]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blame - libxfs/xfs_rmap_btree.c
xfs: have buffer verifier functions report failing address
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_rmap_btree.c
CommitLineData
b3a96b46
DW
1/*
2 * Copyright (c) 2014 Red Hat, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "libxfs_priv.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_inode.h"
29#include "xfs_trans.h"
30#include "xfs_alloc.h"
31#include "xfs_btree.h"
936ca687 32#include "xfs_rmap.h"
b3a96b46
DW
33#include "xfs_rmap_btree.h"
34#include "xfs_trace.h"
35#include "xfs_cksum.h"
02cc8b2a 36#include "xfs_ag_resv.h"
b3a96b46 37
936ca687
DW
38/*
39 * Reverse map btree.
40 *
41 * This is a per-ag tree used to track the owner(s) of a given extent. With
42 * reflink it is possible for there to be multiple owners, which is a departure
43 * from classic XFS. Owner records for data extents are inserted when the
44 * extent is mapped and removed when an extent is unmapped. Owner records for
45 * all other block types (i.e. metadata) are inserted when an extent is
46 * allocated and removed when an extent is freed. There can only be one owner
47 * of a metadata extent, usually an inode or some other metadata structure like
48 * an AG btree.
49 *
50 * The rmap btree is part of the free space management, so blocks for the tree
51 * are sourced from the agfl. Hence we need transaction reservation support for
52 * this tree so that the freelist is always large enough. This also impacts on
53 * the minimum space we need to leave free in the AG.
54 *
55 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
56 * but it is the only way to enforce unique keys when a block can be owned by
57 * multiple files at any offset. There's no need to order/search by extent
58 * size for online updating/management of the tree. It is intended that most
59 * reverse lookups will be to find the owner(s) of a particular block, or to
60 * try to recover tree and file data from corrupt primary metadata.
61 */
62
b3a96b46
DW
63static struct xfs_btree_cur *
64xfs_rmapbt_dup_cursor(
65 struct xfs_btree_cur *cur)
66{
67 return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
68 cur->bc_private.a.agbp, cur->bc_private.a.agno);
69}
70
936ca687
DW
71STATIC void
72xfs_rmapbt_set_root(
73 struct xfs_btree_cur *cur,
74 union xfs_btree_ptr *ptr,
75 int inc)
76{
77 struct xfs_buf *agbp = cur->bc_private.a.agbp;
78 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
79 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
80 int btnum = cur->bc_btnum;
81 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
82
83 ASSERT(ptr->s != 0);
84
85 agf->agf_roots[btnum] = ptr->s;
86 be32_add_cpu(&agf->agf_levels[btnum], inc);
87 pag->pagf_levels[btnum] += inc;
88 xfs_perag_put(pag);
89
90 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
91}
92
93STATIC int
94xfs_rmapbt_alloc_block(
95 struct xfs_btree_cur *cur,
96 union xfs_btree_ptr *start,
97 union xfs_btree_ptr *new,
98 int *stat)
99{
8511b71a
DW
100 struct xfs_buf *agbp = cur->bc_private.a.agbp;
101 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
936ca687
DW
102 int error;
103 xfs_agblock_t bno;
104
105 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
106
107 /* Allocate the new block from the freelist. If we can't, give up. */
108 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
109 &bno, 1);
110 if (error) {
111 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
112 return error;
113 }
114
115 trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_private.a.agno,
116 bno, 1);
117 if (bno == NULLAGBLOCK) {
118 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
119 *stat = 0;
120 return 0;
121 }
122
123 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1,
124 false);
125
126 xfs_trans_agbtree_delta(cur->bc_tp, 1);
127 new->s = cpu_to_be32(bno);
8511b71a
DW
128 be32_add_cpu(&agf->agf_rmap_blocks, 1);
129 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
936ca687
DW
130
131 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
132 *stat = 1;
133 return 0;
134}
135
136STATIC int
137xfs_rmapbt_free_block(
138 struct xfs_btree_cur *cur,
139 struct xfs_buf *bp)
140{
141 struct xfs_buf *agbp = cur->bc_private.a.agbp;
142 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
143 xfs_agblock_t bno;
144 int error;
145
146 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
147 trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_private.a.agno,
148 bno, 1);
8511b71a
DW
149 be32_add_cpu(&agf->agf_rmap_blocks, -1);
150 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
936ca687
DW
151 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
152 if (error)
153 return error;
154
155 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
156 XFS_EXTENT_BUSY_SKIP_DISCARD);
157 xfs_trans_agbtree_delta(cur->bc_tp, -1);
158
159 return 0;
160}
161
162STATIC int
163xfs_rmapbt_get_minrecs(
164 struct xfs_btree_cur *cur,
165 int level)
166{
167 return cur->bc_mp->m_rmap_mnr[level != 0];
168}
169
170STATIC int
171xfs_rmapbt_get_maxrecs(
172 struct xfs_btree_cur *cur,
173 int level)
174{
175 return cur->bc_mp->m_rmap_mxr[level != 0];
176}
177
178STATIC void
179xfs_rmapbt_init_key_from_rec(
180 union xfs_btree_key *key,
181 union xfs_btree_rec *rec)
182{
183 key->rmap.rm_startblock = rec->rmap.rm_startblock;
184 key->rmap.rm_owner = rec->rmap.rm_owner;
185 key->rmap.rm_offset = rec->rmap.rm_offset;
186}
187
634b234e
DW
188/*
189 * The high key for a reverse mapping record can be computed by shifting
190 * the startblock and offset to the highest value that would still map
191 * to that record. In practice this means that we add blockcount-1 to
192 * the startblock for all records, and if the record is for a data/attr
193 * fork mapping, we add blockcount-1 to the offset too.
194 */
195STATIC void
196xfs_rmapbt_init_high_key_from_rec(
197 union xfs_btree_key *key,
198 union xfs_btree_rec *rec)
199{
4a492e72 200 uint64_t off;
634b234e
DW
201 int adj;
202
203 adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
204
205 key->rmap.rm_startblock = rec->rmap.rm_startblock;
206 be32_add_cpu(&key->rmap.rm_startblock, adj);
207 key->rmap.rm_owner = rec->rmap.rm_owner;
208 key->rmap.rm_offset = rec->rmap.rm_offset;
209 if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
210 XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
211 return;
212 off = be64_to_cpu(key->rmap.rm_offset);
213 off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
214 key->rmap.rm_offset = cpu_to_be64(off);
215}
216
936ca687
DW
217STATIC void
218xfs_rmapbt_init_rec_from_cur(
219 struct xfs_btree_cur *cur,
220 union xfs_btree_rec *rec)
221{
222 rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
223 rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
224 rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
225 rec->rmap.rm_offset = cpu_to_be64(
226 xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
227}
228
229STATIC void
230xfs_rmapbt_init_ptr_from_cur(
231 struct xfs_btree_cur *cur,
232 union xfs_btree_ptr *ptr)
233{
234 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
235
236 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
237 ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
238
239 ptr->s = agf->agf_roots[cur->bc_btnum];
240}
241
4a492e72 242STATIC int64_t
936ca687
DW
243xfs_rmapbt_key_diff(
244 struct xfs_btree_cur *cur,
245 union xfs_btree_key *key)
246{
247 struct xfs_rmap_irec *rec = &cur->bc_rec.r;
248 struct xfs_rmap_key *kp = &key->rmap;
249 __u64 x, y;
4a492e72 250 int64_t d;
936ca687 251
4a492e72 252 d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
936ca687
DW
253 if (d)
254 return d;
255
256 x = be64_to_cpu(kp->rm_owner);
257 y = rec->rm_owner;
258 if (x > y)
259 return 1;
260 else if (y > x)
261 return -1;
262
263 x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
264 y = rec->rm_offset;
265 if (x > y)
266 return 1;
267 else if (y > x)
268 return -1;
269 return 0;
270}
271
4a492e72 272STATIC int64_t
634b234e
DW
273xfs_rmapbt_diff_two_keys(
274 struct xfs_btree_cur *cur,
275 union xfs_btree_key *k1,
276 union xfs_btree_key *k2)
277{
278 struct xfs_rmap_key *kp1 = &k1->rmap;
279 struct xfs_rmap_key *kp2 = &k2->rmap;
4a492e72 280 int64_t d;
634b234e
DW
281 __u64 x, y;
282
4a492e72 283 d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
634b234e
DW
284 be32_to_cpu(kp2->rm_startblock);
285 if (d)
286 return d;
287
288 x = be64_to_cpu(kp1->rm_owner);
289 y = be64_to_cpu(kp2->rm_owner);
290 if (x > y)
291 return 1;
292 else if (y > x)
293 return -1;
294
295 x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
296 y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
297 if (x > y)
298 return 1;
299 else if (y > x)
300 return -1;
301 return 0;
302}
303
bc01119d 304static xfs_failaddr_t
b3a96b46
DW
305xfs_rmapbt_verify(
306 struct xfs_buf *bp)
307{
308 struct xfs_mount *mp = bp->b_target->bt_mount;
309 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
310 struct xfs_perag *pag = bp->b_pag;
bc01119d 311 xfs_failaddr_t fa;
b3a96b46
DW
312 unsigned int level;
313
314 /*
315 * magic number and level verification
316 *
317 * During growfs operations, we can't verify the exact level or owner as
318 * the perag is not fully initialised and hence not attached to the
319 * buffer. In this case, check against the maximum tree depth.
320 *
321 * Similarly, during log recovery we will have a perag structure
322 * attached, but the agf information will not yet have been initialised
323 * from the on disk AGF. Again, we can only check against maximum limits
324 * in this case.
325 */
326 if (block->bb_magic != cpu_to_be32(XFS_RMAP_CRC_MAGIC))
bc01119d 327 return __this_address;
b3a96b46
DW
328
329 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
bc01119d
DW
330 return __this_address;
331 fa = xfs_btree_sblock_v5hdr_verify(bp);
332 if (fa)
333 return fa;
b3a96b46
DW
334
335 level = be16_to_cpu(block->bb_level);
336 if (pag && pag->pagf_init) {
337 if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
bc01119d 338 return __this_address;
b3a96b46 339 } else if (level >= mp->m_rmap_maxlevels)
bc01119d 340 return __this_address;
b3a96b46
DW
341
342 return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
343}
344
345static void
346xfs_rmapbt_read_verify(
347 struct xfs_buf *bp)
348{
349 if (!xfs_btree_sblock_verify_crc(bp))
7e6c95f1 350 xfs_verifier_error(bp, -EFSBADCRC);
bc01119d 351 else if (xfs_rmapbt_verify(bp))
7e6c95f1 352 xfs_verifier_error(bp, -EFSCORRUPTED);
b3a96b46 353
7e6c95f1 354 if (bp->b_error)
b3a96b46 355 trace_xfs_btree_corrupt(bp, _RET_IP_);
b3a96b46
DW
356}
357
358static void
359xfs_rmapbt_write_verify(
360 struct xfs_buf *bp)
361{
bc01119d 362 if (xfs_rmapbt_verify(bp)) {
b3a96b46 363 trace_xfs_btree_corrupt(bp, _RET_IP_);
7e6c95f1 364 xfs_verifier_error(bp, -EFSCORRUPTED);
b3a96b46
DW
365 return;
366 }
367 xfs_btree_sblock_calc_crc(bp);
368
369}
370
371const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
372 .name = "xfs_rmapbt",
373 .verify_read = xfs_rmapbt_read_verify,
374 .verify_write = xfs_rmapbt_write_verify,
375};
376
936ca687
DW
377STATIC int
378xfs_rmapbt_keys_inorder(
379 struct xfs_btree_cur *cur,
380 union xfs_btree_key *k1,
381 union xfs_btree_key *k2)
382{
4a492e72
DW
383 uint32_t x;
384 uint32_t y;
385 uint64_t a;
386 uint64_t b;
936ca687
DW
387
388 x = be32_to_cpu(k1->rmap.rm_startblock);
389 y = be32_to_cpu(k2->rmap.rm_startblock);
390 if (x < y)
391 return 1;
392 else if (x > y)
393 return 0;
394 a = be64_to_cpu(k1->rmap.rm_owner);
395 b = be64_to_cpu(k2->rmap.rm_owner);
396 if (a < b)
397 return 1;
398 else if (a > b)
399 return 0;
400 a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
401 b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
402 if (a <= b)
403 return 1;
404 return 0;
405}
406
407STATIC int
408xfs_rmapbt_recs_inorder(
409 struct xfs_btree_cur *cur,
410 union xfs_btree_rec *r1,
411 union xfs_btree_rec *r2)
412{
4a492e72
DW
413 uint32_t x;
414 uint32_t y;
415 uint64_t a;
416 uint64_t b;
936ca687
DW
417
418 x = be32_to_cpu(r1->rmap.rm_startblock);
419 y = be32_to_cpu(r2->rmap.rm_startblock);
420 if (x < y)
421 return 1;
422 else if (x > y)
423 return 0;
424 a = be64_to_cpu(r1->rmap.rm_owner);
425 b = be64_to_cpu(r2->rmap.rm_owner);
426 if (a < b)
427 return 1;
428 else if (a > b)
429 return 0;
430 a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
431 b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
432 if (a <= b)
433 return 1;
434 return 0;
435}
936ca687 436
b3a96b46
DW
437static const struct xfs_btree_ops xfs_rmapbt_ops = {
438 .rec_len = sizeof(struct xfs_rmap_rec),
439 .key_len = 2 * sizeof(struct xfs_rmap_key),
440
441 .dup_cursor = xfs_rmapbt_dup_cursor,
936ca687
DW
442 .set_root = xfs_rmapbt_set_root,
443 .alloc_block = xfs_rmapbt_alloc_block,
444 .free_block = xfs_rmapbt_free_block,
445 .get_minrecs = xfs_rmapbt_get_minrecs,
446 .get_maxrecs = xfs_rmapbt_get_maxrecs,
447 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
634b234e 448 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
936ca687
DW
449 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
450 .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur,
451 .key_diff = xfs_rmapbt_key_diff,
b3a96b46 452 .buf_ops = &xfs_rmapbt_buf_ops,
634b234e 453 .diff_two_keys = xfs_rmapbt_diff_two_keys,
936ca687
DW
454 .keys_inorder = xfs_rmapbt_keys_inorder,
455 .recs_inorder = xfs_rmapbt_recs_inorder,
b3a96b46
DW
456};
457
458/*
459 * Allocate a new allocation btree cursor.
460 */
461struct xfs_btree_cur *
462xfs_rmapbt_init_cursor(
463 struct xfs_mount *mp,
464 struct xfs_trans *tp,
465 struct xfs_buf *agbp,
466 xfs_agnumber_t agno)
467{
468 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
469 struct xfs_btree_cur *cur;
470
471 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
472 cur->bc_tp = tp;
473 cur->bc_mp = mp;
634b234e 474 /* Overlapping btree; 2 keys per pointer. */
b3a96b46 475 cur->bc_btnum = XFS_BTNUM_RMAP;
634b234e 476 cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
b3a96b46
DW
477 cur->bc_blocklog = mp->m_sb.sb_blocklog;
478 cur->bc_ops = &xfs_rmapbt_ops;
479 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
5d8acc46 480 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
b3a96b46
DW
481
482 cur->bc_private.a.agbp = agbp;
483 cur->bc_private.a.agno = agno;
484
485 return cur;
486}
487
488/*
489 * Calculate number of records in an rmap btree block.
490 */
491int
492xfs_rmapbt_maxrecs(
493 struct xfs_mount *mp,
494 int blocklen,
495 int leaf)
496{
497 blocklen -= XFS_RMAP_BLOCK_LEN;
498
499 if (leaf)
500 return blocklen / sizeof(struct xfs_rmap_rec);
501 return blocklen /
634b234e 502 (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
b3a96b46
DW
503}
504
505/* Compute the maximum height of an rmap btree. */
506void
507xfs_rmapbt_compute_maxlevels(
508 struct xfs_mount *mp)
509{
88ce0792
DW
510 /*
511 * On a non-reflink filesystem, the maximum number of rmap
512 * records is the number of blocks in the AG, hence the max
513 * rmapbt height is log_$maxrecs($agblocks). However, with
514 * reflink each AG block can have up to 2^32 (per the refcount
515 * record format) owners, which means that theoretically we
516 * could face up to 2^64 rmap records.
517 *
518 * That effectively means that the max rmapbt height must be
519 * XFS_BTREE_MAXLEVELS. "Fortunately" we'll run out of AG
520 * blocks to feed the rmapbt long before the rmapbt reaches
521 * maximum height. The reflink code uses ag_resv_critical to
522 * disallow reflinking when less than 10% of the per-AG metadata
523 * block reservation since the fallback is a regular file copy.
524 */
525 if (xfs_sb_version_hasreflink(&mp->m_sb))
526 mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS;
527 else
528 mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(mp,
529 mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
b3a96b46 530}
02cc8b2a
DW
531
532/* Calculate the refcount btree size for some records. */
533xfs_extlen_t
534xfs_rmapbt_calc_size(
535 struct xfs_mount *mp,
536 unsigned long long len)
537{
538 return xfs_btree_calc_size(mp, mp->m_rmap_mnr, len);
539}
540
541/*
542 * Calculate the maximum refcount btree size.
543 */
544xfs_extlen_t
545xfs_rmapbt_max_size(
f21c57ed
DW
546 struct xfs_mount *mp,
547 xfs_agblock_t agblocks)
02cc8b2a
DW
548{
549 /* Bail out if we're uninitialized, which can happen in mkfs. */
550 if (mp->m_rmap_mxr[0] == 0)
551 return 0;
552
f21c57ed 553 return xfs_rmapbt_calc_size(mp, agblocks);
02cc8b2a
DW
554}
555
556/*
557 * Figure out how many blocks to reserve and how many are used by this btree.
558 */
559int
560xfs_rmapbt_calc_reserves(
561 struct xfs_mount *mp,
562 xfs_agnumber_t agno,
563 xfs_extlen_t *ask,
564 xfs_extlen_t *used)
565{
566 struct xfs_buf *agbp;
567 struct xfs_agf *agf;
f21c57ed 568 xfs_agblock_t agblocks;
02cc8b2a
DW
569 xfs_extlen_t tree_len;
570 int error;
571
572 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
573 return 0;
574
02cc8b2a
DW
575 error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp);
576 if (error)
577 return error;
578
579 agf = XFS_BUF_TO_AGF(agbp);
f21c57ed 580 agblocks = be32_to_cpu(agf->agf_length);
02cc8b2a
DW
581 tree_len = be32_to_cpu(agf->agf_rmap_blocks);
582 xfs_buf_relse(agbp);
583
f21c57ed
DW
584 /* Reserve 1% of the AG or enough for 1 block per record. */
585 *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
02cc8b2a
DW
586 *used += tree_len;
587
588 return error;
589}