]> git.ipfire.org Git - thirdparty/glibc.git/blame - manual/arith.texi
Update.
[thirdparty/glibc.git] / manual / arith.texi
CommitLineData
28f540f4 1@node Arithmetic, Date and Time, Mathematics, Top
7a68c94a
UD
2@c %MENU% Low level arithmetic functions
3@chapter Arithmetic Functions
28f540f4
RM
4
5This chapter contains information about functions for doing basic
6arithmetic operations, such as splitting a float into its integer and
b4012b75
UD
7fractional parts or retrieving the imaginary part of a complex value.
8These functions are declared in the header files @file{math.h} and
9@file{complex.h}.
28f540f4
RM
10
11@menu
0e4ee106
UD
12* Integers:: Basic integer types and concepts
13* Integer Division:: Integer division with guaranteed rounding.
7a68c94a
UD
14* Floating Point Numbers:: Basic concepts. IEEE 754.
15* Floating Point Classes:: The five kinds of floating-point number.
16* Floating Point Errors:: When something goes wrong in a calculation.
17* Rounding:: Controlling how results are rounded.
18* Control Functions:: Saving and restoring the FPU's state.
19* Arithmetic Functions:: Fundamental operations provided by the library.
20* Complex Numbers:: The types. Writing complex constants.
21* Operations on Complex:: Projection, conjugation, decomposition.
7a68c94a
UD
22* Parsing of Numbers:: Converting strings to numbers.
23* System V Number Conversion:: An archaic way to convert numbers to strings.
28f540f4
RM
24@end menu
25
0e4ee106
UD
26@node Integers
27@section Integers
28@cindex integer
29
30The C language defines several integer data types: integer, short integer,
31long integer, and character, all in both signed and unsigned varieties.
e6e81391
UD
32The GNU C compiler extends the language to contain long long integers
33as well.
0e4ee106
UD
34@cindex signedness
35
36The C integer types were intended to allow code to be portable among
37machines with different inherent data sizes (word sizes), so each type
38may have different ranges on different machines. The problem with
39this is that a program often needs to be written for a particular range
40of integers, and sometimes must be written for a particular size of
41storage, regardless of what machine the program runs on.
42
43To address this problem, the GNU C library contains C type definitions
44you can use to declare integers that meet your exact needs. Because the
45GNU C library header files are customized to a specific machine, your
46program source code doesn't have to be.
47
48These @code{typedef}s are in @file{stdint.h}.
49@pindex stdint.h
50
51If you require that an integer be represented in exactly N bits, use one
52of the following types, with the obvious mapping to bit size and signedness:
53
68979757 54@itemize @bullet
0e4ee106
UD
55@item int8_t
56@item int16_t
57@item int32_t
58@item int64_t
59@item uint8_t
60@item uint16_t
61@item uint32_t
62@item uint64_t
63@end itemize
64
65If your C compiler and target machine do not allow integers of a certain
66size, the corresponding above type does not exist.
67
68If you don't need a specific storage size, but want the smallest data
69structure with @emph{at least} N bits, use one of these:
70
68979757 71@itemize @bullet
0e4ee106
UD
72@item int8_least_t
73@item int16_least_t
74@item int32_least_t
75@item int64_least_t
76@item uint8_least_t
77@item uint16_least_t
78@item uint32_least_t
79@item uint64_least_t
80@end itemize
81
e6e81391 82If you don't need a specific storage size, but want the data structure
0e4ee106
UD
83that allows the fastest access while having at least N bits (and
84among data structures with the same access speed, the smallest one), use
85one of these:
86
68979757 87@itemize @bullet
0e4ee106
UD
88@item int8_fast_t
89@item int16_fast_t
90@item int32_fast_t
91@item int64_fast_t
92@item uint8_fast_t
93@item uint16_fast_t
94@item uint32_fast_t
95@item uint64_fast_t
96@end itemize
97
e6e81391 98If you want an integer with the widest range possible on the platform on
0e4ee106
UD
99which it is being used, use one of the following. If you use these,
100you should write code that takes into account the variable size and range
101of the integer.
102
68979757 103@itemize @bullet
0e4ee106
UD
104@item intmax_t
105@item uintmax_t
106@end itemize
107
108The GNU C library also provides macros that tell you the maximum and
109minimum possible values for each integer data type. The macro names
110follow these examples: @code{INT32_MAX}, @code{UINT8_MAX},
111@code{INT_FAST32_MIN}, @code{INT_LEAST64_MIN}, @code{UINTMAX_MAX},
112@code{INTMAX_MAX}, @code{INTMAX_MIN}. Note that there are no macros for
113unsigned integer minima. These are always zero.
114@cindex maximum possible integer
115@cindex mininum possible integer
116
117There are similar macros for use with C's built in integer types which
118should come with your C compiler. These are described in @ref{Data Type
119Measurements}.
120
121Don't forget you can use the C @code{sizeof} function with any of these
122data types to get the number of bytes of storage each uses.
123
124
125@node Integer Division
126@section Integer Division
127@cindex integer division functions
128
129This section describes functions for performing integer division. These
130functions are redundant when GNU CC is used, because in GNU C the
131@samp{/} operator always rounds towards zero. But in other C
132implementations, @samp{/} may round differently with negative arguments.
133@code{div} and @code{ldiv} are useful because they specify how to round
134the quotient: towards zero. The remainder has the same sign as the
135numerator.
136
137These functions are specified to return a result @var{r} such that the value
138@code{@var{r}.quot*@var{denominator} + @var{r}.rem} equals
139@var{numerator}.
140
141@pindex stdlib.h
142To use these facilities, you should include the header file
143@file{stdlib.h} in your program.
144
145@comment stdlib.h
146@comment ISO
147@deftp {Data Type} div_t
148This is a structure type used to hold the result returned by the @code{div}
149function. It has the following members:
150
151@table @code
152@item int quot
153The quotient from the division.
154
155@item int rem
156The remainder from the division.
157@end table
158@end deftp
159
160@comment stdlib.h
161@comment ISO
162@deftypefun div_t div (int @var{numerator}, int @var{denominator})
163This function @code{div} computes the quotient and remainder from
164the division of @var{numerator} by @var{denominator}, returning the
165result in a structure of type @code{div_t}.
166
167If the result cannot be represented (as in a division by zero), the
168behavior is undefined.
169
170Here is an example, albeit not a very useful one.
171
172@smallexample
173div_t result;
174result = div (20, -6);
175@end smallexample
176
177@noindent
178Now @code{result.quot} is @code{-3} and @code{result.rem} is @code{2}.
179@end deftypefun
180
181@comment stdlib.h
182@comment ISO
183@deftp {Data Type} ldiv_t
184This is a structure type used to hold the result returned by the @code{ldiv}
185function. It has the following members:
186
187@table @code
188@item long int quot
189The quotient from the division.
190
191@item long int rem
192The remainder from the division.
193@end table
194
195(This is identical to @code{div_t} except that the components are of
196type @code{long int} rather than @code{int}.)
197@end deftp
198
199@comment stdlib.h
200@comment ISO
201@deftypefun ldiv_t ldiv (long int @var{numerator}, long int @var{denominator})
202The @code{ldiv} function is similar to @code{div}, except that the
203arguments are of type @code{long int} and the result is returned as a
204structure of type @code{ldiv_t}.
205@end deftypefun
206
207@comment stdlib.h
208@comment ISO
209@deftp {Data Type} lldiv_t
210This is a structure type used to hold the result returned by the @code{lldiv}
211function. It has the following members:
212
213@table @code
214@item long long int quot
215The quotient from the division.
216
217@item long long int rem
218The remainder from the division.
219@end table
220
221(This is identical to @code{div_t} except that the components are of
222type @code{long long int} rather than @code{int}.)
223@end deftp
224
225@comment stdlib.h
226@comment ISO
227@deftypefun lldiv_t lldiv (long long int @var{numerator}, long long int @var{denominator})
228The @code{lldiv} function is like the @code{div} function, but the
229arguments are of type @code{long long int} and the result is returned as
230a structure of type @code{lldiv_t}.
231
232The @code{lldiv} function was added in @w{ISO C99}.
233@end deftypefun
234
235@comment inttypes.h
236@comment ISO
237@deftp {Data Type} imaxdiv_t
238This is a structure type used to hold the result returned by the @code{imaxdiv}
239function. It has the following members:
240
241@table @code
242@item intmax_t quot
243The quotient from the division.
244
245@item intmax_t rem
246The remainder from the division.
247@end table
248
249(This is identical to @code{div_t} except that the components are of
250type @code{intmax_t} rather than @code{int}.)
251
252See @ref{Integers} for a description of the @code{intmax_t} type.
253
254@end deftp
255
256@comment inttypes.h
257@comment ISO
258@deftypefun imaxdiv_t imaxdiv (intmax_t @var{numerator}, intmax_t @var{denominator})
259The @code{imaxdiv} function is like the @code{div} function, but the
260arguments are of type @code{intmax_t} and the result is returned as
261a structure of type @code{imaxdiv_t}.
262
263See @ref{Integers} for a description of the @code{intmax_t} type.
264
265The @code{imaxdiv} function was added in @w{ISO C99}.
266@end deftypefun
267
268
7a68c94a
UD
269@node Floating Point Numbers
270@section Floating Point Numbers
271@cindex floating point
272@cindex IEEE 754
b4012b75
UD
273@cindex IEEE floating point
274
7a68c94a
UD
275Most computer hardware has support for two different kinds of numbers:
276integers (@math{@dots{}-3, -2, -1, 0, 1, 2, 3@dots{}}) and
277floating-point numbers. Floating-point numbers have three parts: the
278@dfn{mantissa}, the @dfn{exponent}, and the @dfn{sign bit}. The real
279number represented by a floating-point value is given by
280@tex
281$(s \mathrel? -1 \mathrel: 1) \cdot 2^e \cdot M$
282@end tex
283@ifnottex
284@math{(s ? -1 : 1) @mul{} 2^e @mul{} M}
285@end ifnottex
286where @math{s} is the sign bit, @math{e} the exponent, and @math{M}
287the mantissa. @xref{Floating Point Concepts}, for details. (It is
288possible to have a different @dfn{base} for the exponent, but all modern
289hardware uses @math{2}.)
290
291Floating-point numbers can represent a finite subset of the real
292numbers. While this subset is large enough for most purposes, it is
293important to remember that the only reals that can be represented
294exactly are rational numbers that have a terminating binary expansion
295shorter than the width of the mantissa. Even simple fractions such as
296@math{1/5} can only be approximated by floating point.
297
298Mathematical operations and functions frequently need to produce values
299that are not representable. Often these values can be approximated
300closely enough for practical purposes, but sometimes they can't.
301Historically there was no way to tell when the results of a calculation
302were inaccurate. Modern computers implement the @w{IEEE 754} standard
303for numerical computations, which defines a framework for indicating to
304the program when the results of calculation are not trustworthy. This
305framework consists of a set of @dfn{exceptions} that indicate why a
306result could not be represented, and the special values @dfn{infinity}
307and @dfn{not a number} (NaN).
308
309@node Floating Point Classes
310@section Floating-Point Number Classification Functions
311@cindex floating-point classes
312@cindex classes, floating-point
313@pindex math.h
b4012b75 314
ec751a23 315@w{ISO C99} defines macros that let you determine what sort of
7a68c94a 316floating-point number a variable holds.
b4012b75
UD
317
318@comment math.h
319@comment ISO
7a68c94a
UD
320@deftypefn {Macro} int fpclassify (@emph{float-type} @var{x})
321This is a generic macro which works on all floating-point types and
322which returns a value of type @code{int}. The possible values are:
28f540f4 323
7a68c94a
UD
324@vtable @code
325@item FP_NAN
326The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity
327and NaN})
328@item FP_INFINITE
329The value of @var{x} is either plus or minus infinity (@pxref{Infinity
330and NaN})
331@item FP_ZERO
332The value of @var{x} is zero. In floating-point formats like @w{IEEE
333754}, where zero can be signed, this value is also returned if
334@var{x} is negative zero.
335@item FP_SUBNORMAL
336Numbers whose absolute value is too small to be represented in the
337normal format are represented in an alternate, @dfn{denormalized} format
338(@pxref{Floating Point Concepts}). This format is less precise but can
339represent values closer to zero. @code{fpclassify} returns this value
340for values of @var{x} in this alternate format.
341@item FP_NORMAL
342This value is returned for all other values of @var{x}. It indicates
343that there is nothing special about the number.
344@end vtable
28f540f4 345
7a68c94a 346@end deftypefn
28f540f4 347
7a68c94a
UD
348@code{fpclassify} is most useful if more than one property of a number
349must be tested. There are more specific macros which only test one
350property at a time. Generally these macros execute faster than
351@code{fpclassify}, since there is special hardware support for them.
352You should therefore use the specific macros whenever possible.
28f540f4
RM
353
354@comment math.h
7a68c94a
UD
355@comment ISO
356@deftypefn {Macro} int isfinite (@emph{float-type} @var{x})
357This macro returns a nonzero value if @var{x} is finite: not plus or
358minus infinity, and not NaN. It is equivalent to
fe0ec73e
UD
359
360@smallexample
7a68c94a 361(fpclassify (x) != FP_NAN && fpclassify (x) != FP_INFINITE)
fe0ec73e
UD
362@end smallexample
363
7a68c94a
UD
364@code{isfinite} is implemented as a macro which accepts any
365floating-point type.
366@end deftypefn
fe0ec73e 367
7a68c94a
UD
368@comment math.h
369@comment ISO
370@deftypefn {Macro} int isnormal (@emph{float-type} @var{x})
371This macro returns a nonzero value if @var{x} is finite and normalized.
372It is equivalent to
b4012b75
UD
373
374@smallexample
7a68c94a 375(fpclassify (x) == FP_NORMAL)
b4012b75 376@end smallexample
7a68c94a 377@end deftypefn
b4012b75 378
7a68c94a
UD
379@comment math.h
380@comment ISO
381@deftypefn {Macro} int isnan (@emph{float-type} @var{x})
382This macro returns a nonzero value if @var{x} is NaN. It is equivalent
383to
b4012b75
UD
384
385@smallexample
7a68c94a 386(fpclassify (x) == FP_NAN)
b4012b75 387@end smallexample
7a68c94a 388@end deftypefn
b4012b75 389
7a68c94a
UD
390Another set of floating-point classification functions was provided by
391BSD. The GNU C library also supports these functions; however, we
ec751a23 392recommend that you use the ISO C99 macros in new code. Those are standard
7a68c94a
UD
393and will be available more widely. Also, since they are macros, you do
394not have to worry about the type of their argument.
28f540f4
RM
395
396@comment math.h
397@comment BSD
398@deftypefun int isinf (double @var{x})
4260bc74
UD
399@comment math.h
400@comment BSD
779ae82e 401@deftypefunx int isinff (float @var{x})
4260bc74
UD
402@comment math.h
403@comment BSD
779ae82e 404@deftypefunx int isinfl (long double @var{x})
28f540f4
RM
405This function returns @code{-1} if @var{x} represents negative infinity,
406@code{1} if @var{x} represents positive infinity, and @code{0} otherwise.
407@end deftypefun
408
409@comment math.h
410@comment BSD
411@deftypefun int isnan (double @var{x})
4260bc74
UD
412@comment math.h
413@comment BSD
779ae82e 414@deftypefunx int isnanf (float @var{x})
4260bc74
UD
415@comment math.h
416@comment BSD
779ae82e 417@deftypefunx int isnanl (long double @var{x})
28f540f4 418This function returns a nonzero value if @var{x} is a ``not a number''
7a68c94a 419value, and zero otherwise.
b9b49b44 420
ec751a23 421@strong{Note:} The @code{isnan} macro defined by @w{ISO C99} overrides
7a68c94a
UD
422the BSD function. This is normally not a problem, because the two
423routines behave identically. However, if you really need to get the BSD
424function for some reason, you can write
b9b49b44 425
7a68c94a
UD
426@smallexample
427(isnan) (x)
428@end smallexample
28f540f4
RM
429@end deftypefun
430
431@comment math.h
432@comment BSD
433@deftypefun int finite (double @var{x})
4260bc74
UD
434@comment math.h
435@comment BSD
779ae82e 436@deftypefunx int finitef (float @var{x})
4260bc74
UD
437@comment math.h
438@comment BSD
779ae82e 439@deftypefunx int finitel (long double @var{x})
28f540f4
RM
440This function returns a nonzero value if @var{x} is finite or a ``not a
441number'' value, and zero otherwise.
442@end deftypefun
443
444@comment math.h
445@comment BSD
446@deftypefun double infnan (int @var{error})
7a68c94a
UD
447This function is provided for compatibility with BSD. Its argument is
448an error code, @code{EDOM} or @code{ERANGE}; @code{infnan} returns the
449value that a math function would return if it set @code{errno} to that
450value. @xref{Math Error Reporting}. @code{-ERANGE} is also acceptable
451as an argument, and corresponds to @code{-HUGE_VAL} as a value.
28f540f4
RM
452
453In the BSD library, on certain machines, @code{infnan} raises a fatal
454signal in all cases. The GNU library does not do likewise, because that
f65fd747 455does not fit the @w{ISO C} specification.
28f540f4
RM
456@end deftypefun
457
458@strong{Portability Note:} The functions listed in this section are BSD
459extensions.
460
b4012b75 461
7a68c94a
UD
462@node Floating Point Errors
463@section Errors in Floating-Point Calculations
464
465@menu
466* FP Exceptions:: IEEE 754 math exceptions and how to detect them.
467* Infinity and NaN:: Special values returned by calculations.
468* Status bit operations:: Checking for exceptions after the fact.
469* Math Error Reporting:: How the math functions report errors.
470@end menu
471
472@node FP Exceptions
473@subsection FP Exceptions
474@cindex exception
475@cindex signal
476@cindex zero divide
477@cindex division by zero
478@cindex inexact exception
479@cindex invalid exception
480@cindex overflow exception
481@cindex underflow exception
482
483The @w{IEEE 754} standard defines five @dfn{exceptions} that can occur
484during a calculation. Each corresponds to a particular sort of error,
485such as overflow.
486
487When exceptions occur (when exceptions are @dfn{raised}, in the language
488of the standard), one of two things can happen. By default the
489exception is simply noted in the floating-point @dfn{status word}, and
490the program continues as if nothing had happened. The operation
491produces a default value, which depends on the exception (see the table
492below). Your program can check the status word to find out which
493exceptions happened.
494
495Alternatively, you can enable @dfn{traps} for exceptions. In that case,
496when an exception is raised, your program will receive the @code{SIGFPE}
497signal. The default action for this signal is to terminate the
8b7fb588 498program. @xref{Signal Handling}, for how you can change the effect of
7a68c94a
UD
499the signal.
500
501@findex matherr
502In the System V math library, the user-defined function @code{matherr}
503is called when certain exceptions occur inside math library functions.
504However, the Unix98 standard deprecates this interface. We support it
505for historical compatibility, but recommend that you do not use it in
506new programs.
507
508@noindent
509The exceptions defined in @w{IEEE 754} are:
510
511@table @samp
512@item Invalid Operation
513This exception is raised if the given operands are invalid for the
514operation to be performed. Examples are
515(see @w{IEEE 754}, @w{section 7}):
516@enumerate
517@item
518Addition or subtraction: @math{@infinity{} - @infinity{}}. (But
519@math{@infinity{} + @infinity{} = @infinity{}}).
520@item
521Multiplication: @math{0 @mul{} @infinity{}}.
522@item
523Division: @math{0/0} or @math{@infinity{}/@infinity{}}.
524@item
525Remainder: @math{x} REM @math{y}, where @math{y} is zero or @math{x} is
526infinite.
527@item
528Square root if the operand is less then zero. More generally, any
529mathematical function evaluated outside its domain produces this
530exception.
531@item
532Conversion of a floating-point number to an integer or decimal
533string, when the number cannot be represented in the target format (due
534to overflow, infinity, or NaN).
535@item
536Conversion of an unrecognizable input string.
537@item
538Comparison via predicates involving @math{<} or @math{>}, when one or
539other of the operands is NaN. You can prevent this exception by using
540the unordered comparison functions instead; see @ref{FP Comparison Functions}.
541@end enumerate
542
543If the exception does not trap, the result of the operation is NaN.
544
545@item Division by Zero
546This exception is raised when a finite nonzero number is divided
547by zero. If no trap occurs the result is either @math{+@infinity{}} or
548@math{-@infinity{}}, depending on the signs of the operands.
549
550@item Overflow
551This exception is raised whenever the result cannot be represented
552as a finite value in the precision format of the destination. If no trap
553occurs the result depends on the sign of the intermediate result and the
554current rounding mode (@w{IEEE 754}, @w{section 7.3}):
555@enumerate
556@item
557Round to nearest carries all overflows to @math{@infinity{}}
558with the sign of the intermediate result.
559@item
560Round toward @math{0} carries all overflows to the largest representable
561finite number with the sign of the intermediate result.
562@item
563Round toward @math{-@infinity{}} carries positive overflows to the
564largest representable finite number and negative overflows to
565@math{-@infinity{}}.
566
567@item
568Round toward @math{@infinity{}} carries negative overflows to the
569most negative representable finite number and positive overflows
570to @math{@infinity{}}.
571@end enumerate
572
573Whenever the overflow exception is raised, the inexact exception is also
574raised.
575
576@item Underflow
577The underflow exception is raised when an intermediate result is too
578small to be calculated accurately, or if the operation's result rounded
579to the destination precision is too small to be normalized.
580
581When no trap is installed for the underflow exception, underflow is
582signaled (via the underflow flag) only when both tininess and loss of
583accuracy have been detected. If no trap handler is installed the
584operation continues with an imprecise small value, or zero if the
585destination precision cannot hold the small exact result.
586
587@item Inexact
588This exception is signalled if a rounded result is not exact (such as
589when calculating the square root of two) or a result overflows without
590an overflow trap.
591@end table
592
593@node Infinity and NaN
594@subsection Infinity and NaN
595@cindex infinity
596@cindex not a number
597@cindex NaN
598
599@w{IEEE 754} floating point numbers can represent positive or negative
600infinity, and @dfn{NaN} (not a number). These three values arise from
601calculations whose result is undefined or cannot be represented
602accurately. You can also deliberately set a floating-point variable to
603any of them, which is sometimes useful. Some examples of calculations
604that produce infinity or NaN:
605
606@ifnottex
607@smallexample
608@math{1/0 = @infinity{}}
609@math{log (0) = -@infinity{}}
610@math{sqrt (-1) = NaN}
611@end smallexample
612@end ifnottex
613@tex
614$${1\over0} = \infty$$
615$$\log 0 = -\infty$$
616$$\sqrt{-1} = \hbox{NaN}$$
617@end tex
618
619When a calculation produces any of these values, an exception also
620occurs; see @ref{FP Exceptions}.
621
622The basic operations and math functions all accept infinity and NaN and
623produce sensible output. Infinities propagate through calculations as
624one would expect: for example, @math{2 + @infinity{} = @infinity{}},
625@math{4/@infinity{} = 0}, atan @math{(@infinity{}) = @pi{}/2}. NaN, on
626the other hand, infects any calculation that involves it. Unless the
627calculation would produce the same result no matter what real value
628replaced NaN, the result is NaN.
629
630In comparison operations, positive infinity is larger than all values
631except itself and NaN, and negative infinity is smaller than all values
632except itself and NaN. NaN is @dfn{unordered}: it is not equal to,
633greater than, or less than anything, @emph{including itself}. @code{x ==
634x} is false if the value of @code{x} is NaN. You can use this to test
635whether a value is NaN or not, but the recommended way to test for NaN
636is with the @code{isnan} function (@pxref{Floating Point Classes}). In
637addition, @code{<}, @code{>}, @code{<=}, and @code{>=} will raise an
638exception when applied to NaNs.
639
640@file{math.h} defines macros that allow you to explicitly set a variable
641to infinity or NaN.
b4012b75
UD
642
643@comment math.h
644@comment ISO
7a68c94a
UD
645@deftypevr Macro float INFINITY
646An expression representing positive infinity. It is equal to the value
647produced by mathematical operations like @code{1.0 / 0.0}.
648@code{-INFINITY} represents negative infinity.
649
650You can test whether a floating-point value is infinite by comparing it
651to this macro. However, this is not recommended; you should use the
652@code{isfinite} macro instead. @xref{Floating Point Classes}.
653
ec751a23 654This macro was introduced in the @w{ISO C99} standard.
7a68c94a
UD
655@end deftypevr
656
657@comment math.h
658@comment GNU
659@deftypevr Macro float NAN
660An expression representing a value which is ``not a number''. This
661macro is a GNU extension, available only on machines that support the
662``not a number'' value---that is to say, on all machines that support
663IEEE floating point.
664
665You can use @samp{#ifdef NAN} to test whether the machine supports
666NaN. (Of course, you must arrange for GNU extensions to be visible,
667such as by defining @code{_GNU_SOURCE}, and then you must include
668@file{math.h}.)
669@end deftypevr
670
671@w{IEEE 754} also allows for another unusual value: negative zero. This
672value is produced when you divide a positive number by negative
673infinity, or when a negative result is smaller than the limits of
674representation. Negative zero behaves identically to zero in all
675calculations, unless you explicitly test the sign bit with
676@code{signbit} or @code{copysign}.
677
678@node Status bit operations
679@subsection Examining the FPU status word
680
ec751a23 681@w{ISO C99} defines functions to query and manipulate the
7a68c94a
UD
682floating-point status word. You can use these functions to check for
683untrapped exceptions when it's convenient, rather than worrying about
684them in the middle of a calculation.
685
686These constants represent the various @w{IEEE 754} exceptions. Not all
687FPUs report all the different exceptions. Each constant is defined if
688and only if the FPU you are compiling for supports that exception, so
689you can test for FPU support with @samp{#ifdef}. They are defined in
690@file{fenv.h}.
b4012b75
UD
691
692@vtable @code
7a68c94a
UD
693@comment fenv.h
694@comment ISO
695@item FE_INEXACT
696 The inexact exception.
697@comment fenv.h
698@comment ISO
699@item FE_DIVBYZERO
700 The divide by zero exception.
701@comment fenv.h
702@comment ISO
703@item FE_UNDERFLOW
704 The underflow exception.
705@comment fenv.h
706@comment ISO
707@item FE_OVERFLOW
708 The overflow exception.
709@comment fenv.h
710@comment ISO
711@item FE_INVALID
712 The invalid exception.
b4012b75
UD
713@end vtable
714
7a68c94a
UD
715The macro @code{FE_ALL_EXCEPT} is the bitwise OR of all exception macros
716which are supported by the FP implementation.
b4012b75 717
7a68c94a
UD
718These functions allow you to clear exception flags, test for exceptions,
719and save and restore the set of exceptions flagged.
b4012b75 720
7a68c94a 721@comment fenv.h
b4012b75 722@comment ISO
63ae7b63 723@deftypefun int feclearexcept (int @var{excepts})
7a68c94a
UD
724This function clears all of the supported exception flags indicated by
725@var{excepts}.
63ae7b63
UD
726
727The function returns zero in case the operation was successful, a
728non-zero value otherwise.
729@end deftypefun
730
731@comment fenv.h
732@comment ISO
733@deftypefun int feraiseexcept (int @var{excepts})
734This function raises the supported exceptions indicated by
735@var{excepts}. If more than one exception bit in @var{excepts} is set
736the order in which the exceptions are raised is undefined except that
737overflow (@code{FE_OVERFLOW}) or underflow (@code{FE_UNDERFLOW}) are
738raised before inexact (@code{FE_INEXACT}). Whether for overflow or
739underflow the inexact exception is also raised is also implementation
740dependent.
741
742The function returns zero in case the operation was successful, a
743non-zero value otherwise.
7a68c94a
UD
744@end deftypefun
745
746@comment fenv.h
747@comment ISO
748@deftypefun int fetestexcept (int @var{excepts})
749Test whether the exception flags indicated by the parameter @var{except}
750are currently set. If any of them are, a nonzero value is returned
751which specifies which exceptions are set. Otherwise the result is zero.
752@end deftypefun
753
754To understand these functions, imagine that the status word is an
755integer variable named @var{status}. @code{feclearexcept} is then
756equivalent to @samp{status &= ~excepts} and @code{fetestexcept} is
757equivalent to @samp{(status & excepts)}. The actual implementation may
758be very different, of course.
759
760Exception flags are only cleared when the program explicitly requests it,
761by calling @code{feclearexcept}. If you want to check for exceptions
762from a set of calculations, you should clear all the flags first. Here
763is a simple example of the way to use @code{fetestexcept}:
b4012b75
UD
764
765@smallexample
7a68c94a
UD
766@{
767 double f;
768 int raised;
769 feclearexcept (FE_ALL_EXCEPT);
770 f = compute ();
771 raised = fetestexcept (FE_OVERFLOW | FE_INVALID);
772 if (raised & FE_OVERFLOW) @{ /* ... */ @}
773 if (raised & FE_INVALID) @{ /* ... */ @}
774 /* ... */
775@}
b4012b75
UD
776@end smallexample
777
7a68c94a
UD
778You cannot explicitly set bits in the status word. You can, however,
779save the entire status word and restore it later. This is done with the
780following functions:
b4012b75 781
7a68c94a 782@comment fenv.h
b4012b75 783@comment ISO
63ae7b63 784@deftypefun int fegetexceptflag (fexcept_t *@var{flagp}, int @var{excepts})
7a68c94a
UD
785This function stores in the variable pointed to by @var{flagp} an
786implementation-defined value representing the current setting of the
787exception flags indicated by @var{excepts}.
63ae7b63
UD
788
789The function returns zero in case the operation was successful, a
790non-zero value otherwise.
7a68c94a 791@end deftypefun
b4012b75 792
7a68c94a
UD
793@comment fenv.h
794@comment ISO
63ae7b63 795@deftypefun int fesetexceptflag (const fexcept_t *@var{flagp}, int
7a68c94a
UD
796@var{excepts})
797This function restores the flags for the exceptions indicated by
798@var{excepts} to the values stored in the variable pointed to by
799@var{flagp}.
63ae7b63
UD
800
801The function returns zero in case the operation was successful, a
802non-zero value otherwise.
7a68c94a
UD
803@end deftypefun
804
805Note that the value stored in @code{fexcept_t} bears no resemblance to
806the bit mask returned by @code{fetestexcept}. The type may not even be
807an integer. Do not attempt to modify an @code{fexcept_t} variable.
808
809@node Math Error Reporting
810@subsection Error Reporting by Mathematical Functions
811@cindex errors, mathematical
812@cindex domain error
813@cindex range error
814
815Many of the math functions are defined only over a subset of the real or
816complex numbers. Even if they are mathematically defined, their result
817may be larger or smaller than the range representable by their return
818type. These are known as @dfn{domain errors}, @dfn{overflows}, and
819@dfn{underflows}, respectively. Math functions do several things when
820one of these errors occurs. In this manual we will refer to the
821complete response as @dfn{signalling} a domain error, overflow, or
822underflow.
823
824When a math function suffers a domain error, it raises the invalid
825exception and returns NaN. It also sets @var{errno} to @code{EDOM};
826this is for compatibility with old systems that do not support @w{IEEE
827754} exception handling. Likewise, when overflow occurs, math
828functions raise the overflow exception and return @math{@infinity{}} or
829@math{-@infinity{}} as appropriate. They also set @var{errno} to
830@code{ERANGE}. When underflow occurs, the underflow exception is
831raised, and zero (appropriately signed) is returned. @var{errno} may be
832set to @code{ERANGE}, but this is not guaranteed.
833
834Some of the math functions are defined mathematically to result in a
835complex value over parts of their domains. The most familiar example of
836this is taking the square root of a negative number. The complex math
837functions, such as @code{csqrt}, will return the appropriate complex value
838in this case. The real-valued functions, such as @code{sqrt}, will
839signal a domain error.
840
841Some older hardware does not support infinities. On that hardware,
842overflows instead return a particular very large number (usually the
843largest representable number). @file{math.h} defines macros you can use
844to test for overflow on both old and new hardware.
b4012b75
UD
845
846@comment math.h
847@comment ISO
7a68c94a 848@deftypevr Macro double HUGE_VAL
4260bc74
UD
849@comment math.h
850@comment ISO
7a68c94a 851@deftypevrx Macro float HUGE_VALF
4260bc74
UD
852@comment math.h
853@comment ISO
7a68c94a
UD
854@deftypevrx Macro {long double} HUGE_VALL
855An expression representing a particular very large number. On machines
856that use @w{IEEE 754} floating point format, @code{HUGE_VAL} is infinity.
857On other machines, it's typically the largest positive number that can
858be represented.
859
860Mathematical functions return the appropriately typed version of
861@code{HUGE_VAL} or @code{@minus{}HUGE_VAL} when the result is too large
862to be represented.
863@end deftypevr
b4012b75 864
7a68c94a
UD
865@node Rounding
866@section Rounding Modes
867
868Floating-point calculations are carried out internally with extra
869precision, and then rounded to fit into the destination type. This
870ensures that results are as precise as the input data. @w{IEEE 754}
871defines four possible rounding modes:
872
873@table @asis
874@item Round to nearest.
875This is the default mode. It should be used unless there is a specific
876need for one of the others. In this mode results are rounded to the
877nearest representable value. If the result is midway between two
878representable values, the even representable is chosen. @dfn{Even} here
879means the lowest-order bit is zero. This rounding mode prevents
880statistical bias and guarantees numeric stability: round-off errors in a
881lengthy calculation will remain smaller than half of @code{FLT_EPSILON}.
882
883@c @item Round toward @math{+@infinity{}}
884@item Round toward plus Infinity.
885All results are rounded to the smallest representable value
886which is greater than the result.
887
888@c @item Round toward @math{-@infinity{}}
889@item Round toward minus Infinity.
890All results are rounded to the largest representable value which is less
891than the result.
892
893@item Round toward zero.
894All results are rounded to the largest representable value whose
895magnitude is less than that of the result. In other words, if the
896result is negative it is rounded up; if it is positive, it is rounded
897down.
898@end table
b4012b75 899
7a68c94a
UD
900@noindent
901@file{fenv.h} defines constants which you can use to refer to the
902various rounding modes. Each one will be defined if and only if the FPU
903supports the corresponding rounding mode.
b4012b75 904
7a68c94a
UD
905@table @code
906@comment fenv.h
907@comment ISO
908@vindex FE_TONEAREST
909@item FE_TONEAREST
910Round to nearest.
b4012b75 911
7a68c94a
UD
912@comment fenv.h
913@comment ISO
914@vindex FE_UPWARD
915@item FE_UPWARD
916Round toward @math{+@infinity{}}.
b4012b75 917
7a68c94a
UD
918@comment fenv.h
919@comment ISO
920@vindex FE_DOWNWARD
921@item FE_DOWNWARD
922Round toward @math{-@infinity{}}.
b4012b75 923
7a68c94a
UD
924@comment fenv.h
925@comment ISO
926@vindex FE_TOWARDZERO
927@item FE_TOWARDZERO
928Round toward zero.
929@end table
b4012b75 930
7a68c94a
UD
931Underflow is an unusual case. Normally, @w{IEEE 754} floating point
932numbers are always normalized (@pxref{Floating Point Concepts}).
933Numbers smaller than @math{2^r} (where @math{r} is the minimum exponent,
934@code{FLT_MIN_RADIX-1} for @var{float}) cannot be represented as
935normalized numbers. Rounding all such numbers to zero or @math{2^r}
936would cause some algorithms to fail at 0. Therefore, they are left in
937denormalized form. That produces loss of precision, since some bits of
938the mantissa are stolen to indicate the decimal point.
939
940If a result is too small to be represented as a denormalized number, it
941is rounded to zero. However, the sign of the result is preserved; if
942the calculation was negative, the result is @dfn{negative zero}.
943Negative zero can also result from some operations on infinity, such as
944@math{4/-@infinity{}}. Negative zero behaves identically to zero except
945when the @code{copysign} or @code{signbit} functions are used to check
946the sign bit directly.
947
948At any time one of the above four rounding modes is selected. You can
949find out which one with this function:
950
951@comment fenv.h
952@comment ISO
953@deftypefun int fegetround (void)
954Returns the currently selected rounding mode, represented by one of the
955values of the defined rounding mode macros.
956@end deftypefun
b4012b75 957
7a68c94a
UD
958@noindent
959To change the rounding mode, use this function:
b4012b75 960
7a68c94a
UD
961@comment fenv.h
962@comment ISO
963@deftypefun int fesetround (int @var{round})
964Changes the currently selected rounding mode to @var{round}. If
965@var{round} does not correspond to one of the supported rounding modes
d5655997
UD
966nothing is changed. @code{fesetround} returns zero if it changed the
967rounding mode, a nonzero value if the mode is not supported.
7a68c94a 968@end deftypefun
b4012b75 969
7a68c94a
UD
970You should avoid changing the rounding mode if possible. It can be an
971expensive operation; also, some hardware requires you to compile your
972program differently for it to work. The resulting code may run slower.
973See your compiler documentation for details.
974@c This section used to claim that functions existed to round one number
975@c in a specific fashion. I can't find any functions in the library
976@c that do that. -zw
977
978@node Control Functions
979@section Floating-Point Control Functions
980
981@w{IEEE 754} floating-point implementations allow the programmer to
982decide whether traps will occur for each of the exceptions, by setting
983bits in the @dfn{control word}. In C, traps result in the program
984receiving the @code{SIGFPE} signal; see @ref{Signal Handling}.
985
986@strong{Note:} @w{IEEE 754} says that trap handlers are given details of
987the exceptional situation, and can set the result value. C signals do
988not provide any mechanism to pass this information back and forth.
989Trapping exceptions in C is therefore not very useful.
990
991It is sometimes necessary to save the state of the floating-point unit
992while you perform some calculation. The library provides functions
993which save and restore the exception flags, the set of exceptions that
994generate traps, and the rounding mode. This information is known as the
995@dfn{floating-point environment}.
996
997The functions to save and restore the floating-point environment all use
998a variable of type @code{fenv_t} to store information. This type is
999defined in @file{fenv.h}. Its size and contents are
1000implementation-defined. You should not attempt to manipulate a variable
1001of this type directly.
1002
1003To save the state of the FPU, use one of these functions:
1004
1005@comment fenv.h
b4012b75 1006@comment ISO
63ae7b63 1007@deftypefun int fegetenv (fenv_t *@var{envp})
7a68c94a
UD
1008Store the floating-point environment in the variable pointed to by
1009@var{envp}.
63ae7b63
UD
1010
1011The function returns zero in case the operation was successful, a
1012non-zero value otherwise.
b4012b75
UD
1013@end deftypefun
1014
7a68c94a 1015@comment fenv.h
b4012b75 1016@comment ISO
7a68c94a
UD
1017@deftypefun int feholdexcept (fenv_t *@var{envp})
1018Store the current floating-point environment in the object pointed to by
1019@var{envp}. Then clear all exception flags, and set the FPU to trap no
1020exceptions. Not all FPUs support trapping no exceptions; if
0f6b172f
UD
1021@code{feholdexcept} cannot set this mode, it returns nonzero value. If it
1022succeeds, it returns zero.
b4012b75
UD
1023@end deftypefun
1024
7a7a7ee5 1025The functions which restore the floating-point environment can take these
7a68c94a 1026kinds of arguments:
b4012b75 1027
7a68c94a
UD
1028@itemize @bullet
1029@item
1030Pointers to @code{fenv_t} objects, which were initialized previously by a
1031call to @code{fegetenv} or @code{feholdexcept}.
1032@item
1033@vindex FE_DFL_ENV
1034The special macro @code{FE_DFL_ENV} which represents the floating-point
1035environment as it was available at program start.
1036@item
7a7a7ee5
AJ
1037Implementation defined macros with names starting with @code{FE_} and
1038having type @code{fenv_t *}.
b4012b75 1039
7a68c94a
UD
1040@vindex FE_NOMASK_ENV
1041If possible, the GNU C Library defines a macro @code{FE_NOMASK_ENV}
1042which represents an environment where every exception raised causes a
1043trap to occur. You can test for this macro using @code{#ifdef}. It is
1044only defined if @code{_GNU_SOURCE} is defined.
1045
1046Some platforms might define other predefined environments.
1047@end itemize
1048
1049@noindent
1050To set the floating-point environment, you can use either of these
1051functions:
1052
1053@comment fenv.h
b4012b75 1054@comment ISO
63ae7b63 1055@deftypefun int fesetenv (const fenv_t *@var{envp})
7a68c94a 1056Set the floating-point environment to that described by @var{envp}.
63ae7b63
UD
1057
1058The function returns zero in case the operation was successful, a
1059non-zero value otherwise.
b4012b75
UD
1060@end deftypefun
1061
7a68c94a 1062@comment fenv.h
b4012b75 1063@comment ISO
63ae7b63 1064@deftypefun int feupdateenv (const fenv_t *@var{envp})
7a68c94a
UD
1065Like @code{fesetenv}, this function sets the floating-point environment
1066to that described by @var{envp}. However, if any exceptions were
1067flagged in the status word before @code{feupdateenv} was called, they
1068remain flagged after the call. In other words, after @code{feupdateenv}
1069is called, the status word is the bitwise OR of the previous status word
1070and the one saved in @var{envp}.
63ae7b63
UD
1071
1072The function returns zero in case the operation was successful, a
1073non-zero value otherwise.
b4012b75
UD
1074@end deftypefun
1075
05ef7ce9
UD
1076@noindent
1077To control for individual exceptions if raising them causes a trap to
1078occur, you can use the following two functions.
1079
1080@strong{Portability Note:} These functions are all GNU extensions.
1081
1082@comment fenv.h
1083@comment GNU
1084@deftypefun int feenableexcept (int @var{excepts})
1085This functions enables traps for each of the exceptions as indicated by
1086the parameter @var{except}. The individual excepetions are described in
6e8afc1c 1087@ref{Status bit operations}. Only the specified exceptions are
05ef7ce9
UD
1088enabled, the status of the other exceptions is not changed.
1089
1090The function returns the previous enabled exceptions in case the
1091operation was successful, @code{-1} otherwise.
1092@end deftypefun
1093
1094@comment fenv.h
1095@comment GNU
1096@deftypefun int fedisableexcept (int @var{excepts})
1097This functions disables traps for each of the exceptions as indicated by
1098the parameter @var{except}. The individual excepetions are described in
6e8afc1c 1099@ref{Status bit operations}. Only the specified exceptions are
05ef7ce9
UD
1100disabled, the status of the other exceptions is not changed.
1101
1102The function returns the previous enabled exceptions in case the
1103operation was successful, @code{-1} otherwise.
1104@end deftypefun
1105
1106@comment fenv.h
1107@comment GNU
1108@deftypefun int fegetexcept (int @var{excepts})
1109The function returns a bitmask of all currently enabled exceptions. It
1110returns @code{-1} in case of failure.
6e8afc1c 1111@end deftypefun
05ef7ce9 1112
7a68c94a
UD
1113@node Arithmetic Functions
1114@section Arithmetic Functions
b4012b75 1115
7a68c94a
UD
1116The C library provides functions to do basic operations on
1117floating-point numbers. These include absolute value, maximum and minimum,
1118normalization, bit twiddling, rounding, and a few others.
b4012b75 1119
7a68c94a
UD
1120@menu
1121* Absolute Value:: Absolute values of integers and floats.
1122* Normalization Functions:: Extracting exponents and putting them back.
1123* Rounding Functions:: Rounding floats to integers.
1124* Remainder Functions:: Remainders on division, precisely defined.
1125* FP Bit Twiddling:: Sign bit adjustment. Adding epsilon.
1126* FP Comparison Functions:: Comparisons without risk of exceptions.
1127* Misc FP Arithmetic:: Max, min, positive difference, multiply-add.
1128@end menu
b4012b75 1129
28f540f4 1130@node Absolute Value
7a68c94a 1131@subsection Absolute Value
28f540f4
RM
1132@cindex absolute value functions
1133
1134These functions are provided for obtaining the @dfn{absolute value} (or
1135@dfn{magnitude}) of a number. The absolute value of a real number
2d26e9eb 1136@var{x} is @var{x} if @var{x} is positive, @minus{}@var{x} if @var{x} is
28f540f4
RM
1137negative. For a complex number @var{z}, whose real part is @var{x} and
1138whose imaginary part is @var{y}, the absolute value is @w{@code{sqrt
1139(@var{x}*@var{x} + @var{y}*@var{y})}}.
1140
1141@pindex math.h
1142@pindex stdlib.h
fe0ec73e 1143Prototypes for @code{abs}, @code{labs} and @code{llabs} are in @file{stdlib.h};
e518937a 1144@code{imaxabs} is declared in @file{inttypes.h};
7a68c94a 1145@code{fabs}, @code{fabsf} and @code{fabsl} are declared in @file{math.h}.
b4012b75 1146@code{cabs}, @code{cabsf} and @code{cabsl} are declared in @file{complex.h}.
28f540f4
RM
1147
1148@comment stdlib.h
f65fd747 1149@comment ISO
28f540f4 1150@deftypefun int abs (int @var{number})
4260bc74
UD
1151@comment stdlib.h
1152@comment ISO
7a68c94a 1153@deftypefunx {long int} labs (long int @var{number})
4260bc74
UD
1154@comment stdlib.h
1155@comment ISO
7a68c94a 1156@deftypefunx {long long int} llabs (long long int @var{number})
e518937a
UD
1157@comment inttypes.h
1158@comment ISO
1159@deftypefunx intmax_t imaxabs (intmax_t @var{number})
7a68c94a 1160These functions return the absolute value of @var{number}.
28f540f4
RM
1161
1162Most computers use a two's complement integer representation, in which
1163the absolute value of @code{INT_MIN} (the smallest possible @code{int})
1164cannot be represented; thus, @w{@code{abs (INT_MIN)}} is not defined.
28f540f4 1165
ec751a23 1166@code{llabs} and @code{imaxdiv} are new to @w{ISO C99}.
0e4ee106
UD
1167
1168See @ref{Integers} for a description of the @code{intmax_t} type.
1169
fe0ec73e
UD
1170@end deftypefun
1171
28f540f4 1172@comment math.h
f65fd747 1173@comment ISO
28f540f4 1174@deftypefun double fabs (double @var{number})
4260bc74
UD
1175@comment math.h
1176@comment ISO
779ae82e 1177@deftypefunx float fabsf (float @var{number})
4260bc74
UD
1178@comment math.h
1179@comment ISO
779ae82e 1180@deftypefunx {long double} fabsl (long double @var{number})
28f540f4
RM
1181This function returns the absolute value of the floating-point number
1182@var{number}.
1183@end deftypefun
1184
b4012b75
UD
1185@comment complex.h
1186@comment ISO
1187@deftypefun double cabs (complex double @var{z})
4260bc74
UD
1188@comment complex.h
1189@comment ISO
779ae82e 1190@deftypefunx float cabsf (complex float @var{z})
4260bc74
UD
1191@comment complex.h
1192@comment ISO
779ae82e 1193@deftypefunx {long double} cabsl (complex long double @var{z})
7a68c94a
UD
1194These functions return the absolute value of the complex number @var{z}
1195(@pxref{Complex Numbers}). The absolute value of a complex number is:
28f540f4
RM
1196
1197@smallexample
b4012b75 1198sqrt (creal (@var{z}) * creal (@var{z}) + cimag (@var{z}) * cimag (@var{z}))
28f540f4 1199@end smallexample
dfd2257a 1200
7a68c94a
UD
1201This function should always be used instead of the direct formula
1202because it takes special care to avoid losing precision. It may also
1203take advantage of hardware support for this operation. See @code{hypot}
8b7fb588 1204in @ref{Exponents and Logarithms}.
28f540f4
RM
1205@end deftypefun
1206
1207@node Normalization Functions
7a68c94a 1208@subsection Normalization Functions
28f540f4
RM
1209@cindex normalization functions (floating-point)
1210
1211The functions described in this section are primarily provided as a way
1212to efficiently perform certain low-level manipulations on floating point
1213numbers that are represented internally using a binary radix;
1214see @ref{Floating Point Concepts}. These functions are required to
1215have equivalent behavior even if the representation does not use a radix
1216of 2, but of course they are unlikely to be particularly efficient in
1217those cases.
1218
1219@pindex math.h
1220All these functions are declared in @file{math.h}.
1221
1222@comment math.h
f65fd747 1223@comment ISO
28f540f4 1224@deftypefun double frexp (double @var{value}, int *@var{exponent})
4260bc74
UD
1225@comment math.h
1226@comment ISO
779ae82e 1227@deftypefunx float frexpf (float @var{value}, int *@var{exponent})
4260bc74
UD
1228@comment math.h
1229@comment ISO
779ae82e 1230@deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent})
b4012b75 1231These functions are used to split the number @var{value}
28f540f4
RM
1232into a normalized fraction and an exponent.
1233
1234If the argument @var{value} is not zero, the return value is @var{value}
1235times a power of two, and is always in the range 1/2 (inclusive) to 1
1236(exclusive). The corresponding exponent is stored in
1237@code{*@var{exponent}}; the return value multiplied by 2 raised to this
1238exponent equals the original number @var{value}.
1239
1240For example, @code{frexp (12.8, &exponent)} returns @code{0.8} and
1241stores @code{4} in @code{exponent}.
1242
1243If @var{value} is zero, then the return value is zero and
1244zero is stored in @code{*@var{exponent}}.
1245@end deftypefun
1246
1247@comment math.h
f65fd747 1248@comment ISO
28f540f4 1249@deftypefun double ldexp (double @var{value}, int @var{exponent})
4260bc74
UD
1250@comment math.h
1251@comment ISO
779ae82e 1252@deftypefunx float ldexpf (float @var{value}, int @var{exponent})
4260bc74
UD
1253@comment math.h
1254@comment ISO
779ae82e 1255@deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent})
b4012b75 1256These functions return the result of multiplying the floating-point
28f540f4
RM
1257number @var{value} by 2 raised to the power @var{exponent}. (It can
1258be used to reassemble floating-point numbers that were taken apart
1259by @code{frexp}.)
1260
1261For example, @code{ldexp (0.8, 4)} returns @code{12.8}.
1262@end deftypefun
1263
7a68c94a
UD
1264The following functions, which come from BSD, provide facilities
1265equivalent to those of @code{ldexp} and @code{frexp}.
28f540f4
RM
1266
1267@comment math.h
1268@comment BSD
1269@deftypefun double logb (double @var{x})
4260bc74
UD
1270@comment math.h
1271@comment BSD
779ae82e 1272@deftypefunx float logbf (float @var{x})
4260bc74
UD
1273@comment math.h
1274@comment BSD
779ae82e 1275@deftypefunx {long double} logbl (long double @var{x})
7a68c94a 1276These functions return the integer part of the base-2 logarithm of
28f540f4
RM
1277@var{x}, an integer value represented in type @code{double}. This is
1278the highest integer power of @code{2} contained in @var{x}. The sign of
1279@var{x} is ignored. For example, @code{logb (3.5)} is @code{1.0} and
1280@code{logb (4.0)} is @code{2.0}.
1281
1282When @code{2} raised to this power is divided into @var{x}, it gives a
1283quotient between @code{1} (inclusive) and @code{2} (exclusive).
1284
7a68c94a
UD
1285If @var{x} is zero, the return value is minus infinity if the machine
1286supports infinities, and a very small number if it does not. If @var{x}
1287is infinity, the return value is infinity.
1288
1289For finite @var{x}, the value returned by @code{logb} is one less than
1290the value that @code{frexp} would store into @code{*@var{exponent}}.
1291@end deftypefun
1292
1293@comment math.h
1294@comment BSD
1295@deftypefun double scalb (double @var{value}, int @var{exponent})
4260bc74
UD
1296@comment math.h
1297@comment BSD
7a68c94a 1298@deftypefunx float scalbf (float @var{value}, int @var{exponent})
4260bc74
UD
1299@comment math.h
1300@comment BSD
7a68c94a
UD
1301@deftypefunx {long double} scalbl (long double @var{value}, int @var{exponent})
1302The @code{scalb} function is the BSD name for @code{ldexp}.
1303@end deftypefun
1304
1305@comment math.h
1306@comment BSD
1307@deftypefun {long long int} scalbn (double @var{x}, int n)
4260bc74
UD
1308@comment math.h
1309@comment BSD
7a68c94a 1310@deftypefunx {long long int} scalbnf (float @var{x}, int n)
4260bc74
UD
1311@comment math.h
1312@comment BSD
7a68c94a
UD
1313@deftypefunx {long long int} scalbnl (long double @var{x}, int n)
1314@code{scalbn} is identical to @code{scalb}, except that the exponent
1315@var{n} is an @code{int} instead of a floating-point number.
1316@end deftypefun
1317
1318@comment math.h
1319@comment BSD
1320@deftypefun {long long int} scalbln (double @var{x}, long int n)
4260bc74
UD
1321@comment math.h
1322@comment BSD
7a68c94a 1323@deftypefunx {long long int} scalblnf (float @var{x}, long int n)
4260bc74
UD
1324@comment math.h
1325@comment BSD
7a68c94a
UD
1326@deftypefunx {long long int} scalblnl (long double @var{x}, long int n)
1327@code{scalbln} is identical to @code{scalb}, except that the exponent
1328@var{n} is a @code{long int} instead of a floating-point number.
1329@end deftypefun
28f540f4 1330
7a68c94a
UD
1331@comment math.h
1332@comment BSD
1333@deftypefun {long long int} significand (double @var{x})
4260bc74
UD
1334@comment math.h
1335@comment BSD
7a68c94a 1336@deftypefunx {long long int} significandf (float @var{x})
4260bc74
UD
1337@comment math.h
1338@comment BSD
7a68c94a
UD
1339@deftypefunx {long long int} significandl (long double @var{x})
1340@code{significand} returns the mantissa of @var{x} scaled to the range
1341@math{[1, 2)}.
1342It is equivalent to @w{@code{scalb (@var{x}, (double) -ilogb (@var{x}))}}.
1343
1344This function exists mainly for use in certain standardized tests
1345of @w{IEEE 754} conformance.
28f540f4
RM
1346@end deftypefun
1347
7a68c94a
UD
1348@node Rounding Functions
1349@subsection Rounding Functions
28f540f4
RM
1350@cindex converting floats to integers
1351
1352@pindex math.h
7a68c94a
UD
1353The functions listed here perform operations such as rounding and
1354truncation of floating-point values. Some of these functions convert
1355floating point numbers to integer values. They are all declared in
1356@file{math.h}.
28f540f4
RM
1357
1358You can also convert floating-point numbers to integers simply by
1359casting them to @code{int}. This discards the fractional part,
1360effectively rounding towards zero. However, this only works if the
1361result can actually be represented as an @code{int}---for very large
1362numbers, this is impossible. The functions listed here return the
1363result as a @code{double} instead to get around this problem.
1364
1365@comment math.h
f65fd747 1366@comment ISO
28f540f4 1367@deftypefun double ceil (double @var{x})
4260bc74
UD
1368@comment math.h
1369@comment ISO
779ae82e 1370@deftypefunx float ceilf (float @var{x})
4260bc74
UD
1371@comment math.h
1372@comment ISO
779ae82e 1373@deftypefunx {long double} ceill (long double @var{x})
b4012b75 1374These functions round @var{x} upwards to the nearest integer,
28f540f4
RM
1375returning that value as a @code{double}. Thus, @code{ceil (1.5)}
1376is @code{2.0}.
1377@end deftypefun
1378
1379@comment math.h
f65fd747 1380@comment ISO
28f540f4 1381@deftypefun double floor (double @var{x})
4260bc74
UD
1382@comment math.h
1383@comment ISO
779ae82e 1384@deftypefunx float floorf (float @var{x})
4260bc74
UD
1385@comment math.h
1386@comment ISO
779ae82e 1387@deftypefunx {long double} floorl (long double @var{x})
b4012b75 1388These functions round @var{x} downwards to the nearest
28f540f4
RM
1389integer, returning that value as a @code{double}. Thus, @code{floor
1390(1.5)} is @code{1.0} and @code{floor (-1.5)} is @code{-2.0}.
1391@end deftypefun
1392
7a68c94a
UD
1393@comment math.h
1394@comment ISO
1395@deftypefun double trunc (double @var{x})
4260bc74
UD
1396@comment math.h
1397@comment ISO
7a68c94a 1398@deftypefunx float truncf (float @var{x})
4260bc74
UD
1399@comment math.h
1400@comment ISO
7a68c94a 1401@deftypefunx {long double} truncl (long double @var{x})
e6e81391
UD
1402The @code{trunc} functions round @var{x} towards zero to the nearest
1403integer (returned in floating-point format). Thus, @code{trunc (1.5)}
1404is @code{1.0} and @code{trunc (-1.5)} is @code{-1.0}.
7a68c94a
UD
1405@end deftypefun
1406
28f540f4 1407@comment math.h
b4012b75 1408@comment ISO
28f540f4 1409@deftypefun double rint (double @var{x})
4260bc74
UD
1410@comment math.h
1411@comment ISO
779ae82e 1412@deftypefunx float rintf (float @var{x})
4260bc74
UD
1413@comment math.h
1414@comment ISO
779ae82e 1415@deftypefunx {long double} rintl (long double @var{x})
b4012b75 1416These functions round @var{x} to an integer value according to the
28f540f4
RM
1417current rounding mode. @xref{Floating Point Parameters}, for
1418information about the various rounding modes. The default
1419rounding mode is to round to the nearest integer; some machines
1420support other modes, but round-to-nearest is always used unless
7a68c94a
UD
1421you explicitly select another.
1422
1423If @var{x} was not initially an integer, these functions raise the
1424inexact exception.
28f540f4
RM
1425@end deftypefun
1426
b4012b75
UD
1427@comment math.h
1428@comment ISO
1429@deftypefun double nearbyint (double @var{x})
4260bc74
UD
1430@comment math.h
1431@comment ISO
779ae82e 1432@deftypefunx float nearbyintf (float @var{x})
4260bc74
UD
1433@comment math.h
1434@comment ISO
779ae82e 1435@deftypefunx {long double} nearbyintl (long double @var{x})
7a68c94a
UD
1436These functions return the same value as the @code{rint} functions, but
1437do not raise the inexact exception if @var{x} is not an integer.
1438@end deftypefun
1439
1440@comment math.h
1441@comment ISO
1442@deftypefun double round (double @var{x})
4260bc74
UD
1443@comment math.h
1444@comment ISO
7a68c94a 1445@deftypefunx float roundf (float @var{x})
4260bc74
UD
1446@comment math.h
1447@comment ISO
7a68c94a
UD
1448@deftypefunx {long double} roundl (long double @var{x})
1449These functions are similar to @code{rint}, but they round halfway
1450cases away from zero instead of to the nearest even integer.
1451@end deftypefun
1452
1453@comment math.h
1454@comment ISO
1455@deftypefun {long int} lrint (double @var{x})
4260bc74
UD
1456@comment math.h
1457@comment ISO
7a68c94a 1458@deftypefunx {long int} lrintf (float @var{x})
4260bc74
UD
1459@comment math.h
1460@comment ISO
7a68c94a
UD
1461@deftypefunx {long int} lrintl (long double @var{x})
1462These functions are just like @code{rint}, but they return a
1463@code{long int} instead of a floating-point number.
1464@end deftypefun
1465
1466@comment math.h
1467@comment ISO
1468@deftypefun {long long int} llrint (double @var{x})
4260bc74
UD
1469@comment math.h
1470@comment ISO
7a68c94a 1471@deftypefunx {long long int} llrintf (float @var{x})
4260bc74
UD
1472@comment math.h
1473@comment ISO
7a68c94a
UD
1474@deftypefunx {long long int} llrintl (long double @var{x})
1475These functions are just like @code{rint}, but they return a
1476@code{long long int} instead of a floating-point number.
b4012b75
UD
1477@end deftypefun
1478
7a68c94a
UD
1479@comment math.h
1480@comment ISO
1481@deftypefun {long int} lround (double @var{x})
4260bc74
UD
1482@comment math.h
1483@comment ISO
7a68c94a 1484@deftypefunx {long int} lroundf (float @var{x})
4260bc74
UD
1485@comment math.h
1486@comment ISO
7a68c94a
UD
1487@deftypefunx {long int} lroundl (long double @var{x})
1488These functions are just like @code{round}, but they return a
1489@code{long int} instead of a floating-point number.
1490@end deftypefun
1491
1492@comment math.h
1493@comment ISO
1494@deftypefun {long long int} llround (double @var{x})
4260bc74
UD
1495@comment math.h
1496@comment ISO
7a68c94a 1497@deftypefunx {long long int} llroundf (float @var{x})
4260bc74
UD
1498@comment math.h
1499@comment ISO
7a68c94a
UD
1500@deftypefunx {long long int} llroundl (long double @var{x})
1501These functions are just like @code{round}, but they return a
1502@code{long long int} instead of a floating-point number.
1503@end deftypefun
1504
1505
28f540f4 1506@comment math.h
f65fd747 1507@comment ISO
28f540f4 1508@deftypefun double modf (double @var{value}, double *@var{integer-part})
4260bc74
UD
1509@comment math.h
1510@comment ISO
f2ea0f5b 1511@deftypefunx float modff (float @var{value}, float *@var{integer-part})
4260bc74
UD
1512@comment math.h
1513@comment ISO
779ae82e 1514@deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part})
b4012b75 1515These functions break the argument @var{value} into an integer part and a
28f540f4
RM
1516fractional part (between @code{-1} and @code{1}, exclusive). Their sum
1517equals @var{value}. Each of the parts has the same sign as @var{value},
7a68c94a 1518and the integer part is always rounded toward zero.
28f540f4
RM
1519
1520@code{modf} stores the integer part in @code{*@var{integer-part}}, and
1521returns the fractional part. For example, @code{modf (2.5, &intpart)}
1522returns @code{0.5} and stores @code{2.0} into @code{intpart}.
1523@end deftypefun
1524
7a68c94a
UD
1525@node Remainder Functions
1526@subsection Remainder Functions
1527
1528The functions in this section compute the remainder on division of two
1529floating-point numbers. Each is a little different; pick the one that
1530suits your problem.
1531
28f540f4 1532@comment math.h
f65fd747 1533@comment ISO
28f540f4 1534@deftypefun double fmod (double @var{numerator}, double @var{denominator})
4260bc74
UD
1535@comment math.h
1536@comment ISO
779ae82e 1537@deftypefunx float fmodf (float @var{numerator}, float @var{denominator})
4260bc74
UD
1538@comment math.h
1539@comment ISO
779ae82e 1540@deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator})
b4012b75 1541These functions compute the remainder from the division of
28f540f4
RM
1542@var{numerator} by @var{denominator}. Specifically, the return value is
1543@code{@var{numerator} - @w{@var{n} * @var{denominator}}}, where @var{n}
1544is the quotient of @var{numerator} divided by @var{denominator}, rounded
1545towards zero to an integer. Thus, @w{@code{fmod (6.5, 2.3)}} returns
1546@code{1.9}, which is @code{6.5} minus @code{4.6}.
1547
1548The result has the same sign as the @var{numerator} and has magnitude
1549less than the magnitude of the @var{denominator}.
1550
7a68c94a 1551If @var{denominator} is zero, @code{fmod} signals a domain error.
28f540f4
RM
1552@end deftypefun
1553
1554@comment math.h
1555@comment BSD
1556@deftypefun double drem (double @var{numerator}, double @var{denominator})
4260bc74
UD
1557@comment math.h
1558@comment BSD
779ae82e 1559@deftypefunx float dremf (float @var{numerator}, float @var{denominator})
4260bc74
UD
1560@comment math.h
1561@comment BSD
779ae82e 1562@deftypefunx {long double} dreml (long double @var{numerator}, long double @var{denominator})
7a68c94a 1563These functions are like @code{fmod} except that they rounds the
28f540f4
RM
1564internal quotient @var{n} to the nearest integer instead of towards zero
1565to an integer. For example, @code{drem (6.5, 2.3)} returns @code{-0.4},
1566which is @code{6.5} minus @code{6.9}.
1567
1568The absolute value of the result is less than or equal to half the
1569absolute value of the @var{denominator}. The difference between
1570@code{fmod (@var{numerator}, @var{denominator})} and @code{drem
1571(@var{numerator}, @var{denominator})} is always either
1572@var{denominator}, minus @var{denominator}, or zero.
1573
7a68c94a 1574If @var{denominator} is zero, @code{drem} signals a domain error.
28f540f4
RM
1575@end deftypefun
1576
7a68c94a
UD
1577@comment math.h
1578@comment BSD
1579@deftypefun double remainder (double @var{numerator}, double @var{denominator})
4260bc74
UD
1580@comment math.h
1581@comment BSD
7a68c94a 1582@deftypefunx float remainderf (float @var{numerator}, float @var{denominator})
4260bc74
UD
1583@comment math.h
1584@comment BSD
7a68c94a
UD
1585@deftypefunx {long double} remainderl (long double @var{numerator}, long double @var{denominator})
1586This function is another name for @code{drem}.
1587@end deftypefun
28f540f4 1588
7a68c94a
UD
1589@node FP Bit Twiddling
1590@subsection Setting and modifying single bits of FP values
fe0ec73e
UD
1591@cindex FP arithmetic
1592
7a68c94a 1593There are some operations that are too complicated or expensive to
ec751a23 1594perform by hand on floating-point numbers. @w{ISO C99} defines
7a68c94a
UD
1595functions to do these operations, which mostly involve changing single
1596bits.
fe0ec73e
UD
1597
1598@comment math.h
1599@comment ISO
1600@deftypefun double copysign (double @var{x}, double @var{y})
4260bc74
UD
1601@comment math.h
1602@comment ISO
fe0ec73e 1603@deftypefunx float copysignf (float @var{x}, float @var{y})
4260bc74
UD
1604@comment math.h
1605@comment ISO
fe0ec73e 1606@deftypefunx {long double} copysignl (long double @var{x}, long double @var{y})
7a68c94a
UD
1607These functions return @var{x} but with the sign of @var{y}. They work
1608even if @var{x} or @var{y} are NaN or zero. Both of these can carry a
1609sign (although not all implementations support it) and this is one of
1610the few operations that can tell the difference.
fe0ec73e 1611
7a68c94a
UD
1612@code{copysign} never raises an exception.
1613@c except signalling NaNs
fe0ec73e
UD
1614
1615This function is defined in @w{IEC 559} (and the appendix with
1616recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1617@end deftypefun
1618
1619@comment math.h
1620@comment ISO
1621@deftypefun int signbit (@emph{float-type} @var{x})
1622@code{signbit} is a generic macro which can work on all floating-point
1623types. It returns a nonzero value if the value of @var{x} has its sign
1624bit set.
1625
7a68c94a
UD
1626This is not the same as @code{x < 0.0}, because @w{IEEE 754} floating
1627point allows zero to be signed. The comparison @code{-0.0 < 0.0} is
1628false, but @code{signbit (-0.0)} will return a nonzero value.
fe0ec73e
UD
1629@end deftypefun
1630
1631@comment math.h
1632@comment ISO
1633@deftypefun double nextafter (double @var{x}, double @var{y})
4260bc74
UD
1634@comment math.h
1635@comment ISO
fe0ec73e 1636@deftypefunx float nextafterf (float @var{x}, float @var{y})
4260bc74
UD
1637@comment math.h
1638@comment ISO
fe0ec73e
UD
1639@deftypefunx {long double} nextafterl (long double @var{x}, long double @var{y})
1640The @code{nextafter} function returns the next representable neighbor of
7a68c94a
UD
1641@var{x} in the direction towards @var{y}. The size of the step between
1642@var{x} and the result depends on the type of the result. If
0a7fef01 1643@math{@var{x} = @var{y}} the function simply returns @var{y}. If either
7a68c94a
UD
1644value is @code{NaN}, @code{NaN} is returned. Otherwise
1645a value corresponding to the value of the least significant bit in the
1646mantissa is added or subtracted, depending on the direction.
1647@code{nextafter} will signal overflow or underflow if the result goes
1648outside of the range of normalized numbers.
fe0ec73e
UD
1649
1650This function is defined in @w{IEC 559} (and the appendix with
1651recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1652@end deftypefun
1653
7a68c94a
UD
1654@comment math.h
1655@comment ISO
36fe9ac9 1656@deftypefun double nexttoward (double @var{x}, long double @var{y})
4260bc74
UD
1657@comment math.h
1658@comment ISO
36fe9ac9 1659@deftypefunx float nexttowardf (float @var{x}, long double @var{y})
4260bc74
UD
1660@comment math.h
1661@comment ISO
36fe9ac9 1662@deftypefunx {long double} nexttowardl (long double @var{x}, long double @var{y})
7a68c94a
UD
1663These functions are identical to the corresponding versions of
1664@code{nextafter} except that their second argument is a @code{long
1665double}.
1666@end deftypefun
1667
fe0ec73e
UD
1668@cindex NaN
1669@comment math.h
1670@comment ISO
1671@deftypefun double nan (const char *@var{tagp})
4260bc74
UD
1672@comment math.h
1673@comment ISO
fe0ec73e 1674@deftypefunx float nanf (const char *@var{tagp})
4260bc74
UD
1675@comment math.h
1676@comment ISO
fe0ec73e 1677@deftypefunx {long double} nanl (const char *@var{tagp})
7a68c94a
UD
1678The @code{nan} function returns a representation of NaN, provided that
1679NaN is supported by the target platform.
1680@code{nan ("@var{n-char-sequence}")} is equivalent to
1681@code{strtod ("NAN(@var{n-char-sequence})")}.
1682
1683The argument @var{tagp} is used in an unspecified manner. On @w{IEEE
1684754} systems, there are many representations of NaN, and @var{tagp}
1685selects one. On other systems it may do nothing.
fe0ec73e
UD
1686@end deftypefun
1687
7a68c94a
UD
1688@node FP Comparison Functions
1689@subsection Floating-Point Comparison Functions
1690@cindex unordered comparison
fe0ec73e 1691
7a68c94a
UD
1692The standard C comparison operators provoke exceptions when one or other
1693of the operands is NaN. For example,
1694
1695@smallexample
1696int v = a < 1.0;
1697@end smallexample
1698
1699@noindent
1700will raise an exception if @var{a} is NaN. (This does @emph{not}
1701happen with @code{==} and @code{!=}; those merely return false and true,
1702respectively, when NaN is examined.) Frequently this exception is
ec751a23 1703undesirable. @w{ISO C99} therefore defines comparison functions that
7a68c94a
UD
1704do not raise exceptions when NaN is examined. All of the functions are
1705implemented as macros which allow their arguments to be of any
1706floating-point type. The macros are guaranteed to evaluate their
1707arguments only once.
1708
1709@comment math.h
1710@comment ISO
1711@deftypefn Macro int isgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1712This macro determines whether the argument @var{x} is greater than
1713@var{y}. It is equivalent to @code{(@var{x}) > (@var{y})}, but no
1714exception is raised if @var{x} or @var{y} are NaN.
1715@end deftypefn
1716
1717@comment math.h
1718@comment ISO
1719@deftypefn Macro int isgreaterequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1720This macro determines whether the argument @var{x} is greater than or
1721equal to @var{y}. It is equivalent to @code{(@var{x}) >= (@var{y})}, but no
1722exception is raised if @var{x} or @var{y} are NaN.
1723@end deftypefn
1724
1725@comment math.h
1726@comment ISO
1727@deftypefn Macro int isless (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1728This macro determines whether the argument @var{x} is less than @var{y}.
1729It is equivalent to @code{(@var{x}) < (@var{y})}, but no exception is
1730raised if @var{x} or @var{y} are NaN.
1731@end deftypefn
1732
1733@comment math.h
1734@comment ISO
1735@deftypefn Macro int islessequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1736This macro determines whether the argument @var{x} is less than or equal
1737to @var{y}. It is equivalent to @code{(@var{x}) <= (@var{y})}, but no
1738exception is raised if @var{x} or @var{y} are NaN.
1739@end deftypefn
1740
1741@comment math.h
1742@comment ISO
1743@deftypefn Macro int islessgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1744This macro determines whether the argument @var{x} is less or greater
1745than @var{y}. It is equivalent to @code{(@var{x}) < (@var{y}) ||
1746(@var{x}) > (@var{y})} (although it only evaluates @var{x} and @var{y}
1747once), but no exception is raised if @var{x} or @var{y} are NaN.
1748
1749This macro is not equivalent to @code{@var{x} != @var{y}}, because that
1750expression is true if @var{x} or @var{y} are NaN.
1751@end deftypefn
1752
1753@comment math.h
1754@comment ISO
1755@deftypefn Macro int isunordered (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1756This macro determines whether its arguments are unordered. In other
1757words, it is true if @var{x} or @var{y} are NaN, and false otherwise.
1758@end deftypefn
1759
1760Not all machines provide hardware support for these operations. On
1761machines that don't, the macros can be very slow. Therefore, you should
1762not use these functions when NaN is not a concern.
1763
1764@strong{Note:} There are no macros @code{isequal} or @code{isunequal}.
1765They are unnecessary, because the @code{==} and @code{!=} operators do
1766@emph{not} throw an exception if one or both of the operands are NaN.
1767
1768@node Misc FP Arithmetic
1769@subsection Miscellaneous FP arithmetic functions
fe0ec73e
UD
1770@cindex minimum
1771@cindex maximum
7a68c94a
UD
1772@cindex positive difference
1773@cindex multiply-add
fe0ec73e 1774
7a68c94a
UD
1775The functions in this section perform miscellaneous but common
1776operations that are awkward to express with C operators. On some
1777processors these functions can use special machine instructions to
1778perform these operations faster than the equivalent C code.
fe0ec73e
UD
1779
1780@comment math.h
1781@comment ISO
1782@deftypefun double fmin (double @var{x}, double @var{y})
4260bc74
UD
1783@comment math.h
1784@comment ISO
fe0ec73e 1785@deftypefunx float fminf (float @var{x}, float @var{y})
4260bc74
UD
1786@comment math.h
1787@comment ISO
fe0ec73e 1788@deftypefunx {long double} fminl (long double @var{x}, long double @var{y})
7a68c94a
UD
1789The @code{fmin} function returns the lesser of the two values @var{x}
1790and @var{y}. It is similar to the expression
1791@smallexample
1792((x) < (y) ? (x) : (y))
1793@end smallexample
1794except that @var{x} and @var{y} are only evaluated once.
fe0ec73e 1795
7a68c94a
UD
1796If an argument is NaN, the other argument is returned. If both arguments
1797are NaN, NaN is returned.
fe0ec73e
UD
1798@end deftypefun
1799
1800@comment math.h
1801@comment ISO
1802@deftypefun double fmax (double @var{x}, double @var{y})
4260bc74
UD
1803@comment math.h
1804@comment ISO
fe0ec73e 1805@deftypefunx float fmaxf (float @var{x}, float @var{y})
4260bc74
UD
1806@comment math.h
1807@comment ISO
fe0ec73e 1808@deftypefunx {long double} fmaxl (long double @var{x}, long double @var{y})
7a68c94a
UD
1809The @code{fmax} function returns the greater of the two values @var{x}
1810and @var{y}.
fe0ec73e 1811
7a68c94a
UD
1812If an argument is NaN, the other argument is returned. If both arguments
1813are NaN, NaN is returned.
fe0ec73e
UD
1814@end deftypefun
1815
1816@comment math.h
1817@comment ISO
1818@deftypefun double fdim (double @var{x}, double @var{y})
4260bc74
UD
1819@comment math.h
1820@comment ISO
fe0ec73e 1821@deftypefunx float fdimf (float @var{x}, float @var{y})
4260bc74
UD
1822@comment math.h
1823@comment ISO
fe0ec73e 1824@deftypefunx {long double} fdiml (long double @var{x}, long double @var{y})
7a68c94a
UD
1825The @code{fdim} function returns the positive difference between
1826@var{x} and @var{y}. The positive difference is @math{@var{x} -
1827@var{y}} if @var{x} is greater than @var{y}, and @math{0} otherwise.
fe0ec73e 1828
7a68c94a 1829If @var{x}, @var{y}, or both are NaN, NaN is returned.
fe0ec73e
UD
1830@end deftypefun
1831
1832@comment math.h
1833@comment ISO
1834@deftypefun double fma (double @var{x}, double @var{y}, double @var{z})
4260bc74
UD
1835@comment math.h
1836@comment ISO
fe0ec73e 1837@deftypefunx float fmaf (float @var{x}, float @var{y}, float @var{z})
4260bc74
UD
1838@comment math.h
1839@comment ISO
fe0ec73e
UD
1840@deftypefunx {long double} fmal (long double @var{x}, long double @var{y}, long double @var{z})
1841@cindex butterfly
7a68c94a
UD
1842The @code{fma} function performs floating-point multiply-add. This is
1843the operation @math{(@var{x} @mul{} @var{y}) + @var{z}}, but the
1844intermediate result is not rounded to the destination type. This can
1845sometimes improve the precision of a calculation.
1846
1847This function was introduced because some processors have a special
1848instruction to perform multiply-add. The C compiler cannot use it
1849directly, because the expression @samp{x*y + z} is defined to round the
1850intermediate result. @code{fma} lets you choose when you want to round
1851only once.
fe0ec73e
UD
1852
1853@vindex FP_FAST_FMA
7a68c94a
UD
1854On processors which do not implement multiply-add in hardware,
1855@code{fma} can be very slow since it must avoid intermediate rounding.
1856@file{math.h} defines the symbols @code{FP_FAST_FMA},
1857@code{FP_FAST_FMAF}, and @code{FP_FAST_FMAL} when the corresponding
1858version of @code{fma} is no slower than the expression @samp{x*y + z}.
1859In the GNU C library, this always means the operation is implemented in
1860hardware.
fe0ec73e
UD
1861@end deftypefun
1862
7a68c94a
UD
1863@node Complex Numbers
1864@section Complex Numbers
1865@pindex complex.h
1866@cindex complex numbers
1867
ec751a23 1868@w{ISO C99} introduces support for complex numbers in C. This is done
7a68c94a
UD
1869with a new type qualifier, @code{complex}. It is a keyword if and only
1870if @file{complex.h} has been included. There are three complex types,
1871corresponding to the three real types: @code{float complex},
1872@code{double complex}, and @code{long double complex}.
1873
1874To construct complex numbers you need a way to indicate the imaginary
1875part of a number. There is no standard notation for an imaginary
1876floating point constant. Instead, @file{complex.h} defines two macros
1877that can be used to create complex numbers.
1878
1879@deftypevr Macro {const float complex} _Complex_I
1880This macro is a representation of the complex number ``@math{0+1i}''.
1881Multiplying a real floating-point value by @code{_Complex_I} gives a
1882complex number whose value is purely imaginary. You can use this to
1883construct complex constants:
1884
1885@smallexample
1886@math{3.0 + 4.0i} = @code{3.0 + 4.0 * _Complex_I}
1887@end smallexample
1888
1889Note that @code{_Complex_I * _Complex_I} has the value @code{-1}, but
1890the type of that value is @code{complex}.
1891@end deftypevr
1892
1893@c Put this back in when gcc supports _Imaginary_I. It's too confusing.
1894@ignore
1895@noindent
1896Without an optimizing compiler this is more expensive than the use of
1897@code{_Imaginary_I} but with is better than nothing. You can avoid all
1898the hassles if you use the @code{I} macro below if the name is not
1899problem.
1900
1901@deftypevr Macro {const float imaginary} _Imaginary_I
1902This macro is a representation of the value ``@math{1i}''. I.e., it is
1903the value for which
1904
1905@smallexample
1906_Imaginary_I * _Imaginary_I = -1
1907@end smallexample
1908
1909@noindent
1910The result is not of type @code{float imaginary} but instead @code{float}.
1911One can use it to easily construct complex number like in
1912
1913@smallexample
19143.0 - _Imaginary_I * 4.0
1915@end smallexample
1916
1917@noindent
1918which results in the complex number with a real part of 3.0 and a
1919imaginary part -4.0.
1920@end deftypevr
1921@end ignore
1922
1923@noindent
1924@code{_Complex_I} is a bit of a mouthful. @file{complex.h} also defines
1925a shorter name for the same constant.
1926
1927@deftypevr Macro {const float complex} I
1928This macro has exactly the same value as @code{_Complex_I}. Most of the
1929time it is preferable. However, it causes problems if you want to use
1930the identifier @code{I} for something else. You can safely write
1931
1932@smallexample
1933#include <complex.h>
1934#undef I
1935@end smallexample
1936
1937@noindent
1938if you need @code{I} for your own purposes. (In that case we recommend
1939you also define some other short name for @code{_Complex_I}, such as
1940@code{J}.)
1941
1942@ignore
1943If the implementation does not support the @code{imaginary} types
1944@code{I} is defined as @code{_Complex_I} which is the second best
1945solution. It still can be used in the same way but requires a most
1946clever compiler to get the same results.
1947@end ignore
1948@end deftypevr
1949
1950@node Operations on Complex
1951@section Projections, Conjugates, and Decomposing of Complex Numbers
1952@cindex project complex numbers
1953@cindex conjugate complex numbers
1954@cindex decompose complex numbers
1955@pindex complex.h
1956
ec751a23 1957@w{ISO C99} also defines functions that perform basic operations on
7a68c94a
UD
1958complex numbers, such as decomposition and conjugation. The prototypes
1959for all these functions are in @file{complex.h}. All functions are
1960available in three variants, one for each of the three complex types.
1961
1962@comment complex.h
1963@comment ISO
1964@deftypefun double creal (complex double @var{z})
4260bc74
UD
1965@comment complex.h
1966@comment ISO
7a68c94a 1967@deftypefunx float crealf (complex float @var{z})
4260bc74
UD
1968@comment complex.h
1969@comment ISO
7a68c94a
UD
1970@deftypefunx {long double} creall (complex long double @var{z})
1971These functions return the real part of the complex number @var{z}.
1972@end deftypefun
1973
1974@comment complex.h
1975@comment ISO
1976@deftypefun double cimag (complex double @var{z})
4260bc74
UD
1977@comment complex.h
1978@comment ISO
7a68c94a 1979@deftypefunx float cimagf (complex float @var{z})
4260bc74
UD
1980@comment complex.h
1981@comment ISO
7a68c94a
UD
1982@deftypefunx {long double} cimagl (complex long double @var{z})
1983These functions return the imaginary part of the complex number @var{z}.
1984@end deftypefun
1985
1986@comment complex.h
1987@comment ISO
1988@deftypefun {complex double} conj (complex double @var{z})
4260bc74
UD
1989@comment complex.h
1990@comment ISO
7a68c94a 1991@deftypefunx {complex float} conjf (complex float @var{z})
4260bc74
UD
1992@comment complex.h
1993@comment ISO
7a68c94a
UD
1994@deftypefunx {complex long double} conjl (complex long double @var{z})
1995These functions return the conjugate value of the complex number
1996@var{z}. The conjugate of a complex number has the same real part and a
1997negated imaginary part. In other words, @samp{conj(a + bi) = a + -bi}.
1998@end deftypefun
1999
2000@comment complex.h
2001@comment ISO
2002@deftypefun double carg (complex double @var{z})
4260bc74
UD
2003@comment complex.h
2004@comment ISO
7a68c94a 2005@deftypefunx float cargf (complex float @var{z})
4260bc74
UD
2006@comment complex.h
2007@comment ISO
7a68c94a
UD
2008@deftypefunx {long double} cargl (complex long double @var{z})
2009These functions return the argument of the complex number @var{z}.
2010The argument of a complex number is the angle in the complex plane
2011between the positive real axis and a line passing through zero and the
2012number. This angle is measured in the usual fashion and ranges from @math{0}
2013to @math{2@pi{}}.
2014
2015@code{carg} has a branch cut along the positive real axis.
2016@end deftypefun
2017
2018@comment complex.h
2019@comment ISO
2020@deftypefun {complex double} cproj (complex double @var{z})
4260bc74
UD
2021@comment complex.h
2022@comment ISO
7a68c94a 2023@deftypefunx {complex float} cprojf (complex float @var{z})
4260bc74
UD
2024@comment complex.h
2025@comment ISO
7a68c94a
UD
2026@deftypefunx {complex long double} cprojl (complex long double @var{z})
2027These functions return the projection of the complex value @var{z} onto
2028the Riemann sphere. Values with a infinite imaginary part are projected
2029to positive infinity on the real axis, even if the real part is NaN. If
2030the real part is infinite, the result is equivalent to
2031
2032@smallexample
2033INFINITY + I * copysign (0.0, cimag (z))
2034@end smallexample
2035@end deftypefun
fe0ec73e 2036
28f540f4
RM
2037@node Parsing of Numbers
2038@section Parsing of Numbers
2039@cindex parsing numbers (in formatted input)
2040@cindex converting strings to numbers
2041@cindex number syntax, parsing
2042@cindex syntax, for reading numbers
2043
2044This section describes functions for ``reading'' integer and
2045floating-point numbers from a string. It may be more convenient in some
2046cases to use @code{sscanf} or one of the related functions; see
2047@ref{Formatted Input}. But often you can make a program more robust by
2048finding the tokens in the string by hand, then converting the numbers
2049one by one.
2050
2051@menu
2052* Parsing of Integers:: Functions for conversion of integer values.
2053* Parsing of Floats:: Functions for conversion of floating-point
2054 values.
2055@end menu
2056
2057@node Parsing of Integers
2058@subsection Parsing of Integers
2059
2060@pindex stdlib.h
b642f101
UD
2061@pindex wchar.h
2062The @samp{str} functions are declared in @file{stdlib.h} and those
2063beginning with @samp{wcs} are declared in @file{wchar.h}. One might
2064wonder about the use of @code{restrict} in the prototypes of the
2065functions in this section. It is seemingly useless but the @w{ISO C}
2066standard uses it (for the functions defined there) so we have to do it
2067as well.
28f540f4
RM
2068
2069@comment stdlib.h
f65fd747 2070@comment ISO
b642f101 2071@deftypefun {long int} strtol (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
28f540f4
RM
2072The @code{strtol} (``string-to-long'') function converts the initial
2073part of @var{string} to a signed integer, which is returned as a value
b8fe19fa 2074of type @code{long int}.
28f540f4
RM
2075
2076This function attempts to decompose @var{string} as follows:
2077
2078@itemize @bullet
b8fe19fa 2079@item
28f540f4
RM
2080A (possibly empty) sequence of whitespace characters. Which characters
2081are whitespace is determined by the @code{isspace} function
2082(@pxref{Classification of Characters}). These are discarded.
2083
b8fe19fa 2084@item
28f540f4
RM
2085An optional plus or minus sign (@samp{+} or @samp{-}).
2086
b8fe19fa 2087@item
28f540f4
RM
2088A nonempty sequence of digits in the radix specified by @var{base}.
2089
2090If @var{base} is zero, decimal radix is assumed unless the series of
2091digits begins with @samp{0} (specifying octal radix), or @samp{0x} or
2092@samp{0X} (specifying hexadecimal radix); in other words, the same
2093syntax used for integer constants in C.
2094
600a7457 2095Otherwise @var{base} must have a value between @code{2} and @code{36}.
28f540f4 2096If @var{base} is @code{16}, the digits may optionally be preceded by
2c6fe0bd
UD
2097@samp{0x} or @samp{0X}. If base has no legal value the value returned
2098is @code{0l} and the global variable @code{errno} is set to @code{EINVAL}.
28f540f4 2099
b8fe19fa 2100@item
28f540f4
RM
2101Any remaining characters in the string. If @var{tailptr} is not a null
2102pointer, @code{strtol} stores a pointer to this tail in
2103@code{*@var{tailptr}}.
2104@end itemize
2105
2106If the string is empty, contains only whitespace, or does not contain an
2107initial substring that has the expected syntax for an integer in the
2108specified @var{base}, no conversion is performed. In this case,
2109@code{strtol} returns a value of zero and the value stored in
2110@code{*@var{tailptr}} is the value of @var{string}.
2111
2112In a locale other than the standard @code{"C"} locale, this function
2113may recognize additional implementation-dependent syntax.
2114
2115If the string has valid syntax for an integer but the value is not
2116representable because of overflow, @code{strtol} returns either
2117@code{LONG_MAX} or @code{LONG_MIN} (@pxref{Range of Type}), as
2118appropriate for the sign of the value. It also sets @code{errno}
2119to @code{ERANGE} to indicate there was overflow.
2120
7a68c94a
UD
2121You should not check for errors by examining the return value of
2122@code{strtol}, because the string might be a valid representation of
2123@code{0l}, @code{LONG_MAX}, or @code{LONG_MIN}. Instead, check whether
2124@var{tailptr} points to what you expect after the number
2125(e.g. @code{'\0'} if the string should end after the number). You also
2126need to clear @var{errno} before the call and check it afterward, in
2127case there was overflow.
2c6fe0bd 2128
28f540f4
RM
2129There is an example at the end of this section.
2130@end deftypefun
2131
b642f101
UD
2132@comment wchar.h
2133@comment ISO
2134@deftypefun {long int} wcstol (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2135The @code{wcstol} function is equivalent to the @code{strtol} function
2136in nearly all aspects but handles wide character strings.
b642f101
UD
2137
2138The @code{wcstol} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2139@end deftypefun
2140
28f540f4 2141@comment stdlib.h
f65fd747 2142@comment ISO
b642f101 2143@deftypefun {unsigned long int} strtoul (const char *retrict @var{string}, char **restrict @var{tailptr}, int @var{base})
28f540f4 2144The @code{strtoul} (``string-to-unsigned-long'') function is like
0e4ee106 2145@code{strtol} except it converts to an @code{unsigned long int} value.
7a68c94a 2146The syntax is the same as described above for @code{strtol}. The value
0e4ee106
UD
2147returned on overflow is @code{ULONG_MAX} (@pxref{Range of Type}).
2148
2149If @var{string} depicts a negative number, @code{strtoul} acts the same
2150as @var{strtol} but casts the result to an unsigned integer. That means
2151for example that @code{strtoul} on @code{"-1"} returns @code{ULONG_MAX}
e6e81391 2152and an input more negative than @code{LONG_MIN} returns
0e4ee106 2153(@code{ULONG_MAX} + 1) / 2.
7a68c94a
UD
2154
2155@code{strtoul} sets @var{errno} to @code{EINVAL} if @var{base} is out of
2156range, or @code{ERANGE} on overflow.
2c6fe0bd
UD
2157@end deftypefun
2158
b642f101
UD
2159@comment wchar.h
2160@comment ISO
2161@deftypefun {unsigned long int} wcstoul (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2162The @code{wcstoul} function is equivalent to the @code{strtoul} function
2163in nearly all aspects but handles wide character strings.
b642f101
UD
2164
2165The @code{wcstoul} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2166@end deftypefun
2167
2c6fe0bd 2168@comment stdlib.h
7a68c94a 2169@comment ISO
b642f101 2170@deftypefun {long long int} strtoll (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
7a68c94a
UD
2171The @code{strtoll} function is like @code{strtol} except that it returns
2172a @code{long long int} value, and accepts numbers with a correspondingly
2173larger range.
2c6fe0bd
UD
2174
2175If the string has valid syntax for an integer but the value is not
fe7bdd63 2176representable because of overflow, @code{strtoll} returns either
2c6fe0bd
UD
2177@code{LONG_LONG_MAX} or @code{LONG_LONG_MIN} (@pxref{Range of Type}), as
2178appropriate for the sign of the value. It also sets @code{errno} to
2179@code{ERANGE} to indicate there was overflow.
2c6fe0bd 2180
ec751a23 2181The @code{strtoll} function was introduced in @w{ISO C99}.
2c6fe0bd
UD
2182@end deftypefun
2183
b642f101
UD
2184@comment wchar.h
2185@comment ISO
2186@deftypefun {long long int} wcstoll (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2187The @code{wcstoll} function is equivalent to the @code{strtoll} function
2188in nearly all aspects but handles wide character strings.
b642f101
UD
2189
2190The @code{wcstoll} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2191@end deftypefun
2192
2c6fe0bd
UD
2193@comment stdlib.h
2194@comment BSD
b642f101 2195@deftypefun {long long int} strtoq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
7a68c94a 2196@code{strtoq} (``string-to-quad-word'') is the BSD name for @code{strtoll}.
2c6fe0bd
UD
2197@end deftypefun
2198
b642f101
UD
2199@comment wchar.h
2200@comment GNU
2201@deftypefun {long long int} wcstoq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2202The @code{wcstoq} function is equivalent to the @code{strtoq} function
2203in nearly all aspects but handles wide character strings.
b642f101
UD
2204
2205The @code{wcstoq} function is a GNU extension.
2206@end deftypefun
2207
2c6fe0bd 2208@comment stdlib.h
7a68c94a 2209@comment ISO
b642f101 2210@deftypefun {unsigned long long int} strtoull (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
0e4ee106
UD
2211The @code{strtoull} function is related to @code{strtoll} the same way
2212@code{strtoul} is related to @code{strtol}.
fe7bdd63 2213
ec751a23 2214The @code{strtoull} function was introduced in @w{ISO C99}.
fe7bdd63
UD
2215@end deftypefun
2216
b642f101
UD
2217@comment wchar.h
2218@comment ISO
2219@deftypefun {unsigned long long int} wcstoull (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2220The @code{wcstoull} function is equivalent to the @code{strtoull} function
2221in nearly all aspects but handles wide character strings.
b642f101
UD
2222
2223The @code{wcstoull} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2224@end deftypefun
2225
fe7bdd63
UD
2226@comment stdlib.h
2227@comment BSD
b642f101 2228@deftypefun {unsigned long long int} strtouq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
7a68c94a 2229@code{strtouq} is the BSD name for @code{strtoull}.
28f540f4
RM
2230@end deftypefun
2231
b642f101
UD
2232@comment wchar.h
2233@comment GNU
2234@deftypefun {unsigned long long int} wcstouq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2235The @code{wcstouq} function is equivalent to the @code{strtouq} function
2236in nearly all aspects but handles wide character strings.
b642f101
UD
2237
2238The @code{wcstoq} function is a GNU extension.
2239@end deftypefun
2240
0e4ee106 2241@comment inttypes.h
b642f101
UD
2242@comment ISO
2243@deftypefun intmax_t strtoimax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
0e4ee106
UD
2244The @code{strtoimax} function is like @code{strtol} except that it returns
2245a @code{intmax_t} value, and accepts numbers of a corresponding range.
2246
2247If the string has valid syntax for an integer but the value is not
2248representable because of overflow, @code{strtoimax} returns either
2249@code{INTMAX_MAX} or @code{INTMAX_MIN} (@pxref{Integers}), as
2250appropriate for the sign of the value. It also sets @code{errno} to
2251@code{ERANGE} to indicate there was overflow.
2252
b642f101
UD
2253See @ref{Integers} for a description of the @code{intmax_t} type. The
2254@code{strtoimax} function was introduced in @w{ISO C99}.
2255@end deftypefun
0e4ee106 2256
b642f101
UD
2257@comment wchar.h
2258@comment ISO
2259@deftypefun intmax_t wcstoimax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2260The @code{wcstoimax} function is equivalent to the @code{strtoimax} function
2261in nearly all aspects but handles wide character strings.
0e4ee106 2262
b642f101 2263The @code{wcstoimax} function was introduced in @w{ISO C99}.
0e4ee106
UD
2264@end deftypefun
2265
2266@comment inttypes.h
b642f101
UD
2267@comment ISO
2268@deftypefun uintmax_t strtoumax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
0e4ee106
UD
2269The @code{strtoumax} function is related to @code{strtoimax}
2270the same way that @code{strtoul} is related to @code{strtol}.
2271
b642f101
UD
2272See @ref{Integers} for a description of the @code{intmax_t} type. The
2273@code{strtoumax} function was introduced in @w{ISO C99}.
2274@end deftypefun
0e4ee106 2275
b642f101
UD
2276@comment wchar.h
2277@comment ISO
2278@deftypefun uintmax_t wcstoumax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
3554743a
AJ
2279The @code{wcstoumax} function is equivalent to the @code{strtoumax} function
2280in nearly all aspects but handles wide character strings.
b642f101
UD
2281
2282The @code{wcstoumax} function was introduced in @w{ISO C99}.
0e4ee106
UD
2283@end deftypefun
2284
28f540f4 2285@comment stdlib.h
f65fd747 2286@comment ISO
28f540f4
RM
2287@deftypefun {long int} atol (const char *@var{string})
2288This function is similar to the @code{strtol} function with a @var{base}
2289argument of @code{10}, except that it need not detect overflow errors.
2290The @code{atol} function is provided mostly for compatibility with
2291existing code; using @code{strtol} is more robust.
2292@end deftypefun
2293
2294@comment stdlib.h
f65fd747 2295@comment ISO
28f540f4 2296@deftypefun int atoi (const char *@var{string})
7a68c94a
UD
2297This function is like @code{atol}, except that it returns an @code{int}.
2298The @code{atoi} function is also considered obsolete; use @code{strtol}
2299instead.
28f540f4
RM
2300@end deftypefun
2301
fe7bdd63 2302@comment stdlib.h
7a68c94a 2303@comment ISO
fe7bdd63
UD
2304@deftypefun {long long int} atoll (const char *@var{string})
2305This function is similar to @code{atol}, except it returns a @code{long
7a68c94a 2306long int}.
fe7bdd63 2307
ec751a23 2308The @code{atoll} function was introduced in @w{ISO C99}. It too is
7a68c94a 2309obsolete (despite having just been added); use @code{strtoll} instead.
fe7bdd63
UD
2310@end deftypefun
2311
b642f101
UD
2312All the functions mentioned in this section so far do not handle
2313alternative representations of characters as described in the locale
2314data. Some locales specify thousands separator and the way they have to
2315be used which can help to make large numbers more readable. To read
2316such numbers one has to use the @code{scanf} functions with the @samp{'}
2317flag.
2c6fe0bd 2318
28f540f4
RM
2319Here is a function which parses a string as a sequence of integers and
2320returns the sum of them:
2321
2322@smallexample
2323int
2324sum_ints_from_string (char *string)
2325@{
2326 int sum = 0;
2327
2328 while (1) @{
2329 char *tail;
2330 int next;
2331
2332 /* @r{Skip whitespace by hand, to detect the end.} */
2333 while (isspace (*string)) string++;
2334 if (*string == 0)
2335 break;
2336
2337 /* @r{There is more nonwhitespace,} */
2338 /* @r{so it ought to be another number.} */
2339 errno = 0;
2340 /* @r{Parse it.} */
2341 next = strtol (string, &tail, 0);
2342 /* @r{Add it in, if not overflow.} */
2343 if (errno)
2344 printf ("Overflow\n");
2345 else
2346 sum += next;
2347 /* @r{Advance past it.} */
2348 string = tail;
2349 @}
2350
2351 return sum;
2352@}
2353@end smallexample
2354
2355@node Parsing of Floats
2356@subsection Parsing of Floats
2357
2358@pindex stdlib.h
b642f101
UD
2359The @samp{str} functions are declared in @file{stdlib.h} and those
2360beginning with @samp{wcs} are declared in @file{wchar.h}. One might
2361wonder about the use of @code{restrict} in the prototypes of the
2362functions in this section. It is seemingly useless but the @w{ISO C}
2363standard uses it (for the functions defined there) so we have to do it
2364as well.
28f540f4
RM
2365
2366@comment stdlib.h
f65fd747 2367@comment ISO
b642f101 2368@deftypefun double strtod (const char *restrict @var{string}, char **restrict @var{tailptr})
28f540f4
RM
2369The @code{strtod} (``string-to-double'') function converts the initial
2370part of @var{string} to a floating-point number, which is returned as a
b8fe19fa 2371value of type @code{double}.
28f540f4
RM
2372
2373This function attempts to decompose @var{string} as follows:
2374
2375@itemize @bullet
b8fe19fa 2376@item
28f540f4
RM
2377A (possibly empty) sequence of whitespace characters. Which characters
2378are whitespace is determined by the @code{isspace} function
2379(@pxref{Classification of Characters}). These are discarded.
2380
2381@item
2382An optional plus or minus sign (@samp{+} or @samp{-}).
2383
0c34b1e9
UD
2384@item A floating point number in decimal or hexadecimal format. The
2385decimal format is:
2386@itemize @minus
2387
28f540f4
RM
2388@item
2389A nonempty sequence of digits optionally containing a decimal-point
2390character---normally @samp{.}, but it depends on the locale
85c165be 2391(@pxref{General Numeric}).
28f540f4
RM
2392
2393@item
2394An optional exponent part, consisting of a character @samp{e} or
2395@samp{E}, an optional sign, and a sequence of digits.
2396
0c34b1e9
UD
2397@end itemize
2398
2399The hexadecimal format is as follows:
2400@itemize @minus
2401
2402@item
2403A 0x or 0X followed by a nonempty sequence of hexadecimal digits
2404optionally containing a decimal-point character---normally @samp{.}, but
2405it depends on the locale (@pxref{General Numeric}).
2406
2407@item
2408An optional binary-exponent part, consisting of a character @samp{p} or
2409@samp{P}, an optional sign, and a sequence of digits.
2410
2411@end itemize
2412
28f540f4
RM
2413@item
2414Any remaining characters in the string. If @var{tailptr} is not a null
2415pointer, a pointer to this tail of the string is stored in
2416@code{*@var{tailptr}}.
2417@end itemize
2418
2419If the string is empty, contains only whitespace, or does not contain an
2420initial substring that has the expected syntax for a floating-point
2421number, no conversion is performed. In this case, @code{strtod} returns
2422a value of zero and the value returned in @code{*@var{tailptr}} is the
2423value of @var{string}.
2424
26761c28 2425In a locale other than the standard @code{"C"} or @code{"POSIX"} locales,
2c6fe0bd 2426this function may recognize additional locale-dependent syntax.
28f540f4
RM
2427
2428If the string has valid syntax for a floating-point number but the value
7a68c94a
UD
2429is outside the range of a @code{double}, @code{strtod} will signal
2430overflow or underflow as described in @ref{Math Error Reporting}.
2431
2432@code{strtod} recognizes four special input strings. The strings
2433@code{"inf"} and @code{"infinity"} are converted to @math{@infinity{}},
2434or to the largest representable value if the floating-point format
2435doesn't support infinities. You can prepend a @code{"+"} or @code{"-"}
2436to specify the sign. Case is ignored when scanning these strings.
2437
2438The strings @code{"nan"} and @code{"nan(@var{chars...})"} are converted
2439to NaN. Again, case is ignored. If @var{chars...} are provided, they
2440are used in some unspecified fashion to select a particular
2441representation of NaN (there can be several).
2442
2443Since zero is a valid result as well as the value returned on error, you
2444should check for errors in the same way as for @code{strtol}, by
2445examining @var{errno} and @var{tailptr}.
28f540f4
RM
2446@end deftypefun
2447
2c6fe0bd 2448@comment stdlib.h
ec751a23 2449@comment ISO
2c6fe0bd 2450@deftypefun float strtof (const char *@var{string}, char **@var{tailptr})
4260bc74 2451@comment stdlib.h
ec751a23 2452@comment ISO
7a68c94a
UD
2453@deftypefunx {long double} strtold (const char *@var{string}, char **@var{tailptr})
2454These functions are analogous to @code{strtod}, but return @code{float}
2455and @code{long double} values respectively. They report errors in the
2456same way as @code{strtod}. @code{strtof} can be substantially faster
2457than @code{strtod}, but has less precision; conversely, @code{strtold}
2458can be much slower but has more precision (on systems where @code{long
2459double} is a separate type).
2460
ec751a23 2461These functions have been GNU extensions and are new to @w{ISO C99}.
2c6fe0bd
UD
2462@end deftypefun
2463
b642f101
UD
2464@comment wchar.h
2465@comment ISO
2466@deftypefun double wcstod (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr})
2467@comment stdlib.h
2468@comment ISO
2469@deftypefunx float wcstof (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2470@comment stdlib.h
2471@comment ISO
2472@deftypefunx {long double} wcstold (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2473The @code{wcstod}, @code{wcstof}, and @code{wcstol} functions are
2474equivalent in nearly all aspect to the @code{strtod}, @code{strtof}, and
2475@code{strtold} functions but it handles wide character string.
2476
2477The @code{wcstod} function was introduced in @w{Amendment 1} of @w{ISO
2478C90}. The @code{wcstof} and @code{wcstold} functions were introduced in
2479@w{ISO C99}.
2480@end deftypefun
2481
28f540f4 2482@comment stdlib.h
f65fd747 2483@comment ISO
28f540f4
RM
2484@deftypefun double atof (const char *@var{string})
2485This function is similar to the @code{strtod} function, except that it
2486need not detect overflow and underflow errors. The @code{atof} function
2487is provided mostly for compatibility with existing code; using
2488@code{strtod} is more robust.
2489@end deftypefun
880f421f 2490
49c091e5 2491The GNU C library also provides @samp{_l} versions of these functions,
7a68c94a
UD
2492which take an additional argument, the locale to use in conversion.
2493@xref{Parsing of Integers}.
880f421f 2494
7a68c94a
UD
2495@node System V Number Conversion
2496@section Old-fashioned System V number-to-string functions
880f421f 2497
7a68c94a
UD
2498The old @w{System V} C library provided three functions to convert
2499numbers to strings, with unusual and hard-to-use semantics. The GNU C
2500library also provides these functions and some natural extensions.
880f421f 2501
7a68c94a
UD
2502These functions are only available in glibc and on systems descended
2503from AT&T Unix. Therefore, unless these functions do precisely what you
2504need, it is better to use @code{sprintf}, which is standard.
880f421f 2505
7a68c94a 2506All these functions are defined in @file{stdlib.h}.
880f421f
UD
2507
2508@comment stdlib.h
2509@comment SVID, Unix98
7a68c94a 2510@deftypefun {char *} ecvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
880f421f 2511The function @code{ecvt} converts the floating-point number @var{value}
0ea5db4f
UD
2512to a string with at most @var{ndigit} decimal digits. The
2513returned string contains no decimal point or sign. The first digit of
2514the string is non-zero (unless @var{value} is actually zero) and the
2515last digit is rounded to nearest. @code{*@var{decpt}} is set to the
7a68c94a 2516index in the string of the first digit after the decimal point.
0ea5db4f
UD
2517@code{*@var{neg}} is set to a nonzero value if @var{value} is negative,
2518zero otherwise.
880f421f 2519
67994d6f
UD
2520If @var{ndigit} decimal digits would exceed the precision of a
2521@code{double} it is reduced to a system-specific value.
2522
880f421f
UD
2523The returned string is statically allocated and overwritten by each call
2524to @code{ecvt}.
2525
0ea5db4f
UD
2526If @var{value} is zero, it is implementation defined whether
2527@code{*@var{decpt}} is @code{0} or @code{1}.
880f421f 2528
0ea5db4f
UD
2529For example: @code{ecvt (12.3, 5, &d, &n)} returns @code{"12300"}
2530and sets @var{d} to @code{2} and @var{n} to @code{0}.
880f421f
UD
2531@end deftypefun
2532
880f421f
UD
2533@comment stdlib.h
2534@comment SVID, Unix98
0ea5db4f 2535@deftypefun {char *} fcvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
7a68c94a
UD
2536The function @code{fcvt} is like @code{ecvt}, but @var{ndigit} specifies
2537the number of digits after the decimal point. If @var{ndigit} is less
2538than zero, @var{value} is rounded to the @math{@var{ndigit}+1}'th place to the
2539left of the decimal point. For example, if @var{ndigit} is @code{-1},
2540@var{value} will be rounded to the nearest 10. If @var{ndigit} is
2541negative and larger than the number of digits to the left of the decimal
2542point in @var{value}, @var{value} will be rounded to one significant digit.
880f421f 2543
67994d6f
UD
2544If @var{ndigit} decimal digits would exceed the precision of a
2545@code{double} it is reduced to a system-specific value.
2546
880f421f
UD
2547The returned string is statically allocated and overwritten by each call
2548to @code{fcvt}.
880f421f
UD
2549@end deftypefun
2550
2551@comment stdlib.h
2552@comment SVID, Unix98
2553@deftypefun {char *} gcvt (double @var{value}, int @var{ndigit}, char *@var{buf})
7a68c94a
UD
2554@code{gcvt} is functionally equivalent to @samp{sprintf(buf, "%*g",
2555ndigit, value}. It is provided only for compatibility's sake. It
2556returns @var{buf}.
67994d6f
UD
2557
2558If @var{ndigit} decimal digits would exceed the precision of a
2559@code{double} it is reduced to a system-specific value.
880f421f
UD
2560@end deftypefun
2561
7a68c94a
UD
2562As extensions, the GNU C library provides versions of these three
2563functions that take @code{long double} arguments.
880f421f
UD
2564
2565@comment stdlib.h
2566@comment GNU
7a68c94a 2567@deftypefun {char *} qecvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
67994d6f
UD
2568This function is equivalent to @code{ecvt} except that it takes a
2569@code{long double} for the first parameter and that @var{ndigit} is
2570restricted by the precision of a @code{long double}.
880f421f
UD
2571@end deftypefun
2572
2573@comment stdlib.h
2574@comment GNU
0ea5db4f 2575@deftypefun {char *} qfcvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
7a68c94a 2576This function is equivalent to @code{fcvt} except that it
67994d6f
UD
2577takes a @code{long double} for the first parameter and that @var{ndigit} is
2578restricted by the precision of a @code{long double}.
880f421f
UD
2579@end deftypefun
2580
2581@comment stdlib.h
2582@comment GNU
2583@deftypefun {char *} qgcvt (long double @var{value}, int @var{ndigit}, char *@var{buf})
67994d6f
UD
2584This function is equivalent to @code{gcvt} except that it takes a
2585@code{long double} for the first parameter and that @var{ndigit} is
2586restricted by the precision of a @code{long double}.
880f421f
UD
2587@end deftypefun
2588
2589
2590@cindex gcvt_r
7a68c94a
UD
2591The @code{ecvt} and @code{fcvt} functions, and their @code{long double}
2592equivalents, all return a string located in a static buffer which is
2593overwritten by the next call to the function. The GNU C library
2594provides another set of extended functions which write the converted
2595string into a user-supplied buffer. These have the conventional
2596@code{_r} suffix.
2597
2598@code{gcvt_r} is not necessary, because @code{gcvt} already uses a
2599user-supplied buffer.
880f421f
UD
2600
2601@comment stdlib.h
2602@comment GNU
7a68c94a
UD
2603@deftypefun {char *} ecvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2604The @code{ecvt_r} function is the same as @code{ecvt}, except
2605that it places its result into the user-specified buffer pointed to by
2606@var{buf}, with length @var{len}.
880f421f 2607
7a68c94a 2608This function is a GNU extension.
880f421f
UD
2609@end deftypefun
2610
2611@comment stdlib.h
2612@comment SVID, Unix98
0ea5db4f 2613@deftypefun {char *} fcvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
7a68c94a
UD
2614The @code{fcvt_r} function is the same as @code{fcvt}, except
2615that it places its result into the user-specified buffer pointed to by
2616@var{buf}, with length @var{len}.
880f421f 2617
7a68c94a 2618This function is a GNU extension.
880f421f
UD
2619@end deftypefun
2620
2621@comment stdlib.h
2622@comment GNU
7a68c94a
UD
2623@deftypefun {char *} qecvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2624The @code{qecvt_r} function is the same as @code{qecvt}, except
2625that it places its result into the user-specified buffer pointed to by
2626@var{buf}, with length @var{len}.
880f421f 2627
7a68c94a 2628This function is a GNU extension.
880f421f
UD
2629@end deftypefun
2630
2631@comment stdlib.h
2632@comment GNU
0ea5db4f 2633@deftypefun {char *} qfcvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
7a68c94a
UD
2634The @code{qfcvt_r} function is the same as @code{qfcvt}, except
2635that it places its result into the user-specified buffer pointed to by
2636@var{buf}, with length @var{len}.
880f421f 2637
7a68c94a 2638This function is a GNU extension.
880f421f 2639@end deftypefun