]> git.ipfire.org Git - thirdparty/glibc.git/blame - manual/arith.texi
Include <dirstream.h> before <dirent/dirent.h>
[thirdparty/glibc.git] / manual / arith.texi
CommitLineData
28f540f4 1@node Arithmetic, Date and Time, Mathematics, Top
7a68c94a
UD
2@c %MENU% Low level arithmetic functions
3@chapter Arithmetic Functions
28f540f4
RM
4
5This chapter contains information about functions for doing basic
6arithmetic operations, such as splitting a float into its integer and
b4012b75
UD
7fractional parts or retrieving the imaginary part of a complex value.
8These functions are declared in the header files @file{math.h} and
9@file{complex.h}.
28f540f4
RM
10
11@menu
0e4ee106
UD
12* Integers:: Basic integer types and concepts
13* Integer Division:: Integer division with guaranteed rounding.
7a68c94a
UD
14* Floating Point Numbers:: Basic concepts. IEEE 754.
15* Floating Point Classes:: The five kinds of floating-point number.
16* Floating Point Errors:: When something goes wrong in a calculation.
17* Rounding:: Controlling how results are rounded.
18* Control Functions:: Saving and restoring the FPU's state.
19* Arithmetic Functions:: Fundamental operations provided by the library.
20* Complex Numbers:: The types. Writing complex constants.
21* Operations on Complex:: Projection, conjugation, decomposition.
7a68c94a
UD
22* Parsing of Numbers:: Converting strings to numbers.
23* System V Number Conversion:: An archaic way to convert numbers to strings.
28f540f4
RM
24@end menu
25
0e4ee106
UD
26@node Integers
27@section Integers
28@cindex integer
29
30The C language defines several integer data types: integer, short integer,
31long integer, and character, all in both signed and unsigned varieties.
e6e81391
UD
32The GNU C compiler extends the language to contain long long integers
33as well.
0e4ee106
UD
34@cindex signedness
35
36The C integer types were intended to allow code to be portable among
37machines with different inherent data sizes (word sizes), so each type
38may have different ranges on different machines. The problem with
39this is that a program often needs to be written for a particular range
40of integers, and sometimes must be written for a particular size of
41storage, regardless of what machine the program runs on.
42
43To address this problem, the GNU C library contains C type definitions
44you can use to declare integers that meet your exact needs. Because the
45GNU C library header files are customized to a specific machine, your
46program source code doesn't have to be.
47
48These @code{typedef}s are in @file{stdint.h}.
49@pindex stdint.h
50
51If you require that an integer be represented in exactly N bits, use one
52of the following types, with the obvious mapping to bit size and signedness:
53
68979757 54@itemize @bullet
0e4ee106
UD
55@item int8_t
56@item int16_t
57@item int32_t
58@item int64_t
59@item uint8_t
60@item uint16_t
61@item uint32_t
62@item uint64_t
63@end itemize
64
65If your C compiler and target machine do not allow integers of a certain
66size, the corresponding above type does not exist.
67
68If you don't need a specific storage size, but want the smallest data
69structure with @emph{at least} N bits, use one of these:
70
68979757 71@itemize @bullet
150f9fb8
AJ
72@item int_least8_t
73@item int_least16_t
74@item int_least32_t
75@item int_least64_t
76@item uint_least8_t
77@item uint_least16_t
78@item uint_least32_t
79@item uint_least64_t
0e4ee106
UD
80@end itemize
81
e6e81391 82If you don't need a specific storage size, but want the data structure
0e4ee106
UD
83that allows the fastest access while having at least N bits (and
84among data structures with the same access speed, the smallest one), use
85one of these:
86
68979757 87@itemize @bullet
150f9fb8
AJ
88@item int_fast8_t
89@item int_fast16_t
90@item int_fast32_t
91@item int_fast64_t
92@item uint_fast8_t
93@item uint_fast16_t
94@item uint_fast32_t
95@item uint_fast64_t
0e4ee106
UD
96@end itemize
97
e6e81391 98If you want an integer with the widest range possible on the platform on
0e4ee106
UD
99which it is being used, use one of the following. If you use these,
100you should write code that takes into account the variable size and range
101of the integer.
102
68979757 103@itemize @bullet
0e4ee106
UD
104@item intmax_t
105@item uintmax_t
106@end itemize
107
108The GNU C library also provides macros that tell you the maximum and
109minimum possible values for each integer data type. The macro names
110follow these examples: @code{INT32_MAX}, @code{UINT8_MAX},
111@code{INT_FAST32_MIN}, @code{INT_LEAST64_MIN}, @code{UINTMAX_MAX},
112@code{INTMAX_MAX}, @code{INTMAX_MIN}. Note that there are no macros for
113unsigned integer minima. These are always zero.
114@cindex maximum possible integer
0bc93a2f 115@cindex minimum possible integer
0e4ee106
UD
116
117There are similar macros for use with C's built in integer types which
118should come with your C compiler. These are described in @ref{Data Type
119Measurements}.
120
121Don't forget you can use the C @code{sizeof} function with any of these
122data types to get the number of bytes of storage each uses.
123
124
125@node Integer Division
126@section Integer Division
127@cindex integer division functions
128
129This section describes functions for performing integer division. These
130functions are redundant when GNU CC is used, because in GNU C the
131@samp{/} operator always rounds towards zero. But in other C
132implementations, @samp{/} may round differently with negative arguments.
133@code{div} and @code{ldiv} are useful because they specify how to round
134the quotient: towards zero. The remainder has the same sign as the
135numerator.
136
137These functions are specified to return a result @var{r} such that the value
138@code{@var{r}.quot*@var{denominator} + @var{r}.rem} equals
139@var{numerator}.
140
141@pindex stdlib.h
142To use these facilities, you should include the header file
143@file{stdlib.h} in your program.
144
145@comment stdlib.h
146@comment ISO
147@deftp {Data Type} div_t
148This is a structure type used to hold the result returned by the @code{div}
149function. It has the following members:
150
151@table @code
152@item int quot
153The quotient from the division.
154
155@item int rem
156The remainder from the division.
157@end table
158@end deftp
159
160@comment stdlib.h
161@comment ISO
162@deftypefun div_t div (int @var{numerator}, int @var{denominator})
163This function @code{div} computes the quotient and remainder from
164the division of @var{numerator} by @var{denominator}, returning the
165result in a structure of type @code{div_t}.
166
167If the result cannot be represented (as in a division by zero), the
168behavior is undefined.
169
170Here is an example, albeit not a very useful one.
171
172@smallexample
173div_t result;
174result = div (20, -6);
175@end smallexample
176
177@noindent
178Now @code{result.quot} is @code{-3} and @code{result.rem} is @code{2}.
179@end deftypefun
180
181@comment stdlib.h
182@comment ISO
183@deftp {Data Type} ldiv_t
184This is a structure type used to hold the result returned by the @code{ldiv}
185function. It has the following members:
186
187@table @code
188@item long int quot
189The quotient from the division.
190
191@item long int rem
192The remainder from the division.
193@end table
194
195(This is identical to @code{div_t} except that the components are of
196type @code{long int} rather than @code{int}.)
197@end deftp
198
199@comment stdlib.h
200@comment ISO
201@deftypefun ldiv_t ldiv (long int @var{numerator}, long int @var{denominator})
202The @code{ldiv} function is similar to @code{div}, except that the
203arguments are of type @code{long int} and the result is returned as a
204structure of type @code{ldiv_t}.
205@end deftypefun
206
207@comment stdlib.h
208@comment ISO
209@deftp {Data Type} lldiv_t
210This is a structure type used to hold the result returned by the @code{lldiv}
211function. It has the following members:
212
213@table @code
214@item long long int quot
215The quotient from the division.
216
217@item long long int rem
218The remainder from the division.
219@end table
220
221(This is identical to @code{div_t} except that the components are of
222type @code{long long int} rather than @code{int}.)
223@end deftp
224
225@comment stdlib.h
226@comment ISO
227@deftypefun lldiv_t lldiv (long long int @var{numerator}, long long int @var{denominator})
228The @code{lldiv} function is like the @code{div} function, but the
229arguments are of type @code{long long int} and the result is returned as
230a structure of type @code{lldiv_t}.
231
232The @code{lldiv} function was added in @w{ISO C99}.
233@end deftypefun
234
235@comment inttypes.h
236@comment ISO
237@deftp {Data Type} imaxdiv_t
238This is a structure type used to hold the result returned by the @code{imaxdiv}
239function. It has the following members:
240
241@table @code
242@item intmax_t quot
243The quotient from the division.
244
245@item intmax_t rem
246The remainder from the division.
247@end table
248
249(This is identical to @code{div_t} except that the components are of
250type @code{intmax_t} rather than @code{int}.)
251
252See @ref{Integers} for a description of the @code{intmax_t} type.
253
254@end deftp
255
256@comment inttypes.h
257@comment ISO
258@deftypefun imaxdiv_t imaxdiv (intmax_t @var{numerator}, intmax_t @var{denominator})
259The @code{imaxdiv} function is like the @code{div} function, but the
260arguments are of type @code{intmax_t} and the result is returned as
261a structure of type @code{imaxdiv_t}.
262
263See @ref{Integers} for a description of the @code{intmax_t} type.
264
265The @code{imaxdiv} function was added in @w{ISO C99}.
266@end deftypefun
267
268
7a68c94a
UD
269@node Floating Point Numbers
270@section Floating Point Numbers
271@cindex floating point
272@cindex IEEE 754
b4012b75
UD
273@cindex IEEE floating point
274
7a68c94a
UD
275Most computer hardware has support for two different kinds of numbers:
276integers (@math{@dots{}-3, -2, -1, 0, 1, 2, 3@dots{}}) and
277floating-point numbers. Floating-point numbers have three parts: the
278@dfn{mantissa}, the @dfn{exponent}, and the @dfn{sign bit}. The real
279number represented by a floating-point value is given by
280@tex
281$(s \mathrel? -1 \mathrel: 1) \cdot 2^e \cdot M$
282@end tex
283@ifnottex
284@math{(s ? -1 : 1) @mul{} 2^e @mul{} M}
285@end ifnottex
286where @math{s} is the sign bit, @math{e} the exponent, and @math{M}
287the mantissa. @xref{Floating Point Concepts}, for details. (It is
288possible to have a different @dfn{base} for the exponent, but all modern
289hardware uses @math{2}.)
290
291Floating-point numbers can represent a finite subset of the real
292numbers. While this subset is large enough for most purposes, it is
293important to remember that the only reals that can be represented
294exactly are rational numbers that have a terminating binary expansion
295shorter than the width of the mantissa. Even simple fractions such as
296@math{1/5} can only be approximated by floating point.
297
298Mathematical operations and functions frequently need to produce values
299that are not representable. Often these values can be approximated
300closely enough for practical purposes, but sometimes they can't.
301Historically there was no way to tell when the results of a calculation
302were inaccurate. Modern computers implement the @w{IEEE 754} standard
303for numerical computations, which defines a framework for indicating to
304the program when the results of calculation are not trustworthy. This
305framework consists of a set of @dfn{exceptions} that indicate why a
306result could not be represented, and the special values @dfn{infinity}
307and @dfn{not a number} (NaN).
308
309@node Floating Point Classes
310@section Floating-Point Number Classification Functions
311@cindex floating-point classes
312@cindex classes, floating-point
313@pindex math.h
b4012b75 314
ec751a23 315@w{ISO C99} defines macros that let you determine what sort of
7a68c94a 316floating-point number a variable holds.
b4012b75
UD
317
318@comment math.h
319@comment ISO
7a68c94a
UD
320@deftypefn {Macro} int fpclassify (@emph{float-type} @var{x})
321This is a generic macro which works on all floating-point types and
322which returns a value of type @code{int}. The possible values are:
28f540f4 323
7a68c94a
UD
324@vtable @code
325@item FP_NAN
326The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity
327and NaN})
328@item FP_INFINITE
329The value of @var{x} is either plus or minus infinity (@pxref{Infinity
330and NaN})
331@item FP_ZERO
332The value of @var{x} is zero. In floating-point formats like @w{IEEE
333754}, where zero can be signed, this value is also returned if
334@var{x} is negative zero.
335@item FP_SUBNORMAL
336Numbers whose absolute value is too small to be represented in the
337normal format are represented in an alternate, @dfn{denormalized} format
338(@pxref{Floating Point Concepts}). This format is less precise but can
339represent values closer to zero. @code{fpclassify} returns this value
340for values of @var{x} in this alternate format.
341@item FP_NORMAL
342This value is returned for all other values of @var{x}. It indicates
343that there is nothing special about the number.
344@end vtable
28f540f4 345
7a68c94a 346@end deftypefn
28f540f4 347
7a68c94a
UD
348@code{fpclassify} is most useful if more than one property of a number
349must be tested. There are more specific macros which only test one
350property at a time. Generally these macros execute faster than
351@code{fpclassify}, since there is special hardware support for them.
352You should therefore use the specific macros whenever possible.
28f540f4
RM
353
354@comment math.h
7a68c94a
UD
355@comment ISO
356@deftypefn {Macro} int isfinite (@emph{float-type} @var{x})
357This macro returns a nonzero value if @var{x} is finite: not plus or
358minus infinity, and not NaN. It is equivalent to
fe0ec73e
UD
359
360@smallexample
7a68c94a 361(fpclassify (x) != FP_NAN && fpclassify (x) != FP_INFINITE)
fe0ec73e
UD
362@end smallexample
363
7a68c94a
UD
364@code{isfinite} is implemented as a macro which accepts any
365floating-point type.
366@end deftypefn
fe0ec73e 367
7a68c94a
UD
368@comment math.h
369@comment ISO
370@deftypefn {Macro} int isnormal (@emph{float-type} @var{x})
371This macro returns a nonzero value if @var{x} is finite and normalized.
372It is equivalent to
b4012b75
UD
373
374@smallexample
7a68c94a 375(fpclassify (x) == FP_NORMAL)
b4012b75 376@end smallexample
7a68c94a 377@end deftypefn
b4012b75 378
7a68c94a
UD
379@comment math.h
380@comment ISO
381@deftypefn {Macro} int isnan (@emph{float-type} @var{x})
382This macro returns a nonzero value if @var{x} is NaN. It is equivalent
383to
b4012b75
UD
384
385@smallexample
7a68c94a 386(fpclassify (x) == FP_NAN)
b4012b75 387@end smallexample
7a68c94a 388@end deftypefn
b4012b75 389
7a68c94a
UD
390Another set of floating-point classification functions was provided by
391BSD. The GNU C library also supports these functions; however, we
ec751a23 392recommend that you use the ISO C99 macros in new code. Those are standard
7a68c94a
UD
393and will be available more widely. Also, since they are macros, you do
394not have to worry about the type of their argument.
28f540f4
RM
395
396@comment math.h
397@comment BSD
398@deftypefun int isinf (double @var{x})
4260bc74
UD
399@comment math.h
400@comment BSD
779ae82e 401@deftypefunx int isinff (float @var{x})
4260bc74
UD
402@comment math.h
403@comment BSD
779ae82e 404@deftypefunx int isinfl (long double @var{x})
28f540f4
RM
405This function returns @code{-1} if @var{x} represents negative infinity,
406@code{1} if @var{x} represents positive infinity, and @code{0} otherwise.
407@end deftypefun
408
409@comment math.h
410@comment BSD
411@deftypefun int isnan (double @var{x})
4260bc74
UD
412@comment math.h
413@comment BSD
779ae82e 414@deftypefunx int isnanf (float @var{x})
4260bc74
UD
415@comment math.h
416@comment BSD
779ae82e 417@deftypefunx int isnanl (long double @var{x})
28f540f4 418This function returns a nonzero value if @var{x} is a ``not a number''
7a68c94a 419value, and zero otherwise.
b9b49b44 420
48b22986 421@strong{NB:} The @code{isnan} macro defined by @w{ISO C99} overrides
7a68c94a
UD
422the BSD function. This is normally not a problem, because the two
423routines behave identically. However, if you really need to get the BSD
424function for some reason, you can write
b9b49b44 425
7a68c94a
UD
426@smallexample
427(isnan) (x)
428@end smallexample
28f540f4
RM
429@end deftypefun
430
431@comment math.h
432@comment BSD
433@deftypefun int finite (double @var{x})
4260bc74
UD
434@comment math.h
435@comment BSD
779ae82e 436@deftypefunx int finitef (float @var{x})
4260bc74
UD
437@comment math.h
438@comment BSD
779ae82e 439@deftypefunx int finitel (long double @var{x})
28f540f4
RM
440This function returns a nonzero value if @var{x} is finite or a ``not a
441number'' value, and zero otherwise.
442@end deftypefun
443
28f540f4
RM
444@strong{Portability Note:} The functions listed in this section are BSD
445extensions.
446
b4012b75 447
7a68c94a
UD
448@node Floating Point Errors
449@section Errors in Floating-Point Calculations
450
451@menu
452* FP Exceptions:: IEEE 754 math exceptions and how to detect them.
453* Infinity and NaN:: Special values returned by calculations.
454* Status bit operations:: Checking for exceptions after the fact.
455* Math Error Reporting:: How the math functions report errors.
456@end menu
457
458@node FP Exceptions
459@subsection FP Exceptions
460@cindex exception
461@cindex signal
462@cindex zero divide
463@cindex division by zero
464@cindex inexact exception
465@cindex invalid exception
466@cindex overflow exception
467@cindex underflow exception
468
469The @w{IEEE 754} standard defines five @dfn{exceptions} that can occur
470during a calculation. Each corresponds to a particular sort of error,
471such as overflow.
472
473When exceptions occur (when exceptions are @dfn{raised}, in the language
474of the standard), one of two things can happen. By default the
475exception is simply noted in the floating-point @dfn{status word}, and
476the program continues as if nothing had happened. The operation
477produces a default value, which depends on the exception (see the table
478below). Your program can check the status word to find out which
479exceptions happened.
480
481Alternatively, you can enable @dfn{traps} for exceptions. In that case,
482when an exception is raised, your program will receive the @code{SIGFPE}
483signal. The default action for this signal is to terminate the
8b7fb588 484program. @xref{Signal Handling}, for how you can change the effect of
7a68c94a
UD
485the signal.
486
487@findex matherr
488In the System V math library, the user-defined function @code{matherr}
489is called when certain exceptions occur inside math library functions.
490However, the Unix98 standard deprecates this interface. We support it
491for historical compatibility, but recommend that you do not use it in
492new programs.
493
494@noindent
495The exceptions defined in @w{IEEE 754} are:
496
497@table @samp
498@item Invalid Operation
499This exception is raised if the given operands are invalid for the
500operation to be performed. Examples are
501(see @w{IEEE 754}, @w{section 7}):
502@enumerate
503@item
504Addition or subtraction: @math{@infinity{} - @infinity{}}. (But
505@math{@infinity{} + @infinity{} = @infinity{}}).
506@item
507Multiplication: @math{0 @mul{} @infinity{}}.
508@item
509Division: @math{0/0} or @math{@infinity{}/@infinity{}}.
510@item
511Remainder: @math{x} REM @math{y}, where @math{y} is zero or @math{x} is
512infinite.
513@item
514Square root if the operand is less then zero. More generally, any
515mathematical function evaluated outside its domain produces this
516exception.
517@item
518Conversion of a floating-point number to an integer or decimal
519string, when the number cannot be represented in the target format (due
520to overflow, infinity, or NaN).
521@item
522Conversion of an unrecognizable input string.
523@item
524Comparison via predicates involving @math{<} or @math{>}, when one or
525other of the operands is NaN. You can prevent this exception by using
526the unordered comparison functions instead; see @ref{FP Comparison Functions}.
527@end enumerate
528
529If the exception does not trap, the result of the operation is NaN.
530
531@item Division by Zero
532This exception is raised when a finite nonzero number is divided
533by zero. If no trap occurs the result is either @math{+@infinity{}} or
534@math{-@infinity{}}, depending on the signs of the operands.
535
536@item Overflow
537This exception is raised whenever the result cannot be represented
538as a finite value in the precision format of the destination. If no trap
539occurs the result depends on the sign of the intermediate result and the
540current rounding mode (@w{IEEE 754}, @w{section 7.3}):
541@enumerate
542@item
543Round to nearest carries all overflows to @math{@infinity{}}
544with the sign of the intermediate result.
545@item
546Round toward @math{0} carries all overflows to the largest representable
547finite number with the sign of the intermediate result.
548@item
549Round toward @math{-@infinity{}} carries positive overflows to the
550largest representable finite number and negative overflows to
551@math{-@infinity{}}.
552
553@item
554Round toward @math{@infinity{}} carries negative overflows to the
555most negative representable finite number and positive overflows
556to @math{@infinity{}}.
557@end enumerate
558
559Whenever the overflow exception is raised, the inexact exception is also
560raised.
561
562@item Underflow
563The underflow exception is raised when an intermediate result is too
564small to be calculated accurately, or if the operation's result rounded
565to the destination precision is too small to be normalized.
566
567When no trap is installed for the underflow exception, underflow is
568signaled (via the underflow flag) only when both tininess and loss of
569accuracy have been detected. If no trap handler is installed the
570operation continues with an imprecise small value, or zero if the
571destination precision cannot hold the small exact result.
572
573@item Inexact
574This exception is signalled if a rounded result is not exact (such as
575when calculating the square root of two) or a result overflows without
576an overflow trap.
577@end table
578
579@node Infinity and NaN
580@subsection Infinity and NaN
581@cindex infinity
582@cindex not a number
583@cindex NaN
584
585@w{IEEE 754} floating point numbers can represent positive or negative
586infinity, and @dfn{NaN} (not a number). These three values arise from
587calculations whose result is undefined or cannot be represented
588accurately. You can also deliberately set a floating-point variable to
589any of them, which is sometimes useful. Some examples of calculations
590that produce infinity or NaN:
591
592@ifnottex
593@smallexample
594@math{1/0 = @infinity{}}
595@math{log (0) = -@infinity{}}
596@math{sqrt (-1) = NaN}
597@end smallexample
598@end ifnottex
599@tex
600$${1\over0} = \infty$$
601$$\log 0 = -\infty$$
602$$\sqrt{-1} = \hbox{NaN}$$
603@end tex
604
605When a calculation produces any of these values, an exception also
606occurs; see @ref{FP Exceptions}.
607
608The basic operations and math functions all accept infinity and NaN and
609produce sensible output. Infinities propagate through calculations as
610one would expect: for example, @math{2 + @infinity{} = @infinity{}},
611@math{4/@infinity{} = 0}, atan @math{(@infinity{}) = @pi{}/2}. NaN, on
612the other hand, infects any calculation that involves it. Unless the
613calculation would produce the same result no matter what real value
614replaced NaN, the result is NaN.
615
616In comparison operations, positive infinity is larger than all values
617except itself and NaN, and negative infinity is smaller than all values
618except itself and NaN. NaN is @dfn{unordered}: it is not equal to,
619greater than, or less than anything, @emph{including itself}. @code{x ==
620x} is false if the value of @code{x} is NaN. You can use this to test
621whether a value is NaN or not, but the recommended way to test for NaN
622is with the @code{isnan} function (@pxref{Floating Point Classes}). In
623addition, @code{<}, @code{>}, @code{<=}, and @code{>=} will raise an
624exception when applied to NaNs.
625
626@file{math.h} defines macros that allow you to explicitly set a variable
627to infinity or NaN.
b4012b75
UD
628
629@comment math.h
630@comment ISO
7a68c94a
UD
631@deftypevr Macro float INFINITY
632An expression representing positive infinity. It is equal to the value
633produced by mathematical operations like @code{1.0 / 0.0}.
634@code{-INFINITY} represents negative infinity.
635
636You can test whether a floating-point value is infinite by comparing it
637to this macro. However, this is not recommended; you should use the
638@code{isfinite} macro instead. @xref{Floating Point Classes}.
639
ec751a23 640This macro was introduced in the @w{ISO C99} standard.
7a68c94a
UD
641@end deftypevr
642
643@comment math.h
644@comment GNU
645@deftypevr Macro float NAN
646An expression representing a value which is ``not a number''. This
647macro is a GNU extension, available only on machines that support the
648``not a number'' value---that is to say, on all machines that support
649IEEE floating point.
650
651You can use @samp{#ifdef NAN} to test whether the machine supports
652NaN. (Of course, you must arrange for GNU extensions to be visible,
653such as by defining @code{_GNU_SOURCE}, and then you must include
654@file{math.h}.)
655@end deftypevr
656
657@w{IEEE 754} also allows for another unusual value: negative zero. This
658value is produced when you divide a positive number by negative
659infinity, or when a negative result is smaller than the limits of
cd837b09 660representation.
7a68c94a
UD
661
662@node Status bit operations
663@subsection Examining the FPU status word
664
ec751a23 665@w{ISO C99} defines functions to query and manipulate the
7a68c94a
UD
666floating-point status word. You can use these functions to check for
667untrapped exceptions when it's convenient, rather than worrying about
668them in the middle of a calculation.
669
670These constants represent the various @w{IEEE 754} exceptions. Not all
671FPUs report all the different exceptions. Each constant is defined if
672and only if the FPU you are compiling for supports that exception, so
673you can test for FPU support with @samp{#ifdef}. They are defined in
674@file{fenv.h}.
b4012b75
UD
675
676@vtable @code
7a68c94a
UD
677@comment fenv.h
678@comment ISO
679@item FE_INEXACT
680 The inexact exception.
681@comment fenv.h
682@comment ISO
683@item FE_DIVBYZERO
684 The divide by zero exception.
685@comment fenv.h
686@comment ISO
687@item FE_UNDERFLOW
688 The underflow exception.
689@comment fenv.h
690@comment ISO
691@item FE_OVERFLOW
692 The overflow exception.
693@comment fenv.h
694@comment ISO
695@item FE_INVALID
696 The invalid exception.
b4012b75
UD
697@end vtable
698
7a68c94a
UD
699The macro @code{FE_ALL_EXCEPT} is the bitwise OR of all exception macros
700which are supported by the FP implementation.
b4012b75 701
7a68c94a
UD
702These functions allow you to clear exception flags, test for exceptions,
703and save and restore the set of exceptions flagged.
b4012b75 704
7a68c94a 705@comment fenv.h
b4012b75 706@comment ISO
63ae7b63 707@deftypefun int feclearexcept (int @var{excepts})
7a68c94a
UD
708This function clears all of the supported exception flags indicated by
709@var{excepts}.
63ae7b63
UD
710
711The function returns zero in case the operation was successful, a
712non-zero value otherwise.
713@end deftypefun
714
715@comment fenv.h
716@comment ISO
717@deftypefun int feraiseexcept (int @var{excepts})
718This function raises the supported exceptions indicated by
719@var{excepts}. If more than one exception bit in @var{excepts} is set
720the order in which the exceptions are raised is undefined except that
721overflow (@code{FE_OVERFLOW}) or underflow (@code{FE_UNDERFLOW}) are
722raised before inexact (@code{FE_INEXACT}). Whether for overflow or
723underflow the inexact exception is also raised is also implementation
724dependent.
725
726The function returns zero in case the operation was successful, a
727non-zero value otherwise.
7a68c94a
UD
728@end deftypefun
729
730@comment fenv.h
731@comment ISO
732@deftypefun int fetestexcept (int @var{excepts})
733Test whether the exception flags indicated by the parameter @var{except}
734are currently set. If any of them are, a nonzero value is returned
735which specifies which exceptions are set. Otherwise the result is zero.
736@end deftypefun
737
738To understand these functions, imagine that the status word is an
739integer variable named @var{status}. @code{feclearexcept} is then
740equivalent to @samp{status &= ~excepts} and @code{fetestexcept} is
741equivalent to @samp{(status & excepts)}. The actual implementation may
742be very different, of course.
743
744Exception flags are only cleared when the program explicitly requests it,
745by calling @code{feclearexcept}. If you want to check for exceptions
746from a set of calculations, you should clear all the flags first. Here
747is a simple example of the way to use @code{fetestexcept}:
b4012b75
UD
748
749@smallexample
7a68c94a
UD
750@{
751 double f;
752 int raised;
753 feclearexcept (FE_ALL_EXCEPT);
754 f = compute ();
755 raised = fetestexcept (FE_OVERFLOW | FE_INVALID);
95fdc6a0
UD
756 if (raised & FE_OVERFLOW) @{ /* @dots{} */ @}
757 if (raised & FE_INVALID) @{ /* @dots{} */ @}
758 /* @dots{} */
7a68c94a 759@}
b4012b75
UD
760@end smallexample
761
7a68c94a
UD
762You cannot explicitly set bits in the status word. You can, however,
763save the entire status word and restore it later. This is done with the
764following functions:
b4012b75 765
7a68c94a 766@comment fenv.h
b4012b75 767@comment ISO
63ae7b63 768@deftypefun int fegetexceptflag (fexcept_t *@var{flagp}, int @var{excepts})
7a68c94a
UD
769This function stores in the variable pointed to by @var{flagp} an
770implementation-defined value representing the current setting of the
771exception flags indicated by @var{excepts}.
63ae7b63
UD
772
773The function returns zero in case the operation was successful, a
774non-zero value otherwise.
7a68c94a 775@end deftypefun
b4012b75 776
7a68c94a
UD
777@comment fenv.h
778@comment ISO
9251c568 779@deftypefun int fesetexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
7a68c94a
UD
780This function restores the flags for the exceptions indicated by
781@var{excepts} to the values stored in the variable pointed to by
782@var{flagp}.
63ae7b63
UD
783
784The function returns zero in case the operation was successful, a
785non-zero value otherwise.
7a68c94a
UD
786@end deftypefun
787
788Note that the value stored in @code{fexcept_t} bears no resemblance to
789the bit mask returned by @code{fetestexcept}. The type may not even be
790an integer. Do not attempt to modify an @code{fexcept_t} variable.
791
792@node Math Error Reporting
793@subsection Error Reporting by Mathematical Functions
794@cindex errors, mathematical
795@cindex domain error
796@cindex range error
797
798Many of the math functions are defined only over a subset of the real or
799complex numbers. Even if they are mathematically defined, their result
800may be larger or smaller than the range representable by their return
801type. These are known as @dfn{domain errors}, @dfn{overflows}, and
802@dfn{underflows}, respectively. Math functions do several things when
803one of these errors occurs. In this manual we will refer to the
804complete response as @dfn{signalling} a domain error, overflow, or
805underflow.
806
807When a math function suffers a domain error, it raises the invalid
808exception and returns NaN. It also sets @var{errno} to @code{EDOM};
809this is for compatibility with old systems that do not support @w{IEEE
810754} exception handling. Likewise, when overflow occurs, math
811functions raise the overflow exception and return @math{@infinity{}} or
812@math{-@infinity{}} as appropriate. They also set @var{errno} to
813@code{ERANGE}. When underflow occurs, the underflow exception is
814raised, and zero (appropriately signed) is returned. @var{errno} may be
815set to @code{ERANGE}, but this is not guaranteed.
816
817Some of the math functions are defined mathematically to result in a
818complex value over parts of their domains. The most familiar example of
819this is taking the square root of a negative number. The complex math
820functions, such as @code{csqrt}, will return the appropriate complex value
821in this case. The real-valued functions, such as @code{sqrt}, will
822signal a domain error.
823
824Some older hardware does not support infinities. On that hardware,
825overflows instead return a particular very large number (usually the
826largest representable number). @file{math.h} defines macros you can use
827to test for overflow on both old and new hardware.
b4012b75
UD
828
829@comment math.h
830@comment ISO
7a68c94a 831@deftypevr Macro double HUGE_VAL
4260bc74
UD
832@comment math.h
833@comment ISO
7a68c94a 834@deftypevrx Macro float HUGE_VALF
4260bc74
UD
835@comment math.h
836@comment ISO
7a68c94a
UD
837@deftypevrx Macro {long double} HUGE_VALL
838An expression representing a particular very large number. On machines
839that use @w{IEEE 754} floating point format, @code{HUGE_VAL} is infinity.
840On other machines, it's typically the largest positive number that can
841be represented.
842
843Mathematical functions return the appropriately typed version of
844@code{HUGE_VAL} or @code{@minus{}HUGE_VAL} when the result is too large
845to be represented.
846@end deftypevr
b4012b75 847
7a68c94a
UD
848@node Rounding
849@section Rounding Modes
850
851Floating-point calculations are carried out internally with extra
852precision, and then rounded to fit into the destination type. This
853ensures that results are as precise as the input data. @w{IEEE 754}
854defines four possible rounding modes:
855
856@table @asis
857@item Round to nearest.
858This is the default mode. It should be used unless there is a specific
859need for one of the others. In this mode results are rounded to the
860nearest representable value. If the result is midway between two
861representable values, the even representable is chosen. @dfn{Even} here
862means the lowest-order bit is zero. This rounding mode prevents
863statistical bias and guarantees numeric stability: round-off errors in a
864lengthy calculation will remain smaller than half of @code{FLT_EPSILON}.
865
866@c @item Round toward @math{+@infinity{}}
867@item Round toward plus Infinity.
868All results are rounded to the smallest representable value
869which is greater than the result.
870
871@c @item Round toward @math{-@infinity{}}
872@item Round toward minus Infinity.
873All results are rounded to the largest representable value which is less
874than the result.
875
876@item Round toward zero.
877All results are rounded to the largest representable value whose
878magnitude is less than that of the result. In other words, if the
879result is negative it is rounded up; if it is positive, it is rounded
880down.
881@end table
b4012b75 882
7a68c94a
UD
883@noindent
884@file{fenv.h} defines constants which you can use to refer to the
885various rounding modes. Each one will be defined if and only if the FPU
886supports the corresponding rounding mode.
b4012b75 887
7a68c94a
UD
888@table @code
889@comment fenv.h
890@comment ISO
891@vindex FE_TONEAREST
892@item FE_TONEAREST
893Round to nearest.
b4012b75 894
7a68c94a
UD
895@comment fenv.h
896@comment ISO
897@vindex FE_UPWARD
898@item FE_UPWARD
899Round toward @math{+@infinity{}}.
b4012b75 900
7a68c94a
UD
901@comment fenv.h
902@comment ISO
903@vindex FE_DOWNWARD
904@item FE_DOWNWARD
905Round toward @math{-@infinity{}}.
b4012b75 906
7a68c94a
UD
907@comment fenv.h
908@comment ISO
909@vindex FE_TOWARDZERO
910@item FE_TOWARDZERO
911Round toward zero.
912@end table
b4012b75 913
7a68c94a
UD
914Underflow is an unusual case. Normally, @w{IEEE 754} floating point
915numbers are always normalized (@pxref{Floating Point Concepts}).
916Numbers smaller than @math{2^r} (where @math{r} is the minimum exponent,
917@code{FLT_MIN_RADIX-1} for @var{float}) cannot be represented as
918normalized numbers. Rounding all such numbers to zero or @math{2^r}
919would cause some algorithms to fail at 0. Therefore, they are left in
920denormalized form. That produces loss of precision, since some bits of
921the mantissa are stolen to indicate the decimal point.
922
923If a result is too small to be represented as a denormalized number, it
924is rounded to zero. However, the sign of the result is preserved; if
925the calculation was negative, the result is @dfn{negative zero}.
926Negative zero can also result from some operations on infinity, such as
cd837b09 927@math{4/-@infinity{}}.
7a68c94a
UD
928
929At any time one of the above four rounding modes is selected. You can
930find out which one with this function:
931
932@comment fenv.h
933@comment ISO
934@deftypefun int fegetround (void)
935Returns the currently selected rounding mode, represented by one of the
936values of the defined rounding mode macros.
937@end deftypefun
b4012b75 938
7a68c94a
UD
939@noindent
940To change the rounding mode, use this function:
b4012b75 941
7a68c94a
UD
942@comment fenv.h
943@comment ISO
944@deftypefun int fesetround (int @var{round})
945Changes the currently selected rounding mode to @var{round}. If
946@var{round} does not correspond to one of the supported rounding modes
d5655997
UD
947nothing is changed. @code{fesetround} returns zero if it changed the
948rounding mode, a nonzero value if the mode is not supported.
7a68c94a 949@end deftypefun
b4012b75 950
7a68c94a
UD
951You should avoid changing the rounding mode if possible. It can be an
952expensive operation; also, some hardware requires you to compile your
953program differently for it to work. The resulting code may run slower.
954See your compiler documentation for details.
955@c This section used to claim that functions existed to round one number
956@c in a specific fashion. I can't find any functions in the library
957@c that do that. -zw
958
959@node Control Functions
960@section Floating-Point Control Functions
961
962@w{IEEE 754} floating-point implementations allow the programmer to
963decide whether traps will occur for each of the exceptions, by setting
964bits in the @dfn{control word}. In C, traps result in the program
965receiving the @code{SIGFPE} signal; see @ref{Signal Handling}.
966
48b22986 967@strong{NB:} @w{IEEE 754} says that trap handlers are given details of
7a68c94a
UD
968the exceptional situation, and can set the result value. C signals do
969not provide any mechanism to pass this information back and forth.
970Trapping exceptions in C is therefore not very useful.
971
972It is sometimes necessary to save the state of the floating-point unit
973while you perform some calculation. The library provides functions
974which save and restore the exception flags, the set of exceptions that
975generate traps, and the rounding mode. This information is known as the
976@dfn{floating-point environment}.
977
978The functions to save and restore the floating-point environment all use
979a variable of type @code{fenv_t} to store information. This type is
980defined in @file{fenv.h}. Its size and contents are
981implementation-defined. You should not attempt to manipulate a variable
982of this type directly.
983
984To save the state of the FPU, use one of these functions:
985
986@comment fenv.h
b4012b75 987@comment ISO
63ae7b63 988@deftypefun int fegetenv (fenv_t *@var{envp})
7a68c94a
UD
989Store the floating-point environment in the variable pointed to by
990@var{envp}.
63ae7b63
UD
991
992The function returns zero in case the operation was successful, a
993non-zero value otherwise.
b4012b75
UD
994@end deftypefun
995
7a68c94a 996@comment fenv.h
b4012b75 997@comment ISO
7a68c94a
UD
998@deftypefun int feholdexcept (fenv_t *@var{envp})
999Store the current floating-point environment in the object pointed to by
1000@var{envp}. Then clear all exception flags, and set the FPU to trap no
1001exceptions. Not all FPUs support trapping no exceptions; if
0f6b172f
UD
1002@code{feholdexcept} cannot set this mode, it returns nonzero value. If it
1003succeeds, it returns zero.
b4012b75
UD
1004@end deftypefun
1005
7a7a7ee5 1006The functions which restore the floating-point environment can take these
7a68c94a 1007kinds of arguments:
b4012b75 1008
7a68c94a
UD
1009@itemize @bullet
1010@item
1011Pointers to @code{fenv_t} objects, which were initialized previously by a
1012call to @code{fegetenv} or @code{feholdexcept}.
1013@item
1014@vindex FE_DFL_ENV
1015The special macro @code{FE_DFL_ENV} which represents the floating-point
1016environment as it was available at program start.
1017@item
7a7a7ee5
AJ
1018Implementation defined macros with names starting with @code{FE_} and
1019having type @code{fenv_t *}.
b4012b75 1020
7a68c94a
UD
1021@vindex FE_NOMASK_ENV
1022If possible, the GNU C Library defines a macro @code{FE_NOMASK_ENV}
1023which represents an environment where every exception raised causes a
1024trap to occur. You can test for this macro using @code{#ifdef}. It is
1025only defined if @code{_GNU_SOURCE} is defined.
1026
1027Some platforms might define other predefined environments.
1028@end itemize
1029
1030@noindent
1031To set the floating-point environment, you can use either of these
1032functions:
1033
1034@comment fenv.h
b4012b75 1035@comment ISO
63ae7b63 1036@deftypefun int fesetenv (const fenv_t *@var{envp})
7a68c94a 1037Set the floating-point environment to that described by @var{envp}.
63ae7b63
UD
1038
1039The function returns zero in case the operation was successful, a
1040non-zero value otherwise.
b4012b75
UD
1041@end deftypefun
1042
7a68c94a 1043@comment fenv.h
b4012b75 1044@comment ISO
63ae7b63 1045@deftypefun int feupdateenv (const fenv_t *@var{envp})
7a68c94a
UD
1046Like @code{fesetenv}, this function sets the floating-point environment
1047to that described by @var{envp}. However, if any exceptions were
1048flagged in the status word before @code{feupdateenv} was called, they
1049remain flagged after the call. In other words, after @code{feupdateenv}
1050is called, the status word is the bitwise OR of the previous status word
1051and the one saved in @var{envp}.
63ae7b63
UD
1052
1053The function returns zero in case the operation was successful, a
1054non-zero value otherwise.
b4012b75
UD
1055@end deftypefun
1056
05ef7ce9
UD
1057@noindent
1058To control for individual exceptions if raising them causes a trap to
1059occur, you can use the following two functions.
1060
1061@strong{Portability Note:} These functions are all GNU extensions.
1062
1063@comment fenv.h
1064@comment GNU
1065@deftypefun int feenableexcept (int @var{excepts})
1066This functions enables traps for each of the exceptions as indicated by
1067the parameter @var{except}. The individual excepetions are described in
6e8afc1c 1068@ref{Status bit operations}. Only the specified exceptions are
05ef7ce9
UD
1069enabled, the status of the other exceptions is not changed.
1070
1071The function returns the previous enabled exceptions in case the
1072operation was successful, @code{-1} otherwise.
1073@end deftypefun
1074
1075@comment fenv.h
1076@comment GNU
1077@deftypefun int fedisableexcept (int @var{excepts})
1078This functions disables traps for each of the exceptions as indicated by
1079the parameter @var{except}. The individual excepetions are described in
6e8afc1c 1080@ref{Status bit operations}. Only the specified exceptions are
05ef7ce9
UD
1081disabled, the status of the other exceptions is not changed.
1082
1083The function returns the previous enabled exceptions in case the
1084operation was successful, @code{-1} otherwise.
1085@end deftypefun
1086
1087@comment fenv.h
1088@comment GNU
1089@deftypefun int fegetexcept (int @var{excepts})
1090The function returns a bitmask of all currently enabled exceptions. It
1091returns @code{-1} in case of failure.
6e8afc1c 1092@end deftypefun
05ef7ce9 1093
7a68c94a
UD
1094@node Arithmetic Functions
1095@section Arithmetic Functions
b4012b75 1096
7a68c94a
UD
1097The C library provides functions to do basic operations on
1098floating-point numbers. These include absolute value, maximum and minimum,
1099normalization, bit twiddling, rounding, and a few others.
b4012b75 1100
7a68c94a
UD
1101@menu
1102* Absolute Value:: Absolute values of integers and floats.
1103* Normalization Functions:: Extracting exponents and putting them back.
1104* Rounding Functions:: Rounding floats to integers.
1105* Remainder Functions:: Remainders on division, precisely defined.
1106* FP Bit Twiddling:: Sign bit adjustment. Adding epsilon.
1107* FP Comparison Functions:: Comparisons without risk of exceptions.
1108* Misc FP Arithmetic:: Max, min, positive difference, multiply-add.
1109@end menu
b4012b75 1110
28f540f4 1111@node Absolute Value
7a68c94a 1112@subsection Absolute Value
28f540f4
RM
1113@cindex absolute value functions
1114
1115These functions are provided for obtaining the @dfn{absolute value} (or
1116@dfn{magnitude}) of a number. The absolute value of a real number
2d26e9eb 1117@var{x} is @var{x} if @var{x} is positive, @minus{}@var{x} if @var{x} is
28f540f4
RM
1118negative. For a complex number @var{z}, whose real part is @var{x} and
1119whose imaginary part is @var{y}, the absolute value is @w{@code{sqrt
1120(@var{x}*@var{x} + @var{y}*@var{y})}}.
1121
1122@pindex math.h
1123@pindex stdlib.h
fe0ec73e 1124Prototypes for @code{abs}, @code{labs} and @code{llabs} are in @file{stdlib.h};
e518937a 1125@code{imaxabs} is declared in @file{inttypes.h};
7a68c94a 1126@code{fabs}, @code{fabsf} and @code{fabsl} are declared in @file{math.h}.
b4012b75 1127@code{cabs}, @code{cabsf} and @code{cabsl} are declared in @file{complex.h}.
28f540f4
RM
1128
1129@comment stdlib.h
f65fd747 1130@comment ISO
28f540f4 1131@deftypefun int abs (int @var{number})
4260bc74
UD
1132@comment stdlib.h
1133@comment ISO
7a68c94a 1134@deftypefunx {long int} labs (long int @var{number})
4260bc74
UD
1135@comment stdlib.h
1136@comment ISO
7a68c94a 1137@deftypefunx {long long int} llabs (long long int @var{number})
e518937a
UD
1138@comment inttypes.h
1139@comment ISO
1140@deftypefunx intmax_t imaxabs (intmax_t @var{number})
7a68c94a 1141These functions return the absolute value of @var{number}.
28f540f4
RM
1142
1143Most computers use a two's complement integer representation, in which
1144the absolute value of @code{INT_MIN} (the smallest possible @code{int})
1145cannot be represented; thus, @w{@code{abs (INT_MIN)}} is not defined.
28f540f4 1146
ec751a23 1147@code{llabs} and @code{imaxdiv} are new to @w{ISO C99}.
0e4ee106
UD
1148
1149See @ref{Integers} for a description of the @code{intmax_t} type.
1150
fe0ec73e
UD
1151@end deftypefun
1152
28f540f4 1153@comment math.h
f65fd747 1154@comment ISO
28f540f4 1155@deftypefun double fabs (double @var{number})
4260bc74
UD
1156@comment math.h
1157@comment ISO
779ae82e 1158@deftypefunx float fabsf (float @var{number})
4260bc74
UD
1159@comment math.h
1160@comment ISO
779ae82e 1161@deftypefunx {long double} fabsl (long double @var{number})
28f540f4
RM
1162This function returns the absolute value of the floating-point number
1163@var{number}.
1164@end deftypefun
1165
b4012b75
UD
1166@comment complex.h
1167@comment ISO
1168@deftypefun double cabs (complex double @var{z})
4260bc74
UD
1169@comment complex.h
1170@comment ISO
779ae82e 1171@deftypefunx float cabsf (complex float @var{z})
4260bc74
UD
1172@comment complex.h
1173@comment ISO
779ae82e 1174@deftypefunx {long double} cabsl (complex long double @var{z})
7a68c94a
UD
1175These functions return the absolute value of the complex number @var{z}
1176(@pxref{Complex Numbers}). The absolute value of a complex number is:
28f540f4
RM
1177
1178@smallexample
b4012b75 1179sqrt (creal (@var{z}) * creal (@var{z}) + cimag (@var{z}) * cimag (@var{z}))
28f540f4 1180@end smallexample
dfd2257a 1181
7a68c94a
UD
1182This function should always be used instead of the direct formula
1183because it takes special care to avoid losing precision. It may also
1184take advantage of hardware support for this operation. See @code{hypot}
8b7fb588 1185in @ref{Exponents and Logarithms}.
28f540f4
RM
1186@end deftypefun
1187
1188@node Normalization Functions
7a68c94a 1189@subsection Normalization Functions
28f540f4
RM
1190@cindex normalization functions (floating-point)
1191
1192The functions described in this section are primarily provided as a way
1193to efficiently perform certain low-level manipulations on floating point
1194numbers that are represented internally using a binary radix;
1195see @ref{Floating Point Concepts}. These functions are required to
1196have equivalent behavior even if the representation does not use a radix
1197of 2, but of course they are unlikely to be particularly efficient in
1198those cases.
1199
1200@pindex math.h
1201All these functions are declared in @file{math.h}.
1202
1203@comment math.h
f65fd747 1204@comment ISO
28f540f4 1205@deftypefun double frexp (double @var{value}, int *@var{exponent})
4260bc74
UD
1206@comment math.h
1207@comment ISO
779ae82e 1208@deftypefunx float frexpf (float @var{value}, int *@var{exponent})
4260bc74
UD
1209@comment math.h
1210@comment ISO
779ae82e 1211@deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent})
b4012b75 1212These functions are used to split the number @var{value}
28f540f4
RM
1213into a normalized fraction and an exponent.
1214
1215If the argument @var{value} is not zero, the return value is @var{value}
1216times a power of two, and is always in the range 1/2 (inclusive) to 1
1217(exclusive). The corresponding exponent is stored in
1218@code{*@var{exponent}}; the return value multiplied by 2 raised to this
1219exponent equals the original number @var{value}.
1220
1221For example, @code{frexp (12.8, &exponent)} returns @code{0.8} and
1222stores @code{4} in @code{exponent}.
1223
1224If @var{value} is zero, then the return value is zero and
1225zero is stored in @code{*@var{exponent}}.
1226@end deftypefun
1227
1228@comment math.h
f65fd747 1229@comment ISO
28f540f4 1230@deftypefun double ldexp (double @var{value}, int @var{exponent})
4260bc74
UD
1231@comment math.h
1232@comment ISO
779ae82e 1233@deftypefunx float ldexpf (float @var{value}, int @var{exponent})
4260bc74
UD
1234@comment math.h
1235@comment ISO
779ae82e 1236@deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent})
b4012b75 1237These functions return the result of multiplying the floating-point
28f540f4
RM
1238number @var{value} by 2 raised to the power @var{exponent}. (It can
1239be used to reassemble floating-point numbers that were taken apart
1240by @code{frexp}.)
1241
1242For example, @code{ldexp (0.8, 4)} returns @code{12.8}.
1243@end deftypefun
1244
7a68c94a 1245The following functions, which come from BSD, provide facilities
b7d03293
UD
1246equivalent to those of @code{ldexp} and @code{frexp}. See also the
1247@w{ISO C} function @code{logb} which originally also appeared in BSD.
7a68c94a
UD
1248
1249@comment math.h
1250@comment BSD
1251@deftypefun double scalb (double @var{value}, int @var{exponent})
4260bc74
UD
1252@comment math.h
1253@comment BSD
7a68c94a 1254@deftypefunx float scalbf (float @var{value}, int @var{exponent})
4260bc74
UD
1255@comment math.h
1256@comment BSD
7a68c94a
UD
1257@deftypefunx {long double} scalbl (long double @var{value}, int @var{exponent})
1258The @code{scalb} function is the BSD name for @code{ldexp}.
1259@end deftypefun
1260
1261@comment math.h
1262@comment BSD
cc6e48bc 1263@deftypefun {long long int} scalbn (double @var{x}, int @var{n})
4260bc74
UD
1264@comment math.h
1265@comment BSD
cc6e48bc 1266@deftypefunx {long long int} scalbnf (float @var{x}, int @var{n})
4260bc74
UD
1267@comment math.h
1268@comment BSD
cc6e48bc 1269@deftypefunx {long long int} scalbnl (long double @var{x}, int @var{n})
7a68c94a
UD
1270@code{scalbn} is identical to @code{scalb}, except that the exponent
1271@var{n} is an @code{int} instead of a floating-point number.
1272@end deftypefun
1273
1274@comment math.h
1275@comment BSD
cc6e48bc 1276@deftypefun {long long int} scalbln (double @var{x}, long int @var{n})
4260bc74
UD
1277@comment math.h
1278@comment BSD
cc6e48bc 1279@deftypefunx {long long int} scalblnf (float @var{x}, long int @var{n})
4260bc74
UD
1280@comment math.h
1281@comment BSD
cc6e48bc 1282@deftypefunx {long long int} scalblnl (long double @var{x}, long int @var{n})
7a68c94a
UD
1283@code{scalbln} is identical to @code{scalb}, except that the exponent
1284@var{n} is a @code{long int} instead of a floating-point number.
1285@end deftypefun
28f540f4 1286
7a68c94a
UD
1287@comment math.h
1288@comment BSD
1289@deftypefun {long long int} significand (double @var{x})
4260bc74
UD
1290@comment math.h
1291@comment BSD
7a68c94a 1292@deftypefunx {long long int} significandf (float @var{x})
4260bc74
UD
1293@comment math.h
1294@comment BSD
7a68c94a
UD
1295@deftypefunx {long long int} significandl (long double @var{x})
1296@code{significand} returns the mantissa of @var{x} scaled to the range
1297@math{[1, 2)}.
1298It is equivalent to @w{@code{scalb (@var{x}, (double) -ilogb (@var{x}))}}.
1299
1300This function exists mainly for use in certain standardized tests
1301of @w{IEEE 754} conformance.
28f540f4
RM
1302@end deftypefun
1303
7a68c94a
UD
1304@node Rounding Functions
1305@subsection Rounding Functions
28f540f4
RM
1306@cindex converting floats to integers
1307
1308@pindex math.h
7a68c94a
UD
1309The functions listed here perform operations such as rounding and
1310truncation of floating-point values. Some of these functions convert
1311floating point numbers to integer values. They are all declared in
1312@file{math.h}.
28f540f4
RM
1313
1314You can also convert floating-point numbers to integers simply by
1315casting them to @code{int}. This discards the fractional part,
1316effectively rounding towards zero. However, this only works if the
1317result can actually be represented as an @code{int}---for very large
1318numbers, this is impossible. The functions listed here return the
1319result as a @code{double} instead to get around this problem.
1320
1321@comment math.h
f65fd747 1322@comment ISO
28f540f4 1323@deftypefun double ceil (double @var{x})
4260bc74
UD
1324@comment math.h
1325@comment ISO
779ae82e 1326@deftypefunx float ceilf (float @var{x})
4260bc74
UD
1327@comment math.h
1328@comment ISO
779ae82e 1329@deftypefunx {long double} ceill (long double @var{x})
b4012b75 1330These functions round @var{x} upwards to the nearest integer,
28f540f4
RM
1331returning that value as a @code{double}. Thus, @code{ceil (1.5)}
1332is @code{2.0}.
1333@end deftypefun
1334
1335@comment math.h
f65fd747 1336@comment ISO
28f540f4 1337@deftypefun double floor (double @var{x})
4260bc74
UD
1338@comment math.h
1339@comment ISO
779ae82e 1340@deftypefunx float floorf (float @var{x})
4260bc74
UD
1341@comment math.h
1342@comment ISO
779ae82e 1343@deftypefunx {long double} floorl (long double @var{x})
b4012b75 1344These functions round @var{x} downwards to the nearest
28f540f4
RM
1345integer, returning that value as a @code{double}. Thus, @code{floor
1346(1.5)} is @code{1.0} and @code{floor (-1.5)} is @code{-2.0}.
1347@end deftypefun
1348
7a68c94a
UD
1349@comment math.h
1350@comment ISO
1351@deftypefun double trunc (double @var{x})
4260bc74
UD
1352@comment math.h
1353@comment ISO
7a68c94a 1354@deftypefunx float truncf (float @var{x})
4260bc74
UD
1355@comment math.h
1356@comment ISO
7a68c94a 1357@deftypefunx {long double} truncl (long double @var{x})
e6e81391
UD
1358The @code{trunc} functions round @var{x} towards zero to the nearest
1359integer (returned in floating-point format). Thus, @code{trunc (1.5)}
1360is @code{1.0} and @code{trunc (-1.5)} is @code{-1.0}.
7a68c94a
UD
1361@end deftypefun
1362
28f540f4 1363@comment math.h
b4012b75 1364@comment ISO
28f540f4 1365@deftypefun double rint (double @var{x})
4260bc74
UD
1366@comment math.h
1367@comment ISO
779ae82e 1368@deftypefunx float rintf (float @var{x})
4260bc74
UD
1369@comment math.h
1370@comment ISO
779ae82e 1371@deftypefunx {long double} rintl (long double @var{x})
b4012b75 1372These functions round @var{x} to an integer value according to the
28f540f4
RM
1373current rounding mode. @xref{Floating Point Parameters}, for
1374information about the various rounding modes. The default
1375rounding mode is to round to the nearest integer; some machines
1376support other modes, but round-to-nearest is always used unless
7a68c94a
UD
1377you explicitly select another.
1378
1379If @var{x} was not initially an integer, these functions raise the
1380inexact exception.
28f540f4
RM
1381@end deftypefun
1382
b4012b75
UD
1383@comment math.h
1384@comment ISO
1385@deftypefun double nearbyint (double @var{x})
4260bc74
UD
1386@comment math.h
1387@comment ISO
779ae82e 1388@deftypefunx float nearbyintf (float @var{x})
4260bc74
UD
1389@comment math.h
1390@comment ISO
779ae82e 1391@deftypefunx {long double} nearbyintl (long double @var{x})
7a68c94a
UD
1392These functions return the same value as the @code{rint} functions, but
1393do not raise the inexact exception if @var{x} is not an integer.
1394@end deftypefun
1395
1396@comment math.h
1397@comment ISO
1398@deftypefun double round (double @var{x})
4260bc74
UD
1399@comment math.h
1400@comment ISO
7a68c94a 1401@deftypefunx float roundf (float @var{x})
4260bc74
UD
1402@comment math.h
1403@comment ISO
7a68c94a
UD
1404@deftypefunx {long double} roundl (long double @var{x})
1405These functions are similar to @code{rint}, but they round halfway
713df3d5
RM
1406cases away from zero instead of to the nearest integer (or other
1407current rounding mode).
7a68c94a
UD
1408@end deftypefun
1409
1410@comment math.h
1411@comment ISO
1412@deftypefun {long int} lrint (double @var{x})
4260bc74
UD
1413@comment math.h
1414@comment ISO
7a68c94a 1415@deftypefunx {long int} lrintf (float @var{x})
4260bc74
UD
1416@comment math.h
1417@comment ISO
7a68c94a
UD
1418@deftypefunx {long int} lrintl (long double @var{x})
1419These functions are just like @code{rint}, but they return a
1420@code{long int} instead of a floating-point number.
1421@end deftypefun
1422
1423@comment math.h
1424@comment ISO
1425@deftypefun {long long int} llrint (double @var{x})
4260bc74
UD
1426@comment math.h
1427@comment ISO
7a68c94a 1428@deftypefunx {long long int} llrintf (float @var{x})
4260bc74
UD
1429@comment math.h
1430@comment ISO
7a68c94a
UD
1431@deftypefunx {long long int} llrintl (long double @var{x})
1432These functions are just like @code{rint}, but they return a
1433@code{long long int} instead of a floating-point number.
b4012b75
UD
1434@end deftypefun
1435
7a68c94a
UD
1436@comment math.h
1437@comment ISO
1438@deftypefun {long int} lround (double @var{x})
4260bc74
UD
1439@comment math.h
1440@comment ISO
7a68c94a 1441@deftypefunx {long int} lroundf (float @var{x})
4260bc74
UD
1442@comment math.h
1443@comment ISO
7a68c94a
UD
1444@deftypefunx {long int} lroundl (long double @var{x})
1445These functions are just like @code{round}, but they return a
1446@code{long int} instead of a floating-point number.
1447@end deftypefun
1448
1449@comment math.h
1450@comment ISO
1451@deftypefun {long long int} llround (double @var{x})
4260bc74
UD
1452@comment math.h
1453@comment ISO
7a68c94a 1454@deftypefunx {long long int} llroundf (float @var{x})
4260bc74
UD
1455@comment math.h
1456@comment ISO
7a68c94a
UD
1457@deftypefunx {long long int} llroundl (long double @var{x})
1458These functions are just like @code{round}, but they return a
1459@code{long long int} instead of a floating-point number.
1460@end deftypefun
1461
1462
28f540f4 1463@comment math.h
f65fd747 1464@comment ISO
28f540f4 1465@deftypefun double modf (double @var{value}, double *@var{integer-part})
4260bc74
UD
1466@comment math.h
1467@comment ISO
f2ea0f5b 1468@deftypefunx float modff (float @var{value}, float *@var{integer-part})
4260bc74
UD
1469@comment math.h
1470@comment ISO
779ae82e 1471@deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part})
b4012b75 1472These functions break the argument @var{value} into an integer part and a
28f540f4
RM
1473fractional part (between @code{-1} and @code{1}, exclusive). Their sum
1474equals @var{value}. Each of the parts has the same sign as @var{value},
7a68c94a 1475and the integer part is always rounded toward zero.
28f540f4
RM
1476
1477@code{modf} stores the integer part in @code{*@var{integer-part}}, and
1478returns the fractional part. For example, @code{modf (2.5, &intpart)}
1479returns @code{0.5} and stores @code{2.0} into @code{intpart}.
1480@end deftypefun
1481
7a68c94a
UD
1482@node Remainder Functions
1483@subsection Remainder Functions
1484
1485The functions in this section compute the remainder on division of two
1486floating-point numbers. Each is a little different; pick the one that
1487suits your problem.
1488
28f540f4 1489@comment math.h
f65fd747 1490@comment ISO
28f540f4 1491@deftypefun double fmod (double @var{numerator}, double @var{denominator})
4260bc74
UD
1492@comment math.h
1493@comment ISO
779ae82e 1494@deftypefunx float fmodf (float @var{numerator}, float @var{denominator})
4260bc74
UD
1495@comment math.h
1496@comment ISO
779ae82e 1497@deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator})
b4012b75 1498These functions compute the remainder from the division of
28f540f4
RM
1499@var{numerator} by @var{denominator}. Specifically, the return value is
1500@code{@var{numerator} - @w{@var{n} * @var{denominator}}}, where @var{n}
1501is the quotient of @var{numerator} divided by @var{denominator}, rounded
1502towards zero to an integer. Thus, @w{@code{fmod (6.5, 2.3)}} returns
1503@code{1.9}, which is @code{6.5} minus @code{4.6}.
1504
1505The result has the same sign as the @var{numerator} and has magnitude
1506less than the magnitude of the @var{denominator}.
1507
7a68c94a 1508If @var{denominator} is zero, @code{fmod} signals a domain error.
28f540f4
RM
1509@end deftypefun
1510
1511@comment math.h
1512@comment BSD
1513@deftypefun double drem (double @var{numerator}, double @var{denominator})
4260bc74
UD
1514@comment math.h
1515@comment BSD
779ae82e 1516@deftypefunx float dremf (float @var{numerator}, float @var{denominator})
4260bc74
UD
1517@comment math.h
1518@comment BSD
779ae82e 1519@deftypefunx {long double} dreml (long double @var{numerator}, long double @var{denominator})
76cf9889 1520These functions are like @code{fmod} except that they round the
28f540f4
RM
1521internal quotient @var{n} to the nearest integer instead of towards zero
1522to an integer. For example, @code{drem (6.5, 2.3)} returns @code{-0.4},
1523which is @code{6.5} minus @code{6.9}.
1524
1525The absolute value of the result is less than or equal to half the
1526absolute value of the @var{denominator}. The difference between
1527@code{fmod (@var{numerator}, @var{denominator})} and @code{drem
1528(@var{numerator}, @var{denominator})} is always either
1529@var{denominator}, minus @var{denominator}, or zero.
1530
7a68c94a 1531If @var{denominator} is zero, @code{drem} signals a domain error.
28f540f4
RM
1532@end deftypefun
1533
7a68c94a
UD
1534@comment math.h
1535@comment BSD
1536@deftypefun double remainder (double @var{numerator}, double @var{denominator})
4260bc74
UD
1537@comment math.h
1538@comment BSD
7a68c94a 1539@deftypefunx float remainderf (float @var{numerator}, float @var{denominator})
4260bc74
UD
1540@comment math.h
1541@comment BSD
7a68c94a
UD
1542@deftypefunx {long double} remainderl (long double @var{numerator}, long double @var{denominator})
1543This function is another name for @code{drem}.
1544@end deftypefun
28f540f4 1545
7a68c94a
UD
1546@node FP Bit Twiddling
1547@subsection Setting and modifying single bits of FP values
fe0ec73e
UD
1548@cindex FP arithmetic
1549
7a68c94a 1550There are some operations that are too complicated or expensive to
ec751a23 1551perform by hand on floating-point numbers. @w{ISO C99} defines
7a68c94a
UD
1552functions to do these operations, which mostly involve changing single
1553bits.
fe0ec73e
UD
1554
1555@comment math.h
1556@comment ISO
1557@deftypefun double copysign (double @var{x}, double @var{y})
4260bc74
UD
1558@comment math.h
1559@comment ISO
fe0ec73e 1560@deftypefunx float copysignf (float @var{x}, float @var{y})
4260bc74
UD
1561@comment math.h
1562@comment ISO
fe0ec73e 1563@deftypefunx {long double} copysignl (long double @var{x}, long double @var{y})
7a68c94a
UD
1564These functions return @var{x} but with the sign of @var{y}. They work
1565even if @var{x} or @var{y} are NaN or zero. Both of these can carry a
1566sign (although not all implementations support it) and this is one of
1567the few operations that can tell the difference.
fe0ec73e 1568
7a68c94a
UD
1569@code{copysign} never raises an exception.
1570@c except signalling NaNs
fe0ec73e
UD
1571
1572This function is defined in @w{IEC 559} (and the appendix with
1573recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1574@end deftypefun
1575
1576@comment math.h
1577@comment ISO
1578@deftypefun int signbit (@emph{float-type} @var{x})
1579@code{signbit} is a generic macro which can work on all floating-point
1580types. It returns a nonzero value if the value of @var{x} has its sign
1581bit set.
1582
7a68c94a
UD
1583This is not the same as @code{x < 0.0}, because @w{IEEE 754} floating
1584point allows zero to be signed. The comparison @code{-0.0 < 0.0} is
1585false, but @code{signbit (-0.0)} will return a nonzero value.
fe0ec73e
UD
1586@end deftypefun
1587
1588@comment math.h
1589@comment ISO
1590@deftypefun double nextafter (double @var{x}, double @var{y})
4260bc74
UD
1591@comment math.h
1592@comment ISO
fe0ec73e 1593@deftypefunx float nextafterf (float @var{x}, float @var{y})
4260bc74
UD
1594@comment math.h
1595@comment ISO
fe0ec73e
UD
1596@deftypefunx {long double} nextafterl (long double @var{x}, long double @var{y})
1597The @code{nextafter} function returns the next representable neighbor of
7a68c94a
UD
1598@var{x} in the direction towards @var{y}. The size of the step between
1599@var{x} and the result depends on the type of the result. If
0a7fef01 1600@math{@var{x} = @var{y}} the function simply returns @var{y}. If either
7a68c94a
UD
1601value is @code{NaN}, @code{NaN} is returned. Otherwise
1602a value corresponding to the value of the least significant bit in the
1603mantissa is added or subtracted, depending on the direction.
1604@code{nextafter} will signal overflow or underflow if the result goes
1605outside of the range of normalized numbers.
fe0ec73e
UD
1606
1607This function is defined in @w{IEC 559} (and the appendix with
1608recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1609@end deftypefun
1610
7a68c94a
UD
1611@comment math.h
1612@comment ISO
36fe9ac9 1613@deftypefun double nexttoward (double @var{x}, long double @var{y})
4260bc74
UD
1614@comment math.h
1615@comment ISO
36fe9ac9 1616@deftypefunx float nexttowardf (float @var{x}, long double @var{y})
4260bc74
UD
1617@comment math.h
1618@comment ISO
36fe9ac9 1619@deftypefunx {long double} nexttowardl (long double @var{x}, long double @var{y})
7a68c94a
UD
1620These functions are identical to the corresponding versions of
1621@code{nextafter} except that their second argument is a @code{long
1622double}.
1623@end deftypefun
1624
fe0ec73e
UD
1625@cindex NaN
1626@comment math.h
1627@comment ISO
1628@deftypefun double nan (const char *@var{tagp})
4260bc74
UD
1629@comment math.h
1630@comment ISO
fe0ec73e 1631@deftypefunx float nanf (const char *@var{tagp})
4260bc74
UD
1632@comment math.h
1633@comment ISO
fe0ec73e 1634@deftypefunx {long double} nanl (const char *@var{tagp})
7a68c94a
UD
1635The @code{nan} function returns a representation of NaN, provided that
1636NaN is supported by the target platform.
1637@code{nan ("@var{n-char-sequence}")} is equivalent to
1638@code{strtod ("NAN(@var{n-char-sequence})")}.
1639
1640The argument @var{tagp} is used in an unspecified manner. On @w{IEEE
1641754} systems, there are many representations of NaN, and @var{tagp}
1642selects one. On other systems it may do nothing.
fe0ec73e
UD
1643@end deftypefun
1644
7a68c94a
UD
1645@node FP Comparison Functions
1646@subsection Floating-Point Comparison Functions
1647@cindex unordered comparison
fe0ec73e 1648
7a68c94a
UD
1649The standard C comparison operators provoke exceptions when one or other
1650of the operands is NaN. For example,
1651
1652@smallexample
1653int v = a < 1.0;
1654@end smallexample
1655
1656@noindent
1657will raise an exception if @var{a} is NaN. (This does @emph{not}
1658happen with @code{==} and @code{!=}; those merely return false and true,
1659respectively, when NaN is examined.) Frequently this exception is
ec751a23 1660undesirable. @w{ISO C99} therefore defines comparison functions that
7a68c94a
UD
1661do not raise exceptions when NaN is examined. All of the functions are
1662implemented as macros which allow their arguments to be of any
1663floating-point type. The macros are guaranteed to evaluate their
1664arguments only once.
1665
1666@comment math.h
1667@comment ISO
1668@deftypefn Macro int isgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1669This macro determines whether the argument @var{x} is greater than
1670@var{y}. It is equivalent to @code{(@var{x}) > (@var{y})}, but no
1671exception is raised if @var{x} or @var{y} are NaN.
1672@end deftypefn
1673
1674@comment math.h
1675@comment ISO
1676@deftypefn Macro int isgreaterequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1677This macro determines whether the argument @var{x} is greater than or
1678equal to @var{y}. It is equivalent to @code{(@var{x}) >= (@var{y})}, but no
1679exception is raised if @var{x} or @var{y} are NaN.
1680@end deftypefn
1681
1682@comment math.h
1683@comment ISO
1684@deftypefn Macro int isless (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1685This macro determines whether the argument @var{x} is less than @var{y}.
1686It is equivalent to @code{(@var{x}) < (@var{y})}, but no exception is
1687raised if @var{x} or @var{y} are NaN.
1688@end deftypefn
1689
1690@comment math.h
1691@comment ISO
1692@deftypefn Macro int islessequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1693This macro determines whether the argument @var{x} is less than or equal
1694to @var{y}. It is equivalent to @code{(@var{x}) <= (@var{y})}, but no
1695exception is raised if @var{x} or @var{y} are NaN.
1696@end deftypefn
1697
1698@comment math.h
1699@comment ISO
1700@deftypefn Macro int islessgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1701This macro determines whether the argument @var{x} is less or greater
1702than @var{y}. It is equivalent to @code{(@var{x}) < (@var{y}) ||
1703(@var{x}) > (@var{y})} (although it only evaluates @var{x} and @var{y}
1704once), but no exception is raised if @var{x} or @var{y} are NaN.
1705
1706This macro is not equivalent to @code{@var{x} != @var{y}}, because that
1707expression is true if @var{x} or @var{y} are NaN.
1708@end deftypefn
1709
1710@comment math.h
1711@comment ISO
1712@deftypefn Macro int isunordered (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1713This macro determines whether its arguments are unordered. In other
1714words, it is true if @var{x} or @var{y} are NaN, and false otherwise.
1715@end deftypefn
1716
1717Not all machines provide hardware support for these operations. On
1718machines that don't, the macros can be very slow. Therefore, you should
1719not use these functions when NaN is not a concern.
1720
48b22986 1721@strong{NB:} There are no macros @code{isequal} or @code{isunequal}.
7a68c94a
UD
1722They are unnecessary, because the @code{==} and @code{!=} operators do
1723@emph{not} throw an exception if one or both of the operands are NaN.
1724
1725@node Misc FP Arithmetic
1726@subsection Miscellaneous FP arithmetic functions
fe0ec73e
UD
1727@cindex minimum
1728@cindex maximum
7a68c94a
UD
1729@cindex positive difference
1730@cindex multiply-add
fe0ec73e 1731
7a68c94a
UD
1732The functions in this section perform miscellaneous but common
1733operations that are awkward to express with C operators. On some
1734processors these functions can use special machine instructions to
1735perform these operations faster than the equivalent C code.
fe0ec73e
UD
1736
1737@comment math.h
1738@comment ISO
1739@deftypefun double fmin (double @var{x}, double @var{y})
4260bc74
UD
1740@comment math.h
1741@comment ISO
fe0ec73e 1742@deftypefunx float fminf (float @var{x}, float @var{y})
4260bc74
UD
1743@comment math.h
1744@comment ISO
fe0ec73e 1745@deftypefunx {long double} fminl (long double @var{x}, long double @var{y})
7a68c94a
UD
1746The @code{fmin} function returns the lesser of the two values @var{x}
1747and @var{y}. It is similar to the expression
1748@smallexample
1749((x) < (y) ? (x) : (y))
1750@end smallexample
1751except that @var{x} and @var{y} are only evaluated once.
fe0ec73e 1752
7a68c94a
UD
1753If an argument is NaN, the other argument is returned. If both arguments
1754are NaN, NaN is returned.
fe0ec73e
UD
1755@end deftypefun
1756
1757@comment math.h
1758@comment ISO
1759@deftypefun double fmax (double @var{x}, double @var{y})
4260bc74
UD
1760@comment math.h
1761@comment ISO
fe0ec73e 1762@deftypefunx float fmaxf (float @var{x}, float @var{y})
4260bc74
UD
1763@comment math.h
1764@comment ISO
fe0ec73e 1765@deftypefunx {long double} fmaxl (long double @var{x}, long double @var{y})
7a68c94a
UD
1766The @code{fmax} function returns the greater of the two values @var{x}
1767and @var{y}.
fe0ec73e 1768
7a68c94a
UD
1769If an argument is NaN, the other argument is returned. If both arguments
1770are NaN, NaN is returned.
fe0ec73e
UD
1771@end deftypefun
1772
1773@comment math.h
1774@comment ISO
1775@deftypefun double fdim (double @var{x}, double @var{y})
4260bc74
UD
1776@comment math.h
1777@comment ISO
fe0ec73e 1778@deftypefunx float fdimf (float @var{x}, float @var{y})
4260bc74
UD
1779@comment math.h
1780@comment ISO
fe0ec73e 1781@deftypefunx {long double} fdiml (long double @var{x}, long double @var{y})
7a68c94a
UD
1782The @code{fdim} function returns the positive difference between
1783@var{x} and @var{y}. The positive difference is @math{@var{x} -
1784@var{y}} if @var{x} is greater than @var{y}, and @math{0} otherwise.
fe0ec73e 1785
7a68c94a 1786If @var{x}, @var{y}, or both are NaN, NaN is returned.
fe0ec73e
UD
1787@end deftypefun
1788
1789@comment math.h
1790@comment ISO
1791@deftypefun double fma (double @var{x}, double @var{y}, double @var{z})
4260bc74
UD
1792@comment math.h
1793@comment ISO
fe0ec73e 1794@deftypefunx float fmaf (float @var{x}, float @var{y}, float @var{z})
4260bc74
UD
1795@comment math.h
1796@comment ISO
fe0ec73e
UD
1797@deftypefunx {long double} fmal (long double @var{x}, long double @var{y}, long double @var{z})
1798@cindex butterfly
7a68c94a
UD
1799The @code{fma} function performs floating-point multiply-add. This is
1800the operation @math{(@var{x} @mul{} @var{y}) + @var{z}}, but the
1801intermediate result is not rounded to the destination type. This can
1802sometimes improve the precision of a calculation.
1803
1804This function was introduced because some processors have a special
1805instruction to perform multiply-add. The C compiler cannot use it
1806directly, because the expression @samp{x*y + z} is defined to round the
1807intermediate result. @code{fma} lets you choose when you want to round
1808only once.
fe0ec73e
UD
1809
1810@vindex FP_FAST_FMA
7a68c94a
UD
1811On processors which do not implement multiply-add in hardware,
1812@code{fma} can be very slow since it must avoid intermediate rounding.
1813@file{math.h} defines the symbols @code{FP_FAST_FMA},
1814@code{FP_FAST_FMAF}, and @code{FP_FAST_FMAL} when the corresponding
1815version of @code{fma} is no slower than the expression @samp{x*y + z}.
1816In the GNU C library, this always means the operation is implemented in
1817hardware.
fe0ec73e
UD
1818@end deftypefun
1819
7a68c94a
UD
1820@node Complex Numbers
1821@section Complex Numbers
1822@pindex complex.h
1823@cindex complex numbers
1824
ec751a23 1825@w{ISO C99} introduces support for complex numbers in C. This is done
7a68c94a
UD
1826with a new type qualifier, @code{complex}. It is a keyword if and only
1827if @file{complex.h} has been included. There are three complex types,
1828corresponding to the three real types: @code{float complex},
1829@code{double complex}, and @code{long double complex}.
1830
1831To construct complex numbers you need a way to indicate the imaginary
1832part of a number. There is no standard notation for an imaginary
1833floating point constant. Instead, @file{complex.h} defines two macros
1834that can be used to create complex numbers.
1835
1836@deftypevr Macro {const float complex} _Complex_I
1837This macro is a representation of the complex number ``@math{0+1i}''.
1838Multiplying a real floating-point value by @code{_Complex_I} gives a
1839complex number whose value is purely imaginary. You can use this to
1840construct complex constants:
1841
1842@smallexample
1843@math{3.0 + 4.0i} = @code{3.0 + 4.0 * _Complex_I}
1844@end smallexample
1845
1846Note that @code{_Complex_I * _Complex_I} has the value @code{-1}, but
1847the type of that value is @code{complex}.
1848@end deftypevr
1849
1850@c Put this back in when gcc supports _Imaginary_I. It's too confusing.
1851@ignore
1852@noindent
1853Without an optimizing compiler this is more expensive than the use of
1854@code{_Imaginary_I} but with is better than nothing. You can avoid all
1855the hassles if you use the @code{I} macro below if the name is not
1856problem.
1857
1858@deftypevr Macro {const float imaginary} _Imaginary_I
1859This macro is a representation of the value ``@math{1i}''. I.e., it is
1860the value for which
1861
1862@smallexample
1863_Imaginary_I * _Imaginary_I = -1
1864@end smallexample
1865
1866@noindent
1867The result is not of type @code{float imaginary} but instead @code{float}.
1868One can use it to easily construct complex number like in
1869
1870@smallexample
18713.0 - _Imaginary_I * 4.0
1872@end smallexample
1873
1874@noindent
1875which results in the complex number with a real part of 3.0 and a
1876imaginary part -4.0.
1877@end deftypevr
1878@end ignore
1879
1880@noindent
1881@code{_Complex_I} is a bit of a mouthful. @file{complex.h} also defines
1882a shorter name for the same constant.
1883
1884@deftypevr Macro {const float complex} I
1885This macro has exactly the same value as @code{_Complex_I}. Most of the
1886time it is preferable. However, it causes problems if you want to use
1887the identifier @code{I} for something else. You can safely write
1888
1889@smallexample
1890#include <complex.h>
1891#undef I
1892@end smallexample
1893
1894@noindent
1895if you need @code{I} for your own purposes. (In that case we recommend
1896you also define some other short name for @code{_Complex_I}, such as
1897@code{J}.)
1898
1899@ignore
1900If the implementation does not support the @code{imaginary} types
1901@code{I} is defined as @code{_Complex_I} which is the second best
1902solution. It still can be used in the same way but requires a most
1903clever compiler to get the same results.
1904@end ignore
1905@end deftypevr
1906
1907@node Operations on Complex
1908@section Projections, Conjugates, and Decomposing of Complex Numbers
1909@cindex project complex numbers
1910@cindex conjugate complex numbers
1911@cindex decompose complex numbers
1912@pindex complex.h
1913
ec751a23 1914@w{ISO C99} also defines functions that perform basic operations on
7a68c94a
UD
1915complex numbers, such as decomposition and conjugation. The prototypes
1916for all these functions are in @file{complex.h}. All functions are
1917available in three variants, one for each of the three complex types.
1918
1919@comment complex.h
1920@comment ISO
1921@deftypefun double creal (complex double @var{z})
4260bc74
UD
1922@comment complex.h
1923@comment ISO
7a68c94a 1924@deftypefunx float crealf (complex float @var{z})
4260bc74
UD
1925@comment complex.h
1926@comment ISO
7a68c94a
UD
1927@deftypefunx {long double} creall (complex long double @var{z})
1928These functions return the real part of the complex number @var{z}.
1929@end deftypefun
1930
1931@comment complex.h
1932@comment ISO
1933@deftypefun double cimag (complex double @var{z})
4260bc74
UD
1934@comment complex.h
1935@comment ISO
7a68c94a 1936@deftypefunx float cimagf (complex float @var{z})
4260bc74
UD
1937@comment complex.h
1938@comment ISO
7a68c94a
UD
1939@deftypefunx {long double} cimagl (complex long double @var{z})
1940These functions return the imaginary part of the complex number @var{z}.
1941@end deftypefun
1942
1943@comment complex.h
1944@comment ISO
1945@deftypefun {complex double} conj (complex double @var{z})
4260bc74
UD
1946@comment complex.h
1947@comment ISO
7a68c94a 1948@deftypefunx {complex float} conjf (complex float @var{z})
4260bc74
UD
1949@comment complex.h
1950@comment ISO
7a68c94a
UD
1951@deftypefunx {complex long double} conjl (complex long double @var{z})
1952These functions return the conjugate value of the complex number
1953@var{z}. The conjugate of a complex number has the same real part and a
1954negated imaginary part. In other words, @samp{conj(a + bi) = a + -bi}.
1955@end deftypefun
1956
1957@comment complex.h
1958@comment ISO
1959@deftypefun double carg (complex double @var{z})
4260bc74
UD
1960@comment complex.h
1961@comment ISO
7a68c94a 1962@deftypefunx float cargf (complex float @var{z})
4260bc74
UD
1963@comment complex.h
1964@comment ISO
7a68c94a
UD
1965@deftypefunx {long double} cargl (complex long double @var{z})
1966These functions return the argument of the complex number @var{z}.
1967The argument of a complex number is the angle in the complex plane
1968between the positive real axis and a line passing through zero and the
1969number. This angle is measured in the usual fashion and ranges from @math{0}
1970to @math{2@pi{}}.
1971
1972@code{carg} has a branch cut along the positive real axis.
1973@end deftypefun
1974
1975@comment complex.h
1976@comment ISO
1977@deftypefun {complex double} cproj (complex double @var{z})
4260bc74
UD
1978@comment complex.h
1979@comment ISO
7a68c94a 1980@deftypefunx {complex float} cprojf (complex float @var{z})
4260bc74
UD
1981@comment complex.h
1982@comment ISO
7a68c94a
UD
1983@deftypefunx {complex long double} cprojl (complex long double @var{z})
1984These functions return the projection of the complex value @var{z} onto
1985the Riemann sphere. Values with a infinite imaginary part are projected
1986to positive infinity on the real axis, even if the real part is NaN. If
1987the real part is infinite, the result is equivalent to
1988
1989@smallexample
1990INFINITY + I * copysign (0.0, cimag (z))
1991@end smallexample
1992@end deftypefun
fe0ec73e 1993
28f540f4
RM
1994@node Parsing of Numbers
1995@section Parsing of Numbers
1996@cindex parsing numbers (in formatted input)
1997@cindex converting strings to numbers
1998@cindex number syntax, parsing
1999@cindex syntax, for reading numbers
2000
2001This section describes functions for ``reading'' integer and
2002floating-point numbers from a string. It may be more convenient in some
2003cases to use @code{sscanf} or one of the related functions; see
2004@ref{Formatted Input}. But often you can make a program more robust by
2005finding the tokens in the string by hand, then converting the numbers
2006one by one.
2007
2008@menu
2009* Parsing of Integers:: Functions for conversion of integer values.
2010* Parsing of Floats:: Functions for conversion of floating-point
2011 values.
2012@end menu
2013
2014@node Parsing of Integers
2015@subsection Parsing of Integers
2016
2017@pindex stdlib.h
b642f101
UD
2018@pindex wchar.h
2019The @samp{str} functions are declared in @file{stdlib.h} and those
2020beginning with @samp{wcs} are declared in @file{wchar.h}. One might
2021wonder about the use of @code{restrict} in the prototypes of the
2022functions in this section. It is seemingly useless but the @w{ISO C}
2023standard uses it (for the functions defined there) so we have to do it
2024as well.
28f540f4
RM
2025
2026@comment stdlib.h
f65fd747 2027@comment ISO
b642f101 2028@deftypefun {long int} strtol (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
28f540f4
RM
2029The @code{strtol} (``string-to-long'') function converts the initial
2030part of @var{string} to a signed integer, which is returned as a value
b8fe19fa 2031of type @code{long int}.
28f540f4
RM
2032
2033This function attempts to decompose @var{string} as follows:
2034
2035@itemize @bullet
b8fe19fa 2036@item
28f540f4
RM
2037A (possibly empty) sequence of whitespace characters. Which characters
2038are whitespace is determined by the @code{isspace} function
2039(@pxref{Classification of Characters}). These are discarded.
2040
b8fe19fa 2041@item
28f540f4
RM
2042An optional plus or minus sign (@samp{+} or @samp{-}).
2043
b8fe19fa 2044@item
28f540f4
RM
2045A nonempty sequence of digits in the radix specified by @var{base}.
2046
2047If @var{base} is zero, decimal radix is assumed unless the series of
2048digits begins with @samp{0} (specifying octal radix), or @samp{0x} or
2049@samp{0X} (specifying hexadecimal radix); in other words, the same
2050syntax used for integer constants in C.
2051
600a7457 2052Otherwise @var{base} must have a value between @code{2} and @code{36}.
28f540f4 2053If @var{base} is @code{16}, the digits may optionally be preceded by
2c6fe0bd
UD
2054@samp{0x} or @samp{0X}. If base has no legal value the value returned
2055is @code{0l} and the global variable @code{errno} is set to @code{EINVAL}.
28f540f4 2056
b8fe19fa 2057@item
28f540f4
RM
2058Any remaining characters in the string. If @var{tailptr} is not a null
2059pointer, @code{strtol} stores a pointer to this tail in
2060@code{*@var{tailptr}}.
2061@end itemize
2062
2063If the string is empty, contains only whitespace, or does not contain an
2064initial substring that has the expected syntax for an integer in the
2065specified @var{base}, no conversion is performed. In this case,
2066@code{strtol} returns a value of zero and the value stored in
2067@code{*@var{tailptr}} is the value of @var{string}.
2068
2069In a locale other than the standard @code{"C"} locale, this function
2070may recognize additional implementation-dependent syntax.
2071
2072If the string has valid syntax for an integer but the value is not
2073representable because of overflow, @code{strtol} returns either
2074@code{LONG_MAX} or @code{LONG_MIN} (@pxref{Range of Type}), as
2075appropriate for the sign of the value. It also sets @code{errno}
2076to @code{ERANGE} to indicate there was overflow.
2077
7a68c94a
UD
2078You should not check for errors by examining the return value of
2079@code{strtol}, because the string might be a valid representation of
2080@code{0l}, @code{LONG_MAX}, or @code{LONG_MIN}. Instead, check whether
2081@var{tailptr} points to what you expect after the number
2082(e.g. @code{'\0'} if the string should end after the number). You also
2083need to clear @var{errno} before the call and check it afterward, in
2084case there was overflow.
2c6fe0bd 2085
28f540f4
RM
2086There is an example at the end of this section.
2087@end deftypefun
2088
b642f101
UD
2089@comment wchar.h
2090@comment ISO
2091@deftypefun {long int} wcstol (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2092The @code{wcstol} function is equivalent to the @code{strtol} function
2093in nearly all aspects but handles wide character strings.
b642f101
UD
2094
2095The @code{wcstol} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2096@end deftypefun
2097
28f540f4 2098@comment stdlib.h
f65fd747 2099@comment ISO
b642f101 2100@deftypefun {unsigned long int} strtoul (const char *retrict @var{string}, char **restrict @var{tailptr}, int @var{base})
28f540f4 2101The @code{strtoul} (``string-to-unsigned-long'') function is like
0e4ee106 2102@code{strtol} except it converts to an @code{unsigned long int} value.
7a68c94a 2103The syntax is the same as described above for @code{strtol}. The value
0e4ee106
UD
2104returned on overflow is @code{ULONG_MAX} (@pxref{Range of Type}).
2105
2106If @var{string} depicts a negative number, @code{strtoul} acts the same
2107as @var{strtol} but casts the result to an unsigned integer. That means
2108for example that @code{strtoul} on @code{"-1"} returns @code{ULONG_MAX}
e6e81391 2109and an input more negative than @code{LONG_MIN} returns
0e4ee106 2110(@code{ULONG_MAX} + 1) / 2.
7a68c94a
UD
2111
2112@code{strtoul} sets @var{errno} to @code{EINVAL} if @var{base} is out of
2113range, or @code{ERANGE} on overflow.
2c6fe0bd
UD
2114@end deftypefun
2115
b642f101
UD
2116@comment wchar.h
2117@comment ISO
2118@deftypefun {unsigned long int} wcstoul (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2119The @code{wcstoul} function is equivalent to the @code{strtoul} function
2120in nearly all aspects but handles wide character strings.
b642f101
UD
2121
2122The @code{wcstoul} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2123@end deftypefun
2124
2c6fe0bd 2125@comment stdlib.h
7a68c94a 2126@comment ISO
b642f101 2127@deftypefun {long long int} strtoll (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
7a68c94a
UD
2128The @code{strtoll} function is like @code{strtol} except that it returns
2129a @code{long long int} value, and accepts numbers with a correspondingly
2130larger range.
2c6fe0bd
UD
2131
2132If the string has valid syntax for an integer but the value is not
fe7bdd63 2133representable because of overflow, @code{strtoll} returns either
7bb764bc 2134@code{LLONG_MAX} or @code{LLONG_MIN} (@pxref{Range of Type}), as
2c6fe0bd
UD
2135appropriate for the sign of the value. It also sets @code{errno} to
2136@code{ERANGE} to indicate there was overflow.
2c6fe0bd 2137
ec751a23 2138The @code{strtoll} function was introduced in @w{ISO C99}.
2c6fe0bd
UD
2139@end deftypefun
2140
b642f101
UD
2141@comment wchar.h
2142@comment ISO
2143@deftypefun {long long int} wcstoll (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2144The @code{wcstoll} function is equivalent to the @code{strtoll} function
2145in nearly all aspects but handles wide character strings.
b642f101
UD
2146
2147The @code{wcstoll} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2148@end deftypefun
2149
2c6fe0bd
UD
2150@comment stdlib.h
2151@comment BSD
b642f101 2152@deftypefun {long long int} strtoq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
7a68c94a 2153@code{strtoq} (``string-to-quad-word'') is the BSD name for @code{strtoll}.
2c6fe0bd
UD
2154@end deftypefun
2155
b642f101
UD
2156@comment wchar.h
2157@comment GNU
2158@deftypefun {long long int} wcstoq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2159The @code{wcstoq} function is equivalent to the @code{strtoq} function
2160in nearly all aspects but handles wide character strings.
b642f101
UD
2161
2162The @code{wcstoq} function is a GNU extension.
2163@end deftypefun
2164
2c6fe0bd 2165@comment stdlib.h
7a68c94a 2166@comment ISO
b642f101 2167@deftypefun {unsigned long long int} strtoull (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
0e4ee106
UD
2168The @code{strtoull} function is related to @code{strtoll} the same way
2169@code{strtoul} is related to @code{strtol}.
fe7bdd63 2170
ec751a23 2171The @code{strtoull} function was introduced in @w{ISO C99}.
fe7bdd63
UD
2172@end deftypefun
2173
b642f101
UD
2174@comment wchar.h
2175@comment ISO
2176@deftypefun {unsigned long long int} wcstoull (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2177The @code{wcstoull} function is equivalent to the @code{strtoull} function
2178in nearly all aspects but handles wide character strings.
b642f101
UD
2179
2180The @code{wcstoull} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2181@end deftypefun
2182
fe7bdd63
UD
2183@comment stdlib.h
2184@comment BSD
b642f101 2185@deftypefun {unsigned long long int} strtouq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
7a68c94a 2186@code{strtouq} is the BSD name for @code{strtoull}.
28f540f4
RM
2187@end deftypefun
2188
b642f101
UD
2189@comment wchar.h
2190@comment GNU
2191@deftypefun {unsigned long long int} wcstouq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2192The @code{wcstouq} function is equivalent to the @code{strtouq} function
2193in nearly all aspects but handles wide character strings.
b642f101 2194
f5708cb0 2195The @code{wcstouq} function is a GNU extension.
b642f101
UD
2196@end deftypefun
2197
0e4ee106 2198@comment inttypes.h
b642f101
UD
2199@comment ISO
2200@deftypefun intmax_t strtoimax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
0e4ee106
UD
2201The @code{strtoimax} function is like @code{strtol} except that it returns
2202a @code{intmax_t} value, and accepts numbers of a corresponding range.
2203
2204If the string has valid syntax for an integer but the value is not
2205representable because of overflow, @code{strtoimax} returns either
2206@code{INTMAX_MAX} or @code{INTMAX_MIN} (@pxref{Integers}), as
2207appropriate for the sign of the value. It also sets @code{errno} to
2208@code{ERANGE} to indicate there was overflow.
2209
b642f101
UD
2210See @ref{Integers} for a description of the @code{intmax_t} type. The
2211@code{strtoimax} function was introduced in @w{ISO C99}.
2212@end deftypefun
0e4ee106 2213
b642f101
UD
2214@comment wchar.h
2215@comment ISO
2216@deftypefun intmax_t wcstoimax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2217The @code{wcstoimax} function is equivalent to the @code{strtoimax} function
2218in nearly all aspects but handles wide character strings.
0e4ee106 2219
b642f101 2220The @code{wcstoimax} function was introduced in @w{ISO C99}.
0e4ee106
UD
2221@end deftypefun
2222
2223@comment inttypes.h
b642f101
UD
2224@comment ISO
2225@deftypefun uintmax_t strtoumax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
0e4ee106
UD
2226The @code{strtoumax} function is related to @code{strtoimax}
2227the same way that @code{strtoul} is related to @code{strtol}.
2228
b642f101
UD
2229See @ref{Integers} for a description of the @code{intmax_t} type. The
2230@code{strtoumax} function was introduced in @w{ISO C99}.
2231@end deftypefun
0e4ee106 2232
b642f101
UD
2233@comment wchar.h
2234@comment ISO
2235@deftypefun uintmax_t wcstoumax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2236The @code{wcstoumax} function is equivalent to the @code{strtoumax} function
2237in nearly all aspects but handles wide character strings.
b642f101
UD
2238
2239The @code{wcstoumax} function was introduced in @w{ISO C99}.
0e4ee106
UD
2240@end deftypefun
2241
28f540f4 2242@comment stdlib.h
f65fd747 2243@comment ISO
28f540f4
RM
2244@deftypefun {long int} atol (const char *@var{string})
2245This function is similar to the @code{strtol} function with a @var{base}
2246argument of @code{10}, except that it need not detect overflow errors.
2247The @code{atol} function is provided mostly for compatibility with
2248existing code; using @code{strtol} is more robust.
2249@end deftypefun
2250
2251@comment stdlib.h
f65fd747 2252@comment ISO
28f540f4 2253@deftypefun int atoi (const char *@var{string})
7a68c94a
UD
2254This function is like @code{atol}, except that it returns an @code{int}.
2255The @code{atoi} function is also considered obsolete; use @code{strtol}
2256instead.
28f540f4
RM
2257@end deftypefun
2258
fe7bdd63 2259@comment stdlib.h
7a68c94a 2260@comment ISO
fe7bdd63
UD
2261@deftypefun {long long int} atoll (const char *@var{string})
2262This function is similar to @code{atol}, except it returns a @code{long
7a68c94a 2263long int}.
fe7bdd63 2264
ec751a23 2265The @code{atoll} function was introduced in @w{ISO C99}. It too is
7a68c94a 2266obsolete (despite having just been added); use @code{strtoll} instead.
fe7bdd63
UD
2267@end deftypefun
2268
b642f101
UD
2269All the functions mentioned in this section so far do not handle
2270alternative representations of characters as described in the locale
2271data. Some locales specify thousands separator and the way they have to
2272be used which can help to make large numbers more readable. To read
2273such numbers one has to use the @code{scanf} functions with the @samp{'}
2274flag.
2c6fe0bd 2275
28f540f4
RM
2276Here is a function which parses a string as a sequence of integers and
2277returns the sum of them:
2278
2279@smallexample
2280int
2281sum_ints_from_string (char *string)
2282@{
2283 int sum = 0;
2284
2285 while (1) @{
2286 char *tail;
2287 int next;
2288
2289 /* @r{Skip whitespace by hand, to detect the end.} */
2290 while (isspace (*string)) string++;
2291 if (*string == 0)
2292 break;
2293
2294 /* @r{There is more nonwhitespace,} */
2295 /* @r{so it ought to be another number.} */
2296 errno = 0;
2297 /* @r{Parse it.} */
2298 next = strtol (string, &tail, 0);
2299 /* @r{Add it in, if not overflow.} */
2300 if (errno)
2301 printf ("Overflow\n");
2302 else
2303 sum += next;
2304 /* @r{Advance past it.} */
2305 string = tail;
2306 @}
2307
2308 return sum;
2309@}
2310@end smallexample
2311
2312@node Parsing of Floats
2313@subsection Parsing of Floats
2314
2315@pindex stdlib.h
b642f101
UD
2316The @samp{str} functions are declared in @file{stdlib.h} and those
2317beginning with @samp{wcs} are declared in @file{wchar.h}. One might
2318wonder about the use of @code{restrict} in the prototypes of the
2319functions in this section. It is seemingly useless but the @w{ISO C}
2320standard uses it (for the functions defined there) so we have to do it
2321as well.
28f540f4
RM
2322
2323@comment stdlib.h
f65fd747 2324@comment ISO
b642f101 2325@deftypefun double strtod (const char *restrict @var{string}, char **restrict @var{tailptr})
28f540f4
RM
2326The @code{strtod} (``string-to-double'') function converts the initial
2327part of @var{string} to a floating-point number, which is returned as a
b8fe19fa 2328value of type @code{double}.
28f540f4
RM
2329
2330This function attempts to decompose @var{string} as follows:
2331
2332@itemize @bullet
b8fe19fa 2333@item
28f540f4
RM
2334A (possibly empty) sequence of whitespace characters. Which characters
2335are whitespace is determined by the @code{isspace} function
2336(@pxref{Classification of Characters}). These are discarded.
2337
2338@item
2339An optional plus or minus sign (@samp{+} or @samp{-}).
2340
0c34b1e9
UD
2341@item A floating point number in decimal or hexadecimal format. The
2342decimal format is:
2343@itemize @minus
2344
28f540f4
RM
2345@item
2346A nonempty sequence of digits optionally containing a decimal-point
2347character---normally @samp{.}, but it depends on the locale
85c165be 2348(@pxref{General Numeric}).
28f540f4
RM
2349
2350@item
2351An optional exponent part, consisting of a character @samp{e} or
2352@samp{E}, an optional sign, and a sequence of digits.
2353
0c34b1e9
UD
2354@end itemize
2355
2356The hexadecimal format is as follows:
2357@itemize @minus
2358
2359@item
2360A 0x or 0X followed by a nonempty sequence of hexadecimal digits
2361optionally containing a decimal-point character---normally @samp{.}, but
2362it depends on the locale (@pxref{General Numeric}).
2363
2364@item
2365An optional binary-exponent part, consisting of a character @samp{p} or
2366@samp{P}, an optional sign, and a sequence of digits.
2367
2368@end itemize
2369
28f540f4
RM
2370@item
2371Any remaining characters in the string. If @var{tailptr} is not a null
2372pointer, a pointer to this tail of the string is stored in
2373@code{*@var{tailptr}}.
2374@end itemize
2375
2376If the string is empty, contains only whitespace, or does not contain an
2377initial substring that has the expected syntax for a floating-point
2378number, no conversion is performed. In this case, @code{strtod} returns
2379a value of zero and the value returned in @code{*@var{tailptr}} is the
2380value of @var{string}.
2381
26761c28 2382In a locale other than the standard @code{"C"} or @code{"POSIX"} locales,
2c6fe0bd 2383this function may recognize additional locale-dependent syntax.
28f540f4
RM
2384
2385If the string has valid syntax for a floating-point number but the value
7a68c94a
UD
2386is outside the range of a @code{double}, @code{strtod} will signal
2387overflow or underflow as described in @ref{Math Error Reporting}.
2388
2389@code{strtod} recognizes four special input strings. The strings
2390@code{"inf"} and @code{"infinity"} are converted to @math{@infinity{}},
2391or to the largest representable value if the floating-point format
2392doesn't support infinities. You can prepend a @code{"+"} or @code{"-"}
2393to specify the sign. Case is ignored when scanning these strings.
2394
95fdc6a0
UD
2395The strings @code{"nan"} and @code{"nan(@var{chars@dots{}})"} are converted
2396to NaN. Again, case is ignored. If @var{chars@dots{}} are provided, they
7a68c94a
UD
2397are used in some unspecified fashion to select a particular
2398representation of NaN (there can be several).
2399
2400Since zero is a valid result as well as the value returned on error, you
2401should check for errors in the same way as for @code{strtol}, by
2402examining @var{errno} and @var{tailptr}.
28f540f4
RM
2403@end deftypefun
2404
2c6fe0bd 2405@comment stdlib.h
ec751a23 2406@comment ISO
2c6fe0bd 2407@deftypefun float strtof (const char *@var{string}, char **@var{tailptr})
4260bc74 2408@comment stdlib.h
ec751a23 2409@comment ISO
7a68c94a
UD
2410@deftypefunx {long double} strtold (const char *@var{string}, char **@var{tailptr})
2411These functions are analogous to @code{strtod}, but return @code{float}
2412and @code{long double} values respectively. They report errors in the
2413same way as @code{strtod}. @code{strtof} can be substantially faster
2414than @code{strtod}, but has less precision; conversely, @code{strtold}
2415can be much slower but has more precision (on systems where @code{long
2416double} is a separate type).
2417
ec751a23 2418These functions have been GNU extensions and are new to @w{ISO C99}.
2c6fe0bd
UD
2419@end deftypefun
2420
b642f101
UD
2421@comment wchar.h
2422@comment ISO
2423@deftypefun double wcstod (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr})
2424@comment stdlib.h
2425@comment ISO
2426@deftypefunx float wcstof (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2427@comment stdlib.h
2428@comment ISO
2429@deftypefunx {long double} wcstold (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2430The @code{wcstod}, @code{wcstof}, and @code{wcstol} functions are
2431equivalent in nearly all aspect to the @code{strtod}, @code{strtof}, and
2432@code{strtold} functions but it handles wide character string.
2433
2434The @code{wcstod} function was introduced in @w{Amendment 1} of @w{ISO
2435C90}. The @code{wcstof} and @code{wcstold} functions were introduced in
2436@w{ISO C99}.
2437@end deftypefun
2438
28f540f4 2439@comment stdlib.h
f65fd747 2440@comment ISO
28f540f4
RM
2441@deftypefun double atof (const char *@var{string})
2442This function is similar to the @code{strtod} function, except that it
2443need not detect overflow and underflow errors. The @code{atof} function
2444is provided mostly for compatibility with existing code; using
2445@code{strtod} is more robust.
2446@end deftypefun
880f421f 2447
49c091e5 2448The GNU C library also provides @samp{_l} versions of these functions,
7a68c94a
UD
2449which take an additional argument, the locale to use in conversion.
2450@xref{Parsing of Integers}.
880f421f 2451
7a68c94a
UD
2452@node System V Number Conversion
2453@section Old-fashioned System V number-to-string functions
880f421f 2454
7a68c94a
UD
2455The old @w{System V} C library provided three functions to convert
2456numbers to strings, with unusual and hard-to-use semantics. The GNU C
2457library also provides these functions and some natural extensions.
880f421f 2458
7a68c94a
UD
2459These functions are only available in glibc and on systems descended
2460from AT&T Unix. Therefore, unless these functions do precisely what you
2461need, it is better to use @code{sprintf}, which is standard.
880f421f 2462
7a68c94a 2463All these functions are defined in @file{stdlib.h}.
880f421f
UD
2464
2465@comment stdlib.h
2466@comment SVID, Unix98
7a68c94a 2467@deftypefun {char *} ecvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
880f421f 2468The function @code{ecvt} converts the floating-point number @var{value}
0ea5db4f
UD
2469to a string with at most @var{ndigit} decimal digits. The
2470returned string contains no decimal point or sign. The first digit of
2471the string is non-zero (unless @var{value} is actually zero) and the
2472last digit is rounded to nearest. @code{*@var{decpt}} is set to the
7a68c94a 2473index in the string of the first digit after the decimal point.
0ea5db4f
UD
2474@code{*@var{neg}} is set to a nonzero value if @var{value} is negative,
2475zero otherwise.
880f421f 2476
67994d6f
UD
2477If @var{ndigit} decimal digits would exceed the precision of a
2478@code{double} it is reduced to a system-specific value.
2479
880f421f
UD
2480The returned string is statically allocated and overwritten by each call
2481to @code{ecvt}.
2482
0ea5db4f
UD
2483If @var{value} is zero, it is implementation defined whether
2484@code{*@var{decpt}} is @code{0} or @code{1}.
880f421f 2485
0ea5db4f
UD
2486For example: @code{ecvt (12.3, 5, &d, &n)} returns @code{"12300"}
2487and sets @var{d} to @code{2} and @var{n} to @code{0}.
880f421f
UD
2488@end deftypefun
2489
880f421f
UD
2490@comment stdlib.h
2491@comment SVID, Unix98
0ea5db4f 2492@deftypefun {char *} fcvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
7a68c94a
UD
2493The function @code{fcvt} is like @code{ecvt}, but @var{ndigit} specifies
2494the number of digits after the decimal point. If @var{ndigit} is less
2495than zero, @var{value} is rounded to the @math{@var{ndigit}+1}'th place to the
2496left of the decimal point. For example, if @var{ndigit} is @code{-1},
2497@var{value} will be rounded to the nearest 10. If @var{ndigit} is
2498negative and larger than the number of digits to the left of the decimal
2499point in @var{value}, @var{value} will be rounded to one significant digit.
880f421f 2500
67994d6f
UD
2501If @var{ndigit} decimal digits would exceed the precision of a
2502@code{double} it is reduced to a system-specific value.
2503
880f421f
UD
2504The returned string is statically allocated and overwritten by each call
2505to @code{fcvt}.
880f421f
UD
2506@end deftypefun
2507
2508@comment stdlib.h
2509@comment SVID, Unix98
2510@deftypefun {char *} gcvt (double @var{value}, int @var{ndigit}, char *@var{buf})
7a68c94a
UD
2511@code{gcvt} is functionally equivalent to @samp{sprintf(buf, "%*g",
2512ndigit, value}. It is provided only for compatibility's sake. It
2513returns @var{buf}.
67994d6f
UD
2514
2515If @var{ndigit} decimal digits would exceed the precision of a
2516@code{double} it is reduced to a system-specific value.
880f421f
UD
2517@end deftypefun
2518
7a68c94a
UD
2519As extensions, the GNU C library provides versions of these three
2520functions that take @code{long double} arguments.
880f421f
UD
2521
2522@comment stdlib.h
2523@comment GNU
7a68c94a 2524@deftypefun {char *} qecvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
67994d6f
UD
2525This function is equivalent to @code{ecvt} except that it takes a
2526@code{long double} for the first parameter and that @var{ndigit} is
2527restricted by the precision of a @code{long double}.
880f421f
UD
2528@end deftypefun
2529
2530@comment stdlib.h
2531@comment GNU
0ea5db4f 2532@deftypefun {char *} qfcvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
7a68c94a 2533This function is equivalent to @code{fcvt} except that it
67994d6f
UD
2534takes a @code{long double} for the first parameter and that @var{ndigit} is
2535restricted by the precision of a @code{long double}.
880f421f
UD
2536@end deftypefun
2537
2538@comment stdlib.h
2539@comment GNU
2540@deftypefun {char *} qgcvt (long double @var{value}, int @var{ndigit}, char *@var{buf})
67994d6f
UD
2541This function is equivalent to @code{gcvt} except that it takes a
2542@code{long double} for the first parameter and that @var{ndigit} is
2543restricted by the precision of a @code{long double}.
880f421f
UD
2544@end deftypefun
2545
2546
2547@cindex gcvt_r
7a68c94a
UD
2548The @code{ecvt} and @code{fcvt} functions, and their @code{long double}
2549equivalents, all return a string located in a static buffer which is
2550overwritten by the next call to the function. The GNU C library
2551provides another set of extended functions which write the converted
2552string into a user-supplied buffer. These have the conventional
2553@code{_r} suffix.
2554
2555@code{gcvt_r} is not necessary, because @code{gcvt} already uses a
2556user-supplied buffer.
880f421f
UD
2557
2558@comment stdlib.h
2559@comment GNU
5c1c368f 2560@deftypefun int ecvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
7a68c94a
UD
2561The @code{ecvt_r} function is the same as @code{ecvt}, except
2562that it places its result into the user-specified buffer pointed to by
5c1c368f
UD
2563@var{buf}, with length @var{len}. The return value is @code{-1} in
2564case of an error and zero otherwise.
880f421f 2565
7a68c94a 2566This function is a GNU extension.
880f421f
UD
2567@end deftypefun
2568
2569@comment stdlib.h
2570@comment SVID, Unix98
5c1c368f
UD
2571@deftypefun int fcvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2572The @code{fcvt_r} function is the same as @code{fcvt}, except that it
2573places its result into the user-specified buffer pointed to by
2574@var{buf}, with length @var{len}. The return value is @code{-1} in
2575case of an error and zero otherwise.
880f421f 2576
7a68c94a 2577This function is a GNU extension.
880f421f
UD
2578@end deftypefun
2579
2580@comment stdlib.h
2581@comment GNU
5c1c368f 2582@deftypefun int qecvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
7a68c94a
UD
2583The @code{qecvt_r} function is the same as @code{qecvt}, except
2584that it places its result into the user-specified buffer pointed to by
5c1c368f
UD
2585@var{buf}, with length @var{len}. The return value is @code{-1} in
2586case of an error and zero otherwise.
880f421f 2587
7a68c94a 2588This function is a GNU extension.
880f421f
UD
2589@end deftypefun
2590
2591@comment stdlib.h
2592@comment GNU
5c1c368f 2593@deftypefun int qfcvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
7a68c94a
UD
2594The @code{qfcvt_r} function is the same as @code{qfcvt}, except
2595that it places its result into the user-specified buffer pointed to by
5c1c368f
UD
2596@var{buf}, with length @var{len}. The return value is @code{-1} in
2597case of an error and zero otherwise.
880f421f 2598
7a68c94a 2599This function is a GNU extension.
880f421f 2600@end deftypefun