]> git.ipfire.org Git - thirdparty/glibc.git/blame - malloc/malloc.c
Regenerate libc.po
[thirdparty/glibc.git] / malloc / malloc.c
CommitLineData
56137dbc 1/* Malloc implementation for multiple threads without lock contention.
d4697bc9 2 Copyright (C) 1996-2014 Free Software Foundation, Inc.
f65fd747 3 This file is part of the GNU C Library.
fa8d436c
UD
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
f65fd747
UD
6
7 The GNU C Library is free software; you can redistribute it and/or
cc7375ce
RM
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
fa8d436c 10 License, or (at your option) any later version.
f65fd747
UD
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
cc7375ce 15 Lesser General Public License for more details.
f65fd747 16
cc7375ce 17 You should have received a copy of the GNU Lesser General Public
59ba27a6
PE
18 License along with the GNU C Library; see the file COPYING.LIB. If
19 not, see <http://www.gnu.org/licenses/>. */
f65fd747 20
fa8d436c
UD
21/*
22 This is a version (aka ptmalloc2) of malloc/free/realloc written by
23 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
24
da2d2fb6
UD
25 There have been substantial changesmade after the integration into
26 glibc in all parts of the code. Do not look for much commonality
27 with the ptmalloc2 version.
28
fa8d436c 29* Version ptmalloc2-20011215
fa8d436c
UD
30 based on:
31 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
f65fd747 32
fa8d436c 33* Quickstart
f65fd747 34
fa8d436c
UD
35 In order to compile this implementation, a Makefile is provided with
36 the ptmalloc2 distribution, which has pre-defined targets for some
37 popular systems (e.g. "make posix" for Posix threads). All that is
38 typically required with regard to compiler flags is the selection of
39 the thread package via defining one out of USE_PTHREADS, USE_THR or
40 USE_SPROC. Check the thread-m.h file for what effects this has.
41 Many/most systems will additionally require USE_TSD_DATA_HACK to be
42 defined, so this is the default for "make posix".
f65fd747
UD
43
44* Why use this malloc?
45
46 This is not the fastest, most space-conserving, most portable, or
47 most tunable malloc ever written. However it is among the fastest
48 while also being among the most space-conserving, portable and tunable.
49 Consistent balance across these factors results in a good general-purpose
fa8d436c
UD
50 allocator for malloc-intensive programs.
51
52 The main properties of the algorithms are:
53 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
54 with ties normally decided via FIFO (i.e. least recently used).
55 * For small (<= 64 bytes by default) requests, it is a caching
56 allocator, that maintains pools of quickly recycled chunks.
57 * In between, and for combinations of large and small requests, it does
58 the best it can trying to meet both goals at once.
59 * For very large requests (>= 128KB by default), it relies on system
60 memory mapping facilities, if supported.
61
62 For a longer but slightly out of date high-level description, see
63 http://gee.cs.oswego.edu/dl/html/malloc.html
64
65 You may already by default be using a C library containing a malloc
66 that is based on some version of this malloc (for example in
67 linux). You might still want to use the one in this file in order to
68 customize settings or to avoid overheads associated with library
69 versions.
70
71* Contents, described in more detail in "description of public routines" below.
72
73 Standard (ANSI/SVID/...) functions:
74 malloc(size_t n);
75 calloc(size_t n_elements, size_t element_size);
22a89187
UD
76 free(void* p);
77 realloc(void* p, size_t n);
fa8d436c
UD
78 memalign(size_t alignment, size_t n);
79 valloc(size_t n);
80 mallinfo()
81 mallopt(int parameter_number, int parameter_value)
82
83 Additional functions:
22a89187
UD
84 independent_calloc(size_t n_elements, size_t size, void* chunks[]);
85 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
fa8d436c 86 pvalloc(size_t n);
22a89187 87 cfree(void* p);
fa8d436c 88 malloc_trim(size_t pad);
22a89187 89 malloc_usable_size(void* p);
fa8d436c 90 malloc_stats();
f65fd747
UD
91
92* Vital statistics:
93
fa8d436c 94 Supported pointer representation: 4 or 8 bytes
a9177ff5 95 Supported size_t representation: 4 or 8 bytes
f65fd747 96 Note that size_t is allowed to be 4 bytes even if pointers are 8.
fa8d436c
UD
97 You can adjust this by defining INTERNAL_SIZE_T
98
99 Alignment: 2 * sizeof(size_t) (default)
100 (i.e., 8 byte alignment with 4byte size_t). This suffices for
101 nearly all current machines and C compilers. However, you can
102 define MALLOC_ALIGNMENT to be wider than this if necessary.
f65fd747 103
fa8d436c
UD
104 Minimum overhead per allocated chunk: 4 or 8 bytes
105 Each malloced chunk has a hidden word of overhead holding size
f65fd747
UD
106 and status information.
107
108 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
72f90263 109 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
f65fd747
UD
110
111 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
112 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
fa8d436c
UD
113 needed; 4 (8) for a trailing size field and 8 (16) bytes for
114 free list pointers. Thus, the minimum allocatable size is
115 16/24/32 bytes.
f65fd747
UD
116
117 Even a request for zero bytes (i.e., malloc(0)) returns a
118 pointer to something of the minimum allocatable size.
119
fa8d436c
UD
120 The maximum overhead wastage (i.e., number of extra bytes
121 allocated than were requested in malloc) is less than or equal
122 to the minimum size, except for requests >= mmap_threshold that
123 are serviced via mmap(), where the worst case wastage is 2 *
124 sizeof(size_t) bytes plus the remainder from a system page (the
125 minimal mmap unit); typically 4096 or 8192 bytes.
f65fd747 126
a9177ff5 127 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
72f90263 128 8-byte size_t: 2^64 minus about two pages
fa8d436c
UD
129
130 It is assumed that (possibly signed) size_t values suffice to
f65fd747
UD
131 represent chunk sizes. `Possibly signed' is due to the fact
132 that `size_t' may be defined on a system as either a signed or
fa8d436c
UD
133 an unsigned type. The ISO C standard says that it must be
134 unsigned, but a few systems are known not to adhere to this.
135 Additionally, even when size_t is unsigned, sbrk (which is by
136 default used to obtain memory from system) accepts signed
137 arguments, and may not be able to handle size_t-wide arguments
138 with negative sign bit. Generally, values that would
139 appear as negative after accounting for overhead and alignment
140 are supported only via mmap(), which does not have this
141 limitation.
142
143 Requests for sizes outside the allowed range will perform an optional
144 failure action and then return null. (Requests may also
145 also fail because a system is out of memory.)
146
22a89187 147 Thread-safety: thread-safe
fa8d436c
UD
148
149 Compliance: I believe it is compliant with the 1997 Single Unix Specification
2b0fba75 150 Also SVID/XPG, ANSI C, and probably others as well.
f65fd747
UD
151
152* Synopsis of compile-time options:
153
154 People have reported using previous versions of this malloc on all
155 versions of Unix, sometimes by tweaking some of the defines
22a89187 156 below. It has been tested most extensively on Solaris and Linux.
fa8d436c
UD
157 People also report using it in stand-alone embedded systems.
158
159 The implementation is in straight, hand-tuned ANSI C. It is not
160 at all modular. (Sorry!) It uses a lot of macros. To be at all
161 usable, this code should be compiled using an optimizing compiler
162 (for example gcc -O3) that can simplify expressions and control
163 paths. (FAQ: some macros import variables as arguments rather than
164 declare locals because people reported that some debuggers
165 otherwise get confused.)
166
167 OPTION DEFAULT VALUE
168
169 Compilation Environment options:
170
2a26ef3a 171 HAVE_MREMAP 0
fa8d436c
UD
172
173 Changing default word sizes:
174
175 INTERNAL_SIZE_T size_t
073f560e
UD
176 MALLOC_ALIGNMENT MAX (2 * sizeof(INTERNAL_SIZE_T),
177 __alignof__ (long double))
fa8d436c
UD
178
179 Configuration and functionality options:
180
fa8d436c
UD
181 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
182 USE_MALLOC_LOCK NOT defined
183 MALLOC_DEBUG NOT defined
184 REALLOC_ZERO_BYTES_FREES 1
fa8d436c
UD
185 TRIM_FASTBINS 0
186
187 Options for customizing MORECORE:
188
189 MORECORE sbrk
190 MORECORE_FAILURE -1
a9177ff5 191 MORECORE_CONTIGUOUS 1
fa8d436c
UD
192 MORECORE_CANNOT_TRIM NOT defined
193 MORECORE_CLEARS 1
a9177ff5 194 MMAP_AS_MORECORE_SIZE (1024 * 1024)
fa8d436c
UD
195
196 Tuning options that are also dynamically changeable via mallopt:
197
425ce2ed 198 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
fa8d436c
UD
199 DEFAULT_TRIM_THRESHOLD 128 * 1024
200 DEFAULT_TOP_PAD 0
201 DEFAULT_MMAP_THRESHOLD 128 * 1024
202 DEFAULT_MMAP_MAX 65536
203
204 There are several other #defined constants and macros that you
205 probably don't want to touch unless you are extending or adapting malloc. */
f65fd747
UD
206
207/*
22a89187 208 void* is the pointer type that malloc should say it returns
f65fd747
UD
209*/
210
22a89187
UD
211#ifndef void
212#define void void
213#endif /*void*/
f65fd747 214
fa8d436c
UD
215#include <stddef.h> /* for size_t */
216#include <stdlib.h> /* for getenv(), abort() */
2a26ef3a 217#include <unistd.h> /* for __libc_enable_secure */
f65fd747 218
3c6904fb 219#include <malloc-machine.h>
2a26ef3a 220#include <malloc-sysdep.h>
3c6904fb 221
425ce2ed 222#include <atomic.h>
eb96ffb0 223#include <_itoa.h>
e404fb16 224#include <bits/wordsize.h>
425ce2ed 225#include <sys/sysinfo.h>
c56da3a3 226
02d46fc4
UD
227#include <ldsodefs.h>
228
fa8d436c 229#include <unistd.h>
fa8d436c 230#include <stdio.h> /* needed for malloc_stats */
8e58439c 231#include <errno.h>
f65fd747 232
66274218
AJ
233#include <shlib-compat.h>
234
5d78bb43
UD
235/* For uintptr_t. */
236#include <stdint.h>
f65fd747 237
3e030bd5
UD
238/* For va_arg, va_start, va_end. */
239#include <stdarg.h>
240
070906ff
RM
241/* For MIN, MAX, powerof2. */
242#include <sys/param.h>
243
c0f62c56 244
fa8d436c
UD
245/*
246 Debugging:
247
248 Because freed chunks may be overwritten with bookkeeping fields, this
249 malloc will often die when freed memory is overwritten by user
250 programs. This can be very effective (albeit in an annoying way)
251 in helping track down dangling pointers.
252
253 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
254 enabled that will catch more memory errors. You probably won't be
255 able to make much sense of the actual assertion errors, but they
256 should help you locate incorrectly overwritten memory. The checking
257 is fairly extensive, and will slow down execution
258 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
259 will attempt to check every non-mmapped allocated and free chunk in
260 the course of computing the summmaries. (By nature, mmapped regions
261 cannot be checked very much automatically.)
262
263 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
264 this code. The assertions in the check routines spell out in more
265 detail the assumptions and invariants underlying the algorithms.
266
267 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
268 checking that all accesses to malloced memory stay within their
269 bounds. However, there are several add-ons and adaptations of this
270 or other mallocs available that do this.
f65fd747
UD
271*/
272
439bda32
WN
273#ifndef MALLOC_DEBUG
274#define MALLOC_DEBUG 0
275#endif
276
72f90263
UD
277#ifdef NDEBUG
278# define assert(expr) ((void) 0)
279#else
280# define assert(expr) \
281 ((expr) \
282 ? ((void) 0) \
283 : __malloc_assert (__STRING (expr), __FILE__, __LINE__, __func__))
284
285extern const char *__progname;
286
287static void
288__malloc_assert (const char *assertion, const char *file, unsigned int line,
289 const char *function)
290{
291 (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n",
292 __progname, __progname[0] ? ": " : "",
293 file, line,
294 function ? function : "", function ? ": " : "",
295 assertion);
296 fflush (stderr);
297 abort ();
298}
299#endif
f65fd747
UD
300
301
302/*
303 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
fa8d436c
UD
304 of chunk sizes.
305
306 The default version is the same as size_t.
307
308 While not strictly necessary, it is best to define this as an
309 unsigned type, even if size_t is a signed type. This may avoid some
310 artificial size limitations on some systems.
311
312 On a 64-bit machine, you may be able to reduce malloc overhead by
313 defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
314 expense of not being able to handle more than 2^32 of malloced
315 space. If this limitation is acceptable, you are encouraged to set
316 this unless you are on a platform requiring 16byte alignments. In
317 this case the alignment requirements turn out to negate any
318 potential advantages of decreasing size_t word size.
319
320 Implementors: Beware of the possible combinations of:
321 - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
322 and might be the same width as int or as long
323 - size_t might have different width and signedness as INTERNAL_SIZE_T
324 - int and long might be 32 or 64 bits, and might be the same width
325 To deal with this, most comparisons and difference computations
326 among INTERNAL_SIZE_Ts should cast them to unsigned long, being
327 aware of the fact that casting an unsigned int to a wider long does
328 not sign-extend. (This also makes checking for negative numbers
329 awkward.) Some of these casts result in harmless compiler warnings
330 on some systems.
f65fd747
UD
331*/
332
333#ifndef INTERNAL_SIZE_T
334#define INTERNAL_SIZE_T size_t
335#endif
336
fa8d436c
UD
337/* The corresponding word size */
338#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
339
340
341/*
342 MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
343 It must be a power of two at least 2 * SIZE_SZ, even on machines
344 for which smaller alignments would suffice. It may be defined as
345 larger than this though. Note however that code and data structures
346 are optimized for the case of 8-byte alignment.
347*/
348
349
350#ifndef MALLOC_ALIGNMENT
cbc00a03
RM
351# if !SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_16)
352/* This is the correct definition when there is no past ABI to constrain it.
353
354 Among configurations with a past ABI constraint, it differs from
355 2*SIZE_SZ only on powerpc32. For the time being, changing this is
356 causing more compatibility problems due to malloc_get_state and
357 malloc_set_state than will returning blocks not adequately aligned for
358 long double objects under -mlong-double-128. */
359
6c8dbf00
OB
360# define MALLOC_ALIGNMENT (2 *SIZE_SZ < __alignof__ (long double) \
361 ? __alignof__ (long double) : 2 *SIZE_SZ)
cbc00a03 362# else
6c8dbf00 363# define MALLOC_ALIGNMENT (2 *SIZE_SZ)
cbc00a03 364# endif
fa8d436c
UD
365#endif
366
367/* The corresponding bit mask value */
368#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
369
370
371
372/*
373 REALLOC_ZERO_BYTES_FREES should be set if a call to
374 realloc with zero bytes should be the same as a call to free.
375 This is required by the C standard. Otherwise, since this malloc
376 returns a unique pointer for malloc(0), so does realloc(p, 0).
377*/
378
379#ifndef REALLOC_ZERO_BYTES_FREES
380#define REALLOC_ZERO_BYTES_FREES 1
381#endif
382
383/*
384 TRIM_FASTBINS controls whether free() of a very small chunk can
385 immediately lead to trimming. Setting to true (1) can reduce memory
386 footprint, but will almost always slow down programs that use a lot
387 of small chunks.
388
389 Define this only if you are willing to give up some speed to more
390 aggressively reduce system-level memory footprint when releasing
391 memory in programs that use many small chunks. You can get
392 essentially the same effect by setting MXFAST to 0, but this can
393 lead to even greater slowdowns in programs using many small chunks.
394 TRIM_FASTBINS is an in-between compile-time option, that disables
395 only those chunks bordering topmost memory from being placed in
396 fastbins.
397*/
398
399#ifndef TRIM_FASTBINS
400#define TRIM_FASTBINS 0
401#endif
402
403
3b49edc0 404/* Definition for getting more memory from the OS. */
fa8d436c
UD
405#define MORECORE (*__morecore)
406#define MORECORE_FAILURE 0
22a89187
UD
407void * __default_morecore (ptrdiff_t);
408void *(*__morecore)(ptrdiff_t) = __default_morecore;
f65fd747 409
f65fd747 410
22a89187 411#include <string.h>
f65fd747 412
fa8d436c
UD
413/*
414 MORECORE-related declarations. By default, rely on sbrk
415*/
09f5e163 416
f65fd747 417
fa8d436c
UD
418/*
419 MORECORE is the name of the routine to call to obtain more memory
420 from the system. See below for general guidance on writing
421 alternative MORECORE functions, as well as a version for WIN32 and a
422 sample version for pre-OSX macos.
423*/
f65fd747 424
fa8d436c
UD
425#ifndef MORECORE
426#define MORECORE sbrk
427#endif
f65fd747 428
fa8d436c
UD
429/*
430 MORECORE_FAILURE is the value returned upon failure of MORECORE
431 as well as mmap. Since it cannot be an otherwise valid memory address,
432 and must reflect values of standard sys calls, you probably ought not
433 try to redefine it.
434*/
09f5e163 435
fa8d436c
UD
436#ifndef MORECORE_FAILURE
437#define MORECORE_FAILURE (-1)
438#endif
439
440/*
441 If MORECORE_CONTIGUOUS is true, take advantage of fact that
442 consecutive calls to MORECORE with positive arguments always return
443 contiguous increasing addresses. This is true of unix sbrk. Even
444 if not defined, when regions happen to be contiguous, malloc will
445 permit allocations spanning regions obtained from different
446 calls. But defining this when applicable enables some stronger
447 consistency checks and space efficiencies.
448*/
f65fd747 449
fa8d436c
UD
450#ifndef MORECORE_CONTIGUOUS
451#define MORECORE_CONTIGUOUS 1
f65fd747
UD
452#endif
453
fa8d436c
UD
454/*
455 Define MORECORE_CANNOT_TRIM if your version of MORECORE
456 cannot release space back to the system when given negative
457 arguments. This is generally necessary only if you are using
458 a hand-crafted MORECORE function that cannot handle negative arguments.
459*/
460
461/* #define MORECORE_CANNOT_TRIM */
f65fd747 462
fa8d436c
UD
463/* MORECORE_CLEARS (default 1)
464 The degree to which the routine mapped to MORECORE zeroes out
465 memory: never (0), only for newly allocated space (1) or always
466 (2). The distinction between (1) and (2) is necessary because on
467 some systems, if the application first decrements and then
468 increments the break value, the contents of the reallocated space
469 are unspecified.
6c8dbf00 470 */
fa8d436c
UD
471
472#ifndef MORECORE_CLEARS
6c8dbf00 473# define MORECORE_CLEARS 1
7cabd57c
UD
474#endif
475
fa8d436c 476
a9177ff5 477/*
fa8d436c 478 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
22a89187
UD
479 sbrk fails, and mmap is used as a backup. The value must be a
480 multiple of page size. This backup strategy generally applies only
481 when systems have "holes" in address space, so sbrk cannot perform
482 contiguous expansion, but there is still space available on system.
483 On systems for which this is known to be useful (i.e. most linux
484 kernels), this occurs only when programs allocate huge amounts of
485 memory. Between this, and the fact that mmap regions tend to be
486 limited, the size should be large, to avoid too many mmap calls and
487 thus avoid running out of kernel resources. */
fa8d436c
UD
488
489#ifndef MMAP_AS_MORECORE_SIZE
490#define MMAP_AS_MORECORE_SIZE (1024 * 1024)
f65fd747
UD
491#endif
492
493/*
494 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
2a26ef3a 495 large blocks.
f65fd747
UD
496*/
497
498#ifndef HAVE_MREMAP
fa8d436c 499#define HAVE_MREMAP 0
f65fd747
UD
500#endif
501
f65fd747 502
f65fd747 503/*
f65fd747 504 This version of malloc supports the standard SVID/XPG mallinfo
fa8d436c
UD
505 routine that returns a struct containing usage properties and
506 statistics. It should work on any SVID/XPG compliant system that has
507 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
508 install such a thing yourself, cut out the preliminary declarations
509 as described above and below and save them in a malloc.h file. But
510 there's no compelling reason to bother to do this.)
f65fd747
UD
511
512 The main declaration needed is the mallinfo struct that is returned
513 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
fa8d436c
UD
514 bunch of fields that are not even meaningful in this version of
515 malloc. These fields are are instead filled by mallinfo() with
516 other numbers that might be of interest.
f65fd747
UD
517*/
518
f65fd747 519
fa8d436c 520/* ---------- description of public routines ------------ */
f65fd747
UD
521
522/*
fa8d436c
UD
523 malloc(size_t n)
524 Returns a pointer to a newly allocated chunk of at least n bytes, or null
525 if no space is available. Additionally, on failure, errno is
526 set to ENOMEM on ANSI C systems.
527
528 If n is zero, malloc returns a minumum-sized chunk. (The minimum
529 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
530 systems.) On most systems, size_t is an unsigned type, so calls
531 with negative arguments are interpreted as requests for huge amounts
532 of space, which will often fail. The maximum supported value of n
533 differs across systems, but is in all cases less than the maximum
534 representable value of a size_t.
f65fd747 535*/
3b49edc0
UD
536void* __libc_malloc(size_t);
537libc_hidden_proto (__libc_malloc)
f65fd747 538
fa8d436c 539/*
22a89187 540 free(void* p)
fa8d436c
UD
541 Releases the chunk of memory pointed to by p, that had been previously
542 allocated using malloc or a related routine such as realloc.
543 It has no effect if p is null. It can have arbitrary (i.e., bad!)
544 effects if p has already been freed.
545
546 Unless disabled (using mallopt), freeing very large spaces will
547 when possible, automatically trigger operations that give
548 back unused memory to the system, thus reducing program footprint.
549*/
3b49edc0
UD
550void __libc_free(void*);
551libc_hidden_proto (__libc_free)
f65fd747 552
fa8d436c
UD
553/*
554 calloc(size_t n_elements, size_t element_size);
555 Returns a pointer to n_elements * element_size bytes, with all locations
556 set to zero.
557*/
3b49edc0 558void* __libc_calloc(size_t, size_t);
f65fd747
UD
559
560/*
22a89187 561 realloc(void* p, size_t n)
fa8d436c
UD
562 Returns a pointer to a chunk of size n that contains the same data
563 as does chunk p up to the minimum of (n, p's size) bytes, or null
a9177ff5 564 if no space is available.
f65fd747 565
fa8d436c
UD
566 The returned pointer may or may not be the same as p. The algorithm
567 prefers extending p when possible, otherwise it employs the
568 equivalent of a malloc-copy-free sequence.
f65fd747 569
a9177ff5 570 If p is null, realloc is equivalent to malloc.
f65fd747 571
fa8d436c
UD
572 If space is not available, realloc returns null, errno is set (if on
573 ANSI) and p is NOT freed.
f65fd747 574
fa8d436c
UD
575 if n is for fewer bytes than already held by p, the newly unused
576 space is lopped off and freed if possible. Unless the #define
577 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
578 zero (re)allocates a minimum-sized chunk.
f65fd747 579
fa8d436c
UD
580 Large chunks that were internally obtained via mmap will always
581 be reallocated using malloc-copy-free sequences unless
582 the system supports MREMAP (currently only linux).
f65fd747 583
fa8d436c
UD
584 The old unix realloc convention of allowing the last-free'd chunk
585 to be used as an argument to realloc is not supported.
f65fd747 586*/
3b49edc0
UD
587void* __libc_realloc(void*, size_t);
588libc_hidden_proto (__libc_realloc)
f65fd747 589
fa8d436c
UD
590/*
591 memalign(size_t alignment, size_t n);
592 Returns a pointer to a newly allocated chunk of n bytes, aligned
593 in accord with the alignment argument.
594
595 The alignment argument should be a power of two. If the argument is
596 not a power of two, the nearest greater power is used.
597 8-byte alignment is guaranteed by normal malloc calls, so don't
598 bother calling memalign with an argument of 8 or less.
599
600 Overreliance on memalign is a sure way to fragment space.
601*/
3b49edc0
UD
602void* __libc_memalign(size_t, size_t);
603libc_hidden_proto (__libc_memalign)
f65fd747
UD
604
605/*
fa8d436c
UD
606 valloc(size_t n);
607 Equivalent to memalign(pagesize, n), where pagesize is the page
608 size of the system. If the pagesize is unknown, 4096 is used.
609*/
3b49edc0 610void* __libc_valloc(size_t);
fa8d436c 611
f65fd747 612
f65fd747 613
fa8d436c
UD
614/*
615 mallopt(int parameter_number, int parameter_value)
616 Sets tunable parameters The format is to provide a
617 (parameter-number, parameter-value) pair. mallopt then sets the
618 corresponding parameter to the argument value if it can (i.e., so
619 long as the value is meaningful), and returns 1 if successful else
620 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
621 normally defined in malloc.h. Only one of these (M_MXFAST) is used
622 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
623 so setting them has no effect. But this malloc also supports four
624 other options in mallopt. See below for details. Briefly, supported
625 parameters are as follows (listed defaults are for "typical"
626 configurations).
627
628 Symbol param # default allowed param values
629 M_MXFAST 1 64 0-80 (0 disables fastbins)
630 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
a9177ff5 631 M_TOP_PAD -2 0 any
fa8d436c
UD
632 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
633 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
634*/
3b49edc0
UD
635int __libc_mallopt(int, int);
636libc_hidden_proto (__libc_mallopt)
fa8d436c
UD
637
638
639/*
640 mallinfo()
641 Returns (by copy) a struct containing various summary statistics:
642
a9177ff5
RM
643 arena: current total non-mmapped bytes allocated from system
644 ordblks: the number of free chunks
fa8d436c 645 smblks: the number of fastbin blocks (i.e., small chunks that
72f90263 646 have been freed but not use resused or consolidated)
a9177ff5
RM
647 hblks: current number of mmapped regions
648 hblkhd: total bytes held in mmapped regions
fa8d436c 649 usmblks: the maximum total allocated space. This will be greater
72f90263 650 than current total if trimming has occurred.
a9177ff5 651 fsmblks: total bytes held in fastbin blocks
fa8d436c 652 uordblks: current total allocated space (normal or mmapped)
a9177ff5 653 fordblks: total free space
fa8d436c 654 keepcost: the maximum number of bytes that could ideally be released
72f90263
UD
655 back to system via malloc_trim. ("ideally" means that
656 it ignores page restrictions etc.)
fa8d436c
UD
657
658 Because these fields are ints, but internal bookkeeping may
a9177ff5 659 be kept as longs, the reported values may wrap around zero and
fa8d436c
UD
660 thus be inaccurate.
661*/
3b49edc0 662struct mallinfo __libc_mallinfo(void);
88764ae2 663
f65fd747 664
fa8d436c
UD
665/*
666 pvalloc(size_t n);
667 Equivalent to valloc(minimum-page-that-holds(n)), that is,
668 round up n to nearest pagesize.
669 */
3b49edc0 670void* __libc_pvalloc(size_t);
fa8d436c
UD
671
672/*
673 malloc_trim(size_t pad);
674
675 If possible, gives memory back to the system (via negative
676 arguments to sbrk) if there is unused memory at the `high' end of
677 the malloc pool. You can call this after freeing large blocks of
678 memory to potentially reduce the system-level memory requirements
679 of a program. However, it cannot guarantee to reduce memory. Under
680 some allocation patterns, some large free blocks of memory will be
681 locked between two used chunks, so they cannot be given back to
682 the system.
a9177ff5 683
fa8d436c
UD
684 The `pad' argument to malloc_trim represents the amount of free
685 trailing space to leave untrimmed. If this argument is zero,
686 only the minimum amount of memory to maintain internal data
687 structures will be left (one page or less). Non-zero arguments
688 can be supplied to maintain enough trailing space to service
689 future expected allocations without having to re-obtain memory
690 from the system.
a9177ff5 691
fa8d436c
UD
692 Malloc_trim returns 1 if it actually released any memory, else 0.
693 On systems that do not support "negative sbrks", it will always
c958a6a4 694 return 0.
fa8d436c 695*/
3b49edc0 696int __malloc_trim(size_t);
fa8d436c
UD
697
698/*
22a89187 699 malloc_usable_size(void* p);
fa8d436c
UD
700
701 Returns the number of bytes you can actually use in
702 an allocated chunk, which may be more than you requested (although
703 often not) due to alignment and minimum size constraints.
704 You can use this many bytes without worrying about
705 overwriting other allocated objects. This is not a particularly great
706 programming practice. malloc_usable_size can be more useful in
707 debugging and assertions, for example:
708
709 p = malloc(n);
710 assert(malloc_usable_size(p) >= 256);
711
712*/
3b49edc0 713size_t __malloc_usable_size(void*);
fa8d436c
UD
714
715/*
716 malloc_stats();
717 Prints on stderr the amount of space obtained from the system (both
718 via sbrk and mmap), the maximum amount (which may be more than
719 current if malloc_trim and/or munmap got called), and the current
720 number of bytes allocated via malloc (or realloc, etc) but not yet
721 freed. Note that this is the number of bytes allocated, not the
722 number requested. It will be larger than the number requested
723 because of alignment and bookkeeping overhead. Because it includes
724 alignment wastage as being in use, this figure may be greater than
725 zero even when no user-level chunks are allocated.
726
727 The reported current and maximum system memory can be inaccurate if
728 a program makes other calls to system memory allocation functions
729 (normally sbrk) outside of malloc.
730
731 malloc_stats prints only the most commonly interesting statistics.
732 More information can be obtained by calling mallinfo.
733
734*/
3b49edc0 735void __malloc_stats(void);
f65fd747 736
f7ddf3d3
UD
737/*
738 malloc_get_state(void);
739
740 Returns the state of all malloc variables in an opaque data
741 structure.
742*/
3b49edc0 743void* __malloc_get_state(void);
f7ddf3d3
UD
744
745/*
22a89187 746 malloc_set_state(void* state);
f7ddf3d3
UD
747
748 Restore the state of all malloc variables from data obtained with
749 malloc_get_state().
750*/
3b49edc0 751int __malloc_set_state(void*);
f7ddf3d3 752
f7ddf3d3
UD
753/*
754 posix_memalign(void **memptr, size_t alignment, size_t size);
755
756 POSIX wrapper like memalign(), checking for validity of size.
757*/
758int __posix_memalign(void **, size_t, size_t);
f7ddf3d3 759
fa8d436c
UD
760/* mallopt tuning options */
761
f65fd747 762/*
fa8d436c
UD
763 M_MXFAST is the maximum request size used for "fastbins", special bins
764 that hold returned chunks without consolidating their spaces. This
765 enables future requests for chunks of the same size to be handled
766 very quickly, but can increase fragmentation, and thus increase the
767 overall memory footprint of a program.
768
769 This malloc manages fastbins very conservatively yet still
770 efficiently, so fragmentation is rarely a problem for values less
771 than or equal to the default. The maximum supported value of MXFAST
772 is 80. You wouldn't want it any higher than this anyway. Fastbins
773 are designed especially for use with many small structs, objects or
774 strings -- the default handles structs/objects/arrays with sizes up
775 to 8 4byte fields, or small strings representing words, tokens,
776 etc. Using fastbins for larger objects normally worsens
777 fragmentation without improving speed.
778
779 M_MXFAST is set in REQUEST size units. It is internally used in
780 chunksize units, which adds padding and alignment. You can reduce
781 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
782 algorithm to be a closer approximation of fifo-best-fit in all cases,
783 not just for larger requests, but will generally cause it to be
784 slower.
f65fd747
UD
785*/
786
787
fa8d436c
UD
788/* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
789#ifndef M_MXFAST
a9177ff5 790#define M_MXFAST 1
fa8d436c 791#endif
f65fd747 792
fa8d436c 793#ifndef DEFAULT_MXFAST
425ce2ed 794#define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
10dc2a90
UD
795#endif
796
10dc2a90 797
fa8d436c
UD
798/*
799 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
800 to keep before releasing via malloc_trim in free().
801
802 Automatic trimming is mainly useful in long-lived programs.
803 Because trimming via sbrk can be slow on some systems, and can
804 sometimes be wasteful (in cases where programs immediately
805 afterward allocate more large chunks) the value should be high
806 enough so that your overall system performance would improve by
807 releasing this much memory.
808
809 The trim threshold and the mmap control parameters (see below)
810 can be traded off with one another. Trimming and mmapping are
811 two different ways of releasing unused memory back to the
812 system. Between these two, it is often possible to keep
813 system-level demands of a long-lived program down to a bare
814 minimum. For example, in one test suite of sessions measuring
815 the XF86 X server on Linux, using a trim threshold of 128K and a
816 mmap threshold of 192K led to near-minimal long term resource
817 consumption.
818
819 If you are using this malloc in a long-lived program, it should
820 pay to experiment with these values. As a rough guide, you
821 might set to a value close to the average size of a process
822 (program) running on your system. Releasing this much memory
823 would allow such a process to run in memory. Generally, it's
824 worth it to tune for trimming rather tham memory mapping when a
825 program undergoes phases where several large chunks are
826 allocated and released in ways that can reuse each other's
827 storage, perhaps mixed with phases where there are no such
828 chunks at all. And in well-behaved long-lived programs,
829 controlling release of large blocks via trimming versus mapping
830 is usually faster.
831
832 However, in most programs, these parameters serve mainly as
833 protection against the system-level effects of carrying around
834 massive amounts of unneeded memory. Since frequent calls to
835 sbrk, mmap, and munmap otherwise degrade performance, the default
836 parameters are set to relatively high values that serve only as
837 safeguards.
838
839 The trim value It must be greater than page size to have any useful
a9177ff5 840 effect. To disable trimming completely, you can set to
fa8d436c
UD
841 (unsigned long)(-1)
842
843 Trim settings interact with fastbin (MXFAST) settings: Unless
844 TRIM_FASTBINS is defined, automatic trimming never takes place upon
845 freeing a chunk with size less than or equal to MXFAST. Trimming is
846 instead delayed until subsequent freeing of larger chunks. However,
847 you can still force an attempted trim by calling malloc_trim.
848
849 Also, trimming is not generally possible in cases where
850 the main arena is obtained via mmap.
851
852 Note that the trick some people use of mallocing a huge space and
853 then freeing it at program startup, in an attempt to reserve system
854 memory, doesn't have the intended effect under automatic trimming,
855 since that memory will immediately be returned to the system.
856*/
857
858#define M_TRIM_THRESHOLD -1
859
860#ifndef DEFAULT_TRIM_THRESHOLD
861#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
862#endif
863
864/*
865 M_TOP_PAD is the amount of extra `padding' space to allocate or
866 retain whenever sbrk is called. It is used in two ways internally:
867
868 * When sbrk is called to extend the top of the arena to satisfy
869 a new malloc request, this much padding is added to the sbrk
870 request.
871
872 * When malloc_trim is called automatically from free(),
873 it is used as the `pad' argument.
874
875 In both cases, the actual amount of padding is rounded
876 so that the end of the arena is always a system page boundary.
877
878 The main reason for using padding is to avoid calling sbrk so
879 often. Having even a small pad greatly reduces the likelihood
880 that nearly every malloc request during program start-up (or
881 after trimming) will invoke sbrk, which needlessly wastes
882 time.
883
884 Automatic rounding-up to page-size units is normally sufficient
885 to avoid measurable overhead, so the default is 0. However, in
886 systems where sbrk is relatively slow, it can pay to increase
887 this value, at the expense of carrying around more memory than
888 the program needs.
889*/
10dc2a90 890
fa8d436c 891#define M_TOP_PAD -2
10dc2a90 892
fa8d436c
UD
893#ifndef DEFAULT_TOP_PAD
894#define DEFAULT_TOP_PAD (0)
895#endif
f65fd747 896
1d05c2fb
UD
897/*
898 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
899 adjusted MMAP_THRESHOLD.
900*/
901
902#ifndef DEFAULT_MMAP_THRESHOLD_MIN
903#define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
904#endif
905
906#ifndef DEFAULT_MMAP_THRESHOLD_MAX
e404fb16
UD
907 /* For 32-bit platforms we cannot increase the maximum mmap
908 threshold much because it is also the minimum value for the
bd2c2341
UD
909 maximum heap size and its alignment. Going above 512k (i.e., 1M
910 for new heaps) wastes too much address space. */
e404fb16 911# if __WORDSIZE == 32
bd2c2341 912# define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
e404fb16 913# else
bd2c2341 914# define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
e404fb16 915# endif
1d05c2fb
UD
916#endif
917
fa8d436c
UD
918/*
919 M_MMAP_THRESHOLD is the request size threshold for using mmap()
920 to service a request. Requests of at least this size that cannot
921 be allocated using already-existing space will be serviced via mmap.
922 (If enough normal freed space already exists it is used instead.)
923
924 Using mmap segregates relatively large chunks of memory so that
925 they can be individually obtained and released from the host
926 system. A request serviced through mmap is never reused by any
927 other request (at least not directly; the system may just so
928 happen to remap successive requests to the same locations).
929
930 Segregating space in this way has the benefits that:
931
a9177ff5
RM
932 1. Mmapped space can ALWAYS be individually released back
933 to the system, which helps keep the system level memory
934 demands of a long-lived program low.
fa8d436c
UD
935 2. Mapped memory can never become `locked' between
936 other chunks, as can happen with normally allocated chunks, which
937 means that even trimming via malloc_trim would not release them.
938 3. On some systems with "holes" in address spaces, mmap can obtain
939 memory that sbrk cannot.
940
941 However, it has the disadvantages that:
942
943 1. The space cannot be reclaimed, consolidated, and then
944 used to service later requests, as happens with normal chunks.
945 2. It can lead to more wastage because of mmap page alignment
946 requirements
947 3. It causes malloc performance to be more dependent on host
948 system memory management support routines which may vary in
949 implementation quality and may impose arbitrary
950 limitations. Generally, servicing a request via normal
951 malloc steps is faster than going through a system's mmap.
952
953 The advantages of mmap nearly always outweigh disadvantages for
954 "large" chunks, but the value of "large" varies across systems. The
955 default is an empirically derived value that works well in most
956 systems.
1d05c2fb
UD
957
958
959 Update in 2006:
960 The above was written in 2001. Since then the world has changed a lot.
961 Memory got bigger. Applications got bigger. The virtual address space
962 layout in 32 bit linux changed.
963
964 In the new situation, brk() and mmap space is shared and there are no
965 artificial limits on brk size imposed by the kernel. What is more,
966 applications have started using transient allocations larger than the
967 128Kb as was imagined in 2001.
968
969 The price for mmap is also high now; each time glibc mmaps from the
970 kernel, the kernel is forced to zero out the memory it gives to the
971 application. Zeroing memory is expensive and eats a lot of cache and
972 memory bandwidth. This has nothing to do with the efficiency of the
973 virtual memory system, by doing mmap the kernel just has no choice but
974 to zero.
975
976 In 2001, the kernel had a maximum size for brk() which was about 800
977 megabytes on 32 bit x86, at that point brk() would hit the first
978 mmaped shared libaries and couldn't expand anymore. With current 2.6
979 kernels, the VA space layout is different and brk() and mmap
980 both can span the entire heap at will.
981
982 Rather than using a static threshold for the brk/mmap tradeoff,
983 we are now using a simple dynamic one. The goal is still to avoid
984 fragmentation. The old goals we kept are
985 1) try to get the long lived large allocations to use mmap()
986 2) really large allocations should always use mmap()
987 and we're adding now:
988 3) transient allocations should use brk() to avoid forcing the kernel
989 having to zero memory over and over again
990
991 The implementation works with a sliding threshold, which is by default
992 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
993 out at 128Kb as per the 2001 default.
994
995 This allows us to satisfy requirement 1) under the assumption that long
996 lived allocations are made early in the process' lifespan, before it has
997 started doing dynamic allocations of the same size (which will
998 increase the threshold).
999
1000 The upperbound on the threshold satisfies requirement 2)
1001
1002 The threshold goes up in value when the application frees memory that was
1003 allocated with the mmap allocator. The idea is that once the application
1004 starts freeing memory of a certain size, it's highly probable that this is
1005 a size the application uses for transient allocations. This estimator
1006 is there to satisfy the new third requirement.
1007
f65fd747
UD
1008*/
1009
fa8d436c 1010#define M_MMAP_THRESHOLD -3
f65fd747 1011
fa8d436c 1012#ifndef DEFAULT_MMAP_THRESHOLD
1d05c2fb 1013#define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
fa8d436c
UD
1014#endif
1015
1016/*
1017 M_MMAP_MAX is the maximum number of requests to simultaneously
1018 service using mmap. This parameter exists because
1019 some systems have a limited number of internal tables for
1020 use by mmap, and using more than a few of them may degrade
1021 performance.
1022
1023 The default is set to a value that serves only as a safeguard.
22a89187 1024 Setting to 0 disables use of mmap for servicing large requests.
fa8d436c 1025*/
f65fd747 1026
fa8d436c
UD
1027#define M_MMAP_MAX -4
1028
1029#ifndef DEFAULT_MMAP_MAX
fa8d436c 1030#define DEFAULT_MMAP_MAX (65536)
f65fd747
UD
1031#endif
1032
100351c3 1033#include <malloc.h>
f65fd747 1034
fa8d436c
UD
1035#ifndef RETURN_ADDRESS
1036#define RETURN_ADDRESS(X_) (NULL)
9ae6fc54 1037#endif
431c33c0
UD
1038
1039/* On some platforms we can compile internal, not exported functions better.
1040 Let the environment provide a macro and define it to be empty if it
1041 is not available. */
1042#ifndef internal_function
1043# define internal_function
1044#endif
1045
fa8d436c
UD
1046/* Forward declarations. */
1047struct malloc_chunk;
1048typedef struct malloc_chunk* mchunkptr;
431c33c0 1049
fa8d436c 1050/* Internal routines. */
f65fd747 1051
22a89187 1052static void* _int_malloc(mstate, size_t);
425ce2ed 1053static void _int_free(mstate, mchunkptr, int);
22a89187 1054static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
6e4b2107 1055 INTERNAL_SIZE_T);
22a89187 1056static void* _int_memalign(mstate, size_t, size_t);
10ad46bc
OB
1057static void* _mid_memalign(size_t, size_t, void *);
1058
6bf4302e 1059static void malloc_printerr(int action, const char *str, void *ptr);
fa8d436c 1060
22a89187 1061static void* internal_function mem2mem_check(void *p, size_t sz);
fa8d436c
UD
1062static int internal_function top_check(void);
1063static void internal_function munmap_chunk(mchunkptr p);
a9177ff5 1064#if HAVE_MREMAP
fa8d436c 1065static mchunkptr internal_function mremap_chunk(mchunkptr p, size_t new_size);
a9177ff5 1066#endif
fa8d436c 1067
22a89187
UD
1068static void* malloc_check(size_t sz, const void *caller);
1069static void free_check(void* mem, const void *caller);
1070static void* realloc_check(void* oldmem, size_t bytes,
1071 const void *caller);
1072static void* memalign_check(size_t alignment, size_t bytes,
1073 const void *caller);
750c1f2a 1074#ifndef NO_THREADS
22a89187
UD
1075static void* malloc_atfork(size_t sz, const void *caller);
1076static void free_atfork(void* mem, const void *caller);
750c1f2a 1077#endif
f65fd747 1078
fa8d436c 1079/* ------------------ MMAP support ------------------ */
f65fd747 1080
f65fd747 1081
fa8d436c 1082#include <fcntl.h>
fa8d436c 1083#include <sys/mman.h>
f65fd747 1084
fa8d436c
UD
1085#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1086# define MAP_ANONYMOUS MAP_ANON
1087#endif
f65fd747 1088
fa8d436c 1089#ifndef MAP_NORESERVE
3b49edc0 1090# define MAP_NORESERVE 0
f65fd747
UD
1091#endif
1092
fa8d436c 1093#define MMAP(addr, size, prot, flags) \
3b49edc0 1094 __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
f65fd747 1095
f65fd747
UD
1096
1097/*
fa8d436c 1098 ----------------------- Chunk representations -----------------------
f65fd747
UD
1099*/
1100
1101
fa8d436c
UD
1102/*
1103 This struct declaration is misleading (but accurate and necessary).
1104 It declares a "view" into memory allowing access to necessary
1105 fields at known offsets from a given base. See explanation below.
1106*/
1107
1108struct malloc_chunk {
1109
1110 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1111 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1112
1113 struct malloc_chunk* fd; /* double links -- used only if free. */
f65fd747 1114 struct malloc_chunk* bk;
7ecfbd38
UD
1115
1116 /* Only used for large blocks: pointer to next larger size. */
1117 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
1118 struct malloc_chunk* bk_nextsize;
f65fd747
UD
1119};
1120
f65fd747
UD
1121
1122/*
f65fd747
UD
1123 malloc_chunk details:
1124
1125 (The following includes lightly edited explanations by Colin Plumb.)
1126
1127 Chunks of memory are maintained using a `boundary tag' method as
1128 described in e.g., Knuth or Standish. (See the paper by Paul
1129 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1130 survey of such techniques.) Sizes of free chunks are stored both
1131 in the front of each chunk and at the end. This makes
1132 consolidating fragmented chunks into bigger chunks very fast. The
1133 size fields also hold bits representing whether chunks are free or
1134 in use.
1135
1136 An allocated chunk looks like this:
1137
1138
1139 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
72f90263
UD
1140 | Size of previous chunk, if allocated | |
1141 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1142 | Size of chunk, in bytes |M|P|
f65fd747 1143 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
72f90263
UD
1144 | User data starts here... .
1145 . .
1146 . (malloc_usable_size() bytes) .
1147 . |
f65fd747 1148nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
72f90263
UD
1149 | Size of chunk |
1150 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
f65fd747
UD
1151
1152
1153 Where "chunk" is the front of the chunk for the purpose of most of
1154 the malloc code, but "mem" is the pointer that is returned to the
1155 user. "Nextchunk" is the beginning of the next contiguous chunk.
1156
6f65e668 1157 Chunks always begin on even word boundaries, so the mem portion
f65fd747 1158 (which is returned to the user) is also on an even word boundary, and
fa8d436c 1159 thus at least double-word aligned.
f65fd747
UD
1160
1161 Free chunks are stored in circular doubly-linked lists, and look like this:
1162
1163 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
72f90263
UD
1164 | Size of previous chunk |
1165 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
f65fd747
UD
1166 `head:' | Size of chunk, in bytes |P|
1167 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
72f90263
UD
1168 | Forward pointer to next chunk in list |
1169 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1170 | Back pointer to previous chunk in list |
1171 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1172 | Unused space (may be 0 bytes long) .
1173 . .
1174 . |
f65fd747
UD
1175nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1176 `foot:' | Size of chunk, in bytes |
72f90263 1177 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
f65fd747
UD
1178
1179 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1180 chunk size (which is always a multiple of two words), is an in-use
1181 bit for the *previous* chunk. If that bit is *clear*, then the
1182 word before the current chunk size contains the previous chunk
1183 size, and can be used to find the front of the previous chunk.
fa8d436c
UD
1184 The very first chunk allocated always has this bit set,
1185 preventing access to non-existent (or non-owned) memory. If
1186 prev_inuse is set for any given chunk, then you CANNOT determine
1187 the size of the previous chunk, and might even get a memory
1188 addressing fault when trying to do so.
f65fd747
UD
1189
1190 Note that the `foot' of the current chunk is actually represented
fa8d436c
UD
1191 as the prev_size of the NEXT chunk. This makes it easier to
1192 deal with alignments etc but can be very confusing when trying
1193 to extend or adapt this code.
f65fd747
UD
1194
1195 The two exceptions to all this are
1196
fa8d436c 1197 1. The special chunk `top' doesn't bother using the
72f90263
UD
1198 trailing size field since there is no next contiguous chunk
1199 that would have to index off it. After initialization, `top'
1200 is forced to always exist. If it would become less than
1201 MINSIZE bytes long, it is replenished.
f65fd747
UD
1202
1203 2. Chunks allocated via mmap, which have the second-lowest-order
72f90263
UD
1204 bit M (IS_MMAPPED) set in their size fields. Because they are
1205 allocated one-by-one, each must contain its own trailing size field.
f65fd747
UD
1206
1207*/
1208
1209/*
fa8d436c
UD
1210 ---------- Size and alignment checks and conversions ----------
1211*/
f65fd747 1212
fa8d436c 1213/* conversion from malloc headers to user pointers, and back */
f65fd747 1214
22a89187 1215#define chunk2mem(p) ((void*)((char*)(p) + 2*SIZE_SZ))
fa8d436c 1216#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
f65fd747 1217
fa8d436c 1218/* The smallest possible chunk */
7ecfbd38 1219#define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
f65fd747 1220
fa8d436c 1221/* The smallest size we can malloc is an aligned minimal chunk */
f65fd747 1222
fa8d436c
UD
1223#define MINSIZE \
1224 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
f65fd747 1225
fa8d436c 1226/* Check if m has acceptable alignment */
f65fd747 1227
073f560e
UD
1228#define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1229
1230#define misaligned_chunk(p) \
1231 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
1232 & MALLOC_ALIGN_MASK)
f65fd747 1233
f65fd747 1234
a9177ff5 1235/*
fa8d436c
UD
1236 Check if a request is so large that it would wrap around zero when
1237 padded and aligned. To simplify some other code, the bound is made
1238 low enough so that adding MINSIZE will also not wrap around zero.
6c8dbf00 1239 */
f65fd747 1240
fa8d436c 1241#define REQUEST_OUT_OF_RANGE(req) \
6c8dbf00
OB
1242 ((unsigned long) (req) >= \
1243 (unsigned long) (INTERNAL_SIZE_T) (-2 * MINSIZE))
f65fd747 1244
fa8d436c 1245/* pad request bytes into a usable size -- internal version */
f65fd747 1246
fa8d436c
UD
1247#define request2size(req) \
1248 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1249 MINSIZE : \
1250 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
f65fd747 1251
fa8d436c 1252/* Same, except also perform argument check */
f65fd747 1253
fa8d436c 1254#define checked_request2size(req, sz) \
6c8dbf00
OB
1255 if (REQUEST_OUT_OF_RANGE (req)) { \
1256 __set_errno (ENOMEM); \
1257 return 0; \
1258 } \
1259 (sz) = request2size (req);
f65fd747
UD
1260
1261/*
6c8dbf00
OB
1262 --------------- Physical chunk operations ---------------
1263 */
f65fd747 1264
10dc2a90 1265
fa8d436c
UD
1266/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1267#define PREV_INUSE 0x1
f65fd747 1268
fa8d436c
UD
1269/* extract inuse bit of previous chunk */
1270#define prev_inuse(p) ((p)->size & PREV_INUSE)
f65fd747 1271
f65fd747 1272
fa8d436c
UD
1273/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1274#define IS_MMAPPED 0x2
f65fd747 1275
fa8d436c
UD
1276/* check for mmap()'ed chunk */
1277#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
f65fd747 1278
f65fd747 1279
fa8d436c
UD
1280/* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1281 from a non-main arena. This is only set immediately before handing
1282 the chunk to the user, if necessary. */
1283#define NON_MAIN_ARENA 0x4
f65fd747 1284
fa8d436c
UD
1285/* check for chunk from non-main arena */
1286#define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)
f65fd747
UD
1287
1288
a9177ff5 1289/*
6c8dbf00 1290 Bits to mask off when extracting size
f65fd747 1291
6c8dbf00
OB
1292 Note: IS_MMAPPED is intentionally not masked off from size field in
1293 macros for which mmapped chunks should never be seen. This should
1294 cause helpful core dumps to occur if it is tried by accident by
1295 people extending or adapting this malloc.
1296 */
1297#define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA)
f65fd747 1298
fa8d436c
UD
1299/* Get size, ignoring use bits */
1300#define chunksize(p) ((p)->size & ~(SIZE_BITS))
f65fd747 1301
f65fd747 1302
fa8d436c 1303/* Ptr to next physical malloc_chunk. */
6c8dbf00 1304#define next_chunk(p) ((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))
f65fd747 1305
fa8d436c 1306/* Ptr to previous physical malloc_chunk */
6c8dbf00 1307#define prev_chunk(p) ((mchunkptr) (((char *) (p)) - ((p)->prev_size)))
f65fd747 1308
fa8d436c 1309/* Treat space at ptr + offset as a chunk */
6c8dbf00 1310#define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s)))
fa8d436c
UD
1311
1312/* extract p's inuse bit */
6c8dbf00
OB
1313#define inuse(p) \
1314 ((((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE)
f65fd747 1315
fa8d436c 1316/* set/clear chunk as being inuse without otherwise disturbing */
6c8dbf00
OB
1317#define set_inuse(p) \
1318 ((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE
f65fd747 1319
6c8dbf00
OB
1320#define clear_inuse(p) \
1321 ((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE)
f65fd747
UD
1322
1323
fa8d436c 1324/* check/set/clear inuse bits in known places */
6c8dbf00
OB
1325#define inuse_bit_at_offset(p, s) \
1326 (((mchunkptr) (((char *) (p)) + (s)))->size & PREV_INUSE)
f65fd747 1327
6c8dbf00
OB
1328#define set_inuse_bit_at_offset(p, s) \
1329 (((mchunkptr) (((char *) (p)) + (s)))->size |= PREV_INUSE)
f65fd747 1330
6c8dbf00
OB
1331#define clear_inuse_bit_at_offset(p, s) \
1332 (((mchunkptr) (((char *) (p)) + (s)))->size &= ~(PREV_INUSE))
f65fd747 1333
f65fd747 1334
fa8d436c
UD
1335/* Set size at head, without disturbing its use bit */
1336#define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s)))
f65fd747 1337
fa8d436c
UD
1338/* Set size/use field */
1339#define set_head(p, s) ((p)->size = (s))
f65fd747 1340
fa8d436c 1341/* Set size at footer (only when chunk is not in use) */
6c8dbf00 1342#define set_foot(p, s) (((mchunkptr) ((char *) (p) + (s)))->prev_size = (s))
f65fd747
UD
1343
1344
fa8d436c 1345/*
6c8dbf00 1346 -------------------- Internal data structures --------------------
fa8d436c
UD
1347
1348 All internal state is held in an instance of malloc_state defined
1349 below. There are no other static variables, except in two optional
a9177ff5 1350 cases:
6c8dbf00
OB
1351 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1352 * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor
22a89187 1353 for mmap.
fa8d436c
UD
1354
1355 Beware of lots of tricks that minimize the total bookkeeping space
1356 requirements. The result is a little over 1K bytes (for 4byte
1357 pointers and size_t.)
6c8dbf00 1358 */
f65fd747
UD
1359
1360/*
6c8dbf00 1361 Bins
fa8d436c
UD
1362
1363 An array of bin headers for free chunks. Each bin is doubly
1364 linked. The bins are approximately proportionally (log) spaced.
1365 There are a lot of these bins (128). This may look excessive, but
1366 works very well in practice. Most bins hold sizes that are
1367 unusual as malloc request sizes, but are more usual for fragments
1368 and consolidated sets of chunks, which is what these bins hold, so
1369 they can be found quickly. All procedures maintain the invariant
1370 that no consolidated chunk physically borders another one, so each
1371 chunk in a list is known to be preceeded and followed by either
1372 inuse chunks or the ends of memory.
1373
1374 Chunks in bins are kept in size order, with ties going to the
1375 approximately least recently used chunk. Ordering isn't needed
1376 for the small bins, which all contain the same-sized chunks, but
1377 facilitates best-fit allocation for larger chunks. These lists
1378 are just sequential. Keeping them in order almost never requires
1379 enough traversal to warrant using fancier ordered data
a9177ff5 1380 structures.
fa8d436c
UD
1381
1382 Chunks of the same size are linked with the most
1383 recently freed at the front, and allocations are taken from the
1384 back. This results in LRU (FIFO) allocation order, which tends
1385 to give each chunk an equal opportunity to be consolidated with
1386 adjacent freed chunks, resulting in larger free chunks and less
1387 fragmentation.
1388
1389 To simplify use in double-linked lists, each bin header acts
1390 as a malloc_chunk. This avoids special-casing for headers.
1391 But to conserve space and improve locality, we allocate
1392 only the fd/bk pointers of bins, and then use repositioning tricks
a9177ff5 1393 to treat these as the fields of a malloc_chunk*.
6c8dbf00 1394 */
f65fd747 1395
6c8dbf00 1396typedef struct malloc_chunk *mbinptr;
f65fd747 1397
fa8d436c 1398/* addressing -- note that bin_at(0) does not exist */
41999a1a
UD
1399#define bin_at(m, i) \
1400 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
6c8dbf00 1401 - offsetof (struct malloc_chunk, fd))
f65fd747 1402
fa8d436c 1403/* analog of ++bin */
6c8dbf00 1404#define next_bin(b) ((mbinptr) ((char *) (b) + (sizeof (mchunkptr) << 1)))
f65fd747 1405
fa8d436c
UD
1406/* Reminders about list directionality within bins */
1407#define first(b) ((b)->fd)
1408#define last(b) ((b)->bk)
f65fd747 1409
fa8d436c
UD
1410/* Take a chunk off a bin list */
1411#define unlink(P, BK, FD) { \
6c8dbf00
OB
1412 FD = P->fd; \
1413 BK = P->bk; \
1414 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
1415 malloc_printerr (check_action, "corrupted double-linked list", P); \
1416 else { \
1417 FD->bk = BK; \
1418 BK->fd = FD; \
1419 if (!in_smallbin_range (P->size) \
1420 && __builtin_expect (P->fd_nextsize != NULL, 0)) { \
1421 assert (P->fd_nextsize->bk_nextsize == P); \
1422 assert (P->bk_nextsize->fd_nextsize == P); \
1423 if (FD->fd_nextsize == NULL) { \
1424 if (P->fd_nextsize == P) \
1425 FD->fd_nextsize = FD->bk_nextsize = FD; \
1426 else { \
1427 FD->fd_nextsize = P->fd_nextsize; \
1428 FD->bk_nextsize = P->bk_nextsize; \
1429 P->fd_nextsize->bk_nextsize = FD; \
1430 P->bk_nextsize->fd_nextsize = FD; \
1431 } \
1432 } else { \
1433 P->fd_nextsize->bk_nextsize = P->bk_nextsize; \
1434 P->bk_nextsize->fd_nextsize = P->fd_nextsize; \
1435 } \
1436 } \
1437 } \
fa8d436c 1438}
f65fd747 1439
fa8d436c 1440/*
6c8dbf00 1441 Indexing
fa8d436c
UD
1442
1443 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1444 8 bytes apart. Larger bins are approximately logarithmically spaced:
f65fd747 1445
fa8d436c
UD
1446 64 bins of size 8
1447 32 bins of size 64
1448 16 bins of size 512
1449 8 bins of size 4096
1450 4 bins of size 32768
1451 2 bins of size 262144
1452 1 bin of size what's left
f65fd747 1453
fa8d436c
UD
1454 There is actually a little bit of slop in the numbers in bin_index
1455 for the sake of speed. This makes no difference elsewhere.
f65fd747 1456
fa8d436c
UD
1457 The bins top out around 1MB because we expect to service large
1458 requests via mmap.
b5a2bbe6
L
1459
1460 Bin 0 does not exist. Bin 1 is the unordered list; if that would be
1461 a valid chunk size the small bins are bumped up one.
6c8dbf00 1462 */
f65fd747 1463
fa8d436c
UD
1464#define NBINS 128
1465#define NSMALLBINS 64
1d47e92f 1466#define SMALLBIN_WIDTH MALLOC_ALIGNMENT
b5a2bbe6
L
1467#define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > 2 * SIZE_SZ)
1468#define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH)
f65fd747 1469
fa8d436c 1470#define in_smallbin_range(sz) \
6c8dbf00 1471 ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE)
f65fd747 1472
1d47e92f 1473#define smallbin_index(sz) \
6c8dbf00 1474 ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\
b5a2bbe6 1475 + SMALLBIN_CORRECTION)
f65fd747 1476
1d47e92f 1477#define largebin_index_32(sz) \
6c8dbf00
OB
1478 (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\
1479 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1480 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1481 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1482 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1483 126)
f65fd747 1484
b5a2bbe6 1485#define largebin_index_32_big(sz) \
6c8dbf00
OB
1486 (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\
1487 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1488 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1489 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1490 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1491 126)
b5a2bbe6 1492
1d47e92f
UD
1493// XXX It remains to be seen whether it is good to keep the widths of
1494// XXX the buckets the same or whether it should be scaled by a factor
1495// XXX of two as well.
1496#define largebin_index_64(sz) \
6c8dbf00
OB
1497 (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\
1498 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1499 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1500 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1501 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1502 126)
1d47e92f
UD
1503
1504#define largebin_index(sz) \
b5a2bbe6
L
1505 (SIZE_SZ == 8 ? largebin_index_64 (sz) \
1506 : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \
1507 : largebin_index_32 (sz))
1d47e92f 1508
fa8d436c 1509#define bin_index(sz) \
6c8dbf00 1510 ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz))
f65fd747 1511
f65fd747
UD
1512
1513/*
6c8dbf00 1514 Unsorted chunks
fa8d436c
UD
1515
1516 All remainders from chunk splits, as well as all returned chunks,
1517 are first placed in the "unsorted" bin. They are then placed
1518 in regular bins after malloc gives them ONE chance to be used before
1519 binning. So, basically, the unsorted_chunks list acts as a queue,
1520 with chunks being placed on it in free (and malloc_consolidate),
1521 and taken off (to be either used or placed in bins) in malloc.
1522
1523 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
1524 does not have to be taken into account in size comparisons.
6c8dbf00 1525 */
f65fd747 1526
fa8d436c 1527/* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
6c8dbf00 1528#define unsorted_chunks(M) (bin_at (M, 1))
f65fd747 1529
fa8d436c 1530/*
6c8dbf00 1531 Top
fa8d436c
UD
1532
1533 The top-most available chunk (i.e., the one bordering the end of
1534 available memory) is treated specially. It is never included in
1535 any bin, is used only if no other chunk is available, and is
1536 released back to the system if it is very large (see
1537 M_TRIM_THRESHOLD). Because top initially
1538 points to its own bin with initial zero size, thus forcing
1539 extension on the first malloc request, we avoid having any special
1540 code in malloc to check whether it even exists yet. But we still
1541 need to do so when getting memory from system, so we make
1542 initial_top treat the bin as a legal but unusable chunk during the
1543 interval between initialization and the first call to
3b49edc0 1544 sysmalloc. (This is somewhat delicate, since it relies on
fa8d436c 1545 the 2 preceding words to be zero during this interval as well.)
6c8dbf00 1546 */
f65fd747 1547
fa8d436c 1548/* Conveniently, the unsorted bin can be used as dummy top on first call */
6c8dbf00 1549#define initial_top(M) (unsorted_chunks (M))
f65fd747 1550
fa8d436c 1551/*
6c8dbf00 1552 Binmap
f65fd747 1553
fa8d436c
UD
1554 To help compensate for the large number of bins, a one-level index
1555 structure is used for bin-by-bin searching. `binmap' is a
1556 bitvector recording whether bins are definitely empty so they can
1557 be skipped over during during traversals. The bits are NOT always
1558 cleared as soon as bins are empty, but instead only
1559 when they are noticed to be empty during traversal in malloc.
6c8dbf00 1560 */
f65fd747 1561
fa8d436c
UD
1562/* Conservatively use 32 bits per map word, even if on 64bit system */
1563#define BINMAPSHIFT 5
1564#define BITSPERMAP (1U << BINMAPSHIFT)
1565#define BINMAPSIZE (NBINS / BITSPERMAP)
f65fd747 1566
fa8d436c 1567#define idx2block(i) ((i) >> BINMAPSHIFT)
6c8dbf00 1568#define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT) - 1))))
f65fd747 1569
6c8dbf00
OB
1570#define mark_bin(m, i) ((m)->binmap[idx2block (i)] |= idx2bit (i))
1571#define unmark_bin(m, i) ((m)->binmap[idx2block (i)] &= ~(idx2bit (i)))
1572#define get_binmap(m, i) ((m)->binmap[idx2block (i)] & idx2bit (i))
f65fd747 1573
fa8d436c 1574/*
6c8dbf00 1575 Fastbins
fa8d436c
UD
1576
1577 An array of lists holding recently freed small chunks. Fastbins
1578 are not doubly linked. It is faster to single-link them, and
1579 since chunks are never removed from the middles of these lists,
1580 double linking is not necessary. Also, unlike regular bins, they
1581 are not even processed in FIFO order (they use faster LIFO) since
1582 ordering doesn't much matter in the transient contexts in which
1583 fastbins are normally used.
1584
1585 Chunks in fastbins keep their inuse bit set, so they cannot
1586 be consolidated with other free chunks. malloc_consolidate
1587 releases all chunks in fastbins and consolidates them with
a9177ff5 1588 other free chunks.
6c8dbf00 1589 */
f65fd747 1590
6c8dbf00 1591typedef struct malloc_chunk *mfastbinptr;
425ce2ed 1592#define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
f65fd747 1593
fa8d436c 1594/* offset 2 to use otherwise unindexable first 2 bins */
425ce2ed 1595#define fastbin_index(sz) \
6c8dbf00 1596 ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
425ce2ed 1597
f65fd747 1598
fa8d436c 1599/* The maximum fastbin request size we support */
425ce2ed 1600#define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
f65fd747 1601
6c8dbf00 1602#define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1)
f65fd747
UD
1603
1604/*
6c8dbf00
OB
1605 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
1606 that triggers automatic consolidation of possibly-surrounding
1607 fastbin chunks. This is a heuristic, so the exact value should not
1608 matter too much. It is defined at half the default trim threshold as a
1609 compromise heuristic to only attempt consolidation if it is likely
1610 to lead to trimming. However, it is not dynamically tunable, since
1611 consolidation reduces fragmentation surrounding large chunks even
1612 if trimming is not used.
1613 */
f65fd747 1614
fa8d436c 1615#define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
f65fd747
UD
1616
1617/*
6c8dbf00
OB
1618 Since the lowest 2 bits in max_fast don't matter in size comparisons,
1619 they are used as flags.
1620 */
f65fd747 1621
fa8d436c 1622/*
6c8dbf00
OB
1623 FASTCHUNKS_BIT held in max_fast indicates that there are probably
1624 some fastbin chunks. It is set true on entering a chunk into any
1625 fastbin, and cleared only in malloc_consolidate.
f65fd747 1626
6c8dbf00
OB
1627 The truth value is inverted so that have_fastchunks will be true
1628 upon startup (since statics are zero-filled), simplifying
1629 initialization checks.
1630 */
f65fd747 1631
fa8d436c 1632#define FASTCHUNKS_BIT (1U)
f65fd747 1633
6c8dbf00 1634#define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0)
425ce2ed
UD
1635#define clear_fastchunks(M) catomic_or (&(M)->flags, FASTCHUNKS_BIT)
1636#define set_fastchunks(M) catomic_and (&(M)->flags, ~FASTCHUNKS_BIT)
f65fd747
UD
1637
1638/*
6c8dbf00
OB
1639 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
1640 regions. Otherwise, contiguity is exploited in merging together,
1641 when possible, results from consecutive MORECORE calls.
f65fd747 1642
6c8dbf00
OB
1643 The initial value comes from MORECORE_CONTIGUOUS, but is
1644 changed dynamically if mmap is ever used as an sbrk substitute.
1645 */
f65fd747 1646
fa8d436c 1647#define NONCONTIGUOUS_BIT (2U)
f65fd747 1648
6c8dbf00
OB
1649#define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
1650#define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
1651#define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
9bf248c6 1652#define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
f65fd747 1653
a9177ff5
RM
1654/*
1655 Set value of max_fast.
fa8d436c
UD
1656 Use impossibly small value if 0.
1657 Precondition: there are no existing fastbin chunks.
1658 Setting the value clears fastchunk bit but preserves noncontiguous bit.
6c8dbf00 1659 */
f65fd747 1660
9bf248c6 1661#define set_max_fast(s) \
991eda1e 1662 global_max_fast = (((s) == 0) \
6c8dbf00 1663 ? SMALLBIN_WIDTH : ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
9bf248c6 1664#define get_max_fast() global_max_fast
f65fd747 1665
f65fd747
UD
1666
1667/*
fa8d436c 1668 ----------- Internal state representation and initialization -----------
6c8dbf00 1669 */
f65fd747 1670
6c8dbf00
OB
1671struct malloc_state
1672{
fa8d436c
UD
1673 /* Serialize access. */
1674 mutex_t mutex;
9bf248c6
UD
1675
1676 /* Flags (formerly in max_fast). */
1677 int flags;
f65fd747 1678
fa8d436c 1679 /* Fastbins */
6c8dbf00 1680 mfastbinptr fastbinsY[NFASTBINS];
f65fd747 1681
fa8d436c 1682 /* Base of the topmost chunk -- not otherwise kept in a bin */
6c8dbf00 1683 mchunkptr top;
f65fd747 1684
fa8d436c 1685 /* The remainder from the most recent split of a small request */
6c8dbf00 1686 mchunkptr last_remainder;
f65fd747 1687
fa8d436c 1688 /* Normal bins packed as described above */
6c8dbf00 1689 mchunkptr bins[NBINS * 2 - 2];
f65fd747 1690
fa8d436c 1691 /* Bitmap of bins */
6c8dbf00 1692 unsigned int binmap[BINMAPSIZE];
f65fd747 1693
fa8d436c
UD
1694 /* Linked list */
1695 struct malloc_state *next;
f65fd747 1696
425ce2ed
UD
1697 /* Linked list for free arenas. */
1698 struct malloc_state *next_free;
425ce2ed 1699
fa8d436c
UD
1700 /* Memory allocated from the system in this arena. */
1701 INTERNAL_SIZE_T system_mem;
1702 INTERNAL_SIZE_T max_system_mem;
1703};
f65fd747 1704
6c8dbf00
OB
1705struct malloc_par
1706{
fa8d436c 1707 /* Tunable parameters */
6c8dbf00
OB
1708 unsigned long trim_threshold;
1709 INTERNAL_SIZE_T top_pad;
1710 INTERNAL_SIZE_T mmap_threshold;
1711 INTERNAL_SIZE_T arena_test;
1712 INTERNAL_SIZE_T arena_max;
fa8d436c
UD
1713
1714 /* Memory map support */
6c8dbf00
OB
1715 int n_mmaps;
1716 int n_mmaps_max;
1717 int max_n_mmaps;
1d05c2fb
UD
1718 /* the mmap_threshold is dynamic, until the user sets
1719 it manually, at which point we need to disable any
1720 dynamic behavior. */
6c8dbf00 1721 int no_dyn_threshold;
fa8d436c 1722
fa8d436c 1723 /* Statistics */
6c8dbf00 1724 INTERNAL_SIZE_T mmapped_mem;
fa8d436c
UD
1725 /*INTERNAL_SIZE_T sbrked_mem;*/
1726 /*INTERNAL_SIZE_T max_sbrked_mem;*/
6c8dbf00
OB
1727 INTERNAL_SIZE_T max_mmapped_mem;
1728 INTERNAL_SIZE_T max_total_mem; /* only kept for NO_THREADS */
fa8d436c
UD
1729
1730 /* First address handed out by MORECORE/sbrk. */
6c8dbf00 1731 char *sbrk_base;
fa8d436c 1732};
f65fd747 1733
fa8d436c
UD
1734/* There are several instances of this struct ("arenas") in this
1735 malloc. If you are adapting this malloc in a way that does NOT use
1736 a static or mmapped malloc_state, you MUST explicitly zero-fill it
1737 before using. This malloc relies on the property that malloc_state
1738 is initialized to all zeroes (as is true of C statics). */
f65fd747 1739
02d46fc4 1740static struct malloc_state main_arena =
6c8dbf00
OB
1741{
1742 .mutex = MUTEX_INITIALIZER,
1743 .next = &main_arena
1744};
f65fd747 1745
fa8d436c 1746/* There is only one instance of the malloc parameters. */
f65fd747 1747
02d46fc4 1748static struct malloc_par mp_ =
6c8dbf00
OB
1749{
1750 .top_pad = DEFAULT_TOP_PAD,
1751 .n_mmaps_max = DEFAULT_MMAP_MAX,
1752 .mmap_threshold = DEFAULT_MMAP_THRESHOLD,
1753 .trim_threshold = DEFAULT_TRIM_THRESHOLD,
1754#define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8))
1755 .arena_test = NARENAS_FROM_NCORES (1)
1756};
f65fd747 1757
9bf248c6 1758
425ce2ed
UD
1759/* Non public mallopt parameters. */
1760#define M_ARENA_TEST -7
1761#define M_ARENA_MAX -8
425ce2ed
UD
1762
1763
9bf248c6
UD
1764/* Maximum size of memory handled in fastbins. */
1765static INTERNAL_SIZE_T global_max_fast;
1766
fa8d436c 1767/*
6c8dbf00 1768 Initialize a malloc_state struct.
f65fd747 1769
6c8dbf00
OB
1770 This is called only from within malloc_consolidate, which needs
1771 be called in the same contexts anyway. It is never called directly
1772 outside of malloc_consolidate because some optimizing compilers try
1773 to inline it at all call points, which turns out not to be an
1774 optimization at all. (Inlining it in malloc_consolidate is fine though.)
1775 */
f65fd747 1776
6c8dbf00
OB
1777static void
1778malloc_init_state (mstate av)
fa8d436c 1779{
6c8dbf00 1780 int i;
fa8d436c 1781 mbinptr bin;
a9177ff5 1782
fa8d436c 1783 /* Establish circular links for normal bins */
6c8dbf00
OB
1784 for (i = 1; i < NBINS; ++i)
1785 {
1786 bin = bin_at (av, i);
1787 bin->fd = bin->bk = bin;
1788 }
f65fd747 1789
fa8d436c
UD
1790#if MORECORE_CONTIGUOUS
1791 if (av != &main_arena)
1792#endif
6c8dbf00 1793 set_noncontiguous (av);
9bf248c6 1794 if (av == &main_arena)
6c8dbf00 1795 set_max_fast (DEFAULT_MXFAST);
9bf248c6 1796 av->flags |= FASTCHUNKS_BIT;
f65fd747 1797
6c8dbf00 1798 av->top = initial_top (av);
fa8d436c 1799}
e9b3e3c5 1800
a9177ff5 1801/*
fa8d436c 1802 Other internal utilities operating on mstates
6c8dbf00 1803 */
f65fd747 1804
6c8dbf00
OB
1805static void *sysmalloc (INTERNAL_SIZE_T, mstate);
1806static int systrim (size_t, mstate);
1807static void malloc_consolidate (mstate);
7e3be507 1808
404d4cef
RM
1809
1810/* -------------- Early definitions for debugging hooks ---------------- */
1811
1812/* Define and initialize the hook variables. These weak definitions must
1813 appear before any use of the variables in a function (arena.c uses one). */
1814#ifndef weak_variable
404d4cef
RM
1815/* In GNU libc we want the hook variables to be weak definitions to
1816 avoid a problem with Emacs. */
22a89187 1817# define weak_variable weak_function
404d4cef
RM
1818#endif
1819
1820/* Forward declarations. */
6c8dbf00
OB
1821static void *malloc_hook_ini (size_t sz,
1822 const void *caller) __THROW;
1823static void *realloc_hook_ini (void *ptr, size_t sz,
1824 const void *caller) __THROW;
1825static void *memalign_hook_ini (size_t alignment, size_t sz,
1826 const void *caller) __THROW;
404d4cef 1827
06d6611a 1828void weak_variable (*__malloc_initialize_hook) (void) = NULL;
a222d91a 1829void weak_variable (*__free_hook) (void *__ptr,
6c8dbf00 1830 const void *) = NULL;
a222d91a 1831void *weak_variable (*__malloc_hook)
6c8dbf00 1832 (size_t __size, const void *) = malloc_hook_ini;
a222d91a 1833void *weak_variable (*__realloc_hook)
6c8dbf00
OB
1834 (void *__ptr, size_t __size, const void *)
1835 = realloc_hook_ini;
a222d91a 1836void *weak_variable (*__memalign_hook)
6c8dbf00
OB
1837 (size_t __alignment, size_t __size, const void *)
1838 = memalign_hook_ini;
06d6611a 1839void weak_variable (*__after_morecore_hook) (void) = NULL;
404d4cef
RM
1840
1841
3e030bd5
UD
1842/* ---------------- Error behavior ------------------------------------ */
1843
1844#ifndef DEFAULT_CHECK_ACTION
6c8dbf00 1845# define DEFAULT_CHECK_ACTION 3
3e030bd5
UD
1846#endif
1847
1848static int check_action = DEFAULT_CHECK_ACTION;
1849
1850
854278df
UD
1851/* ------------------ Testing support ----------------------------------*/
1852
1853static int perturb_byte;
1854
e8349efd
OB
1855static inline void
1856alloc_perturb (char *p, size_t n)
1857{
1858 if (__glibc_unlikely (perturb_byte))
1859 memset (p, perturb_byte ^ 0xff, n);
1860}
1861
1862static inline void
1863free_perturb (char *p, size_t n)
1864{
1865 if (__glibc_unlikely (perturb_byte))
1866 memset (p, perturb_byte, n);
1867}
1868
854278df
UD
1869
1870
3ea5be54
AO
1871#include <stap-probe.h>
1872
fa8d436c
UD
1873/* ------------------- Support for multiple arenas -------------------- */
1874#include "arena.c"
f65fd747 1875
fa8d436c 1876/*
6c8dbf00 1877 Debugging support
f65fd747 1878
6c8dbf00
OB
1879 These routines make a number of assertions about the states
1880 of data structures that should be true at all times. If any
1881 are not true, it's very likely that a user program has somehow
1882 trashed memory. (It's also possible that there is a coding error
1883 in malloc. In which case, please report it!)
1884 */
ee74a442 1885
6c8dbf00 1886#if !MALLOC_DEBUG
d8f00d46 1887
6c8dbf00
OB
1888# define check_chunk(A, P)
1889# define check_free_chunk(A, P)
1890# define check_inuse_chunk(A, P)
1891# define check_remalloced_chunk(A, P, N)
1892# define check_malloced_chunk(A, P, N)
1893# define check_malloc_state(A)
d8f00d46 1894
fa8d436c 1895#else
ca34d7a7 1896
6c8dbf00
OB
1897# define check_chunk(A, P) do_check_chunk (A, P)
1898# define check_free_chunk(A, P) do_check_free_chunk (A, P)
1899# define check_inuse_chunk(A, P) do_check_inuse_chunk (A, P)
1900# define check_remalloced_chunk(A, P, N) do_check_remalloced_chunk (A, P, N)
1901# define check_malloced_chunk(A, P, N) do_check_malloced_chunk (A, P, N)
1902# define check_malloc_state(A) do_check_malloc_state (A)
ca34d7a7 1903
fa8d436c 1904/*
6c8dbf00
OB
1905 Properties of all chunks
1906 */
ca34d7a7 1907
6c8dbf00
OB
1908static void
1909do_check_chunk (mstate av, mchunkptr p)
ca34d7a7 1910{
6c8dbf00 1911 unsigned long sz = chunksize (p);
fa8d436c 1912 /* min and max possible addresses assuming contiguous allocation */
6c8dbf00
OB
1913 char *max_address = (char *) (av->top) + chunksize (av->top);
1914 char *min_address = max_address - av->system_mem;
fa8d436c 1915
6c8dbf00
OB
1916 if (!chunk_is_mmapped (p))
1917 {
1918 /* Has legal address ... */
1919 if (p != av->top)
1920 {
1921 if (contiguous (av))
1922 {
1923 assert (((char *) p) >= min_address);
1924 assert (((char *) p + sz) <= ((char *) (av->top)));
1925 }
1926 }
1927 else
1928 {
1929 /* top size is always at least MINSIZE */
1930 assert ((unsigned long) (sz) >= MINSIZE);
1931 /* top predecessor always marked inuse */
1932 assert (prev_inuse (p));
1933 }
fa8d436c 1934 }
6c8dbf00
OB
1935 else
1936 {
1937 /* address is outside main heap */
1938 if (contiguous (av) && av->top != initial_top (av))
1939 {
1940 assert (((char *) p) < min_address || ((char *) p) >= max_address);
1941 }
1942 /* chunk is page-aligned */
1943 assert (((p->prev_size + sz) & (GLRO (dl_pagesize) - 1)) == 0);
1944 /* mem is aligned */
1945 assert (aligned_OK (chunk2mem (p)));
fa8d436c 1946 }
eb406346
UD
1947}
1948
fa8d436c 1949/*
6c8dbf00
OB
1950 Properties of free chunks
1951 */
ee74a442 1952
6c8dbf00
OB
1953static void
1954do_check_free_chunk (mstate av, mchunkptr p)
67c94753 1955{
6c8dbf00
OB
1956 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA);
1957 mchunkptr next = chunk_at_offset (p, sz);
67c94753 1958
6c8dbf00 1959 do_check_chunk (av, p);
67c94753 1960
fa8d436c 1961 /* Chunk must claim to be free ... */
6c8dbf00
OB
1962 assert (!inuse (p));
1963 assert (!chunk_is_mmapped (p));
67c94753 1964
fa8d436c 1965 /* Unless a special marker, must have OK fields */
6c8dbf00
OB
1966 if ((unsigned long) (sz) >= MINSIZE)
1967 {
1968 assert ((sz & MALLOC_ALIGN_MASK) == 0);
1969 assert (aligned_OK (chunk2mem (p)));
1970 /* ... matching footer field */
1971 assert (next->prev_size == sz);
1972 /* ... and is fully consolidated */
1973 assert (prev_inuse (p));
1974 assert (next == av->top || inuse (next));
1975
1976 /* ... and has minimally sane links */
1977 assert (p->fd->bk == p);
1978 assert (p->bk->fd == p);
1979 }
fa8d436c 1980 else /* markers are always of size SIZE_SZ */
6c8dbf00 1981 assert (sz == SIZE_SZ);
67c94753 1982}
67c94753 1983
fa8d436c 1984/*
6c8dbf00
OB
1985 Properties of inuse chunks
1986 */
fa8d436c 1987
6c8dbf00
OB
1988static void
1989do_check_inuse_chunk (mstate av, mchunkptr p)
f65fd747 1990{
fa8d436c 1991 mchunkptr next;
f65fd747 1992
6c8dbf00 1993 do_check_chunk (av, p);
f65fd747 1994
6c8dbf00 1995 if (chunk_is_mmapped (p))
fa8d436c 1996 return; /* mmapped chunks have no next/prev */
ca34d7a7 1997
fa8d436c 1998 /* Check whether it claims to be in use ... */
6c8dbf00 1999 assert (inuse (p));
10dc2a90 2000
6c8dbf00 2001 next = next_chunk (p);
10dc2a90 2002
fa8d436c 2003 /* ... and is surrounded by OK chunks.
6c8dbf00
OB
2004 Since more things can be checked with free chunks than inuse ones,
2005 if an inuse chunk borders them and debug is on, it's worth doing them.
2006 */
2007 if (!prev_inuse (p))
2008 {
2009 /* Note that we cannot even look at prev unless it is not inuse */
2010 mchunkptr prv = prev_chunk (p);
2011 assert (next_chunk (prv) == p);
2012 do_check_free_chunk (av, prv);
2013 }
fa8d436c 2014
6c8dbf00
OB
2015 if (next == av->top)
2016 {
2017 assert (prev_inuse (next));
2018 assert (chunksize (next) >= MINSIZE);
2019 }
2020 else if (!inuse (next))
2021 do_check_free_chunk (av, next);
10dc2a90
UD
2022}
2023
fa8d436c 2024/*
6c8dbf00
OB
2025 Properties of chunks recycled from fastbins
2026 */
fa8d436c 2027
6c8dbf00
OB
2028static void
2029do_check_remalloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
10dc2a90 2030{
6c8dbf00 2031 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA);
fa8d436c 2032
6c8dbf00
OB
2033 if (!chunk_is_mmapped (p))
2034 {
2035 assert (av == arena_for_chunk (p));
2036 if (chunk_non_main_arena (p))
2037 assert (av != &main_arena);
2038 else
2039 assert (av == &main_arena);
2040 }
fa8d436c 2041
6c8dbf00 2042 do_check_inuse_chunk (av, p);
fa8d436c
UD
2043
2044 /* Legal size ... */
6c8dbf00
OB
2045 assert ((sz & MALLOC_ALIGN_MASK) == 0);
2046 assert ((unsigned long) (sz) >= MINSIZE);
fa8d436c 2047 /* ... and alignment */
6c8dbf00 2048 assert (aligned_OK (chunk2mem (p)));
fa8d436c 2049 /* chunk is less than MINSIZE more than request */
6c8dbf00
OB
2050 assert ((long) (sz) - (long) (s) >= 0);
2051 assert ((long) (sz) - (long) (s + MINSIZE) < 0);
10dc2a90
UD
2052}
2053
fa8d436c 2054/*
6c8dbf00
OB
2055 Properties of nonrecycled chunks at the point they are malloced
2056 */
fa8d436c 2057
6c8dbf00
OB
2058static void
2059do_check_malloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
10dc2a90 2060{
fa8d436c 2061 /* same as recycled case ... */
6c8dbf00 2062 do_check_remalloced_chunk (av, p, s);
10dc2a90 2063
fa8d436c 2064 /*
6c8dbf00
OB
2065 ... plus, must obey implementation invariant that prev_inuse is
2066 always true of any allocated chunk; i.e., that each allocated
2067 chunk borders either a previously allocated and still in-use
2068 chunk, or the base of its memory arena. This is ensured
2069 by making all allocations from the `lowest' part of any found
2070 chunk. This does not necessarily hold however for chunks
2071 recycled via fastbins.
2072 */
2073
2074 assert (prev_inuse (p));
fa8d436c 2075}
10dc2a90 2076
f65fd747 2077
fa8d436c 2078/*
6c8dbf00 2079 Properties of malloc_state.
f65fd747 2080
6c8dbf00
OB
2081 This may be useful for debugging malloc, as well as detecting user
2082 programmer errors that somehow write into malloc_state.
f65fd747 2083
6c8dbf00
OB
2084 If you are extending or experimenting with this malloc, you can
2085 probably figure out how to hack this routine to print out or
2086 display chunk addresses, sizes, bins, and other instrumentation.
2087 */
f65fd747 2088
6c8dbf00
OB
2089static void
2090do_check_malloc_state (mstate av)
fa8d436c
UD
2091{
2092 int i;
2093 mchunkptr p;
2094 mchunkptr q;
2095 mbinptr b;
fa8d436c
UD
2096 unsigned int idx;
2097 INTERNAL_SIZE_T size;
2098 unsigned long total = 0;
2099 int max_fast_bin;
f65fd747 2100
fa8d436c 2101 /* internal size_t must be no wider than pointer type */
6c8dbf00 2102 assert (sizeof (INTERNAL_SIZE_T) <= sizeof (char *));
f65fd747 2103
fa8d436c 2104 /* alignment is a power of 2 */
6c8dbf00 2105 assert ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - 1)) == 0);
f65fd747 2106
fa8d436c 2107 /* cannot run remaining checks until fully initialized */
6c8dbf00 2108 if (av->top == 0 || av->top == initial_top (av))
fa8d436c 2109 return;
f65fd747 2110
fa8d436c 2111 /* pagesize is a power of 2 */
6c8dbf00 2112 assert ((GLRO (dl_pagesize) & (GLRO (dl_pagesize) - 1)) == 0);
f65fd747 2113
fa8d436c 2114 /* A contiguous main_arena is consistent with sbrk_base. */
6c8dbf00
OB
2115 if (av == &main_arena && contiguous (av))
2116 assert ((char *) mp_.sbrk_base + av->system_mem ==
2117 (char *) av->top + chunksize (av->top));
fa8d436c
UD
2118
2119 /* properties of fastbins */
2120
2121 /* max_fast is in allowed range */
6c8dbf00
OB
2122 assert ((get_max_fast () & ~1) <= request2size (MAX_FAST_SIZE));
2123
2124 max_fast_bin = fastbin_index (get_max_fast ());
2125
2126 for (i = 0; i < NFASTBINS; ++i)
2127 {
2128 p = fastbin (av, i);
2129
2130 /* The following test can only be performed for the main arena.
2131 While mallopt calls malloc_consolidate to get rid of all fast
2132 bins (especially those larger than the new maximum) this does
2133 only happen for the main arena. Trying to do this for any
2134 other arena would mean those arenas have to be locked and
2135 malloc_consolidate be called for them. This is excessive. And
2136 even if this is acceptable to somebody it still cannot solve
2137 the problem completely since if the arena is locked a
2138 concurrent malloc call might create a new arena which then
2139 could use the newly invalid fast bins. */
2140
2141 /* all bins past max_fast are empty */
2142 if (av == &main_arena && i > max_fast_bin)
2143 assert (p == 0);
2144
2145 while (p != 0)
2146 {
2147 /* each chunk claims to be inuse */
2148 do_check_inuse_chunk (av, p);
2149 total += chunksize (p);
2150 /* chunk belongs in this bin */
2151 assert (fastbin_index (chunksize (p)) == i);
2152 p = p->fd;
2153 }
fa8d436c 2154 }
fa8d436c
UD
2155
2156 if (total != 0)
6c8dbf00
OB
2157 assert (have_fastchunks (av));
2158 else if (!have_fastchunks (av))
2159 assert (total == 0);
fa8d436c
UD
2160
2161 /* check normal bins */
6c8dbf00
OB
2162 for (i = 1; i < NBINS; ++i)
2163 {
2164 b = bin_at (av, i);
2165
2166 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2167 if (i >= 2)
2168 {
2169 unsigned int binbit = get_binmap (av, i);
2170 int empty = last (b) == b;
2171 if (!binbit)
2172 assert (empty);
2173 else if (!empty)
2174 assert (binbit);
2175 }
2176
2177 for (p = last (b); p != b; p = p->bk)
2178 {
2179 /* each chunk claims to be free */
2180 do_check_free_chunk (av, p);
2181 size = chunksize (p);
2182 total += size;
2183 if (i >= 2)
2184 {
2185 /* chunk belongs in bin */
2186 idx = bin_index (size);
2187 assert (idx == i);
2188 /* lists are sorted */
2189 assert (p->bk == b ||
2190 (unsigned long) chunksize (p->bk) >= (unsigned long) chunksize (p));
2191
2192 if (!in_smallbin_range (size))
2193 {
2194 if (p->fd_nextsize != NULL)
2195 {
2196 if (p->fd_nextsize == p)
2197 assert (p->bk_nextsize == p);
2198 else
2199 {
2200 if (p->fd_nextsize == first (b))
2201 assert (chunksize (p) < chunksize (p->fd_nextsize));
2202 else
2203 assert (chunksize (p) > chunksize (p->fd_nextsize));
2204
2205 if (p == first (b))
2206 assert (chunksize (p) > chunksize (p->bk_nextsize));
2207 else
2208 assert (chunksize (p) < chunksize (p->bk_nextsize));
2209 }
2210 }
2211 else
2212 assert (p->bk_nextsize == NULL);
2213 }
2214 }
2215 else if (!in_smallbin_range (size))
2216 assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
2217 /* chunk is followed by a legal chain of inuse chunks */
2218 for (q = next_chunk (p);
2219 (q != av->top && inuse (q) &&
2220 (unsigned long) (chunksize (q)) >= MINSIZE);
2221 q = next_chunk (q))
2222 do_check_inuse_chunk (av, q);
2223 }
fa8d436c 2224 }
f65fd747 2225
fa8d436c 2226 /* top chunk is OK */
6c8dbf00 2227 check_chunk (av, av->top);
fa8d436c
UD
2228}
2229#endif
2230
2231
2232/* ----------------- Support for debugging hooks -------------------- */
2233#include "hooks.c"
2234
2235
2236/* ----------- Routines dealing with system allocation -------------- */
2237
2238/*
6c8dbf00
OB
2239 sysmalloc handles malloc cases requiring more memory from the system.
2240 On entry, it is assumed that av->top does not have enough
2241 space to service request for nb bytes, thus requiring that av->top
2242 be extended or replaced.
2243 */
fa8d436c 2244
6c8dbf00
OB
2245static void *
2246sysmalloc (INTERNAL_SIZE_T nb, mstate av)
f65fd747 2247{
6c8dbf00 2248 mchunkptr old_top; /* incoming value of av->top */
fa8d436c 2249 INTERNAL_SIZE_T old_size; /* its size */
6c8dbf00 2250 char *old_end; /* its end address */
f65fd747 2251
6c8dbf00
OB
2252 long size; /* arg to first MORECORE or mmap call */
2253 char *brk; /* return value from MORECORE */
f65fd747 2254
6c8dbf00
OB
2255 long correction; /* arg to 2nd MORECORE call */
2256 char *snd_brk; /* 2nd return val */
f65fd747 2257
fa8d436c
UD
2258 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2259 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
6c8dbf00 2260 char *aligned_brk; /* aligned offset into brk */
f65fd747 2261
6c8dbf00
OB
2262 mchunkptr p; /* the allocated/returned chunk */
2263 mchunkptr remainder; /* remainder from allocation */
2264 unsigned long remainder_size; /* its size */
fa8d436c 2265
fa8d436c 2266
6c8dbf00
OB
2267 size_t pagemask = GLRO (dl_pagesize) - 1;
2268 bool tried_mmap = false;
fa8d436c
UD
2269
2270
fa8d436c 2271 /*
6c8dbf00
OB
2272 If have mmap, and the request size meets the mmap threshold, and
2273 the system supports mmap, and there are few enough currently
2274 allocated mmapped regions, try to directly map this request
2275 rather than expanding top.
2276 */
2277
2278 if ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold) &&
2279 (mp_.n_mmaps < mp_.n_mmaps_max))
2280 {
2281 char *mm; /* return value from mmap call*/
a9177ff5 2282
6c8dbf00
OB
2283 try_mmap:
2284 /*
2285 Round up size to nearest page. For mmapped chunks, the overhead
2286 is one SIZE_SZ unit larger than for normal chunks, because there
2287 is no following chunk whose prev_size field could be used.
2288
2289 See the front_misalign handling below, for glibc there is no
2290 need for further alignments unless we have have high alignment.
2291 */
2292 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2293 size = (nb + SIZE_SZ + pagemask) & ~pagemask;
2294 else
2295 size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;
2296 tried_mmap = true;
2297
2298 /* Don't try if size wraps around 0 */
2299 if ((unsigned long) (size) > (unsigned long) (nb))
2300 {
2301 mm = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0));
2302
2303 if (mm != MAP_FAILED)
2304 {
2305 /*
2306 The offset to the start of the mmapped region is stored
2307 in the prev_size field of the chunk. This allows us to adjust
2308 returned start address to meet alignment requirements here
2309 and in memalign(), and still be able to compute proper
2310 address argument for later munmap in free() and realloc().
2311 */
2312
2313 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2314 {
2315 /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and
2316 MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page
2317 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
2318 assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0);
2319 front_misalign = 0;
2320 }
2321 else
2322 front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK;
2323 if (front_misalign > 0)
2324 {
2325 correction = MALLOC_ALIGNMENT - front_misalign;
2326 p = (mchunkptr) (mm + correction);
2327 p->prev_size = correction;
2328 set_head (p, (size - correction) | IS_MMAPPED);
2329 }
2330 else
2331 {
2332 p = (mchunkptr) mm;
2333 set_head (p, size | IS_MMAPPED);
2334 }
2335
2336 /* update statistics */
2337
2338 int new = atomic_exchange_and_add (&mp_.n_mmaps, 1) + 1;
2339 atomic_max (&mp_.max_n_mmaps, new);
2340
2341 unsigned long sum;
2342 sum = atomic_exchange_and_add (&mp_.mmapped_mem, size) + size;
2343 atomic_max (&mp_.max_mmapped_mem, sum);
2344
2345 check_chunk (av, p);
2346
2347 return chunk2mem (p);
2348 }
2349 }
fa8d436c 2350 }
fa8d436c
UD
2351
2352 /* Record incoming configuration of top */
2353
6c8dbf00
OB
2354 old_top = av->top;
2355 old_size = chunksize (old_top);
2356 old_end = (char *) (chunk_at_offset (old_top, old_size));
fa8d436c 2357
6c8dbf00 2358 brk = snd_brk = (char *) (MORECORE_FAILURE);
fa8d436c 2359
a9177ff5 2360 /*
fa8d436c
UD
2361 If not the first time through, we require old_size to be
2362 at least MINSIZE and to have prev_inuse set.
6c8dbf00 2363 */
fa8d436c 2364
6c8dbf00
OB
2365 assert ((old_top == initial_top (av) && old_size == 0) ||
2366 ((unsigned long) (old_size) >= MINSIZE &&
2367 prev_inuse (old_top) &&
2368 ((unsigned long) old_end & pagemask) == 0));
fa8d436c
UD
2369
2370 /* Precondition: not enough current space to satisfy nb request */
6c8dbf00 2371 assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE));
a9177ff5 2372
72f90263 2373
6c8dbf00
OB
2374 if (av != &main_arena)
2375 {
2376 heap_info *old_heap, *heap;
2377 size_t old_heap_size;
2378
2379 /* First try to extend the current heap. */
2380 old_heap = heap_for_ptr (old_top);
2381 old_heap_size = old_heap->size;
2382 if ((long) (MINSIZE + nb - old_size) > 0
2383 && grow_heap (old_heap, MINSIZE + nb - old_size) == 0)
2384 {
2385 av->system_mem += old_heap->size - old_heap_size;
2386 arena_mem += old_heap->size - old_heap_size;
2387 set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top)
2388 | PREV_INUSE);
2389 }
2390 else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad)))
2391 {
2392 /* Use a newly allocated heap. */
2393 heap->ar_ptr = av;
2394 heap->prev = old_heap;
2395 av->system_mem += heap->size;
2396 arena_mem += heap->size;
2397 /* Set up the new top. */
2398 top (av) = chunk_at_offset (heap, sizeof (*heap));
2399 set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE);
2400
2401 /* Setup fencepost and free the old top chunk with a multiple of
2402 MALLOC_ALIGNMENT in size. */
2403 /* The fencepost takes at least MINSIZE bytes, because it might
2404 become the top chunk again later. Note that a footer is set
2405 up, too, although the chunk is marked in use. */
2406 old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK;
2407 set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ), 0 | PREV_INUSE);
2408 if (old_size >= MINSIZE)
2409 {
2410 set_head (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ) | PREV_INUSE);
2411 set_foot (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ));
2412 set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA);
2413 _int_free (av, old_top, 1);
2414 }
2415 else
2416 {
2417 set_head (old_top, (old_size + 2 * SIZE_SZ) | PREV_INUSE);
2418 set_foot (old_top, (old_size + 2 * SIZE_SZ));
2419 }
2420 }
2421 else if (!tried_mmap)
2422 /* We can at least try to use to mmap memory. */
2423 goto try_mmap;
fa8d436c 2424 }
6c8dbf00 2425 else /* av == main_arena */
fa8d436c 2426
fa8d436c 2427
6c8dbf00
OB
2428 { /* Request enough space for nb + pad + overhead */
2429 size = nb + mp_.top_pad + MINSIZE;
a9177ff5 2430
6c8dbf00
OB
2431 /*
2432 If contiguous, we can subtract out existing space that we hope to
2433 combine with new space. We add it back later only if
2434 we don't actually get contiguous space.
2435 */
a9177ff5 2436
6c8dbf00
OB
2437 if (contiguous (av))
2438 size -= old_size;
fa8d436c 2439
6c8dbf00
OB
2440 /*
2441 Round to a multiple of page size.
2442 If MORECORE is not contiguous, this ensures that we only call it
2443 with whole-page arguments. And if MORECORE is contiguous and
2444 this is not first time through, this preserves page-alignment of
2445 previous calls. Otherwise, we correct to page-align below.
2446 */
fa8d436c 2447
6c8dbf00 2448 size = (size + pagemask) & ~pagemask;
fa8d436c 2449
6c8dbf00
OB
2450 /*
2451 Don't try to call MORECORE if argument is so big as to appear
2452 negative. Note that since mmap takes size_t arg, it may succeed
2453 below even if we cannot call MORECORE.
2454 */
2455
2456 if (size > 0)
2457 {
2458 brk = (char *) (MORECORE (size));
2459 LIBC_PROBE (memory_sbrk_more, 2, brk, size);
2460 }
2461
2462 if (brk != (char *) (MORECORE_FAILURE))
2463 {
2464 /* Call the `morecore' hook if necessary. */
2465 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2466 if (__builtin_expect (hook != NULL, 0))
2467 (*hook)();
2468 }
2469 else
2470 {
2471 /*
2472 If have mmap, try using it as a backup when MORECORE fails or
2473 cannot be used. This is worth doing on systems that have "holes" in
2474 address space, so sbrk cannot extend to give contiguous space, but
2475 space is available elsewhere. Note that we ignore mmap max count
2476 and threshold limits, since the space will not be used as a
2477 segregated mmap region.
2478 */
2479
2480 /* Cannot merge with old top, so add its size back in */
2481 if (contiguous (av))
2482 size = (size + old_size + pagemask) & ~pagemask;
2483
2484 /* If we are relying on mmap as backup, then use larger units */
2485 if ((unsigned long) (size) < (unsigned long) (MMAP_AS_MORECORE_SIZE))
2486 size = MMAP_AS_MORECORE_SIZE;
2487
2488 /* Don't try if size wraps around 0 */
2489 if ((unsigned long) (size) > (unsigned long) (nb))
2490 {
2491 char *mbrk = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0));
2492
2493 if (mbrk != MAP_FAILED)
2494 {
2495 /* We do not need, and cannot use, another sbrk call to find end */
2496 brk = mbrk;
2497 snd_brk = brk + size;
2498
2499 /*
2500 Record that we no longer have a contiguous sbrk region.
2501 After the first time mmap is used as backup, we do not
2502 ever rely on contiguous space since this could incorrectly
2503 bridge regions.
2504 */
2505 set_noncontiguous (av);
2506 }
2507 }
2508 }
2509
2510 if (brk != (char *) (MORECORE_FAILURE))
2511 {
2512 if (mp_.sbrk_base == 0)
2513 mp_.sbrk_base = brk;
2514 av->system_mem += size;
2515
2516 /*
2517 If MORECORE extends previous space, we can likewise extend top size.
2518 */
2519
2520 if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE))
2521 set_head (old_top, (size + old_size) | PREV_INUSE);
2522
2523 else if (contiguous (av) && old_size && brk < old_end)
2524 {
2525 /* Oops! Someone else killed our space.. Can't touch anything. */
2526 malloc_printerr (3, "break adjusted to free malloc space", brk);
2527 }
2528
2529 /*
2530 Otherwise, make adjustments:
2531
2532 * If the first time through or noncontiguous, we need to call sbrk
2533 just to find out where the end of memory lies.
2534
2535 * We need to ensure that all returned chunks from malloc will meet
2536 MALLOC_ALIGNMENT
2537
2538 * If there was an intervening foreign sbrk, we need to adjust sbrk
2539 request size to account for fact that we will not be able to
2540 combine new space with existing space in old_top.
2541
2542 * Almost all systems internally allocate whole pages at a time, in
2543 which case we might as well use the whole last page of request.
2544 So we allocate enough more memory to hit a page boundary now,
2545 which in turn causes future contiguous calls to page-align.
2546 */
2547
2548 else
2549 {
2550 front_misalign = 0;
2551 end_misalign = 0;
2552 correction = 0;
2553 aligned_brk = brk;
2554
2555 /* handle contiguous cases */
2556 if (contiguous (av))
2557 {
2558 /* Count foreign sbrk as system_mem. */
2559 if (old_size)
2560 av->system_mem += brk - old_end;
2561
2562 /* Guarantee alignment of first new chunk made from this space */
2563
2564 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2565 if (front_misalign > 0)
2566 {
2567 /*
2568 Skip over some bytes to arrive at an aligned position.
2569 We don't need to specially mark these wasted front bytes.
2570 They will never be accessed anyway because
2571 prev_inuse of av->top (and any chunk created from its start)
2572 is always true after initialization.
2573 */
2574
2575 correction = MALLOC_ALIGNMENT - front_misalign;
2576 aligned_brk += correction;
2577 }
2578
2579 /*
2580 If this isn't adjacent to existing space, then we will not
2581 be able to merge with old_top space, so must add to 2nd request.
2582 */
2583
2584 correction += old_size;
2585
2586 /* Extend the end address to hit a page boundary */
2587 end_misalign = (INTERNAL_SIZE_T) (brk + size + correction);
2588 correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;
2589
2590 assert (correction >= 0);
2591 snd_brk = (char *) (MORECORE (correction));
2592
2593 /*
2594 If can't allocate correction, try to at least find out current
2595 brk. It might be enough to proceed without failing.
2596
2597 Note that if second sbrk did NOT fail, we assume that space
2598 is contiguous with first sbrk. This is a safe assumption unless
2599 program is multithreaded but doesn't use locks and a foreign sbrk
2600 occurred between our first and second calls.
2601 */
2602
2603 if (snd_brk == (char *) (MORECORE_FAILURE))
2604 {
2605 correction = 0;
2606 snd_brk = (char *) (MORECORE (0));
2607 }
2608 else
2609 {
2610 /* Call the `morecore' hook if necessary. */
2611 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2612 if (__builtin_expect (hook != NULL, 0))
2613 (*hook)();
2614 }
2615 }
2616
2617 /* handle non-contiguous cases */
2618 else
2619 {
2620 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2621 /* MORECORE/mmap must correctly align */
2622 assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0);
2623 else
2624 {
2625 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2626 if (front_misalign > 0)
2627 {
2628 /*
2629 Skip over some bytes to arrive at an aligned position.
2630 We don't need to specially mark these wasted front bytes.
2631 They will never be accessed anyway because
2632 prev_inuse of av->top (and any chunk created from its start)
2633 is always true after initialization.
2634 */
2635
2636 aligned_brk += MALLOC_ALIGNMENT - front_misalign;
2637 }
2638 }
2639
2640 /* Find out current end of memory */
2641 if (snd_brk == (char *) (MORECORE_FAILURE))
2642 {
2643 snd_brk = (char *) (MORECORE (0));
2644 }
2645 }
2646
2647 /* Adjust top based on results of second sbrk */
2648 if (snd_brk != (char *) (MORECORE_FAILURE))
2649 {
2650 av->top = (mchunkptr) aligned_brk;
2651 set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
2652 av->system_mem += correction;
2653
2654 /*
2655 If not the first time through, we either have a
2656 gap due to foreign sbrk or a non-contiguous region. Insert a
2657 double fencepost at old_top to prevent consolidation with space
2658 we don't own. These fenceposts are artificial chunks that are
2659 marked as inuse and are in any case too small to use. We need
2660 two to make sizes and alignments work out.
2661 */
2662
2663 if (old_size != 0)
2664 {
2665 /*
2666 Shrink old_top to insert fenceposts, keeping size a
2667 multiple of MALLOC_ALIGNMENT. We know there is at least
2668 enough space in old_top to do this.
2669 */
2670 old_size = (old_size - 4 * SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2671 set_head (old_top, old_size | PREV_INUSE);
2672
2673 /*
2674 Note that the following assignments completely overwrite
2675 old_top when old_size was previously MINSIZE. This is
2676 intentional. We need the fencepost, even if old_top otherwise gets
2677 lost.
2678 */
2679 chunk_at_offset (old_top, old_size)->size =
2680 (2 * SIZE_SZ) | PREV_INUSE;
2681
2682 chunk_at_offset (old_top, old_size + 2 * SIZE_SZ)->size =
2683 (2 * SIZE_SZ) | PREV_INUSE;
2684
2685 /* If possible, release the rest. */
2686 if (old_size >= MINSIZE)
2687 {
2688 _int_free (av, old_top, 1);
2689 }
2690 }
2691 }
2692 }
2693 }
2694 } /* if (av != &main_arena) */
2695
2696 if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem))
fa8d436c 2697 av->max_system_mem = av->system_mem;
6c8dbf00 2698 check_malloc_state (av);
a9177ff5 2699
fa8d436c
UD
2700 /* finally, do the allocation */
2701 p = av->top;
6c8dbf00 2702 size = chunksize (p);
fa8d436c
UD
2703
2704 /* check that one of the above allocation paths succeeded */
6c8dbf00
OB
2705 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
2706 {
2707 remainder_size = size - nb;
2708 remainder = chunk_at_offset (p, nb);
2709 av->top = remainder;
2710 set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
2711 set_head (remainder, remainder_size | PREV_INUSE);
2712 check_malloced_chunk (av, p, nb);
2713 return chunk2mem (p);
2714 }
fa8d436c
UD
2715
2716 /* catch all failure paths */
8e58439c 2717 __set_errno (ENOMEM);
fa8d436c
UD
2718 return 0;
2719}
2720
2721
2722/*
6c8dbf00
OB
2723 systrim is an inverse of sorts to sysmalloc. It gives memory back
2724 to the system (via negative arguments to sbrk) if there is unused
2725 memory at the `high' end of the malloc pool. It is called
2726 automatically by free() when top space exceeds the trim
2727 threshold. It is also called by the public malloc_trim routine. It
2728 returns 1 if it actually released any memory, else 0.
2729 */
fa8d436c 2730
6c8dbf00
OB
2731static int
2732systrim (size_t pad, mstate av)
fa8d436c 2733{
6c8dbf00
OB
2734 long top_size; /* Amount of top-most memory */
2735 long extra; /* Amount to release */
2736 long released; /* Amount actually released */
2737 char *current_brk; /* address returned by pre-check sbrk call */
2738 char *new_brk; /* address returned by post-check sbrk call */
fa8d436c 2739 size_t pagesz;
6c8dbf00 2740 long top_area;
fa8d436c 2741
6c8dbf00
OB
2742 pagesz = GLRO (dl_pagesize);
2743 top_size = chunksize (av->top);
a9177ff5 2744
4b5b548c
FS
2745 top_area = top_size - MINSIZE - 1;
2746 if (top_area <= pad)
2747 return 0;
2748
fa8d436c 2749 /* Release in pagesize units, keeping at least one page */
4b5b548c 2750 extra = (top_area - pad) & ~(pagesz - 1);
a9177ff5 2751
51a7380b
WN
2752 if (extra == 0)
2753 return 0;
2754
4b5b548c 2755 /*
6c8dbf00
OB
2756 Only proceed if end of memory is where we last set it.
2757 This avoids problems if there were foreign sbrk calls.
2758 */
2759 current_brk = (char *) (MORECORE (0));
2760 if (current_brk == (char *) (av->top) + top_size)
2761 {
2762 /*
2763 Attempt to release memory. We ignore MORECORE return value,
2764 and instead call again to find out where new end of memory is.
2765 This avoids problems if first call releases less than we asked,
2766 of if failure somehow altered brk value. (We could still
2767 encounter problems if it altered brk in some very bad way,
2768 but the only thing we can do is adjust anyway, which will cause
2769 some downstream failure.)
2770 */
2771
2772 MORECORE (-extra);
2773 /* Call the `morecore' hook if necessary. */
2774 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2775 if (__builtin_expect (hook != NULL, 0))
2776 (*hook)();
2777 new_brk = (char *) (MORECORE (0));
2778
2779 LIBC_PROBE (memory_sbrk_less, 2, new_brk, extra);
2780
2781 if (new_brk != (char *) MORECORE_FAILURE)
2782 {
2783 released = (long) (current_brk - new_brk);
2784
2785 if (released != 0)
2786 {
2787 /* Success. Adjust top. */
2788 av->system_mem -= released;
2789 set_head (av->top, (top_size - released) | PREV_INUSE);
2790 check_malloc_state (av);
2791 return 1;
2792 }
2793 }
fa8d436c 2794 }
fa8d436c 2795 return 0;
f65fd747
UD
2796}
2797
431c33c0
UD
2798static void
2799internal_function
6c8dbf00 2800munmap_chunk (mchunkptr p)
f65fd747 2801{
6c8dbf00 2802 INTERNAL_SIZE_T size = chunksize (p);
f65fd747 2803
6c8dbf00 2804 assert (chunk_is_mmapped (p));
8e635611
UD
2805
2806 uintptr_t block = (uintptr_t) p - p->prev_size;
2807 size_t total_size = p->prev_size + size;
2808 /* Unfortunately we have to do the compilers job by hand here. Normally
2809 we would test BLOCK and TOTAL-SIZE separately for compliance with the
2810 page size. But gcc does not recognize the optimization possibility
2811 (in the moment at least) so we combine the two values into one before
2812 the bit test. */
6c8dbf00 2813 if (__builtin_expect (((block | total_size) & (GLRO (dl_pagesize) - 1)) != 0, 0))
8e635611
UD
2814 {
2815 malloc_printerr (check_action, "munmap_chunk(): invalid pointer",
6c8dbf00 2816 chunk2mem (p));
8e635611
UD
2817 return;
2818 }
f65fd747 2819
c6e4925d
OB
2820 atomic_decrement (&mp_.n_mmaps);
2821 atomic_add (&mp_.mmapped_mem, -total_size);
f65fd747 2822
6ef76f3b
UD
2823 /* If munmap failed the process virtual memory address space is in a
2824 bad shape. Just leave the block hanging around, the process will
2825 terminate shortly anyway since not much can be done. */
6c8dbf00 2826 __munmap ((char *) block, total_size);
f65fd747
UD
2827}
2828
2829#if HAVE_MREMAP
2830
431c33c0
UD
2831static mchunkptr
2832internal_function
6c8dbf00 2833mremap_chunk (mchunkptr p, size_t new_size)
f65fd747 2834{
6c8dbf00 2835 size_t page_mask = GLRO (dl_pagesize) - 1;
f65fd747 2836 INTERNAL_SIZE_T offset = p->prev_size;
6c8dbf00 2837 INTERNAL_SIZE_T size = chunksize (p);
f65fd747
UD
2838 char *cp;
2839
6c8dbf00
OB
2840 assert (chunk_is_mmapped (p));
2841 assert (((size + offset) & (GLRO (dl_pagesize) - 1)) == 0);
f65fd747
UD
2842
2843 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
2844 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
2845
68f3802d
UD
2846 /* No need to remap if the number of pages does not change. */
2847 if (size + offset == new_size)
2848 return p;
2849
6c8dbf00
OB
2850 cp = (char *) __mremap ((char *) p - offset, size + offset, new_size,
2851 MREMAP_MAYMOVE);
f65fd747 2852
6c8dbf00
OB
2853 if (cp == MAP_FAILED)
2854 return 0;
f65fd747 2855
6c8dbf00 2856 p = (mchunkptr) (cp + offset);
f65fd747 2857
6c8dbf00 2858 assert (aligned_OK (chunk2mem (p)));
f65fd747 2859
6c8dbf00
OB
2860 assert ((p->prev_size == offset));
2861 set_head (p, (new_size - offset) | IS_MMAPPED);
f65fd747 2862
c6e4925d
OB
2863 INTERNAL_SIZE_T new;
2864 new = atomic_exchange_and_add (&mp_.mmapped_mem, new_size - size - offset)
6c8dbf00 2865 + new_size - size - offset;
c6e4925d 2866 atomic_max (&mp_.max_mmapped_mem, new);
f65fd747
UD
2867 return p;
2868}
f65fd747
UD
2869#endif /* HAVE_MREMAP */
2870
fa8d436c 2871/*------------------------ Public wrappers. --------------------------------*/
f65fd747 2872
6c8dbf00
OB
2873void *
2874__libc_malloc (size_t bytes)
fa8d436c
UD
2875{
2876 mstate ar_ptr;
22a89187 2877 void *victim;
f65fd747 2878
a222d91a 2879 void *(*hook) (size_t, const void *)
f3eeb3fc 2880 = atomic_forced_read (__malloc_hook);
bfacf1af 2881 if (__builtin_expect (hook != NULL, 0))
fa8d436c 2882 return (*hook)(bytes, RETURN_ADDRESS (0));
f65fd747 2883
6c8dbf00 2884 arena_lookup (ar_ptr);
425ce2ed 2885
6c8dbf00
OB
2886 arena_lock (ar_ptr, bytes);
2887 if (!ar_ptr)
f65fd747 2888 return 0;
6c8dbf00
OB
2889
2890 victim = _int_malloc (ar_ptr, bytes);
2891 if (!victim)
2892 {
2893 LIBC_PROBE (memory_malloc_retry, 1, bytes);
2894 ar_ptr = arena_get_retry (ar_ptr, bytes);
2895 if (__builtin_expect (ar_ptr != NULL, 1))
2896 {
2897 victim = _int_malloc (ar_ptr, bytes);
2898 (void) mutex_unlock (&ar_ptr->mutex);
2899 }
60f0e64b 2900 }
6c8dbf00
OB
2901 else
2902 (void) mutex_unlock (&ar_ptr->mutex);
2903 assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
2904 ar_ptr == arena_for_chunk (mem2chunk (victim)));
fa8d436c 2905 return victim;
f65fd747 2906}
6c8dbf00 2907libc_hidden_def (__libc_malloc)
f65fd747 2908
fa8d436c 2909void
6c8dbf00 2910__libc_free (void *mem)
f65fd747 2911{
fa8d436c
UD
2912 mstate ar_ptr;
2913 mchunkptr p; /* chunk corresponding to mem */
2914
a222d91a 2915 void (*hook) (void *, const void *)
f3eeb3fc 2916 = atomic_forced_read (__free_hook);
6c8dbf00
OB
2917 if (__builtin_expect (hook != NULL, 0))
2918 {
2919 (*hook)(mem, RETURN_ADDRESS (0));
2920 return;
2921 }
f65fd747 2922
fa8d436c
UD
2923 if (mem == 0) /* free(0) has no effect */
2924 return;
f65fd747 2925
6c8dbf00 2926 p = mem2chunk (mem);
f65fd747 2927
6c8dbf00
OB
2928 if (chunk_is_mmapped (p)) /* release mmapped memory. */
2929 {
2930 /* see if the dynamic brk/mmap threshold needs adjusting */
2931 if (!mp_.no_dyn_threshold
2932 && p->size > mp_.mmap_threshold
2933 && p->size <= DEFAULT_MMAP_THRESHOLD_MAX)
2934 {
2935 mp_.mmap_threshold = chunksize (p);
2936 mp_.trim_threshold = 2 * mp_.mmap_threshold;
2937 LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2,
2938 mp_.mmap_threshold, mp_.trim_threshold);
2939 }
2940 munmap_chunk (p);
2941 return;
2942 }
f65fd747 2943
6c8dbf00
OB
2944 ar_ptr = arena_for_chunk (p);
2945 _int_free (ar_ptr, p, 0);
f65fd747 2946}
3b49edc0 2947libc_hidden_def (__libc_free)
f65fd747 2948
6c8dbf00
OB
2949void *
2950__libc_realloc (void *oldmem, size_t bytes)
f65fd747 2951{
fa8d436c 2952 mstate ar_ptr;
6c8dbf00 2953 INTERNAL_SIZE_T nb; /* padded request size */
f65fd747 2954
6c8dbf00 2955 void *newp; /* chunk to return */
f65fd747 2956
a222d91a 2957 void *(*hook) (void *, size_t, const void *) =
f3eeb3fc 2958 atomic_forced_read (__realloc_hook);
bfacf1af 2959 if (__builtin_expect (hook != NULL, 0))
fa8d436c 2960 return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
f65fd747 2961
fa8d436c 2962#if REALLOC_ZERO_BYTES_FREES
6c8dbf00
OB
2963 if (bytes == 0 && oldmem != NULL)
2964 {
2965 __libc_free (oldmem); return 0;
2966 }
f65fd747 2967#endif
f65fd747 2968
fa8d436c 2969 /* realloc of null is supposed to be same as malloc */
6c8dbf00
OB
2970 if (oldmem == 0)
2971 return __libc_malloc (bytes);
f65fd747 2972
78ac92ad 2973 /* chunk corresponding to oldmem */
6c8dbf00 2974 const mchunkptr oldp = mem2chunk (oldmem);
78ac92ad 2975 /* its size */
6c8dbf00 2976 const INTERNAL_SIZE_T oldsize = chunksize (oldp);
f65fd747 2977
dc165f7b
UD
2978 /* Little security check which won't hurt performance: the
2979 allocator never wrapps around at the end of the address space.
2980 Therefore we can exclude some size values which might appear
2981 here by accident or by "design" from some intruder. */
2982 if (__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
073f560e 2983 || __builtin_expect (misaligned_chunk (oldp), 0))
dc165f7b
UD
2984 {
2985 malloc_printerr (check_action, "realloc(): invalid pointer", oldmem);
2986 return NULL;
2987 }
2988
6c8dbf00 2989 checked_request2size (bytes, nb);
f65fd747 2990
6c8dbf00
OB
2991 if (chunk_is_mmapped (oldp))
2992 {
2993 void *newmem;
f65fd747 2994
fa8d436c 2995#if HAVE_MREMAP
6c8dbf00
OB
2996 newp = mremap_chunk (oldp, nb);
2997 if (newp)
2998 return chunk2mem (newp);
f65fd747 2999#endif
6c8dbf00
OB
3000 /* Note the extra SIZE_SZ overhead. */
3001 if (oldsize - SIZE_SZ >= nb)
3002 return oldmem; /* do nothing */
3003
3004 /* Must alloc, copy, free. */
3005 newmem = __libc_malloc (bytes);
3006 if (newmem == 0)
3007 return 0; /* propagate failure */
fa8d436c 3008
6c8dbf00
OB
3009 memcpy (newmem, oldmem, oldsize - 2 * SIZE_SZ);
3010 munmap_chunk (oldp);
3011 return newmem;
3012 }
3013
3014 ar_ptr = arena_for_chunk (oldp);
6c8dbf00 3015 (void) mutex_lock (&ar_ptr->mutex);
f65fd747 3016
f65fd747 3017
6c8dbf00 3018 newp = _int_realloc (ar_ptr, oldp, oldsize, nb);
f65fd747 3019
6c8dbf00
OB
3020 (void) mutex_unlock (&ar_ptr->mutex);
3021 assert (!newp || chunk_is_mmapped (mem2chunk (newp)) ||
3022 ar_ptr == arena_for_chunk (mem2chunk (newp)));
07014fca
UD
3023
3024 if (newp == NULL)
3025 {
3026 /* Try harder to allocate memory in other arenas. */
35fed6f1 3027 LIBC_PROBE (memory_realloc_retry, 2, bytes, oldmem);
6c8dbf00 3028 newp = __libc_malloc (bytes);
07014fca 3029 if (newp != NULL)
6c8dbf00
OB
3030 {
3031 memcpy (newp, oldmem, oldsize - SIZE_SZ);
3032 _int_free (ar_ptr, oldp, 0);
3033 }
07014fca
UD
3034 }
3035
fa8d436c
UD
3036 return newp;
3037}
3b49edc0 3038libc_hidden_def (__libc_realloc)
f65fd747 3039
6c8dbf00
OB
3040void *
3041__libc_memalign (size_t alignment, size_t bytes)
10ad46bc
OB
3042{
3043 void *address = RETURN_ADDRESS (0);
3044 return _mid_memalign (alignment, bytes, address);
3045}
3046
3047static void *
3048_mid_memalign (size_t alignment, size_t bytes, void *address)
fa8d436c
UD
3049{
3050 mstate ar_ptr;
22a89187 3051 void *p;
f65fd747 3052
a222d91a 3053 void *(*hook) (size_t, size_t, const void *) =
f3eeb3fc 3054 atomic_forced_read (__memalign_hook);
bfacf1af 3055 if (__builtin_expect (hook != NULL, 0))
10ad46bc 3056 return (*hook)(alignment, bytes, address);
f65fd747 3057
10ad46bc 3058 /* If we need less alignment than we give anyway, just relay to malloc. */
6c8dbf00
OB
3059 if (alignment <= MALLOC_ALIGNMENT)
3060 return __libc_malloc (bytes);
1228ed5c 3061
fa8d436c 3062 /* Otherwise, ensure that it is at least a minimum chunk size */
6c8dbf00
OB
3063 if (alignment < MINSIZE)
3064 alignment = MINSIZE;
f65fd747 3065
a56ee40b
WN
3066 /* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a
3067 power of 2 and will cause overflow in the check below. */
3068 if (alignment > SIZE_MAX / 2 + 1)
3069 {
3070 __set_errno (EINVAL);
3071 return 0;
3072 }
3073
b73ed247
WN
3074 /* Check for overflow. */
3075 if (bytes > SIZE_MAX - alignment - MINSIZE)
3076 {
3077 __set_errno (ENOMEM);
3078 return 0;
3079 }
3080
10ad46bc
OB
3081
3082 /* Make sure alignment is power of 2. */
6c8dbf00
OB
3083 if (!powerof2 (alignment))
3084 {
3085 size_t a = MALLOC_ALIGNMENT * 2;
3086 while (a < alignment)
3087 a <<= 1;
3088 alignment = a;
3089 }
10ad46bc 3090
6c8dbf00
OB
3091 arena_get (ar_ptr, bytes + alignment + MINSIZE);
3092 if (!ar_ptr)
fa8d436c 3093 return 0;
6c8dbf00
OB
3094
3095 p = _int_memalign (ar_ptr, alignment, bytes);
3096 if (!p)
3097 {
3098 LIBC_PROBE (memory_memalign_retry, 2, bytes, alignment);
3099 ar_ptr = arena_get_retry (ar_ptr, bytes);
3100 if (__builtin_expect (ar_ptr != NULL, 1))
3101 {
3102 p = _int_memalign (ar_ptr, alignment, bytes);
3103 (void) mutex_unlock (&ar_ptr->mutex);
3104 }
f65fd747 3105 }
6c8dbf00
OB
3106 else
3107 (void) mutex_unlock (&ar_ptr->mutex);
3108 assert (!p || chunk_is_mmapped (mem2chunk (p)) ||
3109 ar_ptr == arena_for_chunk (mem2chunk (p)));
fa8d436c 3110 return p;
f65fd747 3111}
380d7e87 3112/* For ISO C11. */
3b49edc0
UD
3113weak_alias (__libc_memalign, aligned_alloc)
3114libc_hidden_def (__libc_memalign)
f65fd747 3115
6c8dbf00
OB
3116void *
3117__libc_valloc (size_t bytes)
fa8d436c 3118{
6c8dbf00 3119 if (__malloc_initialized < 0)
fa8d436c 3120 ptmalloc_init ();
8088488d 3121
10ad46bc 3122 void *address = RETURN_ADDRESS (0);
6c8dbf00 3123 size_t pagesz = GLRO (dl_pagesize);
10ad46bc 3124 return _mid_memalign (pagesz, bytes, address);
fa8d436c 3125}
f65fd747 3126
6c8dbf00
OB
3127void *
3128__libc_pvalloc (size_t bytes)
fa8d436c 3129{
6c8dbf00 3130 if (__malloc_initialized < 0)
fa8d436c 3131 ptmalloc_init ();
8088488d 3132
10ad46bc 3133 void *address = RETURN_ADDRESS (0);
6c8dbf00
OB
3134 size_t pagesz = GLRO (dl_pagesize);
3135 size_t page_mask = GLRO (dl_pagesize) - 1;
dba38551
UD
3136 size_t rounded_bytes = (bytes + page_mask) & ~(page_mask);
3137
1159a193 3138 /* Check for overflow. */
6c8dbf00 3139 if (bytes > SIZE_MAX - 2 * pagesz - MINSIZE)
1159a193
WN
3140 {
3141 __set_errno (ENOMEM);
3142 return 0;
3143 }
3144
10ad46bc 3145 return _mid_memalign (pagesz, rounded_bytes, address);
fa8d436c 3146}
f65fd747 3147
6c8dbf00
OB
3148void *
3149__libc_calloc (size_t n, size_t elem_size)
f65fd747 3150{
d6285c9f
CD
3151 mstate av;
3152 mchunkptr oldtop, p;
3153 INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
6c8dbf00 3154 void *mem;
d6285c9f
CD
3155 unsigned long clearsize;
3156 unsigned long nclears;
3157 INTERNAL_SIZE_T *d;
0950889b
UD
3158
3159 /* size_t is unsigned so the behavior on overflow is defined. */
3160 bytes = n * elem_size;
d9af917d
UD
3161#define HALF_INTERNAL_SIZE_T \
3162 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
6c8dbf00
OB
3163 if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0))
3164 {
3165 if (elem_size != 0 && bytes / elem_size != n)
3166 {
3167 __set_errno (ENOMEM);
3168 return 0;
3169 }
d9af917d 3170 }
0950889b 3171
a222d91a 3172 void *(*hook) (size_t, const void *) =
f3eeb3fc 3173 atomic_forced_read (__malloc_hook);
6c8dbf00
OB
3174 if (__builtin_expect (hook != NULL, 0))
3175 {
d6285c9f
CD
3176 sz = bytes;
3177 mem = (*hook)(sz, RETURN_ADDRESS (0));
3178 if (mem == 0)
3179 return 0;
3180
3181 return memset (mem, 0, sz);
7799b7b3 3182 }
f65fd747 3183
d6285c9f
CD
3184 sz = bytes;
3185
3186 arena_get (av, sz);
3187 if (!av)
4248f0da 3188 return 0;
f65fd747 3189
d6285c9f
CD
3190 /* Check if we hand out the top chunk, in which case there may be no
3191 need to clear. */
3192#if MORECORE_CLEARS
3193 oldtop = top (av);
3194 oldtopsize = chunksize (top (av));
3195# if MORECORE_CLEARS < 2
3196 /* Only newly allocated memory is guaranteed to be cleared. */
3197 if (av == &main_arena &&
3198 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *) oldtop)
3199 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *) oldtop);
3200# endif
3201 if (av != &main_arena)
3202 {
3203 heap_info *heap = heap_for_ptr (oldtop);
3204 if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
3205 oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
3206 }
3207#endif
3208 mem = _int_malloc (av, sz);
3209
3210
3211 assert (!mem || chunk_is_mmapped (mem2chunk (mem)) ||
3212 av == arena_for_chunk (mem2chunk (mem)));
3213
3214 if (mem == 0)
3215 {
3216 LIBC_PROBE (memory_calloc_retry, 1, sz);
3217 av = arena_get_retry (av, sz);
3218 if (__builtin_expect (av != NULL, 1))
3219 {
3220 mem = _int_malloc (av, sz);
3221 (void) mutex_unlock (&av->mutex);
3222 }
3223 if (mem == 0)
3224 return 0;
3225 }
3226 else
3227 (void) mutex_unlock (&av->mutex);
3228 p = mem2chunk (mem);
3229
3230 /* Two optional cases in which clearing not necessary */
3231 if (chunk_is_mmapped (p))
3232 {
3233 if (__builtin_expect (perturb_byte, 0))
3234 return memset (mem, 0, sz);
3235
3236 return mem;
3237 }
3238
3239 csz = chunksize (p);
3240
3241#if MORECORE_CLEARS
3242 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize))
3243 {
3244 /* clear only the bytes from non-freshly-sbrked memory */
3245 csz = oldtopsize;
3246 }
3247#endif
3248
3249 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3250 contents have an odd number of INTERNAL_SIZE_T-sized words;
3251 minimally 3. */
3252 d = (INTERNAL_SIZE_T *) mem;
3253 clearsize = csz - SIZE_SZ;
3254 nclears = clearsize / sizeof (INTERNAL_SIZE_T);
3255 assert (nclears >= 3);
3256
3257 if (nclears > 9)
3258 return memset (d, 0, clearsize);
3259
3260 else
3261 {
3262 *(d + 0) = 0;
3263 *(d + 1) = 0;
3264 *(d + 2) = 0;
3265 if (nclears > 4)
3266 {
3267 *(d + 3) = 0;
3268 *(d + 4) = 0;
3269 if (nclears > 6)
3270 {
3271 *(d + 5) = 0;
3272 *(d + 6) = 0;
3273 if (nclears > 8)
3274 {
3275 *(d + 7) = 0;
3276 *(d + 8) = 0;
3277 }
3278 }
3279 }
3280 }
3281
3282 return mem;
fa8d436c 3283}
f65fd747 3284
f65fd747 3285/*
6c8dbf00
OB
3286 ------------------------------ malloc ------------------------------
3287 */
f65fd747 3288
6c8dbf00
OB
3289static void *
3290_int_malloc (mstate av, size_t bytes)
f65fd747 3291{
fa8d436c 3292 INTERNAL_SIZE_T nb; /* normalized request size */
6c8dbf00
OB
3293 unsigned int idx; /* associated bin index */
3294 mbinptr bin; /* associated bin */
f65fd747 3295
6c8dbf00 3296 mchunkptr victim; /* inspected/selected chunk */
fa8d436c 3297 INTERNAL_SIZE_T size; /* its size */
6c8dbf00 3298 int victim_index; /* its bin index */
f65fd747 3299
6c8dbf00
OB
3300 mchunkptr remainder; /* remainder from a split */
3301 unsigned long remainder_size; /* its size */
8a4b65b4 3302
6c8dbf00
OB
3303 unsigned int block; /* bit map traverser */
3304 unsigned int bit; /* bit map traverser */
3305 unsigned int map; /* current word of binmap */
8a4b65b4 3306
6c8dbf00
OB
3307 mchunkptr fwd; /* misc temp for linking */
3308 mchunkptr bck; /* misc temp for linking */
8a4b65b4 3309
f6887a0d
UD
3310 const char *errstr = NULL;
3311
fa8d436c 3312 /*
6c8dbf00
OB
3313 Convert request size to internal form by adding SIZE_SZ bytes
3314 overhead plus possibly more to obtain necessary alignment and/or
3315 to obtain a size of at least MINSIZE, the smallest allocatable
3316 size. Also, checked_request2size traps (returning 0) request sizes
3317 that are so large that they wrap around zero when padded and
3318 aligned.
3319 */
f65fd747 3320
6c8dbf00 3321 checked_request2size (bytes, nb);
f65fd747 3322
fa8d436c 3323 /*
6c8dbf00
OB
3324 If the size qualifies as a fastbin, first check corresponding bin.
3325 This code is safe to execute even if av is not yet initialized, so we
3326 can try it without checking, which saves some time on this fast path.
3327 */
f65fd747 3328
6c8dbf00
OB
3329 if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ()))
3330 {
3331 idx = fastbin_index (nb);
3332 mfastbinptr *fb = &fastbin (av, idx);
3333 mchunkptr pp = *fb;
3334 do
3335 {
3336 victim = pp;
3337 if (victim == NULL)
3338 break;
3339 }
3340 while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim))
3341 != victim);
3342 if (victim != 0)
3343 {
3344 if (__builtin_expect (fastbin_index (chunksize (victim)) != idx, 0))
3345 {
3346 errstr = "malloc(): memory corruption (fast)";
3347 errout:
3348 malloc_printerr (check_action, errstr, chunk2mem (victim));
3349 return NULL;
3350 }
3351 check_remalloced_chunk (av, victim, nb);
3352 void *p = chunk2mem (victim);
3353 alloc_perturb (p, bytes);
3354 return p;
3355 }
fa8d436c 3356 }
f65fd747 3357
fa8d436c 3358 /*
6c8dbf00
OB
3359 If a small request, check regular bin. Since these "smallbins"
3360 hold one size each, no searching within bins is necessary.
3361 (For a large request, we need to wait until unsorted chunks are
3362 processed to find best fit. But for small ones, fits are exact
3363 anyway, so we can check now, which is faster.)
3364 */
3365
3366 if (in_smallbin_range (nb))
3367 {
3368 idx = smallbin_index (nb);
3369 bin = bin_at (av, idx);
3370
3371 if ((victim = last (bin)) != bin)
3372 {
3373 if (victim == 0) /* initialization check */
3374 malloc_consolidate (av);
3375 else
3376 {
3377 bck = victim->bk;
a1ffb40e 3378 if (__glibc_unlikely (bck->fd != victim))
6c8dbf00
OB
3379 {
3380 errstr = "malloc(): smallbin double linked list corrupted";
3381 goto errout;
3382 }
3383 set_inuse_bit_at_offset (victim, nb);
3384 bin->bk = bck;
3385 bck->fd = bin;
3386
3387 if (av != &main_arena)
3388 victim->size |= NON_MAIN_ARENA;
3389 check_malloced_chunk (av, victim, nb);
3390 void *p = chunk2mem (victim);
3391 alloc_perturb (p, bytes);
3392 return p;
3393 }
3394 }
fa8d436c 3395 }
f65fd747 3396
a9177ff5 3397 /*
fa8d436c
UD
3398 If this is a large request, consolidate fastbins before continuing.
3399 While it might look excessive to kill all fastbins before
3400 even seeing if there is space available, this avoids
3401 fragmentation problems normally associated with fastbins.
3402 Also, in practice, programs tend to have runs of either small or
a9177ff5 3403 large requests, but less often mixtures, so consolidation is not
fa8d436c
UD
3404 invoked all that often in most programs. And the programs that
3405 it is called frequently in otherwise tend to fragment.
6c8dbf00 3406 */
7799b7b3 3407
6c8dbf00
OB
3408 else
3409 {
3410 idx = largebin_index (nb);
3411 if (have_fastchunks (av))
3412 malloc_consolidate (av);
3413 }
f65fd747 3414
fa8d436c 3415 /*
6c8dbf00
OB
3416 Process recently freed or remaindered chunks, taking one only if
3417 it is exact fit, or, if this a small request, the chunk is remainder from
3418 the most recent non-exact fit. Place other traversed chunks in
3419 bins. Note that this step is the only place in any routine where
3420 chunks are placed in bins.
3421
3422 The outer loop here is needed because we might not realize until
3423 near the end of malloc that we should have consolidated, so must
3424 do so and retry. This happens at most once, and only when we would
3425 otherwise need to expand memory to service a "small" request.
3426 */
3427
3428 for (;; )
3429 {
3430 int iters = 0;
3431 while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
3432 {
3433 bck = victim->bk;
3434 if (__builtin_expect (victim->size <= 2 * SIZE_SZ, 0)
3435 || __builtin_expect (victim->size > av->system_mem, 0))
3436 malloc_printerr (check_action, "malloc(): memory corruption",
3437 chunk2mem (victim));
3438 size = chunksize (victim);
3439
3440 /*
3441 If a small request, try to use last remainder if it is the
3442 only chunk in unsorted bin. This helps promote locality for
3443 runs of consecutive small requests. This is the only
3444 exception to best-fit, and applies only when there is
3445 no exact fit for a small chunk.
3446 */
3447
3448 if (in_smallbin_range (nb) &&
3449 bck == unsorted_chunks (av) &&
3450 victim == av->last_remainder &&
3451 (unsigned long) (size) > (unsigned long) (nb + MINSIZE))
3452 {
3453 /* split and reattach remainder */
3454 remainder_size = size - nb;
3455 remainder = chunk_at_offset (victim, nb);
3456 unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder;
3457 av->last_remainder = remainder;
3458 remainder->bk = remainder->fd = unsorted_chunks (av);
3459 if (!in_smallbin_range (remainder_size))
3460 {
3461 remainder->fd_nextsize = NULL;
3462 remainder->bk_nextsize = NULL;
3463 }
3464
3465 set_head (victim, nb | PREV_INUSE |
3466 (av != &main_arena ? NON_MAIN_ARENA : 0));
3467 set_head (remainder, remainder_size | PREV_INUSE);
3468 set_foot (remainder, remainder_size);
3469
3470 check_malloced_chunk (av, victim, nb);
3471 void *p = chunk2mem (victim);
3472 alloc_perturb (p, bytes);
3473 return p;
3474 }
3475
3476 /* remove from unsorted list */
3477 unsorted_chunks (av)->bk = bck;
3478 bck->fd = unsorted_chunks (av);
3479
3480 /* Take now instead of binning if exact fit */
3481
3482 if (size == nb)
3483 {
3484 set_inuse_bit_at_offset (victim, size);
3485 if (av != &main_arena)
3486 victim->size |= NON_MAIN_ARENA;
3487 check_malloced_chunk (av, victim, nb);
3488 void *p = chunk2mem (victim);
3489 alloc_perturb (p, bytes);
3490 return p;
3491 }
3492
3493 /* place chunk in bin */
3494
3495 if (in_smallbin_range (size))
3496 {
3497 victim_index = smallbin_index (size);
3498 bck = bin_at (av, victim_index);
3499 fwd = bck->fd;
3500 }
3501 else
3502 {
3503 victim_index = largebin_index (size);
3504 bck = bin_at (av, victim_index);
3505 fwd = bck->fd;
3506
3507 /* maintain large bins in sorted order */
3508 if (fwd != bck)
3509 {
3510 /* Or with inuse bit to speed comparisons */
3511 size |= PREV_INUSE;
3512 /* if smaller than smallest, bypass loop below */
3513 assert ((bck->bk->size & NON_MAIN_ARENA) == 0);
3514 if ((unsigned long) (size) < (unsigned long) (bck->bk->size))
3515 {
3516 fwd = bck;
3517 bck = bck->bk;
3518
3519 victim->fd_nextsize = fwd->fd;
3520 victim->bk_nextsize = fwd->fd->bk_nextsize;
3521 fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
3522 }
3523 else
3524 {
3525 assert ((fwd->size & NON_MAIN_ARENA) == 0);
3526 while ((unsigned long) size < fwd->size)
3527 {
3528 fwd = fwd->fd_nextsize;
3529 assert ((fwd->size & NON_MAIN_ARENA) == 0);
3530 }
3531
3532 if ((unsigned long) size == (unsigned long) fwd->size)
3533 /* Always insert in the second position. */
3534 fwd = fwd->fd;
3535 else
3536 {
3537 victim->fd_nextsize = fwd;
3538 victim->bk_nextsize = fwd->bk_nextsize;
3539 fwd->bk_nextsize = victim;
3540 victim->bk_nextsize->fd_nextsize = victim;
3541 }
3542 bck = fwd->bk;
3543 }
3544 }
3545 else
3546 victim->fd_nextsize = victim->bk_nextsize = victim;
3547 }
3548
3549 mark_bin (av, victim_index);
3550 victim->bk = bck;
3551 victim->fd = fwd;
3552 fwd->bk = victim;
3553 bck->fd = victim;
3554
3555#define MAX_ITERS 10000
3556 if (++iters >= MAX_ITERS)
3557 break;
3558 }
fa8d436c 3559
a9177ff5 3560 /*
6c8dbf00
OB
3561 If a large request, scan through the chunks of current bin in
3562 sorted order to find smallest that fits. Use the skip list for this.
3563 */
3564
3565 if (!in_smallbin_range (nb))
3566 {
3567 bin = bin_at (av, idx);
3568
3569 /* skip scan if empty or largest chunk is too small */
3570 if ((victim = first (bin)) != bin &&
3571 (unsigned long) (victim->size) >= (unsigned long) (nb))
3572 {
3573 victim = victim->bk_nextsize;
3574 while (((unsigned long) (size = chunksize (victim)) <
3575 (unsigned long) (nb)))
3576 victim = victim->bk_nextsize;
3577
3578 /* Avoid removing the first entry for a size so that the skip
3579 list does not have to be rerouted. */
3580 if (victim != last (bin) && victim->size == victim->fd->size)
3581 victim = victim->fd;
3582
3583 remainder_size = size - nb;
3584 unlink (victim, bck, fwd);
3585
3586 /* Exhaust */
3587 if (remainder_size < MINSIZE)
3588 {
3589 set_inuse_bit_at_offset (victim, size);
3590 if (av != &main_arena)
3591 victim->size |= NON_MAIN_ARENA;
3592 }
3593 /* Split */
3594 else
3595 {
3596 remainder = chunk_at_offset (victim, nb);
3597 /* We cannot assume the unsorted list is empty and therefore
3598 have to perform a complete insert here. */
3599 bck = unsorted_chunks (av);
3600 fwd = bck->fd;
a1ffb40e 3601 if (__glibc_unlikely (fwd->bk != bck))
6c8dbf00
OB
3602 {
3603 errstr = "malloc(): corrupted unsorted chunks";
3604 goto errout;
3605 }
3606 remainder->bk = bck;
3607 remainder->fd = fwd;
3608 bck->fd = remainder;
3609 fwd->bk = remainder;
3610 if (!in_smallbin_range (remainder_size))
3611 {
3612 remainder->fd_nextsize = NULL;
3613 remainder->bk_nextsize = NULL;
3614 }
3615 set_head (victim, nb | PREV_INUSE |
3616 (av != &main_arena ? NON_MAIN_ARENA : 0));
3617 set_head (remainder, remainder_size | PREV_INUSE);
3618 set_foot (remainder, remainder_size);
3619 }
3620 check_malloced_chunk (av, victim, nb);
3621 void *p = chunk2mem (victim);
3622 alloc_perturb (p, bytes);
3623 return p;
3624 }
3625 }
f65fd747 3626
6c8dbf00
OB
3627 /*
3628 Search for a chunk by scanning bins, starting with next largest
3629 bin. This search is strictly by best-fit; i.e., the smallest
3630 (with ties going to approximately the least recently used) chunk
3631 that fits is selected.
3632
3633 The bitmap avoids needing to check that most blocks are nonempty.
3634 The particular case of skipping all bins during warm-up phases
3635 when no chunks have been returned yet is faster than it might look.
3636 */
3637
3638 ++idx;
3639 bin = bin_at (av, idx);
3640 block = idx2block (idx);
3641 map = av->binmap[block];
3642 bit = idx2bit (idx);
3643
3644 for (;; )
3645 {
3646 /* Skip rest of block if there are no more set bits in this block. */
3647 if (bit > map || bit == 0)
3648 {
3649 do
3650 {
3651 if (++block >= BINMAPSIZE) /* out of bins */
3652 goto use_top;
3653 }
3654 while ((map = av->binmap[block]) == 0);
3655
3656 bin = bin_at (av, (block << BINMAPSHIFT));
3657 bit = 1;
3658 }
3659
3660 /* Advance to bin with set bit. There must be one. */
3661 while ((bit & map) == 0)
3662 {
3663 bin = next_bin (bin);
3664 bit <<= 1;
3665 assert (bit != 0);
3666 }
3667
3668 /* Inspect the bin. It is likely to be non-empty */
3669 victim = last (bin);
3670
3671 /* If a false alarm (empty bin), clear the bit. */
3672 if (victim == bin)
3673 {
3674 av->binmap[block] = map &= ~bit; /* Write through */
3675 bin = next_bin (bin);
3676 bit <<= 1;
3677 }
3678
3679 else
3680 {
3681 size = chunksize (victim);
3682
3683 /* We know the first chunk in this bin is big enough to use. */
3684 assert ((unsigned long) (size) >= (unsigned long) (nb));
3685
3686 remainder_size = size - nb;
3687
3688 /* unlink */
3689 unlink (victim, bck, fwd);
3690
3691 /* Exhaust */
3692 if (remainder_size < MINSIZE)
3693 {
3694 set_inuse_bit_at_offset (victim, size);
3695 if (av != &main_arena)
3696 victim->size |= NON_MAIN_ARENA;
3697 }
3698
3699 /* Split */
3700 else
3701 {
3702 remainder = chunk_at_offset (victim, nb);
3703
3704 /* We cannot assume the unsorted list is empty and therefore
3705 have to perform a complete insert here. */
3706 bck = unsorted_chunks (av);
3707 fwd = bck->fd;
a1ffb40e 3708 if (__glibc_unlikely (fwd->bk != bck))
6c8dbf00
OB
3709 {
3710 errstr = "malloc(): corrupted unsorted chunks 2";
3711 goto errout;
3712 }
3713 remainder->bk = bck;
3714 remainder->fd = fwd;
3715 bck->fd = remainder;
3716 fwd->bk = remainder;
3717
3718 /* advertise as last remainder */
3719 if (in_smallbin_range (nb))
3720 av->last_remainder = remainder;
3721 if (!in_smallbin_range (remainder_size))
3722 {
3723 remainder->fd_nextsize = NULL;
3724 remainder->bk_nextsize = NULL;
3725 }
3726 set_head (victim, nb | PREV_INUSE |
3727 (av != &main_arena ? NON_MAIN_ARENA : 0));
3728 set_head (remainder, remainder_size | PREV_INUSE);
3729 set_foot (remainder, remainder_size);
3730 }
3731 check_malloced_chunk (av, victim, nb);
3732 void *p = chunk2mem (victim);
3733 alloc_perturb (p, bytes);
3734 return p;
3735 }
3736 }
3737
3738 use_top:
3739 /*
3740 If large enough, split off the chunk bordering the end of memory
3741 (held in av->top). Note that this is in accord with the best-fit
3742 search rule. In effect, av->top is treated as larger (and thus
3743 less well fitting) than any other available chunk since it can
3744 be extended to be as large as necessary (up to system
3745 limitations).
3746
3747 We require that av->top always exists (i.e., has size >=
3748 MINSIZE) after initialization, so if it would otherwise be
3749 exhausted by current request, it is replenished. (The main
3750 reason for ensuring it exists is that we may need MINSIZE space
3751 to put in fenceposts in sysmalloc.)
3752 */
3753
3754 victim = av->top;
3755 size = chunksize (victim);
3756
3757 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
3758 {
3759 remainder_size = size - nb;
3760 remainder = chunk_at_offset (victim, nb);
3761 av->top = remainder;
3762 set_head (victim, nb | PREV_INUSE |
3763 (av != &main_arena ? NON_MAIN_ARENA : 0));
3764 set_head (remainder, remainder_size | PREV_INUSE);
3765
3766 check_malloced_chunk (av, victim, nb);
3767 void *p = chunk2mem (victim);
3768 alloc_perturb (p, bytes);
3769 return p;
3770 }
3771
3772 /* When we are using atomic ops to free fast chunks we can get
3773 here for all block sizes. */
3774 else if (have_fastchunks (av))
3775 {
3776 malloc_consolidate (av);
3777 /* restore original bin index */
3778 if (in_smallbin_range (nb))
3779 idx = smallbin_index (nb);
3780 else
3781 idx = largebin_index (nb);
3782 }
f65fd747 3783
6c8dbf00
OB
3784 /*
3785 Otherwise, relay to handle system-dependent cases
3786 */
425ce2ed 3787 else
6c8dbf00
OB
3788 {
3789 void *p = sysmalloc (nb, av);
3790 if (p != NULL)
3791 alloc_perturb (p, bytes);
3792 return p;
3793 }
425ce2ed 3794 }
fa8d436c 3795}
f65fd747 3796
fa8d436c 3797/*
6c8dbf00
OB
3798 ------------------------------ free ------------------------------
3799 */
f65fd747 3800
78ac92ad 3801static void
6c8dbf00 3802_int_free (mstate av, mchunkptr p, int have_lock)
f65fd747 3803{
fa8d436c 3804 INTERNAL_SIZE_T size; /* its size */
6c8dbf00
OB
3805 mfastbinptr *fb; /* associated fastbin */
3806 mchunkptr nextchunk; /* next contiguous chunk */
fa8d436c 3807 INTERNAL_SIZE_T nextsize; /* its size */
6c8dbf00 3808 int nextinuse; /* true if nextchunk is used */
fa8d436c 3809 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
6c8dbf00
OB
3810 mchunkptr bck; /* misc temp for linking */
3811 mchunkptr fwd; /* misc temp for linking */
fa8d436c 3812
37fa1953 3813 const char *errstr = NULL;
425ce2ed 3814 int locked = 0;
f65fd747 3815
6c8dbf00 3816 size = chunksize (p);
f65fd747 3817
37fa1953
UD
3818 /* Little security check which won't hurt performance: the
3819 allocator never wrapps around at the end of the address space.
3820 Therefore we can exclude some size values which might appear
3821 here by accident or by "design" from some intruder. */
dc165f7b 3822 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
073f560e 3823 || __builtin_expect (misaligned_chunk (p), 0))
37fa1953
UD
3824 {
3825 errstr = "free(): invalid pointer";
3826 errout:
6c8dbf00
OB
3827 if (!have_lock && locked)
3828 (void) mutex_unlock (&av->mutex);
3829 malloc_printerr (check_action, errstr, chunk2mem (p));
37fa1953 3830 return;
fa8d436c 3831 }
347c92e9
L
3832 /* We know that each chunk is at least MINSIZE bytes in size or a
3833 multiple of MALLOC_ALIGNMENT. */
a1ffb40e 3834 if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size)))
bf589066
UD
3835 {
3836 errstr = "free(): invalid size";
3837 goto errout;
3838 }
f65fd747 3839
37fa1953 3840 check_inuse_chunk(av, p);
f65fd747 3841
37fa1953
UD
3842 /*
3843 If eligible, place chunk on a fastbin so it can be found
3844 and used quickly in malloc.
3845 */
6bf4302e 3846
9bf248c6 3847 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
6bf4302e 3848
37fa1953
UD
3849#if TRIM_FASTBINS
3850 /*
3851 If TRIM_FASTBINS set, don't place chunks
3852 bordering top into fastbins
3853 */
3854 && (chunk_at_offset(p, size) != av->top)
3855#endif
3856 ) {
fa8d436c 3857
893e6098
UD
3858 if (__builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0)
3859 || __builtin_expect (chunksize (chunk_at_offset (p, size))
3860 >= av->system_mem, 0))
3861 {
bec466d9
UD
3862 /* We might not have a lock at this point and concurrent modifications
3863 of system_mem might have let to a false positive. Redo the test
3864 after getting the lock. */
3865 if (have_lock
3866 || ({ assert (locked == 0);
3867 mutex_lock(&av->mutex);
3868 locked = 1;
3869 chunk_at_offset (p, size)->size <= 2 * SIZE_SZ
3870 || chunksize (chunk_at_offset (p, size)) >= av->system_mem;
3871 }))
bec466d9
UD
3872 {
3873 errstr = "free(): invalid next size (fast)";
3874 goto errout;
3875 }
bec466d9
UD
3876 if (! have_lock)
3877 {
3878 (void)mutex_unlock(&av->mutex);
3879 locked = 0;
3880 }
893e6098
UD
3881 }
3882
e8349efd 3883 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
425ce2ed 3884
37fa1953 3885 set_fastchunks(av);
90a3055e
UD
3886 unsigned int idx = fastbin_index(size);
3887 fb = &fastbin (av, idx);
425ce2ed 3888
362b47fe
MK
3889 /* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */
3890 mchunkptr old = *fb, old2;
5f24d53a 3891 unsigned int old_idx = ~0u;
425ce2ed
UD
3892 do
3893 {
362b47fe
MK
3894 /* Check that the top of the bin is not the record we are going to add
3895 (i.e., double free). */
425ce2ed
UD
3896 if (__builtin_expect (old == p, 0))
3897 {
3898 errstr = "double free or corruption (fasttop)";
3899 goto errout;
3900 }
362b47fe
MK
3901 /* Check that size of fastbin chunk at the top is the same as
3902 size of the chunk that we are adding. We can dereference OLD
3903 only if we have the lock, otherwise it might have already been
3904 deallocated. See use of OLD_IDX below for the actual check. */
3905 if (have_lock && old != NULL)
5f24d53a 3906 old_idx = fastbin_index(chunksize(old));
362b47fe 3907 p->fd = old2 = old;
425ce2ed 3908 }
362b47fe 3909 while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2)) != old2);
5f24d53a 3910
362b47fe 3911 if (have_lock && old != NULL && __builtin_expect (old_idx != idx, 0))
5f24d53a
UD
3912 {
3913 errstr = "invalid fastbin entry (free)";
3914 goto errout;
3915 }
37fa1953 3916 }
f65fd747 3917
37fa1953
UD
3918 /*
3919 Consolidate other non-mmapped chunks as they arrive.
3920 */
fa8d436c 3921
37fa1953 3922 else if (!chunk_is_mmapped(p)) {
425ce2ed 3923 if (! have_lock) {
425ce2ed 3924 (void)mutex_lock(&av->mutex);
425ce2ed
UD
3925 locked = 1;
3926 }
425ce2ed 3927
37fa1953 3928 nextchunk = chunk_at_offset(p, size);
fa8d436c 3929
37fa1953
UD
3930 /* Lightweight tests: check whether the block is already the
3931 top block. */
a1ffb40e 3932 if (__glibc_unlikely (p == av->top))
37fa1953
UD
3933 {
3934 errstr = "double free or corruption (top)";
3935 goto errout;
3936 }
3937 /* Or whether the next chunk is beyond the boundaries of the arena. */
3938 if (__builtin_expect (contiguous (av)
3939 && (char *) nextchunk
3940 >= ((char *) av->top + chunksize(av->top)), 0))
3941 {
3942 errstr = "double free or corruption (out)";
3943 goto errout;
3944 }
3945 /* Or whether the block is actually not marked used. */
a1ffb40e 3946 if (__glibc_unlikely (!prev_inuse(nextchunk)))
37fa1953
UD
3947 {
3948 errstr = "double free or corruption (!prev)";
3949 goto errout;
3950 }
fa8d436c 3951
37fa1953 3952 nextsize = chunksize(nextchunk);
893e6098
UD
3953 if (__builtin_expect (nextchunk->size <= 2 * SIZE_SZ, 0)
3954 || __builtin_expect (nextsize >= av->system_mem, 0))
3955 {
76761b63 3956 errstr = "free(): invalid next size (normal)";
893e6098
UD
3957 goto errout;
3958 }
fa8d436c 3959
e8349efd 3960 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
854278df 3961
37fa1953
UD
3962 /* consolidate backward */
3963 if (!prev_inuse(p)) {
3964 prevsize = p->prev_size;
3965 size += prevsize;
3966 p = chunk_at_offset(p, -((long) prevsize));
3967 unlink(p, bck, fwd);
3968 }
a9177ff5 3969
37fa1953
UD
3970 if (nextchunk != av->top) {
3971 /* get and clear inuse bit */
3972 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
3973
3974 /* consolidate forward */
3975 if (!nextinuse) {
3976 unlink(nextchunk, bck, fwd);
3977 size += nextsize;
3978 } else
3979 clear_inuse_bit_at_offset(nextchunk, 0);
10dc2a90 3980
fa8d436c 3981 /*
37fa1953
UD
3982 Place the chunk in unsorted chunk list. Chunks are
3983 not placed into regular bins until after they have
3984 been given one chance to be used in malloc.
fa8d436c 3985 */
f65fd747 3986
37fa1953
UD
3987 bck = unsorted_chunks(av);
3988 fwd = bck->fd;
a1ffb40e 3989 if (__glibc_unlikely (fwd->bk != bck))
f6887a0d
UD
3990 {
3991 errstr = "free(): corrupted unsorted chunks";
3992 goto errout;
3993 }
37fa1953 3994 p->fd = fwd;
7ecfbd38
UD
3995 p->bk = bck;
3996 if (!in_smallbin_range(size))
3997 {
3998 p->fd_nextsize = NULL;
3999 p->bk_nextsize = NULL;
4000 }
37fa1953
UD
4001 bck->fd = p;
4002 fwd->bk = p;
8a4b65b4 4003
37fa1953
UD
4004 set_head(p, size | PREV_INUSE);
4005 set_foot(p, size);
4006
4007 check_free_chunk(av, p);
4008 }
4009
4010 /*
4011 If the chunk borders the current high end of memory,
4012 consolidate into top
4013 */
4014
4015 else {
4016 size += nextsize;
4017 set_head(p, size | PREV_INUSE);
4018 av->top = p;
4019 check_chunk(av, p);
4020 }
4021
4022 /*
4023 If freeing a large space, consolidate possibly-surrounding
4024 chunks. Then, if the total unused topmost memory exceeds trim
4025 threshold, ask malloc_trim to reduce top.
4026
4027 Unless max_fast is 0, we don't know if there are fastbins
4028 bordering top, so we cannot tell for sure whether threshold
4029 has been reached unless fastbins are consolidated. But we
4030 don't want to consolidate on each free. As a compromise,
4031 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4032 is reached.
4033 */
fa8d436c 4034
37fa1953
UD
4035 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
4036 if (have_fastchunks(av))
4037 malloc_consolidate(av);
fa8d436c 4038
37fa1953 4039 if (av == &main_arena) {
a9177ff5 4040#ifndef MORECORE_CANNOT_TRIM
37fa1953
UD
4041 if ((unsigned long)(chunksize(av->top)) >=
4042 (unsigned long)(mp_.trim_threshold))
3b49edc0 4043 systrim(mp_.top_pad, av);
fa8d436c 4044#endif
37fa1953
UD
4045 } else {
4046 /* Always try heap_trim(), even if the top chunk is not
4047 large, because the corresponding heap might go away. */
4048 heap_info *heap = heap_for_ptr(top(av));
fa8d436c 4049
37fa1953
UD
4050 assert(heap->ar_ptr == av);
4051 heap_trim(heap, mp_.top_pad);
fa8d436c 4052 }
fa8d436c 4053 }
10dc2a90 4054
425ce2ed
UD
4055 if (! have_lock) {
4056 assert (locked);
4057 (void)mutex_unlock(&av->mutex);
4058 }
37fa1953
UD
4059 }
4060 /*
22a89187 4061 If the chunk was allocated via mmap, release via munmap().
37fa1953
UD
4062 */
4063
4064 else {
c120d94d 4065 munmap_chunk (p);
fa8d436c 4066 }
10dc2a90
UD
4067}
4068
fa8d436c
UD
4069/*
4070 ------------------------- malloc_consolidate -------------------------
4071
4072 malloc_consolidate is a specialized version of free() that tears
4073 down chunks held in fastbins. Free itself cannot be used for this
4074 purpose since, among other things, it might place chunks back onto
4075 fastbins. So, instead, we need to use a minor variant of the same
4076 code.
a9177ff5 4077
fa8d436c
UD
4078 Also, because this routine needs to be called the first time through
4079 malloc anyway, it turns out to be the perfect place to trigger
4080 initialization code.
4081*/
4082
fa8d436c 4083static void malloc_consolidate(mstate av)
10dc2a90 4084{
fa8d436c
UD
4085 mfastbinptr* fb; /* current fastbin being consolidated */
4086 mfastbinptr* maxfb; /* last fastbin (for loop control) */
4087 mchunkptr p; /* current chunk being consolidated */
4088 mchunkptr nextp; /* next chunk to consolidate */
4089 mchunkptr unsorted_bin; /* bin header */
4090 mchunkptr first_unsorted; /* chunk to link to */
4091
4092 /* These have same use as in free() */
4093 mchunkptr nextchunk;
4094 INTERNAL_SIZE_T size;
4095 INTERNAL_SIZE_T nextsize;
4096 INTERNAL_SIZE_T prevsize;
4097 int nextinuse;
4098 mchunkptr bck;
4099 mchunkptr fwd;
10dc2a90 4100
fa8d436c
UD
4101 /*
4102 If max_fast is 0, we know that av hasn't
4103 yet been initialized, in which case do so below
4104 */
10dc2a90 4105
9bf248c6 4106 if (get_max_fast () != 0) {
fa8d436c 4107 clear_fastchunks(av);
10dc2a90 4108
fa8d436c 4109 unsorted_bin = unsorted_chunks(av);
10dc2a90 4110
fa8d436c
UD
4111 /*
4112 Remove each chunk from fast bin and consolidate it, placing it
4113 then in unsorted bin. Among other reasons for doing this,
4114 placing in unsorted bin avoids needing to calculate actual bins
4115 until malloc is sure that chunks aren't immediately going to be
4116 reused anyway.
4117 */
a9177ff5 4118
425ce2ed 4119 maxfb = &fastbin (av, NFASTBINS - 1);
425ce2ed 4120 fb = &fastbin (av, 0);
fa8d436c 4121 do {
425ce2ed 4122 p = atomic_exchange_acq (fb, 0);
425ce2ed 4123 if (p != 0) {
72f90263
UD
4124 do {
4125 check_inuse_chunk(av, p);
4126 nextp = p->fd;
4127
4128 /* Slightly streamlined version of consolidation code in free() */
4129 size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
4130 nextchunk = chunk_at_offset(p, size);
4131 nextsize = chunksize(nextchunk);
4132
4133 if (!prev_inuse(p)) {
4134 prevsize = p->prev_size;
4135 size += prevsize;
4136 p = chunk_at_offset(p, -((long) prevsize));
4137 unlink(p, bck, fwd);
4138 }
4139
4140 if (nextchunk != av->top) {
4141 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4142
4143 if (!nextinuse) {
4144 size += nextsize;
4145 unlink(nextchunk, bck, fwd);
4146 } else
fa8d436c 4147 clear_inuse_bit_at_offset(nextchunk, 0);
a9177ff5 4148
72f90263
UD
4149 first_unsorted = unsorted_bin->fd;
4150 unsorted_bin->fd = p;
4151 first_unsorted->bk = p;
a9177ff5 4152
72f90263 4153 if (!in_smallbin_range (size)) {
7ecfbd38
UD
4154 p->fd_nextsize = NULL;
4155 p->bk_nextsize = NULL;
4156 }
4157
72f90263
UD
4158 set_head(p, size | PREV_INUSE);
4159 p->bk = unsorted_bin;
4160 p->fd = first_unsorted;
4161 set_foot(p, size);
4162 }
a9177ff5 4163
72f90263
UD
4164 else {
4165 size += nextsize;
4166 set_head(p, size | PREV_INUSE);
4167 av->top = p;
4168 }
a9177ff5 4169
72f90263 4170 } while ( (p = nextp) != 0);
a9177ff5 4171
fa8d436c
UD
4172 }
4173 } while (fb++ != maxfb);
4174 }
4175 else {
4176 malloc_init_state(av);
4177 check_malloc_state(av);
4178 }
4179}
10dc2a90 4180
fa8d436c
UD
4181/*
4182 ------------------------------ realloc ------------------------------
4183*/
f65fd747 4184
22a89187 4185void*
4c8b8cc3
UD
4186_int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
4187 INTERNAL_SIZE_T nb)
fa8d436c 4188{
fa8d436c
UD
4189 mchunkptr newp; /* chunk to return */
4190 INTERNAL_SIZE_T newsize; /* its size */
22a89187 4191 void* newmem; /* corresponding user mem */
f65fd747 4192
fa8d436c 4193 mchunkptr next; /* next contiguous chunk after oldp */
f65fd747 4194
fa8d436c
UD
4195 mchunkptr remainder; /* extra space at end of newp */
4196 unsigned long remainder_size; /* its size */
f65fd747 4197
fa8d436c
UD
4198 mchunkptr bck; /* misc temp for linking */
4199 mchunkptr fwd; /* misc temp for linking */
2ed5fd9a 4200
fa8d436c
UD
4201 unsigned long copysize; /* bytes to copy */
4202 unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
a9177ff5 4203 INTERNAL_SIZE_T* s; /* copy source */
fa8d436c 4204 INTERNAL_SIZE_T* d; /* copy destination */
f65fd747 4205
76761b63 4206 const char *errstr = NULL;
f65fd747 4207
6dd6a580 4208 /* oldmem size */
76761b63
UD
4209 if (__builtin_expect (oldp->size <= 2 * SIZE_SZ, 0)
4210 || __builtin_expect (oldsize >= av->system_mem, 0))
4211 {
4b04154d 4212 errstr = "realloc(): invalid old size";
4c8b8cc3 4213 errout:
6c8dbf00 4214 malloc_printerr (check_action, errstr, chunk2mem (oldp));
4c8b8cc3 4215 return NULL;
76761b63
UD
4216 }
4217
6c8dbf00 4218 check_inuse_chunk (av, oldp);
f65fd747 4219
4c8b8cc3 4220 /* All callers already filter out mmap'ed chunks. */
6c8dbf00 4221 assert (!chunk_is_mmapped (oldp));
f65fd747 4222
6c8dbf00
OB
4223 next = chunk_at_offset (oldp, oldsize);
4224 INTERNAL_SIZE_T nextsize = chunksize (next);
22a89187
UD
4225 if (__builtin_expect (next->size <= 2 * SIZE_SZ, 0)
4226 || __builtin_expect (nextsize >= av->system_mem, 0))
4227 {
4228 errstr = "realloc(): invalid next size";
4229 goto errout;
4230 }
4231
6c8dbf00
OB
4232 if ((unsigned long) (oldsize) >= (unsigned long) (nb))
4233 {
4234 /* already big enough; split below */
fa8d436c 4235 newp = oldp;
6c8dbf00 4236 newsize = oldsize;
7799b7b3 4237 }
f65fd747 4238
6c8dbf00
OB
4239 else
4240 {
4241 /* Try to expand forward into top */
4242 if (next == av->top &&
4243 (unsigned long) (newsize = oldsize + nextsize) >=
4244 (unsigned long) (nb + MINSIZE))
4245 {
4246 set_head_size (oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4247 av->top = chunk_at_offset (oldp, nb);
4248 set_head (av->top, (newsize - nb) | PREV_INUSE);
4249 check_inuse_chunk (av, oldp);
4250 return chunk2mem (oldp);
4251 }
4252
4253 /* Try to expand forward into next chunk; split off remainder below */
4254 else if (next != av->top &&
4255 !inuse (next) &&
4256 (unsigned long) (newsize = oldsize + nextsize) >=
4257 (unsigned long) (nb))
4258 {
4259 newp = oldp;
4260 unlink (next, bck, fwd);
4261 }
4262
4263 /* allocate, copy, free */
4264 else
4265 {
4266 newmem = _int_malloc (av, nb - MALLOC_ALIGN_MASK);
4267 if (newmem == 0)
4268 return 0; /* propagate failure */
4269
4270 newp = mem2chunk (newmem);
4271 newsize = chunksize (newp);
4272
4273 /*
4274 Avoid copy if newp is next chunk after oldp.
4275 */
4276 if (newp == next)
4277 {
4278 newsize += oldsize;
4279 newp = oldp;
4280 }
4281 else
4282 {
4283 /*
4284 Unroll copy of <= 36 bytes (72 if 8byte sizes)
4285 We know that contents have an odd number of
4286 INTERNAL_SIZE_T-sized words; minimally 3.
4287 */
4288
4289 copysize = oldsize - SIZE_SZ;
4290 s = (INTERNAL_SIZE_T *) (chunk2mem (oldp));
4291 d = (INTERNAL_SIZE_T *) (newmem);
4292 ncopies = copysize / sizeof (INTERNAL_SIZE_T);
4293 assert (ncopies >= 3);
4294
4295 if (ncopies > 9)
4296 memcpy (d, s, copysize);
4297
4298 else
4299 {
4300 *(d + 0) = *(s + 0);
4301 *(d + 1) = *(s + 1);
4302 *(d + 2) = *(s + 2);
4303 if (ncopies > 4)
4304 {
4305 *(d + 3) = *(s + 3);
4306 *(d + 4) = *(s + 4);
4307 if (ncopies > 6)
4308 {
4309 *(d + 5) = *(s + 5);
4310 *(d + 6) = *(s + 6);
4311 if (ncopies > 8)
4312 {
4313 *(d + 7) = *(s + 7);
4314 *(d + 8) = *(s + 8);
4315 }
4316 }
4317 }
4318 }
4319
4320 _int_free (av, oldp, 1);
4321 check_inuse_chunk (av, newp);
4322 return chunk2mem (newp);
4323 }
4324 }
fa8d436c 4325 }
f65fd747 4326
22a89187 4327 /* If possible, free extra space in old or extended chunk */
f65fd747 4328
6c8dbf00 4329 assert ((unsigned long) (newsize) >= (unsigned long) (nb));
f65fd747 4330
22a89187 4331 remainder_size = newsize - nb;
10dc2a90 4332
6c8dbf00
OB
4333 if (remainder_size < MINSIZE) /* not enough extra to split off */
4334 {
4335 set_head_size (newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4336 set_inuse_bit_at_offset (newp, newsize);
4337 }
4338 else /* split remainder */
4339 {
4340 remainder = chunk_at_offset (newp, nb);
4341 set_head_size (newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4342 set_head (remainder, remainder_size | PREV_INUSE |
4343 (av != &main_arena ? NON_MAIN_ARENA : 0));
4344 /* Mark remainder as inuse so free() won't complain */
4345 set_inuse_bit_at_offset (remainder, remainder_size);
4346 _int_free (av, remainder, 1);
4347 }
22a89187 4348
6c8dbf00
OB
4349 check_inuse_chunk (av, newp);
4350 return chunk2mem (newp);
fa8d436c
UD
4351}
4352
4353/*
6c8dbf00
OB
4354 ------------------------------ memalign ------------------------------
4355 */
fa8d436c 4356
6c8dbf00
OB
4357static void *
4358_int_memalign (mstate av, size_t alignment, size_t bytes)
fa8d436c
UD
4359{
4360 INTERNAL_SIZE_T nb; /* padded request size */
6c8dbf00
OB
4361 char *m; /* memory returned by malloc call */
4362 mchunkptr p; /* corresponding chunk */
4363 char *brk; /* alignment point within p */
4364 mchunkptr newp; /* chunk to return */
fa8d436c
UD
4365 INTERNAL_SIZE_T newsize; /* its size */
4366 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
6c8dbf00
OB
4367 mchunkptr remainder; /* spare room at end to split off */
4368 unsigned long remainder_size; /* its size */
fa8d436c 4369 INTERNAL_SIZE_T size;
f65fd747 4370
f65fd747 4371
f65fd747 4372
6c8dbf00 4373 checked_request2size (bytes, nb);
fa8d436c
UD
4374
4375 /*
6c8dbf00
OB
4376 Strategy: find a spot within that chunk that meets the alignment
4377 request, and then possibly free the leading and trailing space.
4378 */
fa8d436c
UD
4379
4380
4381 /* Call malloc with worst case padding to hit alignment. */
4382
6c8dbf00
OB
4383 m = (char *) (_int_malloc (av, nb + alignment + MINSIZE));
4384
4385 if (m == 0)
4386 return 0; /* propagate failure */
4387
4388 p = mem2chunk (m);
4389
4390 if ((((unsigned long) (m)) % alignment) != 0) /* misaligned */
4391
4392 { /*
4393 Find an aligned spot inside chunk. Since we need to give back
4394 leading space in a chunk of at least MINSIZE, if the first
4395 calculation places us at a spot with less than MINSIZE leader,
4396 we can move to the next aligned spot -- we've allocated enough
4397 total room so that this is always possible.
4398 */
4399 brk = (char *) mem2chunk (((unsigned long) (m + alignment - 1)) &
4400 - ((signed long) alignment));
4401 if ((unsigned long) (brk - (char *) (p)) < MINSIZE)
4402 brk += alignment;
4403
4404 newp = (mchunkptr) brk;
4405 leadsize = brk - (char *) (p);
4406 newsize = chunksize (p) - leadsize;
4407
4408 /* For mmapped chunks, just adjust offset */
4409 if (chunk_is_mmapped (p))
4410 {
4411 newp->prev_size = p->prev_size + leadsize;
4412 set_head (newp, newsize | IS_MMAPPED);
4413 return chunk2mem (newp);
4414 }
4415
4416 /* Otherwise, give back leader, use the rest */
4417 set_head (newp, newsize | PREV_INUSE |
4418 (av != &main_arena ? NON_MAIN_ARENA : 0));
4419 set_inuse_bit_at_offset (newp, newsize);
4420 set_head_size (p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4421 _int_free (av, p, 1);
4422 p = newp;
4423
4424 assert (newsize >= nb &&
4425 (((unsigned long) (chunk2mem (p))) % alignment) == 0);
f65fd747 4426 }
f65fd747 4427
f65fd747 4428 /* Also give back spare room at the end */
6c8dbf00
OB
4429 if (!chunk_is_mmapped (p))
4430 {
4431 size = chunksize (p);
4432 if ((unsigned long) (size) > (unsigned long) (nb + MINSIZE))
4433 {
4434 remainder_size = size - nb;
4435 remainder = chunk_at_offset (p, nb);
4436 set_head (remainder, remainder_size | PREV_INUSE |
4437 (av != &main_arena ? NON_MAIN_ARENA : 0));
4438 set_head_size (p, nb);
4439 _int_free (av, remainder, 1);
4440 }
fa8d436c 4441 }
f65fd747 4442
6c8dbf00
OB
4443 check_inuse_chunk (av, p);
4444 return chunk2mem (p);
f65fd747
UD
4445}
4446
f65fd747 4447
fa8d436c 4448/*
6c8dbf00
OB
4449 ------------------------------ malloc_trim ------------------------------
4450 */
8a4b65b4 4451
6c8dbf00
OB
4452static int
4453mtrim (mstate av, size_t pad)
f65fd747 4454{
fa8d436c 4455 /* Ensure initialization/consolidation */
68631c8e
UD
4456 malloc_consolidate (av);
4457
6c8dbf00 4458 const size_t ps = GLRO (dl_pagesize);
68631c8e
UD
4459 int psindex = bin_index (ps);
4460 const size_t psm1 = ps - 1;
4461
4462 int result = 0;
4463 for (int i = 1; i < NBINS; ++i)
4464 if (i == 1 || i >= psindex)
4465 {
6c8dbf00 4466 mbinptr bin = bin_at (av, i);
68631c8e 4467
6c8dbf00
OB
4468 for (mchunkptr p = last (bin); p != bin; p = p->bk)
4469 {
4470 INTERNAL_SIZE_T size = chunksize (p);
68631c8e 4471
6c8dbf00
OB
4472 if (size > psm1 + sizeof (struct malloc_chunk))
4473 {
4474 /* See whether the chunk contains at least one unused page. */
4475 char *paligned_mem = (char *) (((uintptr_t) p
4476 + sizeof (struct malloc_chunk)
4477 + psm1) & ~psm1);
68631c8e 4478
6c8dbf00
OB
4479 assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem);
4480 assert ((char *) p + size > paligned_mem);
68631c8e 4481
6c8dbf00
OB
4482 /* This is the size we could potentially free. */
4483 size -= paligned_mem - (char *) p;
68631c8e 4484
6c8dbf00
OB
4485 if (size > psm1)
4486 {
439bda32 4487#if MALLOC_DEBUG
6c8dbf00
OB
4488 /* When debugging we simulate destroying the memory
4489 content. */
4490 memset (paligned_mem, 0x89, size & ~psm1);
68631c8e 4491#endif
6c8dbf00 4492 __madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
68631c8e 4493
6c8dbf00
OB
4494 result = 1;
4495 }
4496 }
4497 }
68631c8e 4498 }
8a4b65b4 4499
a9177ff5 4500#ifndef MORECORE_CANNOT_TRIM
3b49edc0 4501 return result | (av == &main_arena ? systrim (pad, av) : 0);
6c8dbf00 4502
8a4b65b4 4503#else
68631c8e 4504 return result;
f65fd747 4505#endif
f65fd747
UD
4506}
4507
f65fd747 4508
3b49edc0 4509int
6c8dbf00 4510__malloc_trim (size_t s)
3b49edc0
UD
4511{
4512 int result = 0;
4513
6c8dbf00 4514 if (__malloc_initialized < 0)
3b49edc0
UD
4515 ptmalloc_init ();
4516
4517 mstate ar_ptr = &main_arena;
4518 do
4519 {
4520 (void) mutex_lock (&ar_ptr->mutex);
4521 result |= mtrim (ar_ptr, s);
4522 (void) mutex_unlock (&ar_ptr->mutex);
4523
4524 ar_ptr = ar_ptr->next;
4525 }
4526 while (ar_ptr != &main_arena);
4527
4528 return result;
4529}
4530
4531
f65fd747 4532/*
6c8dbf00
OB
4533 ------------------------- malloc_usable_size -------------------------
4534 */
f65fd747 4535
3b49edc0 4536static size_t
6c8dbf00 4537musable (void *mem)
f65fd747
UD
4538{
4539 mchunkptr p;
6c8dbf00
OB
4540 if (mem != 0)
4541 {
4542 p = mem2chunk (mem);
4543
4544 if (__builtin_expect (using_malloc_checking == 1, 0))
4545 return malloc_check_get_size (p);
4546
4547 if (chunk_is_mmapped (p))
4548 return chunksize (p) - 2 * SIZE_SZ;
4549 else if (inuse (p))
4550 return chunksize (p) - SIZE_SZ;
4551 }
fa8d436c 4552 return 0;
f65fd747
UD
4553}
4554
3b49edc0
UD
4555
4556size_t
6c8dbf00 4557__malloc_usable_size (void *m)
3b49edc0
UD
4558{
4559 size_t result;
4560
6c8dbf00 4561 result = musable (m);
3b49edc0
UD
4562 return result;
4563}
4564
fa8d436c 4565/*
6c8dbf00
OB
4566 ------------------------------ mallinfo ------------------------------
4567 Accumulate malloc statistics for arena AV into M.
4568 */
f65fd747 4569
bedee953 4570static void
6c8dbf00 4571int_mallinfo (mstate av, struct mallinfo *m)
f65fd747 4572{
6dd67bd5 4573 size_t i;
f65fd747
UD
4574 mbinptr b;
4575 mchunkptr p;
f65fd747 4576 INTERNAL_SIZE_T avail;
fa8d436c
UD
4577 INTERNAL_SIZE_T fastavail;
4578 int nblocks;
4579 int nfastblocks;
f65fd747 4580
fa8d436c 4581 /* Ensure initialization */
6c8dbf00
OB
4582 if (av->top == 0)
4583 malloc_consolidate (av);
8a4b65b4 4584
6c8dbf00 4585 check_malloc_state (av);
8a4b65b4 4586
fa8d436c 4587 /* Account for top */
6c8dbf00 4588 avail = chunksize (av->top);
fa8d436c 4589 nblocks = 1; /* top always exists */
f65fd747 4590
fa8d436c
UD
4591 /* traverse fastbins */
4592 nfastblocks = 0;
4593 fastavail = 0;
4594
6c8dbf00
OB
4595 for (i = 0; i < NFASTBINS; ++i)
4596 {
4597 for (p = fastbin (av, i); p != 0; p = p->fd)
4598 {
4599 ++nfastblocks;
4600 fastavail += chunksize (p);
4601 }
fa8d436c 4602 }
fa8d436c
UD
4603
4604 avail += fastavail;
f65fd747 4605
fa8d436c 4606 /* traverse regular bins */
6c8dbf00
OB
4607 for (i = 1; i < NBINS; ++i)
4608 {
4609 b = bin_at (av, i);
4610 for (p = last (b); p != b; p = p->bk)
4611 {
4612 ++nblocks;
4613 avail += chunksize (p);
4614 }
fa8d436c 4615 }
f65fd747 4616
bedee953
PP
4617 m->smblks += nfastblocks;
4618 m->ordblks += nblocks;
4619 m->fordblks += avail;
4620 m->uordblks += av->system_mem - avail;
4621 m->arena += av->system_mem;
4622 m->fsmblks += fastavail;
4623 if (av == &main_arena)
4624 {
4625 m->hblks = mp_.n_mmaps;
4626 m->hblkhd = mp_.mmapped_mem;
4627 m->usmblks = mp_.max_total_mem;
6c8dbf00 4628 m->keepcost = chunksize (av->top);
bedee953 4629 }
fa8d436c 4630}
f65fd747 4631
3b49edc0 4632
6c8dbf00
OB
4633struct mallinfo
4634__libc_mallinfo ()
3b49edc0
UD
4635{
4636 struct mallinfo m;
bedee953 4637 mstate ar_ptr;
3b49edc0 4638
6c8dbf00 4639 if (__malloc_initialized < 0)
3b49edc0 4640 ptmalloc_init ();
bedee953 4641
6c8dbf00 4642 memset (&m, 0, sizeof (m));
bedee953 4643 ar_ptr = &main_arena;
6c8dbf00
OB
4644 do
4645 {
4646 (void) mutex_lock (&ar_ptr->mutex);
4647 int_mallinfo (ar_ptr, &m);
4648 (void) mutex_unlock (&ar_ptr->mutex);
bedee953 4649
6c8dbf00
OB
4650 ar_ptr = ar_ptr->next;
4651 }
4652 while (ar_ptr != &main_arena);
bedee953 4653
3b49edc0
UD
4654 return m;
4655}
4656
fa8d436c 4657/*
6c8dbf00
OB
4658 ------------------------------ malloc_stats ------------------------------
4659 */
f65fd747 4660
3b49edc0 4661void
60d2f8f3 4662__malloc_stats (void)
f65fd747 4663{
8a4b65b4 4664 int i;
fa8d436c 4665 mstate ar_ptr;
fa8d436c 4666 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
8a4b65b4 4667
6c8dbf00 4668 if (__malloc_initialized < 0)
a234e27d 4669 ptmalloc_init ();
8dab36a1
UD
4670 _IO_flockfile (stderr);
4671 int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
4672 ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
6c8dbf00
OB
4673 for (i = 0, ar_ptr = &main_arena;; i++)
4674 {
4675 struct mallinfo mi;
4676
4677 memset (&mi, 0, sizeof (mi));
4678 (void) mutex_lock (&ar_ptr->mutex);
4679 int_mallinfo (ar_ptr, &mi);
4680 fprintf (stderr, "Arena %d:\n", i);
4681 fprintf (stderr, "system bytes = %10u\n", (unsigned int) mi.arena);
4682 fprintf (stderr, "in use bytes = %10u\n", (unsigned int) mi.uordblks);
fa8d436c 4683#if MALLOC_DEBUG > 1
6c8dbf00
OB
4684 if (i > 0)
4685 dump_heap (heap_for_ptr (top (ar_ptr)));
fa8d436c 4686#endif
6c8dbf00
OB
4687 system_b += mi.arena;
4688 in_use_b += mi.uordblks;
6c8dbf00
OB
4689 (void) mutex_unlock (&ar_ptr->mutex);
4690 ar_ptr = ar_ptr->next;
4691 if (ar_ptr == &main_arena)
4692 break;
4693 }
4694 fprintf (stderr, "Total (incl. mmap):\n");
4695 fprintf (stderr, "system bytes = %10u\n", system_b);
4696 fprintf (stderr, "in use bytes = %10u\n", in_use_b);
4697 fprintf (stderr, "max mmap regions = %10u\n", (unsigned int) mp_.max_n_mmaps);
4698 fprintf (stderr, "max mmap bytes = %10lu\n",
4699 (unsigned long) mp_.max_mmapped_mem);
8dab36a1
UD
4700 ((_IO_FILE *) stderr)->_flags2 |= old_flags2;
4701 _IO_funlockfile (stderr);
f65fd747
UD
4702}
4703
f65fd747
UD
4704
4705/*
6c8dbf00
OB
4706 ------------------------------ mallopt ------------------------------
4707 */
f65fd747 4708
6c8dbf00
OB
4709int
4710__libc_mallopt (int param_number, int value)
f65fd747 4711{
fa8d436c
UD
4712 mstate av = &main_arena;
4713 int res = 1;
f65fd747 4714
6c8dbf00 4715 if (__malloc_initialized < 0)
0cb71e02 4716 ptmalloc_init ();
6c8dbf00 4717 (void) mutex_lock (&av->mutex);
fa8d436c 4718 /* Ensure initialization/consolidation */
6c8dbf00 4719 malloc_consolidate (av);
2f6d1f1b 4720
3ea5be54
AO
4721 LIBC_PROBE (memory_mallopt, 2, param_number, value);
4722
6c8dbf00
OB
4723 switch (param_number)
4724 {
4725 case M_MXFAST:
4726 if (value >= 0 && value <= MAX_FAST_SIZE)
4727 {
4728 LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ());
4729 set_max_fast (value);
4730 }
4731 else
4732 res = 0;
4733 break;
4734
4735 case M_TRIM_THRESHOLD:
4736 LIBC_PROBE (memory_mallopt_trim_threshold, 3, value,
4737 mp_.trim_threshold, mp_.no_dyn_threshold);
4738 mp_.trim_threshold = value;
4739 mp_.no_dyn_threshold = 1;
4740 break;
4741
4742 case M_TOP_PAD:
4743 LIBC_PROBE (memory_mallopt_top_pad, 3, value,
4744 mp_.top_pad, mp_.no_dyn_threshold);
4745 mp_.top_pad = value;
4746 mp_.no_dyn_threshold = 1;
4747 break;
4748
4749 case M_MMAP_THRESHOLD:
4750 /* Forbid setting the threshold too high. */
4751 if ((unsigned long) value > HEAP_MAX_SIZE / 2)
4752 res = 0;
4753 else
4754 {
4755 LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value,
4756 mp_.mmap_threshold, mp_.no_dyn_threshold);
4757 mp_.mmap_threshold = value;
4758 mp_.no_dyn_threshold = 1;
4759 }
4760 break;
4761
4762 case M_MMAP_MAX:
4763 LIBC_PROBE (memory_mallopt_mmap_max, 3, value,
4764 mp_.n_mmaps_max, mp_.no_dyn_threshold);
4765 mp_.n_mmaps_max = value;
4766 mp_.no_dyn_threshold = 1;
4767 break;
4768
4769 case M_CHECK_ACTION:
4770 LIBC_PROBE (memory_mallopt_check_action, 2, value, check_action);
4771 check_action = value;
4772 break;
4773
4774 case M_PERTURB:
4775 LIBC_PROBE (memory_mallopt_perturb, 2, value, perturb_byte);
4776 perturb_byte = value;
4777 break;
4778
4779 case M_ARENA_TEST:
4780 if (value > 0)
4781 {
4782 LIBC_PROBE (memory_mallopt_arena_test, 2, value, mp_.arena_test);
4783 mp_.arena_test = value;
4784 }
4785 break;
4786
4787 case M_ARENA_MAX:
4788 if (value > 0)
4789 {
4790 LIBC_PROBE (memory_mallopt_arena_max, 2, value, mp_.arena_max);
4791 mp_.arena_max = value;
4792 }
4793 break;
4794 }
4795 (void) mutex_unlock (&av->mutex);
fa8d436c 4796 return res;
b22fc5f5 4797}
3b49edc0 4798libc_hidden_def (__libc_mallopt)
b22fc5f5 4799
10dc2a90 4800
a9177ff5 4801/*
6c8dbf00
OB
4802 -------------------- Alternative MORECORE functions --------------------
4803 */
10dc2a90 4804
b22fc5f5 4805
fa8d436c 4806/*
6c8dbf00 4807 General Requirements for MORECORE.
b22fc5f5 4808
6c8dbf00 4809 The MORECORE function must have the following properties:
b22fc5f5 4810
6c8dbf00 4811 If MORECORE_CONTIGUOUS is false:
10dc2a90 4812
6c8dbf00 4813 * MORECORE must allocate in multiples of pagesize. It will
fa8d436c 4814 only be called with arguments that are multiples of pagesize.
10dc2a90 4815
6c8dbf00 4816 * MORECORE(0) must return an address that is at least
fa8d436c 4817 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
10dc2a90 4818
6c8dbf00 4819 else (i.e. If MORECORE_CONTIGUOUS is true):
10dc2a90 4820
6c8dbf00 4821 * Consecutive calls to MORECORE with positive arguments
fa8d436c
UD
4822 return increasing addresses, indicating that space has been
4823 contiguously extended.
10dc2a90 4824
6c8dbf00 4825 * MORECORE need not allocate in multiples of pagesize.
fa8d436c 4826 Calls to MORECORE need not have args of multiples of pagesize.
10dc2a90 4827
6c8dbf00 4828 * MORECORE need not page-align.
10dc2a90 4829
6c8dbf00 4830 In either case:
10dc2a90 4831
6c8dbf00 4832 * MORECORE may allocate more memory than requested. (Or even less,
fa8d436c 4833 but this will generally result in a malloc failure.)
10dc2a90 4834
6c8dbf00 4835 * MORECORE must not allocate memory when given argument zero, but
fa8d436c
UD
4836 instead return one past the end address of memory from previous
4837 nonzero call. This malloc does NOT call MORECORE(0)
4838 until at least one call with positive arguments is made, so
4839 the initial value returned is not important.
10dc2a90 4840
6c8dbf00 4841 * Even though consecutive calls to MORECORE need not return contiguous
fa8d436c
UD
4842 addresses, it must be OK for malloc'ed chunks to span multiple
4843 regions in those cases where they do happen to be contiguous.
10dc2a90 4844
6c8dbf00 4845 * MORECORE need not handle negative arguments -- it may instead
fa8d436c
UD
4846 just return MORECORE_FAILURE when given negative arguments.
4847 Negative arguments are always multiples of pagesize. MORECORE
4848 must not misinterpret negative args as large positive unsigned
4849 args. You can suppress all such calls from even occurring by defining
4850 MORECORE_CANNOT_TRIM,
10dc2a90 4851
6c8dbf00
OB
4852 There is some variation across systems about the type of the
4853 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
4854 actually be size_t, because sbrk supports negative args, so it is
4855 normally the signed type of the same width as size_t (sometimes
4856 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
4857 matter though. Internally, we use "long" as arguments, which should
4858 work across all reasonable possibilities.
4859
4860 Additionally, if MORECORE ever returns failure for a positive
4861 request, then mmap is used as a noncontiguous system allocator. This
4862 is a useful backup strategy for systems with holes in address spaces
4863 -- in this case sbrk cannot contiguously expand the heap, but mmap
4864 may be able to map noncontiguous space.
4865
4866 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
4867 a function that always returns MORECORE_FAILURE.
4868
4869 If you are using this malloc with something other than sbrk (or its
4870 emulation) to supply memory regions, you probably want to set
4871 MORECORE_CONTIGUOUS as false. As an example, here is a custom
4872 allocator kindly contributed for pre-OSX macOS. It uses virtually
4873 but not necessarily physically contiguous non-paged memory (locked
4874 in, present and won't get swapped out). You can use it by
4875 uncommenting this section, adding some #includes, and setting up the
4876 appropriate defines above:
4877
4878 *#define MORECORE osMoreCore
4879 *#define MORECORE_CONTIGUOUS 0
4880
4881 There is also a shutdown routine that should somehow be called for
4882 cleanup upon program exit.
4883
4884 *#define MAX_POOL_ENTRIES 100
4885 *#define MINIMUM_MORECORE_SIZE (64 * 1024)
4886 static int next_os_pool;
4887 void *our_os_pools[MAX_POOL_ENTRIES];
4888
4889 void *osMoreCore(int size)
4890 {
fa8d436c
UD
4891 void *ptr = 0;
4892 static void *sbrk_top = 0;
ca34d7a7 4893
fa8d436c
UD
4894 if (size > 0)
4895 {
4896 if (size < MINIMUM_MORECORE_SIZE)
6c8dbf00 4897 size = MINIMUM_MORECORE_SIZE;
fa8d436c 4898 if (CurrentExecutionLevel() == kTaskLevel)
6c8dbf00 4899 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
fa8d436c
UD
4900 if (ptr == 0)
4901 {
6c8dbf00 4902 return (void *) MORECORE_FAILURE;
fa8d436c
UD
4903 }
4904 // save ptrs so they can be freed during cleanup
4905 our_os_pools[next_os_pool] = ptr;
4906 next_os_pool++;
4907 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4908 sbrk_top = (char *) ptr + size;
4909 return ptr;
4910 }
4911 else if (size < 0)
4912 {
4913 // we don't currently support shrink behavior
4914 return (void *) MORECORE_FAILURE;
4915 }
4916 else
4917 {
4918 return sbrk_top;
431c33c0 4919 }
6c8dbf00 4920 }
ca34d7a7 4921
6c8dbf00
OB
4922 // cleanup any allocated memory pools
4923 // called as last thing before shutting down driver
ca34d7a7 4924
6c8dbf00
OB
4925 void osCleanupMem(void)
4926 {
fa8d436c 4927 void **ptr;
ca34d7a7 4928
fa8d436c
UD
4929 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4930 if (*ptr)
4931 {
6c8dbf00
OB
4932 PoolDeallocate(*ptr);
4933 * ptr = 0;
fa8d436c 4934 }
6c8dbf00 4935 }
ee74a442 4936
6c8dbf00 4937 */
f65fd747 4938
7e3be507 4939
3e030bd5
UD
4940/* Helper code. */
4941
ae7f5313
UD
4942extern char **__libc_argv attribute_hidden;
4943
3e030bd5 4944static void
6c8dbf00 4945malloc_printerr (int action, const char *str, void *ptr)
3e030bd5 4946{
553cc5f9
UD
4947 if ((action & 5) == 5)
4948 __libc_message (action & 2, "%s\n", str);
4949 else if (action & 1)
3e030bd5 4950 {
a9055cab 4951 char buf[2 * sizeof (uintptr_t) + 1];
3e030bd5 4952
a9055cab
UD
4953 buf[sizeof (buf) - 1] = '\0';
4954 char *cp = _itoa_word ((uintptr_t) ptr, &buf[sizeof (buf) - 1], 16, 0);
4955 while (cp > buf)
6c8dbf00 4956 *--cp = '0';
a9055cab 4957
bb9510dc 4958 __libc_message (action & 2, "*** Error in `%s': %s: 0x%s ***\n",
6c8dbf00 4959 __libc_argv[0] ? : "<unknown>", str, cp);
3e030bd5 4960 }
a9055cab 4961 else if (action & 2)
3e030bd5
UD
4962 abort ();
4963}
4964
a204dbb2
UD
4965/* We need a wrapper function for one of the additions of POSIX. */
4966int
4967__posix_memalign (void **memptr, size_t alignment, size_t size)
4968{
4969 void *mem;
4970
4971 /* Test whether the SIZE argument is valid. It must be a power of
4972 two multiple of sizeof (void *). */
de02bd05
UD
4973 if (alignment % sizeof (void *) != 0
4974 || !powerof2 (alignment / sizeof (void *)) != 0
4975 || alignment == 0)
a204dbb2
UD
4976 return EINVAL;
4977
10ad46bc
OB
4978
4979 void *address = RETURN_ADDRESS (0);
4980 mem = _mid_memalign (alignment, size, address);
a204dbb2 4981
6c8dbf00
OB
4982 if (mem != NULL)
4983 {
4984 *memptr = mem;
4985 return 0;
4986 }
a204dbb2
UD
4987
4988 return ENOMEM;
4989}
4990weak_alias (__posix_memalign, posix_memalign)
4991
20c13899
OB
4992
4993int
4994malloc_info (int options, FILE *fp)
bb066545 4995{
20c13899
OB
4996 /* For now, at least. */
4997 if (options != 0)
4998 return EINVAL;
bb066545 4999
20c13899
OB
5000 int n = 0;
5001 size_t total_nblocks = 0;
5002 size_t total_nfastblocks = 0;
5003 size_t total_avail = 0;
5004 size_t total_fastavail = 0;
5005 size_t total_system = 0;
5006 size_t total_max_system = 0;
5007 size_t total_aspace = 0;
5008 size_t total_aspace_mprotect = 0;
bb066545 5009
6c8dbf00 5010
6c8dbf00 5011
987c0269
OB
5012 if (__malloc_initialized < 0)
5013 ptmalloc_init ();
bb066545 5014
987c0269 5015 fputs ("<malloc version=\"1\">\n", fp);
bb066545 5016
987c0269
OB
5017 /* Iterate over all arenas currently in use. */
5018 mstate ar_ptr = &main_arena;
5019 do
5020 {
5021 fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
8b35e35d 5022
987c0269
OB
5023 size_t nblocks = 0;
5024 size_t nfastblocks = 0;
5025 size_t avail = 0;
5026 size_t fastavail = 0;
5027 struct
5028 {
5029 size_t from;
5030 size_t to;
5031 size_t total;
5032 size_t count;
5033 } sizes[NFASTBINS + NBINS - 1];
5034#define nsizes (sizeof (sizes) / sizeof (sizes[0]))
6c8dbf00 5035
987c0269 5036 mutex_lock (&ar_ptr->mutex);
bb066545 5037
987c0269
OB
5038 for (size_t i = 0; i < NFASTBINS; ++i)
5039 {
5040 mchunkptr p = fastbin (ar_ptr, i);
5041 if (p != NULL)
5042 {
5043 size_t nthissize = 0;
5044 size_t thissize = chunksize (p);
5045
5046 while (p != NULL)
5047 {
5048 ++nthissize;
5049 p = p->fd;
5050 }
5051
5052 fastavail += nthissize * thissize;
5053 nfastblocks += nthissize;
5054 sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
5055 sizes[i].to = thissize;
5056 sizes[i].count = nthissize;
5057 }
5058 else
5059 sizes[i].from = sizes[i].to = sizes[i].count = 0;
bb066545 5060
987c0269
OB
5061 sizes[i].total = sizes[i].count * sizes[i].to;
5062 }
bb066545 5063
bb066545 5064
987c0269
OB
5065 mbinptr bin;
5066 struct malloc_chunk *r;
bb066545 5067
987c0269
OB
5068 for (size_t i = 1; i < NBINS; ++i)
5069 {
5070 bin = bin_at (ar_ptr, i);
5071 r = bin->fd;
5072 sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
5073 sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
5074 = sizes[NFASTBINS - 1 + i].count = 0;
5075
5076 if (r != NULL)
5077 while (r != bin)
5078 {
5079 ++sizes[NFASTBINS - 1 + i].count;
5080 sizes[NFASTBINS - 1 + i].total += r->size;
5081 sizes[NFASTBINS - 1 + i].from
5082 = MIN (sizes[NFASTBINS - 1 + i].from, r->size);
5083 sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
5084 r->size);
5085
5086 r = r->fd;
5087 }
5088
5089 if (sizes[NFASTBINS - 1 + i].count == 0)
5090 sizes[NFASTBINS - 1 + i].from = 0;
5091 nblocks += sizes[NFASTBINS - 1 + i].count;
5092 avail += sizes[NFASTBINS - 1 + i].total;
5093 }
bb066545 5094
987c0269 5095 mutex_unlock (&ar_ptr->mutex);
da2d2fb6 5096
987c0269
OB
5097 total_nfastblocks += nfastblocks;
5098 total_fastavail += fastavail;
0588a9cb 5099
987c0269
OB
5100 total_nblocks += nblocks;
5101 total_avail += avail;
0588a9cb 5102
987c0269
OB
5103 for (size_t i = 0; i < nsizes; ++i)
5104 if (sizes[i].count != 0 && i != NFASTBINS)
5105 fprintf (fp, " \
5106 <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5107 sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
fdfd175d 5108
987c0269
OB
5109 if (sizes[NFASTBINS].count != 0)
5110 fprintf (fp, "\
5111 <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5112 sizes[NFASTBINS].from, sizes[NFASTBINS].to,
5113 sizes[NFASTBINS].total, sizes[NFASTBINS].count);
fdfd175d 5114
987c0269
OB
5115 total_system += ar_ptr->system_mem;
5116 total_max_system += ar_ptr->max_system_mem;
bb066545 5117
987c0269
OB
5118 fprintf (fp,
5119 "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5120 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5121 "<system type=\"current\" size=\"%zu\"/>\n"
5122 "<system type=\"max\" size=\"%zu\"/>\n",
5123 nfastblocks, fastavail, nblocks, avail,
5124 ar_ptr->system_mem, ar_ptr->max_system_mem);
346bc35c 5125
987c0269
OB
5126 if (ar_ptr != &main_arena)
5127 {
5128 heap_info *heap = heap_for_ptr (top (ar_ptr));
5129 fprintf (fp,
5130 "<aspace type=\"total\" size=\"%zu\"/>\n"
5131 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5132 heap->size, heap->mprotect_size);
5133 total_aspace += heap->size;
5134 total_aspace_mprotect += heap->mprotect_size;
5135 }
5136 else
5137 {
5138 fprintf (fp,
5139 "<aspace type=\"total\" size=\"%zu\"/>\n"
5140 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5141 ar_ptr->system_mem, ar_ptr->system_mem);
5142 total_aspace += ar_ptr->system_mem;
5143 total_aspace_mprotect += ar_ptr->system_mem;
5144 }
bb066545 5145
987c0269 5146 fputs ("</heap>\n", fp);
bb066545
UD
5147 ar_ptr = ar_ptr->next;
5148 }
5149 while (ar_ptr != &main_arena);
5150
5151 fprintf (fp,
62a58816
SP
5152 "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5153 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
9fa76613 5154 "<total type=\"mmap\" count=\"%d\" size=\"%zu\"/>\n"
62a58816
SP
5155 "<system type=\"current\" size=\"%zu\"/>\n"
5156 "<system type=\"max\" size=\"%zu\"/>\n"
5157 "<aspace type=\"total\" size=\"%zu\"/>\n"
5158 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5159 "</malloc>\n",
5160 total_nfastblocks, total_fastavail, total_nblocks, total_avail,
4d653a59 5161 mp_.n_mmaps, mp_.mmapped_mem,
62a58816
SP
5162 total_system, total_max_system,
5163 total_aspace, total_aspace_mprotect);
bb066545
UD
5164
5165 return 0;
5166}
5167
5168
eba19d2b
UD
5169strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
5170strong_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree)
5171strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
5172strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
5173strong_alias (__libc_memalign, __memalign)
5174weak_alias (__libc_memalign, memalign)
5175strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
5176strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
5177strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
5178strong_alias (__libc_mallinfo, __mallinfo)
5179weak_alias (__libc_mallinfo, mallinfo)
5180strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
7e3be507
UD
5181
5182weak_alias (__malloc_stats, malloc_stats)
5183weak_alias (__malloc_usable_size, malloc_usable_size)
5184weak_alias (__malloc_trim, malloc_trim)
2f6d1f1b
UD
5185weak_alias (__malloc_get_state, malloc_get_state)
5186weak_alias (__malloc_set_state, malloc_set_state)
7e3be507 5187
f65fd747 5188
fa8d436c 5189/* ------------------------------------------------------------
6c8dbf00 5190 History:
f65fd747 5191
6c8dbf00 5192 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
f65fd747 5193
6c8dbf00 5194 */
fa8d436c
UD
5195/*
5196 * Local variables:
5197 * c-basic-offset: 2
5198 * End:
5199 */