]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/gup.c
arm64: tegra: Use correct interrupts for Tegra234 TKE
[thirdparty/linux.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
a6e79df9 21#include <linux/shmem_fs.h>
1027e443 22
33a709b2 23#include <asm/mmu_context.h>
1027e443 24#include <asm/tlbflush.h>
2667f50e 25
4bbd4c77
KS
26#include "internal.h"
27
df06b37f
KB
28struct follow_page_context {
29 struct dev_pagemap *pgmap;
30 unsigned int page_mask;
31};
32
b6a2619c
DH
33static inline void sanity_check_pinned_pages(struct page **pages,
34 unsigned long npages)
35{
36 if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 return;
38
39 /*
40 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 * can no longer turn them possibly shared and PageAnonExclusive() will
42 * stick around until the page is freed.
43 *
44 * We'd like to verify that our pinned anonymous pages are still mapped
45 * exclusively. The issue with anon THP is that we don't know how
46 * they are/were mapped when pinning them. However, for anon
47 * THP we can assume that either the given page (PTE-mapped THP) or
48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 * neither is the case, there is certainly something wrong.
50 */
51 for (; npages; npages--, pages++) {
52 struct page *page = *pages;
53 struct folio *folio = page_folio(page);
54
c8070b78
DH
55 if (is_zero_page(page) ||
56 !folio_test_anon(folio))
b6a2619c
DH
57 continue;
58 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 else
61 /* Either a PTE-mapped or a PMD-mapped THP. */
62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 !PageAnonExclusive(page), page);
64 }
65}
66
cd1adf1b 67/*
ece1ed7b 68 * Return the folio with ref appropriately incremented,
cd1adf1b 69 * or NULL if that failed.
a707cdd5 70 */
ece1ed7b 71static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 72{
ece1ed7b 73 struct folio *folio;
a707cdd5 74
59409373 75retry:
ece1ed7b
MWO
76 folio = page_folio(page);
77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 78 return NULL;
ece1ed7b 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 80 return NULL;
c24d3732
JH
81
82 /*
ece1ed7b
MWO
83 * At this point we have a stable reference to the folio; but it
84 * could be that between calling page_folio() and the refcount
85 * increment, the folio was split, in which case we'd end up
86 * holding a reference on a folio that has nothing to do with the page
c24d3732 87 * we were given anymore.
ece1ed7b
MWO
88 * So now that the folio is stable, recheck that the page still
89 * belongs to this folio.
c24d3732 90 */
ece1ed7b 91 if (unlikely(page_folio(page) != folio)) {
f4f451a1
MS
92 if (!put_devmap_managed_page_refs(&folio->page, refs))
93 folio_put_refs(folio, refs);
59409373 94 goto retry;
c24d3732
JH
95 }
96
ece1ed7b 97 return folio;
a707cdd5
JH
98}
99
3967db22 100/**
ece1ed7b 101 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 102 * @page: pointer to page to be grabbed
ece1ed7b 103 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
3faa52c0 106 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
ece1ed7b 113 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 114 *
ece1ed7b 115 * FOLL_PIN on large folios: folio's refcount will be incremented by
94688e8e 116 * @refs, and its pincount will be incremented by @refs.
3967db22 117 *
ece1ed7b 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 119 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 120 *
ece1ed7b
MWO
121 * Return: The folio containing @page (with refcount appropriately
122 * incremented) for success, or NULL upon failure. If neither FOLL_GET
123 * nor FOLL_PIN was set, that's considered failure, and furthermore,
124 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 125 */
ece1ed7b 126struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0 127{
503670ee
VMO
128 struct folio *folio;
129
130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 return NULL;
132
4003f107
LG
133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 return NULL;
135
3faa52c0 136 if (flags & FOLL_GET)
ece1ed7b 137 return try_get_folio(page, refs);
ece1ed7b 138
503670ee 139 /* FOLL_PIN is set */
c8070b78 140
6e17c6de
LT
141 /*
142 * Don't take a pin on the zero page - it's not going anywhere
143 * and it is used in a *lot* of places.
144 */
145 if (is_zero_page(page))
146 return page_folio(page);
df3a0a21 147
6e17c6de 148 folio = try_get_folio(page, refs);
503670ee
VMO
149 if (!folio)
150 return NULL;
c24d3732 151
503670ee
VMO
152 /*
153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 * right zone, so fail and let the caller fall back to the slow
155 * path.
156 */
157 if (unlikely((flags & FOLL_LONGTERM) &&
158 !folio_is_longterm_pinnable(folio))) {
159 if (!put_devmap_managed_page_refs(&folio->page, refs))
160 folio_put_refs(folio, refs);
161 return NULL;
3faa52c0 162 }
088b8aa5 163
503670ee
VMO
164 /*
165 * When pinning a large folio, use an exact count to track it.
166 *
167 * However, be sure to *also* increment the normal folio
168 * refcount field at least once, so that the folio really
169 * is pinned. That's why the refcount from the earlier
170 * try_get_folio() is left intact.
171 */
172 if (folio_test_large(folio))
173 atomic_add(refs, &folio->_pincount);
174 else
175 folio_ref_add(folio,
176 refs * (GUP_PIN_COUNTING_BIAS - 1));
177 /*
178 * Adjust the pincount before re-checking the PTE for changes.
179 * This is essentially a smp_mb() and is paired with a memory
180 * barrier in page_try_share_anon_rmap().
181 */
182 smp_mb__after_atomic();
47e29d32 183
503670ee 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
3faa52c0 185
503670ee 186 return folio;
3faa52c0
JH
187}
188
d8ddc099 189static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
190{
191 if (flags & FOLL_PIN) {
c8070b78
DH
192 if (is_zero_folio(folio))
193 return;
d8ddc099
MWO
194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 if (folio_test_large(folio))
94688e8e 196 atomic_sub(refs, &folio->_pincount);
4509b42c
JG
197 else
198 refs *= GUP_PIN_COUNTING_BIAS;
199 }
200
f4f451a1
MS
201 if (!put_devmap_managed_page_refs(&folio->page, refs))
202 folio_put_refs(folio, refs);
4509b42c
JG
203}
204
3faa52c0
JH
205/**
206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
207 * @page: pointer to page to be grabbed
208 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
209 *
210 * This might not do anything at all, depending on the flags argument.
211 *
212 * "grab" names in this file mean, "look at flags to decide whether to use
213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214 *
3faa52c0 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 216 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 217 * "refs=1".
3faa52c0 218 *
0f089235
LG
219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221 *
222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
223 * be grabbed.
3faa52c0 224 */
0f089235 225int __must_check try_grab_page(struct page *page, unsigned int flags)
3faa52c0 226{
5fec0719
MWO
227 struct folio *folio = page_folio(page);
228
5fec0719 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
0f089235 230 return -ENOMEM;
3faa52c0 231
4003f107
LG
232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 return -EREMOTEIO;
3faa52c0 234
c36c04c2 235 if (flags & FOLL_GET)
5fec0719 236 folio_ref_inc(folio);
c36c04c2 237 else if (flags & FOLL_PIN) {
c8070b78
DH
238 /*
239 * Don't take a pin on the zero page - it's not going anywhere
240 * and it is used in a *lot* of places.
241 */
242 if (is_zero_page(page))
243 return 0;
244
c36c04c2 245 /*
5fec0719 246 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
247 * increment the normal page refcount field at least once,
248 * so that the page really is pinned.
c36c04c2 249 */
5fec0719
MWO
250 if (folio_test_large(folio)) {
251 folio_ref_add(folio, 1);
94688e8e 252 atomic_add(1, &folio->_pincount);
8ea2979c 253 } else {
5fec0719 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 255 }
c36c04c2 256
5fec0719 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
258 }
259
0f089235 260 return 0;
3faa52c0
JH
261}
262
3faa52c0
JH
263/**
264 * unpin_user_page() - release a dma-pinned page
265 * @page: pointer to page to be released
266 *
267 * Pages that were pinned via pin_user_pages*() must be released via either
268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269 * that such pages can be separately tracked and uniquely handled. In
270 * particular, interactions with RDMA and filesystems need special handling.
271 */
272void unpin_user_page(struct page *page)
273{
b6a2619c 274 sanity_check_pinned_pages(&page, 1);
d8ddc099 275 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
276}
277EXPORT_SYMBOL(unpin_user_page);
278
1101fb8f
DH
279/**
280 * folio_add_pin - Try to get an additional pin on a pinned folio
281 * @folio: The folio to be pinned
282 *
283 * Get an additional pin on a folio we already have a pin on. Makes no change
284 * if the folio is a zero_page.
285 */
286void folio_add_pin(struct folio *folio)
287{
288 if (is_zero_folio(folio))
289 return;
290
291 /*
292 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 * page refcount field at least once, so that the page really is
294 * pinned.
295 */
296 if (folio_test_large(folio)) {
297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 folio_ref_inc(folio);
299 atomic_inc(&folio->_pincount);
300 } else {
301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 }
304}
305
659508f9 306static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 307 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 308{
659508f9
MWO
309 struct page *next = nth_page(start, i);
310 struct folio *folio = page_folio(next);
458a4f78
JM
311 unsigned int nr = 1;
312
659508f9 313 if (folio_test_large(folio))
4c654229 314 nr = min_t(unsigned int, npages - i,
659508f9 315 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 316
458a4f78 317 *ntails = nr;
659508f9 318 return folio;
458a4f78
JM
319}
320
12521c76 321static inline struct folio *gup_folio_next(struct page **list,
28297dbc 322 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 323{
12521c76 324 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
325 unsigned int nr;
326
8745d7f6 327 for (nr = i + 1; nr < npages; nr++) {
12521c76 328 if (page_folio(list[nr]) != folio)
8745d7f6
JM
329 break;
330 }
331
8745d7f6 332 *ntails = nr - i;
12521c76 333 return folio;
8745d7f6
JM
334}
335
fc1d8e7c 336/**
f1f6a7dd 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 338 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 339 * @npages: number of pages in the @pages array.
2d15eb31 340 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
341 *
342 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343 * variants called on that page.
344 *
345 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 346 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
347 * listed as clean. In any case, releases all pages using unpin_user_page(),
348 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 349 *
f1f6a7dd 350 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 351 *
2d15eb31
AM
352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353 * required, then the caller should a) verify that this is really correct,
354 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 355 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
356 *
357 */
f1f6a7dd
JH
358void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 bool make_dirty)
fc1d8e7c 360{
12521c76
MWO
361 unsigned long i;
362 struct folio *folio;
363 unsigned int nr;
2d15eb31
AM
364
365 if (!make_dirty) {
f1f6a7dd 366 unpin_user_pages(pages, npages);
2d15eb31
AM
367 return;
368 }
369
b6a2619c 370 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
371 for (i = 0; i < npages; i += nr) {
372 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31
AM
373 /*
374 * Checking PageDirty at this point may race with
375 * clear_page_dirty_for_io(), but that's OK. Two key
376 * cases:
377 *
378 * 1) This code sees the page as already dirty, so it
379 * skips the call to set_page_dirty(). That could happen
380 * because clear_page_dirty_for_io() called
381 * page_mkclean(), followed by set_page_dirty().
382 * However, now the page is going to get written back,
383 * which meets the original intention of setting it
384 * dirty, so all is well: clear_page_dirty_for_io() goes
385 * on to call TestClearPageDirty(), and write the page
386 * back.
387 *
388 * 2) This code sees the page as clean, so it calls
389 * set_page_dirty(). The page stays dirty, despite being
390 * written back, so it gets written back again in the
391 * next writeback cycle. This is harmless.
392 */
12521c76
MWO
393 if (!folio_test_dirty(folio)) {
394 folio_lock(folio);
395 folio_mark_dirty(folio);
396 folio_unlock(folio);
397 }
398 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 399 }
fc1d8e7c 400}
f1f6a7dd 401EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 402
458a4f78
JM
403/**
404 * unpin_user_page_range_dirty_lock() - release and optionally dirty
405 * gup-pinned page range
406 *
407 * @page: the starting page of a range maybe marked dirty, and definitely released.
408 * @npages: number of consecutive pages to release.
409 * @make_dirty: whether to mark the pages dirty
410 *
411 * "gup-pinned page range" refers to a range of pages that has had one of the
412 * pin_user_pages() variants called on that page.
413 *
414 * For the page ranges defined by [page .. page+npages], make that range (or
415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416 * page range was previously listed as clean.
417 *
418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419 * required, then the caller should a) verify that this is really correct,
420 * because _lock() is usually required, and b) hand code it:
421 * set_page_dirty_lock(), unpin_user_page().
422 *
423 */
424void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 bool make_dirty)
426{
659508f9
MWO
427 unsigned long i;
428 struct folio *folio;
429 unsigned int nr;
430
431 for (i = 0; i < npages; i += nr) {
432 folio = gup_folio_range_next(page, npages, i, &nr);
433 if (make_dirty && !folio_test_dirty(folio)) {
434 folio_lock(folio);
435 folio_mark_dirty(folio);
436 folio_unlock(folio);
437 }
438 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
439 }
440}
441EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442
b6a2619c
DH
443static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444{
445 unsigned long i;
446 struct folio *folio;
447 unsigned int nr;
448
449 /*
450 * Don't perform any sanity checks because we might have raced with
451 * fork() and some anonymous pages might now actually be shared --
452 * which is why we're unpinning after all.
453 */
454 for (i = 0; i < npages; i += nr) {
455 folio = gup_folio_next(pages, npages, i, &nr);
456 gup_put_folio(folio, nr, FOLL_PIN);
457 }
458}
459
fc1d8e7c 460/**
f1f6a7dd 461 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
462 * @pages: array of pages to be marked dirty and released.
463 * @npages: number of pages in the @pages array.
464 *
f1f6a7dd 465 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 466 *
f1f6a7dd 467 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 468 */
f1f6a7dd 469void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 470{
12521c76
MWO
471 unsigned long i;
472 struct folio *folio;
473 unsigned int nr;
fc1d8e7c 474
146608bb
JH
475 /*
476 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 * leaving them pinned), but probably not. More likely, gup/pup returned
478 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 */
480 if (WARN_ON(IS_ERR_VALUE(npages)))
481 return;
31b912de 482
b6a2619c 483 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
484 for (i = 0; i < npages; i += nr) {
485 folio = gup_folio_next(pages, npages, i, &nr);
486 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 487 }
fc1d8e7c 488}
f1f6a7dd 489EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 490
a458b76a
AA
491/*
492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
494 * cache bouncing on large SMP machines for concurrent pinned gups.
495 */
496static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497{
498 if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 set_bit(MMF_HAS_PINNED, mm_flags);
500}
501
050a9adc 502#ifdef CONFIG_MMU
69e68b4f
KS
503static struct page *no_page_table(struct vm_area_struct *vma,
504 unsigned int flags)
4bbd4c77 505{
69e68b4f
KS
506 /*
507 * When core dumping an enormous anonymous area that nobody
508 * has touched so far, we don't want to allocate unnecessary pages or
509 * page tables. Return error instead of NULL to skip handle_mm_fault,
510 * then get_dump_page() will return NULL to leave a hole in the dump.
511 * But we can only make this optimization where a hole would surely
512 * be zero-filled if handle_mm_fault() actually did handle it.
513 */
a0137f16
AK
514 if ((flags & FOLL_DUMP) &&
515 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
516 return ERR_PTR(-EFAULT);
517 return NULL;
518}
4bbd4c77 519
1027e443
KS
520static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 pte_t *pte, unsigned int flags)
522{
1027e443 523 if (flags & FOLL_TOUCH) {
c33c7948
RR
524 pte_t orig_entry = ptep_get(pte);
525 pte_t entry = orig_entry;
1027e443
KS
526
527 if (flags & FOLL_WRITE)
528 entry = pte_mkdirty(entry);
529 entry = pte_mkyoung(entry);
530
c33c7948 531 if (!pte_same(orig_entry, entry)) {
1027e443
KS
532 set_pte_at(vma->vm_mm, address, pte, entry);
533 update_mmu_cache(vma, address, pte);
534 }
535 }
536
537 /* Proper page table entry exists, but no corresponding struct page */
538 return -EEXIST;
539}
540
5535be30
DH
541/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 struct vm_area_struct *vma,
544 unsigned int flags)
19be0eaf 545{
5535be30
DH
546 /* If the pte is writable, we can write to the page. */
547 if (pte_write(pte))
548 return true;
549
550 /* Maybe FOLL_FORCE is set to override it? */
551 if (!(flags & FOLL_FORCE))
552 return false;
553
554 /* But FOLL_FORCE has no effect on shared mappings */
555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 return false;
557
558 /* ... or read-only private ones */
559 if (!(vma->vm_flags & VM_MAYWRITE))
560 return false;
561
562 /* ... or already writable ones that just need to take a write fault */
563 if (vma->vm_flags & VM_WRITE)
564 return false;
565
566 /*
567 * See can_change_pte_writable(): we broke COW and could map the page
568 * writable if we have an exclusive anonymous page ...
569 */
570 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 return false;
572
573 /* ... and a write-fault isn't required for other reasons. */
574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 return false;
576 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
577}
578
69e68b4f 579static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
580 unsigned long address, pmd_t *pmd, unsigned int flags,
581 struct dev_pagemap **pgmap)
69e68b4f
KS
582{
583 struct mm_struct *mm = vma->vm_mm;
584 struct page *page;
585 spinlock_t *ptl;
586 pte_t *ptep, pte;
f28d4363 587 int ret;
4bbd4c77 588
eddb1c22
JH
589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 (FOLL_PIN | FOLL_GET)))
592 return ERR_PTR(-EINVAL);
4bbd4c77
KS
593
594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
04dee9e8
HD
595 if (!ptep)
596 return no_page_table(vma, flags);
c33c7948 597 pte = ptep_get(ptep);
f7355e99
DH
598 if (!pte_present(pte))
599 goto no_page;
d74943a2 600 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
4bbd4c77 601 goto no_page;
4bbd4c77
KS
602
603 page = vm_normal_page(vma, address, pte);
5535be30
DH
604
605 /*
606 * We only care about anon pages in can_follow_write_pte() and don't
607 * have to worry about pte_devmap() because they are never anon.
608 */
609 if ((flags & FOLL_WRITE) &&
610 !can_follow_write_pte(pte, page, vma, flags)) {
611 page = NULL;
612 goto out;
613 }
614
3faa52c0 615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 616 /*
3faa52c0
JH
617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 * case since they are only valid while holding the pgmap
619 * reference.
3565fce3 620 */
df06b37f
KB
621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 if (*pgmap)
3565fce3
DW
623 page = pte_page(pte);
624 else
625 goto no_page;
626 } else if (unlikely(!page)) {
1027e443
KS
627 if (flags & FOLL_DUMP) {
628 /* Avoid special (like zero) pages in core dumps */
629 page = ERR_PTR(-EFAULT);
630 goto out;
631 }
632
633 if (is_zero_pfn(pte_pfn(pte))) {
634 page = pte_page(pte);
635 } else {
1027e443
KS
636 ret = follow_pfn_pte(vma, address, ptep, flags);
637 page = ERR_PTR(ret);
638 goto out;
639 }
4bbd4c77
KS
640 }
641
84209e87 642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
a7f22660
DH
643 page = ERR_PTR(-EMLINK);
644 goto out;
645 }
b6a2619c
DH
646
647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 !PageAnonExclusive(page), page);
649
3faa52c0 650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
0f089235
LG
651 ret = try_grab_page(page, flags);
652 if (unlikely(ret)) {
653 page = ERR_PTR(ret);
3faa52c0 654 goto out;
8fde12ca 655 }
4003f107 656
f28d4363
CI
657 /*
658 * We need to make the page accessible if and only if we are going
659 * to access its content (the FOLL_PIN case). Please see
660 * Documentation/core-api/pin_user_pages.rst for details.
661 */
662 if (flags & FOLL_PIN) {
663 ret = arch_make_page_accessible(page);
664 if (ret) {
665 unpin_user_page(page);
666 page = ERR_PTR(ret);
667 goto out;
668 }
669 }
4bbd4c77
KS
670 if (flags & FOLL_TOUCH) {
671 if ((flags & FOLL_WRITE) &&
672 !pte_dirty(pte) && !PageDirty(page))
673 set_page_dirty(page);
674 /*
675 * pte_mkyoung() would be more correct here, but atomic care
676 * is needed to avoid losing the dirty bit: it is easier to use
677 * mark_page_accessed().
678 */
679 mark_page_accessed(page);
680 }
1027e443 681out:
4bbd4c77 682 pte_unmap_unlock(ptep, ptl);
4bbd4c77 683 return page;
4bbd4c77
KS
684no_page:
685 pte_unmap_unlock(ptep, ptl);
686 if (!pte_none(pte))
69e68b4f
KS
687 return NULL;
688 return no_page_table(vma, flags);
689}
690
080dbb61
AK
691static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 unsigned long address, pud_t *pudp,
df06b37f
KB
693 unsigned int flags,
694 struct follow_page_context *ctx)
69e68b4f 695{
68827280 696 pmd_t *pmd, pmdval;
69e68b4f
KS
697 spinlock_t *ptl;
698 struct page *page;
699 struct mm_struct *mm = vma->vm_mm;
700
080dbb61 701 pmd = pmd_offset(pudp, address);
26e1a0c3 702 pmdval = pmdp_get_lockless(pmd);
68827280 703 if (pmd_none(pmdval))
69e68b4f 704 return no_page_table(vma, flags);
f7355e99 705 if (!pmd_present(pmdval))
e66f17ff 706 return no_page_table(vma, flags);
68827280 707 if (pmd_devmap(pmdval)) {
3565fce3 708 ptl = pmd_lock(mm, pmd);
df06b37f 709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
710 spin_unlock(ptl);
711 if (page)
712 return page;
713 }
68827280 714 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 715 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 716
d74943a2 717 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
db08f203
AK
718 return no_page_table(vma, flags);
719
6742d293 720 ptl = pmd_lock(mm, pmd);
84c3fc4e
ZY
721 if (unlikely(!pmd_present(*pmd))) {
722 spin_unlock(ptl);
f7355e99 723 return no_page_table(vma, flags);
84c3fc4e 724 }
6742d293
KS
725 if (unlikely(!pmd_trans_huge(*pmd))) {
726 spin_unlock(ptl);
df06b37f 727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 728 }
4066c119 729 if (flags & FOLL_SPLIT_PMD) {
2378118b
HD
730 spin_unlock(ptl);
731 split_huge_pmd(vma, pmd, address);
732 /* If pmd was left empty, stuff a page table in there quickly */
733 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
df06b37f 734 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 735 }
6742d293
KS
736 page = follow_trans_huge_pmd(vma, address, pmd, flags);
737 spin_unlock(ptl);
df06b37f 738 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 739 return page;
4bbd4c77
KS
740}
741
080dbb61
AK
742static struct page *follow_pud_mask(struct vm_area_struct *vma,
743 unsigned long address, p4d_t *p4dp,
df06b37f
KB
744 unsigned int flags,
745 struct follow_page_context *ctx)
080dbb61
AK
746{
747 pud_t *pud;
748 spinlock_t *ptl;
749 struct page *page;
750 struct mm_struct *mm = vma->vm_mm;
751
752 pud = pud_offset(p4dp, address);
753 if (pud_none(*pud))
754 return no_page_table(vma, flags);
080dbb61
AK
755 if (pud_devmap(*pud)) {
756 ptl = pud_lock(mm, pud);
df06b37f 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
758 spin_unlock(ptl);
759 if (page)
760 return page;
761 }
762 if (unlikely(pud_bad(*pud)))
763 return no_page_table(vma, flags);
764
df06b37f 765 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
766}
767
080dbb61
AK
768static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 unsigned long address, pgd_t *pgdp,
df06b37f
KB
770 unsigned int flags,
771 struct follow_page_context *ctx)
080dbb61
AK
772{
773 p4d_t *p4d;
774
775 p4d = p4d_offset(pgdp, address);
776 if (p4d_none(*p4d))
777 return no_page_table(vma, flags);
778 BUILD_BUG_ON(p4d_huge(*p4d));
779 if (unlikely(p4d_bad(*p4d)))
780 return no_page_table(vma, flags);
781
df06b37f 782 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
783}
784
785/**
786 * follow_page_mask - look up a page descriptor from a user-virtual address
787 * @vma: vm_area_struct mapping @address
788 * @address: virtual address to look up
789 * @flags: flags modifying lookup behaviour
78179556
MR
790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791 * pointer to output page_mask
080dbb61
AK
792 *
793 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794 *
78179556
MR
795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797 *
a7f22660
DH
798 * When getting an anonymous page and the caller has to trigger unsharing
799 * of a shared anonymous page first, -EMLINK is returned. The caller should
800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801 * relevant with FOLL_PIN and !FOLL_WRITE.
802 *
78179556
MR
803 * On output, the @ctx->page_mask is set according to the size of the page.
804 *
805 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
806 * an error pointer if there is a mapping to something not represented
807 * by a page descriptor (see also vm_normal_page()).
808 */
a7030aea 809static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 810 unsigned long address, unsigned int flags,
df06b37f 811 struct follow_page_context *ctx)
080dbb61
AK
812{
813 pgd_t *pgd;
080dbb61
AK
814 struct mm_struct *mm = vma->vm_mm;
815
df06b37f 816 ctx->page_mask = 0;
080dbb61 817
57a196a5
MK
818 /*
819 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
820 * special hugetlb page table walking code. This eliminates the
821 * need to check for hugetlb entries in the general walking code.
57a196a5 822 */
dd767aaa 823 if (is_vm_hugetlb_page(vma))
5502ea44
PX
824 return hugetlb_follow_page_mask(vma, address, flags,
825 &ctx->page_mask);
080dbb61
AK
826
827 pgd = pgd_offset(mm, address);
828
829 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
830 return no_page_table(vma, flags);
831
df06b37f
KB
832 return follow_p4d_mask(vma, address, pgd, flags, ctx);
833}
834
835struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
836 unsigned int foll_flags)
837{
838 struct follow_page_context ctx = { NULL };
839 struct page *page;
840
1507f512
MR
841 if (vma_is_secretmem(vma))
842 return NULL;
843
d64e2dbc 844 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
8909691b
DH
845 return NULL;
846
d74943a2
DH
847 /*
848 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
849 * to fail on PROT_NONE-mapped pages.
850 */
df06b37f
KB
851 page = follow_page_mask(vma, address, foll_flags, &ctx);
852 if (ctx.pgmap)
853 put_dev_pagemap(ctx.pgmap);
854 return page;
080dbb61
AK
855}
856
f2b495ca
KS
857static int get_gate_page(struct mm_struct *mm, unsigned long address,
858 unsigned int gup_flags, struct vm_area_struct **vma,
859 struct page **page)
860{
861 pgd_t *pgd;
c2febafc 862 p4d_t *p4d;
f2b495ca
KS
863 pud_t *pud;
864 pmd_t *pmd;
865 pte_t *pte;
c33c7948 866 pte_t entry;
f2b495ca
KS
867 int ret = -EFAULT;
868
869 /* user gate pages are read-only */
870 if (gup_flags & FOLL_WRITE)
871 return -EFAULT;
872 if (address > TASK_SIZE)
873 pgd = pgd_offset_k(address);
874 else
875 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
876 if (pgd_none(*pgd))
877 return -EFAULT;
c2febafc 878 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
879 if (p4d_none(*p4d))
880 return -EFAULT;
c2febafc 881 pud = pud_offset(p4d, address);
b5d1c39f
AL
882 if (pud_none(*pud))
883 return -EFAULT;
f2b495ca 884 pmd = pmd_offset(pud, address);
84c3fc4e 885 if (!pmd_present(*pmd))
f2b495ca 886 return -EFAULT;
f2b495ca 887 pte = pte_offset_map(pmd, address);
04dee9e8
HD
888 if (!pte)
889 return -EFAULT;
c33c7948
RR
890 entry = ptep_get(pte);
891 if (pte_none(entry))
f2b495ca
KS
892 goto unmap;
893 *vma = get_gate_vma(mm);
894 if (!page)
895 goto out;
c33c7948 896 *page = vm_normal_page(*vma, address, entry);
f2b495ca 897 if (!*page) {
c33c7948 898 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
f2b495ca 899 goto unmap;
c33c7948 900 *page = pte_page(entry);
f2b495ca 901 }
0f089235
LG
902 ret = try_grab_page(*page, gup_flags);
903 if (unlikely(ret))
8fde12ca 904 goto unmap;
f2b495ca
KS
905out:
906 ret = 0;
907unmap:
908 pte_unmap(pte);
909 return ret;
910}
911
9a95f3cf 912/*
9a863a6a
JG
913 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
914 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
915 * to 0 and -EBUSY returned.
9a95f3cf 916 */
64019a2e 917static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
918 unsigned long address, unsigned int *flags, bool unshare,
919 int *locked)
16744483 920{
16744483 921 unsigned int fault_flags = 0;
2b740303 922 vm_fault_t ret;
16744483 923
55b8fe70
AG
924 if (*flags & FOLL_NOFAULT)
925 return -EFAULT;
16744483
KS
926 if (*flags & FOLL_WRITE)
927 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
928 if (*flags & FOLL_REMOTE)
929 fault_flags |= FAULT_FLAG_REMOTE;
f04740f5 930 if (*flags & FOLL_UNLOCKABLE) {
71335f37 931 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
93c5c61d
PX
932 /*
933 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
934 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
935 * That's because some callers may not be prepared to
936 * handle early exits caused by non-fatal signals.
937 */
938 if (*flags & FOLL_INTERRUPTIBLE)
939 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
940 }
16744483
KS
941 if (*flags & FOLL_NOWAIT)
942 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 943 if (*flags & FOLL_TRIED) {
4426e945
PX
944 /*
945 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
946 * can co-exist
947 */
234b239b
ALC
948 fault_flags |= FAULT_FLAG_TRIED;
949 }
a7f22660
DH
950 if (unshare) {
951 fault_flags |= FAULT_FLAG_UNSHARE;
952 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
953 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
954 }
16744483 955
bce617ed 956 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
957
958 if (ret & VM_FAULT_COMPLETED) {
959 /*
960 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
961 * mmap lock in the page fault handler. Sanity check this.
962 */
963 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
9a863a6a
JG
964 *locked = 0;
965
d9272525
PX
966 /*
967 * We should do the same as VM_FAULT_RETRY, but let's not
968 * return -EBUSY since that's not reflecting the reality of
969 * what has happened - we've just fully completed a page
970 * fault, with the mmap lock released. Use -EAGAIN to show
971 * that we want to take the mmap lock _again_.
972 */
973 return -EAGAIN;
974 }
975
16744483 976 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
977 int err = vm_fault_to_errno(ret, *flags);
978
979 if (err)
980 return err;
16744483
KS
981 BUG();
982 }
983
16744483 984 if (ret & VM_FAULT_RETRY) {
9a863a6a 985 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 986 *locked = 0;
16744483
KS
987 return -EBUSY;
988 }
989
16744483
KS
990 return 0;
991}
992
8ac26843
LS
993/*
994 * Writing to file-backed mappings which require folio dirty tracking using GUP
995 * is a fundamentally broken operation, as kernel write access to GUP mappings
996 * do not adhere to the semantics expected by a file system.
997 *
998 * Consider the following scenario:-
999 *
1000 * 1. A folio is written to via GUP which write-faults the memory, notifying
1001 * the file system and dirtying the folio.
1002 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1003 * the PTE being marked read-only.
1004 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1005 * direct mapping.
1006 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1007 * (though it does not have to).
1008 *
1009 * This results in both data being written to a folio without writenotify, and
1010 * the folio being dirtied unexpectedly (if the caller decides to do so).
1011 */
1012static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1013 unsigned long gup_flags)
1014{
1015 /*
1016 * If we aren't pinning then no problematic write can occur. A long term
1017 * pin is the most egregious case so this is the case we disallow.
1018 */
1019 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1020 (FOLL_PIN | FOLL_LONGTERM))
1021 return true;
1022
1023 /*
1024 * If the VMA does not require dirty tracking then no problematic write
1025 * can occur either.
1026 */
1027 return !vma_needs_dirty_tracking(vma);
1028}
1029
fa5bb209
KS
1030static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1031{
1032 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
1033 int write = (gup_flags & FOLL_WRITE);
1034 int foreign = (gup_flags & FOLL_REMOTE);
8ac26843 1035 bool vma_anon = vma_is_anonymous(vma);
fa5bb209
KS
1036
1037 if (vm_flags & (VM_IO | VM_PFNMAP))
1038 return -EFAULT;
1039
8ac26843 1040 if ((gup_flags & FOLL_ANON) && !vma_anon)
7f7ccc2c
WT
1041 return -EFAULT;
1042
52650c8b
JG
1043 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1044 return -EOPNOTSUPP;
1045
1507f512
MR
1046 if (vma_is_secretmem(vma))
1047 return -EFAULT;
1048
1b2ee126 1049 if (write) {
8ac26843
LS
1050 if (!vma_anon &&
1051 !writable_file_mapping_allowed(vma, gup_flags))
1052 return -EFAULT;
1053
6beb9958 1054 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
fa5bb209
KS
1055 if (!(gup_flags & FOLL_FORCE))
1056 return -EFAULT;
f347454d
DH
1057 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1058 if (is_vm_hugetlb_page(vma))
1059 return -EFAULT;
fa5bb209
KS
1060 /*
1061 * We used to let the write,force case do COW in a
1062 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1063 * set a breakpoint in a read-only mapping of an
1064 * executable, without corrupting the file (yet only
1065 * when that file had been opened for writing!).
1066 * Anon pages in shared mappings are surprising: now
1067 * just reject it.
1068 */
46435364 1069 if (!is_cow_mapping(vm_flags))
fa5bb209 1070 return -EFAULT;
fa5bb209
KS
1071 }
1072 } else if (!(vm_flags & VM_READ)) {
1073 if (!(gup_flags & FOLL_FORCE))
1074 return -EFAULT;
1075 /*
1076 * Is there actually any vma we can reach here which does not
1077 * have VM_MAYREAD set?
1078 */
1079 if (!(vm_flags & VM_MAYREAD))
1080 return -EFAULT;
1081 }
d61172b4
DH
1082 /*
1083 * gups are always data accesses, not instruction
1084 * fetches, so execute=false here
1085 */
1086 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1087 return -EFAULT;
fa5bb209
KS
1088 return 0;
1089}
1090
6cd06ab1
LT
1091/*
1092 * This is "vma_lookup()", but with a warning if we would have
1093 * historically expanded the stack in the GUP code.
1094 */
1095static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1096 unsigned long addr)
1097{
1098#ifdef CONFIG_STACK_GROWSUP
1099 return vma_lookup(mm, addr);
1100#else
1101 static volatile unsigned long next_warn;
1102 struct vm_area_struct *vma;
1103 unsigned long now, next;
1104
1105 vma = find_vma(mm, addr);
1106 if (!vma || (addr >= vma->vm_start))
1107 return vma;
1108
1109 /* Only warn for half-way relevant accesses */
1110 if (!(vma->vm_flags & VM_GROWSDOWN))
1111 return NULL;
1112 if (vma->vm_start - addr > 65536)
1113 return NULL;
1114
1115 /* Let's not warn more than once an hour.. */
1116 now = jiffies; next = next_warn;
1117 if (next && time_before(now, next))
1118 return NULL;
1119 next_warn = now + 60*60*HZ;
1120
1121 /* Let people know things may have changed. */
1122 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1123 current->comm, task_pid_nr(current),
1124 vma->vm_start, vma->vm_end, addr);
1125 dump_stack();
1126 return NULL;
1127#endif
1128}
1129
4bbd4c77
KS
1130/**
1131 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1132 * @mm: mm_struct of target mm
1133 * @start: starting user address
1134 * @nr_pages: number of pages from start to pin
1135 * @gup_flags: flags modifying pin behaviour
1136 * @pages: array that receives pointers to the pages pinned.
1137 * Should be at least nr_pages long. Or NULL, if caller
1138 * only intends to ensure the pages are faulted in.
c1e8d7c6 1139 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1140 *
d2dfbe47
LX
1141 * Returns either number of pages pinned (which may be less than the
1142 * number requested), or an error. Details about the return value:
1143 *
1144 * -- If nr_pages is 0, returns 0.
1145 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1146 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1147 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1148 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1149 *
1150 * The caller is responsible for releasing returned @pages, via put_page().
1151 *
c1e8d7c6 1152 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1153 *
1154 * __get_user_pages walks a process's page tables and takes a reference to
1155 * each struct page that each user address corresponds to at a given
1156 * instant. That is, it takes the page that would be accessed if a user
1157 * thread accesses the given user virtual address at that instant.
1158 *
1159 * This does not guarantee that the page exists in the user mappings when
1160 * __get_user_pages returns, and there may even be a completely different
1161 * page there in some cases (eg. if mmapped pagecache has been invalidated
c5acf1f6 1162 * and subsequently re-faulted). However it does guarantee that the page
4bbd4c77
KS
1163 * won't be freed completely. And mostly callers simply care that the page
1164 * contains data that was valid *at some point in time*. Typically, an IO
1165 * or similar operation cannot guarantee anything stronger anyway because
1166 * locks can't be held over the syscall boundary.
1167 *
1168 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1169 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1170 * appropriate) must be called after the page is finished with, and
1171 * before put_page is called.
1172 *
9a863a6a
JG
1173 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1174 * be released. If this happens *@locked will be set to 0 on return.
9a95f3cf 1175 *
9a863a6a
JG
1176 * A caller using such a combination of @gup_flags must therefore hold the
1177 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1178 * it must be held for either reading or writing and will not be released.
4bbd4c77
KS
1179 *
1180 * In most cases, get_user_pages or get_user_pages_fast should be used
1181 * instead of __get_user_pages. __get_user_pages should be used only if
1182 * you need some special @gup_flags.
1183 */
64019a2e 1184static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1185 unsigned long start, unsigned long nr_pages,
1186 unsigned int gup_flags, struct page **pages,
b2cac248 1187 int *locked)
4bbd4c77 1188{
df06b37f 1189 long ret = 0, i = 0;
fa5bb209 1190 struct vm_area_struct *vma = NULL;
df06b37f 1191 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1192
1193 if (!nr_pages)
1194 return 0;
1195
428e106a 1196 start = untagged_addr_remote(mm, start);
f9652594 1197
eddb1c22 1198 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1199
4bbd4c77 1200 do {
fa5bb209
KS
1201 struct page *page;
1202 unsigned int foll_flags = gup_flags;
1203 unsigned int page_increm;
1204
1205 /* first iteration or cross vma bound */
1206 if (!vma || start >= vma->vm_end) {
6cd06ab1 1207 vma = gup_vma_lookup(mm, start);
fa5bb209 1208 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1209 ret = get_gate_page(mm, start & PAGE_MASK,
1210 gup_flags, &vma,
ffe1e786 1211 pages ? &page : NULL);
fa5bb209 1212 if (ret)
08be37b7 1213 goto out;
df06b37f 1214 ctx.page_mask = 0;
fa5bb209
KS
1215 goto next_page;
1216 }
4bbd4c77 1217
52650c8b 1218 if (!vma) {
df06b37f
KB
1219 ret = -EFAULT;
1220 goto out;
1221 }
52650c8b
JG
1222 ret = check_vma_flags(vma, gup_flags);
1223 if (ret)
1224 goto out;
fa5bb209
KS
1225 }
1226retry:
1227 /*
1228 * If we have a pending SIGKILL, don't keep faulting pages and
1229 * potentially allocating memory.
1230 */
fa45f116 1231 if (fatal_signal_pending(current)) {
d180870d 1232 ret = -EINTR;
df06b37f
KB
1233 goto out;
1234 }
fa5bb209 1235 cond_resched();
df06b37f
KB
1236
1237 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1238 if (!page || PTR_ERR(page) == -EMLINK) {
1239 ret = faultin_page(vma, start, &foll_flags,
1240 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1241 switch (ret) {
1242 case 0:
1243 goto retry;
df06b37f 1244 case -EBUSY:
d9272525 1245 case -EAGAIN:
df06b37f 1246 ret = 0;
e4a9bc58 1247 fallthrough;
fa5bb209
KS
1248 case -EFAULT:
1249 case -ENOMEM:
1250 case -EHWPOISON:
df06b37f 1251 goto out;
4bbd4c77 1252 }
fa5bb209 1253 BUG();
1027e443
KS
1254 } else if (PTR_ERR(page) == -EEXIST) {
1255 /*
1256 * Proper page table entry exists, but no corresponding
65462462
JH
1257 * struct page. If the caller expects **pages to be
1258 * filled in, bail out now, because that can't be done
1259 * for this page.
1027e443 1260 */
65462462
JH
1261 if (pages) {
1262 ret = PTR_ERR(page);
1263 goto out;
1264 }
1027e443 1265 } else if (IS_ERR(page)) {
df06b37f
KB
1266 ret = PTR_ERR(page);
1267 goto out;
1027e443 1268 }
ffe1e786 1269next_page:
df06b37f 1270 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1271 if (page_increm > nr_pages)
1272 page_increm = nr_pages;
57edfcfd
PX
1273
1274 if (pages) {
1275 struct page *subpage;
1276 unsigned int j;
1277
1278 /*
1279 * This must be a large folio (and doesn't need to
1280 * be the whole folio; it can be part of it), do
1281 * the refcount work for all the subpages too.
1282 *
1283 * NOTE: here the page may not be the head page
1284 * e.g. when start addr is not thp-size aligned.
1285 * try_grab_folio() should have taken care of tail
1286 * pages.
1287 */
1288 if (page_increm > 1) {
1289 struct folio *folio;
1290
1291 /*
1292 * Since we already hold refcount on the
1293 * large folio, this should never fail.
1294 */
1295 folio = try_grab_folio(page, page_increm - 1,
1296 foll_flags);
1297 if (WARN_ON_ONCE(!folio)) {
1298 /*
1299 * Release the 1st page ref if the
1300 * folio is problematic, fail hard.
1301 */
1302 gup_put_folio(page_folio(page), 1,
1303 foll_flags);
1304 ret = -EFAULT;
1305 goto out;
1306 }
1307 }
1308
1309 for (j = 0; j < page_increm; j++) {
1310 subpage = nth_page(page, j);
1311 pages[i + j] = subpage;
1312 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1313 flush_dcache_page(subpage);
1314 }
1315 }
1316
fa5bb209
KS
1317 i += page_increm;
1318 start += page_increm * PAGE_SIZE;
1319 nr_pages -= page_increm;
4bbd4c77 1320 } while (nr_pages);
df06b37f
KB
1321out:
1322 if (ctx.pgmap)
1323 put_dev_pagemap(ctx.pgmap);
1324 return i ? i : ret;
4bbd4c77 1325}
4bbd4c77 1326
771ab430
TK
1327static bool vma_permits_fault(struct vm_area_struct *vma,
1328 unsigned int fault_flags)
d4925e00 1329{
1b2ee126
DH
1330 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1331 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1332 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1333
1334 if (!(vm_flags & vma->vm_flags))
1335 return false;
1336
33a709b2
DH
1337 /*
1338 * The architecture might have a hardware protection
1b2ee126 1339 * mechanism other than read/write that can deny access.
d61172b4
DH
1340 *
1341 * gup always represents data access, not instruction
1342 * fetches, so execute=false here:
33a709b2 1343 */
d61172b4 1344 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1345 return false;
1346
d4925e00
DH
1347 return true;
1348}
1349
adc8cb40 1350/**
4bbd4c77 1351 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1352 * @mm: mm_struct of target mm
1353 * @address: user address
1354 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1355 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1356 * does not allow retry. If NULL, the caller must guarantee
1357 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1358 *
1359 * This is meant to be called in the specific scenario where for locking reasons
1360 * we try to access user memory in atomic context (within a pagefault_disable()
1361 * section), this returns -EFAULT, and we want to resolve the user fault before
1362 * trying again.
1363 *
1364 * Typically this is meant to be used by the futex code.
1365 *
1366 * The main difference with get_user_pages() is that this function will
1367 * unconditionally call handle_mm_fault() which will in turn perform all the
1368 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1369 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1370 *
1371 * This is important for some architectures where those bits also gate the
1372 * access permission to the page because they are maintained in software. On
1373 * such architectures, gup() will not be enough to make a subsequent access
1374 * succeed.
1375 *
c1e8d7c6
ML
1376 * This function will not return with an unlocked mmap_lock. So it has not the
1377 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1378 */
64019a2e 1379int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1380 unsigned long address, unsigned int fault_flags,
1381 bool *unlocked)
4bbd4c77
KS
1382{
1383 struct vm_area_struct *vma;
8fed2f3c 1384 vm_fault_t ret;
4a9e1cda 1385
428e106a 1386 address = untagged_addr_remote(mm, address);
f9652594 1387
4a9e1cda 1388 if (unlocked)
71335f37 1389 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1390
4a9e1cda 1391retry:
6cd06ab1 1392 vma = gup_vma_lookup(mm, address);
8d7071af 1393 if (!vma)
4bbd4c77
KS
1394 return -EFAULT;
1395
d4925e00 1396 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1397 return -EFAULT;
1398
475f4dfc
PX
1399 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1400 fatal_signal_pending(current))
1401 return -EINTR;
1402
bce617ed 1403 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1404
1405 if (ret & VM_FAULT_COMPLETED) {
1406 /*
1407 * NOTE: it's a pity that we need to retake the lock here
1408 * to pair with the unlock() in the callers. Ideally we
1409 * could tell the callers so they do not need to unlock.
1410 */
1411 mmap_read_lock(mm);
1412 *unlocked = true;
1413 return 0;
1414 }
1415
4bbd4c77 1416 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1417 int err = vm_fault_to_errno(ret, 0);
1418
1419 if (err)
1420 return err;
4bbd4c77
KS
1421 BUG();
1422 }
4a9e1cda
DD
1423
1424 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1425 mmap_read_lock(mm);
475f4dfc
PX
1426 *unlocked = true;
1427 fault_flags |= FAULT_FLAG_TRIED;
1428 goto retry;
4a9e1cda
DD
1429 }
1430
4bbd4c77
KS
1431 return 0;
1432}
add6a0cd 1433EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1434
93c5c61d
PX
1435/*
1436 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1437 * specified, it'll also respond to generic signals. The caller of GUP
1438 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1439 */
1440static bool gup_signal_pending(unsigned int flags)
1441{
1442 if (fatal_signal_pending(current))
1443 return true;
1444
1445 if (!(flags & FOLL_INTERRUPTIBLE))
1446 return false;
1447
1448 return signal_pending(current);
1449}
1450
2d3a36a4 1451/*
b2a72dff
JG
1452 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1453 * the caller. This function may drop the mmap_lock. If it does so, then it will
1454 * set (*locked = 0).
1455 *
1456 * (*locked == 0) means that the caller expects this function to acquire and
1457 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1458 * the function returns, even though it may have changed temporarily during
1459 * function execution.
1460 *
1461 * Please note that this function, unlike __get_user_pages(), will not return 0
1462 * for nr_pages > 0, unless FOLL_NOWAIT is used.
2d3a36a4 1463 */
64019a2e 1464static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1465 unsigned long start,
1466 unsigned long nr_pages,
f0818f47 1467 struct page **pages,
e716712f 1468 int *locked,
0fd71a56 1469 unsigned int flags)
f0818f47 1470{
f0818f47 1471 long ret, pages_done;
b2a72dff 1472 bool must_unlock = false;
f0818f47 1473
b2a72dff
JG
1474 /*
1475 * The internal caller expects GUP to manage the lock internally and the
1476 * lock must be released when this returns.
1477 */
9a863a6a 1478 if (!*locked) {
b2a72dff
JG
1479 if (mmap_read_lock_killable(mm))
1480 return -EAGAIN;
1481 must_unlock = true;
1482 *locked = 1;
f0818f47 1483 }
961ba472
JG
1484 else
1485 mmap_assert_locked(mm);
f0818f47 1486
a458b76a
AA
1487 if (flags & FOLL_PIN)
1488 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1489
eddb1c22
JH
1490 /*
1491 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1492 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1493 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1494 * for FOLL_GET, not for the newer FOLL_PIN.
1495 *
1496 * FOLL_PIN always expects pages to be non-null, but no need to assert
1497 * that here, as any failures will be obvious enough.
1498 */
1499 if (pages && !(flags & FOLL_PIN))
f0818f47 1500 flags |= FOLL_GET;
f0818f47
AA
1501
1502 pages_done = 0;
f0818f47 1503 for (;;) {
64019a2e 1504 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
b2cac248 1505 locked);
f04740f5 1506 if (!(flags & FOLL_UNLOCKABLE)) {
f0818f47 1507 /* VM_FAULT_RETRY couldn't trigger, bypass */
f04740f5
JG
1508 pages_done = ret;
1509 break;
1510 }
f0818f47 1511
d9272525 1512 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1513 if (!*locked) {
1514 BUG_ON(ret < 0);
1515 BUG_ON(ret >= nr_pages);
1516 }
1517
f0818f47
AA
1518 if (ret > 0) {
1519 nr_pages -= ret;
1520 pages_done += ret;
1521 if (!nr_pages)
1522 break;
1523 }
1524 if (*locked) {
96312e61
AA
1525 /*
1526 * VM_FAULT_RETRY didn't trigger or it was a
1527 * FOLL_NOWAIT.
1528 */
f0818f47
AA
1529 if (!pages_done)
1530 pages_done = ret;
1531 break;
1532 }
df17277b
MR
1533 /*
1534 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1535 * For the prefault case (!pages) we only update counts.
1536 */
1537 if (likely(pages))
1538 pages += ret;
f0818f47 1539 start += ret << PAGE_SHIFT;
b2a72dff
JG
1540
1541 /* The lock was temporarily dropped, so we must unlock later */
1542 must_unlock = true;
f0818f47 1543
4426e945 1544retry:
f0818f47
AA
1545 /*
1546 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1547 * with both FAULT_FLAG_ALLOW_RETRY and
1548 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
93c5c61d
PX
1549 * by fatal signals of even common signals, depending on
1550 * the caller's request. So we need to check it before we
4426e945 1551 * start trying again otherwise it can loop forever.
f0818f47 1552 */
93c5c61d 1553 if (gup_signal_pending(flags)) {
ae46d2aa
HD
1554 if (!pages_done)
1555 pages_done = -EINTR;
4426e945 1556 break;
ae46d2aa 1557 }
4426e945 1558
d8ed45c5 1559 ret = mmap_read_lock_killable(mm);
71335f37
PX
1560 if (ret) {
1561 BUG_ON(ret > 0);
1562 if (!pages_done)
1563 pages_done = ret;
1564 break;
1565 }
4426e945 1566
c7b6a566 1567 *locked = 1;
64019a2e 1568 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
b2cac248 1569 pages, locked);
4426e945
PX
1570 if (!*locked) {
1571 /* Continue to retry until we succeeded */
1572 BUG_ON(ret != 0);
1573 goto retry;
1574 }
f0818f47
AA
1575 if (ret != 1) {
1576 BUG_ON(ret > 1);
1577 if (!pages_done)
1578 pages_done = ret;
1579 break;
1580 }
1581 nr_pages--;
1582 pages_done++;
1583 if (!nr_pages)
1584 break;
df17277b
MR
1585 if (likely(pages))
1586 pages++;
f0818f47
AA
1587 start += PAGE_SIZE;
1588 }
b2a72dff 1589 if (must_unlock && *locked) {
f0818f47 1590 /*
b2a72dff
JG
1591 * We either temporarily dropped the lock, or the caller
1592 * requested that we both acquire and drop the lock. Either way,
1593 * we must now unlock, and notify the caller of that state.
f0818f47 1594 */
d8ed45c5 1595 mmap_read_unlock(mm);
f0818f47
AA
1596 *locked = 0;
1597 }
1598 return pages_done;
1599}
1600
d3649f68
CH
1601/**
1602 * populate_vma_page_range() - populate a range of pages in the vma.
1603 * @vma: target vma
1604 * @start: start address
1605 * @end: end address
c1e8d7c6 1606 * @locked: whether the mmap_lock is still held
d3649f68
CH
1607 *
1608 * This takes care of mlocking the pages too if VM_LOCKED is set.
1609 *
0a36f7f8
TY
1610 * Return either number of pages pinned in the vma, or a negative error
1611 * code on error.
d3649f68 1612 *
c1e8d7c6 1613 * vma->vm_mm->mmap_lock must be held.
d3649f68 1614 *
4f6da934 1615 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1616 * be unperturbed.
1617 *
4f6da934
PX
1618 * If @locked is non-NULL, it must held for read only and may be
1619 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1620 */
1621long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1622 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1623{
1624 struct mm_struct *mm = vma->vm_mm;
1625 unsigned long nr_pages = (end - start) / PAGE_SIZE;
9a863a6a 1626 int local_locked = 1;
d3649f68 1627 int gup_flags;
ece369c7 1628 long ret;
d3649f68 1629
be51eb18
ML
1630 VM_BUG_ON(!PAGE_ALIGNED(start));
1631 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1632 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1633 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1634 mmap_assert_locked(mm);
d3649f68 1635
b67bf49c
HD
1636 /*
1637 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1638 * faultin_page() to break COW, so it has no work to do here.
1639 */
d3649f68 1640 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1641 return nr_pages;
1642
1643 gup_flags = FOLL_TOUCH;
d3649f68
CH
1644 /*
1645 * We want to touch writable mappings with a write fault in order
1646 * to break COW, except for shared mappings because these don't COW
1647 * and we would not want to dirty them for nothing.
1648 */
1649 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1650 gup_flags |= FOLL_WRITE;
1651
1652 /*
1653 * We want mlock to succeed for regions that have any permissions
1654 * other than PROT_NONE.
1655 */
3122e80e 1656 if (vma_is_accessible(vma))
d3649f68
CH
1657 gup_flags |= FOLL_FORCE;
1658
f04740f5
JG
1659 if (locked)
1660 gup_flags |= FOLL_UNLOCKABLE;
1661
d3649f68
CH
1662 /*
1663 * We made sure addr is within a VMA, so the following will
1664 * not result in a stack expansion that recurses back here.
1665 */
ece369c7 1666 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1667 NULL, locked ? locked : &local_locked);
ece369c7
HD
1668 lru_add_drain();
1669 return ret;
d3649f68
CH
1670}
1671
4ca9b385
DH
1672/*
1673 * faultin_vma_page_range() - populate (prefault) page tables inside the
1674 * given VMA range readable/writable
1675 *
1676 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1677 *
1678 * @vma: target vma
1679 * @start: start address
1680 * @end: end address
1681 * @write: whether to prefault readable or writable
1682 * @locked: whether the mmap_lock is still held
1683 *
1684 * Returns either number of processed pages in the vma, or a negative error
1685 * code on error (see __get_user_pages()).
1686 *
1687 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
6e4382c7 1688 * covered by the VMA. If it's released, *@locked will be set to 0.
4ca9b385
DH
1689 */
1690long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1691 unsigned long end, bool write, int *locked)
1692{
1693 struct mm_struct *mm = vma->vm_mm;
1694 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1695 int gup_flags;
ece369c7 1696 long ret;
4ca9b385
DH
1697
1698 VM_BUG_ON(!PAGE_ALIGNED(start));
1699 VM_BUG_ON(!PAGE_ALIGNED(end));
1700 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1701 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1702 mmap_assert_locked(mm);
1703
1704 /*
1705 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1706 * the page dirty with FOLL_WRITE -- which doesn't make a
1707 * difference with !FOLL_FORCE, because the page is writable
1708 * in the page table.
1709 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1710 * a poisoned page.
4ca9b385
DH
1711 * !FOLL_FORCE: Require proper access permissions.
1712 */
f04740f5 1713 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
4ca9b385
DH
1714 if (write)
1715 gup_flags |= FOLL_WRITE;
1716
1717 /*
eb2faa51
DH
1718 * We want to report -EINVAL instead of -EFAULT for any permission
1719 * problems or incompatible mappings.
4ca9b385 1720 */
eb2faa51
DH
1721 if (check_vma_flags(vma, gup_flags))
1722 return -EINVAL;
1723
ece369c7 1724 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1725 NULL, locked);
ece369c7
HD
1726 lru_add_drain();
1727 return ret;
4ca9b385
DH
1728}
1729
d3649f68
CH
1730/*
1731 * __mm_populate - populate and/or mlock pages within a range of address space.
1732 *
1733 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1734 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1735 * mmap_lock must not be held.
d3649f68
CH
1736 */
1737int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1738{
1739 struct mm_struct *mm = current->mm;
1740 unsigned long end, nstart, nend;
1741 struct vm_area_struct *vma = NULL;
1742 int locked = 0;
1743 long ret = 0;
1744
1745 end = start + len;
1746
1747 for (nstart = start; nstart < end; nstart = nend) {
1748 /*
1749 * We want to fault in pages for [nstart; end) address range.
1750 * Find first corresponding VMA.
1751 */
1752 if (!locked) {
1753 locked = 1;
d8ed45c5 1754 mmap_read_lock(mm);
c4d1a92d 1755 vma = find_vma_intersection(mm, nstart, end);
d3649f68 1756 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
1757 vma = find_vma_intersection(mm, vma->vm_end, end);
1758
1759 if (!vma)
d3649f68
CH
1760 break;
1761 /*
1762 * Set [nstart; nend) to intersection of desired address
1763 * range with the first VMA. Also, skip undesirable VMA types.
1764 */
1765 nend = min(end, vma->vm_end);
1766 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1767 continue;
1768 if (nstart < vma->vm_start)
1769 nstart = vma->vm_start;
1770 /*
1771 * Now fault in a range of pages. populate_vma_page_range()
1772 * double checks the vma flags, so that it won't mlock pages
1773 * if the vma was already munlocked.
1774 */
1775 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1776 if (ret < 0) {
1777 if (ignore_errors) {
1778 ret = 0;
1779 continue; /* continue at next VMA */
1780 }
1781 break;
1782 }
1783 nend = nstart + ret * PAGE_SIZE;
1784 ret = 0;
1785 }
1786 if (locked)
d8ed45c5 1787 mmap_read_unlock(mm);
d3649f68
CH
1788 return ret; /* 0 or negative error code */
1789}
050a9adc 1790#else /* CONFIG_MMU */
64019a2e 1791static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc 1792 unsigned long nr_pages, struct page **pages,
b2cac248 1793 int *locked, unsigned int foll_flags)
050a9adc
CH
1794{
1795 struct vm_area_struct *vma;
b2a72dff 1796 bool must_unlock = false;
050a9adc 1797 unsigned long vm_flags;
24dc20c7 1798 long i;
050a9adc 1799
b2a72dff
JG
1800 if (!nr_pages)
1801 return 0;
1802
1803 /*
1804 * The internal caller expects GUP to manage the lock internally and the
1805 * lock must be released when this returns.
1806 */
9a863a6a 1807 if (!*locked) {
b2a72dff
JG
1808 if (mmap_read_lock_killable(mm))
1809 return -EAGAIN;
1810 must_unlock = true;
1811 *locked = 1;
1812 }
1813
050a9adc
CH
1814 /* calculate required read or write permissions.
1815 * If FOLL_FORCE is set, we only require the "MAY" flags.
1816 */
1817 vm_flags = (foll_flags & FOLL_WRITE) ?
1818 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1819 vm_flags &= (foll_flags & FOLL_FORCE) ?
1820 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1821
1822 for (i = 0; i < nr_pages; i++) {
1823 vma = find_vma(mm, start);
1824 if (!vma)
b2a72dff 1825 break;
050a9adc
CH
1826
1827 /* protect what we can, including chardevs */
1828 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1829 !(vm_flags & vma->vm_flags))
b2a72dff 1830 break;
050a9adc
CH
1831
1832 if (pages) {
396a400b 1833 pages[i] = virt_to_page((void *)start);
050a9adc
CH
1834 if (pages[i])
1835 get_page(pages[i]);
1836 }
b2cac248 1837
050a9adc
CH
1838 start = (start + PAGE_SIZE) & PAGE_MASK;
1839 }
1840
b2a72dff
JG
1841 if (must_unlock && *locked) {
1842 mmap_read_unlock(mm);
1843 *locked = 0;
1844 }
050a9adc 1845
050a9adc
CH
1846 return i ? : -EFAULT;
1847}
1848#endif /* !CONFIG_MMU */
d3649f68 1849
bb523b40
AG
1850/**
1851 * fault_in_writeable - fault in userspace address range for writing
1852 * @uaddr: start of address range
1853 * @size: size of address range
1854 *
1855 * Returns the number of bytes not faulted in (like copy_to_user() and
1856 * copy_from_user()).
1857 */
1858size_t fault_in_writeable(char __user *uaddr, size_t size)
1859{
1860 char __user *start = uaddr, *end;
1861
1862 if (unlikely(size == 0))
1863 return 0;
677b2a8c
CL
1864 if (!user_write_access_begin(uaddr, size))
1865 return size;
bb523b40 1866 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1867 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1868 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1869 }
1870 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1871 if (unlikely(end < start))
1872 end = NULL;
1873 while (uaddr != end) {
677b2a8c 1874 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1875 uaddr += PAGE_SIZE;
1876 }
1877
1878out:
677b2a8c 1879 user_write_access_end();
bb523b40
AG
1880 if (size > uaddr - start)
1881 return size - (uaddr - start);
1882 return 0;
1883}
1884EXPORT_SYMBOL(fault_in_writeable);
1885
da32b581
CM
1886/**
1887 * fault_in_subpage_writeable - fault in an address range for writing
1888 * @uaddr: start of address range
1889 * @size: size of address range
1890 *
1891 * Fault in a user address range for writing while checking for permissions at
1892 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1893 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1894 *
1895 * Returns the number of bytes not faulted in (like copy_to_user() and
1896 * copy_from_user()).
1897 */
1898size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1899{
1900 size_t faulted_in;
1901
1902 /*
1903 * Attempt faulting in at page granularity first for page table
1904 * permission checking. The arch-specific probe_subpage_writeable()
1905 * functions may not check for this.
1906 */
1907 faulted_in = size - fault_in_writeable(uaddr, size);
1908 if (faulted_in)
1909 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1910
1911 return size - faulted_in;
1912}
1913EXPORT_SYMBOL(fault_in_subpage_writeable);
1914
cdd591fc
AG
1915/*
1916 * fault_in_safe_writeable - fault in an address range for writing
1917 * @uaddr: start of address range
1918 * @size: length of address range
1919 *
fe673d3f
LT
1920 * Faults in an address range for writing. This is primarily useful when we
1921 * already know that some or all of the pages in the address range aren't in
1922 * memory.
cdd591fc 1923 *
fe673d3f 1924 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
1925 *
1926 * Note that we don't pin or otherwise hold the pages referenced that we fault
1927 * in. There's no guarantee that they'll stay in memory for any duration of
1928 * time.
1929 *
1930 * Returns the number of bytes not faulted in, like copy_to_user() and
1931 * copy_from_user().
1932 */
1933size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1934{
fe673d3f 1935 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 1936 struct mm_struct *mm = current->mm;
fe673d3f 1937 bool unlocked = false;
cdd591fc 1938
fe673d3f
LT
1939 if (unlikely(size == 0))
1940 return 0;
cdd591fc 1941 end = PAGE_ALIGN(start + size);
fe673d3f 1942 if (end < start)
cdd591fc 1943 end = 0;
cdd591fc 1944
fe673d3f
LT
1945 mmap_read_lock(mm);
1946 do {
1947 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 1948 break;
fe673d3f
LT
1949 start = (start + PAGE_SIZE) & PAGE_MASK;
1950 } while (start != end);
1951 mmap_read_unlock(mm);
1952
1953 if (size > (unsigned long)uaddr - start)
1954 return size - ((unsigned long)uaddr - start);
1955 return 0;
cdd591fc
AG
1956}
1957EXPORT_SYMBOL(fault_in_safe_writeable);
1958
bb523b40
AG
1959/**
1960 * fault_in_readable - fault in userspace address range for reading
1961 * @uaddr: start of user address range
1962 * @size: size of user address range
1963 *
1964 * Returns the number of bytes not faulted in (like copy_to_user() and
1965 * copy_from_user()).
1966 */
1967size_t fault_in_readable(const char __user *uaddr, size_t size)
1968{
1969 const char __user *start = uaddr, *end;
1970 volatile char c;
1971
1972 if (unlikely(size == 0))
1973 return 0;
677b2a8c
CL
1974 if (!user_read_access_begin(uaddr, size))
1975 return size;
bb523b40 1976 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1977 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1978 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1979 }
1980 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1981 if (unlikely(end < start))
1982 end = NULL;
1983 while (uaddr != end) {
677b2a8c 1984 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1985 uaddr += PAGE_SIZE;
1986 }
1987
1988out:
677b2a8c 1989 user_read_access_end();
bb523b40
AG
1990 (void)c;
1991 if (size > uaddr - start)
1992 return size - (uaddr - start);
1993 return 0;
1994}
1995EXPORT_SYMBOL(fault_in_readable);
1996
8f942eea
JH
1997/**
1998 * get_dump_page() - pin user page in memory while writing it to core dump
1999 * @addr: user address
2000 *
2001 * Returns struct page pointer of user page pinned for dump,
2002 * to be freed afterwards by put_page().
2003 *
2004 * Returns NULL on any kind of failure - a hole must then be inserted into
2005 * the corefile, to preserve alignment with its headers; and also returns
2006 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 2007 * allowing a hole to be left in the corefile to save disk space.
8f942eea 2008 *
7f3bfab5 2009 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
2010 */
2011#ifdef CONFIG_ELF_CORE
2012struct page *get_dump_page(unsigned long addr)
2013{
8f942eea 2014 struct page *page;
b2a72dff 2015 int locked = 0;
7f3bfab5 2016 int ret;
8f942eea 2017
b2cac248 2018 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
7f3bfab5 2019 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
7f3bfab5 2020 return (ret == 1) ? page : NULL;
8f942eea
JH
2021}
2022#endif /* CONFIG_ELF_CORE */
2023
d1e153fe 2024#ifdef CONFIG_MIGRATION
f68749ec 2025/*
67e139b0 2026 * Returns the number of collected pages. Return value is always >= 0.
f68749ec 2027 */
67e139b0
AP
2028static unsigned long collect_longterm_unpinnable_pages(
2029 struct list_head *movable_page_list,
2030 unsigned long nr_pages,
2031 struct page **pages)
9a4e9f3b 2032{
67e139b0 2033 unsigned long i, collected = 0;
1b7f7e58 2034 struct folio *prev_folio = NULL;
67e139b0 2035 bool drain_allow = true;
9a4e9f3b 2036
83c02c23 2037 for (i = 0; i < nr_pages; i++) {
1b7f7e58 2038 struct folio *folio = page_folio(pages[i]);
f9f38f78 2039
1b7f7e58 2040 if (folio == prev_folio)
83c02c23 2041 continue;
1b7f7e58 2042 prev_folio = folio;
f9f38f78 2043
67e139b0
AP
2044 if (folio_is_longterm_pinnable(folio))
2045 continue;
b05a79d4 2046
67e139b0 2047 collected++;
b05a79d4 2048
67e139b0 2049 if (folio_is_device_coherent(folio))
f9f38f78
CH
2050 continue;
2051
1b7f7e58 2052 if (folio_test_hugetlb(folio)) {
6aa3a920 2053 isolate_hugetlb(folio, movable_page_list);
f9f38f78
CH
2054 continue;
2055 }
9a4e9f3b 2056
1b7f7e58 2057 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
2058 lru_add_drain_all();
2059 drain_allow = false;
2060 }
2061
be2d5756 2062 if (!folio_isolate_lru(folio))
f9f38f78 2063 continue;
67e139b0
AP
2064
2065 list_add_tail(&folio->lru, movable_page_list);
1b7f7e58
MWO
2066 node_stat_mod_folio(folio,
2067 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2068 folio_nr_pages(folio));
9a4e9f3b
AK
2069 }
2070
67e139b0
AP
2071 return collected;
2072}
2073
2074/*
2075 * Unpins all pages and migrates device coherent pages and movable_page_list.
2076 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2077 * (or partial success).
2078 */
2079static int migrate_longterm_unpinnable_pages(
2080 struct list_head *movable_page_list,
2081 unsigned long nr_pages,
2082 struct page **pages)
2083{
2084 int ret;
2085 unsigned long i;
6e7f34eb 2086
b05a79d4 2087 for (i = 0; i < nr_pages; i++) {
67e139b0
AP
2088 struct folio *folio = page_folio(pages[i]);
2089
2090 if (folio_is_device_coherent(folio)) {
2091 /*
2092 * Migration will fail if the page is pinned, so convert
2093 * the pin on the source page to a normal reference.
2094 */
2095 pages[i] = NULL;
2096 folio_get(folio);
2097 gup_put_folio(folio, 1, FOLL_PIN);
2098
2099 if (migrate_device_coherent_page(&folio->page)) {
2100 ret = -EBUSY;
2101 goto err;
2102 }
2103
b05a79d4 2104 continue;
67e139b0 2105 }
b05a79d4 2106
67e139b0
AP
2107 /*
2108 * We can't migrate pages with unexpected references, so drop
2109 * the reference obtained by __get_user_pages_locked().
2110 * Migrating pages have been added to movable_page_list after
2111 * calling folio_isolate_lru() which takes a reference so the
2112 * page won't be freed if it's migrating.
2113 */
f6d299ec 2114 unpin_user_page(pages[i]);
67e139b0 2115 pages[i] = NULL;
f68749ec 2116 }
f9f38f78 2117
67e139b0 2118 if (!list_empty(movable_page_list)) {
f9f38f78
CH
2119 struct migration_target_control mtc = {
2120 .nid = NUMA_NO_NODE,
2121 .gfp_mask = GFP_USER | __GFP_NOWARN,
2122 };
2123
67e139b0
AP
2124 if (migrate_pages(movable_page_list, alloc_migration_target,
2125 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2126 MR_LONGTERM_PIN, NULL)) {
f9f38f78 2127 ret = -ENOMEM;
67e139b0
AP
2128 goto err;
2129 }
9a4e9f3b
AK
2130 }
2131
67e139b0
AP
2132 putback_movable_pages(movable_page_list);
2133
2134 return -EAGAIN;
2135
2136err:
2137 for (i = 0; i < nr_pages; i++)
2138 if (pages[i])
2139 unpin_user_page(pages[i]);
2140 putback_movable_pages(movable_page_list);
24a95998 2141
67e139b0
AP
2142 return ret;
2143}
2144
2145/*
2146 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2147 * pages in the range are required to be pinned via FOLL_PIN, before calling
2148 * this routine.
2149 *
2150 * If any pages in the range are not allowed to be pinned, then this routine
2151 * will migrate those pages away, unpin all the pages in the range and return
2152 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2153 * call this routine again.
2154 *
2155 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2156 * The caller should give up, and propagate the error back up the call stack.
2157 *
2158 * If everything is OK and all pages in the range are allowed to be pinned, then
2159 * this routine leaves all pages pinned and returns zero for success.
2160 */
2161static long check_and_migrate_movable_pages(unsigned long nr_pages,
2162 struct page **pages)
2163{
2164 unsigned long collected;
2165 LIST_HEAD(movable_page_list);
2166
2167 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2168 nr_pages, pages);
2169 if (!collected)
2170 return 0;
2171
2172 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2173 pages);
9a4e9f3b
AK
2174}
2175#else
f68749ec 2176static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2177 struct page **pages)
9a4e9f3b 2178{
24a95998 2179 return 0;
9a4e9f3b 2180}
d1e153fe 2181#endif /* CONFIG_MIGRATION */
9a4e9f3b 2182
2bb6d283 2183/*
932f4a63
IW
2184 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2185 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2186 */
64019a2e 2187static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2188 unsigned long start,
2189 unsigned long nr_pages,
2190 struct page **pages,
53b2d09b 2191 int *locked,
932f4a63 2192 unsigned int gup_flags)
2bb6d283 2193{
f68749ec 2194 unsigned int flags;
24a95998 2195 long rc, nr_pinned_pages;
2bb6d283 2196
f68749ec 2197 if (!(gup_flags & FOLL_LONGTERM))
b2cac248 2198 return __get_user_pages_locked(mm, start, nr_pages, pages,
53b2d09b 2199 locked, gup_flags);
67e139b0 2200
f68749ec
PT
2201 flags = memalloc_pin_save();
2202 do {
24a95998 2203 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
b2cac248 2204 pages, locked,
24a95998
AP
2205 gup_flags);
2206 if (nr_pinned_pages <= 0) {
2207 rc = nr_pinned_pages;
f68749ec 2208 break;
24a95998 2209 }
d64e2dbc
JG
2210
2211 /* FOLL_LONGTERM implies FOLL_PIN */
f6d299ec 2212 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2213 } while (rc == -EAGAIN);
f68749ec 2214 memalloc_pin_restore(flags);
24a95998 2215 return rc ? rc : nr_pinned_pages;
2bb6d283 2216}
932f4a63 2217
d64e2dbc
JG
2218/*
2219 * Check that the given flags are valid for the exported gup/pup interface, and
2220 * update them with the required flags that the caller must have set.
2221 */
b2cac248
LS
2222static bool is_valid_gup_args(struct page **pages, int *locked,
2223 unsigned int *gup_flags_p, unsigned int to_set)
447f3e45 2224{
d64e2dbc
JG
2225 unsigned int gup_flags = *gup_flags_p;
2226
447f3e45 2227 /*
d64e2dbc
JG
2228 * These flags not allowed to be specified externally to the gup
2229 * interfaces:
2230 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2231 * - FOLL_REMOTE is internal only and used on follow_page()
f04740f5 2232 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
447f3e45 2233 */
f04740f5 2234 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
d64e2dbc
JG
2235 FOLL_REMOTE | FOLL_FAST_ONLY)))
2236 return false;
2237
2238 gup_flags |= to_set;
f04740f5
JG
2239 if (locked) {
2240 /* At the external interface locked must be set */
2241 if (WARN_ON_ONCE(*locked != 1))
2242 return false;
2243
2244 gup_flags |= FOLL_UNLOCKABLE;
2245 }
d64e2dbc
JG
2246
2247 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2248 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2249 (FOLL_PIN | FOLL_GET)))
2250 return false;
2251
2252 /* LONGTERM can only be specified when pinning */
2253 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2254 return false;
2255
2256 /* Pages input must be given if using GET/PIN */
2257 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
447f3e45 2258 return false;
d64e2dbc 2259
d64e2dbc
JG
2260 /* We want to allow the pgmap to be hot-unplugged at all times */
2261 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2262 (gup_flags & FOLL_PCI_P2PDMA)))
2263 return false;
2264
d64e2dbc 2265 *gup_flags_p = gup_flags;
447f3e45
BS
2266 return true;
2267}
2268
22bf29b6 2269#ifdef CONFIG_MMU
adc8cb40 2270/**
c4237f8b 2271 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2272 * @mm: mm_struct of target mm
2273 * @start: starting user address
2274 * @nr_pages: number of pages from start to pin
2275 * @gup_flags: flags modifying lookup behaviour
2276 * @pages: array that receives pointers to the pages pinned.
2277 * Should be at least nr_pages long. Or NULL, if caller
2278 * only intends to ensure the pages are faulted in.
c4237f8b
JH
2279 * @locked: pointer to lock flag indicating whether lock is held and
2280 * subsequently whether VM_FAULT_RETRY functionality can be
2281 * utilised. Lock must initially be held.
2282 *
2283 * Returns either number of pages pinned (which may be less than the
2284 * number requested), or an error. Details about the return value:
2285 *
2286 * -- If nr_pages is 0, returns 0.
2287 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2288 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2289 * pages pinned. Again, this may be less than nr_pages.
2290 *
2291 * The caller is responsible for releasing returned @pages, via put_page().
2292 *
c1e8d7c6 2293 * Must be called with mmap_lock held for read or write.
c4237f8b 2294 *
adc8cb40
SJ
2295 * get_user_pages_remote walks a process's page tables and takes a reference
2296 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2297 * instant. That is, it takes the page that would be accessed if a user
2298 * thread accesses the given user virtual address at that instant.
2299 *
2300 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2301 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b 2302 * page there in some cases (eg. if mmapped pagecache has been invalidated
5da1a868 2303 * and subsequently re-faulted). However it does guarantee that the page
c4237f8b
JH
2304 * won't be freed completely. And mostly callers simply care that the page
2305 * contains data that was valid *at some point in time*. Typically, an IO
2306 * or similar operation cannot guarantee anything stronger anyway because
2307 * locks can't be held over the syscall boundary.
2308 *
2309 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2310 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2311 * be called after the page is finished with, and before put_page is called.
2312 *
adc8cb40
SJ
2313 * get_user_pages_remote is typically used for fewer-copy IO operations,
2314 * to get a handle on the memory by some means other than accesses
2315 * via the user virtual addresses. The pages may be submitted for
2316 * DMA to devices or accessed via their kernel linear mapping (via the
2317 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2318 *
2319 * See also get_user_pages_fast, for performance critical applications.
2320 *
adc8cb40 2321 * get_user_pages_remote should be phased out in favor of
c4237f8b 2322 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2323 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2324 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2325 */
64019a2e 2326long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2327 unsigned long start, unsigned long nr_pages,
2328 unsigned int gup_flags, struct page **pages,
ca5e8632 2329 int *locked)
c4237f8b 2330{
9a863a6a
JG
2331 int local_locked = 1;
2332
b2cac248 2333 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc 2334 FOLL_TOUCH | FOLL_REMOTE))
eddb1c22
JH
2335 return -EINVAL;
2336
b2cac248 2337 return __get_user_pages_locked(mm, start, nr_pages, pages,
9a863a6a 2338 locked ? locked : &local_locked,
d64e2dbc 2339 gup_flags);
c4237f8b
JH
2340}
2341EXPORT_SYMBOL(get_user_pages_remote);
2342
eddb1c22 2343#else /* CONFIG_MMU */
64019a2e 2344long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2345 unsigned long start, unsigned long nr_pages,
2346 unsigned int gup_flags, struct page **pages,
ca5e8632 2347 int *locked)
eddb1c22
JH
2348{
2349 return 0;
2350}
2351#endif /* !CONFIG_MMU */
2352
adc8cb40
SJ
2353/**
2354 * get_user_pages() - pin user pages in memory
2355 * @start: starting user address
2356 * @nr_pages: number of pages from start to pin
2357 * @gup_flags: flags modifying lookup behaviour
2358 * @pages: array that receives pointers to the pages pinned.
2359 * Should be at least nr_pages long. Or NULL, if caller
2360 * only intends to ensure the pages are faulted in.
adc8cb40 2361 *
64019a2e
PX
2362 * This is the same as get_user_pages_remote(), just with a less-flexible
2363 * calling convention where we assume that the mm being operated on belongs to
2364 * the current task, and doesn't allow passing of a locked parameter. We also
2365 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2366 */
2367long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2368 unsigned int gup_flags, struct page **pages)
932f4a63 2369{
9a863a6a
JG
2370 int locked = 1;
2371
b2cac248 2372 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
eddb1c22
JH
2373 return -EINVAL;
2374
afa3c33e 2375 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2376 &locked, gup_flags);
932f4a63
IW
2377}
2378EXPORT_SYMBOL(get_user_pages);
2bb6d283 2379
acc3c8d1 2380/*
d3649f68 2381 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2382 *
3e4e28c5 2383 * mmap_read_lock(mm);
64019a2e 2384 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2385 * mmap_read_unlock(mm);
d3649f68
CH
2386 *
2387 * with:
2388 *
64019a2e 2389 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2390 *
2391 * It is functionally equivalent to get_user_pages_fast so
2392 * get_user_pages_fast should be used instead if specific gup_flags
2393 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2394 */
d3649f68
CH
2395long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2396 struct page **pages, unsigned int gup_flags)
acc3c8d1 2397{
b2a72dff 2398 int locked = 0;
acc3c8d1 2399
b2cac248 2400 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 2401 FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc
JG
2402 return -EINVAL;
2403
afa3c33e 2404 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2405 &locked, gup_flags);
4bbd4c77 2406}
d3649f68 2407EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2408
2409/*
67a929e0 2410 * Fast GUP
2667f50e
SC
2411 *
2412 * get_user_pages_fast attempts to pin user pages by walking the page
2413 * tables directly and avoids taking locks. Thus the walker needs to be
2414 * protected from page table pages being freed from under it, and should
2415 * block any THP splits.
2416 *
2417 * One way to achieve this is to have the walker disable interrupts, and
2418 * rely on IPIs from the TLB flushing code blocking before the page table
2419 * pages are freed. This is unsuitable for architectures that do not need
2420 * to broadcast an IPI when invalidating TLBs.
2421 *
2422 * Another way to achieve this is to batch up page table containing pages
2423 * belonging to more than one mm_user, then rcu_sched a callback to free those
2424 * pages. Disabling interrupts will allow the fast_gup walker to both block
2425 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2426 * (which is a relatively rare event). The code below adopts this strategy.
2427 *
2428 * Before activating this code, please be aware that the following assumptions
2429 * are currently made:
2430 *
ff2e6d72 2431 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2432 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2433 *
2667f50e
SC
2434 * *) ptes can be read atomically by the architecture.
2435 *
2436 * *) access_ok is sufficient to validate userspace address ranges.
2437 *
2438 * The last two assumptions can be relaxed by the addition of helper functions.
2439 *
2440 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2441 */
67a929e0 2442#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2443
a6e79df9
LS
2444/*
2445 * Used in the GUP-fast path to determine whether a pin is permitted for a
2446 * specific folio.
2447 *
2448 * This call assumes the caller has pinned the folio, that the lowest page table
2449 * level still points to this folio, and that interrupts have been disabled.
2450 *
2451 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2452 * (see comment describing the writable_file_mapping_allowed() function). We
2453 * therefore try to avoid the most egregious case of a long-term mapping doing
2454 * so.
2455 *
2456 * This function cannot be as thorough as that one as the VMA is not available
2457 * in the fast path, so instead we whitelist known good cases and if in doubt,
2458 * fall back to the slow path.
2459 */
2460static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2461{
2462 struct address_space *mapping;
2463 unsigned long mapping_flags;
2464
2465 /*
2466 * If we aren't pinning then no problematic write can occur. A long term
2467 * pin is the most egregious case so this is the one we disallow.
2468 */
2469 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2470 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2471 return true;
2472
2473 /* The folio is pinned, so we can safely access folio fields. */
2474
2475 if (WARN_ON_ONCE(folio_test_slab(folio)))
2476 return false;
2477
2478 /* hugetlb mappings do not require dirty-tracking. */
2479 if (folio_test_hugetlb(folio))
2480 return true;
2481
2482 /*
2483 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2484 * cannot proceed, which means no actions performed under RCU can
2485 * proceed either.
2486 *
2487 * inodes and thus their mappings are freed under RCU, which means the
2488 * mapping cannot be freed beneath us and thus we can safely dereference
2489 * it.
2490 */
2491 lockdep_assert_irqs_disabled();
2492
2493 /*
2494 * However, there may be operations which _alter_ the mapping, so ensure
2495 * we read it once and only once.
2496 */
2497 mapping = READ_ONCE(folio->mapping);
2498
2499 /*
2500 * The mapping may have been truncated, in any case we cannot determine
2501 * if this mapping is safe - fall back to slow path to determine how to
2502 * proceed.
2503 */
2504 if (!mapping)
2505 return false;
2506
2507 /* Anonymous folios pose no problem. */
2508 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2509 if (mapping_flags)
2510 return mapping_flags & PAGE_MAPPING_ANON;
2511
2512 /*
2513 * At this point, we know the mapping is non-null and points to an
2514 * address_space object. The only remaining whitelisted file system is
2515 * shmem.
2516 */
2517 return shmem_mapping(mapping);
2518}
2519
790c7369 2520static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2521 unsigned int flags,
790c7369 2522 struct page **pages)
b59f65fa
KS
2523{
2524 while ((*nr) - nr_start) {
2525 struct page *page = pages[--(*nr)];
2526
2527 ClearPageReferenced(page);
3faa52c0
JH
2528 if (flags & FOLL_PIN)
2529 unpin_user_page(page);
2530 else
2531 put_page(page);
b59f65fa
KS
2532 }
2533}
2534
3010a5ea 2535#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc
YS
2536/*
2537 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2538 * operations.
2539 *
2540 * To pin the page, fast-gup needs to do below in order:
2541 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2542 *
2543 * For the rest of pgtable operations where pgtable updates can be racy
2544 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2545 * is pinned.
2546 *
2547 * Above will work for all pte-level operations, including THP split.
2548 *
2549 * For THP collapse, it's a bit more complicated because fast-gup may be
2550 * walking a pgtable page that is being freed (pte is still valid but pmd
2551 * can be cleared already). To avoid race in such condition, we need to
2552 * also check pmd here to make sure pmd doesn't change (corresponds to
2553 * pmdp_collapse_flush() in the THP collapse code path).
2554 */
2555static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2556 unsigned long end, unsigned int flags,
2557 struct page **pages, int *nr)
2667f50e 2558{
b59f65fa
KS
2559 struct dev_pagemap *pgmap = NULL;
2560 int nr_start = *nr, ret = 0;
2667f50e 2561 pte_t *ptep, *ptem;
2667f50e
SC
2562
2563 ptem = ptep = pte_offset_map(&pmd, addr);
04dee9e8
HD
2564 if (!ptep)
2565 return 0;
2667f50e 2566 do {
2a4a06da 2567 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2568 struct page *page;
2569 struct folio *folio;
2667f50e 2570
d74943a2
DH
2571 /*
2572 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2573 * pte_access_permitted() better should reject these pages
2574 * either way: otherwise, GUP-fast might succeed in
2575 * cases where ordinary GUP would fail due to VMA access
2576 * permissions.
2577 */
2578 if (pte_protnone(pte))
e7884f8e
KS
2579 goto pte_unmap;
2580
b798bec4 2581 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2582 goto pte_unmap;
2583
b59f65fa 2584 if (pte_devmap(pte)) {
7af75561
IW
2585 if (unlikely(flags & FOLL_LONGTERM))
2586 goto pte_unmap;
2587
b59f65fa
KS
2588 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2589 if (unlikely(!pgmap)) {
3b78d834 2590 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2591 goto pte_unmap;
2592 }
2593 } else if (pte_special(pte))
2667f50e
SC
2594 goto pte_unmap;
2595
2596 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2597 page = pte_page(pte);
2598
b0496fe4
MWO
2599 folio = try_grab_folio(page, 1, flags);
2600 if (!folio)
2667f50e
SC
2601 goto pte_unmap;
2602
8f9ff2de 2603 if (unlikely(folio_is_secretmem(folio))) {
b0496fe4 2604 gup_put_folio(folio, 1, flags);
1507f512
MR
2605 goto pte_unmap;
2606 }
2607
70cbc3cc 2608 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
c33c7948 2609 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
b0496fe4 2610 gup_put_folio(folio, 1, flags);
2667f50e
SC
2611 goto pte_unmap;
2612 }
2613
a6e79df9 2614 if (!folio_fast_pin_allowed(folio, flags)) {
b0496fe4 2615 gup_put_folio(folio, 1, flags);
2667f50e
SC
2616 goto pte_unmap;
2617 }
2618
84209e87 2619 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
a7f22660
DH
2620 gup_put_folio(folio, 1, flags);
2621 goto pte_unmap;
2622 }
2623
f28d4363
CI
2624 /*
2625 * We need to make the page accessible if and only if we are
2626 * going to access its content (the FOLL_PIN case). Please
2627 * see Documentation/core-api/pin_user_pages.rst for
2628 * details.
2629 */
2630 if (flags & FOLL_PIN) {
2631 ret = arch_make_page_accessible(page);
2632 if (ret) {
b0496fe4 2633 gup_put_folio(folio, 1, flags);
f28d4363
CI
2634 goto pte_unmap;
2635 }
2636 }
b0496fe4 2637 folio_set_referenced(folio);
2667f50e
SC
2638 pages[*nr] = page;
2639 (*nr)++;
2667f50e
SC
2640 } while (ptep++, addr += PAGE_SIZE, addr != end);
2641
2642 ret = 1;
2643
2644pte_unmap:
832d7aa0
CH
2645 if (pgmap)
2646 put_dev_pagemap(pgmap);
2667f50e
SC
2647 pte_unmap(ptem);
2648 return ret;
2649}
2650#else
2651
2652/*
2653 * If we can't determine whether or not a pte is special, then fail immediately
2654 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2655 * to be special.
2656 *
2657 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2658 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2659 * useful to have gup_huge_pmd even if we can't operate on ptes.
2660 */
70cbc3cc
YS
2661static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2662 unsigned long end, unsigned int flags,
2663 struct page **pages, int *nr)
2667f50e
SC
2664{
2665 return 0;
2666}
3010a5ea 2667#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2668
17596731 2669#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2670static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2671 unsigned long end, unsigned int flags,
2672 struct page **pages, int *nr)
b59f65fa
KS
2673{
2674 int nr_start = *nr;
2675 struct dev_pagemap *pgmap = NULL;
2676
2677 do {
2678 struct page *page = pfn_to_page(pfn);
2679
2680 pgmap = get_dev_pagemap(pfn, pgmap);
2681 if (unlikely(!pgmap)) {
3b78d834 2682 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2683 break;
b59f65fa 2684 }
4003f107
LG
2685
2686 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2687 undo_dev_pagemap(nr, nr_start, flags, pages);
2688 break;
2689 }
2690
b59f65fa
KS
2691 SetPageReferenced(page);
2692 pages[*nr] = page;
0f089235 2693 if (unlikely(try_grab_page(page, flags))) {
3faa52c0 2694 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2695 break;
3faa52c0 2696 }
b59f65fa
KS
2697 (*nr)++;
2698 pfn++;
2699 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2700
6401c4eb 2701 put_dev_pagemap(pgmap);
20b7fee7 2702 return addr == end;
b59f65fa
KS
2703}
2704
a9b6de77 2705static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2706 unsigned long end, unsigned int flags,
2707 struct page **pages, int *nr)
b59f65fa
KS
2708{
2709 unsigned long fault_pfn;
a9b6de77
DW
2710 int nr_start = *nr;
2711
2712 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2713 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2714 return 0;
b59f65fa 2715
a9b6de77 2716 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2717 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2718 return 0;
2719 }
2720 return 1;
b59f65fa
KS
2721}
2722
a9b6de77 2723static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2724 unsigned long end, unsigned int flags,
2725 struct page **pages, int *nr)
b59f65fa
KS
2726{
2727 unsigned long fault_pfn;
a9b6de77
DW
2728 int nr_start = *nr;
2729
2730 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2731 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2732 return 0;
b59f65fa 2733
a9b6de77 2734 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2735 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2736 return 0;
2737 }
2738 return 1;
b59f65fa
KS
2739}
2740#else
a9b6de77 2741static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2742 unsigned long end, unsigned int flags,
2743 struct page **pages, int *nr)
b59f65fa
KS
2744{
2745 BUILD_BUG();
2746 return 0;
2747}
2748
a9b6de77 2749static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2750 unsigned long end, unsigned int flags,
2751 struct page **pages, int *nr)
b59f65fa
KS
2752{
2753 BUILD_BUG();
2754 return 0;
2755}
2756#endif
2757
a43e9820
JH
2758static int record_subpages(struct page *page, unsigned long addr,
2759 unsigned long end, struct page **pages)
2760{
2761 int nr;
2762
c228afb1
MWO
2763 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2764 pages[nr] = nth_page(page, nr);
a43e9820
JH
2765
2766 return nr;
2767}
2768
cbd34da7
CH
2769#ifdef CONFIG_ARCH_HAS_HUGEPD
2770static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2771 unsigned long sz)
2772{
2773 unsigned long __boundary = (addr + sz) & ~(sz-1);
2774 return (__boundary - 1 < end - 1) ? __boundary : end;
2775}
2776
2777static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2778 unsigned long end, unsigned int flags,
2779 struct page **pages, int *nr)
cbd34da7
CH
2780{
2781 unsigned long pte_end;
09a1626e
MWO
2782 struct page *page;
2783 struct folio *folio;
cbd34da7
CH
2784 pte_t pte;
2785 int refs;
2786
2787 pte_end = (addr + sz) & ~(sz-1);
2788 if (pte_end < end)
2789 end = pte_end;
2790
55ca2263 2791 pte = huge_ptep_get(ptep);
cbd34da7 2792
0cd22afd 2793 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2794 return 0;
2795
2796 /* hugepages are never "special" */
2797 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2798
09a1626e 2799 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2800 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2801
09a1626e
MWO
2802 folio = try_grab_folio(page, refs, flags);
2803 if (!folio)
cbd34da7 2804 return 0;
cbd34da7 2805
c33c7948 2806 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
09a1626e 2807 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2808 return 0;
2809 }
2810
a6e79df9 2811 if (!folio_fast_pin_allowed(folio, flags)) {
09a1626e 2812 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2813 return 0;
2814 }
2815
84209e87 2816 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2817 gup_put_folio(folio, refs, flags);
2818 return 0;
2819 }
2820
a43e9820 2821 *nr += refs;
09a1626e 2822 folio_set_referenced(folio);
cbd34da7
CH
2823 return 1;
2824}
2825
2826static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2827 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2828 struct page **pages, int *nr)
2829{
2830 pte_t *ptep;
2831 unsigned long sz = 1UL << hugepd_shift(hugepd);
2832 unsigned long next;
2833
2834 ptep = hugepte_offset(hugepd, addr, pdshift);
2835 do {
2836 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2837 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2838 return 0;
2839 } while (ptep++, addr = next, addr != end);
2840
2841 return 1;
2842}
2843#else
2844static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2845 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2846 struct page **pages, int *nr)
2847{
2848 return 0;
2849}
2850#endif /* CONFIG_ARCH_HAS_HUGEPD */
2851
2667f50e 2852static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2853 unsigned long end, unsigned int flags,
2854 struct page **pages, int *nr)
2667f50e 2855{
667ed1f7
MWO
2856 struct page *page;
2857 struct folio *folio;
2667f50e
SC
2858 int refs;
2859
b798bec4 2860 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2861 return 0;
2862
7af75561
IW
2863 if (pmd_devmap(orig)) {
2864 if (unlikely(flags & FOLL_LONGTERM))
2865 return 0;
86dfbed4
JH
2866 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2867 pages, nr);
7af75561 2868 }
b59f65fa 2869
c228afb1 2870 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2871 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2872
667ed1f7
MWO
2873 folio = try_grab_folio(page, refs, flags);
2874 if (!folio)
2667f50e 2875 return 0;
2667f50e
SC
2876
2877 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2878 gup_put_folio(folio, refs, flags);
2667f50e
SC
2879 return 0;
2880 }
2881
a6e79df9
LS
2882 if (!folio_fast_pin_allowed(folio, flags)) {
2883 gup_put_folio(folio, refs, flags);
2884 return 0;
2885 }
84209e87 2886 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2887 gup_put_folio(folio, refs, flags);
2888 return 0;
2889 }
2890
a43e9820 2891 *nr += refs;
667ed1f7 2892 folio_set_referenced(folio);
2667f50e
SC
2893 return 1;
2894}
2895
2896static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2897 unsigned long end, unsigned int flags,
2898 struct page **pages, int *nr)
2667f50e 2899{
83afb52e
MWO
2900 struct page *page;
2901 struct folio *folio;
2667f50e
SC
2902 int refs;
2903
b798bec4 2904 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2905 return 0;
2906
7af75561
IW
2907 if (pud_devmap(orig)) {
2908 if (unlikely(flags & FOLL_LONGTERM))
2909 return 0;
86dfbed4
JH
2910 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2911 pages, nr);
7af75561 2912 }
b59f65fa 2913
c228afb1 2914 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2915 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2916
83afb52e
MWO
2917 folio = try_grab_folio(page, refs, flags);
2918 if (!folio)
2667f50e 2919 return 0;
2667f50e
SC
2920
2921 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2922 gup_put_folio(folio, refs, flags);
2667f50e
SC
2923 return 0;
2924 }
2925
a6e79df9
LS
2926 if (!folio_fast_pin_allowed(folio, flags)) {
2927 gup_put_folio(folio, refs, flags);
2928 return 0;
2929 }
2930
84209e87 2931 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2932 gup_put_folio(folio, refs, flags);
2933 return 0;
2934 }
2935
a43e9820 2936 *nr += refs;
83afb52e 2937 folio_set_referenced(folio);
2667f50e
SC
2938 return 1;
2939}
2940
f30c59e9 2941static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2942 unsigned long end, unsigned int flags,
f30c59e9
AK
2943 struct page **pages, int *nr)
2944{
2945 int refs;
2d7919a2
MWO
2946 struct page *page;
2947 struct folio *folio;
f30c59e9 2948
b798bec4 2949 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2950 return 0;
2951
b59f65fa 2952 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2953
c228afb1 2954 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2955 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2956
2d7919a2
MWO
2957 folio = try_grab_folio(page, refs, flags);
2958 if (!folio)
f30c59e9 2959 return 0;
f30c59e9
AK
2960
2961 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 2962 gup_put_folio(folio, refs, flags);
f30c59e9
AK
2963 return 0;
2964 }
2965
31115034
LS
2966 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2967 gup_put_folio(folio, refs, flags);
2968 return 0;
2969 }
2970
a6e79df9
LS
2971 if (!folio_fast_pin_allowed(folio, flags)) {
2972 gup_put_folio(folio, refs, flags);
2973 return 0;
2974 }
2975
a43e9820 2976 *nr += refs;
2d7919a2 2977 folio_set_referenced(folio);
f30c59e9
AK
2978 return 1;
2979}
2980
d3f7b1bb 2981static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2982 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2983{
2984 unsigned long next;
2985 pmd_t *pmdp;
2986
d3f7b1bb 2987 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2988 do {
1180e732 2989 pmd_t pmd = pmdp_get_lockless(pmdp);
2667f50e
SC
2990
2991 next = pmd_addr_end(addr, end);
84c3fc4e 2992 if (!pmd_present(pmd))
2667f50e
SC
2993 return 0;
2994
414fd080
YZ
2995 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2996 pmd_devmap(pmd))) {
d74943a2
DH
2997 /* See gup_pte_range() */
2998 if (pmd_protnone(pmd))
2667f50e
SC
2999 return 0;
3000
b798bec4 3001 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
3002 pages, nr))
3003 return 0;
3004
f30c59e9
AK
3005 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3006 /*
3007 * architecture have different format for hugetlbfs
3008 * pmd format and THP pmd format
3009 */
3010 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 3011 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 3012 return 0;
70cbc3cc 3013 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2923117b 3014 return 0;
2667f50e
SC
3015 } while (pmdp++, addr = next, addr != end);
3016
3017 return 1;
3018}
3019
d3f7b1bb 3020static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 3021 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
3022{
3023 unsigned long next;
3024 pud_t *pudp;
3025
d3f7b1bb 3026 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 3027 do {
e37c6982 3028 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
3029
3030 next = pud_addr_end(addr, end);
15494520 3031 if (unlikely(!pud_present(pud)))
2667f50e 3032 return 0;
fcd0ccd8 3033 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
b798bec4 3034 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
3035 pages, nr))
3036 return 0;
3037 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3038 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 3039 PUD_SHIFT, next, flags, pages, nr))
2667f50e 3040 return 0;
d3f7b1bb 3041 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
3042 return 0;
3043 } while (pudp++, addr = next, addr != end);
3044
3045 return 1;
3046}
3047
d3f7b1bb 3048static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 3049 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
3050{
3051 unsigned long next;
3052 p4d_t *p4dp;
3053
d3f7b1bb 3054 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
3055 do {
3056 p4d_t p4d = READ_ONCE(*p4dp);
3057
3058 next = p4d_addr_end(addr, end);
3059 if (p4d_none(p4d))
3060 return 0;
3061 BUILD_BUG_ON(p4d_huge(p4d));
3062 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3063 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 3064 P4D_SHIFT, next, flags, pages, nr))
c2febafc 3065 return 0;
d3f7b1bb 3066 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
3067 return 0;
3068 } while (p4dp++, addr = next, addr != end);
3069
3070 return 1;
3071}
3072
5b65c467 3073static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 3074 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
3075{
3076 unsigned long next;
3077 pgd_t *pgdp;
3078
3079 pgdp = pgd_offset(current->mm, addr);
3080 do {
3081 pgd_t pgd = READ_ONCE(*pgdp);
3082
3083 next = pgd_addr_end(addr, end);
3084 if (pgd_none(pgd))
3085 return;
3086 if (unlikely(pgd_huge(pgd))) {
b798bec4 3087 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
3088 pages, nr))
3089 return;
3090 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3091 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 3092 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 3093 return;
d3f7b1bb 3094 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
3095 return;
3096 } while (pgdp++, addr = next, addr != end);
3097}
050a9adc
CH
3098#else
3099static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3100 unsigned int flags, struct page **pages, int *nr)
3101{
3102}
3103#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
3104
3105#ifndef gup_fast_permitted
3106/*
dadbb612 3107 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
3108 * we need to fall back to the slow version:
3109 */
26f4c328 3110static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 3111{
26f4c328 3112 return true;
5b65c467
KS
3113}
3114#endif
3115
c28b1fc7
JG
3116static unsigned long lockless_pages_from_mm(unsigned long start,
3117 unsigned long end,
3118 unsigned int gup_flags,
3119 struct page **pages)
3120{
3121 unsigned long flags;
3122 int nr_pinned = 0;
57efa1fe 3123 unsigned seq;
c28b1fc7
JG
3124
3125 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3126 !gup_fast_permitted(start, end))
3127 return 0;
3128
57efa1fe
JG
3129 if (gup_flags & FOLL_PIN) {
3130 seq = raw_read_seqcount(&current->mm->write_protect_seq);
3131 if (seq & 1)
3132 return 0;
3133 }
3134
c28b1fc7
JG
3135 /*
3136 * Disable interrupts. The nested form is used, in order to allow full,
3137 * general purpose use of this routine.
3138 *
3139 * With interrupts disabled, we block page table pages from being freed
3140 * from under us. See struct mmu_table_batch comments in
3141 * include/asm-generic/tlb.h for more details.
3142 *
3143 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3144 * that come from THPs splitting.
3145 */
3146 local_irq_save(flags);
3147 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3148 local_irq_restore(flags);
57efa1fe
JG
3149
3150 /*
3151 * When pinning pages for DMA there could be a concurrent write protect
3152 * from fork() via copy_page_range(), in this case always fail fast GUP.
3153 */
3154 if (gup_flags & FOLL_PIN) {
3155 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
b6a2619c 3156 unpin_user_pages_lockless(pages, nr_pinned);
57efa1fe 3157 return 0;
b6a2619c
DH
3158 } else {
3159 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
3160 }
3161 }
c28b1fc7
JG
3162 return nr_pinned;
3163}
3164
3165static int internal_get_user_pages_fast(unsigned long start,
3166 unsigned long nr_pages,
eddb1c22
JH
3167 unsigned int gup_flags,
3168 struct page **pages)
2667f50e 3169{
c28b1fc7
JG
3170 unsigned long len, end;
3171 unsigned long nr_pinned;
b2a72dff 3172 int locked = 0;
c28b1fc7 3173 int ret;
2667f50e 3174
f4000fdf 3175 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 3176 FOLL_FORCE | FOLL_PIN | FOLL_GET |
4003f107 3177 FOLL_FAST_ONLY | FOLL_NOFAULT |
d74943a2 3178 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
817be129
CH
3179 return -EINVAL;
3180
a458b76a
AA
3181 if (gup_flags & FOLL_PIN)
3182 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 3183
f81cd178 3184 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 3185 might_lock_read(&current->mm->mmap_lock);
f81cd178 3186
f455c854 3187 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
3188 len = nr_pages << PAGE_SHIFT;
3189 if (check_add_overflow(start, len, &end))
9883c7f8 3190 return -EOVERFLOW;
6014bc27
LT
3191 if (end > TASK_SIZE_MAX)
3192 return -EFAULT;
96d4f267 3193 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 3194 return -EFAULT;
73e10a61 3195
c28b1fc7
JG
3196 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3197 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3198 return nr_pinned;
2667f50e 3199
c28b1fc7
JG
3200 /* Slow path: try to get the remaining pages with get_user_pages */
3201 start += nr_pinned << PAGE_SHIFT;
3202 pages += nr_pinned;
b2a72dff 3203 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
b2cac248 3204 pages, &locked,
f04740f5 3205 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
c28b1fc7
JG
3206 if (ret < 0) {
3207 /*
3208 * The caller has to unpin the pages we already pinned so
3209 * returning -errno is not an option
3210 */
3211 if (nr_pinned)
3212 return nr_pinned;
3213 return ret;
2667f50e 3214 }
c28b1fc7 3215 return ret + nr_pinned;
2667f50e 3216}
c28b1fc7 3217
dadbb612
SJ
3218/**
3219 * get_user_pages_fast_only() - pin user pages in memory
3220 * @start: starting user address
3221 * @nr_pages: number of pages from start to pin
3222 * @gup_flags: flags modifying pin behaviour
3223 * @pages: array that receives pointers to the pages pinned.
3224 * Should be at least nr_pages long.
3225 *
9e1f0580
JH
3226 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3227 * the regular GUP.
9e1f0580
JH
3228 *
3229 * If the architecture does not support this function, simply return with no
3230 * pages pinned.
3231 *
3232 * Careful, careful! COW breaking can go either way, so a non-write
3233 * access can get ambiguous page results. If you call this function without
3234 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3235 */
dadbb612
SJ
3236int get_user_pages_fast_only(unsigned long start, int nr_pages,
3237 unsigned int gup_flags, struct page **pages)
9e1f0580 3238{
9e1f0580
JH
3239 /*
3240 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3241 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3242 *
3243 * FOLL_FAST_ONLY is required in order to match the API description of
3244 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3245 */
b2cac248 3246 if (!is_valid_gup_args(pages, NULL, &gup_flags,
d64e2dbc
JG
3247 FOLL_GET | FOLL_FAST_ONLY))
3248 return -EINVAL;
9e1f0580 3249
9198a919 3250 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
9e1f0580 3251}
dadbb612 3252EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3253
eddb1c22
JH
3254/**
3255 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3256 * @start: starting user address
3257 * @nr_pages: number of pages from start to pin
3258 * @gup_flags: flags modifying pin behaviour
3259 * @pages: array that receives pointers to the pages pinned.
3260 * Should be at least nr_pages long.
eddb1c22 3261 *
c1e8d7c6 3262 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3263 * If not successful, it will fall back to taking the lock and
3264 * calling get_user_pages().
3265 *
3266 * Returns number of pages pinned. This may be fewer than the number requested.
3267 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3268 * -errno.
3269 */
3270int get_user_pages_fast(unsigned long start, int nr_pages,
3271 unsigned int gup_flags, struct page **pages)
3272{
94202f12
JH
3273 /*
3274 * The caller may or may not have explicitly set FOLL_GET; either way is
3275 * OK. However, internally (within mm/gup.c), gup fast variants must set
3276 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3277 * request.
3278 */
b2cac248 3279 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
d64e2dbc 3280 return -EINVAL;
eddb1c22
JH
3281 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3282}
050a9adc 3283EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3284
3285/**
3286 * pin_user_pages_fast() - pin user pages in memory without taking locks
3287 *
3faa52c0
JH
3288 * @start: starting user address
3289 * @nr_pages: number of pages from start to pin
3290 * @gup_flags: flags modifying pin behaviour
3291 * @pages: array that receives pointers to the pages pinned.
3292 * Should be at least nr_pages long.
3293 *
3294 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3295 * get_user_pages_fast() for documentation on the function arguments, because
3296 * the arguments here are identical.
3297 *
3298 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3299 * see Documentation/core-api/pin_user_pages.rst for further details.
c8070b78
DH
3300 *
3301 * Note that if a zero_page is amongst the returned pages, it will not have
3302 * pins in it and unpin_user_page() will not remove pins from it.
eddb1c22
JH
3303 */
3304int pin_user_pages_fast(unsigned long start, int nr_pages,
3305 unsigned int gup_flags, struct page **pages)
3306{
b2cac248 3307 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3faa52c0 3308 return -EINVAL;
3faa52c0 3309 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3310}
3311EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3312
3313/**
64019a2e 3314 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3315 *
3faa52c0
JH
3316 * @mm: mm_struct of target mm
3317 * @start: starting user address
3318 * @nr_pages: number of pages from start to pin
3319 * @gup_flags: flags modifying lookup behaviour
3320 * @pages: array that receives pointers to the pages pinned.
0768c8de 3321 * Should be at least nr_pages long.
3faa52c0
JH
3322 * @locked: pointer to lock flag indicating whether lock is held and
3323 * subsequently whether VM_FAULT_RETRY functionality can be
3324 * utilised. Lock must initially be held.
3325 *
3326 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3327 * get_user_pages_remote() for documentation on the function arguments, because
3328 * the arguments here are identical.
3329 *
3330 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3331 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3332 *
3333 * Note that if a zero_page is amongst the returned pages, it will not have
3334 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22 3335 */
64019a2e 3336long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3337 unsigned long start, unsigned long nr_pages,
3338 unsigned int gup_flags, struct page **pages,
0b295316 3339 int *locked)
eddb1c22 3340{
9a863a6a
JG
3341 int local_locked = 1;
3342
b2cac248 3343 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc
JG
3344 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3345 return 0;
b2cac248 3346 return __gup_longterm_locked(mm, start, nr_pages, pages,
9a863a6a 3347 locked ? locked : &local_locked,
d64e2dbc 3348 gup_flags);
eddb1c22
JH
3349}
3350EXPORT_SYMBOL(pin_user_pages_remote);
3351
3352/**
3353 * pin_user_pages() - pin user pages in memory for use by other devices
3354 *
3faa52c0
JH
3355 * @start: starting user address
3356 * @nr_pages: number of pages from start to pin
3357 * @gup_flags: flags modifying lookup behaviour
3358 * @pages: array that receives pointers to the pages pinned.
0768c8de 3359 * Should be at least nr_pages long.
3faa52c0
JH
3360 *
3361 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3362 * FOLL_PIN is set.
3363 *
3364 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3365 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3366 *
3367 * Note that if a zero_page is amongst the returned pages, it will not have
3368 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22
JH
3369 */
3370long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 3371 unsigned int gup_flags, struct page **pages)
eddb1c22 3372{
9a863a6a
JG
3373 int locked = 1;
3374
b2cac248 3375 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
d64e2dbc 3376 return 0;
64019a2e 3377 return __gup_longterm_locked(current->mm, start, nr_pages,
b2cac248 3378 pages, &locked, gup_flags);
eddb1c22
JH
3379}
3380EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3381
3382/*
3383 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3384 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3385 * FOLL_PIN and rejects FOLL_GET.
c8070b78
DH
3386 *
3387 * Note that if a zero_page is amongst the returned pages, it will not have
3388 * pins in it and unpin_user_page*() will not remove pins from it.
91429023
JH
3389 */
3390long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3391 struct page **pages, unsigned int gup_flags)
3392{
b2a72dff 3393 int locked = 0;
91429023 3394
b2cac248 3395 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 3396 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc 3397 return 0;
0768c8de 3398
b2cac248 3399 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
b2a72dff 3400 &locked, gup_flags);
91429023
JH
3401}
3402EXPORT_SYMBOL(pin_user_pages_unlocked);