]> git.ipfire.org Git - thirdparty/glibc.git/blame - manual/arith.texi
Manual typos: Mathematics
[thirdparty/glibc.git] / manual / arith.texi
CommitLineData
28f540f4 1@node Arithmetic, Date and Time, Mathematics, Top
7a68c94a
UD
2@c %MENU% Low level arithmetic functions
3@chapter Arithmetic Functions
28f540f4
RM
4
5This chapter contains information about functions for doing basic
6arithmetic operations, such as splitting a float into its integer and
b4012b75
UD
7fractional parts or retrieving the imaginary part of a complex value.
8These functions are declared in the header files @file{math.h} and
9@file{complex.h}.
28f540f4
RM
10
11@menu
0e4ee106
UD
12* Integers:: Basic integer types and concepts
13* Integer Division:: Integer division with guaranteed rounding.
7a68c94a
UD
14* Floating Point Numbers:: Basic concepts. IEEE 754.
15* Floating Point Classes:: The five kinds of floating-point number.
16* Floating Point Errors:: When something goes wrong in a calculation.
17* Rounding:: Controlling how results are rounded.
18* Control Functions:: Saving and restoring the FPU's state.
19* Arithmetic Functions:: Fundamental operations provided by the library.
20* Complex Numbers:: The types. Writing complex constants.
21* Operations on Complex:: Projection, conjugation, decomposition.
7a68c94a
UD
22* Parsing of Numbers:: Converting strings to numbers.
23* System V Number Conversion:: An archaic way to convert numbers to strings.
28f540f4
RM
24@end menu
25
0e4ee106
UD
26@node Integers
27@section Integers
28@cindex integer
29
30The C language defines several integer data types: integer, short integer,
31long integer, and character, all in both signed and unsigned varieties.
e6e81391
UD
32The GNU C compiler extends the language to contain long long integers
33as well.
0e4ee106
UD
34@cindex signedness
35
36The C integer types were intended to allow code to be portable among
37machines with different inherent data sizes (word sizes), so each type
38may have different ranges on different machines. The problem with
39this is that a program often needs to be written for a particular range
40of integers, and sometimes must be written for a particular size of
41storage, regardless of what machine the program runs on.
42
1f77f049 43To address this problem, @theglibc{} contains C type definitions
0e4ee106 44you can use to declare integers that meet your exact needs. Because the
1f77f049 45@glibcadj{} header files are customized to a specific machine, your
0e4ee106
UD
46program source code doesn't have to be.
47
48These @code{typedef}s are in @file{stdint.h}.
49@pindex stdint.h
50
51If you require that an integer be represented in exactly N bits, use one
52of the following types, with the obvious mapping to bit size and signedness:
53
68979757 54@itemize @bullet
0e4ee106
UD
55@item int8_t
56@item int16_t
57@item int32_t
58@item int64_t
59@item uint8_t
60@item uint16_t
61@item uint32_t
62@item uint64_t
63@end itemize
64
65If your C compiler and target machine do not allow integers of a certain
66size, the corresponding above type does not exist.
67
68If you don't need a specific storage size, but want the smallest data
69structure with @emph{at least} N bits, use one of these:
70
68979757 71@itemize @bullet
150f9fb8
AJ
72@item int_least8_t
73@item int_least16_t
74@item int_least32_t
75@item int_least64_t
76@item uint_least8_t
77@item uint_least16_t
78@item uint_least32_t
79@item uint_least64_t
0e4ee106
UD
80@end itemize
81
e6e81391 82If you don't need a specific storage size, but want the data structure
0e4ee106
UD
83that allows the fastest access while having at least N bits (and
84among data structures with the same access speed, the smallest one), use
85one of these:
86
68979757 87@itemize @bullet
150f9fb8
AJ
88@item int_fast8_t
89@item int_fast16_t
90@item int_fast32_t
91@item int_fast64_t
92@item uint_fast8_t
93@item uint_fast16_t
94@item uint_fast32_t
95@item uint_fast64_t
0e4ee106
UD
96@end itemize
97
e6e81391 98If you want an integer with the widest range possible on the platform on
0e4ee106
UD
99which it is being used, use one of the following. If you use these,
100you should write code that takes into account the variable size and range
101of the integer.
102
68979757 103@itemize @bullet
0e4ee106
UD
104@item intmax_t
105@item uintmax_t
106@end itemize
107
1f77f049 108@Theglibc{} also provides macros that tell you the maximum and
0e4ee106
UD
109minimum possible values for each integer data type. The macro names
110follow these examples: @code{INT32_MAX}, @code{UINT8_MAX},
111@code{INT_FAST32_MIN}, @code{INT_LEAST64_MIN}, @code{UINTMAX_MAX},
112@code{INTMAX_MAX}, @code{INTMAX_MIN}. Note that there are no macros for
5b17fd0d
JM
113unsigned integer minima. These are always zero. Similiarly, there
114are macros such as @code{INTMAX_WIDTH} for the width of these types.
115Those macros for integer type widths come from TS 18661-1:2014.
0e4ee106 116@cindex maximum possible integer
0bc93a2f 117@cindex minimum possible integer
0e4ee106
UD
118
119There are similar macros for use with C's built in integer types which
120should come with your C compiler. These are described in @ref{Data Type
121Measurements}.
122
123Don't forget you can use the C @code{sizeof} function with any of these
124data types to get the number of bytes of storage each uses.
125
126
127@node Integer Division
128@section Integer Division
129@cindex integer division functions
130
131This section describes functions for performing integer division. These
132functions are redundant when GNU CC is used, because in GNU C the
133@samp{/} operator always rounds towards zero. But in other C
134implementations, @samp{/} may round differently with negative arguments.
135@code{div} and @code{ldiv} are useful because they specify how to round
136the quotient: towards zero. The remainder has the same sign as the
137numerator.
138
139These functions are specified to return a result @var{r} such that the value
140@code{@var{r}.quot*@var{denominator} + @var{r}.rem} equals
141@var{numerator}.
142
143@pindex stdlib.h
144To use these facilities, you should include the header file
145@file{stdlib.h} in your program.
146
147@comment stdlib.h
148@comment ISO
149@deftp {Data Type} div_t
150This is a structure type used to hold the result returned by the @code{div}
151function. It has the following members:
152
153@table @code
154@item int quot
155The quotient from the division.
156
157@item int rem
158The remainder from the division.
159@end table
160@end deftp
161
162@comment stdlib.h
163@comment ISO
164@deftypefun div_t div (int @var{numerator}, int @var{denominator})
b719dafd
AO
165@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
166@c Functions in this section are pure, and thus safe.
0e4ee106
UD
167This function @code{div} computes the quotient and remainder from
168the division of @var{numerator} by @var{denominator}, returning the
169result in a structure of type @code{div_t}.
170
171If the result cannot be represented (as in a division by zero), the
172behavior is undefined.
173
174Here is an example, albeit not a very useful one.
175
176@smallexample
177div_t result;
178result = div (20, -6);
179@end smallexample
180
181@noindent
182Now @code{result.quot} is @code{-3} and @code{result.rem} is @code{2}.
183@end deftypefun
184
185@comment stdlib.h
186@comment ISO
187@deftp {Data Type} ldiv_t
188This is a structure type used to hold the result returned by the @code{ldiv}
189function. It has the following members:
190
191@table @code
192@item long int quot
193The quotient from the division.
194
195@item long int rem
196The remainder from the division.
197@end table
198
199(This is identical to @code{div_t} except that the components are of
200type @code{long int} rather than @code{int}.)
201@end deftp
202
203@comment stdlib.h
204@comment ISO
205@deftypefun ldiv_t ldiv (long int @var{numerator}, long int @var{denominator})
b719dafd 206@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
0e4ee106
UD
207The @code{ldiv} function is similar to @code{div}, except that the
208arguments are of type @code{long int} and the result is returned as a
209structure of type @code{ldiv_t}.
210@end deftypefun
211
212@comment stdlib.h
213@comment ISO
214@deftp {Data Type} lldiv_t
215This is a structure type used to hold the result returned by the @code{lldiv}
216function. It has the following members:
217
218@table @code
219@item long long int quot
220The quotient from the division.
221
222@item long long int rem
223The remainder from the division.
224@end table
225
226(This is identical to @code{div_t} except that the components are of
227type @code{long long int} rather than @code{int}.)
228@end deftp
229
230@comment stdlib.h
231@comment ISO
232@deftypefun lldiv_t lldiv (long long int @var{numerator}, long long int @var{denominator})
b719dafd 233@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
0e4ee106
UD
234The @code{lldiv} function is like the @code{div} function, but the
235arguments are of type @code{long long int} and the result is returned as
236a structure of type @code{lldiv_t}.
237
238The @code{lldiv} function was added in @w{ISO C99}.
239@end deftypefun
240
241@comment inttypes.h
242@comment ISO
243@deftp {Data Type} imaxdiv_t
244This is a structure type used to hold the result returned by the @code{imaxdiv}
245function. It has the following members:
246
247@table @code
248@item intmax_t quot
249The quotient from the division.
250
251@item intmax_t rem
252The remainder from the division.
253@end table
254
255(This is identical to @code{div_t} except that the components are of
256type @code{intmax_t} rather than @code{int}.)
257
258See @ref{Integers} for a description of the @code{intmax_t} type.
259
260@end deftp
261
262@comment inttypes.h
263@comment ISO
264@deftypefun imaxdiv_t imaxdiv (intmax_t @var{numerator}, intmax_t @var{denominator})
b719dafd 265@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
0e4ee106
UD
266The @code{imaxdiv} function is like the @code{div} function, but the
267arguments are of type @code{intmax_t} and the result is returned as
268a structure of type @code{imaxdiv_t}.
269
270See @ref{Integers} for a description of the @code{intmax_t} type.
271
272The @code{imaxdiv} function was added in @w{ISO C99}.
273@end deftypefun
274
275
7a68c94a
UD
276@node Floating Point Numbers
277@section Floating Point Numbers
278@cindex floating point
279@cindex IEEE 754
b4012b75
UD
280@cindex IEEE floating point
281
7a68c94a
UD
282Most computer hardware has support for two different kinds of numbers:
283integers (@math{@dots{}-3, -2, -1, 0, 1, 2, 3@dots{}}) and
284floating-point numbers. Floating-point numbers have three parts: the
285@dfn{mantissa}, the @dfn{exponent}, and the @dfn{sign bit}. The real
286number represented by a floating-point value is given by
287@tex
288$(s \mathrel? -1 \mathrel: 1) \cdot 2^e \cdot M$
289@end tex
290@ifnottex
291@math{(s ? -1 : 1) @mul{} 2^e @mul{} M}
292@end ifnottex
293where @math{s} is the sign bit, @math{e} the exponent, and @math{M}
294the mantissa. @xref{Floating Point Concepts}, for details. (It is
295possible to have a different @dfn{base} for the exponent, but all modern
296hardware uses @math{2}.)
297
298Floating-point numbers can represent a finite subset of the real
299numbers. While this subset is large enough for most purposes, it is
300important to remember that the only reals that can be represented
301exactly are rational numbers that have a terminating binary expansion
302shorter than the width of the mantissa. Even simple fractions such as
303@math{1/5} can only be approximated by floating point.
304
305Mathematical operations and functions frequently need to produce values
306that are not representable. Often these values can be approximated
307closely enough for practical purposes, but sometimes they can't.
308Historically there was no way to tell when the results of a calculation
309were inaccurate. Modern computers implement the @w{IEEE 754} standard
310for numerical computations, which defines a framework for indicating to
311the program when the results of calculation are not trustworthy. This
312framework consists of a set of @dfn{exceptions} that indicate why a
313result could not be represented, and the special values @dfn{infinity}
314and @dfn{not a number} (NaN).
315
316@node Floating Point Classes
317@section Floating-Point Number Classification Functions
318@cindex floating-point classes
319@cindex classes, floating-point
320@pindex math.h
b4012b75 321
ec751a23 322@w{ISO C99} defines macros that let you determine what sort of
7a68c94a 323floating-point number a variable holds.
b4012b75
UD
324
325@comment math.h
326@comment ISO
7a68c94a 327@deftypefn {Macro} int fpclassify (@emph{float-type} @var{x})
b719dafd 328@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
329This is a generic macro which works on all floating-point types and
330which returns a value of type @code{int}. The possible values are:
28f540f4 331
7a68c94a
UD
332@vtable @code
333@item FP_NAN
334The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity
335and NaN})
336@item FP_INFINITE
337The value of @var{x} is either plus or minus infinity (@pxref{Infinity
338and NaN})
339@item FP_ZERO
340The value of @var{x} is zero. In floating-point formats like @w{IEEE
341754}, where zero can be signed, this value is also returned if
342@var{x} is negative zero.
343@item FP_SUBNORMAL
344Numbers whose absolute value is too small to be represented in the
345normal format are represented in an alternate, @dfn{denormalized} format
346(@pxref{Floating Point Concepts}). This format is less precise but can
347represent values closer to zero. @code{fpclassify} returns this value
348for values of @var{x} in this alternate format.
349@item FP_NORMAL
350This value is returned for all other values of @var{x}. It indicates
351that there is nothing special about the number.
352@end vtable
28f540f4 353
7a68c94a 354@end deftypefn
28f540f4 355
7a68c94a
UD
356@code{fpclassify} is most useful if more than one property of a number
357must be tested. There are more specific macros which only test one
358property at a time. Generally these macros execute faster than
359@code{fpclassify}, since there is special hardware support for them.
360You should therefore use the specific macros whenever possible.
28f540f4 361
29cb9293
JM
362@comment math.h
363@comment ISO
364@deftypefn {Macro} int iscanonical (@emph{float-type} @var{x})
365@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
366In some floating-point formats, some values have canonical (preferred)
367and noncanonical encodings (for IEEE interchange binary formats, all
368encodings are canonical). This macro returns a nonzero value if
369@var{x} has a canonical encoding. It is from TS 18661-1:2014.
370
371Note that some formats have multiple encodings of a value which are
372all equally canonical; @code{iscanonical} returns a nonzero value for
373all such encodings. Also, formats may have encodings that do not
374correspond to any valid value of the type. In ISO C terms these are
375@dfn{trap representations}; in @theglibc{}, @code{iscanonical} returns
376zero for such encodings.
377@end deftypefn
378
28f540f4 379@comment math.h
7a68c94a
UD
380@comment ISO
381@deftypefn {Macro} int isfinite (@emph{float-type} @var{x})
b719dafd 382@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
383This macro returns a nonzero value if @var{x} is finite: not plus or
384minus infinity, and not NaN. It is equivalent to
fe0ec73e
UD
385
386@smallexample
7a68c94a 387(fpclassify (x) != FP_NAN && fpclassify (x) != FP_INFINITE)
fe0ec73e
UD
388@end smallexample
389
7a68c94a
UD
390@code{isfinite} is implemented as a macro which accepts any
391floating-point type.
392@end deftypefn
fe0ec73e 393
7a68c94a
UD
394@comment math.h
395@comment ISO
396@deftypefn {Macro} int isnormal (@emph{float-type} @var{x})
b719dafd 397@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
398This macro returns a nonzero value if @var{x} is finite and normalized.
399It is equivalent to
b4012b75
UD
400
401@smallexample
7a68c94a 402(fpclassify (x) == FP_NORMAL)
b4012b75 403@end smallexample
7a68c94a 404@end deftypefn
b4012b75 405
7a68c94a
UD
406@comment math.h
407@comment ISO
408@deftypefn {Macro} int isnan (@emph{float-type} @var{x})
b719dafd 409@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
410This macro returns a nonzero value if @var{x} is NaN. It is equivalent
411to
b4012b75
UD
412
413@smallexample
7a68c94a 414(fpclassify (x) == FP_NAN)
b4012b75 415@end smallexample
7a68c94a 416@end deftypefn
b4012b75 417
57267616 418@comment math.h
bf91be88 419@comment ISO
57267616 420@deftypefn {Macro} int issignaling (@emph{float-type} @var{x})
b719dafd 421@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
57267616 422This macro returns a nonzero value if @var{x} is a signaling NaN
bf91be88 423(sNaN). It is from TS 18661-1:2014.
57267616
TS
424@end deftypefn
425
d942e95c
JM
426@comment math.h
427@comment ISO
428@deftypefn {Macro} int issubnormal (@emph{float-type} @var{x})
429@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
430This macro returns a nonzero value if @var{x} is subnormal. It is
431from TS 18661-1:2014.
432@end deftypefn
433
bb8081f5
JM
434@comment math.h
435@comment ISO
436@deftypefn {Macro} int iszero (@emph{float-type} @var{x})
437@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
438This macro returns a nonzero value if @var{x} is zero. It is from TS
43918661-1:2014.
440@end deftypefn
441
7a68c94a 442Another set of floating-point classification functions was provided by
1f77f049 443BSD. @Theglibc{} also supports these functions; however, we
ec751a23 444recommend that you use the ISO C99 macros in new code. Those are standard
7a68c94a
UD
445and will be available more widely. Also, since they are macros, you do
446not have to worry about the type of their argument.
28f540f4
RM
447
448@comment math.h
449@comment BSD
450@deftypefun int isinf (double @var{x})
4260bc74
UD
451@comment math.h
452@comment BSD
779ae82e 453@deftypefunx int isinff (float @var{x})
4260bc74
UD
454@comment math.h
455@comment BSD
779ae82e 456@deftypefunx int isinfl (long double @var{x})
b719dafd 457@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
28f540f4
RM
458This function returns @code{-1} if @var{x} represents negative infinity,
459@code{1} if @var{x} represents positive infinity, and @code{0} otherwise.
460@end deftypefun
461
462@comment math.h
463@comment BSD
464@deftypefun int isnan (double @var{x})
4260bc74
UD
465@comment math.h
466@comment BSD
779ae82e 467@deftypefunx int isnanf (float @var{x})
4260bc74
UD
468@comment math.h
469@comment BSD
779ae82e 470@deftypefunx int isnanl (long double @var{x})
b719dafd 471@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
28f540f4 472This function returns a nonzero value if @var{x} is a ``not a number''
7a68c94a 473value, and zero otherwise.
b9b49b44 474
48b22986 475@strong{NB:} The @code{isnan} macro defined by @w{ISO C99} overrides
7a68c94a
UD
476the BSD function. This is normally not a problem, because the two
477routines behave identically. However, if you really need to get the BSD
478function for some reason, you can write
b9b49b44 479
7a68c94a
UD
480@smallexample
481(isnan) (x)
482@end smallexample
28f540f4
RM
483@end deftypefun
484
485@comment math.h
486@comment BSD
487@deftypefun int finite (double @var{x})
4260bc74
UD
488@comment math.h
489@comment BSD
779ae82e 490@deftypefunx int finitef (float @var{x})
4260bc74
UD
491@comment math.h
492@comment BSD
779ae82e 493@deftypefunx int finitel (long double @var{x})
b719dafd 494@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
28f540f4
RM
495This function returns a nonzero value if @var{x} is finite or a ``not a
496number'' value, and zero otherwise.
497@end deftypefun
498
28f540f4
RM
499@strong{Portability Note:} The functions listed in this section are BSD
500extensions.
501
b4012b75 502
7a68c94a
UD
503@node Floating Point Errors
504@section Errors in Floating-Point Calculations
505
506@menu
507* FP Exceptions:: IEEE 754 math exceptions and how to detect them.
508* Infinity and NaN:: Special values returned by calculations.
509* Status bit operations:: Checking for exceptions after the fact.
510* Math Error Reporting:: How the math functions report errors.
511@end menu
512
513@node FP Exceptions
514@subsection FP Exceptions
515@cindex exception
516@cindex signal
517@cindex zero divide
518@cindex division by zero
519@cindex inexact exception
520@cindex invalid exception
521@cindex overflow exception
522@cindex underflow exception
523
524The @w{IEEE 754} standard defines five @dfn{exceptions} that can occur
525during a calculation. Each corresponds to a particular sort of error,
526such as overflow.
527
528When exceptions occur (when exceptions are @dfn{raised}, in the language
529of the standard), one of two things can happen. By default the
530exception is simply noted in the floating-point @dfn{status word}, and
531the program continues as if nothing had happened. The operation
532produces a default value, which depends on the exception (see the table
533below). Your program can check the status word to find out which
534exceptions happened.
535
536Alternatively, you can enable @dfn{traps} for exceptions. In that case,
537when an exception is raised, your program will receive the @code{SIGFPE}
538signal. The default action for this signal is to terminate the
8b7fb588 539program. @xref{Signal Handling}, for how you can change the effect of
7a68c94a
UD
540the signal.
541
542@findex matherr
543In the System V math library, the user-defined function @code{matherr}
544is called when certain exceptions occur inside math library functions.
545However, the Unix98 standard deprecates this interface. We support it
546for historical compatibility, but recommend that you do not use it in
c5df7609
JM
547new programs. When this interface is used, exceptions may not be
548raised.
7a68c94a
UD
549
550@noindent
551The exceptions defined in @w{IEEE 754} are:
552
553@table @samp
554@item Invalid Operation
555This exception is raised if the given operands are invalid for the
556operation to be performed. Examples are
557(see @w{IEEE 754}, @w{section 7}):
558@enumerate
559@item
560Addition or subtraction: @math{@infinity{} - @infinity{}}. (But
561@math{@infinity{} + @infinity{} = @infinity{}}).
562@item
563Multiplication: @math{0 @mul{} @infinity{}}.
564@item
565Division: @math{0/0} or @math{@infinity{}/@infinity{}}.
566@item
567Remainder: @math{x} REM @math{y}, where @math{y} is zero or @math{x} is
568infinite.
569@item
570Square root if the operand is less then zero. More generally, any
571mathematical function evaluated outside its domain produces this
572exception.
573@item
574Conversion of a floating-point number to an integer or decimal
575string, when the number cannot be represented in the target format (due
576to overflow, infinity, or NaN).
577@item
578Conversion of an unrecognizable input string.
579@item
580Comparison via predicates involving @math{<} or @math{>}, when one or
581other of the operands is NaN. You can prevent this exception by using
582the unordered comparison functions instead; see @ref{FP Comparison Functions}.
583@end enumerate
584
585If the exception does not trap, the result of the operation is NaN.
586
587@item Division by Zero
588This exception is raised when a finite nonzero number is divided
589by zero. If no trap occurs the result is either @math{+@infinity{}} or
590@math{-@infinity{}}, depending on the signs of the operands.
591
592@item Overflow
593This exception is raised whenever the result cannot be represented
594as a finite value in the precision format of the destination. If no trap
595occurs the result depends on the sign of the intermediate result and the
596current rounding mode (@w{IEEE 754}, @w{section 7.3}):
597@enumerate
598@item
599Round to nearest carries all overflows to @math{@infinity{}}
600with the sign of the intermediate result.
601@item
602Round toward @math{0} carries all overflows to the largest representable
603finite number with the sign of the intermediate result.
604@item
605Round toward @math{-@infinity{}} carries positive overflows to the
606largest representable finite number and negative overflows to
607@math{-@infinity{}}.
608
609@item
610Round toward @math{@infinity{}} carries negative overflows to the
611most negative representable finite number and positive overflows
612to @math{@infinity{}}.
613@end enumerate
614
615Whenever the overflow exception is raised, the inexact exception is also
616raised.
617
618@item Underflow
619The underflow exception is raised when an intermediate result is too
620small to be calculated accurately, or if the operation's result rounded
621to the destination precision is too small to be normalized.
622
623When no trap is installed for the underflow exception, underflow is
624signaled (via the underflow flag) only when both tininess and loss of
625accuracy have been detected. If no trap handler is installed the
626operation continues with an imprecise small value, or zero if the
627destination precision cannot hold the small exact result.
628
629@item Inexact
630This exception is signalled if a rounded result is not exact (such as
631when calculating the square root of two) or a result overflows without
632an overflow trap.
633@end table
634
635@node Infinity and NaN
636@subsection Infinity and NaN
637@cindex infinity
638@cindex not a number
639@cindex NaN
640
641@w{IEEE 754} floating point numbers can represent positive or negative
642infinity, and @dfn{NaN} (not a number). These three values arise from
643calculations whose result is undefined or cannot be represented
644accurately. You can also deliberately set a floating-point variable to
645any of them, which is sometimes useful. Some examples of calculations
646that produce infinity or NaN:
647
648@ifnottex
649@smallexample
650@math{1/0 = @infinity{}}
651@math{log (0) = -@infinity{}}
652@math{sqrt (-1) = NaN}
653@end smallexample
654@end ifnottex
655@tex
656$${1\over0} = \infty$$
657$$\log 0 = -\infty$$
658$$\sqrt{-1} = \hbox{NaN}$$
659@end tex
660
661When a calculation produces any of these values, an exception also
662occurs; see @ref{FP Exceptions}.
663
664The basic operations and math functions all accept infinity and NaN and
665produce sensible output. Infinities propagate through calculations as
666one would expect: for example, @math{2 + @infinity{} = @infinity{}},
667@math{4/@infinity{} = 0}, atan @math{(@infinity{}) = @pi{}/2}. NaN, on
668the other hand, infects any calculation that involves it. Unless the
669calculation would produce the same result no matter what real value
670replaced NaN, the result is NaN.
671
672In comparison operations, positive infinity is larger than all values
673except itself and NaN, and negative infinity is smaller than all values
674except itself and NaN. NaN is @dfn{unordered}: it is not equal to,
675greater than, or less than anything, @emph{including itself}. @code{x ==
676x} is false if the value of @code{x} is NaN. You can use this to test
677whether a value is NaN or not, but the recommended way to test for NaN
678is with the @code{isnan} function (@pxref{Floating Point Classes}). In
679addition, @code{<}, @code{>}, @code{<=}, and @code{>=} will raise an
680exception when applied to NaNs.
681
682@file{math.h} defines macros that allow you to explicitly set a variable
683to infinity or NaN.
b4012b75
UD
684
685@comment math.h
686@comment ISO
7a68c94a
UD
687@deftypevr Macro float INFINITY
688An expression representing positive infinity. It is equal to the value
689produced by mathematical operations like @code{1.0 / 0.0}.
690@code{-INFINITY} represents negative infinity.
691
692You can test whether a floating-point value is infinite by comparing it
693to this macro. However, this is not recommended; you should use the
694@code{isfinite} macro instead. @xref{Floating Point Classes}.
695
ec751a23 696This macro was introduced in the @w{ISO C99} standard.
7a68c94a
UD
697@end deftypevr
698
699@comment math.h
700@comment GNU
701@deftypevr Macro float NAN
702An expression representing a value which is ``not a number''. This
703macro is a GNU extension, available only on machines that support the
704``not a number'' value---that is to say, on all machines that support
705IEEE floating point.
706
707You can use @samp{#ifdef NAN} to test whether the machine supports
708NaN. (Of course, you must arrange for GNU extensions to be visible,
709such as by defining @code{_GNU_SOURCE}, and then you must include
710@file{math.h}.)
711@end deftypevr
712
713@w{IEEE 754} also allows for another unusual value: negative zero. This
714value is produced when you divide a positive number by negative
715infinity, or when a negative result is smaller than the limits of
cd837b09 716representation.
7a68c94a
UD
717
718@node Status bit operations
719@subsection Examining the FPU status word
720
ec751a23 721@w{ISO C99} defines functions to query and manipulate the
7a68c94a
UD
722floating-point status word. You can use these functions to check for
723untrapped exceptions when it's convenient, rather than worrying about
724them in the middle of a calculation.
725
726These constants represent the various @w{IEEE 754} exceptions. Not all
727FPUs report all the different exceptions. Each constant is defined if
728and only if the FPU you are compiling for supports that exception, so
729you can test for FPU support with @samp{#ifdef}. They are defined in
730@file{fenv.h}.
b4012b75
UD
731
732@vtable @code
7a68c94a
UD
733@comment fenv.h
734@comment ISO
735@item FE_INEXACT
736 The inexact exception.
737@comment fenv.h
738@comment ISO
739@item FE_DIVBYZERO
740 The divide by zero exception.
741@comment fenv.h
742@comment ISO
743@item FE_UNDERFLOW
744 The underflow exception.
745@comment fenv.h
746@comment ISO
747@item FE_OVERFLOW
748 The overflow exception.
749@comment fenv.h
750@comment ISO
751@item FE_INVALID
752 The invalid exception.
b4012b75
UD
753@end vtable
754
7a68c94a
UD
755The macro @code{FE_ALL_EXCEPT} is the bitwise OR of all exception macros
756which are supported by the FP implementation.
b4012b75 757
7a68c94a
UD
758These functions allow you to clear exception flags, test for exceptions,
759and save and restore the set of exceptions flagged.
b4012b75 760
7a68c94a 761@comment fenv.h
b4012b75 762@comment ISO
63ae7b63 763@deftypefun int feclearexcept (int @var{excepts})
b719dafd
AO
764@safety{@prelim{}@mtsafe{}@assafe{@assposix{}}@acsafe{@acsposix{}}}
765@c The other functions in this section that modify FP status register
766@c mostly do so with non-atomic load-modify-store sequences, but since
767@c the register is thread-specific, this should be fine, and safe for
768@c cancellation. As long as the FP environment is restored before the
769@c signal handler returns control to the interrupted thread (like any
770@c kernel should do), the functions are also safe for use in signal
771@c handlers.
7a68c94a
UD
772This function clears all of the supported exception flags indicated by
773@var{excepts}.
63ae7b63
UD
774
775The function returns zero in case the operation was successful, a
776non-zero value otherwise.
777@end deftypefun
778
779@comment fenv.h
780@comment ISO
781@deftypefun int feraiseexcept (int @var{excepts})
b719dafd 782@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
63ae7b63
UD
783This function raises the supported exceptions indicated by
784@var{excepts}. If more than one exception bit in @var{excepts} is set
785the order in which the exceptions are raised is undefined except that
786overflow (@code{FE_OVERFLOW}) or underflow (@code{FE_UNDERFLOW}) are
787raised before inexact (@code{FE_INEXACT}). Whether for overflow or
788underflow the inexact exception is also raised is also implementation
789dependent.
790
791The function returns zero in case the operation was successful, a
792non-zero value otherwise.
7a68c94a
UD
793@end deftypefun
794
5146356f
JM
795@comment fenv.h
796@comment ISO
797@deftypefun int fesetexcept (int @var{excepts})
798@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
799This function sets the supported exception flags indicated by
800@var{excepts}, like @code{feraiseexcept}, but without causing enabled
801traps to be taken. @code{fesetexcept} is from TS 18661-1:2014.
802
803The function returns zero in case the operation was successful, a
804non-zero value otherwise.
805@end deftypefun
806
7a68c94a
UD
807@comment fenv.h
808@comment ISO
809@deftypefun int fetestexcept (int @var{excepts})
b719dafd 810@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
811Test whether the exception flags indicated by the parameter @var{except}
812are currently set. If any of them are, a nonzero value is returned
813which specifies which exceptions are set. Otherwise the result is zero.
814@end deftypefun
815
816To understand these functions, imagine that the status word is an
817integer variable named @var{status}. @code{feclearexcept} is then
818equivalent to @samp{status &= ~excepts} and @code{fetestexcept} is
819equivalent to @samp{(status & excepts)}. The actual implementation may
820be very different, of course.
821
822Exception flags are only cleared when the program explicitly requests it,
823by calling @code{feclearexcept}. If you want to check for exceptions
824from a set of calculations, you should clear all the flags first. Here
825is a simple example of the way to use @code{fetestexcept}:
b4012b75
UD
826
827@smallexample
7a68c94a
UD
828@{
829 double f;
830 int raised;
831 feclearexcept (FE_ALL_EXCEPT);
832 f = compute ();
833 raised = fetestexcept (FE_OVERFLOW | FE_INVALID);
95fdc6a0
UD
834 if (raised & FE_OVERFLOW) @{ /* @dots{} */ @}
835 if (raised & FE_INVALID) @{ /* @dots{} */ @}
836 /* @dots{} */
7a68c94a 837@}
b4012b75
UD
838@end smallexample
839
7a68c94a
UD
840You cannot explicitly set bits in the status word. You can, however,
841save the entire status word and restore it later. This is done with the
842following functions:
b4012b75 843
7a68c94a 844@comment fenv.h
b4012b75 845@comment ISO
63ae7b63 846@deftypefun int fegetexceptflag (fexcept_t *@var{flagp}, int @var{excepts})
b719dafd 847@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
848This function stores in the variable pointed to by @var{flagp} an
849implementation-defined value representing the current setting of the
850exception flags indicated by @var{excepts}.
63ae7b63
UD
851
852The function returns zero in case the operation was successful, a
853non-zero value otherwise.
7a68c94a 854@end deftypefun
b4012b75 855
7a68c94a
UD
856@comment fenv.h
857@comment ISO
9251c568 858@deftypefun int fesetexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
b719dafd 859@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
860This function restores the flags for the exceptions indicated by
861@var{excepts} to the values stored in the variable pointed to by
862@var{flagp}.
63ae7b63
UD
863
864The function returns zero in case the operation was successful, a
865non-zero value otherwise.
7a68c94a
UD
866@end deftypefun
867
868Note that the value stored in @code{fexcept_t} bears no resemblance to
869the bit mask returned by @code{fetestexcept}. The type may not even be
870an integer. Do not attempt to modify an @code{fexcept_t} variable.
871
780257d4
JM
872@comment fenv.h
873@comment ISO
874@deftypefun int fetestexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
875@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
876Test whether the exception flags indicated by the parameter
877@var{excepts} are set in the variable pointed to by @var{flagp}. If
878any of them are, a nonzero value is returned which specifies which
879exceptions are set. Otherwise the result is zero.
880@code{fetestexceptflag} is from TS 18661-1:2014.
881@end deftypefun
882
7a68c94a
UD
883@node Math Error Reporting
884@subsection Error Reporting by Mathematical Functions
885@cindex errors, mathematical
886@cindex domain error
887@cindex range error
888
889Many of the math functions are defined only over a subset of the real or
890complex numbers. Even if they are mathematically defined, their result
891may be larger or smaller than the range representable by their return
c5df7609
JM
892type without loss of accuracy. These are known as @dfn{domain errors},
893@dfn{overflows}, and
7a68c94a
UD
894@dfn{underflows}, respectively. Math functions do several things when
895one of these errors occurs. In this manual we will refer to the
896complete response as @dfn{signalling} a domain error, overflow, or
897underflow.
898
899When a math function suffers a domain error, it raises the invalid
900exception and returns NaN. It also sets @var{errno} to @code{EDOM};
901this is for compatibility with old systems that do not support @w{IEEE
902754} exception handling. Likewise, when overflow occurs, math
c5df7609
JM
903functions raise the overflow exception and, in the default rounding
904mode, return @math{@infinity{}} or @math{-@infinity{}} as appropriate
905(in other rounding modes, the largest finite value of the appropriate
906sign is returned when appropriate for that rounding mode). They also
907set @var{errno} to @code{ERANGE} if returning @math{@infinity{}} or
908@math{-@infinity{}}; @var{errno} may or may not be set to
909@code{ERANGE} when a finite value is returned on overflow. When
910underflow occurs, the underflow exception is raised, and zero
911(appropriately signed) or a subnormal value, as appropriate for the
912mathematical result of the function and the rounding mode, is
913returned. @var{errno} may be set to @code{ERANGE}, but this is not
914guaranteed; it is intended that @theglibc{} should set it when the
915underflow is to an appropriately signed zero, but not necessarily for
916other underflows.
7a68c94a
UD
917
918Some of the math functions are defined mathematically to result in a
919complex value over parts of their domains. The most familiar example of
920this is taking the square root of a negative number. The complex math
921functions, such as @code{csqrt}, will return the appropriate complex value
922in this case. The real-valued functions, such as @code{sqrt}, will
923signal a domain error.
924
925Some older hardware does not support infinities. On that hardware,
926overflows instead return a particular very large number (usually the
927largest representable number). @file{math.h} defines macros you can use
928to test for overflow on both old and new hardware.
b4012b75
UD
929
930@comment math.h
931@comment ISO
7a68c94a 932@deftypevr Macro double HUGE_VAL
4260bc74
UD
933@comment math.h
934@comment ISO
7a68c94a 935@deftypevrx Macro float HUGE_VALF
4260bc74
UD
936@comment math.h
937@comment ISO
7a68c94a
UD
938@deftypevrx Macro {long double} HUGE_VALL
939An expression representing a particular very large number. On machines
940that use @w{IEEE 754} floating point format, @code{HUGE_VAL} is infinity.
941On other machines, it's typically the largest positive number that can
942be represented.
943
944Mathematical functions return the appropriately typed version of
945@code{HUGE_VAL} or @code{@minus{}HUGE_VAL} when the result is too large
946to be represented.
947@end deftypevr
b4012b75 948
7a68c94a
UD
949@node Rounding
950@section Rounding Modes
951
952Floating-point calculations are carried out internally with extra
953precision, and then rounded to fit into the destination type. This
954ensures that results are as precise as the input data. @w{IEEE 754}
955defines four possible rounding modes:
956
957@table @asis
958@item Round to nearest.
959This is the default mode. It should be used unless there is a specific
960need for one of the others. In this mode results are rounded to the
961nearest representable value. If the result is midway between two
962representable values, the even representable is chosen. @dfn{Even} here
963means the lowest-order bit is zero. This rounding mode prevents
964statistical bias and guarantees numeric stability: round-off errors in a
965lengthy calculation will remain smaller than half of @code{FLT_EPSILON}.
966
967@c @item Round toward @math{+@infinity{}}
968@item Round toward plus Infinity.
969All results are rounded to the smallest representable value
970which is greater than the result.
971
972@c @item Round toward @math{-@infinity{}}
973@item Round toward minus Infinity.
974All results are rounded to the largest representable value which is less
975than the result.
976
977@item Round toward zero.
978All results are rounded to the largest representable value whose
979magnitude is less than that of the result. In other words, if the
980result is negative it is rounded up; if it is positive, it is rounded
981down.
982@end table
b4012b75 983
7a68c94a
UD
984@noindent
985@file{fenv.h} defines constants which you can use to refer to the
986various rounding modes. Each one will be defined if and only if the FPU
987supports the corresponding rounding mode.
b4012b75 988
7a68c94a
UD
989@table @code
990@comment fenv.h
991@comment ISO
992@vindex FE_TONEAREST
993@item FE_TONEAREST
994Round to nearest.
b4012b75 995
7a68c94a
UD
996@comment fenv.h
997@comment ISO
998@vindex FE_UPWARD
999@item FE_UPWARD
1000Round toward @math{+@infinity{}}.
b4012b75 1001
7a68c94a
UD
1002@comment fenv.h
1003@comment ISO
1004@vindex FE_DOWNWARD
1005@item FE_DOWNWARD
1006Round toward @math{-@infinity{}}.
b4012b75 1007
7a68c94a
UD
1008@comment fenv.h
1009@comment ISO
1010@vindex FE_TOWARDZERO
1011@item FE_TOWARDZERO
1012Round toward zero.
1013@end table
b4012b75 1014
7a68c94a
UD
1015Underflow is an unusual case. Normally, @w{IEEE 754} floating point
1016numbers are always normalized (@pxref{Floating Point Concepts}).
1017Numbers smaller than @math{2^r} (where @math{r} is the minimum exponent,
1018@code{FLT_MIN_RADIX-1} for @var{float}) cannot be represented as
1019normalized numbers. Rounding all such numbers to zero or @math{2^r}
1020would cause some algorithms to fail at 0. Therefore, they are left in
1021denormalized form. That produces loss of precision, since some bits of
1022the mantissa are stolen to indicate the decimal point.
1023
1024If a result is too small to be represented as a denormalized number, it
1025is rounded to zero. However, the sign of the result is preserved; if
1026the calculation was negative, the result is @dfn{negative zero}.
1027Negative zero can also result from some operations on infinity, such as
cd837b09 1028@math{4/-@infinity{}}.
7a68c94a
UD
1029
1030At any time one of the above four rounding modes is selected. You can
1031find out which one with this function:
1032
1033@comment fenv.h
1034@comment ISO
1035@deftypefun int fegetround (void)
b719dafd 1036@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1037Returns the currently selected rounding mode, represented by one of the
1038values of the defined rounding mode macros.
1039@end deftypefun
b4012b75 1040
7a68c94a
UD
1041@noindent
1042To change the rounding mode, use this function:
b4012b75 1043
7a68c94a
UD
1044@comment fenv.h
1045@comment ISO
1046@deftypefun int fesetround (int @var{round})
b719dafd 1047@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1048Changes the currently selected rounding mode to @var{round}. If
1049@var{round} does not correspond to one of the supported rounding modes
d5655997
UD
1050nothing is changed. @code{fesetround} returns zero if it changed the
1051rounding mode, a nonzero value if the mode is not supported.
7a68c94a 1052@end deftypefun
b4012b75 1053
7a68c94a
UD
1054You should avoid changing the rounding mode if possible. It can be an
1055expensive operation; also, some hardware requires you to compile your
1056program differently for it to work. The resulting code may run slower.
1057See your compiler documentation for details.
1058@c This section used to claim that functions existed to round one number
1059@c in a specific fashion. I can't find any functions in the library
1060@c that do that. -zw
1061
1062@node Control Functions
1063@section Floating-Point Control Functions
1064
1065@w{IEEE 754} floating-point implementations allow the programmer to
1066decide whether traps will occur for each of the exceptions, by setting
1067bits in the @dfn{control word}. In C, traps result in the program
1068receiving the @code{SIGFPE} signal; see @ref{Signal Handling}.
1069
48b22986 1070@strong{NB:} @w{IEEE 754} says that trap handlers are given details of
7a68c94a
UD
1071the exceptional situation, and can set the result value. C signals do
1072not provide any mechanism to pass this information back and forth.
1073Trapping exceptions in C is therefore not very useful.
1074
1075It is sometimes necessary to save the state of the floating-point unit
1076while you perform some calculation. The library provides functions
1077which save and restore the exception flags, the set of exceptions that
1078generate traps, and the rounding mode. This information is known as the
1079@dfn{floating-point environment}.
1080
1081The functions to save and restore the floating-point environment all use
1082a variable of type @code{fenv_t} to store information. This type is
1083defined in @file{fenv.h}. Its size and contents are
1084implementation-defined. You should not attempt to manipulate a variable
1085of this type directly.
1086
1087To save the state of the FPU, use one of these functions:
1088
1089@comment fenv.h
b4012b75 1090@comment ISO
63ae7b63 1091@deftypefun int fegetenv (fenv_t *@var{envp})
b719dafd 1092@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1093Store the floating-point environment in the variable pointed to by
1094@var{envp}.
63ae7b63
UD
1095
1096The function returns zero in case the operation was successful, a
1097non-zero value otherwise.
b4012b75
UD
1098@end deftypefun
1099
7a68c94a 1100@comment fenv.h
b4012b75 1101@comment ISO
7a68c94a 1102@deftypefun int feholdexcept (fenv_t *@var{envp})
b719dafd 1103@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1104Store the current floating-point environment in the object pointed to by
1105@var{envp}. Then clear all exception flags, and set the FPU to trap no
1106exceptions. Not all FPUs support trapping no exceptions; if
0f6b172f
UD
1107@code{feholdexcept} cannot set this mode, it returns nonzero value. If it
1108succeeds, it returns zero.
b4012b75
UD
1109@end deftypefun
1110
7a7a7ee5 1111The functions which restore the floating-point environment can take these
7a68c94a 1112kinds of arguments:
b4012b75 1113
7a68c94a
UD
1114@itemize @bullet
1115@item
1116Pointers to @code{fenv_t} objects, which were initialized previously by a
1117call to @code{fegetenv} or @code{feholdexcept}.
1118@item
1119@vindex FE_DFL_ENV
1120The special macro @code{FE_DFL_ENV} which represents the floating-point
1121environment as it was available at program start.
1122@item
7a7a7ee5
AJ
1123Implementation defined macros with names starting with @code{FE_} and
1124having type @code{fenv_t *}.
b4012b75 1125
7a68c94a 1126@vindex FE_NOMASK_ENV
1f77f049 1127If possible, @theglibc{} defines a macro @code{FE_NOMASK_ENV}
7a68c94a
UD
1128which represents an environment where every exception raised causes a
1129trap to occur. You can test for this macro using @code{#ifdef}. It is
1130only defined if @code{_GNU_SOURCE} is defined.
1131
1132Some platforms might define other predefined environments.
1133@end itemize
1134
1135@noindent
1136To set the floating-point environment, you can use either of these
1137functions:
1138
1139@comment fenv.h
b4012b75 1140@comment ISO
63ae7b63 1141@deftypefun int fesetenv (const fenv_t *@var{envp})
b719dafd 1142@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a 1143Set the floating-point environment to that described by @var{envp}.
63ae7b63
UD
1144
1145The function returns zero in case the operation was successful, a
1146non-zero value otherwise.
b4012b75
UD
1147@end deftypefun
1148
7a68c94a 1149@comment fenv.h
b4012b75 1150@comment ISO
63ae7b63 1151@deftypefun int feupdateenv (const fenv_t *@var{envp})
b719dafd 1152@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1153Like @code{fesetenv}, this function sets the floating-point environment
1154to that described by @var{envp}. However, if any exceptions were
1155flagged in the status word before @code{feupdateenv} was called, they
1156remain flagged after the call. In other words, after @code{feupdateenv}
1157is called, the status word is the bitwise OR of the previous status word
1158and the one saved in @var{envp}.
63ae7b63
UD
1159
1160The function returns zero in case the operation was successful, a
1161non-zero value otherwise.
b4012b75
UD
1162@end deftypefun
1163
ec94343f
JM
1164@noindent
1165TS 18661-1:2014 defines additional functions to save and restore
1166floating-point control modes (such as the rounding mode and whether
1167traps are enabled) while leaving other status (such as raised flags)
1168unchanged.
1169
1170@vindex FE_DFL_MODE
1171The special macro @code{FE_DFL_MODE} may be passed to
1172@code{fesetmode}. It represents the floating-point control modes at
1173program start.
1174
1175@comment fenv.h
1176@comment ISO
1177@deftypefun int fegetmode (femode_t *@var{modep})
1178@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1179Store the floating-point control modes in the variable pointed to by
1180@var{modep}.
1181
1182The function returns zero in case the operation was successful, a
1183non-zero value otherwise.
1184@end deftypefun
1185
1186@comment fenv.h
1187@comment ISO
1188@deftypefun int fesetmode (const femode_t *@var{modep})
1189@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1190Set the floating-point control modes to those described by
1191@var{modep}.
1192
1193The function returns zero in case the operation was successful, a
1194non-zero value otherwise.
1195@end deftypefun
1196
05ef7ce9
UD
1197@noindent
1198To control for individual exceptions if raising them causes a trap to
1199occur, you can use the following two functions.
1200
1201@strong{Portability Note:} These functions are all GNU extensions.
1202
1203@comment fenv.h
1204@comment GNU
1205@deftypefun int feenableexcept (int @var{excepts})
b719dafd 1206@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
05ef7ce9 1207This functions enables traps for each of the exceptions as indicated by
f638872a 1208the parameter @var{except}. The individual exceptions are described in
6e8afc1c 1209@ref{Status bit operations}. Only the specified exceptions are
05ef7ce9
UD
1210enabled, the status of the other exceptions is not changed.
1211
1212The function returns the previous enabled exceptions in case the
1213operation was successful, @code{-1} otherwise.
1214@end deftypefun
1215
1216@comment fenv.h
1217@comment GNU
1218@deftypefun int fedisableexcept (int @var{excepts})
b719dafd 1219@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
05ef7ce9 1220This functions disables traps for each of the exceptions as indicated by
f638872a 1221the parameter @var{except}. The individual exceptions are described in
6e8afc1c 1222@ref{Status bit operations}. Only the specified exceptions are
05ef7ce9
UD
1223disabled, the status of the other exceptions is not changed.
1224
1225The function returns the previous enabled exceptions in case the
1226operation was successful, @code{-1} otherwise.
1227@end deftypefun
1228
1229@comment fenv.h
1230@comment GNU
8ded91fb 1231@deftypefun int fegetexcept (void)
b719dafd 1232@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
05ef7ce9
UD
1233The function returns a bitmask of all currently enabled exceptions. It
1234returns @code{-1} in case of failure.
6e8afc1c 1235@end deftypefun
05ef7ce9 1236
7a68c94a
UD
1237@node Arithmetic Functions
1238@section Arithmetic Functions
b4012b75 1239
7a68c94a
UD
1240The C library provides functions to do basic operations on
1241floating-point numbers. These include absolute value, maximum and minimum,
1242normalization, bit twiddling, rounding, and a few others.
b4012b75 1243
7a68c94a
UD
1244@menu
1245* Absolute Value:: Absolute values of integers and floats.
1246* Normalization Functions:: Extracting exponents and putting them back.
1247* Rounding Functions:: Rounding floats to integers.
1248* Remainder Functions:: Remainders on division, precisely defined.
1249* FP Bit Twiddling:: Sign bit adjustment. Adding epsilon.
1250* FP Comparison Functions:: Comparisons without risk of exceptions.
1251* Misc FP Arithmetic:: Max, min, positive difference, multiply-add.
1252@end menu
b4012b75 1253
28f540f4 1254@node Absolute Value
7a68c94a 1255@subsection Absolute Value
28f540f4
RM
1256@cindex absolute value functions
1257
1258These functions are provided for obtaining the @dfn{absolute value} (or
1259@dfn{magnitude}) of a number. The absolute value of a real number
2d26e9eb 1260@var{x} is @var{x} if @var{x} is positive, @minus{}@var{x} if @var{x} is
28f540f4
RM
1261negative. For a complex number @var{z}, whose real part is @var{x} and
1262whose imaginary part is @var{y}, the absolute value is @w{@code{sqrt
1263(@var{x}*@var{x} + @var{y}*@var{y})}}.
1264
1265@pindex math.h
1266@pindex stdlib.h
fe0ec73e 1267Prototypes for @code{abs}, @code{labs} and @code{llabs} are in @file{stdlib.h};
e518937a 1268@code{imaxabs} is declared in @file{inttypes.h};
7a68c94a 1269@code{fabs}, @code{fabsf} and @code{fabsl} are declared in @file{math.h}.
b4012b75 1270@code{cabs}, @code{cabsf} and @code{cabsl} are declared in @file{complex.h}.
28f540f4
RM
1271
1272@comment stdlib.h
f65fd747 1273@comment ISO
28f540f4 1274@deftypefun int abs (int @var{number})
4260bc74
UD
1275@comment stdlib.h
1276@comment ISO
7a68c94a 1277@deftypefunx {long int} labs (long int @var{number})
4260bc74
UD
1278@comment stdlib.h
1279@comment ISO
7a68c94a 1280@deftypefunx {long long int} llabs (long long int @var{number})
e518937a
UD
1281@comment inttypes.h
1282@comment ISO
1283@deftypefunx intmax_t imaxabs (intmax_t @var{number})
b719dafd 1284@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a 1285These functions return the absolute value of @var{number}.
28f540f4
RM
1286
1287Most computers use a two's complement integer representation, in which
1288the absolute value of @code{INT_MIN} (the smallest possible @code{int})
1289cannot be represented; thus, @w{@code{abs (INT_MIN)}} is not defined.
28f540f4 1290
ec751a23 1291@code{llabs} and @code{imaxdiv} are new to @w{ISO C99}.
0e4ee106
UD
1292
1293See @ref{Integers} for a description of the @code{intmax_t} type.
1294
fe0ec73e
UD
1295@end deftypefun
1296
28f540f4 1297@comment math.h
f65fd747 1298@comment ISO
28f540f4 1299@deftypefun double fabs (double @var{number})
4260bc74
UD
1300@comment math.h
1301@comment ISO
779ae82e 1302@deftypefunx float fabsf (float @var{number})
4260bc74
UD
1303@comment math.h
1304@comment ISO
779ae82e 1305@deftypefunx {long double} fabsl (long double @var{number})
b719dafd 1306@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
28f540f4
RM
1307This function returns the absolute value of the floating-point number
1308@var{number}.
1309@end deftypefun
1310
b4012b75
UD
1311@comment complex.h
1312@comment ISO
1313@deftypefun double cabs (complex double @var{z})
4260bc74
UD
1314@comment complex.h
1315@comment ISO
779ae82e 1316@deftypefunx float cabsf (complex float @var{z})
4260bc74
UD
1317@comment complex.h
1318@comment ISO
779ae82e 1319@deftypefunx {long double} cabsl (complex long double @var{z})
b719dafd 1320@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1321These functions return the absolute value of the complex number @var{z}
1322(@pxref{Complex Numbers}). The absolute value of a complex number is:
28f540f4
RM
1323
1324@smallexample
b4012b75 1325sqrt (creal (@var{z}) * creal (@var{z}) + cimag (@var{z}) * cimag (@var{z}))
28f540f4 1326@end smallexample
dfd2257a 1327
7a68c94a
UD
1328This function should always be used instead of the direct formula
1329because it takes special care to avoid losing precision. It may also
cf822e3c 1330take advantage of hardware support for this operation. See @code{hypot}
8b7fb588 1331in @ref{Exponents and Logarithms}.
28f540f4
RM
1332@end deftypefun
1333
1334@node Normalization Functions
7a68c94a 1335@subsection Normalization Functions
28f540f4
RM
1336@cindex normalization functions (floating-point)
1337
1338The functions described in this section are primarily provided as a way
1339to efficiently perform certain low-level manipulations on floating point
1340numbers that are represented internally using a binary radix;
1341see @ref{Floating Point Concepts}. These functions are required to
1342have equivalent behavior even if the representation does not use a radix
1343of 2, but of course they are unlikely to be particularly efficient in
1344those cases.
1345
1346@pindex math.h
1347All these functions are declared in @file{math.h}.
1348
1349@comment math.h
f65fd747 1350@comment ISO
28f540f4 1351@deftypefun double frexp (double @var{value}, int *@var{exponent})
4260bc74
UD
1352@comment math.h
1353@comment ISO
779ae82e 1354@deftypefunx float frexpf (float @var{value}, int *@var{exponent})
4260bc74
UD
1355@comment math.h
1356@comment ISO
779ae82e 1357@deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent})
b719dafd 1358@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
b4012b75 1359These functions are used to split the number @var{value}
28f540f4
RM
1360into a normalized fraction and an exponent.
1361
1362If the argument @var{value} is not zero, the return value is @var{value}
56b672e9
BN
1363times a power of two, and its magnitude is always in the range 1/2
1364(inclusive) to 1 (exclusive). The corresponding exponent is stored in
28f540f4
RM
1365@code{*@var{exponent}}; the return value multiplied by 2 raised to this
1366exponent equals the original number @var{value}.
1367
1368For example, @code{frexp (12.8, &exponent)} returns @code{0.8} and
1369stores @code{4} in @code{exponent}.
1370
1371If @var{value} is zero, then the return value is zero and
1372zero is stored in @code{*@var{exponent}}.
1373@end deftypefun
1374
1375@comment math.h
f65fd747 1376@comment ISO
28f540f4 1377@deftypefun double ldexp (double @var{value}, int @var{exponent})
4260bc74
UD
1378@comment math.h
1379@comment ISO
779ae82e 1380@deftypefunx float ldexpf (float @var{value}, int @var{exponent})
4260bc74
UD
1381@comment math.h
1382@comment ISO
779ae82e 1383@deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent})
b719dafd 1384@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
b4012b75 1385These functions return the result of multiplying the floating-point
28f540f4
RM
1386number @var{value} by 2 raised to the power @var{exponent}. (It can
1387be used to reassemble floating-point numbers that were taken apart
1388by @code{frexp}.)
1389
1390For example, @code{ldexp (0.8, 4)} returns @code{12.8}.
1391@end deftypefun
1392
7a68c94a 1393The following functions, which come from BSD, provide facilities
b7d03293
UD
1394equivalent to those of @code{ldexp} and @code{frexp}. See also the
1395@w{ISO C} function @code{logb} which originally also appeared in BSD.
7a68c94a
UD
1396
1397@comment math.h
1398@comment BSD
8ded91fb 1399@deftypefun double scalb (double @var{value}, double @var{exponent})
4260bc74
UD
1400@comment math.h
1401@comment BSD
8ded91fb 1402@deftypefunx float scalbf (float @var{value}, float @var{exponent})
4260bc74
UD
1403@comment math.h
1404@comment BSD
8ded91fb 1405@deftypefunx {long double} scalbl (long double @var{value}, long double @var{exponent})
b719dafd 1406@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1407The @code{scalb} function is the BSD name for @code{ldexp}.
1408@end deftypefun
1409
1410@comment math.h
1411@comment BSD
9ad027fb 1412@deftypefun double scalbn (double @var{x}, int @var{n})
4260bc74
UD
1413@comment math.h
1414@comment BSD
9ad027fb 1415@deftypefunx float scalbnf (float @var{x}, int @var{n})
4260bc74
UD
1416@comment math.h
1417@comment BSD
9ad027fb 1418@deftypefunx {long double} scalbnl (long double @var{x}, int @var{n})
b719dafd 1419@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1420@code{scalbn} is identical to @code{scalb}, except that the exponent
1421@var{n} is an @code{int} instead of a floating-point number.
1422@end deftypefun
1423
1424@comment math.h
1425@comment BSD
9ad027fb 1426@deftypefun double scalbln (double @var{x}, long int @var{n})
4260bc74
UD
1427@comment math.h
1428@comment BSD
9ad027fb 1429@deftypefunx float scalblnf (float @var{x}, long int @var{n})
4260bc74
UD
1430@comment math.h
1431@comment BSD
9ad027fb 1432@deftypefunx {long double} scalblnl (long double @var{x}, long int @var{n})
b719dafd 1433@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1434@code{scalbln} is identical to @code{scalb}, except that the exponent
1435@var{n} is a @code{long int} instead of a floating-point number.
1436@end deftypefun
28f540f4 1437
7a68c94a
UD
1438@comment math.h
1439@comment BSD
8ded91fb 1440@deftypefun double significand (double @var{x})
4260bc74
UD
1441@comment math.h
1442@comment BSD
8ded91fb 1443@deftypefunx float significandf (float @var{x})
4260bc74
UD
1444@comment math.h
1445@comment BSD
8ded91fb 1446@deftypefunx {long double} significandl (long double @var{x})
b719dafd 1447@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1448@code{significand} returns the mantissa of @var{x} scaled to the range
1449@math{[1, 2)}.
1450It is equivalent to @w{@code{scalb (@var{x}, (double) -ilogb (@var{x}))}}.
1451
1452This function exists mainly for use in certain standardized tests
1453of @w{IEEE 754} conformance.
28f540f4
RM
1454@end deftypefun
1455
7a68c94a
UD
1456@node Rounding Functions
1457@subsection Rounding Functions
28f540f4
RM
1458@cindex converting floats to integers
1459
1460@pindex math.h
7a68c94a 1461The functions listed here perform operations such as rounding and
cf822e3c 1462truncation of floating-point values. Some of these functions convert
7a68c94a
UD
1463floating point numbers to integer values. They are all declared in
1464@file{math.h}.
28f540f4
RM
1465
1466You can also convert floating-point numbers to integers simply by
1467casting them to @code{int}. This discards the fractional part,
1468effectively rounding towards zero. However, this only works if the
1469result can actually be represented as an @code{int}---for very large
1470numbers, this is impossible. The functions listed here return the
1471result as a @code{double} instead to get around this problem.
1472
1473@comment math.h
f65fd747 1474@comment ISO
28f540f4 1475@deftypefun double ceil (double @var{x})
4260bc74
UD
1476@comment math.h
1477@comment ISO
779ae82e 1478@deftypefunx float ceilf (float @var{x})
4260bc74
UD
1479@comment math.h
1480@comment ISO
779ae82e 1481@deftypefunx {long double} ceill (long double @var{x})
b719dafd 1482@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
b4012b75 1483These functions round @var{x} upwards to the nearest integer,
28f540f4
RM
1484returning that value as a @code{double}. Thus, @code{ceil (1.5)}
1485is @code{2.0}.
1486@end deftypefun
1487
1488@comment math.h
f65fd747 1489@comment ISO
28f540f4 1490@deftypefun double floor (double @var{x})
4260bc74
UD
1491@comment math.h
1492@comment ISO
779ae82e 1493@deftypefunx float floorf (float @var{x})
4260bc74
UD
1494@comment math.h
1495@comment ISO
779ae82e 1496@deftypefunx {long double} floorl (long double @var{x})
b719dafd 1497@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
b4012b75 1498These functions round @var{x} downwards to the nearest
28f540f4
RM
1499integer, returning that value as a @code{double}. Thus, @code{floor
1500(1.5)} is @code{1.0} and @code{floor (-1.5)} is @code{-2.0}.
1501@end deftypefun
1502
7a68c94a
UD
1503@comment math.h
1504@comment ISO
1505@deftypefun double trunc (double @var{x})
4260bc74
UD
1506@comment math.h
1507@comment ISO
7a68c94a 1508@deftypefunx float truncf (float @var{x})
4260bc74
UD
1509@comment math.h
1510@comment ISO
7a68c94a 1511@deftypefunx {long double} truncl (long double @var{x})
b719dafd 1512@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
e6e81391
UD
1513The @code{trunc} functions round @var{x} towards zero to the nearest
1514integer (returned in floating-point format). Thus, @code{trunc (1.5)}
1515is @code{1.0} and @code{trunc (-1.5)} is @code{-1.0}.
7a68c94a
UD
1516@end deftypefun
1517
28f540f4 1518@comment math.h
b4012b75 1519@comment ISO
28f540f4 1520@deftypefun double rint (double @var{x})
4260bc74
UD
1521@comment math.h
1522@comment ISO
779ae82e 1523@deftypefunx float rintf (float @var{x})
4260bc74
UD
1524@comment math.h
1525@comment ISO
779ae82e 1526@deftypefunx {long double} rintl (long double @var{x})
b719dafd 1527@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
b4012b75 1528These functions round @var{x} to an integer value according to the
28f540f4
RM
1529current rounding mode. @xref{Floating Point Parameters}, for
1530information about the various rounding modes. The default
1531rounding mode is to round to the nearest integer; some machines
1532support other modes, but round-to-nearest is always used unless
7a68c94a
UD
1533you explicitly select another.
1534
1535If @var{x} was not initially an integer, these functions raise the
1536inexact exception.
28f540f4
RM
1537@end deftypefun
1538
b4012b75
UD
1539@comment math.h
1540@comment ISO
1541@deftypefun double nearbyint (double @var{x})
4260bc74
UD
1542@comment math.h
1543@comment ISO
779ae82e 1544@deftypefunx float nearbyintf (float @var{x})
4260bc74
UD
1545@comment math.h
1546@comment ISO
779ae82e 1547@deftypefunx {long double} nearbyintl (long double @var{x})
b719dafd 1548@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1549These functions return the same value as the @code{rint} functions, but
1550do not raise the inexact exception if @var{x} is not an integer.
1551@end deftypefun
1552
1553@comment math.h
1554@comment ISO
1555@deftypefun double round (double @var{x})
4260bc74
UD
1556@comment math.h
1557@comment ISO
7a68c94a 1558@deftypefunx float roundf (float @var{x})
4260bc74
UD
1559@comment math.h
1560@comment ISO
7a68c94a 1561@deftypefunx {long double} roundl (long double @var{x})
b719dafd 1562@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a 1563These functions are similar to @code{rint}, but they round halfway
713df3d5
RM
1564cases away from zero instead of to the nearest integer (or other
1565current rounding mode).
7a68c94a
UD
1566@end deftypefun
1567
1568@comment math.h
1569@comment ISO
1570@deftypefun {long int} lrint (double @var{x})
4260bc74
UD
1571@comment math.h
1572@comment ISO
7a68c94a 1573@deftypefunx {long int} lrintf (float @var{x})
4260bc74
UD
1574@comment math.h
1575@comment ISO
7a68c94a 1576@deftypefunx {long int} lrintl (long double @var{x})
b719dafd 1577@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1578These functions are just like @code{rint}, but they return a
1579@code{long int} instead of a floating-point number.
1580@end deftypefun
1581
1582@comment math.h
1583@comment ISO
1584@deftypefun {long long int} llrint (double @var{x})
4260bc74
UD
1585@comment math.h
1586@comment ISO
7a68c94a 1587@deftypefunx {long long int} llrintf (float @var{x})
4260bc74
UD
1588@comment math.h
1589@comment ISO
7a68c94a 1590@deftypefunx {long long int} llrintl (long double @var{x})
b719dafd 1591@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1592These functions are just like @code{rint}, but they return a
1593@code{long long int} instead of a floating-point number.
b4012b75
UD
1594@end deftypefun
1595
7a68c94a
UD
1596@comment math.h
1597@comment ISO
1598@deftypefun {long int} lround (double @var{x})
4260bc74
UD
1599@comment math.h
1600@comment ISO
7a68c94a 1601@deftypefunx {long int} lroundf (float @var{x})
4260bc74
UD
1602@comment math.h
1603@comment ISO
7a68c94a 1604@deftypefunx {long int} lroundl (long double @var{x})
b719dafd 1605@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1606These functions are just like @code{round}, but they return a
1607@code{long int} instead of a floating-point number.
1608@end deftypefun
1609
1610@comment math.h
1611@comment ISO
1612@deftypefun {long long int} llround (double @var{x})
4260bc74
UD
1613@comment math.h
1614@comment ISO
7a68c94a 1615@deftypefunx {long long int} llroundf (float @var{x})
4260bc74
UD
1616@comment math.h
1617@comment ISO
7a68c94a 1618@deftypefunx {long long int} llroundl (long double @var{x})
b719dafd 1619@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1620These functions are just like @code{round}, but they return a
1621@code{long long int} instead of a floating-point number.
1622@end deftypefun
1623
1624
28f540f4 1625@comment math.h
f65fd747 1626@comment ISO
28f540f4 1627@deftypefun double modf (double @var{value}, double *@var{integer-part})
4260bc74
UD
1628@comment math.h
1629@comment ISO
f2ea0f5b 1630@deftypefunx float modff (float @var{value}, float *@var{integer-part})
4260bc74
UD
1631@comment math.h
1632@comment ISO
779ae82e 1633@deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part})
b719dafd 1634@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
b4012b75 1635These functions break the argument @var{value} into an integer part and a
28f540f4
RM
1636fractional part (between @code{-1} and @code{1}, exclusive). Their sum
1637equals @var{value}. Each of the parts has the same sign as @var{value},
7a68c94a 1638and the integer part is always rounded toward zero.
28f540f4
RM
1639
1640@code{modf} stores the integer part in @code{*@var{integer-part}}, and
1641returns the fractional part. For example, @code{modf (2.5, &intpart)}
1642returns @code{0.5} and stores @code{2.0} into @code{intpart}.
1643@end deftypefun
1644
7a68c94a
UD
1645@node Remainder Functions
1646@subsection Remainder Functions
1647
1648The functions in this section compute the remainder on division of two
1649floating-point numbers. Each is a little different; pick the one that
1650suits your problem.
1651
28f540f4 1652@comment math.h
f65fd747 1653@comment ISO
28f540f4 1654@deftypefun double fmod (double @var{numerator}, double @var{denominator})
4260bc74
UD
1655@comment math.h
1656@comment ISO
779ae82e 1657@deftypefunx float fmodf (float @var{numerator}, float @var{denominator})
4260bc74
UD
1658@comment math.h
1659@comment ISO
779ae82e 1660@deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator})
b719dafd 1661@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
b4012b75 1662These functions compute the remainder from the division of
28f540f4
RM
1663@var{numerator} by @var{denominator}. Specifically, the return value is
1664@code{@var{numerator} - @w{@var{n} * @var{denominator}}}, where @var{n}
1665is the quotient of @var{numerator} divided by @var{denominator}, rounded
1666towards zero to an integer. Thus, @w{@code{fmod (6.5, 2.3)}} returns
1667@code{1.9}, which is @code{6.5} minus @code{4.6}.
1668
1669The result has the same sign as the @var{numerator} and has magnitude
1670less than the magnitude of the @var{denominator}.
1671
7a68c94a 1672If @var{denominator} is zero, @code{fmod} signals a domain error.
28f540f4
RM
1673@end deftypefun
1674
1675@comment math.h
1676@comment BSD
1677@deftypefun double drem (double @var{numerator}, double @var{denominator})
4260bc74
UD
1678@comment math.h
1679@comment BSD
779ae82e 1680@deftypefunx float dremf (float @var{numerator}, float @var{denominator})
4260bc74
UD
1681@comment math.h
1682@comment BSD
779ae82e 1683@deftypefunx {long double} dreml (long double @var{numerator}, long double @var{denominator})
b719dafd 1684@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
76cf9889 1685These functions are like @code{fmod} except that they round the
28f540f4
RM
1686internal quotient @var{n} to the nearest integer instead of towards zero
1687to an integer. For example, @code{drem (6.5, 2.3)} returns @code{-0.4},
1688which is @code{6.5} minus @code{6.9}.
1689
1690The absolute value of the result is less than or equal to half the
1691absolute value of the @var{denominator}. The difference between
1692@code{fmod (@var{numerator}, @var{denominator})} and @code{drem
1693(@var{numerator}, @var{denominator})} is always either
1694@var{denominator}, minus @var{denominator}, or zero.
1695
7a68c94a 1696If @var{denominator} is zero, @code{drem} signals a domain error.
28f540f4
RM
1697@end deftypefun
1698
7a68c94a
UD
1699@comment math.h
1700@comment BSD
1701@deftypefun double remainder (double @var{numerator}, double @var{denominator})
4260bc74
UD
1702@comment math.h
1703@comment BSD
7a68c94a 1704@deftypefunx float remainderf (float @var{numerator}, float @var{denominator})
4260bc74
UD
1705@comment math.h
1706@comment BSD
7a68c94a 1707@deftypefunx {long double} remainderl (long double @var{numerator}, long double @var{denominator})
b719dafd 1708@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1709This function is another name for @code{drem}.
1710@end deftypefun
28f540f4 1711
7a68c94a
UD
1712@node FP Bit Twiddling
1713@subsection Setting and modifying single bits of FP values
fe0ec73e
UD
1714@cindex FP arithmetic
1715
7a68c94a 1716There are some operations that are too complicated or expensive to
ec751a23 1717perform by hand on floating-point numbers. @w{ISO C99} defines
7a68c94a
UD
1718functions to do these operations, which mostly involve changing single
1719bits.
fe0ec73e
UD
1720
1721@comment math.h
1722@comment ISO
1723@deftypefun double copysign (double @var{x}, double @var{y})
4260bc74
UD
1724@comment math.h
1725@comment ISO
fe0ec73e 1726@deftypefunx float copysignf (float @var{x}, float @var{y})
4260bc74
UD
1727@comment math.h
1728@comment ISO
fe0ec73e 1729@deftypefunx {long double} copysignl (long double @var{x}, long double @var{y})
b719dafd 1730@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1731These functions return @var{x} but with the sign of @var{y}. They work
1732even if @var{x} or @var{y} are NaN or zero. Both of these can carry a
1733sign (although not all implementations support it) and this is one of
1734the few operations that can tell the difference.
fe0ec73e 1735
7a68c94a
UD
1736@code{copysign} never raises an exception.
1737@c except signalling NaNs
fe0ec73e
UD
1738
1739This function is defined in @w{IEC 559} (and the appendix with
1740recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1741@end deftypefun
1742
1743@comment math.h
1744@comment ISO
1745@deftypefun int signbit (@emph{float-type} @var{x})
b719dafd 1746@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
fe0ec73e
UD
1747@code{signbit} is a generic macro which can work on all floating-point
1748types. It returns a nonzero value if the value of @var{x} has its sign
1749bit set.
1750
7a68c94a
UD
1751This is not the same as @code{x < 0.0}, because @w{IEEE 754} floating
1752point allows zero to be signed. The comparison @code{-0.0 < 0.0} is
1753false, but @code{signbit (-0.0)} will return a nonzero value.
fe0ec73e
UD
1754@end deftypefun
1755
1756@comment math.h
1757@comment ISO
1758@deftypefun double nextafter (double @var{x}, double @var{y})
4260bc74
UD
1759@comment math.h
1760@comment ISO
fe0ec73e 1761@deftypefunx float nextafterf (float @var{x}, float @var{y})
4260bc74
UD
1762@comment math.h
1763@comment ISO
fe0ec73e 1764@deftypefunx {long double} nextafterl (long double @var{x}, long double @var{y})
b719dafd 1765@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
fe0ec73e 1766The @code{nextafter} function returns the next representable neighbor of
7a68c94a
UD
1767@var{x} in the direction towards @var{y}. The size of the step between
1768@var{x} and the result depends on the type of the result. If
0a7fef01 1769@math{@var{x} = @var{y}} the function simply returns @var{y}. If either
7a68c94a
UD
1770value is @code{NaN}, @code{NaN} is returned. Otherwise
1771a value corresponding to the value of the least significant bit in the
1772mantissa is added or subtracted, depending on the direction.
1773@code{nextafter} will signal overflow or underflow if the result goes
1774outside of the range of normalized numbers.
fe0ec73e
UD
1775
1776This function is defined in @w{IEC 559} (and the appendix with
1777recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1778@end deftypefun
1779
7a68c94a
UD
1780@comment math.h
1781@comment ISO
36fe9ac9 1782@deftypefun double nexttoward (double @var{x}, long double @var{y})
4260bc74
UD
1783@comment math.h
1784@comment ISO
36fe9ac9 1785@deftypefunx float nexttowardf (float @var{x}, long double @var{y})
4260bc74
UD
1786@comment math.h
1787@comment ISO
36fe9ac9 1788@deftypefunx {long double} nexttowardl (long double @var{x}, long double @var{y})
b719dafd 1789@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1790These functions are identical to the corresponding versions of
1791@code{nextafter} except that their second argument is a @code{long
1792double}.
1793@end deftypefun
1794
41a359e2 1795@comment math.h
bf91be88 1796@comment ISO
41a359e2
RS
1797@deftypefun double nextup (double @var{x})
1798@comment math.h
bf91be88 1799@comment ISO
41a359e2
RS
1800@deftypefunx float nextupf (float @var{x})
1801@comment math.h
bf91be88 1802@comment ISO
41a359e2
RS
1803@deftypefunx {long double} nextupl (long double @var{x})
1804@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1805The @code{nextup} function returns the next representable neighbor of @var{x}
1806in the direction of positive infinity. If @var{x} is the smallest negative
1807subnormal number in the type of @var{x} the function returns @code{-0}. If
1808@math{@var{x} = @code{0}} the function returns the smallest positive subnormal
1809number in the type of @var{x}. If @var{x} is NaN, NaN is returned.
1810If @var{x} is @math{+@infinity{}}, @math{+@infinity{}} is returned.
71b48044 1811@code{nextup} is from TS 18661-1:2014.
41a359e2
RS
1812@code{nextup} never raises an exception except for signaling NaNs.
1813@end deftypefun
1814
1815@comment math.h
bf91be88 1816@comment ISO
41a359e2
RS
1817@deftypefun double nextdown (double @var{x})
1818@comment math.h
bf91be88 1819@comment ISO
41a359e2
RS
1820@deftypefunx float nextdownf (float @var{x})
1821@comment math.h
bf91be88 1822@comment ISO
41a359e2
RS
1823@deftypefunx {long double} nextdownl (long double @var{x})
1824@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1825The @code{nextdown} function returns the next representable neighbor of @var{x}
1826in the direction of negative infinity. If @var{x} is the smallest positive
1827subnormal number in the type of @var{x} the function returns @code{+0}. If
1828@math{@var{x} = @code{0}} the function returns the smallest negative subnormal
1829number in the type of @var{x}. If @var{x} is NaN, NaN is returned.
1830If @var{x} is @math{-@infinity{}}, @math{-@infinity{}} is returned.
bf91be88 1831@code{nextdown} is from TS 18661-1:2014.
41a359e2
RS
1832@code{nextdown} never raises an exception except for signaling NaNs.
1833@end deftypefun
1834
fe0ec73e
UD
1835@cindex NaN
1836@comment math.h
1837@comment ISO
1838@deftypefun double nan (const char *@var{tagp})
4260bc74
UD
1839@comment math.h
1840@comment ISO
fe0ec73e 1841@deftypefunx float nanf (const char *@var{tagp})
4260bc74
UD
1842@comment math.h
1843@comment ISO
fe0ec73e 1844@deftypefunx {long double} nanl (const char *@var{tagp})
b719dafd
AO
1845@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
1846@c The unsafe-but-ruled-safe locale use comes from strtod.
7a68c94a
UD
1847The @code{nan} function returns a representation of NaN, provided that
1848NaN is supported by the target platform.
1849@code{nan ("@var{n-char-sequence}")} is equivalent to
1850@code{strtod ("NAN(@var{n-char-sequence})")}.
1851
1852The argument @var{tagp} is used in an unspecified manner. On @w{IEEE
1853754} systems, there are many representations of NaN, and @var{tagp}
1854selects one. On other systems it may do nothing.
fe0ec73e
UD
1855@end deftypefun
1856
7a68c94a
UD
1857@node FP Comparison Functions
1858@subsection Floating-Point Comparison Functions
1859@cindex unordered comparison
fe0ec73e 1860
7a68c94a
UD
1861The standard C comparison operators provoke exceptions when one or other
1862of the operands is NaN. For example,
1863
1864@smallexample
1865int v = a < 1.0;
1866@end smallexample
1867
1868@noindent
1869will raise an exception if @var{a} is NaN. (This does @emph{not}
1870happen with @code{==} and @code{!=}; those merely return false and true,
1871respectively, when NaN is examined.) Frequently this exception is
ec751a23 1872undesirable. @w{ISO C99} therefore defines comparison functions that
7a68c94a
UD
1873do not raise exceptions when NaN is examined. All of the functions are
1874implemented as macros which allow their arguments to be of any
1875floating-point type. The macros are guaranteed to evaluate their
1876arguments only once.
1877
1878@comment math.h
1879@comment ISO
1880@deftypefn Macro int isgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
b719dafd 1881@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1882This macro determines whether the argument @var{x} is greater than
1883@var{y}. It is equivalent to @code{(@var{x}) > (@var{y})}, but no
1884exception is raised if @var{x} or @var{y} are NaN.
1885@end deftypefn
1886
1887@comment math.h
1888@comment ISO
1889@deftypefn Macro int isgreaterequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
b719dafd 1890@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1891This macro determines whether the argument @var{x} is greater than or
1892equal to @var{y}. It is equivalent to @code{(@var{x}) >= (@var{y})}, but no
1893exception is raised if @var{x} or @var{y} are NaN.
1894@end deftypefn
1895
1896@comment math.h
1897@comment ISO
1898@deftypefn Macro int isless (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
b719dafd 1899@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1900This macro determines whether the argument @var{x} is less than @var{y}.
1901It is equivalent to @code{(@var{x}) < (@var{y})}, but no exception is
1902raised if @var{x} or @var{y} are NaN.
1903@end deftypefn
1904
1905@comment math.h
1906@comment ISO
1907@deftypefn Macro int islessequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
b719dafd 1908@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1909This macro determines whether the argument @var{x} is less than or equal
1910to @var{y}. It is equivalent to @code{(@var{x}) <= (@var{y})}, but no
1911exception is raised if @var{x} or @var{y} are NaN.
1912@end deftypefn
1913
1914@comment math.h
1915@comment ISO
1916@deftypefn Macro int islessgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
b719dafd 1917@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1918This macro determines whether the argument @var{x} is less or greater
1919than @var{y}. It is equivalent to @code{(@var{x}) < (@var{y}) ||
1920(@var{x}) > (@var{y})} (although it only evaluates @var{x} and @var{y}
1921once), but no exception is raised if @var{x} or @var{y} are NaN.
1922
1923This macro is not equivalent to @code{@var{x} != @var{y}}, because that
1924expression is true if @var{x} or @var{y} are NaN.
1925@end deftypefn
1926
1927@comment math.h
1928@comment ISO
1929@deftypefn Macro int isunordered (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
b719dafd 1930@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1931This macro determines whether its arguments are unordered. In other
1932words, it is true if @var{x} or @var{y} are NaN, and false otherwise.
1933@end deftypefn
1934
1935Not all machines provide hardware support for these operations. On
1936machines that don't, the macros can be very slow. Therefore, you should
1937not use these functions when NaN is not a concern.
1938
48b22986 1939@strong{NB:} There are no macros @code{isequal} or @code{isunequal}.
7a68c94a
UD
1940They are unnecessary, because the @code{==} and @code{!=} operators do
1941@emph{not} throw an exception if one or both of the operands are NaN.
1942
1943@node Misc FP Arithmetic
1944@subsection Miscellaneous FP arithmetic functions
fe0ec73e
UD
1945@cindex minimum
1946@cindex maximum
7a68c94a
UD
1947@cindex positive difference
1948@cindex multiply-add
fe0ec73e 1949
7a68c94a
UD
1950The functions in this section perform miscellaneous but common
1951operations that are awkward to express with C operators. On some
1952processors these functions can use special machine instructions to
1953perform these operations faster than the equivalent C code.
fe0ec73e
UD
1954
1955@comment math.h
1956@comment ISO
1957@deftypefun double fmin (double @var{x}, double @var{y})
4260bc74
UD
1958@comment math.h
1959@comment ISO
fe0ec73e 1960@deftypefunx float fminf (float @var{x}, float @var{y})
4260bc74
UD
1961@comment math.h
1962@comment ISO
fe0ec73e 1963@deftypefunx {long double} fminl (long double @var{x}, long double @var{y})
b719dafd 1964@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1965The @code{fmin} function returns the lesser of the two values @var{x}
1966and @var{y}. It is similar to the expression
1967@smallexample
1968((x) < (y) ? (x) : (y))
1969@end smallexample
1970except that @var{x} and @var{y} are only evaluated once.
fe0ec73e 1971
7a68c94a
UD
1972If an argument is NaN, the other argument is returned. If both arguments
1973are NaN, NaN is returned.
fe0ec73e
UD
1974@end deftypefun
1975
1976@comment math.h
1977@comment ISO
1978@deftypefun double fmax (double @var{x}, double @var{y})
4260bc74
UD
1979@comment math.h
1980@comment ISO
fe0ec73e 1981@deftypefunx float fmaxf (float @var{x}, float @var{y})
4260bc74
UD
1982@comment math.h
1983@comment ISO
fe0ec73e 1984@deftypefunx {long double} fmaxl (long double @var{x}, long double @var{y})
b719dafd 1985@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
1986The @code{fmax} function returns the greater of the two values @var{x}
1987and @var{y}.
fe0ec73e 1988
7a68c94a
UD
1989If an argument is NaN, the other argument is returned. If both arguments
1990are NaN, NaN is returned.
fe0ec73e
UD
1991@end deftypefun
1992
1993@comment math.h
1994@comment ISO
1995@deftypefun double fdim (double @var{x}, double @var{y})
4260bc74
UD
1996@comment math.h
1997@comment ISO
fe0ec73e 1998@deftypefunx float fdimf (float @var{x}, float @var{y})
4260bc74
UD
1999@comment math.h
2000@comment ISO
fe0ec73e 2001@deftypefunx {long double} fdiml (long double @var{x}, long double @var{y})
b719dafd 2002@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
2003The @code{fdim} function returns the positive difference between
2004@var{x} and @var{y}. The positive difference is @math{@var{x} -
2005@var{y}} if @var{x} is greater than @var{y}, and @math{0} otherwise.
fe0ec73e 2006
7a68c94a 2007If @var{x}, @var{y}, or both are NaN, NaN is returned.
fe0ec73e
UD
2008@end deftypefun
2009
2010@comment math.h
2011@comment ISO
2012@deftypefun double fma (double @var{x}, double @var{y}, double @var{z})
4260bc74
UD
2013@comment math.h
2014@comment ISO
fe0ec73e 2015@deftypefunx float fmaf (float @var{x}, float @var{y}, float @var{z})
4260bc74
UD
2016@comment math.h
2017@comment ISO
fe0ec73e
UD
2018@deftypefunx {long double} fmal (long double @var{x}, long double @var{y}, long double @var{z})
2019@cindex butterfly
b719dafd 2020@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
2021The @code{fma} function performs floating-point multiply-add. This is
2022the operation @math{(@var{x} @mul{} @var{y}) + @var{z}}, but the
2023intermediate result is not rounded to the destination type. This can
2024sometimes improve the precision of a calculation.
2025
2026This function was introduced because some processors have a special
2027instruction to perform multiply-add. The C compiler cannot use it
2028directly, because the expression @samp{x*y + z} is defined to round the
2029intermediate result. @code{fma} lets you choose when you want to round
2030only once.
fe0ec73e
UD
2031
2032@vindex FP_FAST_FMA
7a68c94a
UD
2033On processors which do not implement multiply-add in hardware,
2034@code{fma} can be very slow since it must avoid intermediate rounding.
2035@file{math.h} defines the symbols @code{FP_FAST_FMA},
2036@code{FP_FAST_FMAF}, and @code{FP_FAST_FMAL} when the corresponding
2037version of @code{fma} is no slower than the expression @samp{x*y + z}.
1f77f049 2038In @theglibc{}, this always means the operation is implemented in
7a68c94a 2039hardware.
fe0ec73e
UD
2040@end deftypefun
2041
7a68c94a
UD
2042@node Complex Numbers
2043@section Complex Numbers
2044@pindex complex.h
2045@cindex complex numbers
2046
ec751a23 2047@w{ISO C99} introduces support for complex numbers in C. This is done
7a68c94a
UD
2048with a new type qualifier, @code{complex}. It is a keyword if and only
2049if @file{complex.h} has been included. There are three complex types,
2050corresponding to the three real types: @code{float complex},
2051@code{double complex}, and @code{long double complex}.
2052
2053To construct complex numbers you need a way to indicate the imaginary
2054part of a number. There is no standard notation for an imaginary
2055floating point constant. Instead, @file{complex.h} defines two macros
2056that can be used to create complex numbers.
2057
2058@deftypevr Macro {const float complex} _Complex_I
2059This macro is a representation of the complex number ``@math{0+1i}''.
2060Multiplying a real floating-point value by @code{_Complex_I} gives a
2061complex number whose value is purely imaginary. You can use this to
2062construct complex constants:
2063
2064@smallexample
2065@math{3.0 + 4.0i} = @code{3.0 + 4.0 * _Complex_I}
2066@end smallexample
2067
2068Note that @code{_Complex_I * _Complex_I} has the value @code{-1}, but
2069the type of that value is @code{complex}.
2070@end deftypevr
2071
2072@c Put this back in when gcc supports _Imaginary_I. It's too confusing.
2073@ignore
2074@noindent
2075Without an optimizing compiler this is more expensive than the use of
2076@code{_Imaginary_I} but with is better than nothing. You can avoid all
2077the hassles if you use the @code{I} macro below if the name is not
2078problem.
2079
2080@deftypevr Macro {const float imaginary} _Imaginary_I
2081This macro is a representation of the value ``@math{1i}''. I.e., it is
2082the value for which
2083
2084@smallexample
2085_Imaginary_I * _Imaginary_I = -1
2086@end smallexample
2087
2088@noindent
2089The result is not of type @code{float imaginary} but instead @code{float}.
2090One can use it to easily construct complex number like in
2091
2092@smallexample
20933.0 - _Imaginary_I * 4.0
2094@end smallexample
2095
2096@noindent
2097which results in the complex number with a real part of 3.0 and a
2098imaginary part -4.0.
2099@end deftypevr
2100@end ignore
2101
2102@noindent
2103@code{_Complex_I} is a bit of a mouthful. @file{complex.h} also defines
2104a shorter name for the same constant.
2105
2106@deftypevr Macro {const float complex} I
2107This macro has exactly the same value as @code{_Complex_I}. Most of the
2108time it is preferable. However, it causes problems if you want to use
2109the identifier @code{I} for something else. You can safely write
2110
2111@smallexample
2112#include <complex.h>
2113#undef I
2114@end smallexample
2115
2116@noindent
2117if you need @code{I} for your own purposes. (In that case we recommend
2118you also define some other short name for @code{_Complex_I}, such as
2119@code{J}.)
2120
2121@ignore
2122If the implementation does not support the @code{imaginary} types
2123@code{I} is defined as @code{_Complex_I} which is the second best
2124solution. It still can be used in the same way but requires a most
2125clever compiler to get the same results.
2126@end ignore
2127@end deftypevr
2128
2129@node Operations on Complex
2130@section Projections, Conjugates, and Decomposing of Complex Numbers
2131@cindex project complex numbers
2132@cindex conjugate complex numbers
2133@cindex decompose complex numbers
2134@pindex complex.h
2135
ec751a23 2136@w{ISO C99} also defines functions that perform basic operations on
7a68c94a
UD
2137complex numbers, such as decomposition and conjugation. The prototypes
2138for all these functions are in @file{complex.h}. All functions are
2139available in three variants, one for each of the three complex types.
2140
2141@comment complex.h
2142@comment ISO
2143@deftypefun double creal (complex double @var{z})
4260bc74
UD
2144@comment complex.h
2145@comment ISO
7a68c94a 2146@deftypefunx float crealf (complex float @var{z})
4260bc74
UD
2147@comment complex.h
2148@comment ISO
7a68c94a 2149@deftypefunx {long double} creall (complex long double @var{z})
b719dafd 2150@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
2151These functions return the real part of the complex number @var{z}.
2152@end deftypefun
2153
2154@comment complex.h
2155@comment ISO
2156@deftypefun double cimag (complex double @var{z})
4260bc74
UD
2157@comment complex.h
2158@comment ISO
7a68c94a 2159@deftypefunx float cimagf (complex float @var{z})
4260bc74
UD
2160@comment complex.h
2161@comment ISO
7a68c94a 2162@deftypefunx {long double} cimagl (complex long double @var{z})
b719dafd 2163@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
2164These functions return the imaginary part of the complex number @var{z}.
2165@end deftypefun
2166
2167@comment complex.h
2168@comment ISO
2169@deftypefun {complex double} conj (complex double @var{z})
4260bc74
UD
2170@comment complex.h
2171@comment ISO
7a68c94a 2172@deftypefunx {complex float} conjf (complex float @var{z})
4260bc74
UD
2173@comment complex.h
2174@comment ISO
7a68c94a 2175@deftypefunx {complex long double} conjl (complex long double @var{z})
b719dafd 2176@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
2177These functions return the conjugate value of the complex number
2178@var{z}. The conjugate of a complex number has the same real part and a
2179negated imaginary part. In other words, @samp{conj(a + bi) = a + -bi}.
2180@end deftypefun
2181
2182@comment complex.h
2183@comment ISO
2184@deftypefun double carg (complex double @var{z})
4260bc74
UD
2185@comment complex.h
2186@comment ISO
7a68c94a 2187@deftypefunx float cargf (complex float @var{z})
4260bc74
UD
2188@comment complex.h
2189@comment ISO
7a68c94a 2190@deftypefunx {long double} cargl (complex long double @var{z})
b719dafd 2191@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
2192These functions return the argument of the complex number @var{z}.
2193The argument of a complex number is the angle in the complex plane
2194between the positive real axis and a line passing through zero and the
01f49f59
JT
2195number. This angle is measured in the usual fashion and ranges from
2196@math{-@pi{}} to @math{@pi{}}.
7a68c94a 2197
01f49f59 2198@code{carg} has a branch cut along the negative real axis.
7a68c94a
UD
2199@end deftypefun
2200
2201@comment complex.h
2202@comment ISO
2203@deftypefun {complex double} cproj (complex double @var{z})
4260bc74
UD
2204@comment complex.h
2205@comment ISO
7a68c94a 2206@deftypefunx {complex float} cprojf (complex float @var{z})
4260bc74
UD
2207@comment complex.h
2208@comment ISO
7a68c94a 2209@deftypefunx {complex long double} cprojl (complex long double @var{z})
b719dafd 2210@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a 2211These functions return the projection of the complex value @var{z} onto
9dcc8f11 2212the Riemann sphere. Values with an infinite imaginary part are projected
7a68c94a
UD
2213to positive infinity on the real axis, even if the real part is NaN. If
2214the real part is infinite, the result is equivalent to
2215
2216@smallexample
2217INFINITY + I * copysign (0.0, cimag (z))
2218@end smallexample
2219@end deftypefun
fe0ec73e 2220
28f540f4
RM
2221@node Parsing of Numbers
2222@section Parsing of Numbers
2223@cindex parsing numbers (in formatted input)
2224@cindex converting strings to numbers
2225@cindex number syntax, parsing
2226@cindex syntax, for reading numbers
2227
2228This section describes functions for ``reading'' integer and
2229floating-point numbers from a string. It may be more convenient in some
2230cases to use @code{sscanf} or one of the related functions; see
2231@ref{Formatted Input}. But often you can make a program more robust by
2232finding the tokens in the string by hand, then converting the numbers
2233one by one.
2234
2235@menu
2236* Parsing of Integers:: Functions for conversion of integer values.
2237* Parsing of Floats:: Functions for conversion of floating-point
2238 values.
2239@end menu
2240
2241@node Parsing of Integers
2242@subsection Parsing of Integers
2243
2244@pindex stdlib.h
b642f101
UD
2245@pindex wchar.h
2246The @samp{str} functions are declared in @file{stdlib.h} and those
2247beginning with @samp{wcs} are declared in @file{wchar.h}. One might
2248wonder about the use of @code{restrict} in the prototypes of the
2249functions in this section. It is seemingly useless but the @w{ISO C}
2250standard uses it (for the functions defined there) so we have to do it
2251as well.
28f540f4
RM
2252
2253@comment stdlib.h
f65fd747 2254@comment ISO
b642f101 2255@deftypefun {long int} strtol (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
b719dafd
AO
2256@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2257@c strtol uses the thread-local pointer to the locale in effect, and
2258@c strtol_l loads the LC_NUMERIC locale data from it early on and once,
2259@c but if the locale is the global locale, and another thread calls
2260@c setlocale in a way that modifies the pointer to the LC_CTYPE locale
2261@c category, the behavior of e.g. IS*, TOUPPER will vary throughout the
2262@c execution of the function, because they re-read the locale data from
2263@c the given locale pointer. We solved this by documenting setlocale as
2264@c MT-Unsafe.
28f540f4
RM
2265The @code{strtol} (``string-to-long'') function converts the initial
2266part of @var{string} to a signed integer, which is returned as a value
b8fe19fa 2267of type @code{long int}.
28f540f4
RM
2268
2269This function attempts to decompose @var{string} as follows:
2270
2271@itemize @bullet
b8fe19fa 2272@item
28f540f4
RM
2273A (possibly empty) sequence of whitespace characters. Which characters
2274are whitespace is determined by the @code{isspace} function
2275(@pxref{Classification of Characters}). These are discarded.
2276
b8fe19fa 2277@item
28f540f4
RM
2278An optional plus or minus sign (@samp{+} or @samp{-}).
2279
b8fe19fa 2280@item
28f540f4
RM
2281A nonempty sequence of digits in the radix specified by @var{base}.
2282
2283If @var{base} is zero, decimal radix is assumed unless the series of
2284digits begins with @samp{0} (specifying octal radix), or @samp{0x} or
2285@samp{0X} (specifying hexadecimal radix); in other words, the same
2286syntax used for integer constants in C.
2287
600a7457 2288Otherwise @var{base} must have a value between @code{2} and @code{36}.
28f540f4 2289If @var{base} is @code{16}, the digits may optionally be preceded by
2c6fe0bd
UD
2290@samp{0x} or @samp{0X}. If base has no legal value the value returned
2291is @code{0l} and the global variable @code{errno} is set to @code{EINVAL}.
28f540f4 2292
b8fe19fa 2293@item
28f540f4
RM
2294Any remaining characters in the string. If @var{tailptr} is not a null
2295pointer, @code{strtol} stores a pointer to this tail in
2296@code{*@var{tailptr}}.
2297@end itemize
2298
2299If the string is empty, contains only whitespace, or does not contain an
2300initial substring that has the expected syntax for an integer in the
2301specified @var{base}, no conversion is performed. In this case,
2302@code{strtol} returns a value of zero and the value stored in
2303@code{*@var{tailptr}} is the value of @var{string}.
2304
2305In a locale other than the standard @code{"C"} locale, this function
2306may recognize additional implementation-dependent syntax.
2307
2308If the string has valid syntax for an integer but the value is not
2309representable because of overflow, @code{strtol} returns either
2310@code{LONG_MAX} or @code{LONG_MIN} (@pxref{Range of Type}), as
2311appropriate for the sign of the value. It also sets @code{errno}
2312to @code{ERANGE} to indicate there was overflow.
2313
7a68c94a
UD
2314You should not check for errors by examining the return value of
2315@code{strtol}, because the string might be a valid representation of
2316@code{0l}, @code{LONG_MAX}, or @code{LONG_MIN}. Instead, check whether
2317@var{tailptr} points to what you expect after the number
2318(e.g. @code{'\0'} if the string should end after the number). You also
2319need to clear @var{errno} before the call and check it afterward, in
2320case there was overflow.
2c6fe0bd 2321
28f540f4
RM
2322There is an example at the end of this section.
2323@end deftypefun
2324
b642f101
UD
2325@comment wchar.h
2326@comment ISO
2327@deftypefun {long int} wcstol (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
b719dafd 2328@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
3554743a
AJ
2329The @code{wcstol} function is equivalent to the @code{strtol} function
2330in nearly all aspects but handles wide character strings.
b642f101
UD
2331
2332The @code{wcstol} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2333@end deftypefun
2334
28f540f4 2335@comment stdlib.h
f65fd747 2336@comment ISO
b642f101 2337@deftypefun {unsigned long int} strtoul (const char *retrict @var{string}, char **restrict @var{tailptr}, int @var{base})
b719dafd 2338@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
28f540f4 2339The @code{strtoul} (``string-to-unsigned-long'') function is like
0e4ee106 2340@code{strtol} except it converts to an @code{unsigned long int} value.
7a68c94a 2341The syntax is the same as described above for @code{strtol}. The value
0e4ee106
UD
2342returned on overflow is @code{ULONG_MAX} (@pxref{Range of Type}).
2343
2344If @var{string} depicts a negative number, @code{strtoul} acts the same
2345as @var{strtol} but casts the result to an unsigned integer. That means
2346for example that @code{strtoul} on @code{"-1"} returns @code{ULONG_MAX}
e6e81391 2347and an input more negative than @code{LONG_MIN} returns
0e4ee106 2348(@code{ULONG_MAX} + 1) / 2.
7a68c94a
UD
2349
2350@code{strtoul} sets @var{errno} to @code{EINVAL} if @var{base} is out of
2351range, or @code{ERANGE} on overflow.
2c6fe0bd
UD
2352@end deftypefun
2353
b642f101
UD
2354@comment wchar.h
2355@comment ISO
2356@deftypefun {unsigned long int} wcstoul (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
b719dafd 2357@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
3554743a
AJ
2358The @code{wcstoul} function is equivalent to the @code{strtoul} function
2359in nearly all aspects but handles wide character strings.
b642f101
UD
2360
2361The @code{wcstoul} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2362@end deftypefun
2363
2c6fe0bd 2364@comment stdlib.h
7a68c94a 2365@comment ISO
b642f101 2366@deftypefun {long long int} strtoll (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
b719dafd 2367@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
7a68c94a
UD
2368The @code{strtoll} function is like @code{strtol} except that it returns
2369a @code{long long int} value, and accepts numbers with a correspondingly
2370larger range.
2c6fe0bd
UD
2371
2372If the string has valid syntax for an integer but the value is not
fe7bdd63 2373representable because of overflow, @code{strtoll} returns either
7bb764bc 2374@code{LLONG_MAX} or @code{LLONG_MIN} (@pxref{Range of Type}), as
2c6fe0bd
UD
2375appropriate for the sign of the value. It also sets @code{errno} to
2376@code{ERANGE} to indicate there was overflow.
2c6fe0bd 2377
ec751a23 2378The @code{strtoll} function was introduced in @w{ISO C99}.
2c6fe0bd
UD
2379@end deftypefun
2380
b642f101
UD
2381@comment wchar.h
2382@comment ISO
2383@deftypefun {long long int} wcstoll (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
b719dafd 2384@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
3554743a
AJ
2385The @code{wcstoll} function is equivalent to the @code{strtoll} function
2386in nearly all aspects but handles wide character strings.
b642f101
UD
2387
2388The @code{wcstoll} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2389@end deftypefun
2390
2c6fe0bd
UD
2391@comment stdlib.h
2392@comment BSD
b642f101 2393@deftypefun {long long int} strtoq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
b719dafd 2394@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
7a68c94a 2395@code{strtoq} (``string-to-quad-word'') is the BSD name for @code{strtoll}.
2c6fe0bd
UD
2396@end deftypefun
2397
b642f101
UD
2398@comment wchar.h
2399@comment GNU
2400@deftypefun {long long int} wcstoq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
b719dafd 2401@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
3554743a
AJ
2402The @code{wcstoq} function is equivalent to the @code{strtoq} function
2403in nearly all aspects but handles wide character strings.
b642f101
UD
2404
2405The @code{wcstoq} function is a GNU extension.
2406@end deftypefun
2407
2c6fe0bd 2408@comment stdlib.h
7a68c94a 2409@comment ISO
b642f101 2410@deftypefun {unsigned long long int} strtoull (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
b719dafd 2411@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
0e4ee106
UD
2412The @code{strtoull} function is related to @code{strtoll} the same way
2413@code{strtoul} is related to @code{strtol}.
fe7bdd63 2414
ec751a23 2415The @code{strtoull} function was introduced in @w{ISO C99}.
fe7bdd63
UD
2416@end deftypefun
2417
b642f101
UD
2418@comment wchar.h
2419@comment ISO
2420@deftypefun {unsigned long long int} wcstoull (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
b719dafd 2421@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
3554743a
AJ
2422The @code{wcstoull} function is equivalent to the @code{strtoull} function
2423in nearly all aspects but handles wide character strings.
b642f101
UD
2424
2425The @code{wcstoull} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2426@end deftypefun
2427
fe7bdd63
UD
2428@comment stdlib.h
2429@comment BSD
b642f101 2430@deftypefun {unsigned long long int} strtouq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
b719dafd 2431@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
7a68c94a 2432@code{strtouq} is the BSD name for @code{strtoull}.
28f540f4
RM
2433@end deftypefun
2434
b642f101
UD
2435@comment wchar.h
2436@comment GNU
2437@deftypefun {unsigned long long int} wcstouq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
b719dafd 2438@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
3554743a
AJ
2439The @code{wcstouq} function is equivalent to the @code{strtouq} function
2440in nearly all aspects but handles wide character strings.
b642f101 2441
f5708cb0 2442The @code{wcstouq} function is a GNU extension.
b642f101
UD
2443@end deftypefun
2444
0e4ee106 2445@comment inttypes.h
b642f101
UD
2446@comment ISO
2447@deftypefun intmax_t strtoimax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
b719dafd 2448@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
0e4ee106
UD
2449The @code{strtoimax} function is like @code{strtol} except that it returns
2450a @code{intmax_t} value, and accepts numbers of a corresponding range.
2451
2452If the string has valid syntax for an integer but the value is not
2453representable because of overflow, @code{strtoimax} returns either
2454@code{INTMAX_MAX} or @code{INTMAX_MIN} (@pxref{Integers}), as
2455appropriate for the sign of the value. It also sets @code{errno} to
2456@code{ERANGE} to indicate there was overflow.
2457
b642f101
UD
2458See @ref{Integers} for a description of the @code{intmax_t} type. The
2459@code{strtoimax} function was introduced in @w{ISO C99}.
2460@end deftypefun
0e4ee106 2461
b642f101
UD
2462@comment wchar.h
2463@comment ISO
2464@deftypefun intmax_t wcstoimax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
b719dafd 2465@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
3554743a
AJ
2466The @code{wcstoimax} function is equivalent to the @code{strtoimax} function
2467in nearly all aspects but handles wide character strings.
0e4ee106 2468
b642f101 2469The @code{wcstoimax} function was introduced in @w{ISO C99}.
0e4ee106
UD
2470@end deftypefun
2471
2472@comment inttypes.h
b642f101
UD
2473@comment ISO
2474@deftypefun uintmax_t strtoumax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
b719dafd 2475@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
0e4ee106
UD
2476The @code{strtoumax} function is related to @code{strtoimax}
2477the same way that @code{strtoul} is related to @code{strtol}.
2478
b642f101
UD
2479See @ref{Integers} for a description of the @code{intmax_t} type. The
2480@code{strtoumax} function was introduced in @w{ISO C99}.
2481@end deftypefun
0e4ee106 2482
b642f101
UD
2483@comment wchar.h
2484@comment ISO
2485@deftypefun uintmax_t wcstoumax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
b719dafd 2486@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
3554743a
AJ
2487The @code{wcstoumax} function is equivalent to the @code{strtoumax} function
2488in nearly all aspects but handles wide character strings.
b642f101
UD
2489
2490The @code{wcstoumax} function was introduced in @w{ISO C99}.
0e4ee106
UD
2491@end deftypefun
2492
28f540f4 2493@comment stdlib.h
f65fd747 2494@comment ISO
28f540f4 2495@deftypefun {long int} atol (const char *@var{string})
b719dafd 2496@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
28f540f4
RM
2497This function is similar to the @code{strtol} function with a @var{base}
2498argument of @code{10}, except that it need not detect overflow errors.
2499The @code{atol} function is provided mostly for compatibility with
2500existing code; using @code{strtol} is more robust.
2501@end deftypefun
2502
2503@comment stdlib.h
f65fd747 2504@comment ISO
28f540f4 2505@deftypefun int atoi (const char *@var{string})
b719dafd 2506@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
7a68c94a
UD
2507This function is like @code{atol}, except that it returns an @code{int}.
2508The @code{atoi} function is also considered obsolete; use @code{strtol}
2509instead.
28f540f4
RM
2510@end deftypefun
2511
fe7bdd63 2512@comment stdlib.h
7a68c94a 2513@comment ISO
fe7bdd63 2514@deftypefun {long long int} atoll (const char *@var{string})
b719dafd 2515@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
fe7bdd63 2516This function is similar to @code{atol}, except it returns a @code{long
7a68c94a 2517long int}.
fe7bdd63 2518
ec751a23 2519The @code{atoll} function was introduced in @w{ISO C99}. It too is
7a68c94a 2520obsolete (despite having just been added); use @code{strtoll} instead.
fe7bdd63
UD
2521@end deftypefun
2522
b642f101
UD
2523All the functions mentioned in this section so far do not handle
2524alternative representations of characters as described in the locale
2525data. Some locales specify thousands separator and the way they have to
2526be used which can help to make large numbers more readable. To read
2527such numbers one has to use the @code{scanf} functions with the @samp{'}
2528flag.
2c6fe0bd 2529
28f540f4
RM
2530Here is a function which parses a string as a sequence of integers and
2531returns the sum of them:
2532
2533@smallexample
2534int
2535sum_ints_from_string (char *string)
2536@{
2537 int sum = 0;
2538
2539 while (1) @{
2540 char *tail;
2541 int next;
2542
2543 /* @r{Skip whitespace by hand, to detect the end.} */
2544 while (isspace (*string)) string++;
2545 if (*string == 0)
2546 break;
2547
2548 /* @r{There is more nonwhitespace,} */
2549 /* @r{so it ought to be another number.} */
2550 errno = 0;
2551 /* @r{Parse it.} */
2552 next = strtol (string, &tail, 0);
2553 /* @r{Add it in, if not overflow.} */
2554 if (errno)
2555 printf ("Overflow\n");
2556 else
2557 sum += next;
2558 /* @r{Advance past it.} */
2559 string = tail;
2560 @}
2561
2562 return sum;
2563@}
2564@end smallexample
2565
2566@node Parsing of Floats
2567@subsection Parsing of Floats
2568
2569@pindex stdlib.h
b642f101
UD
2570The @samp{str} functions are declared in @file{stdlib.h} and those
2571beginning with @samp{wcs} are declared in @file{wchar.h}. One might
2572wonder about the use of @code{restrict} in the prototypes of the
2573functions in this section. It is seemingly useless but the @w{ISO C}
2574standard uses it (for the functions defined there) so we have to do it
2575as well.
28f540f4
RM
2576
2577@comment stdlib.h
f65fd747 2578@comment ISO
b642f101 2579@deftypefun double strtod (const char *restrict @var{string}, char **restrict @var{tailptr})
b719dafd
AO
2580@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2581@c Besides the unsafe-but-ruled-safe locale uses, this uses a lot of
2582@c mpn, but it's all safe.
2583@c
2584@c round_and_return
2585@c get_rounding_mode ok
2586@c mpn_add_1 ok
2587@c mpn_rshift ok
2588@c MPN_ZERO ok
2589@c MPN2FLOAT -> mpn_construct_(float|double|long_double) ok
2590@c str_to_mpn
2591@c mpn_mul_1 -> umul_ppmm ok
2592@c mpn_add_1 ok
2593@c mpn_lshift_1 -> mpn_lshift ok
2594@c STRTOF_INTERNAL
2595@c MPN_VAR ok
2596@c SET_MANTISSA ok
2597@c STRNCASECMP ok, wide and narrow
2598@c round_and_return ok
2599@c mpn_mul ok
2600@c mpn_addmul_1 ok
2601@c ... mpn_sub
2602@c mpn_lshift ok
2603@c udiv_qrnnd ok
2604@c count_leading_zeros ok
2605@c add_ssaaaa ok
2606@c sub_ddmmss ok
2607@c umul_ppmm ok
2608@c mpn_submul_1 ok
28f540f4
RM
2609The @code{strtod} (``string-to-double'') function converts the initial
2610part of @var{string} to a floating-point number, which is returned as a
b8fe19fa 2611value of type @code{double}.
28f540f4
RM
2612
2613This function attempts to decompose @var{string} as follows:
2614
2615@itemize @bullet
b8fe19fa 2616@item
28f540f4
RM
2617A (possibly empty) sequence of whitespace characters. Which characters
2618are whitespace is determined by the @code{isspace} function
2619(@pxref{Classification of Characters}). These are discarded.
2620
2621@item
2622An optional plus or minus sign (@samp{+} or @samp{-}).
2623
0c34b1e9
UD
2624@item A floating point number in decimal or hexadecimal format. The
2625decimal format is:
2626@itemize @minus
2627
28f540f4
RM
2628@item
2629A nonempty sequence of digits optionally containing a decimal-point
2630character---normally @samp{.}, but it depends on the locale
85c165be 2631(@pxref{General Numeric}).
28f540f4
RM
2632
2633@item
2634An optional exponent part, consisting of a character @samp{e} or
2635@samp{E}, an optional sign, and a sequence of digits.
2636
0c34b1e9
UD
2637@end itemize
2638
2639The hexadecimal format is as follows:
2640@itemize @minus
2641
2642@item
2643A 0x or 0X followed by a nonempty sequence of hexadecimal digits
2644optionally containing a decimal-point character---normally @samp{.}, but
2645it depends on the locale (@pxref{General Numeric}).
2646
2647@item
2648An optional binary-exponent part, consisting of a character @samp{p} or
2649@samp{P}, an optional sign, and a sequence of digits.
2650
2651@end itemize
2652
28f540f4
RM
2653@item
2654Any remaining characters in the string. If @var{tailptr} is not a null
2655pointer, a pointer to this tail of the string is stored in
2656@code{*@var{tailptr}}.
2657@end itemize
2658
2659If the string is empty, contains only whitespace, or does not contain an
2660initial substring that has the expected syntax for a floating-point
2661number, no conversion is performed. In this case, @code{strtod} returns
2662a value of zero and the value returned in @code{*@var{tailptr}} is the
2663value of @var{string}.
2664
26761c28 2665In a locale other than the standard @code{"C"} or @code{"POSIX"} locales,
2c6fe0bd 2666this function may recognize additional locale-dependent syntax.
28f540f4
RM
2667
2668If the string has valid syntax for a floating-point number but the value
7a68c94a
UD
2669is outside the range of a @code{double}, @code{strtod} will signal
2670overflow or underflow as described in @ref{Math Error Reporting}.
2671
2672@code{strtod} recognizes four special input strings. The strings
2673@code{"inf"} and @code{"infinity"} are converted to @math{@infinity{}},
2674or to the largest representable value if the floating-point format
2675doesn't support infinities. You can prepend a @code{"+"} or @code{"-"}
2676to specify the sign. Case is ignored when scanning these strings.
2677
95fdc6a0
UD
2678The strings @code{"nan"} and @code{"nan(@var{chars@dots{}})"} are converted
2679to NaN. Again, case is ignored. If @var{chars@dots{}} are provided, they
7a68c94a
UD
2680are used in some unspecified fashion to select a particular
2681representation of NaN (there can be several).
2682
2683Since zero is a valid result as well as the value returned on error, you
2684should check for errors in the same way as for @code{strtol}, by
2685examining @var{errno} and @var{tailptr}.
28f540f4
RM
2686@end deftypefun
2687
2c6fe0bd 2688@comment stdlib.h
ec751a23 2689@comment ISO
2c6fe0bd 2690@deftypefun float strtof (const char *@var{string}, char **@var{tailptr})
4260bc74 2691@comment stdlib.h
ec751a23 2692@comment ISO
7a68c94a 2693@deftypefunx {long double} strtold (const char *@var{string}, char **@var{tailptr})
b719dafd 2694@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
7a68c94a
UD
2695These functions are analogous to @code{strtod}, but return @code{float}
2696and @code{long double} values respectively. They report errors in the
2697same way as @code{strtod}. @code{strtof} can be substantially faster
2698than @code{strtod}, but has less precision; conversely, @code{strtold}
2699can be much slower but has more precision (on systems where @code{long
2700double} is a separate type).
2701
ec751a23 2702These functions have been GNU extensions and are new to @w{ISO C99}.
2c6fe0bd
UD
2703@end deftypefun
2704
b642f101
UD
2705@comment wchar.h
2706@comment ISO
2707@deftypefun double wcstod (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr})
2708@comment stdlib.h
2709@comment ISO
2710@deftypefunx float wcstof (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2711@comment stdlib.h
2712@comment ISO
2713@deftypefunx {long double} wcstold (const wchar_t *@var{string}, wchar_t **@var{tailptr})
b719dafd 2714@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
b642f101
UD
2715The @code{wcstod}, @code{wcstof}, and @code{wcstol} functions are
2716equivalent in nearly all aspect to the @code{strtod}, @code{strtof}, and
2717@code{strtold} functions but it handles wide character string.
2718
2719The @code{wcstod} function was introduced in @w{Amendment 1} of @w{ISO
2720C90}. The @code{wcstof} and @code{wcstold} functions were introduced in
2721@w{ISO C99}.
2722@end deftypefun
2723
28f540f4 2724@comment stdlib.h
f65fd747 2725@comment ISO
28f540f4 2726@deftypefun double atof (const char *@var{string})
b719dafd 2727@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
28f540f4
RM
2728This function is similar to the @code{strtod} function, except that it
2729need not detect overflow and underflow errors. The @code{atof} function
2730is provided mostly for compatibility with existing code; using
2731@code{strtod} is more robust.
2732@end deftypefun
880f421f 2733
1f77f049 2734@Theglibc{} also provides @samp{_l} versions of these functions,
7a68c94a 2735which take an additional argument, the locale to use in conversion.
aa04af00
AM
2736
2737See also @ref{Parsing of Integers}.
880f421f 2738
7a68c94a
UD
2739@node System V Number Conversion
2740@section Old-fashioned System V number-to-string functions
880f421f 2741
7a68c94a 2742The old @w{System V} C library provided three functions to convert
1f77f049
JM
2743numbers to strings, with unusual and hard-to-use semantics. @Theglibc{}
2744also provides these functions and some natural extensions.
880f421f 2745
1f77f049 2746These functions are only available in @theglibc{} and on systems descended
7a68c94a
UD
2747from AT&T Unix. Therefore, unless these functions do precisely what you
2748need, it is better to use @code{sprintf}, which is standard.
880f421f 2749
7a68c94a 2750All these functions are defined in @file{stdlib.h}.
880f421f
UD
2751
2752@comment stdlib.h
2753@comment SVID, Unix98
7a68c94a 2754@deftypefun {char *} ecvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
b719dafd 2755@safety{@prelim{}@mtunsafe{@mtasurace{:ecvt}}@asunsafe{}@acsafe{}}
880f421f 2756The function @code{ecvt} converts the floating-point number @var{value}
0ea5db4f 2757to a string with at most @var{ndigit} decimal digits. The
cf822e3c 2758returned string contains no decimal point or sign. The first digit of
0ea5db4f
UD
2759the string is non-zero (unless @var{value} is actually zero) and the
2760last digit is rounded to nearest. @code{*@var{decpt}} is set to the
7a68c94a 2761index in the string of the first digit after the decimal point.
0ea5db4f
UD
2762@code{*@var{neg}} is set to a nonzero value if @var{value} is negative,
2763zero otherwise.
880f421f 2764
67994d6f
UD
2765If @var{ndigit} decimal digits would exceed the precision of a
2766@code{double} it is reduced to a system-specific value.
2767
880f421f
UD
2768The returned string is statically allocated and overwritten by each call
2769to @code{ecvt}.
2770
0ea5db4f
UD
2771If @var{value} is zero, it is implementation defined whether
2772@code{*@var{decpt}} is @code{0} or @code{1}.
880f421f 2773
0ea5db4f
UD
2774For example: @code{ecvt (12.3, 5, &d, &n)} returns @code{"12300"}
2775and sets @var{d} to @code{2} and @var{n} to @code{0}.
880f421f
UD
2776@end deftypefun
2777
880f421f
UD
2778@comment stdlib.h
2779@comment SVID, Unix98
0ea5db4f 2780@deftypefun {char *} fcvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
b719dafd 2781@safety{@prelim{}@mtunsafe{@mtasurace{:fcvt}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
7a68c94a
UD
2782The function @code{fcvt} is like @code{ecvt}, but @var{ndigit} specifies
2783the number of digits after the decimal point. If @var{ndigit} is less
2784than zero, @var{value} is rounded to the @math{@var{ndigit}+1}'th place to the
2785left of the decimal point. For example, if @var{ndigit} is @code{-1},
2786@var{value} will be rounded to the nearest 10. If @var{ndigit} is
2787negative and larger than the number of digits to the left of the decimal
2788point in @var{value}, @var{value} will be rounded to one significant digit.
880f421f 2789
67994d6f
UD
2790If @var{ndigit} decimal digits would exceed the precision of a
2791@code{double} it is reduced to a system-specific value.
2792
880f421f
UD
2793The returned string is statically allocated and overwritten by each call
2794to @code{fcvt}.
880f421f
UD
2795@end deftypefun
2796
2797@comment stdlib.h
2798@comment SVID, Unix98
2799@deftypefun {char *} gcvt (double @var{value}, int @var{ndigit}, char *@var{buf})
b719dafd
AO
2800@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2801@c gcvt calls sprintf, that ultimately calls vfprintf, which malloc()s
2802@c args_value if it's too large, but gcvt never exercises this path.
7a68c94a
UD
2803@code{gcvt} is functionally equivalent to @samp{sprintf(buf, "%*g",
2804ndigit, value}. It is provided only for compatibility's sake. It
2805returns @var{buf}.
67994d6f
UD
2806
2807If @var{ndigit} decimal digits would exceed the precision of a
2808@code{double} it is reduced to a system-specific value.
880f421f
UD
2809@end deftypefun
2810
1f77f049 2811As extensions, @theglibc{} provides versions of these three
7a68c94a 2812functions that take @code{long double} arguments.
880f421f
UD
2813
2814@comment stdlib.h
2815@comment GNU
7a68c94a 2816@deftypefun {char *} qecvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
b719dafd 2817@safety{@prelim{}@mtunsafe{@mtasurace{:qecvt}}@asunsafe{}@acsafe{}}
67994d6f
UD
2818This function is equivalent to @code{ecvt} except that it takes a
2819@code{long double} for the first parameter and that @var{ndigit} is
2820restricted by the precision of a @code{long double}.
880f421f
UD
2821@end deftypefun
2822
2823@comment stdlib.h
2824@comment GNU
0ea5db4f 2825@deftypefun {char *} qfcvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
b719dafd 2826@safety{@prelim{}@mtunsafe{@mtasurace{:qfcvt}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
7a68c94a 2827This function is equivalent to @code{fcvt} except that it
67994d6f
UD
2828takes a @code{long double} for the first parameter and that @var{ndigit} is
2829restricted by the precision of a @code{long double}.
880f421f
UD
2830@end deftypefun
2831
2832@comment stdlib.h
2833@comment GNU
2834@deftypefun {char *} qgcvt (long double @var{value}, int @var{ndigit}, char *@var{buf})
b719dafd 2835@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
67994d6f
UD
2836This function is equivalent to @code{gcvt} except that it takes a
2837@code{long double} for the first parameter and that @var{ndigit} is
2838restricted by the precision of a @code{long double}.
880f421f
UD
2839@end deftypefun
2840
2841
2842@cindex gcvt_r
7a68c94a
UD
2843The @code{ecvt} and @code{fcvt} functions, and their @code{long double}
2844equivalents, all return a string located in a static buffer which is
1f77f049 2845overwritten by the next call to the function. @Theglibc{}
7a68c94a
UD
2846provides another set of extended functions which write the converted
2847string into a user-supplied buffer. These have the conventional
2848@code{_r} suffix.
2849
2850@code{gcvt_r} is not necessary, because @code{gcvt} already uses a
2851user-supplied buffer.
880f421f
UD
2852
2853@comment stdlib.h
2854@comment GNU
5c1c368f 2855@deftypefun int ecvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
b719dafd 2856@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
2857The @code{ecvt_r} function is the same as @code{ecvt}, except
2858that it places its result into the user-specified buffer pointed to by
5c1c368f
UD
2859@var{buf}, with length @var{len}. The return value is @code{-1} in
2860case of an error and zero otherwise.
880f421f 2861
7a68c94a 2862This function is a GNU extension.
880f421f
UD
2863@end deftypefun
2864
2865@comment stdlib.h
2866@comment SVID, Unix98
5c1c368f 2867@deftypefun int fcvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
b719dafd 2868@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
5c1c368f
UD
2869The @code{fcvt_r} function is the same as @code{fcvt}, except that it
2870places its result into the user-specified buffer pointed to by
2871@var{buf}, with length @var{len}. The return value is @code{-1} in
2872case of an error and zero otherwise.
880f421f 2873
7a68c94a 2874This function is a GNU extension.
880f421f
UD
2875@end deftypefun
2876
2877@comment stdlib.h
2878@comment GNU
5c1c368f 2879@deftypefun int qecvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
b719dafd 2880@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
2881The @code{qecvt_r} function is the same as @code{qecvt}, except
2882that it places its result into the user-specified buffer pointed to by
5c1c368f
UD
2883@var{buf}, with length @var{len}. The return value is @code{-1} in
2884case of an error and zero otherwise.
880f421f 2885
7a68c94a 2886This function is a GNU extension.
880f421f
UD
2887@end deftypefun
2888
2889@comment stdlib.h
2890@comment GNU
5c1c368f 2891@deftypefun int qfcvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
b719dafd 2892@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
7a68c94a
UD
2893The @code{qfcvt_r} function is the same as @code{qfcvt}, except
2894that it places its result into the user-specified buffer pointed to by
5c1c368f
UD
2895@var{buf}, with length @var{len}. The return value is @code{-1} in
2896case of an error and zero otherwise.
880f421f 2897
7a68c94a 2898This function is a GNU extension.
880f421f 2899@end deftypefun