agino_t low, | |
2817 | xfs_agino_t high, | |
2818 | unsigned int *allocated) | |
9deb7f65 DW |
2819 | { |
2820 | struct xfs_inobt_rec_incore irec; | |
fc78c405 DW |
2821 | unsigned int ret = 0; |
2822 | int has_record; | |
2823 | int error; | |
9deb7f65 | 2824 | |
9deb7f65 | 2825 | error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); |
fc78c405 DW |
2826 | if (error) |
2827 | return error; | |
2828 | ||
2829 | while (has_record) { | |
2830 | unsigned int i, hole_idx; | |
2831 | ||
9deb7f65 | 2832 | error = xfs_inobt_get_rec(cur, &irec, &has_record); |
fc78c405 DW |
2833 | if (error) |
2834 | return error; | |
2835 | if (irec.ir_startino > high) | |
9deb7f65 DW |
2836 | break; |
2837 | ||
fc78c405 DW |
2838 | for (i = 0; i < XFS_INODES_PER_CHUNK; i++) { |
2839 | if (irec.ir_startino + i < low) | |
9deb7f65 | 2840 | continue; |
fc78c405 DW |
2841 | if (irec.ir_startino + i > high) |
2842 | break; | |
2843 | ||
2844 | hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT; | |
2845 | if (!(irec.ir_holemask & (1U << hole_idx))) | |
2846 | ret++; | |
9deb7f65 DW |
2847 | } |
2848 | ||
2849 | error = xfs_btree_increment(cur, 0, &has_record); | |
fc78c405 DW |
2850 | if (error) |
2851 | return error; | |
9deb7f65 | 2852 | } |
fc78c405 DW |
2853 | |
2854 | *allocated = ret; | |
2855 | return 0; | |
9deb7f65 DW |
2856 | } |
2857 | ||
2858 | /* Is there an inode record covering a given extent? */ | |
2859 | int | |
2860 | xfs_ialloc_has_inodes_at_extent( | |
2861 | struct xfs_btree_cur *cur, | |
2862 | xfs_agblock_t bno, | |
2863 | xfs_extlen_t len, | |
fc78c405 | 2864 | enum xbtree_recpacking *outcome) |
9deb7f65 | 2865 | { |
fc78c405 DW |
2866 | xfs_agino_t agino; |
2867 | xfs_agino_t last_agino; | |
2868 | unsigned int allocated; | |
2869 | int error; | |
9deb7f65 | 2870 | |
fc78c405 DW |
2871 | agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno); |
2872 | last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1; | |
9deb7f65 | 2873 | |
fc78c405 DW |
2874 | error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated); |
2875 | if (error) | |
2876 | return error; | |
2877 | ||
2878 | if (allocated == 0) | |
2879 | *outcome = XBTREE_RECPACKING_EMPTY; | |
2880 | else if (allocated == last_agino - agino + 1) | |
2881 | *outcome = XBTREE_RECPACKING_FULL; | |
2882 | else | |
2883 | *outcome = XBTREE_RECPACKING_SPARSE; | |
2884 | return 0; | |
9deb7f65 DW |
2885 | } |
2886 | ||
2887 | struct xfs_ialloc_count_inodes { | |
2888 | xfs_agino_t count; | |
2889 | xfs_agino_t freecount; | |
2890 | }; | |
2891 | ||
2892 | /* Record inode counts across all inobt records. */ | |
2893 | STATIC int | |
2894 | xfs_ialloc_count_inodes_rec( | |
2895 | struct xfs_btree_cur *cur, | |
e62318a3 | 2896 | const union xfs_btree_rec *rec, |
9deb7f65 DW |
2897 | void *priv) |
2898 | { | |
2899 | struct xfs_inobt_rec_incore irec; | |
2900 | struct xfs_ialloc_count_inodes *ci = priv; | |
e70bf9ba | 2901 | xfs_failaddr_t fa; |
9deb7f65 DW |
2902 | |
2903 | xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); | |
1fa5e300 | 2904 | fa = xfs_inobt_check_irec(to_perag(cur->bc_group), &irec); |
e70bf9ba DW |
2905 | if (fa) |
2906 | return xfs_inobt_complain_bad_rec(cur, fa, &irec); | |
349aa687 | 2907 | |
9deb7f65 DW |
2908 | ci->count += irec.ir_count; |
2909 | ci->freecount += irec.ir_freecount; | |
2910 | ||
2911 | return 0; | |
2912 | } | |
2913 | ||
2914 | /* Count allocated and free inodes under an inobt. */ | |
2915 | int | |
2916 | xfs_ialloc_count_inodes( | |
2917 | struct xfs_btree_cur *cur, | |
2918 | xfs_agino_t *count, | |
2919 | xfs_agino_t *freecount) | |
2920 | { | |
2921 | struct xfs_ialloc_count_inodes ci = {0}; | |
2922 | int error; | |
2923 | ||
1c3eaac0 | 2924 | ASSERT(xfs_btree_is_ino(cur->bc_ops)); |
9deb7f65 DW |
2925 | error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); |
2926 | if (error) | |
2927 | return error; | |
2928 | ||
2929 | *count = ci.count; | |
2930 | *freecount = ci.freecount; | |
2931 | return 0; | |
2932 | } | |
3a05ab22 DW |
2933 | |
2934 | /* | |
2935 | * Initialize inode-related geometry information. | |
2936 | * | |
2937 | * Compute the inode btree min and max levels and set maxicount. | |
2938 | * | |
2939 | * Set the inode cluster size. This may still be overridden by the file | |
2940 | * system block size if it is larger than the chosen cluster size. | |
2941 | * | |
2942 | * For v5 filesystems, scale the cluster size with the inode size to keep a | |
2943 | * constant ratio of inode per cluster buffer, but only if mkfs has set the | |
2944 | * inode alignment value appropriately for larger cluster sizes. | |
2945 | * | |
2946 | * Then compute the inode cluster alignment information. | |
2947 | */ | |
2948 | void | |
2949 | xfs_ialloc_setup_geometry( | |
2950 | struct xfs_mount *mp) | |
2951 | { | |
2952 | struct xfs_sb *sbp = &mp->m_sb; | |
2953 | struct xfs_ino_geometry *igeo = M_IGEO(mp); | |
2954 | uint64_t icount; | |
2955 | uint inodes; | |
2956 | ||
e7e3beb9 | 2957 | igeo->new_diflags2 = 0; |
94541a16 | 2958 | if (xfs_has_bigtime(mp)) |
e7e3beb9 | 2959 | igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME; |
02a86c25 CB |
2960 | if (xfs_has_large_extent_counts(mp)) |
2961 | igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64; | |
e7e3beb9 | 2962 | |
3a05ab22 DW |
2963 | /* Compute inode btree geometry. */ |
2964 | igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog; | |
07037e85 DW |
2965 | igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, true); |
2966 | igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, false); | |
3a05ab22 DW |
2967 | igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2; |
2968 | igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2; | |
2969 | ||
2970 | igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, | |
2971 | sbp->sb_inopblock); | |
2972 | igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog; | |
2973 | ||
2974 | if (sbp->sb_spino_align) | |
2975 | igeo->ialloc_min_blks = sbp->sb_spino_align; | |
2976 | else | |
2977 | igeo->ialloc_min_blks = igeo->ialloc_blks; | |
2978 | ||
2979 | /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */ | |
2980 | inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; | |
2981 | igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr, | |
2982 | inodes); | |
441815c7 | 2983 | ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk()); |
3a05ab22 | 2984 | |
78173279 DW |
2985 | /* |
2986 | * Set the maximum inode count for this filesystem, being careful not | |
2987 | * to use obviously garbage sb_inopblog/sb_inopblock values. Regular | |
2988 | * users should never get here due to failing sb verification, but | |
2989 | * certain users (xfs_db) need to be usable even with corrupt metadata. | |
2990 | */ | |
2991 | if (sbp->sb_imax_pct && igeo->ialloc_blks) { | |
3a05ab22 DW |
2992 | /* |
2993 | * Make sure the maximum inode count is a multiple | |
2994 | * of the units we allocate inodes in. | |
2995 | */ | |
2996 | icount = sbp->sb_dblocks * sbp->sb_imax_pct; | |
2997 | do_div(icount, 100); | |
2998 | do_div(icount, igeo->ialloc_blks); | |
2999 | igeo->maxicount = XFS_FSB_TO_INO(mp, | |
3000 | icount * igeo->ialloc_blks); | |
3001 | } else { | |
3002 | igeo->maxicount = 0; | |
3003 | } | |
3004 | ||
f8780726 DW |
3005 | /* |
3006 | * Compute the desired size of an inode cluster buffer size, which | |
3007 | * starts at 8K and (on v5 filesystems) scales up with larger inode | |
3008 | * sizes. | |
3009 | * | |
3010 | * Preserve the desired inode cluster size because the sparse inodes | |
3011 | * feature uses that desired size (not the actual size) to compute the | |
3012 | * sparse inode alignment. The mount code validates this value, so we | |
3013 | * cannot change the behavior. | |
3014 | */ | |
3015 | igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE; | |
94541a16 | 3016 | if (xfs_has_v3inodes(mp)) { |
f8780726 | 3017 | int new_size = igeo->inode_cluster_size_raw; |
3a05ab22 DW |
3018 | |
3019 | new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; | |
3020 | if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) | |
f8780726 | 3021 | igeo->inode_cluster_size_raw = new_size; |
3a05ab22 DW |
3022 | } |
3023 | ||
3024 | /* Calculate inode cluster ratios. */ | |
f8780726 | 3025 | if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize) |
3a05ab22 | 3026 | igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp, |
f8780726 | 3027 | igeo->inode_cluster_size_raw); |
3a05ab22 DW |
3028 | else |
3029 | igeo->blocks_per_cluster = 1; | |
f8780726 | 3030 | igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster); |
3a05ab22 DW |
3031 | igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster); |
3032 | ||
3033 | /* Calculate inode cluster alignment. */ | |
94541a16 | 3034 | if (xfs_has_align(mp) && |
3a05ab22 DW |
3035 | mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster) |
3036 | igeo->cluster_align = mp->m_sb.sb_inoalignmt; | |
3037 | else | |
3038 | igeo->cluster_align = 1; | |
3039 | igeo->inoalign_mask = igeo->cluster_align - 1; | |
3040 | igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align); | |
3041 | ||
3042 | /* | |
3043 | * If we are using stripe alignment, check whether | |
3044 | * the stripe unit is a multiple of the inode alignment | |
3045 | */ | |
3046 | if (mp->m_dalign && igeo->inoalign_mask && | |
3047 | !(mp->m_dalign & igeo->inoalign_mask)) | |
3048 | igeo->ialloc_align = mp->m_dalign; | |
3049 | else | |
3050 | igeo->ialloc_align = 0; | |
8a044052 PR |
3051 | |
3052 | if (mp->m_sb.sb_blocksize > PAGE_SIZE) | |
3053 | igeo->min_folio_order = mp->m_sb.sb_blocklog - PAGE_SHIFT; | |
3054 | else | |
3055 | igeo->min_folio_order = 0; | |
3a05ab22 | 3056 | } |
1b0819ed DW |
3057 | |
3058 | /* Compute the location of the root directory inode that is laid out by mkfs. */ | |
3059 | xfs_ino_t | |
3060 | xfs_ialloc_calc_rootino( | |
3061 | struct xfs_mount *mp, | |
3062 | int sunit) | |
3063 | { | |
3064 | struct xfs_ino_geometry *igeo = M_IGEO(mp); | |
3065 | xfs_agblock_t first_bno; | |
3066 | ||
3067 | /* | |
3068 | * Pre-calculate the geometry of AG 0. We know what it looks like | |
3069 | * because libxfs knows how to create allocation groups now. | |
3070 | * | |
3071 | * first_bno is the first block in which mkfs could possibly have | |
3072 | * allocated the root directory inode, once we factor in the metadata | |
3073 | * that mkfs formats before it. Namely, the four AG headers... | |
3074 | */ | |
3075 | first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize); | |
3076 | ||
3077 | /* ...the two free space btree roots... */ | |
3078 | first_bno += 2; | |
3079 | ||
3080 | /* ...the inode btree root... */ | |
3081 | first_bno += 1; | |
3082 | ||
3083 | /* ...the initial AGFL... */ | |
3084 | first_bno += xfs_alloc_min_freelist(mp, NULL); | |
3085 | ||
3086 | /* ...the free inode btree root... */ | |
94541a16 | 3087 | if (xfs_has_finobt(mp)) |
1b0819ed DW |
3088 | first_bno++; |
3089 | ||
3090 | /* ...the reverse mapping btree root... */ | |
94541a16 | 3091 | if (xfs_has_rmapbt(mp)) |
1b0819ed DW |
3092 | first_bno++; |
3093 | ||
3094 | /* ...the reference count btree... */ | |
94541a16 | 3095 | if (xfs_has_reflink(mp)) |
1b0819ed DW |
3096 | first_bno++; |
3097 | ||
3098 | /* | |
3099 | * ...and the log, if it is allocated in the first allocation group. | |
3100 | * | |
3101 | * This can happen with filesystems that only have a single | |
3102 | * allocation group, or very odd geometries created by old mkfs | |
3103 | * versions on very small filesystems. | |
3104 | */ | |
54f6b9e5 | 3105 | if (xfs_ag_contains_log(mp, 0)) |
1b0819ed DW |
3106 | first_bno += mp->m_sb.sb_logblocks; |
3107 | ||
3108 | /* | |
3109 | * Now round first_bno up to whatever allocation alignment is given | |
3110 | * by the filesystem or was passed in. | |
3111 | */ | |
94541a16 | 3112 | if (xfs_has_dalign(mp) && igeo->ialloc_align > 0) |
1b0819ed | 3113 | first_bno = roundup(first_bno, sunit); |
94541a16 | 3114 | else if (xfs_has_align(mp) && |
1b0819ed DW |
3115 | mp->m_sb.sb_inoalignmt > 1) |
3116 | first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt); | |
3117 | ||
3118 | return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno)); | |
3119 | } | |
23435e3c DW |
3120 | |
3121 | /* | |
3122 | * Ensure there are not sparse inode clusters that cross the new EOAG. | |
3123 | * | |
3124 | * This is a no-op for non-spinode filesystems since clusters are always fully | |
3125 | * allocated and checking the bnobt suffices. However, a spinode filesystem | |
3126 | * could have a record where the upper inodes are free blocks. If those blocks | |
3127 | * were removed from the filesystem, the inode record would extend beyond EOAG, | |
3128 | * which will be flagged as corruption. | |
3129 | */ | |
3130 | int | |
3131 | xfs_ialloc_check_shrink( | |
90e549b5 | 3132 | struct xfs_perag *pag, |
23435e3c | 3133 | struct xfs_trans *tp, |
23435e3c DW |
3134 | struct xfs_buf *agibp, |
3135 | xfs_agblock_t new_length) | |
3136 | { | |
3137 | struct xfs_inobt_rec_incore rec; | |
3138 | struct xfs_btree_cur *cur; | |
87a02c9e | 3139 | xfs_agino_t agino; |
23435e3c DW |
3140 | int has; |
3141 | int error; | |
3142 | ||
6a271c73 | 3143 | if (!xfs_has_sparseinodes(pag_mount(pag))) |
23435e3c DW |
3144 | return 0; |
3145 | ||
7199f984 | 3146 | cur = xfs_inobt_init_cursor(pag, tp, agibp); |
23435e3c DW |
3147 | |
3148 | /* Look up the inobt record that would correspond to the new EOFS. */ | |
6a271c73 | 3149 | agino = XFS_AGB_TO_AGINO(pag_mount(pag), new_length); |
23435e3c DW |
3150 | error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has); |
3151 | if (error || !has) | |
3152 | goto out; | |
3153 | ||
3154 | error = xfs_inobt_get_rec(cur, &rec, &has); | |
3155 | if (error) | |
3156 | goto out; | |
3157 | ||
3158 | if (!has) { | |
178287f4 | 3159 | xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT); |
23435e3c DW |
3160 | error = -EFSCORRUPTED; |
3161 | goto out; | |
3162 | } | |
3163 | ||
3164 | /* If the record covers inodes that would be beyond EOFS, bail out. */ | |
3165 | if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) { | |
3166 | error = -ENOSPC; | |
3167 | goto out; | |
3168 | } | |
3169 | out: | |
3170 | xfs_btree_del_cursor(cur, error); | |
23435e3c DW |
3171 | return error; |
3172 | } |