]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/filemap.c
arm64: tegra: Use correct interrupts for Tegra234 TKE
[thirdparty/linux.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
ffa65753 24#include <linux/swapops.h>
cf264e13 25#include <linux/syscalls.h>
1da177e4
LT
26#include <linux/mman.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/uio.h>
cfcbfb13 30#include <linux/error-injection.h>
1da177e4
LT
31#include <linux/hash.h>
32#include <linux/writeback.h>
53253383 33#include <linux/backing-dev.h>
1da177e4 34#include <linux/pagevec.h>
1da177e4 35#include <linux/security.h>
44110fe3 36#include <linux/cpuset.h>
00501b53 37#include <linux/hugetlb.h>
8a9f3ccd 38#include <linux/memcontrol.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
b9306a79 44#include <linux/page_idle.h>
ffa65753 45#include <linux/migrate.h>
07073eb0
DH
46#include <linux/pipe_fs_i.h>
47#include <linux/splice.h>
f9ce0be7 48#include <asm/pgalloc.h>
de591a82 49#include <asm/tlbflush.h>
0f8053a5
NP
50#include "internal.h"
51
fe0bfaaf
RJ
52#define CREATE_TRACE_POINTS
53#include <trace/events/filemap.h>
54
1da177e4 55/*
1da177e4
LT
56 * FIXME: remove all knowledge of the buffer layer from the core VM
57 */
148f948b 58#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 59
1da177e4
LT
60#include <asm/mman.h>
61
cf264e13
NP
62#include "swap.h"
63
1da177e4
LT
64/*
65 * Shared mappings implemented 30.11.1994. It's not fully working yet,
66 * though.
67 *
68 * Shared mappings now work. 15.8.1995 Bruno.
69 *
70 * finished 'unifying' the page and buffer cache and SMP-threaded the
71 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
72 *
73 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
74 */
75
76/*
77 * Lock ordering:
78 *
c8c06efa 79 * ->i_mmap_rwsem (truncate_pagecache)
e621900a 80 * ->private_lock (__free_pte->block_dirty_folio)
5d337b91 81 * ->swap_lock (exclusive_swap_page, others)
b93b0163 82 * ->i_pages lock
1da177e4 83 *
9608703e 84 * ->i_rwsem
730633f0
JK
85 * ->invalidate_lock (acquired by fs in truncate path)
86 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 87 *
c1e8d7c6 88 * ->mmap_lock
c8c06efa 89 * ->i_mmap_rwsem
b8072f09 90 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 91 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 92 *
c1e8d7c6 93 * ->mmap_lock
730633f0
JK
94 * ->invalidate_lock (filemap_fault)
95 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 96 *
9608703e 97 * ->i_rwsem (generic_perform_write)
bb523b40 98 * ->mmap_lock (fault_in_readable->do_page_fault)
1da177e4 99 *
f758eeab 100 * bdi->wb.list_lock
a66979ab 101 * sb_lock (fs/fs-writeback.c)
b93b0163 102 * ->i_pages lock (__sync_single_inode)
1da177e4 103 *
c8c06efa 104 * ->i_mmap_rwsem
0503ea8f 105 * ->anon_vma.lock (vma_merge)
1da177e4
LT
106 *
107 * ->anon_vma.lock
b8072f09 108 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 109 *
b8072f09 110 * ->page_table_lock or pte_lock
5d337b91 111 * ->swap_lock (try_to_unmap_one)
1da177e4 112 * ->private_lock (try_to_unmap_one)
b93b0163 113 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
114 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
115 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 116 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 117 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 118 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 119 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
6c77b607 120 * ->memcg->move_lock (page_remove_rmap->folio_memcg_lock)
f758eeab 121 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 122 * ->inode->i_lock (zap_pte_range->set_page_dirty)
e621900a 123 * ->private_lock (zap_pte_range->block_dirty_folio)
1da177e4
LT
124 */
125
5c024e6a 126static void page_cache_delete(struct address_space *mapping,
a548b615 127 struct folio *folio, void *shadow)
91b0abe3 128{
a548b615
MWO
129 XA_STATE(xas, &mapping->i_pages, folio->index);
130 long nr = 1;
c70b647d 131
5c024e6a 132 mapping_set_update(&xas, mapping);
c70b647d 133
5c024e6a 134 /* hugetlb pages are represented by a single entry in the xarray */
a548b615
MWO
135 if (!folio_test_hugetlb(folio)) {
136 xas_set_order(&xas, folio->index, folio_order(folio));
137 nr = folio_nr_pages(folio);
5c024e6a 138 }
91b0abe3 139
a548b615 140 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
449dd698 141
5c024e6a
MW
142 xas_store(&xas, shadow);
143 xas_init_marks(&xas);
d3798ae8 144
a548b615 145 folio->mapping = NULL;
2300638b 146 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 147 mapping->nrpages -= nr;
91b0abe3
JW
148}
149
621db488
MWO
150static void filemap_unaccount_folio(struct address_space *mapping,
151 struct folio *folio)
1da177e4 152{
621db488 153 long nr;
1da177e4 154
621db488
MWO
155 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
06b241f3 157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
621db488
MWO
158 current->comm, folio_pfn(folio));
159 dump_page(&folio->page, "still mapped when deleted");
06b241f3
HD
160 dump_stack();
161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162
85207ad8
HD
163 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 int mapcount = page_mapcount(&folio->page);
165
166 if (folio_ref_count(folio) >= mapcount + 2) {
167 /*
168 * All vmas have already been torn down, so it's
169 * a good bet that actually the page is unmapped
170 * and we'd rather not leak it: if we're wrong,
171 * another bad page check should catch it later.
172 */
173 page_mapcount_reset(&folio->page);
174 folio_ref_sub(folio, mapcount);
175 }
06b241f3
HD
176 }
177 }
178
621db488
MWO
179 /* hugetlb folios do not participate in page cache accounting. */
180 if (folio_test_hugetlb(folio))
5ecc4d85 181 return;
09612fa6 182
621db488 183 nr = folio_nr_pages(folio);
5ecc4d85 184
621db488
MWO
185 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 if (folio_test_swapbacked(folio)) {
187 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 if (folio_test_pmd_mappable(folio))
189 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 } else if (folio_test_pmd_mappable(folio)) {
191 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
09d91cda 192 filemap_nr_thps_dec(mapping);
800d8c63 193 }
5ecc4d85
JK
194
195 /*
621db488
MWO
196 * At this point folio must be either written or cleaned by
197 * truncate. Dirty folio here signals a bug and loss of
566d3362 198 * unwritten data - on ordinary filesystems.
5ecc4d85 199 *
566d3362
HD
200 * But it's harmless on in-memory filesystems like tmpfs; and can
201 * occur when a driver which did get_user_pages() sets page dirty
202 * before putting it, while the inode is being finally evicted.
203 *
204 * Below fixes dirty accounting after removing the folio entirely
621db488
MWO
205 * but leaves the dirty flag set: it has no effect for truncated
206 * folio and anyway will be cleared before returning folio to
5ecc4d85
JK
207 * buddy allocator.
208 */
566d3362
HD
209 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
210 mapping_can_writeback(mapping)))
211 folio_account_cleaned(folio, inode_to_wb(mapping->host));
5ecc4d85
JK
212}
213
214/*
215 * Delete a page from the page cache and free it. Caller has to make
216 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 217 * is safe. The caller must hold the i_pages lock.
5ecc4d85 218 */
452e9e69 219void __filemap_remove_folio(struct folio *folio, void *shadow)
5ecc4d85 220{
452e9e69 221 struct address_space *mapping = folio->mapping;
5ecc4d85 222
a0580c6f 223 trace_mm_filemap_delete_from_page_cache(folio);
621db488 224 filemap_unaccount_folio(mapping, folio);
a548b615 225 page_cache_delete(mapping, folio, shadow);
1da177e4
LT
226}
227
78f42660 228void filemap_free_folio(struct address_space *mapping, struct folio *folio)
59c66c5f 229{
d2329aa0 230 void (*free_folio)(struct folio *);
3abb28e2 231 int refs = 1;
59c66c5f 232
d2329aa0
MWO
233 free_folio = mapping->a_ops->free_folio;
234 if (free_folio)
235 free_folio(folio);
59c66c5f 236
3abb28e2
MWO
237 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
238 refs = folio_nr_pages(folio);
239 folio_put_refs(folio, refs);
59c66c5f
JK
240}
241
702cfbf9 242/**
452e9e69
MWO
243 * filemap_remove_folio - Remove folio from page cache.
244 * @folio: The folio.
702cfbf9 245 *
452e9e69
MWO
246 * This must be called only on folios that are locked and have been
247 * verified to be in the page cache. It will never put the folio into
248 * the free list because the caller has a reference on the page.
702cfbf9 249 */
452e9e69 250void filemap_remove_folio(struct folio *folio)
1da177e4 251{
452e9e69 252 struct address_space *mapping = folio->mapping;
1da177e4 253
452e9e69 254 BUG_ON(!folio_test_locked(folio));
51b8c1fe 255 spin_lock(&mapping->host->i_lock);
30472509 256 xa_lock_irq(&mapping->i_pages);
452e9e69 257 __filemap_remove_folio(folio, NULL);
30472509 258 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
259 if (mapping_shrinkable(mapping))
260 inode_add_lru(mapping->host);
261 spin_unlock(&mapping->host->i_lock);
6072d13c 262
452e9e69 263 filemap_free_folio(mapping, folio);
97cecb5a 264}
97cecb5a 265
aa65c29c 266/*
51dcbdac
MWO
267 * page_cache_delete_batch - delete several folios from page cache
268 * @mapping: the mapping to which folios belong
269 * @fbatch: batch of folios to delete
aa65c29c 270 *
51dcbdac
MWO
271 * The function walks over mapping->i_pages and removes folios passed in
272 * @fbatch from the mapping. The function expects @fbatch to be sorted
273 * by page index and is optimised for it to be dense.
274 * It tolerates holes in @fbatch (mapping entries at those indices are not
275 * modified).
aa65c29c 276 *
b93b0163 277 * The function expects the i_pages lock to be held.
aa65c29c 278 */
ef8e5717 279static void page_cache_delete_batch(struct address_space *mapping,
51dcbdac 280 struct folio_batch *fbatch)
aa65c29c 281{
51dcbdac 282 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
6b24ca4a 283 long total_pages = 0;
4101196b 284 int i = 0;
1afd7ae5 285 struct folio *folio;
aa65c29c 286
ef8e5717 287 mapping_set_update(&xas, mapping);
1afd7ae5 288 xas_for_each(&xas, folio, ULONG_MAX) {
51dcbdac 289 if (i >= folio_batch_count(fbatch))
aa65c29c 290 break;
4101196b
MWO
291
292 /* A swap/dax/shadow entry got inserted? Skip it. */
1afd7ae5 293 if (xa_is_value(folio))
aa65c29c 294 continue;
4101196b
MWO
295 /*
296 * A page got inserted in our range? Skip it. We have our
297 * pages locked so they are protected from being removed.
298 * If we see a page whose index is higher than ours, it
299 * means our page has been removed, which shouldn't be
300 * possible because we're holding the PageLock.
301 */
51dcbdac 302 if (folio != fbatch->folios[i]) {
1afd7ae5 303 VM_BUG_ON_FOLIO(folio->index >
51dcbdac 304 fbatch->folios[i]->index, folio);
4101196b
MWO
305 continue;
306 }
307
1afd7ae5 308 WARN_ON_ONCE(!folio_test_locked(folio));
4101196b 309
6b24ca4a 310 folio->mapping = NULL;
51dcbdac 311 /* Leave folio->index set: truncation lookup relies on it */
4101196b 312
6b24ca4a 313 i++;
ef8e5717 314 xas_store(&xas, NULL);
6b24ca4a 315 total_pages += folio_nr_pages(folio);
aa65c29c
JK
316 }
317 mapping->nrpages -= total_pages;
318}
319
320void delete_from_page_cache_batch(struct address_space *mapping,
51dcbdac 321 struct folio_batch *fbatch)
aa65c29c
JK
322{
323 int i;
aa65c29c 324
51dcbdac 325 if (!folio_batch_count(fbatch))
aa65c29c
JK
326 return;
327
51b8c1fe 328 spin_lock(&mapping->host->i_lock);
30472509 329 xa_lock_irq(&mapping->i_pages);
51dcbdac
MWO
330 for (i = 0; i < folio_batch_count(fbatch); i++) {
331 struct folio *folio = fbatch->folios[i];
aa65c29c 332
a0580c6f
MWO
333 trace_mm_filemap_delete_from_page_cache(folio);
334 filemap_unaccount_folio(mapping, folio);
aa65c29c 335 }
51dcbdac 336 page_cache_delete_batch(mapping, fbatch);
30472509 337 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
338 if (mapping_shrinkable(mapping))
339 inode_add_lru(mapping->host);
340 spin_unlock(&mapping->host->i_lock);
aa65c29c 341
51dcbdac
MWO
342 for (i = 0; i < folio_batch_count(fbatch); i++)
343 filemap_free_folio(mapping, fbatch->folios[i]);
aa65c29c
JK
344}
345
d72d9e2a 346int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
347{
348 int ret = 0;
349 /* Check for outstanding write errors */
7fcbbaf1
JA
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 352 ret = -ENOSPC;
7fcbbaf1
JA
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
355 ret = -EIO;
356 return ret;
357}
d72d9e2a 358EXPORT_SYMBOL(filemap_check_errors);
865ffef3 359
76341cab
JL
360static int filemap_check_and_keep_errors(struct address_space *mapping)
361{
362 /* Check for outstanding write errors */
363 if (test_bit(AS_EIO, &mapping->flags))
364 return -EIO;
365 if (test_bit(AS_ENOSPC, &mapping->flags))
366 return -ENOSPC;
367 return 0;
368}
369
5a798493
JB
370/**
371 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
372 * @mapping: address space structure to write
373 * @wbc: the writeback_control controlling the writeout
374 *
375 * Call writepages on the mapping using the provided wbc to control the
376 * writeout.
377 *
378 * Return: %0 on success, negative error code otherwise.
379 */
380int filemap_fdatawrite_wbc(struct address_space *mapping,
381 struct writeback_control *wbc)
382{
383 int ret;
384
385 if (!mapping_can_writeback(mapping) ||
386 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 return 0;
388
389 wbc_attach_fdatawrite_inode(wbc, mapping->host);
390 ret = do_writepages(mapping, wbc);
391 wbc_detach_inode(wbc);
392 return ret;
393}
394EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395
1da177e4 396/**
485bb99b 397 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
398 * @mapping: address space structure to write
399 * @start: offset in bytes where the range starts
469eb4d0 400 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 401 * @sync_mode: enable synchronous operation
1da177e4 402 *
485bb99b
RD
403 * Start writeback against all of a mapping's dirty pages that lie
404 * within the byte offsets <start, end> inclusive.
405 *
1da177e4 406 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 407 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
408 * these two operations is that if a dirty page/buffer is encountered, it must
409 * be waited upon, and not just skipped over.
a862f68a
MR
410 *
411 * Return: %0 on success, negative error code otherwise.
1da177e4 412 */
ebcf28e1
AM
413int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
414 loff_t end, int sync_mode)
1da177e4 415{
1da177e4
LT
416 struct writeback_control wbc = {
417 .sync_mode = sync_mode,
05fe478d 418 .nr_to_write = LONG_MAX,
111ebb6e
OH
419 .range_start = start,
420 .range_end = end,
1da177e4
LT
421 };
422
5a798493 423 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
424}
425
426static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428{
111ebb6e 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
430}
431
432int filemap_fdatawrite(struct address_space *mapping)
433{
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435}
436EXPORT_SYMBOL(filemap_fdatawrite);
437
f4c0a0fd 438int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 439 loff_t end)
1da177e4
LT
440{
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442}
f4c0a0fd 443EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 444
485bb99b
RD
445/**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
1da177e4
LT
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
451 *
452 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
453 */
454int filemap_flush(struct address_space *mapping)
455{
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457}
458EXPORT_SYMBOL(filemap_flush);
459
7fc9e472
GR
460/**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
a862f68a
MR
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
7fc9e472
GR
471 */
472bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474{
eff3b364 475 struct folio *folio;
8fa8e538
MW
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
478
479 if (end_byte < start_byte)
480 return false;
481
8fa8e538
MW
482 rcu_read_lock();
483 for (;;) {
eff3b364
MWO
484 folio = xas_find(&xas, max);
485 if (xas_retry(&xas, folio))
8fa8e538
MW
486 continue;
487 /* Shadow entries don't count */
eff3b364 488 if (xa_is_value(folio))
8fa8e538
MW
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
7fc9e472 498
eff3b364 499 return folio != NULL;
7fc9e472
GR
500}
501EXPORT_SYMBOL(filemap_range_has_page);
502
5e8fcc1a 503static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 504 loff_t start_byte, loff_t end_byte)
1da177e4 505{
09cbfeaf
KS
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
6817ef51
VMO
508 struct folio_batch fbatch;
509 unsigned nr_folios;
510
511 folio_batch_init(&fbatch);
1da177e4 512
312e9d2f 513 while (index <= end) {
1da177e4
LT
514 unsigned i;
515
6817ef51
VMO
516 nr_folios = filemap_get_folios_tag(mapping, &index, end,
517 PAGECACHE_TAG_WRITEBACK, &fbatch);
518
519 if (!nr_folios)
312e9d2f
JK
520 break;
521
6817ef51
VMO
522 for (i = 0; i < nr_folios; i++) {
523 struct folio *folio = fbatch.folios[i];
1da177e4 524
6817ef51
VMO
525 folio_wait_writeback(folio);
526 folio_clear_error(folio);
1da177e4 527 }
6817ef51 528 folio_batch_release(&fbatch);
1da177e4
LT
529 cond_resched();
530 }
aa750fd7
JN
531}
532
533/**
534 * filemap_fdatawait_range - wait for writeback to complete
535 * @mapping: address space structure to wait for
536 * @start_byte: offset in bytes where the range starts
537 * @end_byte: offset in bytes where the range ends (inclusive)
538 *
539 * Walk the list of under-writeback pages of the given address space
540 * in the given range and wait for all of them. Check error status of
541 * the address space and return it.
542 *
543 * Since the error status of the address space is cleared by this function,
544 * callers are responsible for checking the return value and handling and/or
545 * reporting the error.
a862f68a
MR
546 *
547 * Return: error status of the address space.
aa750fd7
JN
548 */
549int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 loff_t end_byte)
551{
5e8fcc1a
JL
552 __filemap_fdatawait_range(mapping, start_byte, end_byte);
553 return filemap_check_errors(mapping);
1da177e4 554}
d3bccb6f
JK
555EXPORT_SYMBOL(filemap_fdatawait_range);
556
aa0bfcd9
RZ
557/**
558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559 * @mapping: address space structure to wait for
560 * @start_byte: offset in bytes where the range starts
561 * @end_byte: offset in bytes where the range ends (inclusive)
562 *
563 * Walk the list of under-writeback pages of the given address space in the
564 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
565 * this function does not clear error status of the address space.
566 *
567 * Use this function if callers don't handle errors themselves. Expected
568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569 * fsfreeze(8)
570 */
571int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
572 loff_t start_byte, loff_t end_byte)
573{
574 __filemap_fdatawait_range(mapping, start_byte, end_byte);
575 return filemap_check_and_keep_errors(mapping);
576}
577EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
578
a823e458
JL
579/**
580 * file_fdatawait_range - wait for writeback to complete
581 * @file: file pointing to address space structure to wait for
582 * @start_byte: offset in bytes where the range starts
583 * @end_byte: offset in bytes where the range ends (inclusive)
584 *
585 * Walk the list of under-writeback pages of the address space that file
586 * refers to, in the given range and wait for all of them. Check error
587 * status of the address space vs. the file->f_wb_err cursor and return it.
588 *
589 * Since the error status of the file is advanced by this function,
590 * callers are responsible for checking the return value and handling and/or
591 * reporting the error.
a862f68a
MR
592 *
593 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
594 */
595int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596{
597 struct address_space *mapping = file->f_mapping;
598
599 __filemap_fdatawait_range(mapping, start_byte, end_byte);
600 return file_check_and_advance_wb_err(file);
601}
602EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 603
aa750fd7
JN
604/**
605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606 * @mapping: address space structure to wait for
607 *
608 * Walk the list of under-writeback pages of the given address space
609 * and wait for all of them. Unlike filemap_fdatawait(), this function
610 * does not clear error status of the address space.
611 *
612 * Use this function if callers don't handle errors themselves. Expected
613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614 * fsfreeze(8)
a862f68a
MR
615 *
616 * Return: error status of the address space.
aa750fd7 617 */
76341cab 618int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 619{
ffb959bb 620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 621 return filemap_check_and_keep_errors(mapping);
aa750fd7 622}
76341cab 623EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 624
875d91b1 625/* Returns true if writeback might be needed or already in progress. */
9326c9b2 626static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 627{
875d91b1 628 return mapping->nrpages;
1da177e4 629}
1da177e4 630
4bdcd1dd
JA
631bool filemap_range_has_writeback(struct address_space *mapping,
632 loff_t start_byte, loff_t end_byte)
f8ee8909
JA
633{
634 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
635 pgoff_t max = end_byte >> PAGE_SHIFT;
b05f41a1 636 struct folio *folio;
f8ee8909
JA
637
638 if (end_byte < start_byte)
639 return false;
640
641 rcu_read_lock();
b05f41a1
VMO
642 xas_for_each(&xas, folio, max) {
643 if (xas_retry(&xas, folio))
f8ee8909 644 continue;
b05f41a1 645 if (xa_is_value(folio))
f8ee8909 646 continue;
b05f41a1
VMO
647 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
648 folio_test_writeback(folio))
f8ee8909
JA
649 break;
650 }
651 rcu_read_unlock();
b05f41a1 652 return folio != NULL;
63135aa3 653}
4bdcd1dd 654EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
63135aa3 655
485bb99b
RD
656/**
657 * filemap_write_and_wait_range - write out & wait on a file range
658 * @mapping: the address_space for the pages
659 * @lstart: offset in bytes where the range starts
660 * @lend: offset in bytes where the range ends (inclusive)
661 *
469eb4d0
AM
662 * Write out and wait upon file offsets lstart->lend, inclusive.
663 *
0e056eb5 664 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 665 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
666 *
667 * Return: error status of the address space.
469eb4d0 668 */
1da177e4
LT
669int filemap_write_and_wait_range(struct address_space *mapping,
670 loff_t lstart, loff_t lend)
671{
ccac11da 672 int err = 0, err2;
1da177e4 673
feeb9b26
BF
674 if (lend < lstart)
675 return 0;
676
9326c9b2 677 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
678 err = __filemap_fdatawrite_range(mapping, lstart, lend,
679 WB_SYNC_ALL);
ddf8f376
IW
680 /*
681 * Even if the above returned error, the pages may be
682 * written partially (e.g. -ENOSPC), so we wait for it.
683 * But the -EIO is special case, it may indicate the worst
684 * thing (e.g. bug) happened, so we avoid waiting for it.
685 */
ccac11da
ML
686 if (err != -EIO)
687 __filemap_fdatawait_range(mapping, lstart, lend);
1da177e4 688 }
ccac11da
ML
689 err2 = filemap_check_errors(mapping);
690 if (!err)
691 err = err2;
28fd1298 692 return err;
1da177e4 693}
f6995585 694EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 695
5660e13d
JL
696void __filemap_set_wb_err(struct address_space *mapping, int err)
697{
3acdfd28 698 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
699
700 trace_filemap_set_wb_err(mapping, eseq);
701}
702EXPORT_SYMBOL(__filemap_set_wb_err);
703
704/**
705 * file_check_and_advance_wb_err - report wb error (if any) that was previously
706 * and advance wb_err to current one
707 * @file: struct file on which the error is being reported
708 *
709 * When userland calls fsync (or something like nfsd does the equivalent), we
710 * want to report any writeback errors that occurred since the last fsync (or
711 * since the file was opened if there haven't been any).
712 *
713 * Grab the wb_err from the mapping. If it matches what we have in the file,
714 * then just quickly return 0. The file is all caught up.
715 *
716 * If it doesn't match, then take the mapping value, set the "seen" flag in
717 * it and try to swap it into place. If it works, or another task beat us
718 * to it with the new value, then update the f_wb_err and return the error
719 * portion. The error at this point must be reported via proper channels
720 * (a'la fsync, or NFS COMMIT operation, etc.).
721 *
722 * While we handle mapping->wb_err with atomic operations, the f_wb_err
723 * value is protected by the f_lock since we must ensure that it reflects
724 * the latest value swapped in for this file descriptor.
a862f68a
MR
725 *
726 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
727 */
728int file_check_and_advance_wb_err(struct file *file)
729{
730 int err = 0;
731 errseq_t old = READ_ONCE(file->f_wb_err);
732 struct address_space *mapping = file->f_mapping;
733
734 /* Locklessly handle the common case where nothing has changed */
735 if (errseq_check(&mapping->wb_err, old)) {
736 /* Something changed, must use slow path */
737 spin_lock(&file->f_lock);
738 old = file->f_wb_err;
739 err = errseq_check_and_advance(&mapping->wb_err,
740 &file->f_wb_err);
741 trace_file_check_and_advance_wb_err(file, old);
742 spin_unlock(&file->f_lock);
743 }
f4e222c5
JL
744
745 /*
746 * We're mostly using this function as a drop in replacement for
747 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748 * that the legacy code would have had on these flags.
749 */
750 clear_bit(AS_EIO, &mapping->flags);
751 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
752 return err;
753}
754EXPORT_SYMBOL(file_check_and_advance_wb_err);
755
756/**
757 * file_write_and_wait_range - write out & wait on a file range
758 * @file: file pointing to address_space with pages
759 * @lstart: offset in bytes where the range starts
760 * @lend: offset in bytes where the range ends (inclusive)
761 *
762 * Write out and wait upon file offsets lstart->lend, inclusive.
763 *
764 * Note that @lend is inclusive (describes the last byte to be written) so
765 * that this function can be used to write to the very end-of-file (end = -1).
766 *
767 * After writing out and waiting on the data, we check and advance the
768 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
769 *
770 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
771 */
772int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
773{
774 int err = 0, err2;
775 struct address_space *mapping = file->f_mapping;
776
feeb9b26
BF
777 if (lend < lstart)
778 return 0;
779
9326c9b2 780 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
781 err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 WB_SYNC_ALL);
783 /* See comment of filemap_write_and_wait() */
784 if (err != -EIO)
785 __filemap_fdatawait_range(mapping, lstart, lend);
786 }
787 err2 = file_check_and_advance_wb_err(file);
788 if (!err)
789 err = err2;
790 return err;
791}
792EXPORT_SYMBOL(file_write_and_wait_range);
793
ef6a3c63 794/**
3720dd6d
VMO
795 * replace_page_cache_folio - replace a pagecache folio with a new one
796 * @old: folio to be replaced
797 * @new: folio to replace with
798 *
799 * This function replaces a folio in the pagecache with a new one. On
800 * success it acquires the pagecache reference for the new folio and
801 * drops it for the old folio. Both the old and new folios must be
802 * locked. This function does not add the new folio to the LRU, the
ef6a3c63
MS
803 * caller must do that.
804 *
74d60958 805 * The remove + add is atomic. This function cannot fail.
ef6a3c63 806 */
3720dd6d 807void replace_page_cache_folio(struct folio *old, struct folio *new)
ef6a3c63 808{
74d60958 809 struct address_space *mapping = old->mapping;
d2329aa0 810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
74d60958
MW
811 pgoff_t offset = old->index;
812 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 813
3720dd6d
VMO
814 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
815 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
816 VM_BUG_ON_FOLIO(new->mapping, new);
ef6a3c63 817
3720dd6d 818 folio_get(new);
74d60958
MW
819 new->mapping = mapping;
820 new->index = offset;
ef6a3c63 821
3720dd6d 822 mem_cgroup_migrate(old, new);
0d1c2072 823
30472509 824 xas_lock_irq(&xas);
74d60958 825 xas_store(&xas, new);
4165b9b4 826
74d60958
MW
827 old->mapping = NULL;
828 /* hugetlb pages do not participate in page cache accounting. */
3720dd6d
VMO
829 if (!folio_test_hugetlb(old))
830 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
831 if (!folio_test_hugetlb(new))
832 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
833 if (folio_test_swapbacked(old))
834 __lruvec_stat_sub_folio(old, NR_SHMEM);
835 if (folio_test_swapbacked(new))
836 __lruvec_stat_add_folio(new, NR_SHMEM);
30472509 837 xas_unlock_irq(&xas);
d2329aa0 838 if (free_folio)
3720dd6d
VMO
839 free_folio(old);
840 folio_put(old);
ef6a3c63 841}
3720dd6d 842EXPORT_SYMBOL_GPL(replace_page_cache_folio);
ef6a3c63 843
9dd3d069
MWO
844noinline int __filemap_add_folio(struct address_space *mapping,
845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 846{
9dd3d069
MWO
847 XA_STATE(xas, &mapping->i_pages, index);
848 int huge = folio_test_hugetlb(folio);
da74240e 849 bool charged = false;
d68eccad 850 long nr = 1;
e286781d 851
9dd3d069
MWO
852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 854 mapping_set_update(&xas, mapping);
e286781d 855
3fea5a49 856 if (!huge) {
d68eccad 857 int error = mem_cgroup_charge(folio, NULL, gfp);
9dd3d069 858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
3fea5a49 859 if (error)
d68eccad 860 return error;
da74240e 861 charged = true;
d68eccad
MWO
862 xas_set_order(&xas, index, folio_order(folio));
863 nr = folio_nr_pages(folio);
3fea5a49
JW
864 }
865
198b62f8 866 gfp &= GFP_RECLAIM_MASK;
d68eccad
MWO
867 folio_ref_add(folio, nr);
868 folio->mapping = mapping;
869 folio->index = xas.xa_index;
198b62f8 870
74d60958 871 do {
198b62f8
MWO
872 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
873 void *entry, *old = NULL;
874
9dd3d069 875 if (order > folio_order(folio))
198b62f8
MWO
876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
877 order, gfp);
74d60958 878 xas_lock_irq(&xas);
198b62f8
MWO
879 xas_for_each_conflict(&xas, entry) {
880 old = entry;
881 if (!xa_is_value(entry)) {
882 xas_set_err(&xas, -EEXIST);
883 goto unlock;
884 }
885 }
886
887 if (old) {
888 if (shadowp)
889 *shadowp = old;
890 /* entry may have been split before we acquired lock */
891 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 892 if (order > folio_order(folio)) {
d68eccad
MWO
893 /* How to handle large swap entries? */
894 BUG_ON(shmem_mapping(mapping));
198b62f8
MWO
895 xas_split(&xas, old, order);
896 xas_reset(&xas);
897 }
898 }
899
9dd3d069 900 xas_store(&xas, folio);
74d60958
MW
901 if (xas_error(&xas))
902 goto unlock;
903
d68eccad 904 mapping->nrpages += nr;
74d60958
MW
905
906 /* hugetlb pages do not participate in page cache accounting */
d68eccad
MWO
907 if (!huge) {
908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
909 if (folio_test_pmd_mappable(folio))
910 __lruvec_stat_mod_folio(folio,
911 NR_FILE_THPS, nr);
912 }
74d60958
MW
913unlock:
914 xas_unlock_irq(&xas);
198b62f8 915 } while (xas_nomem(&xas, gfp));
74d60958 916
d68eccad 917 if (xas_error(&xas))
74d60958 918 goto error;
4165b9b4 919
a0580c6f 920 trace_mm_filemap_add_to_page_cache(folio);
66a0c8ee 921 return 0;
74d60958 922error:
d68eccad
MWO
923 if (charged)
924 mem_cgroup_uncharge(folio);
9dd3d069 925 folio->mapping = NULL;
66a0c8ee 926 /* Leave page->index set: truncation relies upon it */
d68eccad
MWO
927 folio_put_refs(folio, nr);
928 return xas_error(&xas);
1da177e4 929}
9dd3d069 930ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e 931
9dd3d069
MWO
932int filemap_add_folio(struct address_space *mapping, struct folio *folio,
933 pgoff_t index, gfp_t gfp)
1da177e4 934{
a528910e 935 void *shadow = NULL;
4f98a2fe
RR
936 int ret;
937
9dd3d069
MWO
938 __folio_set_locked(folio);
939 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 940 if (unlikely(ret))
9dd3d069 941 __folio_clear_locked(folio);
a528910e
JW
942 else {
943 /*
9dd3d069 944 * The folio might have been evicted from cache only
a528910e 945 * recently, in which case it should be activated like
9dd3d069
MWO
946 * any other repeatedly accessed folio.
947 * The exception is folios getting rewritten; evicting other
f0281a00
RR
948 * data from the working set, only to cache data that will
949 * get overwritten with something else, is a waste of memory.
a528910e 950 */
9dd3d069
MWO
951 WARN_ON_ONCE(folio_test_active(folio));
952 if (!(gfp & __GFP_WRITE) && shadow)
953 workingset_refault(folio, shadow);
954 folio_add_lru(folio);
a528910e 955 }
1da177e4
LT
956 return ret;
957}
9dd3d069 958EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 959
44110fe3 960#ifdef CONFIG_NUMA
bb3c579e 961struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 962{
c0ff7453 963 int n;
bb3c579e 964 struct folio *folio;
c0ff7453 965
44110fe3 966 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
967 unsigned int cpuset_mems_cookie;
968 do {
d26914d1 969 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 970 n = cpuset_mem_spread_node();
bb3c579e
MWO
971 folio = __folio_alloc_node(gfp, order, n);
972 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 973
bb3c579e 974 return folio;
44110fe3 975 }
bb3c579e 976 return folio_alloc(gfp, order);
44110fe3 977}
bb3c579e 978EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
979#endif
980
7506ae6a
JK
981/*
982 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
983 *
984 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
985 *
986 * @mapping1: the first mapping to lock
987 * @mapping2: the second mapping to lock
988 */
989void filemap_invalidate_lock_two(struct address_space *mapping1,
990 struct address_space *mapping2)
991{
992 if (mapping1 > mapping2)
993 swap(mapping1, mapping2);
994 if (mapping1)
995 down_write(&mapping1->invalidate_lock);
996 if (mapping2 && mapping1 != mapping2)
997 down_write_nested(&mapping2->invalidate_lock, 1);
998}
999EXPORT_SYMBOL(filemap_invalidate_lock_two);
1000
1001/*
1002 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1003 *
1004 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1005 *
1006 * @mapping1: the first mapping to unlock
1007 * @mapping2: the second mapping to unlock
1008 */
1009void filemap_invalidate_unlock_two(struct address_space *mapping1,
1010 struct address_space *mapping2)
1011{
1012 if (mapping1)
1013 up_write(&mapping1->invalidate_lock);
1014 if (mapping2 && mapping1 != mapping2)
1015 up_write(&mapping2->invalidate_lock);
1016}
1017EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1018
1da177e4
LT
1019/*
1020 * In order to wait for pages to become available there must be
1021 * waitqueues associated with pages. By using a hash table of
1022 * waitqueues where the bucket discipline is to maintain all
1023 * waiters on the same queue and wake all when any of the pages
1024 * become available, and for the woken contexts to check to be
1025 * sure the appropriate page became available, this saves space
1026 * at a cost of "thundering herd" phenomena during rare hash
1027 * collisions.
1028 */
62906027
NP
1029#define PAGE_WAIT_TABLE_BITS 8
1030#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1031static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1032
df4d4f12 1033static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1034{
df4d4f12 1035 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1036}
1da177e4 1037
62906027 1038void __init pagecache_init(void)
1da177e4 1039{
62906027 1040 int i;
1da177e4 1041
62906027 1042 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1043 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1044
1045 page_writeback_init();
1da177e4 1046}
1da177e4 1047
5ef64cc8
LT
1048/*
1049 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1050 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1051 * one.
1052 *
1053 * We have:
1054 *
1055 * (a) no special bits set:
1056 *
1057 * We're just waiting for the bit to be released, and when a waker
1058 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1059 * and remove it from the wait queue.
1060 *
1061 * Simple and straightforward.
1062 *
1063 * (b) WQ_FLAG_EXCLUSIVE:
1064 *
1065 * The waiter is waiting to get the lock, and only one waiter should
1066 * be woken up to avoid any thundering herd behavior. We'll set the
1067 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1068 *
1069 * This is the traditional exclusive wait.
1070 *
5868ec26 1071 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1072 *
1073 * The waiter is waiting to get the bit, and additionally wants the
1074 * lock to be transferred to it for fair lock behavior. If the lock
1075 * cannot be taken, we stop walking the wait queue without waking
1076 * the waiter.
1077 *
1078 * This is the "fair lock handoff" case, and in addition to setting
1079 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1080 * that it now has the lock.
1081 */
ac6424b9 1082static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1083{
5ef64cc8 1084 unsigned int flags;
62906027
NP
1085 struct wait_page_key *key = arg;
1086 struct wait_page_queue *wait_page
1087 = container_of(wait, struct wait_page_queue, wait);
1088
cdc8fcb4 1089 if (!wake_page_match(wait_page, key))
62906027 1090 return 0;
3510ca20 1091
9a1ea439 1092 /*
5ef64cc8
LT
1093 * If it's a lock handoff wait, we get the bit for it, and
1094 * stop walking (and do not wake it up) if we can't.
9a1ea439 1095 */
5ef64cc8
LT
1096 flags = wait->flags;
1097 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1098 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1099 return -1;
5ef64cc8 1100 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1101 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1102 return -1;
1103 flags |= WQ_FLAG_DONE;
1104 }
2a9127fc 1105 }
f62e00cc 1106
5ef64cc8
LT
1107 /*
1108 * We are holding the wait-queue lock, but the waiter that
1109 * is waiting for this will be checking the flags without
1110 * any locking.
1111 *
1112 * So update the flags atomically, and wake up the waiter
1113 * afterwards to avoid any races. This store-release pairs
101c0bf6 1114 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1115 */
1116 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1117 wake_up_state(wait->private, mode);
1118
1119 /*
1120 * Ok, we have successfully done what we're waiting for,
1121 * and we can unconditionally remove the wait entry.
1122 *
5ef64cc8
LT
1123 * Note that this pairs with the "finish_wait()" in the
1124 * waiter, and has to be the absolute last thing we do.
1125 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1126 * might be de-allocated and the process might even have
1127 * exited.
2a9127fc 1128 */
c6fe44d9 1129 list_del_init_careful(&wait->entry);
5ef64cc8 1130 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1131}
1132
6974d7c9 1133static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1134{
df4d4f12 1135 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1136 struct wait_page_key key;
1137 unsigned long flags;
11a19c7b 1138 wait_queue_entry_t bookmark;
cbbce822 1139
df4d4f12 1140 key.folio = folio;
62906027
NP
1141 key.bit_nr = bit_nr;
1142 key.page_match = 0;
1143
11a19c7b
TC
1144 bookmark.flags = 0;
1145 bookmark.private = NULL;
1146 bookmark.func = NULL;
1147 INIT_LIST_HEAD(&bookmark.entry);
1148
62906027 1149 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1150 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1151
1152 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1153 /*
1154 * Take a breather from holding the lock,
1155 * allow pages that finish wake up asynchronously
1156 * to acquire the lock and remove themselves
1157 * from wait queue
1158 */
1159 spin_unlock_irqrestore(&q->lock, flags);
1160 cpu_relax();
1161 spin_lock_irqsave(&q->lock, flags);
1162 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1163 }
1164
62906027 1165 /*
bb43b14b
HD
1166 * It's possible to miss clearing waiters here, when we woke our page
1167 * waiters, but the hashed waitqueue has waiters for other pages on it.
1168 * That's okay, it's a rare case. The next waker will clear it.
62906027 1169 *
bb43b14b
HD
1170 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1171 * other), the flag may be cleared in the course of freeing the page;
1172 * but that is not required for correctness.
62906027 1173 */
bb43b14b 1174 if (!waitqueue_active(q) || !key.page_match)
6974d7c9 1175 folio_clear_waiters(folio);
bb43b14b 1176
62906027
NP
1177 spin_unlock_irqrestore(&q->lock, flags);
1178}
74d81bfa 1179
4268b480 1180static void folio_wake(struct folio *folio, int bit)
74d81bfa 1181{
4268b480 1182 if (!folio_test_waiters(folio))
74d81bfa 1183 return;
6974d7c9 1184 folio_wake_bit(folio, bit);
74d81bfa 1185}
62906027 1186
9a1ea439 1187/*
101c0bf6 1188 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1189 */
1190enum behavior {
1191 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1192 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1193 */
1194 SHARED, /* Hold ref to page and check the bit when woken, like
9f2b04a2 1195 * folio_wait_writeback() waiting on PG_writeback.
9a1ea439
HD
1196 */
1197 DROP, /* Drop ref to page before wait, no check when woken,
9f2b04a2 1198 * like folio_put_wait_locked() on PG_locked.
9a1ea439
HD
1199 */
1200};
1201
2a9127fc 1202/*
101c0bf6 1203 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1204 * if successful.
2a9127fc 1205 */
101c0bf6 1206static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1207 struct wait_queue_entry *wait)
1208{
1209 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1210 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1211 return false;
101c0bf6 1212 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1213 return false;
1214
5ef64cc8 1215 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1216 return true;
1217}
1218
5ef64cc8
LT
1219/* How many times do we accept lock stealing from under a waiter? */
1220int sysctl_page_lock_unfairness = 5;
1221
101c0bf6
MWO
1222static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1223 int state, enum behavior behavior)
62906027 1224{
df4d4f12 1225 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1226 int unfairness = sysctl_page_lock_unfairness;
62906027 1227 struct wait_page_queue wait_page;
ac6424b9 1228 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1229 bool thrashing = false;
eb414681 1230 unsigned long pflags;
aa1cf99b 1231 bool in_thrashing;
62906027 1232
eb414681 1233 if (bit_nr == PG_locked &&
101c0bf6 1234 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1235 delayacct_thrashing_start(&in_thrashing);
eb414681 1236 psi_memstall_enter(&pflags);
b1d29ba8
JW
1237 thrashing = true;
1238 }
1239
62906027
NP
1240 init_wait(wait);
1241 wait->func = wake_page_function;
df4d4f12 1242 wait_page.folio = folio;
62906027
NP
1243 wait_page.bit_nr = bit_nr;
1244
5ef64cc8
LT
1245repeat:
1246 wait->flags = 0;
1247 if (behavior == EXCLUSIVE) {
1248 wait->flags = WQ_FLAG_EXCLUSIVE;
1249 if (--unfairness < 0)
1250 wait->flags |= WQ_FLAG_CUSTOM;
1251 }
1252
2a9127fc
LT
1253 /*
1254 * Do one last check whether we can get the
1255 * page bit synchronously.
1256 *
101c0bf6 1257 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1258 * to let any waker we _just_ missed know they
1259 * need to wake us up (otherwise they'll never
1260 * even go to the slow case that looks at the
1261 * page queue), and add ourselves to the wait
1262 * queue if we need to sleep.
1263 *
1264 * This part needs to be done under the queue
1265 * lock to avoid races.
1266 */
1267 spin_lock_irq(&q->lock);
101c0bf6
MWO
1268 folio_set_waiters(folio);
1269 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1270 __add_wait_queue_entry_tail(q, wait);
1271 spin_unlock_irq(&q->lock);
62906027 1272
2a9127fc
LT
1273 /*
1274 * From now on, all the logic will be based on
5ef64cc8
LT
1275 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1276 * see whether the page bit testing has already
1277 * been done by the wake function.
2a9127fc 1278 *
101c0bf6 1279 * We can drop our reference to the folio.
2a9127fc
LT
1280 */
1281 if (behavior == DROP)
101c0bf6 1282 folio_put(folio);
62906027 1283
5ef64cc8
LT
1284 /*
1285 * Note that until the "finish_wait()", or until
1286 * we see the WQ_FLAG_WOKEN flag, we need to
1287 * be very careful with the 'wait->flags', because
1288 * we may race with a waker that sets them.
1289 */
2a9127fc 1290 for (;;) {
5ef64cc8
LT
1291 unsigned int flags;
1292
62906027
NP
1293 set_current_state(state);
1294
5ef64cc8
LT
1295 /* Loop until we've been woken or interrupted */
1296 flags = smp_load_acquire(&wait->flags);
1297 if (!(flags & WQ_FLAG_WOKEN)) {
1298 if (signal_pending_state(state, current))
1299 break;
1300
1301 io_schedule();
1302 continue;
1303 }
1304
1305 /* If we were non-exclusive, we're done */
1306 if (behavior != EXCLUSIVE)
a8b169af 1307 break;
9a1ea439 1308
5ef64cc8
LT
1309 /* If the waker got the lock for us, we're done */
1310 if (flags & WQ_FLAG_DONE)
9a1ea439 1311 break;
2a9127fc 1312
5ef64cc8
LT
1313 /*
1314 * Otherwise, if we're getting the lock, we need to
1315 * try to get it ourselves.
1316 *
1317 * And if that fails, we'll have to retry this all.
1318 */
101c0bf6 1319 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1320 goto repeat;
1321
1322 wait->flags |= WQ_FLAG_DONE;
1323 break;
62906027
NP
1324 }
1325
5ef64cc8
LT
1326 /*
1327 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1328 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1329 * set. That's ok. The next wakeup will take care of it, and trying
1330 * to do it here would be difficult and prone to races.
1331 */
62906027
NP
1332 finish_wait(q, wait);
1333
eb414681 1334 if (thrashing) {
aa1cf99b 1335 delayacct_thrashing_end(&in_thrashing);
eb414681
JW
1336 psi_memstall_leave(&pflags);
1337 }
b1d29ba8 1338
62906027 1339 /*
5ef64cc8
LT
1340 * NOTE! The wait->flags weren't stable until we've done the
1341 * 'finish_wait()', and we could have exited the loop above due
1342 * to a signal, and had a wakeup event happen after the signal
1343 * test but before the 'finish_wait()'.
1344 *
1345 * So only after the finish_wait() can we reliably determine
1346 * if we got woken up or not, so we can now figure out the final
1347 * return value based on that state without races.
1348 *
1349 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1350 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1351 */
5ef64cc8
LT
1352 if (behavior == EXCLUSIVE)
1353 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1354
2a9127fc 1355 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1356}
1357
ffa65753
AP
1358#ifdef CONFIG_MIGRATION
1359/**
1360 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1361 * @entry: migration swap entry.
ffa65753
AP
1362 * @ptl: already locked ptl. This function will drop the lock.
1363 *
1364 * Wait for a migration entry referencing the given page to be removed. This is
1365 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1366 * this can be called without taking a reference on the page. Instead this
1367 * should be called while holding the ptl for the migration entry referencing
1368 * the page.
1369 *
0cb8fd4d 1370 * Returns after unlocking the ptl.
ffa65753
AP
1371 *
1372 * This follows the same logic as folio_wait_bit_common() so see the comments
1373 * there.
1374 */
0cb8fd4d
HD
1375void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1376 __releases(ptl)
ffa65753
AP
1377{
1378 struct wait_page_queue wait_page;
1379 wait_queue_entry_t *wait = &wait_page.wait;
1380 bool thrashing = false;
ffa65753 1381 unsigned long pflags;
aa1cf99b 1382 bool in_thrashing;
ffa65753
AP
1383 wait_queue_head_t *q;
1384 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1385
1386 q = folio_waitqueue(folio);
1387 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1388 delayacct_thrashing_start(&in_thrashing);
ffa65753
AP
1389 psi_memstall_enter(&pflags);
1390 thrashing = true;
1391 }
1392
1393 init_wait(wait);
1394 wait->func = wake_page_function;
1395 wait_page.folio = folio;
1396 wait_page.bit_nr = PG_locked;
1397 wait->flags = 0;
1398
1399 spin_lock_irq(&q->lock);
1400 folio_set_waiters(folio);
1401 if (!folio_trylock_flag(folio, PG_locked, wait))
1402 __add_wait_queue_entry_tail(q, wait);
1403 spin_unlock_irq(&q->lock);
1404
1405 /*
1406 * If a migration entry exists for the page the migration path must hold
1407 * a valid reference to the page, and it must take the ptl to remove the
1408 * migration entry. So the page is valid until the ptl is dropped.
1409 */
0cb8fd4d 1410 spin_unlock(ptl);
ffa65753
AP
1411
1412 for (;;) {
1413 unsigned int flags;
1414
1415 set_current_state(TASK_UNINTERRUPTIBLE);
1416
1417 /* Loop until we've been woken or interrupted */
1418 flags = smp_load_acquire(&wait->flags);
1419 if (!(flags & WQ_FLAG_WOKEN)) {
1420 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1421 break;
1422
1423 io_schedule();
1424 continue;
1425 }
1426 break;
1427 }
1428
1429 finish_wait(q, wait);
1430
1431 if (thrashing) {
aa1cf99b 1432 delayacct_thrashing_end(&in_thrashing);
ffa65753
AP
1433 psi_memstall_leave(&pflags);
1434 }
1435}
1436#endif
1437
101c0bf6 1438void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1439{
101c0bf6 1440 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1441}
101c0bf6 1442EXPORT_SYMBOL(folio_wait_bit);
62906027 1443
101c0bf6 1444int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1445{
101c0bf6 1446 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1447}
101c0bf6 1448EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1449
9a1ea439 1450/**
9f2b04a2
MWO
1451 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1452 * @folio: The folio to wait for.
48054625 1453 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439 1454 *
9f2b04a2 1455 * The caller should hold a reference on @folio. They expect the page to
9a1ea439 1456 * become unlocked relatively soon, but do not wish to hold up migration
9f2b04a2 1457 * (for example) by holding the reference while waiting for the folio to
9a1ea439 1458 * come unlocked. After this function returns, the caller should not
9f2b04a2 1459 * dereference @folio.
48054625 1460 *
9f2b04a2 1461 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1462 */
c195c321 1463static int folio_put_wait_locked(struct folio *folio, int state)
9a1ea439 1464{
9f2b04a2 1465 return folio_wait_bit_common(folio, PG_locked, state, DROP);
9a1ea439
HD
1466}
1467
385e1ca5 1468/**
df4d4f12
MWO
1469 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1470 * @folio: Folio defining the wait queue of interest
697f619f 1471 * @waiter: Waiter to add to the queue
385e1ca5 1472 *
df4d4f12 1473 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1474 */
df4d4f12 1475void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1476{
df4d4f12 1477 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1478 unsigned long flags;
1479
1480 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1481 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1482 folio_set_waiters(folio);
385e1ca5
DH
1483 spin_unlock_irqrestore(&q->lock, flags);
1484}
df4d4f12 1485EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1486
b91e1302
LT
1487#ifndef clear_bit_unlock_is_negative_byte
1488
1489/*
1490 * PG_waiters is the high bit in the same byte as PG_lock.
1491 *
1492 * On x86 (and on many other architectures), we can clear PG_lock and
1493 * test the sign bit at the same time. But if the architecture does
1494 * not support that special operation, we just do this all by hand
1495 * instead.
1496 *
1497 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1498 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1499 * in the same byte as PG_locked.
1500 */
1501static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1502{
1503 clear_bit_unlock(nr, mem);
1504 /* smp_mb__after_atomic(); */
98473f9f 1505 return test_bit(PG_waiters, mem);
b91e1302
LT
1506}
1507
1508#endif
1509
1da177e4 1510/**
4e136428
MWO
1511 * folio_unlock - Unlock a locked folio.
1512 * @folio: The folio.
1513 *
1514 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1515 *
1516 * Context: May be called from interrupt or process context. May not be
1517 * called from NMI context.
1da177e4 1518 */
4e136428 1519void folio_unlock(struct folio *folio)
1da177e4 1520{
4e136428 1521 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1522 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1523 BUILD_BUG_ON(PG_locked > 7);
1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1525 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
6974d7c9 1526 folio_wake_bit(folio, PG_locked);
1da177e4 1527}
4e136428 1528EXPORT_SYMBOL(folio_unlock);
1da177e4 1529
73e10ded 1530/**
b47393f8
MWO
1531 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1532 * @folio: The folio.
73e10ded 1533 *
b47393f8
MWO
1534 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1535 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1536 *
b47393f8
MWO
1537 * This is, for example, used when a netfs folio is being written to a local
1538 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1539 * serialised.
1540 */
b47393f8 1541void folio_end_private_2(struct folio *folio)
73e10ded 1542{
6974d7c9
MWO
1543 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1544 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1545 folio_wake_bit(folio, PG_private_2);
1546 folio_put(folio);
73e10ded 1547}
b47393f8 1548EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1549
1550/**
b47393f8
MWO
1551 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1552 * @folio: The folio to wait on.
73e10ded 1553 *
b47393f8 1554 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1555 */
b47393f8 1556void folio_wait_private_2(struct folio *folio)
73e10ded 1557{
101c0bf6
MWO
1558 while (folio_test_private_2(folio))
1559 folio_wait_bit(folio, PG_private_2);
73e10ded 1560}
b47393f8 1561EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1562
1563/**
b47393f8
MWO
1564 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1565 * @folio: The folio to wait on.
73e10ded 1566 *
b47393f8 1567 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1568 * fatal signal is received by the calling task.
1569 *
1570 * Return:
1571 * - 0 if successful.
1572 * - -EINTR if a fatal signal was encountered.
1573 */
b47393f8 1574int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1575{
1576 int ret = 0;
1577
101c0bf6
MWO
1578 while (folio_test_private_2(folio)) {
1579 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1580 if (ret < 0)
1581 break;
1582 }
1583
1584 return ret;
1585}
b47393f8 1586EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1587
485bb99b 1588/**
4268b480
MWO
1589 * folio_end_writeback - End writeback against a folio.
1590 * @folio: The folio.
1da177e4 1591 */
4268b480 1592void folio_end_writeback(struct folio *folio)
1da177e4 1593{
888cf2db 1594 /*
4268b480
MWO
1595 * folio_test_clear_reclaim() could be used here but it is an
1596 * atomic operation and overkill in this particular case. Failing
1597 * to shuffle a folio marked for immediate reclaim is too mild
1598 * a gain to justify taking an atomic operation penalty at the
1599 * end of every folio writeback.
888cf2db 1600 */
4268b480
MWO
1601 if (folio_test_reclaim(folio)) {
1602 folio_clear_reclaim(folio);
575ced1c 1603 folio_rotate_reclaimable(folio);
888cf2db 1604 }
ac6aadb2 1605
073861ed 1606 /*
4268b480 1607 * Writeback does not hold a folio reference of its own, relying
073861ed 1608 * on truncation to wait for the clearing of PG_writeback.
4268b480
MWO
1609 * But here we must make sure that the folio is not freed and
1610 * reused before the folio_wake().
073861ed 1611 */
4268b480 1612 folio_get(folio);
269ccca3 1613 if (!__folio_end_writeback(folio))
ac6aadb2
MS
1614 BUG();
1615
4e857c58 1616 smp_mb__after_atomic();
4268b480 1617 folio_wake(folio, PG_writeback);
512b7931 1618 acct_reclaim_writeback(folio);
4268b480 1619 folio_put(folio);
1da177e4 1620}
4268b480 1621EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1622
485bb99b 1623/**
7c23c782
MWO
1624 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1625 * @folio: The folio to lock
1da177e4 1626 */
7c23c782 1627void __folio_lock(struct folio *folio)
1da177e4 1628{
101c0bf6 1629 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1630 EXCLUSIVE);
1da177e4 1631}
7c23c782 1632EXPORT_SYMBOL(__folio_lock);
1da177e4 1633
af7f29d9 1634int __folio_lock_killable(struct folio *folio)
2687a356 1635{
101c0bf6 1636 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1637 EXCLUSIVE);
2687a356 1638}
af7f29d9 1639EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1640
ffdc8dab 1641static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1642{
df4d4f12 1643 struct wait_queue_head *q = folio_waitqueue(folio);
f32b5dd7
MWO
1644 int ret = 0;
1645
df4d4f12 1646 wait->folio = folio;
f32b5dd7
MWO
1647 wait->bit_nr = PG_locked;
1648
1649 spin_lock_irq(&q->lock);
1650 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1651 folio_set_waiters(folio);
1652 ret = !folio_trylock(folio);
f32b5dd7
MWO
1653 /*
1654 * If we were successful now, we know we're still on the
1655 * waitqueue as we're still under the lock. This means it's
1656 * safe to remove and return success, we know the callback
1657 * isn't going to trigger.
1658 */
1659 if (!ret)
1660 __remove_wait_queue(q, &wait->wait);
1661 else
1662 ret = -EIOCBQUEUED;
1663 spin_unlock_irq(&q->lock);
1664 return ret;
dd3e6d50
JA
1665}
1666
9a95f3cf
PC
1667/*
1668 * Return values:
fdc724d6
SB
1669 * 0 - folio is locked.
1670 * non-zero - folio is not locked.
1235ccd0
SB
1671 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1672 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1673 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
9a95f3cf 1674 *
fdc724d6 1675 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1235ccd0 1676 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
9a95f3cf 1677 */
fdc724d6 1678vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
d065bd81 1679{
fdc724d6
SB
1680 unsigned int flags = vmf->flags;
1681
4064b982 1682 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1683 /*
1235ccd0
SB
1684 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1685 * released even though returning VM_FAULT_RETRY.
37b23e05
KM
1686 */
1687 if (flags & FAULT_FLAG_RETRY_NOWAIT)
fdc724d6 1688 return VM_FAULT_RETRY;
37b23e05 1689
1235ccd0 1690 release_fault_lock(vmf);
37b23e05 1691 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1692 folio_wait_locked_killable(folio);
37b23e05 1693 else
6baa8d60 1694 folio_wait_locked(folio);
fdc724d6 1695 return VM_FAULT_RETRY;
800bca7c
HL
1696 }
1697 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1698 bool ret;
37b23e05 1699
af7f29d9 1700 ret = __folio_lock_killable(folio);
800bca7c 1701 if (ret) {
1235ccd0 1702 release_fault_lock(vmf);
fdc724d6 1703 return VM_FAULT_RETRY;
800bca7c
HL
1704 }
1705 } else {
af7f29d9 1706 __folio_lock(folio);
d065bd81 1707 }
800bca7c 1708
fdc724d6 1709 return 0;
d065bd81
ML
1710}
1711
e7b563bb 1712/**
0d3f9296
MW
1713 * page_cache_next_miss() - Find the next gap in the page cache.
1714 * @mapping: Mapping.
1715 * @index: Index.
1716 * @max_scan: Maximum range to search.
e7b563bb 1717 *
0d3f9296
MW
1718 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1719 * gap with the lowest index.
e7b563bb 1720 *
0d3f9296
MW
1721 * This function may be called under the rcu_read_lock. However, this will
1722 * not atomically search a snapshot of the cache at a single point in time.
1723 * For example, if a gap is created at index 5, then subsequently a gap is
1724 * created at index 10, page_cache_next_miss covering both indices may
1725 * return 10 if called under the rcu_read_lock.
e7b563bb 1726 *
0d3f9296
MW
1727 * Return: The index of the gap if found, otherwise an index outside the
1728 * range specified (in which case 'return - index >= max_scan' will be true).
16f8eb3e 1729 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1730 */
0d3f9296 1731pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1732 pgoff_t index, unsigned long max_scan)
1733{
0d3f9296 1734 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1735
0d3f9296
MW
1736 while (max_scan--) {
1737 void *entry = xas_next(&xas);
1738 if (!entry || xa_is_value(entry))
16f8eb3e
MK
1739 break;
1740 if (xas.xa_index == 0)
1741 break;
e7b563bb
JW
1742 }
1743
16f8eb3e 1744 return xas.xa_index;
e7b563bb 1745}
0d3f9296 1746EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1747
1748/**
2346a560 1749 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1750 * @mapping: Mapping.
1751 * @index: Index.
1752 * @max_scan: Maximum range to search.
e7b563bb 1753 *
0d3f9296
MW
1754 * Search the range [max(index - max_scan + 1, 0), index] for the
1755 * gap with the highest index.
e7b563bb 1756 *
0d3f9296
MW
1757 * This function may be called under the rcu_read_lock. However, this will
1758 * not atomically search a snapshot of the cache at a single point in time.
1759 * For example, if a gap is created at index 10, then subsequently a gap is
1760 * created at index 5, page_cache_prev_miss() covering both indices may
1761 * return 5 if called under the rcu_read_lock.
e7b563bb 1762 *
0d3f9296
MW
1763 * Return: The index of the gap if found, otherwise an index outside the
1764 * range specified (in which case 'index - return >= max_scan' will be true).
16f8eb3e 1765 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1766 */
0d3f9296 1767pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1768 pgoff_t index, unsigned long max_scan)
1769{
0d3f9296 1770 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1771
0d3f9296
MW
1772 while (max_scan--) {
1773 void *entry = xas_prev(&xas);
1774 if (!entry || xa_is_value(entry))
16f8eb3e
MK
1775 break;
1776 if (xas.xa_index == ULONG_MAX)
1777 break;
e7b563bb
JW
1778 }
1779
16f8eb3e 1780 return xas.xa_index;
e7b563bb 1781}
0d3f9296 1782EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1783
020853b6
MWO
1784/*
1785 * Lockless page cache protocol:
1786 * On the lookup side:
1787 * 1. Load the folio from i_pages
1788 * 2. Increment the refcount if it's not zero
1789 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1790 *
1791 * On the removal side:
1792 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1793 * B. Remove the page from i_pages
1794 * C. Return the page to the page allocator
1795 *
1796 * This means that any page may have its reference count temporarily
1797 * increased by a speculative page cache (or fast GUP) lookup as it can
1798 * be allocated by another user before the RCU grace period expires.
1799 * Because the refcount temporarily acquired here may end up being the
1800 * last refcount on the page, any page allocation must be freeable by
1801 * folio_put().
1802 */
1803
44835d20 1804/*
263e721e 1805 * filemap_get_entry - Get a page cache entry.
485bb99b 1806 * @mapping: the address_space to search
a6de4b48 1807 * @index: The page cache index.
0cd6144a 1808 *
bca65eea
MWO
1809 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1810 * it is returned with an increased refcount. If it is a shadow entry
1811 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1812 * it is returned without further action.
485bb99b 1813 *
bca65eea 1814 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1da177e4 1815 */
263e721e 1816void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1817{
a6de4b48 1818 XA_STATE(xas, &mapping->i_pages, index);
bca65eea 1819 struct folio *folio;
1da177e4 1820
a60637c8
NP
1821 rcu_read_lock();
1822repeat:
4c7472c0 1823 xas_reset(&xas);
bca65eea
MWO
1824 folio = xas_load(&xas);
1825 if (xas_retry(&xas, folio))
4c7472c0
MW
1826 goto repeat;
1827 /*
1828 * A shadow entry of a recently evicted page, or a swap entry from
1829 * shmem/tmpfs. Return it without attempting to raise page count.
1830 */
bca65eea 1831 if (!folio || xa_is_value(folio))
4c7472c0 1832 goto out;
83929372 1833
bca65eea 1834 if (!folio_try_get_rcu(folio))
4c7472c0 1835 goto repeat;
83929372 1836
bca65eea
MWO
1837 if (unlikely(folio != xas_reload(&xas))) {
1838 folio_put(folio);
4c7472c0 1839 goto repeat;
a60637c8 1840 }
27d20fdd 1841out:
a60637c8
NP
1842 rcu_read_unlock();
1843
bca65eea 1844 return folio;
1da177e4 1845}
1da177e4 1846
0cd6144a 1847/**
3f0c6a07 1848 * __filemap_get_folio - Find and get a reference to a folio.
2294b32e
MWO
1849 * @mapping: The address_space to search.
1850 * @index: The page index.
3f0c6a07
MWO
1851 * @fgp_flags: %FGP flags modify how the folio is returned.
1852 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1853 *
2294b32e 1854 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1855 *
2294b32e
MWO
1856 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1857 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1858 *
ffc143db 1859 * If this function returns a folio, it is returned with an increased refcount.
a862f68a 1860 *
66dabbb6 1861 * Return: The found folio or an ERR_PTR() otherwise.
1da177e4 1862 */
3f0c6a07 1863struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
ffc143db 1864 fgf_t fgp_flags, gfp_t gfp)
1da177e4 1865{
3f0c6a07 1866 struct folio *folio;
2457aec6 1867
1da177e4 1868repeat:
263e721e 1869 folio = filemap_get_entry(mapping, index);
48c9d113 1870 if (xa_is_value(folio))
3f0c6a07 1871 folio = NULL;
3f0c6a07 1872 if (!folio)
2457aec6
MG
1873 goto no_page;
1874
1875 if (fgp_flags & FGP_LOCK) {
1876 if (fgp_flags & FGP_NOWAIT) {
3f0c6a07
MWO
1877 if (!folio_trylock(folio)) {
1878 folio_put(folio);
66dabbb6 1879 return ERR_PTR(-EAGAIN);
2457aec6
MG
1880 }
1881 } else {
3f0c6a07 1882 folio_lock(folio);
2457aec6
MG
1883 }
1884
1885 /* Has the page been truncated? */
3f0c6a07
MWO
1886 if (unlikely(folio->mapping != mapping)) {
1887 folio_unlock(folio);
1888 folio_put(folio);
2457aec6
MG
1889 goto repeat;
1890 }
3f0c6a07 1891 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
2457aec6
MG
1892 }
1893
c16eb000 1894 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1895 folio_mark_accessed(folio);
b9306a79
YS
1896 else if (fgp_flags & FGP_WRITE) {
1897 /* Clear idle flag for buffer write */
3f0c6a07
MWO
1898 if (folio_test_idle(folio))
1899 folio_clear_idle(folio);
b9306a79 1900 }
2457aec6 1901
b27652d9
MWO
1902 if (fgp_flags & FGP_STABLE)
1903 folio_wait_stable(folio);
2457aec6 1904no_page:
3f0c6a07 1905 if (!folio && (fgp_flags & FGP_CREAT)) {
4f661701 1906 unsigned order = FGF_GET_ORDER(fgp_flags);
2457aec6 1907 int err;
4f661701 1908
f56753ac 1909 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
3f0c6a07 1910 gfp |= __GFP_WRITE;
45f87de5 1911 if (fgp_flags & FGP_NOFS)
3f0c6a07 1912 gfp &= ~__GFP_FS;
0dd316ba
JA
1913 if (fgp_flags & FGP_NOWAIT) {
1914 gfp &= ~GFP_KERNEL;
1915 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1916 }
a75d4c33 1917 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1918 fgp_flags |= FGP_LOCK;
1919
4f661701
MWO
1920 if (!mapping_large_folio_support(mapping))
1921 order = 0;
1922 if (order > MAX_PAGECACHE_ORDER)
1923 order = MAX_PAGECACHE_ORDER;
1924 /* If we're not aligned, allocate a smaller folio */
1925 if (index & ((1UL << order) - 1))
1926 order = __ffs(index);
2457aec6 1927
4f661701
MWO
1928 do {
1929 gfp_t alloc_gfp = gfp;
1930
1931 err = -ENOMEM;
1932 if (order == 1)
1933 order = 0;
1934 if (order > 0)
1935 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1936 folio = filemap_alloc_folio(alloc_gfp, order);
1937 if (!folio)
1938 continue;
1939
1940 /* Init accessed so avoid atomic mark_page_accessed later */
1941 if (fgp_flags & FGP_ACCESSED)
1942 __folio_set_referenced(folio);
1943
1944 err = filemap_add_folio(mapping, folio, index, gfp);
1945 if (!err)
1946 break;
3f0c6a07
MWO
1947 folio_put(folio);
1948 folio = NULL;
4f661701 1949 } while (order-- > 0);
a75d4c33 1950
4f661701
MWO
1951 if (err == -EEXIST)
1952 goto repeat;
1953 if (err)
1954 return ERR_PTR(err);
a75d4c33 1955 /*
3f0c6a07
MWO
1956 * filemap_add_folio locks the page, and for mmap
1957 * we expect an unlocked page.
a75d4c33 1958 */
3f0c6a07
MWO
1959 if (folio && (fgp_flags & FGP_FOR_MMAP))
1960 folio_unlock(folio);
1da177e4 1961 }
2457aec6 1962
66dabbb6
CH
1963 if (!folio)
1964 return ERR_PTR(-ENOENT);
3f0c6a07 1965 return folio;
1da177e4 1966}
3f0c6a07 1967EXPORT_SYMBOL(__filemap_get_folio);
1da177e4 1968
f5e6429a 1969static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
c7bad633
MWO
1970 xa_mark_t mark)
1971{
f5e6429a 1972 struct folio *folio;
c7bad633
MWO
1973
1974retry:
1975 if (mark == XA_PRESENT)
f5e6429a 1976 folio = xas_find(xas, max);
c7bad633 1977 else
f5e6429a 1978 folio = xas_find_marked(xas, max, mark);
c7bad633 1979
f5e6429a 1980 if (xas_retry(xas, folio))
c7bad633
MWO
1981 goto retry;
1982 /*
1983 * A shadow entry of a recently evicted page, a swap
1984 * entry from shmem/tmpfs or a DAX entry. Return it
1985 * without attempting to raise page count.
1986 */
f5e6429a
MWO
1987 if (!folio || xa_is_value(folio))
1988 return folio;
c7bad633 1989
f5e6429a 1990 if (!folio_try_get_rcu(folio))
c7bad633
MWO
1991 goto reset;
1992
f5e6429a
MWO
1993 if (unlikely(folio != xas_reload(xas))) {
1994 folio_put(folio);
c7bad633
MWO
1995 goto reset;
1996 }
1997
f5e6429a 1998 return folio;
c7bad633
MWO
1999reset:
2000 xas_reset(xas);
2001 goto retry;
2002}
2003
0cd6144a
JW
2004/**
2005 * find_get_entries - gang pagecache lookup
2006 * @mapping: The address_space to search
2007 * @start: The starting page cache index
ca122fe4 2008 * @end: The final page index (inclusive).
0e499ed3 2009 * @fbatch: Where the resulting entries are placed.
0cd6144a
JW
2010 * @indices: The cache indices corresponding to the entries in @entries
2011 *
cf2039af 2012 * find_get_entries() will search for and return a batch of entries in
0e499ed3
MWO
2013 * the mapping. The entries are placed in @fbatch. find_get_entries()
2014 * takes a reference on any actual folios it returns.
0cd6144a 2015 *
0e499ed3
MWO
2016 * The entries have ascending indexes. The indices may not be consecutive
2017 * due to not-present entries or large folios.
0cd6144a 2018 *
0e499ed3 2019 * Any shadow entries of evicted folios, or swap entries from
139b6a6f 2020 * shmem/tmpfs, are included in the returned array.
0cd6144a 2021 *
0e499ed3 2022 * Return: The number of entries which were found.
0cd6144a 2023 */
9fb6beea 2024unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
0e499ed3 2025 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
0cd6144a 2026{
9fb6beea 2027 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2028 struct folio *folio;
0cd6144a
JW
2029
2030 rcu_read_lock();
f5e6429a 2031 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
0e499ed3
MWO
2032 indices[fbatch->nr] = xas.xa_index;
2033 if (!folio_batch_add(fbatch, folio))
0cd6144a
JW
2034 break;
2035 }
2036 rcu_read_unlock();
cf2039af 2037
9fb6beea
VMO
2038 if (folio_batch_count(fbatch)) {
2039 unsigned long nr = 1;
2040 int idx = folio_batch_count(fbatch) - 1;
2041
2042 folio = fbatch->folios[idx];
2043 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2044 nr = folio_nr_pages(folio);
2045 *start = indices[idx] + nr;
2046 }
0e499ed3 2047 return folio_batch_count(fbatch);
0cd6144a
JW
2048}
2049
5c211ba2
MWO
2050/**
2051 * find_lock_entries - Find a batch of pagecache entries.
2052 * @mapping: The address_space to search.
2053 * @start: The starting page cache index.
2054 * @end: The final page index (inclusive).
51dcbdac
MWO
2055 * @fbatch: Where the resulting entries are placed.
2056 * @indices: The cache indices of the entries in @fbatch.
5c211ba2
MWO
2057 *
2058 * find_lock_entries() will return a batch of entries from @mapping.
f5e6429a
MWO
2059 * Swap, shadow and DAX entries are included. Folios are returned
2060 * locked and with an incremented refcount. Folios which are locked
2061 * by somebody else or under writeback are skipped. Folios which are
2062 * partially outside the range are not returned.
5c211ba2
MWO
2063 *
2064 * The entries have ascending indexes. The indices may not be consecutive
f5e6429a
MWO
2065 * due to not-present entries, large folios, folios which could not be
2066 * locked or folios under writeback.
5c211ba2
MWO
2067 *
2068 * Return: The number of entries which were found.
2069 */
3392ca12 2070unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
51dcbdac 2071 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
5c211ba2 2072{
3392ca12 2073 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2074 struct folio *folio;
5c211ba2
MWO
2075
2076 rcu_read_lock();
f5e6429a
MWO
2077 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2078 if (!xa_is_value(folio)) {
3392ca12 2079 if (folio->index < *start)
5c211ba2 2080 goto put;
87b11f86 2081 if (folio_next_index(folio) - 1 > end)
5c211ba2 2082 goto put;
f5e6429a 2083 if (!folio_trylock(folio))
5c211ba2 2084 goto put;
f5e6429a
MWO
2085 if (folio->mapping != mapping ||
2086 folio_test_writeback(folio))
5c211ba2 2087 goto unlock;
f5e6429a
MWO
2088 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2089 folio);
5c211ba2 2090 }
51dcbdac
MWO
2091 indices[fbatch->nr] = xas.xa_index;
2092 if (!folio_batch_add(fbatch, folio))
5c211ba2 2093 break;
6b24ca4a 2094 continue;
5c211ba2 2095unlock:
f5e6429a 2096 folio_unlock(folio);
5c211ba2 2097put:
f5e6429a 2098 folio_put(folio);
5c211ba2
MWO
2099 }
2100 rcu_read_unlock();
2101
3392ca12
VMO
2102 if (folio_batch_count(fbatch)) {
2103 unsigned long nr = 1;
2104 int idx = folio_batch_count(fbatch) - 1;
2105
2106 folio = fbatch->folios[idx];
2107 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2108 nr = folio_nr_pages(folio);
2109 *start = indices[idx] + nr;
2110 }
51dcbdac 2111 return folio_batch_count(fbatch);
5c211ba2
MWO
2112}
2113
1da177e4 2114/**
be0ced5e 2115 * filemap_get_folios - Get a batch of folios
1da177e4
LT
2116 * @mapping: The address_space to search
2117 * @start: The starting page index
b947cee4 2118 * @end: The final page index (inclusive)
be0ced5e 2119 * @fbatch: The batch to fill.
1da177e4 2120 *
be0ced5e
MWO
2121 * Search for and return a batch of folios in the mapping starting at
2122 * index @start and up to index @end (inclusive). The folios are returned
2123 * in @fbatch with an elevated reference count.
1da177e4 2124 *
be0ced5e
MWO
2125 * The first folio may start before @start; if it does, it will contain
2126 * @start. The final folio may extend beyond @end; if it does, it will
2127 * contain @end. The folios have ascending indices. There may be gaps
2128 * between the folios if there are indices which have no folio in the
2129 * page cache. If folios are added to or removed from the page cache
2130 * while this is running, they may or may not be found by this call.
1da177e4 2131 *
be0ced5e
MWO
2132 * Return: The number of folios which were found.
2133 * We also update @start to index the next folio for the traversal.
1da177e4 2134 */
be0ced5e
MWO
2135unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2136 pgoff_t end, struct folio_batch *fbatch)
1da177e4 2137{
fd1b3cee 2138 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2139 struct folio *folio;
a60637c8
NP
2140
2141 rcu_read_lock();
be0ced5e 2142 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
fd1b3cee 2143 /* Skip over shadow, swap and DAX entries */
f5e6429a 2144 if (xa_is_value(folio))
8079b1c8 2145 continue;
be0ced5e
MWO
2146 if (!folio_batch_add(fbatch, folio)) {
2147 unsigned long nr = folio_nr_pages(folio);
a60637c8 2148
be0ced5e
MWO
2149 if (folio_test_hugetlb(folio))
2150 nr = 1;
2151 *start = folio->index + nr;
b947cee4
JK
2152 goto out;
2153 }
a60637c8 2154 }
5b280c0c 2155
b947cee4
JK
2156 /*
2157 * We come here when there is no page beyond @end. We take care to not
2158 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2159 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2160 * already broken anyway.
2161 */
2162 if (end == (pgoff_t)-1)
2163 *start = (pgoff_t)-1;
2164 else
2165 *start = end + 1;
2166out:
a60637c8 2167 rcu_read_unlock();
d72dc8a2 2168
be0ced5e
MWO
2169 return folio_batch_count(fbatch);
2170}
2171EXPORT_SYMBOL(filemap_get_folios);
2172
ebf43500 2173/**
35b47146 2174 * filemap_get_folios_contig - Get a batch of contiguous folios
ebf43500 2175 * @mapping: The address_space to search
35b47146
VMO
2176 * @start: The starting page index
2177 * @end: The final page index (inclusive)
2178 * @fbatch: The batch to fill
ebf43500 2179 *
35b47146
VMO
2180 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2181 * except the returned folios are guaranteed to be contiguous. This may
2182 * not return all contiguous folios if the batch gets filled up.
ebf43500 2183 *
35b47146
VMO
2184 * Return: The number of folios found.
2185 * Also update @start to be positioned for traversal of the next folio.
ebf43500 2186 */
35b47146
VMO
2187
2188unsigned filemap_get_folios_contig(struct address_space *mapping,
2189 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
ebf43500 2190{
35b47146
VMO
2191 XA_STATE(xas, &mapping->i_pages, *start);
2192 unsigned long nr;
e1c37722 2193 struct folio *folio;
a60637c8
NP
2194
2195 rcu_read_lock();
35b47146
VMO
2196
2197 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2198 folio = xas_next(&xas)) {
e1c37722 2199 if (xas_retry(&xas, folio))
3ece58a2
MW
2200 continue;
2201 /*
2202 * If the entry has been swapped out, we can stop looking.
2203 * No current caller is looking for DAX entries.
2204 */
e1c37722 2205 if (xa_is_value(folio))
35b47146 2206 goto update_start;
ebf43500 2207
e1c37722 2208 if (!folio_try_get_rcu(folio))
3ece58a2 2209 goto retry;
83929372 2210
e1c37722 2211 if (unlikely(folio != xas_reload(&xas)))
35b47146 2212 goto put_folio;
a60637c8 2213
35b47146
VMO
2214 if (!folio_batch_add(fbatch, folio)) {
2215 nr = folio_nr_pages(folio);
2216
2217 if (folio_test_hugetlb(folio))
2218 nr = 1;
2219 *start = folio->index + nr;
2220 goto out;
6b24ca4a 2221 }
3ece58a2 2222 continue;
35b47146 2223put_folio:
e1c37722 2224 folio_put(folio);
35b47146 2225
3ece58a2
MW
2226retry:
2227 xas_reset(&xas);
ebf43500 2228 }
35b47146
VMO
2229
2230update_start:
2231 nr = folio_batch_count(fbatch);
2232
2233 if (nr) {
2234 folio = fbatch->folios[nr - 1];
2235 if (folio_test_hugetlb(folio))
2236 *start = folio->index + 1;
2237 else
87b11f86 2238 *start = folio_next_index(folio);
35b47146
VMO
2239 }
2240out:
a60637c8 2241 rcu_read_unlock();
35b47146 2242 return folio_batch_count(fbatch);
ebf43500 2243}
35b47146 2244EXPORT_SYMBOL(filemap_get_folios_contig);
ebf43500 2245
485bb99b 2246/**
247f9e1f
VMO
2247 * filemap_get_folios_tag - Get a batch of folios matching @tag
2248 * @mapping: The address_space to search
2249 * @start: The starting page index
2250 * @end: The final page index (inclusive)
2251 * @tag: The tag index
2252 * @fbatch: The batch to fill
485bb99b 2253 *
247f9e1f 2254 * Same as filemap_get_folios(), but only returning folios tagged with @tag.
a862f68a 2255 *
247f9e1f
VMO
2256 * Return: The number of folios found.
2257 * Also update @start to index the next folio for traversal.
1da177e4 2258 */
247f9e1f
VMO
2259unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2260 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
1da177e4 2261{
247f9e1f 2262 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2263 struct folio *folio;
a60637c8
NP
2264
2265 rcu_read_lock();
247f9e1f 2266 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
a6906972
MW
2267 /*
2268 * Shadow entries should never be tagged, but this iteration
2269 * is lockless so there is a window for page reclaim to evict
247f9e1f 2270 * a page we saw tagged. Skip over it.
a6906972 2271 */
f5e6429a 2272 if (xa_is_value(folio))
139b6a6f 2273 continue;
247f9e1f
VMO
2274 if (!folio_batch_add(fbatch, folio)) {
2275 unsigned long nr = folio_nr_pages(folio);
a60637c8 2276
247f9e1f
VMO
2277 if (folio_test_hugetlb(folio))
2278 nr = 1;
2279 *start = folio->index + nr;
72b045ae
JK
2280 goto out;
2281 }
a60637c8 2282 }
72b045ae 2283 /*
247f9e1f
VMO
2284 * We come here when there is no page beyond @end. We take care to not
2285 * overflow the index @start as it confuses some of the callers. This
2286 * breaks the iteration when there is a page at index -1 but that is
2287 * already broke anyway.
72b045ae
JK
2288 */
2289 if (end == (pgoff_t)-1)
247f9e1f 2290 *start = (pgoff_t)-1;
72b045ae 2291 else
247f9e1f 2292 *start = end + 1;
72b045ae 2293out:
a60637c8 2294 rcu_read_unlock();
1da177e4 2295
247f9e1f 2296 return folio_batch_count(fbatch);
1da177e4 2297}
247f9e1f 2298EXPORT_SYMBOL(filemap_get_folios_tag);
1da177e4 2299
76d42bd9
WF
2300/*
2301 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2302 * a _large_ part of the i/o request. Imagine the worst scenario:
2303 *
2304 * ---R__________________________________________B__________
2305 * ^ reading here ^ bad block(assume 4k)
2306 *
2307 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2308 * => failing the whole request => read(R) => read(R+1) =>
2309 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2310 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2311 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2312 *
2313 * It is going insane. Fix it by quickly scaling down the readahead size.
2314 */
0f8e2db4 2315static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2316{
76d42bd9 2317 ra->ra_pages /= 4;
76d42bd9
WF
2318}
2319
cbd59c48 2320/*
25d6a23e 2321 * filemap_get_read_batch - Get a batch of folios for read
cbd59c48 2322 *
25d6a23e
MWO
2323 * Get a batch of folios which represent a contiguous range of bytes in
2324 * the file. No exceptional entries will be returned. If @index is in
2325 * the middle of a folio, the entire folio will be returned. The last
2326 * folio in the batch may have the readahead flag set or the uptodate flag
2327 * clear so that the caller can take the appropriate action.
cbd59c48
MWO
2328 */
2329static void filemap_get_read_batch(struct address_space *mapping,
25d6a23e 2330 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
cbd59c48
MWO
2331{
2332 XA_STATE(xas, &mapping->i_pages, index);
bdb72932 2333 struct folio *folio;
cbd59c48
MWO
2334
2335 rcu_read_lock();
bdb72932
MWO
2336 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2337 if (xas_retry(&xas, folio))
cbd59c48 2338 continue;
bdb72932 2339 if (xas.xa_index > max || xa_is_value(folio))
cbd59c48 2340 break;
cb995f4e
MWO
2341 if (xa_is_sibling(folio))
2342 break;
bdb72932 2343 if (!folio_try_get_rcu(folio))
cbd59c48
MWO
2344 goto retry;
2345
bdb72932 2346 if (unlikely(folio != xas_reload(&xas)))
25d6a23e 2347 goto put_folio;
cbd59c48 2348
25d6a23e 2349 if (!folio_batch_add(fbatch, folio))
cbd59c48 2350 break;
bdb72932 2351 if (!folio_test_uptodate(folio))
cbd59c48 2352 break;
bdb72932 2353 if (folio_test_readahead(folio))
cbd59c48 2354 break;
87b11f86 2355 xas_advance(&xas, folio_next_index(folio) - 1);
cbd59c48 2356 continue;
25d6a23e 2357put_folio:
bdb72932 2358 folio_put(folio);
cbd59c48
MWO
2359retry:
2360 xas_reset(&xas);
2361 }
2362 rcu_read_unlock();
2363}
2364
290e1a32 2365static int filemap_read_folio(struct file *file, filler_t filler,
9d427b4e 2366 struct folio *folio)
723ef24b 2367{
17604240
CH
2368 bool workingset = folio_test_workingset(folio);
2369 unsigned long pflags;
723ef24b
KO
2370 int error;
2371
723ef24b 2372 /*
68430303 2373 * A previous I/O error may have been due to temporary failures,
7e0a1265 2374 * eg. multipath errors. PG_error will be set again if read_folio
68430303 2375 * fails.
723ef24b 2376 */
9d427b4e 2377 folio_clear_error(folio);
17604240 2378
723ef24b 2379 /* Start the actual read. The read will unlock the page. */
17604240
CH
2380 if (unlikely(workingset))
2381 psi_memstall_enter(&pflags);
290e1a32 2382 error = filler(file, folio);
17604240
CH
2383 if (unlikely(workingset))
2384 psi_memstall_leave(&pflags);
68430303
MWO
2385 if (error)
2386 return error;
723ef24b 2387
9d427b4e 2388 error = folio_wait_locked_killable(folio);
68430303
MWO
2389 if (error)
2390 return error;
9d427b4e 2391 if (folio_test_uptodate(folio))
aa1ec2f6 2392 return 0;
290e1a32
MWO
2393 if (file)
2394 shrink_readahead_size_eio(&file->f_ra);
aa1ec2f6 2395 return -EIO;
723ef24b
KO
2396}
2397
fce70da3 2398static bool filemap_range_uptodate(struct address_space *mapping,
dd5b9d00
DH
2399 loff_t pos, size_t count, struct folio *folio,
2400 bool need_uptodate)
fce70da3 2401{
2fa4eeb8 2402 if (folio_test_uptodate(folio))
fce70da3
MWO
2403 return true;
2404 /* pipes can't handle partially uptodate pages */
dd5b9d00 2405 if (need_uptodate)
fce70da3
MWO
2406 return false;
2407 if (!mapping->a_ops->is_partially_uptodate)
2408 return false;
2fa4eeb8 2409 if (mapping->host->i_blkbits >= folio_shift(folio))
fce70da3
MWO
2410 return false;
2411
2fa4eeb8
MWO
2412 if (folio_pos(folio) > pos) {
2413 count -= folio_pos(folio) - pos;
fce70da3
MWO
2414 pos = 0;
2415 } else {
2fa4eeb8 2416 pos -= folio_pos(folio);
fce70da3
MWO
2417 }
2418
2e7e80f7 2419 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
fce70da3
MWO
2420}
2421
4612aeef 2422static int filemap_update_page(struct kiocb *iocb,
dd5b9d00
DH
2423 struct address_space *mapping, size_t count,
2424 struct folio *folio, bool need_uptodate)
723ef24b 2425{
723ef24b
KO
2426 int error;
2427
730633f0
JK
2428 if (iocb->ki_flags & IOCB_NOWAIT) {
2429 if (!filemap_invalidate_trylock_shared(mapping))
2430 return -EAGAIN;
2431 } else {
2432 filemap_invalidate_lock_shared(mapping);
2433 }
2434
ffdc8dab 2435 if (!folio_trylock(folio)) {
730633f0 2436 error = -EAGAIN;
87d1d7b6 2437 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2438 goto unlock_mapping;
87d1d7b6 2439 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2440 filemap_invalidate_unlock_shared(mapping);
9f2b04a2
MWO
2441 /*
2442 * This is where we usually end up waiting for a
2443 * previously submitted readahead to finish.
2444 */
2445 folio_put_wait_locked(folio, TASK_KILLABLE);
4612aeef 2446 return AOP_TRUNCATED_PAGE;
bd8a1f36 2447 }
ffdc8dab 2448 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2449 if (error)
730633f0 2450 goto unlock_mapping;
723ef24b 2451 }
723ef24b 2452
730633f0 2453 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2454 if (!folio->mapping)
730633f0 2455 goto unlock;
723ef24b 2456
fce70da3 2457 error = 0;
dd5b9d00
DH
2458 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2459 need_uptodate))
fce70da3
MWO
2460 goto unlock;
2461
2462 error = -EAGAIN;
2463 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2464 goto unlock;
2465
290e1a32
MWO
2466 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2467 folio);
730633f0 2468 goto unlock_mapping;
fce70da3 2469unlock:
ffdc8dab 2470 folio_unlock(folio);
730633f0
JK
2471unlock_mapping:
2472 filemap_invalidate_unlock_shared(mapping);
2473 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2474 folio_put(folio);
fce70da3 2475 return error;
723ef24b
KO
2476}
2477
a5d4ad09 2478static int filemap_create_folio(struct file *file,
f253e185 2479 struct address_space *mapping, pgoff_t index,
25d6a23e 2480 struct folio_batch *fbatch)
723ef24b 2481{
a5d4ad09 2482 struct folio *folio;
723ef24b
KO
2483 int error;
2484
a5d4ad09
MWO
2485 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2486 if (!folio)
f253e185 2487 return -ENOMEM;
723ef24b 2488
730633f0 2489 /*
a5d4ad09
MWO
2490 * Protect against truncate / hole punch. Grabbing invalidate_lock
2491 * here assures we cannot instantiate and bring uptodate new
2492 * pagecache folios after evicting page cache during truncate
2493 * and before actually freeing blocks. Note that we could
2494 * release invalidate_lock after inserting the folio into
2495 * the page cache as the locked folio would then be enough to
2496 * synchronize with hole punching. But there are code paths
2497 * such as filemap_update_page() filling in partially uptodate
704528d8 2498 * pages or ->readahead() that need to hold invalidate_lock
a5d4ad09
MWO
2499 * while mapping blocks for IO so let's hold the lock here as
2500 * well to keep locking rules simple.
730633f0
JK
2501 */
2502 filemap_invalidate_lock_shared(mapping);
a5d4ad09 2503 error = filemap_add_folio(mapping, folio, index,
f253e185
MWO
2504 mapping_gfp_constraint(mapping, GFP_KERNEL));
2505 if (error == -EEXIST)
2506 error = AOP_TRUNCATED_PAGE;
2507 if (error)
2508 goto error;
2509
290e1a32 2510 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
f253e185
MWO
2511 if (error)
2512 goto error;
2513
730633f0 2514 filemap_invalidate_unlock_shared(mapping);
25d6a23e 2515 folio_batch_add(fbatch, folio);
f253e185
MWO
2516 return 0;
2517error:
730633f0 2518 filemap_invalidate_unlock_shared(mapping);
a5d4ad09 2519 folio_put(folio);
f253e185 2520 return error;
723ef24b
KO
2521}
2522
5963fe03 2523static int filemap_readahead(struct kiocb *iocb, struct file *file,
65bca53b 2524 struct address_space *mapping, struct folio *folio,
5963fe03
MWO
2525 pgoff_t last_index)
2526{
65bca53b
MWO
2527 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2528
5963fe03
MWO
2529 if (iocb->ki_flags & IOCB_NOIO)
2530 return -EAGAIN;
65bca53b 2531 page_cache_async_ra(&ractl, folio, last_index - folio->index);
5963fe03
MWO
2532 return 0;
2533}
2534
dd5b9d00
DH
2535static int filemap_get_pages(struct kiocb *iocb, size_t count,
2536 struct folio_batch *fbatch, bool need_uptodate)
06c04442
KO
2537{
2538 struct file *filp = iocb->ki_filp;
2539 struct address_space *mapping = filp->f_mapping;
2540 struct file_ra_state *ra = &filp->f_ra;
2541 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2542 pgoff_t last_index;
65bca53b 2543 struct folio *folio;
cbd59c48 2544 int err = 0;
06c04442 2545
5956592c 2546 /* "last_index" is the index of the page beyond the end of the read */
dd5b9d00 2547 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2642fca6 2548retry:
06c04442
KO
2549 if (fatal_signal_pending(current))
2550 return -EINTR;
2551
5956592c 2552 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
25d6a23e 2553 if (!folio_batch_count(fbatch)) {
2642fca6
MWO
2554 if (iocb->ki_flags & IOCB_NOIO)
2555 return -EAGAIN;
2556 page_cache_sync_readahead(mapping, ra, filp, index,
2557 last_index - index);
5956592c 2558 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2642fca6 2559 }
25d6a23e 2560 if (!folio_batch_count(fbatch)) {
f253e185
MWO
2561 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2562 return -EAGAIN;
a5d4ad09 2563 err = filemap_create_folio(filp, mapping,
25d6a23e 2564 iocb->ki_pos >> PAGE_SHIFT, fbatch);
f253e185 2565 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2566 goto retry;
f253e185
MWO
2567 return err;
2568 }
06c04442 2569
25d6a23e 2570 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
65bca53b
MWO
2571 if (folio_test_readahead(folio)) {
2572 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2642fca6
MWO
2573 if (err)
2574 goto err;
2575 }
65bca53b 2576 if (!folio_test_uptodate(folio)) {
25d6a23e
MWO
2577 if ((iocb->ki_flags & IOCB_WAITQ) &&
2578 folio_batch_count(fbatch) > 1)
2642fca6 2579 iocb->ki_flags |= IOCB_NOWAIT;
dd5b9d00
DH
2580 err = filemap_update_page(iocb, mapping, count, folio,
2581 need_uptodate);
2642fca6
MWO
2582 if (err)
2583 goto err;
06c04442
KO
2584 }
2585
2642fca6 2586 return 0;
cbd59c48 2587err:
2642fca6 2588 if (err < 0)
65bca53b 2589 folio_put(folio);
25d6a23e 2590 if (likely(--fbatch->nr))
ff993ba1 2591 return 0;
4612aeef 2592 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2593 goto retry;
2594 return err;
06c04442
KO
2595}
2596
5ccc944d
MWO
2597static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2598{
2599 unsigned int shift = folio_shift(folio);
2600
2601 return (pos1 >> shift == pos2 >> shift);
2602}
2603
485bb99b 2604/**
87fa0f3e
CH
2605 * filemap_read - Read data from the page cache.
2606 * @iocb: The iocb to read.
2607 * @iter: Destination for the data.
2608 * @already_read: Number of bytes already read by the caller.
485bb99b 2609 *
87fa0f3e 2610 * Copies data from the page cache. If the data is not currently present,
7e0a1265 2611 * uses the readahead and read_folio address_space operations to fetch it.
1da177e4 2612 *
87fa0f3e
CH
2613 * Return: Total number of bytes copied, including those already read by
2614 * the caller. If an error happens before any bytes are copied, returns
2615 * a negative error number.
1da177e4 2616 */
87fa0f3e
CH
2617ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2618 ssize_t already_read)
1da177e4 2619{
47c27bc4 2620 struct file *filp = iocb->ki_filp;
06c04442 2621 struct file_ra_state *ra = &filp->f_ra;
36e78914 2622 struct address_space *mapping = filp->f_mapping;
1da177e4 2623 struct inode *inode = mapping->host;
25d6a23e 2624 struct folio_batch fbatch;
ff993ba1 2625 int i, error = 0;
06c04442
KO
2626 bool writably_mapped;
2627 loff_t isize, end_offset;
f04d16ee 2628 loff_t last_pos = ra->prev_pos;
1da177e4 2629
723ef24b 2630 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2631 return 0;
3644e2d2
KO
2632 if (unlikely(!iov_iter_count(iter)))
2633 return 0;
2634
c2a9737f 2635 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
25d6a23e 2636 folio_batch_init(&fbatch);
c2a9737f 2637
06c04442 2638 do {
1da177e4 2639 cond_resched();
5abf186a 2640
723ef24b 2641 /*
06c04442
KO
2642 * If we've already successfully copied some data, then we
2643 * can no longer safely return -EIOCBQUEUED. Hence mark
2644 * an async read NOWAIT at that point.
723ef24b 2645 */
87fa0f3e 2646 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2647 iocb->ki_flags |= IOCB_NOWAIT;
2648
8c8387ee
DH
2649 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2650 break;
2651
3fc40265 2652 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
ff993ba1 2653 if (error < 0)
06c04442 2654 break;
1da177e4 2655
06c04442
KO
2656 /*
2657 * i_size must be checked after we know the pages are Uptodate.
2658 *
2659 * Checking i_size after the check allows us to calculate
2660 * the correct value for "nr", which means the zero-filled
2661 * part of the page is not copied back to userspace (unless
2662 * another truncate extends the file - this is desired though).
2663 */
2664 isize = i_size_read(inode);
2665 if (unlikely(iocb->ki_pos >= isize))
25d6a23e 2666 goto put_folios;
06c04442
KO
2667 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2668
06c04442
KO
2669 /*
2670 * Once we start copying data, we don't want to be touching any
2671 * cachelines that might be contended:
2672 */
2673 writably_mapped = mapping_writably_mapped(mapping);
2674
2675 /*
5ccc944d 2676 * When a read accesses the same folio several times, only
06c04442
KO
2677 * mark it as accessed the first time.
2678 */
f04d16ee
HL
2679 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2680 fbatch.folios[0]))
25d6a23e 2681 folio_mark_accessed(fbatch.folios[0]);
06c04442 2682
25d6a23e
MWO
2683 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2684 struct folio *folio = fbatch.folios[i];
d996fc7f
MWO
2685 size_t fsize = folio_size(folio);
2686 size_t offset = iocb->ki_pos & (fsize - 1);
cbd59c48 2687 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
d996fc7f 2688 fsize - offset);
cbd59c48 2689 size_t copied;
06c04442 2690
d996fc7f 2691 if (end_offset < folio_pos(folio))
cbd59c48
MWO
2692 break;
2693 if (i > 0)
d996fc7f 2694 folio_mark_accessed(folio);
06c04442 2695 /*
d996fc7f
MWO
2696 * If users can be writing to this folio using arbitrary
2697 * virtual addresses, take care of potential aliasing
2698 * before reading the folio on the kernel side.
06c04442 2699 */
d996fc7f
MWO
2700 if (writably_mapped)
2701 flush_dcache_folio(folio);
06c04442 2702
d996fc7f 2703 copied = copy_folio_to_iter(folio, offset, bytes, iter);
06c04442 2704
87fa0f3e 2705 already_read += copied;
06c04442 2706 iocb->ki_pos += copied;
f04d16ee 2707 last_pos = iocb->ki_pos;
06c04442
KO
2708
2709 if (copied < bytes) {
2710 error = -EFAULT;
2711 break;
2712 }
1da177e4 2713 }
25d6a23e
MWO
2714put_folios:
2715 for (i = 0; i < folio_batch_count(&fbatch); i++)
2716 folio_put(fbatch.folios[i]);
2717 folio_batch_init(&fbatch);
06c04442 2718 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2719
0c6aa263 2720 file_accessed(filp);
f04d16ee 2721 ra->prev_pos = last_pos;
87fa0f3e 2722 return already_read ? already_read : error;
1da177e4 2723}
87fa0f3e 2724EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2725
3c435a0f
CH
2726int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2727{
2728 struct address_space *mapping = iocb->ki_filp->f_mapping;
2729 loff_t pos = iocb->ki_pos;
2730 loff_t end = pos + count - 1;
2731
2732 if (iocb->ki_flags & IOCB_NOWAIT) {
2733 if (filemap_range_needs_writeback(mapping, pos, end))
2734 return -EAGAIN;
2735 return 0;
2736 }
2737
2738 return filemap_write_and_wait_range(mapping, pos, end);
2739}
2740
e003f74a
CH
2741int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2742{
2743 struct address_space *mapping = iocb->ki_filp->f_mapping;
2744 loff_t pos = iocb->ki_pos;
2745 loff_t end = pos + count - 1;
2746 int ret;
2747
2748 if (iocb->ki_flags & IOCB_NOWAIT) {
2749 /* we could block if there are any pages in the range */
2750 if (filemap_range_has_page(mapping, pos, end))
2751 return -EAGAIN;
2752 } else {
2753 ret = filemap_write_and_wait_range(mapping, pos, end);
2754 if (ret)
2755 return ret;
2756 }
2757
2758 /*
2759 * After a write we want buffered reads to be sure to go to disk to get
2760 * the new data. We invalidate clean cached page from the region we're
2761 * about to write. We do this *before* the write so that we can return
2762 * without clobbering -EIOCBQUEUED from ->direct_IO().
2763 */
2764 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2765 end >> PAGE_SHIFT);
2766}
2767
485bb99b 2768/**
6abd2322 2769 * generic_file_read_iter - generic filesystem read routine
485bb99b 2770 * @iocb: kernel I/O control block
6abd2322 2771 * @iter: destination for the data read
485bb99b 2772 *
6abd2322 2773 * This is the "read_iter()" routine for all filesystems
1da177e4 2774 * that can use the page cache directly.
41da51bc
AG
2775 *
2776 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2777 * be returned when no data can be read without waiting for I/O requests
2778 * to complete; it doesn't prevent readahead.
2779 *
2780 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2781 * requests shall be made for the read or for readahead. When no data
2782 * can be read, -EAGAIN shall be returned. When readahead would be
2783 * triggered, a partial, possibly empty read shall be returned.
2784 *
a862f68a
MR
2785 * Return:
2786 * * number of bytes copied, even for partial reads
41da51bc 2787 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2788 */
2789ssize_t
ed978a81 2790generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2791{
e7080a43 2792 size_t count = iov_iter_count(iter);
47c27bc4 2793 ssize_t retval = 0;
e7080a43
NS
2794
2795 if (!count)
826ea860 2796 return 0; /* skip atime */
1da177e4 2797
2ba48ce5 2798 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2799 struct file *file = iocb->ki_filp;
ed978a81
AV
2800 struct address_space *mapping = file->f_mapping;
2801 struct inode *inode = mapping->host;
1da177e4 2802
3c435a0f
CH
2803 retval = kiocb_write_and_wait(iocb, count);
2804 if (retval < 0)
2805 return retval;
0d5b0cf2
CH
2806 file_accessed(file);
2807
5ecda137 2808 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2809 if (retval >= 0) {
c64fb5c7 2810 iocb->ki_pos += retval;
5ecda137 2811 count -= retval;
9fe55eea 2812 }
ab2125df
PB
2813 if (retval != -EIOCBQUEUED)
2814 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2815
9fe55eea
SW
2816 /*
2817 * Btrfs can have a short DIO read if we encounter
2818 * compressed extents, so if there was an error, or if
2819 * we've already read everything we wanted to, or if
2820 * there was a short read because we hit EOF, go ahead
2821 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2822 * the rest of the read. Buffered reads will not work for
2823 * DAX files, so don't bother trying.
9fe55eea 2824 */
61d0017e
JA
2825 if (retval < 0 || !count || IS_DAX(inode))
2826 return retval;
2827 if (iocb->ki_pos >= i_size_read(inode))
826ea860 2828 return retval;
1da177e4
LT
2829 }
2830
826ea860 2831 return filemap_read(iocb, iter, retval);
1da177e4 2832}
ed978a81 2833EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2834
07073eb0
DH
2835/*
2836 * Splice subpages from a folio into a pipe.
2837 */
2838size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2839 struct folio *folio, loff_t fpos, size_t size)
2840{
2841 struct page *page;
2842 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2843
2844 page = folio_page(folio, offset / PAGE_SIZE);
2845 size = min(size, folio_size(folio) - offset);
2846 offset %= PAGE_SIZE;
2847
2848 while (spliced < size &&
2849 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2850 struct pipe_buffer *buf = pipe_head_buf(pipe);
2851 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2852
2853 *buf = (struct pipe_buffer) {
2854 .ops = &page_cache_pipe_buf_ops,
2855 .page = page,
2856 .offset = offset,
2857 .len = part,
2858 };
2859 folio_get(folio);
2860 pipe->head++;
2861 page++;
2862 spliced += part;
2863 offset = 0;
2864 }
2865
2866 return spliced;
2867}
2868
9eee8bd8
DH
2869/**
2870 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2871 * @in: The file to read from
2872 * @ppos: Pointer to the file position to read from
2873 * @pipe: The pipe to splice into
2874 * @len: The amount to splice
2875 * @flags: The SPLICE_F_* flags
2876 *
2877 * This function gets folios from a file's pagecache and splices them into the
2878 * pipe. Readahead will be called as necessary to fill more folios. This may
2879 * be used for blockdevs also.
2880 *
2881 * Return: On success, the number of bytes read will be returned and *@ppos
2882 * will be updated if appropriate; 0 will be returned if there is no more data
2883 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2884 * other negative error code will be returned on error. A short read may occur
2885 * if the pipe has insufficient space, we reach the end of the data or we hit a
2886 * hole.
07073eb0
DH
2887 */
2888ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2889 struct pipe_inode_info *pipe,
2890 size_t len, unsigned int flags)
2891{
2892 struct folio_batch fbatch;
2893 struct kiocb iocb;
2894 size_t total_spliced = 0, used, npages;
2895 loff_t isize, end_offset;
2896 bool writably_mapped;
2897 int i, error = 0;
2898
83aeff88
DH
2899 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2900 return 0;
2901
07073eb0
DH
2902 init_sync_kiocb(&iocb, in);
2903 iocb.ki_pos = *ppos;
2904
2905 /* Work out how much data we can actually add into the pipe */
2906 used = pipe_occupancy(pipe->head, pipe->tail);
2907 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2908 len = min_t(size_t, len, npages * PAGE_SIZE);
2909
2910 folio_batch_init(&fbatch);
2911
2912 do {
2913 cond_resched();
2914
c3722208 2915 if (*ppos >= i_size_read(in->f_mapping->host))
07073eb0
DH
2916 break;
2917
2918 iocb.ki_pos = *ppos;
2919 error = filemap_get_pages(&iocb, len, &fbatch, true);
2920 if (error < 0)
2921 break;
2922
2923 /*
2924 * i_size must be checked after we know the pages are Uptodate.
2925 *
2926 * Checking i_size after the check allows us to calculate
2927 * the correct value for "nr", which means the zero-filled
2928 * part of the page is not copied back to userspace (unless
2929 * another truncate extends the file - this is desired though).
2930 */
c3722208 2931 isize = i_size_read(in->f_mapping->host);
07073eb0
DH
2932 if (unlikely(*ppos >= isize))
2933 break;
2934 end_offset = min_t(loff_t, isize, *ppos + len);
2935
2936 /*
2937 * Once we start copying data, we don't want to be touching any
2938 * cachelines that might be contended:
2939 */
2940 writably_mapped = mapping_writably_mapped(in->f_mapping);
2941
2942 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2943 struct folio *folio = fbatch.folios[i];
2944 size_t n;
2945
2946 if (folio_pos(folio) >= end_offset)
2947 goto out;
2948 folio_mark_accessed(folio);
2949
2950 /*
2951 * If users can be writing to this folio using arbitrary
2952 * virtual addresses, take care of potential aliasing
2953 * before reading the folio on the kernel side.
2954 */
2955 if (writably_mapped)
2956 flush_dcache_folio(folio);
2957
2958 n = min_t(loff_t, len, isize - *ppos);
2959 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2960 if (!n)
2961 goto out;
2962 len -= n;
2963 total_spliced += n;
2964 *ppos += n;
2965 in->f_ra.prev_pos = *ppos;
2966 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2967 goto out;
2968 }
2969
2970 folio_batch_release(&fbatch);
2971 } while (len);
2972
2973out:
2974 folio_batch_release(&fbatch);
2975 file_accessed(in);
2976
2977 return total_spliced ? total_spliced : error;
2978}
7c8e01eb 2979EXPORT_SYMBOL(filemap_splice_read);
07073eb0 2980
f5e6429a
MWO
2981static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2982 struct address_space *mapping, struct folio *folio,
54fa39ac 2983 loff_t start, loff_t end, bool seek_data)
41139aa4 2984{
54fa39ac
MWO
2985 const struct address_space_operations *ops = mapping->a_ops;
2986 size_t offset, bsz = i_blocksize(mapping->host);
2987
f5e6429a 2988 if (xa_is_value(folio) || folio_test_uptodate(folio))
54fa39ac
MWO
2989 return seek_data ? start : end;
2990 if (!ops->is_partially_uptodate)
2991 return seek_data ? end : start;
2992
2993 xas_pause(xas);
2994 rcu_read_unlock();
f5e6429a
MWO
2995 folio_lock(folio);
2996 if (unlikely(folio->mapping != mapping))
54fa39ac
MWO
2997 goto unlock;
2998
f5e6429a 2999 offset = offset_in_folio(folio, start) & ~(bsz - 1);
54fa39ac
MWO
3000
3001 do {
2e7e80f7 3002 if (ops->is_partially_uptodate(folio, offset, bsz) ==
f5e6429a 3003 seek_data)
54fa39ac
MWO
3004 break;
3005 start = (start + bsz) & ~(bsz - 1);
3006 offset += bsz;
f5e6429a 3007 } while (offset < folio_size(folio));
54fa39ac 3008unlock:
f5e6429a 3009 folio_unlock(folio);
54fa39ac
MWO
3010 rcu_read_lock();
3011 return start;
41139aa4
MWO
3012}
3013
f5e6429a 3014static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
41139aa4 3015{
f5e6429a 3016 if (xa_is_value(folio))
41139aa4 3017 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
f5e6429a 3018 return folio_size(folio);
41139aa4
MWO
3019}
3020
3021/**
3022 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3023 * @mapping: Address space to search.
3024 * @start: First byte to consider.
3025 * @end: Limit of search (exclusive).
3026 * @whence: Either SEEK_HOLE or SEEK_DATA.
3027 *
3028 * If the page cache knows which blocks contain holes and which blocks
3029 * contain data, your filesystem can use this function to implement
3030 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3031 * entirely memory-based such as tmpfs, and filesystems which support
3032 * unwritten extents.
3033 *
f0953a1b 3034 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
3035 * SEEK_DATA and there is no data after @start. There is an implicit hole
3036 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3037 * and @end contain data.
3038 */
3039loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3040 loff_t end, int whence)
3041{
3042 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 3043 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4 3044 bool seek_data = (whence == SEEK_DATA);
f5e6429a 3045 struct folio *folio;
41139aa4
MWO
3046
3047 if (end <= start)
3048 return -ENXIO;
3049
3050 rcu_read_lock();
f5e6429a 3051 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015 3052 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
f5e6429a 3053 size_t seek_size;
41139aa4
MWO
3054
3055 if (start < pos) {
3056 if (!seek_data)
3057 goto unlock;
3058 start = pos;
3059 }
3060
f5e6429a
MWO
3061 seek_size = seek_folio_size(&xas, folio);
3062 pos = round_up((u64)pos + 1, seek_size);
3063 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
54fa39ac
MWO
3064 seek_data);
3065 if (start < pos)
41139aa4 3066 goto unlock;
ed98b015
HD
3067 if (start >= end)
3068 break;
3069 if (seek_size > PAGE_SIZE)
3070 xas_set(&xas, pos >> PAGE_SHIFT);
f5e6429a
MWO
3071 if (!xa_is_value(folio))
3072 folio_put(folio);
41139aa4 3073 }
41139aa4 3074 if (seek_data)
ed98b015 3075 start = -ENXIO;
41139aa4
MWO
3076unlock:
3077 rcu_read_unlock();
f5e6429a
MWO
3078 if (folio && !xa_is_value(folio))
3079 folio_put(folio);
41139aa4
MWO
3080 if (start > end)
3081 return end;
3082 return start;
3083}
3084
1da177e4 3085#ifdef CONFIG_MMU
1da177e4 3086#define MMAP_LOTSAMISS (100)
6b4c9f44 3087/*
e292e6d6 3088 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44 3089 * @vmf - the vm_fault for this fault.
e292e6d6 3090 * @folio - the folio to lock.
6b4c9f44
JB
3091 * @fpin - the pointer to the file we may pin (or is already pinned).
3092 *
e292e6d6
MWO
3093 * This works similar to lock_folio_or_retry in that it can drop the
3094 * mmap_lock. It differs in that it actually returns the folio locked
3095 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3096 * to drop the mmap_lock then fpin will point to the pinned file and
3097 * needs to be fput()'ed at a later point.
6b4c9f44 3098 */
e292e6d6 3099static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
6b4c9f44
JB
3100 struct file **fpin)
3101{
7c23c782 3102 if (folio_trylock(folio))
6b4c9f44
JB
3103 return 1;
3104
8b0f9fa2
LT
3105 /*
3106 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 3107 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
3108 * is supposed to work. We have way too many special cases..
3109 */
6b4c9f44
JB
3110 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3111 return 0;
3112
3113 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3114 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 3115 if (__folio_lock_killable(folio)) {
6b4c9f44 3116 /*
c1e8d7c6 3117 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
3118 * but all fault_handlers only check for fatal signals
3119 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 3120 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
3121 */
3122 if (*fpin == NULL)
d8ed45c5 3123 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
3124 return 0;
3125 }
3126 } else
7c23c782
MWO
3127 __folio_lock(folio);
3128
6b4c9f44
JB
3129 return 1;
3130}
3131
ef00e08e 3132/*
6b4c9f44
JB
3133 * Synchronous readahead happens when we don't even find a page in the page
3134 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3135 * to drop the mmap sem we return the file that was pinned in order for us to do
3136 * that. If we didn't pin a file then we return NULL. The file that is
3137 * returned needs to be fput()'ed when we're done with it.
ef00e08e 3138 */
6b4c9f44 3139static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 3140{
2a1180f1
JB
3141 struct file *file = vmf->vma->vm_file;
3142 struct file_ra_state *ra = &file->f_ra;
ef00e08e 3143 struct address_space *mapping = file->f_mapping;
fcd9ae4f 3144 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 3145 struct file *fpin = NULL;
dcfa24ba 3146 unsigned long vm_flags = vmf->vma->vm_flags;
e630bfac 3147 unsigned int mmap_miss;
ef00e08e 3148
4687fdbb
MWO
3149#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3150 /* Use the readahead code, even if readahead is disabled */
dcfa24ba 3151 if (vm_flags & VM_HUGEPAGE) {
4687fdbb
MWO
3152 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3153 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3154 ra->size = HPAGE_PMD_NR;
3155 /*
3156 * Fetch two PMD folios, so we get the chance to actually
3157 * readahead, unless we've been told not to.
3158 */
dcfa24ba 3159 if (!(vm_flags & VM_RAND_READ))
4687fdbb
MWO
3160 ra->size *= 2;
3161 ra->async_size = HPAGE_PMD_NR;
3162 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3163 return fpin;
3164 }
3165#endif
3166
ef00e08e 3167 /* If we don't want any read-ahead, don't bother */
dcfa24ba 3168 if (vm_flags & VM_RAND_READ)
6b4c9f44 3169 return fpin;
275b12bf 3170 if (!ra->ra_pages)
6b4c9f44 3171 return fpin;
ef00e08e 3172
dcfa24ba 3173 if (vm_flags & VM_SEQ_READ) {
6b4c9f44 3174 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 3175 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 3176 return fpin;
ef00e08e
LT
3177 }
3178
207d04ba 3179 /* Avoid banging the cache line if not needed */
e630bfac
KS
3180 mmap_miss = READ_ONCE(ra->mmap_miss);
3181 if (mmap_miss < MMAP_LOTSAMISS * 10)
3182 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
3183
3184 /*
3185 * Do we miss much more than hit in this file? If so,
3186 * stop bothering with read-ahead. It will only hurt.
3187 */
e630bfac 3188 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 3189 return fpin;
ef00e08e 3190
d30a1100
WF
3191 /*
3192 * mmap read-around
3193 */
6b4c9f44 3194 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 3195 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
3196 ra->size = ra->ra_pages;
3197 ra->async_size = ra->ra_pages / 4;
db660d46 3198 ractl._index = ra->start;
56a4d67c 3199 page_cache_ra_order(&ractl, ra, 0);
6b4c9f44 3200 return fpin;
ef00e08e
LT
3201}
3202
3203/*
3204 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 3205 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 3206 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 3207 */
6b4c9f44 3208static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
79598ced 3209 struct folio *folio)
ef00e08e 3210{
2a1180f1
JB
3211 struct file *file = vmf->vma->vm_file;
3212 struct file_ra_state *ra = &file->f_ra;
79598ced 3213 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
6b4c9f44 3214 struct file *fpin = NULL;
e630bfac 3215 unsigned int mmap_miss;
ef00e08e
LT
3216
3217 /* If we don't want any read-ahead, don't bother */
5c72feee 3218 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3219 return fpin;
79598ced 3220
e630bfac
KS
3221 mmap_miss = READ_ONCE(ra->mmap_miss);
3222 if (mmap_miss)
3223 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
79598ced
MWO
3224
3225 if (folio_test_readahead(folio)) {
6b4c9f44 3226 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
79598ced 3227 page_cache_async_ra(&ractl, folio, ra->ra_pages);
6b4c9f44
JB
3228 }
3229 return fpin;
ef00e08e
LT
3230}
3231
485bb99b 3232/**
54cb8821 3233 * filemap_fault - read in file data for page fault handling
d0217ac0 3234 * @vmf: struct vm_fault containing details of the fault
485bb99b 3235 *
54cb8821 3236 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3237 * mapped memory region to read in file data during a page fault.
3238 *
3239 * The goto's are kind of ugly, but this streamlines the normal case of having
3240 * it in the page cache, and handles the special cases reasonably without
3241 * having a lot of duplicated code.
9a95f3cf 3242 *
c1e8d7c6 3243 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3244 *
c1e8d7c6 3245 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
e292e6d6 3246 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
9a95f3cf 3247 *
c1e8d7c6 3248 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3249 * has not been released.
3250 *
3251 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3252 *
3253 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3254 */
2bcd6454 3255vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3256{
3257 int error;
11bac800 3258 struct file *file = vmf->vma->vm_file;
6b4c9f44 3259 struct file *fpin = NULL;
1da177e4 3260 struct address_space *mapping = file->f_mapping;
1da177e4 3261 struct inode *inode = mapping->host;
e292e6d6
MWO
3262 pgoff_t max_idx, index = vmf->pgoff;
3263 struct folio *folio;
2bcd6454 3264 vm_fault_t ret = 0;
730633f0 3265 bool mapping_locked = false;
1da177e4 3266
e292e6d6
MWO
3267 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3268 if (unlikely(index >= max_idx))
5307cc1a 3269 return VM_FAULT_SIGBUS;
1da177e4 3270
1da177e4 3271 /*
49426420 3272 * Do we have something in the page cache already?
1da177e4 3273 */
e292e6d6 3274 folio = filemap_get_folio(mapping, index);
66dabbb6 3275 if (likely(!IS_ERR(folio))) {
1da177e4 3276 /*
730633f0
JK
3277 * We found the page, so try async readahead before waiting for
3278 * the lock.
1da177e4 3279 */
730633f0 3280 if (!(vmf->flags & FAULT_FLAG_TRIED))
79598ced 3281 fpin = do_async_mmap_readahead(vmf, folio);
e292e6d6 3282 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3283 filemap_invalidate_lock_shared(mapping);
3284 mapping_locked = true;
3285 }
3286 } else {
ef00e08e 3287 /* No page in the page cache at all */
ef00e08e 3288 count_vm_event(PGMAJFAULT);
2262185c 3289 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3290 ret = VM_FAULT_MAJOR;
6b4c9f44 3291 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3292retry_find:
730633f0 3293 /*
e292e6d6 3294 * See comment in filemap_create_folio() why we need
730633f0
JK
3295 * invalidate_lock
3296 */
3297 if (!mapping_locked) {
3298 filemap_invalidate_lock_shared(mapping);
3299 mapping_locked = true;
3300 }
e292e6d6 3301 folio = __filemap_get_folio(mapping, index,
a75d4c33
JB
3302 FGP_CREAT|FGP_FOR_MMAP,
3303 vmf->gfp_mask);
66dabbb6 3304 if (IS_ERR(folio)) {
6b4c9f44
JB
3305 if (fpin)
3306 goto out_retry;
730633f0 3307 filemap_invalidate_unlock_shared(mapping);
e520e932 3308 return VM_FAULT_OOM;
6b4c9f44 3309 }
1da177e4
LT
3310 }
3311
e292e6d6 3312 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
6b4c9f44 3313 goto out_retry;
b522c94d
ML
3314
3315 /* Did it get truncated? */
e292e6d6
MWO
3316 if (unlikely(folio->mapping != mapping)) {
3317 folio_unlock(folio);
3318 folio_put(folio);
b522c94d
ML
3319 goto retry_find;
3320 }
e292e6d6 3321 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
b522c94d 3322
1da177e4 3323 /*
d00806b1
NP
3324 * We have a locked page in the page cache, now we need to check
3325 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 3326 */
e292e6d6 3327 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3328 /*
3329 * The page was in cache and uptodate and now it is not.
3330 * Strange but possible since we didn't hold the page lock all
3331 * the time. Let's drop everything get the invalidate lock and
3332 * try again.
3333 */
3334 if (!mapping_locked) {
e292e6d6
MWO
3335 folio_unlock(folio);
3336 folio_put(folio);
730633f0
JK
3337 goto retry_find;
3338 }
1da177e4 3339 goto page_not_uptodate;
730633f0 3340 }
1da177e4 3341
6b4c9f44 3342 /*
c1e8d7c6 3343 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3344 * time to return to the upper layer and have it re-find the vma and
3345 * redo the fault.
3346 */
3347 if (fpin) {
e292e6d6 3348 folio_unlock(folio);
6b4c9f44
JB
3349 goto out_retry;
3350 }
730633f0
JK
3351 if (mapping_locked)
3352 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3353
ef00e08e
LT
3354 /*
3355 * Found the page and have a reference on it.
3356 * We must recheck i_size under page lock.
3357 */
e292e6d6
MWO
3358 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3359 if (unlikely(index >= max_idx)) {
3360 folio_unlock(folio);
3361 folio_put(folio);
5307cc1a 3362 return VM_FAULT_SIGBUS;
d00806b1
NP
3363 }
3364
e292e6d6 3365 vmf->page = folio_file_page(folio, index);
83c54070 3366 return ret | VM_FAULT_LOCKED;
1da177e4 3367
1da177e4 3368page_not_uptodate:
1da177e4
LT
3369 /*
3370 * Umm, take care of errors if the page isn't up-to-date.
3371 * Try to re-read it _once_. We do this synchronously,
3372 * because there really aren't any performance issues here
3373 * and we need to check for errors.
3374 */
6b4c9f44 3375 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
290e1a32 3376 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
6b4c9f44
JB
3377 if (fpin)
3378 goto out_retry;
e292e6d6 3379 folio_put(folio);
d00806b1
NP
3380
3381 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3382 goto retry_find;
730633f0 3383 filemap_invalidate_unlock_shared(mapping);
1da177e4 3384
d0217ac0 3385 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3386
3387out_retry:
3388 /*
c1e8d7c6 3389 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3390 * re-find the vma and come back and find our hopefully still populated
3391 * page.
3392 */
38a55db9 3393 if (!IS_ERR(folio))
e292e6d6 3394 folio_put(folio);
730633f0
JK
3395 if (mapping_locked)
3396 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3397 if (fpin)
3398 fput(fpin);
3399 return ret | VM_FAULT_RETRY;
54cb8821
NP
3400}
3401EXPORT_SYMBOL(filemap_fault);
3402
8808ecab
MWO
3403static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3404 pgoff_t start)
f1820361 3405{
f9ce0be7
KS
3406 struct mm_struct *mm = vmf->vma->vm_mm;
3407
3408 /* Huge page is mapped? No need to proceed. */
3409 if (pmd_trans_huge(*vmf->pmd)) {
8808ecab
MWO
3410 folio_unlock(folio);
3411 folio_put(folio);
f9ce0be7
KS
3412 return true;
3413 }
3414
8808ecab
MWO
3415 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3416 struct page *page = folio_file_page(folio, start);
e0f43fa5
YS
3417 vm_fault_t ret = do_set_pmd(vmf, page);
3418 if (!ret) {
3419 /* The page is mapped successfully, reference consumed. */
8808ecab 3420 folio_unlock(folio);
e0f43fa5 3421 return true;
f9ce0be7 3422 }
f9ce0be7
KS
3423 }
3424
03c4f204
QZ
3425 if (pmd_none(*vmf->pmd))
3426 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
f9ce0be7 3427
f9ce0be7
KS
3428 return false;
3429}
3430
de74976e
YF
3431static struct folio *next_uptodate_folio(struct xa_state *xas,
3432 struct address_space *mapping, pgoff_t end_pgoff)
f9ce0be7 3433{
de74976e 3434 struct folio *folio = xas_next_entry(xas, end_pgoff);
f9ce0be7
KS
3435 unsigned long max_idx;
3436
3437 do {
9184a307 3438 if (!folio)
f9ce0be7 3439 return NULL;
9184a307 3440 if (xas_retry(xas, folio))
f9ce0be7 3441 continue;
9184a307 3442 if (xa_is_value(folio))
f9ce0be7 3443 continue;
9184a307 3444 if (folio_test_locked(folio))
f9ce0be7 3445 continue;
9184a307 3446 if (!folio_try_get_rcu(folio))
f9ce0be7
KS
3447 continue;
3448 /* Has the page moved or been split? */
9184a307 3449 if (unlikely(folio != xas_reload(xas)))
f9ce0be7 3450 goto skip;
9184a307 3451 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
f9ce0be7 3452 goto skip;
9184a307 3453 if (!folio_trylock(folio))
f9ce0be7 3454 goto skip;
9184a307 3455 if (folio->mapping != mapping)
f9ce0be7 3456 goto unlock;
9184a307 3457 if (!folio_test_uptodate(folio))
f9ce0be7
KS
3458 goto unlock;
3459 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3460 if (xas->xa_index >= max_idx)
3461 goto unlock;
820b05e9 3462 return folio;
f9ce0be7 3463unlock:
9184a307 3464 folio_unlock(folio);
f9ce0be7 3465skip:
9184a307
MWO
3466 folio_put(folio);
3467 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
f9ce0be7
KS
3468
3469 return NULL;
3470}
3471
de74976e
YF
3472/*
3473 * Map page range [start_page, start_page + nr_pages) of folio.
3474 * start_page is gotten from start by folio_page(folio, start)
3475 */
3476static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3477 struct folio *folio, unsigned long start,
3478 unsigned long addr, unsigned int nr_pages)
f9ce0be7 3479{
de74976e
YF
3480 vm_fault_t ret = 0;
3481 struct vm_area_struct *vma = vmf->vma;
3482 struct file *file = vma->vm_file;
3483 struct page *page = folio_page(folio, start);
3484 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
617c28ec
YF
3485 unsigned int count = 0;
3486 pte_t *old_ptep = vmf->pte;
f9ce0be7 3487
de74976e 3488 do {
617c28ec
YF
3489 if (PageHWPoison(page + count))
3490 goto skip;
de74976e
YF
3491
3492 if (mmap_miss > 0)
3493 mmap_miss--;
3494
3495 /*
3496 * NOTE: If there're PTE markers, we'll leave them to be
3497 * handled in the specific fault path, and it'll prohibit the
3498 * fault-around logic.
3499 */
617c28ec
YF
3500 if (!pte_none(vmf->pte[count]))
3501 goto skip;
de74976e 3502
617c28ec
YF
3503 count++;
3504 continue;
3505skip:
3506 if (count) {
3507 set_pte_range(vmf, folio, page, count, addr);
3508 folio_ref_add(folio, count);
3509 if (in_range(vmf->address, addr, count))
3510 ret = VM_FAULT_NOPAGE;
3511 }
de74976e 3512
617c28ec
YF
3513 count++;
3514 page += count;
3515 vmf->pte += count;
3516 addr += count * PAGE_SIZE;
3517 count = 0;
3518 } while (--nr_pages > 0);
3519
3520 if (count) {
3521 set_pte_range(vmf, folio, page, count, addr);
3522 folio_ref_add(folio, count);
3523 if (in_range(vmf->address, addr, count))
3524 ret = VM_FAULT_NOPAGE;
3525 }
de74976e 3526
617c28ec 3527 vmf->pte = old_ptep;
de74976e
YF
3528 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3529
3530 return ret;
f9ce0be7
KS
3531}
3532
3533vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3534 pgoff_t start_pgoff, pgoff_t end_pgoff)
3535{
3536 struct vm_area_struct *vma = vmf->vma;
3537 struct file *file = vma->vm_file;
f1820361 3538 struct address_space *mapping = file->f_mapping;
bae473a4 3539 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3540 unsigned long addr;
070e807c 3541 XA_STATE(xas, &mapping->i_pages, start_pgoff);
820b05e9 3542 struct folio *folio;
f9ce0be7 3543 vm_fault_t ret = 0;
de74976e 3544 int nr_pages = 0;
f1820361
KS
3545
3546 rcu_read_lock();
de74976e 3547 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
820b05e9 3548 if (!folio)
f9ce0be7 3549 goto out;
f1820361 3550
8808ecab 3551 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
f9ce0be7
KS
3552 ret = VM_FAULT_NOPAGE;
3553 goto out;
3554 }
f1820361 3555
9d3af4b4
WD
3556 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3557 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
65747aaf
HD
3558 if (!vmf->pte) {
3559 folio_unlock(folio);
3560 folio_put(folio);
3561 goto out;
3562 }
f9ce0be7 3563 do {
de74976e 3564 unsigned long end;
7267ec00 3565
9d3af4b4 3566 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3567 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3568 last_pgoff = xas.xa_index;
de74976e
YF
3569 end = folio->index + folio_nr_pages(folio) - 1;
3570 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
f9ce0be7 3571
5c041f5d
PX
3572 /*
3573 * NOTE: If there're PTE markers, we'll leave them to be
3574 * handled in the specific fault path, and it'll prohibit the
3575 * fault-around logic.
3576 */
c33c7948 3577 if (!pte_none(ptep_get(vmf->pte)))
7267ec00 3578 goto unlock;
f9ce0be7 3579
de74976e
YF
3580 ret |= filemap_map_folio_range(vmf, folio,
3581 xas.xa_index - folio->index, addr, nr_pages);
46bdb427 3582
f1820361 3583unlock:
820b05e9
MWO
3584 folio_unlock(folio);
3585 folio_put(folio);
de74976e
YF
3586 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3587 } while (folio);
f9ce0be7
KS
3588 pte_unmap_unlock(vmf->pte, vmf->ptl);
3589out:
f1820361 3590 rcu_read_unlock();
f9ce0be7 3591 return ret;
f1820361
KS
3592}
3593EXPORT_SYMBOL(filemap_map_pages);
3594
2bcd6454 3595vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3596{
5df1a672 3597 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
960ea971 3598 struct folio *folio = page_folio(vmf->page);
2bcd6454 3599 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3600
5df1a672 3601 sb_start_pagefault(mapping->host->i_sb);
11bac800 3602 file_update_time(vmf->vma->vm_file);
960ea971
MWO
3603 folio_lock(folio);
3604 if (folio->mapping != mapping) {
3605 folio_unlock(folio);
4fcf1c62
JK
3606 ret = VM_FAULT_NOPAGE;
3607 goto out;
3608 }
14da9200 3609 /*
960ea971 3610 * We mark the folio dirty already here so that when freeze is in
14da9200 3611 * progress, we are guaranteed that writeback during freezing will
960ea971 3612 * see the dirty folio and writeprotect it again.
14da9200 3613 */
960ea971
MWO
3614 folio_mark_dirty(folio);
3615 folio_wait_stable(folio);
4fcf1c62 3616out:
5df1a672 3617 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3618 return ret;
3619}
4fcf1c62 3620
f0f37e2f 3621const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3622 .fault = filemap_fault,
f1820361 3623 .map_pages = filemap_map_pages,
4fcf1c62 3624 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3625};
3626
3627/* This is used for a general mmap of a disk file */
3628
68d68ff6 3629int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3630{
3631 struct address_space *mapping = file->f_mapping;
3632
7e0a1265 3633 if (!mapping->a_ops->read_folio)
1da177e4
LT
3634 return -ENOEXEC;
3635 file_accessed(file);
3636 vma->vm_ops = &generic_file_vm_ops;
3637 return 0;
3638}
1da177e4
LT
3639
3640/*
3641 * This is for filesystems which do not implement ->writepage.
3642 */
3643int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3644{
3645 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3646 return -EINVAL;
3647 return generic_file_mmap(file, vma);
3648}
3649#else
4b96a37d 3650vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3651{
4b96a37d 3652 return VM_FAULT_SIGBUS;
45397228 3653}
68d68ff6 3654int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3655{
3656 return -ENOSYS;
3657}
68d68ff6 3658int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3659{
3660 return -ENOSYS;
3661}
3662#endif /* CONFIG_MMU */
3663
45397228 3664EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3665EXPORT_SYMBOL(generic_file_mmap);
3666EXPORT_SYMBOL(generic_file_readonly_mmap);
3667
539a3322 3668static struct folio *do_read_cache_folio(struct address_space *mapping,
e9b5b23e 3669 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
67f9fd91 3670{
539a3322 3671 struct folio *folio;
1da177e4 3672 int err;
07950008
MWO
3673
3674 if (!filler)
3675 filler = mapping->a_ops->read_folio;
1da177e4 3676repeat:
539a3322 3677 folio = filemap_get_folio(mapping, index);
66dabbb6 3678 if (IS_ERR(folio)) {
539a3322
MWO
3679 folio = filemap_alloc_folio(gfp, 0);
3680 if (!folio)
eb2be189 3681 return ERR_PTR(-ENOMEM);
539a3322 3682 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 3683 if (unlikely(err)) {
539a3322 3684 folio_put(folio);
eb2be189
NP
3685 if (err == -EEXIST)
3686 goto repeat;
22ecdb4f 3687 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3688 return ERR_PTR(err);
3689 }
32b63529 3690
9bc3e869 3691 goto filler;
32b63529 3692 }
539a3322 3693 if (folio_test_uptodate(folio))
1da177e4
LT
3694 goto out;
3695
81f4c03b
MWO
3696 if (!folio_trylock(folio)) {
3697 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3698 goto repeat;
3699 }
ebded027 3700
81f4c03b 3701 /* Folio was truncated from mapping */
539a3322
MWO
3702 if (!folio->mapping) {
3703 folio_unlock(folio);
3704 folio_put(folio);
32b63529 3705 goto repeat;
1da177e4 3706 }
ebded027
MG
3707
3708 /* Someone else locked and filled the page in a very small window */
539a3322
MWO
3709 if (folio_test_uptodate(folio)) {
3710 folio_unlock(folio);
1da177e4
LT
3711 goto out;
3712 }
faffdfa0 3713
9bc3e869 3714filler:
290e1a32 3715 err = filemap_read_folio(file, filler, folio);
1dfa24a4 3716 if (err) {
9bc3e869 3717 folio_put(folio);
1dfa24a4
MWO
3718 if (err == AOP_TRUNCATED_PAGE)
3719 goto repeat;
9bc3e869
MWO
3720 return ERR_PTR(err);
3721 }
32b63529 3722
c855ff37 3723out:
539a3322
MWO
3724 folio_mark_accessed(folio);
3725 return folio;
6fe6900e 3726}
0531b2aa
LT
3727
3728/**
e9b5b23e
MWO
3729 * read_cache_folio - Read into page cache, fill it if needed.
3730 * @mapping: The address_space to read from.
3731 * @index: The index to read.
3732 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3733 * @file: Passed to filler function, may be NULL if not required.
0531b2aa 3734 *
e9b5b23e
MWO
3735 * Read one page into the page cache. If it succeeds, the folio returned
3736 * will contain @index, but it may not be the first page of the folio.
a862f68a 3737 *
e9b5b23e
MWO
3738 * If the filler function returns an error, it will be returned to the
3739 * caller.
730633f0 3740 *
e9b5b23e
MWO
3741 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3742 * Return: An uptodate folio on success, ERR_PTR() on failure.
0531b2aa 3743 */
539a3322 3744struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
e9b5b23e 3745 filler_t filler, struct file *file)
539a3322 3746{
e9b5b23e 3747 return do_read_cache_folio(mapping, index, filler, file,
539a3322
MWO
3748 mapping_gfp_mask(mapping));
3749}
3750EXPORT_SYMBOL(read_cache_folio);
3751
3e629597
MWO
3752/**
3753 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3754 * @mapping: The address_space for the folio.
3755 * @index: The index that the allocated folio will contain.
3756 * @gfp: The page allocator flags to use if allocating.
3757 *
3758 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3759 * any new memory allocations done using the specified allocation flags.
3760 *
3761 * The most likely error from this function is EIO, but ENOMEM is
3762 * possible and so is EINTR. If ->read_folio returns another error,
3763 * that will be returned to the caller.
3764 *
3765 * The function expects mapping->invalidate_lock to be already held.
3766 *
3767 * Return: Uptodate folio on success, ERR_PTR() on failure.
3768 */
3769struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3770 pgoff_t index, gfp_t gfp)
3771{
3772 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3773}
3774EXPORT_SYMBOL(mapping_read_folio_gfp);
3775
539a3322 3776static struct page *do_read_cache_page(struct address_space *mapping,
e9b5b23e 3777 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
539a3322
MWO
3778{
3779 struct folio *folio;
3780
e9b5b23e 3781 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
539a3322
MWO
3782 if (IS_ERR(folio))
3783 return &folio->page;
3784 return folio_file_page(folio, index);
3785}
3786
67f9fd91 3787struct page *read_cache_page(struct address_space *mapping,
e9b5b23e 3788 pgoff_t index, filler_t *filler, struct file *file)
0531b2aa 3789{
e9b5b23e 3790 return do_read_cache_page(mapping, index, filler, file,
d322a8e5 3791 mapping_gfp_mask(mapping));
0531b2aa 3792}
67f9fd91 3793EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3794
3795/**
3796 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3797 * @mapping: the page's address_space
3798 * @index: the page index
3799 * @gfp: the page allocator flags to use if allocating
3800 *
3801 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3802 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3803 *
3804 * If the page does not get brought uptodate, return -EIO.
a862f68a 3805 *
730633f0
JK
3806 * The function expects mapping->invalidate_lock to be already held.
3807 *
a862f68a 3808 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3809 */
3810struct page *read_cache_page_gfp(struct address_space *mapping,
3811 pgoff_t index,
3812 gfp_t gfp)
3813{
6c45b454 3814 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3815}
3816EXPORT_SYMBOL(read_cache_page_gfp);
3817
a92853b6
KK
3818/*
3819 * Warn about a page cache invalidation failure during a direct I/O write.
3820 */
c402a9a9 3821static void dio_warn_stale_pagecache(struct file *filp)
a92853b6
KK
3822{
3823 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3824 char pathname[128];
a92853b6
KK
3825 char *path;
3826
5df1a672 3827 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3828 if (__ratelimit(&_rs)) {
3829 path = file_path(filp, pathname, sizeof(pathname));
3830 if (IS_ERR(path))
3831 path = "(unknown)";
3832 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3833 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3834 current->comm);
3835 }
3836}
3837
c402a9a9 3838void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
1da177e4 3839{
c402a9a9 3840 struct address_space *mapping = iocb->ki_filp->f_mapping;
1da177e4 3841
c402a9a9
CH
3842 if (mapping->nrpages &&
3843 invalidate_inode_pages2_range(mapping,
3844 iocb->ki_pos >> PAGE_SHIFT,
3845 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3846 dio_warn_stale_pagecache(iocb->ki_filp);
3847}
a969e903 3848
1da177e4 3849ssize_t
1af5bb49 3850generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4 3851{
c402a9a9
CH
3852 struct address_space *mapping = iocb->ki_filp->f_mapping;
3853 size_t write_len = iov_iter_count(from);
3854 ssize_t written;
a969e903 3855
55635ba7
AR
3856 /*
3857 * If a page can not be invalidated, return 0 to fall back
3858 * to buffered write.
3859 */
e003f74a 3860 written = kiocb_invalidate_pages(iocb, write_len);
55635ba7
AR
3861 if (written) {
3862 if (written == -EBUSY)
3863 return 0;
c402a9a9 3864 return written;
a969e903
CH
3865 }
3866
639a93a5 3867 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3868
3869 /*
3870 * Finally, try again to invalidate clean pages which might have been
3871 * cached by non-direct readahead, or faulted in by get_user_pages()
3872 * if the source of the write was an mmap'ed region of the file
3873 * we're writing. Either one is a pretty crazy thing to do,
3874 * so we don't support it 100%. If this invalidation
3875 * fails, tough, the write still worked...
332391a9
LC
3876 *
3877 * Most of the time we do not need this since dio_complete() will do
3878 * the invalidation for us. However there are some file systems that
3879 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3880 * them by removing it completely.
3881 *
9266a140
KK
3882 * Noticeable example is a blkdev_direct_IO().
3883 *
80c1fe90 3884 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3885 */
1da177e4 3886 if (written > 0) {
c402a9a9
CH
3887 struct inode *inode = mapping->host;
3888 loff_t pos = iocb->ki_pos;
3889
3890 kiocb_invalidate_post_direct_write(iocb, written);
0116651c 3891 pos += written;
639a93a5 3892 write_len -= written;
0116651c
NK
3893 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3894 i_size_write(inode, pos);
1da177e4
LT
3895 mark_inode_dirty(inode);
3896 }
5cb6c6c7 3897 iocb->ki_pos = pos;
1da177e4 3898 }
ab2125df
PB
3899 if (written != -EIOCBQUEUED)
3900 iov_iter_revert(from, write_len - iov_iter_count(from));
1da177e4
LT
3901 return written;
3902}
3903EXPORT_SYMBOL(generic_file_direct_write);
3904
800ba295 3905ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
afddba49 3906{
800ba295
MWO
3907 struct file *file = iocb->ki_filp;
3908 loff_t pos = iocb->ki_pos;
afddba49
NP
3909 struct address_space *mapping = file->f_mapping;
3910 const struct address_space_operations *a_ops = mapping->a_ops;
3911 long status = 0;
3912 ssize_t written = 0;
674b892e 3913
afddba49
NP
3914 do {
3915 struct page *page;
afddba49
NP
3916 unsigned long offset; /* Offset into pagecache page */
3917 unsigned long bytes; /* Bytes to write to page */
3918 size_t copied; /* Bytes copied from user */
1468c6f4 3919 void *fsdata = NULL;
afddba49 3920
09cbfeaf
KS
3921 offset = (pos & (PAGE_SIZE - 1));
3922 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3923 iov_iter_count(i));
3924
3925again:
00a3d660
LT
3926 /*
3927 * Bring in the user page that we will copy from _first_.
3928 * Otherwise there's a nasty deadlock on copying from the
3929 * same page as we're writing to, without it being marked
3930 * up-to-date.
00a3d660 3931 */
631f871f 3932 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
00a3d660
LT
3933 status = -EFAULT;
3934 break;
3935 }
3936
296291cd
JK
3937 if (fatal_signal_pending(current)) {
3938 status = -EINTR;
3939 break;
3940 }
3941
9d6b0cd7 3942 status = a_ops->write_begin(file, mapping, pos, bytes,
afddba49 3943 &page, &fsdata);
2457aec6 3944 if (unlikely(status < 0))
afddba49
NP
3945 break;
3946
931e80e4 3947 if (mapping_writably_mapped(mapping))
3948 flush_dcache_page(page);
00a3d660 3949
f0b65f39 3950 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3951 flush_dcache_page(page);
3952
3953 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3954 page, fsdata);
f0b65f39
AV
3955 if (unlikely(status != copied)) {
3956 iov_iter_revert(i, copied - max(status, 0L));
3957 if (unlikely(status < 0))
3958 break;
3959 }
afddba49
NP
3960 cond_resched();
3961
bc1bb416 3962 if (unlikely(status == 0)) {
afddba49 3963 /*
bc1bb416
AV
3964 * A short copy made ->write_end() reject the
3965 * thing entirely. Might be memory poisoning
3966 * halfway through, might be a race with munmap,
3967 * might be severe memory pressure.
afddba49 3968 */
bc1bb416
AV
3969 if (copied)
3970 bytes = copied;
afddba49
NP
3971 goto again;
3972 }
f0b65f39
AV
3973 pos += status;
3974 written += status;
afddba49
NP
3975
3976 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3977 } while (iov_iter_count(i));
3978
182c25e9
CH
3979 if (!written)
3980 return status;
3981 iocb->ki_pos += written;
3982 return written;
afddba49 3983}
3b93f911 3984EXPORT_SYMBOL(generic_perform_write);
1da177e4 3985
e4dd9de3 3986/**
8174202b 3987 * __generic_file_write_iter - write data to a file
e4dd9de3 3988 * @iocb: IO state structure (file, offset, etc.)
8174202b 3989 * @from: iov_iter with data to write
e4dd9de3
JK
3990 *
3991 * This function does all the work needed for actually writing data to a
3992 * file. It does all basic checks, removes SUID from the file, updates
3993 * modification times and calls proper subroutines depending on whether we
3994 * do direct IO or a standard buffered write.
3995 *
9608703e 3996 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3997 * object which does not need locking at all.
3998 *
3999 * This function does *not* take care of syncing data in case of O_SYNC write.
4000 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 4001 * avoid syncing under i_rwsem.
a862f68a
MR
4002 *
4003 * Return:
4004 * * number of bytes written, even for truncated writes
4005 * * negative error code if no data has been written at all
e4dd9de3 4006 */
8174202b 4007ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
4008{
4009 struct file *file = iocb->ki_filp;
68d68ff6 4010 struct address_space *mapping = file->f_mapping;
44fff0fa
CH
4011 struct inode *inode = mapping->host;
4012 ssize_t ret;
1da177e4 4013
44fff0fa
CH
4014 ret = file_remove_privs(file);
4015 if (ret)
4016 return ret;
1da177e4 4017
44fff0fa
CH
4018 ret = file_update_time(file);
4019 if (ret)
4020 return ret;
fb5527e6 4021
2ba48ce5 4022 if (iocb->ki_flags & IOCB_DIRECT) {
44fff0fa 4023 ret = generic_file_direct_write(iocb, from);
1da177e4 4024 /*
fbbbad4b
MW
4025 * If the write stopped short of completing, fall back to
4026 * buffered writes. Some filesystems do this for writes to
4027 * holes, for example. For DAX files, a buffered write will
4028 * not succeed (even if it did, DAX does not handle dirty
4029 * page-cache pages correctly).
1da177e4 4030 */
44fff0fa
CH
4031 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4032 return ret;
4033 return direct_write_fallback(iocb, from, ret,
4034 generic_perform_write(iocb, from));
fb5527e6 4035 }
44fff0fa
CH
4036
4037 return generic_perform_write(iocb, from);
1da177e4 4038}
8174202b 4039EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 4040
e4dd9de3 4041/**
8174202b 4042 * generic_file_write_iter - write data to a file
e4dd9de3 4043 * @iocb: IO state structure
8174202b 4044 * @from: iov_iter with data to write
e4dd9de3 4045 *
8174202b 4046 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 4047 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 4048 * and acquires i_rwsem as needed.
a862f68a
MR
4049 * Return:
4050 * * negative error code if no data has been written at all of
4051 * vfs_fsync_range() failed for a synchronous write
4052 * * number of bytes written, even for truncated writes
e4dd9de3 4053 */
8174202b 4054ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
4055{
4056 struct file *file = iocb->ki_filp;
148f948b 4057 struct inode *inode = file->f_mapping->host;
1da177e4 4058 ssize_t ret;
1da177e4 4059
5955102c 4060 inode_lock(inode);
3309dd04
AV
4061 ret = generic_write_checks(iocb, from);
4062 if (ret > 0)
5f380c7f 4063 ret = __generic_file_write_iter(iocb, from);
5955102c 4064 inode_unlock(inode);
1da177e4 4065
e2592217
CH
4066 if (ret > 0)
4067 ret = generic_write_sync(iocb, ret);
1da177e4
LT
4068 return ret;
4069}
8174202b 4070EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 4071
cf9a2ae8 4072/**
82c50f8b
MWO
4073 * filemap_release_folio() - Release fs-specific metadata on a folio.
4074 * @folio: The folio which the kernel is trying to free.
4075 * @gfp: Memory allocation flags (and I/O mode).
cf9a2ae8 4076 *
82c50f8b
MWO
4077 * The address_space is trying to release any data attached to a folio
4078 * (presumably at folio->private).
cf9a2ae8 4079 *
82c50f8b
MWO
4080 * This will also be called if the private_2 flag is set on a page,
4081 * indicating that the folio has other metadata associated with it.
266cf658 4082 *
82c50f8b
MWO
4083 * The @gfp argument specifies whether I/O may be performed to release
4084 * this page (__GFP_IO), and whether the call may block
4085 * (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 4086 *
82c50f8b 4087 * Return: %true if the release was successful, otherwise %false.
cf9a2ae8 4088 */
82c50f8b 4089bool filemap_release_folio(struct folio *folio, gfp_t gfp)
cf9a2ae8 4090{
82c50f8b 4091 struct address_space * const mapping = folio->mapping;
cf9a2ae8 4092
82c50f8b 4093 BUG_ON(!folio_test_locked(folio));
0201ebf2
DH
4094 if (!folio_needs_release(folio))
4095 return true;
82c50f8b
MWO
4096 if (folio_test_writeback(folio))
4097 return false;
cf9a2ae8 4098
fa29000b
MWO
4099 if (mapping && mapping->a_ops->release_folio)
4100 return mapping->a_ops->release_folio(folio, gfp);
68189fef 4101 return try_to_free_buffers(folio);
cf9a2ae8 4102}
82c50f8b 4103EXPORT_SYMBOL(filemap_release_folio);
cf264e13
NP
4104
4105#ifdef CONFIG_CACHESTAT_SYSCALL
4106/**
4107 * filemap_cachestat() - compute the page cache statistics of a mapping
4108 * @mapping: The mapping to compute the statistics for.
4109 * @first_index: The starting page cache index.
4110 * @last_index: The final page index (inclusive).
4111 * @cs: the cachestat struct to write the result to.
4112 *
4113 * This will query the page cache statistics of a mapping in the
4114 * page range of [first_index, last_index] (inclusive). The statistics
4115 * queried include: number of dirty pages, number of pages marked for
4116 * writeback, and the number of (recently) evicted pages.
4117 */
4118static void filemap_cachestat(struct address_space *mapping,
4119 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4120{
4121 XA_STATE(xas, &mapping->i_pages, first_index);
4122 struct folio *folio;
4123
4124 rcu_read_lock();
4125 xas_for_each(&xas, folio, last_index) {
4126 unsigned long nr_pages;
4127 pgoff_t folio_first_index, folio_last_index;
4128
4129 if (xas_retry(&xas, folio))
4130 continue;
4131
4132 if (xa_is_value(folio)) {
4133 /* page is evicted */
4134 void *shadow = (void *)folio;
4135 bool workingset; /* not used */
4136 int order = xa_get_order(xas.xa, xas.xa_index);
4137
4138 nr_pages = 1 << order;
4139 folio_first_index = round_down(xas.xa_index, 1 << order);
4140 folio_last_index = folio_first_index + nr_pages - 1;
4141
4142 /* Folios might straddle the range boundaries, only count covered pages */
4143 if (folio_first_index < first_index)
4144 nr_pages -= first_index - folio_first_index;
4145
4146 if (folio_last_index > last_index)
4147 nr_pages -= folio_last_index - last_index;
4148
4149 cs->nr_evicted += nr_pages;
4150
4151#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4152 if (shmem_mapping(mapping)) {
4153 /* shmem file - in swap cache */
4154 swp_entry_t swp = radix_to_swp_entry(folio);
4155
4156 shadow = get_shadow_from_swap_cache(swp);
4157 }
4158#endif
4159 if (workingset_test_recent(shadow, true, &workingset))
4160 cs->nr_recently_evicted += nr_pages;
4161
4162 goto resched;
4163 }
4164
4165 nr_pages = folio_nr_pages(folio);
4166 folio_first_index = folio_pgoff(folio);
4167 folio_last_index = folio_first_index + nr_pages - 1;
4168
4169 /* Folios might straddle the range boundaries, only count covered pages */
4170 if (folio_first_index < first_index)
4171 nr_pages -= first_index - folio_first_index;
4172
4173 if (folio_last_index > last_index)
4174 nr_pages -= folio_last_index - last_index;
4175
4176 /* page is in cache */
4177 cs->nr_cache += nr_pages;
4178
4179 if (folio_test_dirty(folio))
4180 cs->nr_dirty += nr_pages;
4181
4182 if (folio_test_writeback(folio))
4183 cs->nr_writeback += nr_pages;
4184
4185resched:
4186 if (need_resched()) {
4187 xas_pause(&xas);
4188 cond_resched_rcu();
4189 }
4190 }
4191 rcu_read_unlock();
4192}
4193
4194/*
4195 * The cachestat(2) system call.
4196 *
4197 * cachestat() returns the page cache statistics of a file in the
4198 * bytes range specified by `off` and `len`: number of cached pages,
4199 * number of dirty pages, number of pages marked for writeback,
4200 * number of evicted pages, and number of recently evicted pages.
4201 *
4202 * An evicted page is a page that is previously in the page cache
4203 * but has been evicted since. A page is recently evicted if its last
4204 * eviction was recent enough that its reentry to the cache would
4205 * indicate that it is actively being used by the system, and that
4206 * there is memory pressure on the system.
4207 *
4208 * `off` and `len` must be non-negative integers. If `len` > 0,
4209 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4210 * we will query in the range from `off` to the end of the file.
4211 *
4212 * The `flags` argument is unused for now, but is included for future
4213 * extensibility. User should pass 0 (i.e no flag specified).
4214 *
4215 * Currently, hugetlbfs is not supported.
4216 *
4217 * Because the status of a page can change after cachestat() checks it
4218 * but before it returns to the application, the returned values may
4219 * contain stale information.
4220 *
4221 * return values:
4222 * zero - success
4223 * -EFAULT - cstat or cstat_range points to an illegal address
4224 * -EINVAL - invalid flags
4225 * -EBADF - invalid file descriptor
4226 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4227 */
4228SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4229 struct cachestat_range __user *, cstat_range,
4230 struct cachestat __user *, cstat, unsigned int, flags)
4231{
4232 struct fd f = fdget(fd);
4233 struct address_space *mapping;
4234 struct cachestat_range csr;
4235 struct cachestat cs;
4236 pgoff_t first_index, last_index;
4237
4238 if (!f.file)
4239 return -EBADF;
4240
4241 if (copy_from_user(&csr, cstat_range,
4242 sizeof(struct cachestat_range))) {
4243 fdput(f);
4244 return -EFAULT;
4245 }
4246
4247 /* hugetlbfs is not supported */
4248 if (is_file_hugepages(f.file)) {
4249 fdput(f);
4250 return -EOPNOTSUPP;
4251 }
4252
4253 if (flags != 0) {
4254 fdput(f);
4255 return -EINVAL;
4256 }
4257
4258 first_index = csr.off >> PAGE_SHIFT;
4259 last_index =
4260 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4261 memset(&cs, 0, sizeof(struct cachestat));
4262 mapping = f.file->f_mapping;
4263 filemap_cachestat(mapping, first_index, last_index, &cs);
4264 fdput(f);
4265
4266 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4267 return -EFAULT;
4268
4269 return 0;
4270}
4271#endif /* CONFIG_CACHESTAT_SYSCALL */