]>
Commit | Line | Data |
---|---|---|
63551311 | 1 | /* Return arc hyperbole tangent for long double value. |
b168057a | 2 | Copyright (C) 1997-2015 Free Software Foundation, Inc. |
63551311 UD |
3 | This file is part of the GNU C Library. |
4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. | |
5 | ||
6 | The GNU C Library is free software; you can redistribute it and/or | |
41bdb6e2 AJ |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either | |
9 | version 2.1 of the License, or (at your option) any later version. | |
63551311 UD |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
41bdb6e2 | 14 | Lesser General Public License for more details. |
63551311 | 15 | |
41bdb6e2 | 16 | You should have received a copy of the GNU Lesser General Public |
59ba27a6 PE |
17 | License along with the GNU C Library; if not, see |
18 | <http://www.gnu.org/licenses/>. */ | |
63551311 UD |
19 | |
20 | #include <complex.h> | |
21 | #include <math.h> | |
9277c064 | 22 | #include <math_private.h> |
9457fd95 | 23 | #include <float.h> |
63551311 | 24 | |
5b4217d7 JM |
25 | /* To avoid spurious overflows, use this definition to treat IBM long |
26 | double as approximating an IEEE-style format. */ | |
27 | #if LDBL_MANT_DIG == 106 | |
28 | # undef LDBL_EPSILON | |
29 | # define LDBL_EPSILON 0x1p-106L | |
30 | #endif | |
31 | ||
63551311 UD |
32 | __complex__ long double |
33 | __catanhl (__complex__ long double x) | |
34 | { | |
35 | __complex__ long double res; | |
36 | int rcls = fpclassify (__real__ x); | |
37 | int icls = fpclassify (__imag__ x); | |
38 | ||
a1ffb40e | 39 | if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE)) |
63551311 UD |
40 | { |
41 | if (icls == FP_INFINITE) | |
42 | { | |
43 | __real__ res = __copysignl (0.0, __real__ x); | |
0a614877 | 44 | __imag__ res = __copysignl (M_PI_2l, __imag__ x); |
63551311 UD |
45 | } |
46 | else if (rcls == FP_INFINITE || rcls == FP_ZERO) | |
47 | { | |
48 | __real__ res = __copysignl (0.0, __real__ x); | |
49 | if (icls >= FP_ZERO) | |
0a614877 | 50 | __imag__ res = __copysignl (M_PI_2l, __imag__ x); |
63551311 UD |
51 | else |
52 | __imag__ res = __nanl (""); | |
53 | } | |
54 | else | |
55 | { | |
56 | __real__ res = __nanl (""); | |
57 | __imag__ res = __nanl (""); | |
58 | } | |
59 | } | |
a1ffb40e | 60 | else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) |
63551311 UD |
61 | { |
62 | res = x; | |
63 | } | |
64 | else | |
65 | { | |
5b4217d7 JM |
66 | if (fabsl (__real__ x) >= 16.0L / LDBL_EPSILON |
67 | || fabsl (__imag__ x) >= 16.0L / LDBL_EPSILON) | |
68 | { | |
69 | __imag__ res = __copysignl (M_PI_2l, __imag__ x); | |
70 | if (fabsl (__imag__ x) <= 1.0L) | |
71 | __real__ res = 1.0L / __real__ x; | |
72 | else if (fabsl (__real__ x) <= 1.0L) | |
73 | __real__ res = __real__ x / __imag__ x / __imag__ x; | |
74 | else | |
75 | { | |
76 | long double h = __ieee754_hypotl (__real__ x / 2.0L, | |
77 | __imag__ x / 2.0L); | |
78 | __real__ res = __real__ x / h / h / 4.0L; | |
79 | } | |
80 | } | |
81 | else | |
82 | { | |
10de07f5 JM |
83 | if (fabsl (__real__ x) == 1.0L |
84 | && fabsl (__imag__ x) < LDBL_EPSILON * LDBL_EPSILON) | |
85 | __real__ res = (__copysignl (0.5L, __real__ x) | |
86 | * (M_LN2l - __ieee754_logl (fabsl (__imag__ x)))); | |
5b4217d7 JM |
87 | else |
88 | { | |
10de07f5 JM |
89 | long double i2 = 0.0; |
90 | if (fabsl (__imag__ x) >= LDBL_EPSILON * LDBL_EPSILON) | |
91 | i2 = __imag__ x * __imag__ x; | |
92 | ||
93 | long double num = 1.0L + __real__ x; | |
94 | num = i2 + num * num; | |
95 | ||
96 | long double den = 1.0L - __real__ x; | |
97 | den = i2 + den * den; | |
98 | ||
99 | long double f = num / den; | |
100 | if (f < 0.5L) | |
101 | __real__ res = 0.25L * __ieee754_logl (f); | |
102 | else | |
103 | { | |
104 | num = 4.0L * __real__ x; | |
105 | __real__ res = 0.25L * __log1pl (num / den); | |
106 | } | |
5b4217d7 | 107 | } |
63551311 | 108 | |
10de07f5 | 109 | long double absx, absy, den; |
caf84319 JM |
110 | |
111 | absx = fabsl (__real__ x); | |
112 | absy = fabsl (__imag__ x); | |
113 | if (absx < absy) | |
114 | { | |
115 | long double t = absx; | |
116 | absx = absy; | |
117 | absy = t; | |
118 | } | |
119 | ||
10de07f5 | 120 | if (absy < LDBL_EPSILON / 2.0L) |
a84e78c8 JM |
121 | { |
122 | den = (1.0L - absx) * (1.0L + absx); | |
123 | if (den == -0.0L) | |
124 | den = 0.0L; | |
125 | } | |
10de07f5 JM |
126 | else if (absx >= 1.0L) |
127 | den = (1.0L - absx) * (1.0L + absx) - absy * absy; | |
caf84319 JM |
128 | else if (absx >= 0.75L || absy >= 0.5L) |
129 | den = -__x2y2m1l (absx, absy); | |
130 | else | |
131 | den = (1.0L - absx) * (1.0L + absx) - absy * absy; | |
63551311 | 132 | |
5b4217d7 JM |
133 | __imag__ res = 0.5L * __ieee754_atan2l (2.0L * __imag__ x, den); |
134 | } | |
9457fd95 JM |
135 | |
136 | if (fabsl (__real__ res) < LDBL_MIN) | |
137 | { | |
138 | volatile long double force_underflow = __real__ res * __real__ res; | |
139 | (void) force_underflow; | |
140 | } | |
141 | if (fabsl (__imag__ res) < LDBL_MIN) | |
142 | { | |
143 | volatile long double force_underflow = __imag__ res * __imag__ res; | |
144 | (void) force_underflow; | |
145 | } | |
63551311 UD |
146 | } |
147 | ||
148 | return res; | |
149 | } | |
150 | weak_alias (__catanhl, catanhl) |