]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
memcg: fix dirty page migration
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
d1a4c0b3 68#include <net/tcp_memcontrol.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
a181b0e8 78#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 79static struct mem_cgroup *root_mem_cgroup __read_mostly;
56161634 80struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
8cdea7c0 81
21afa38e 82/* Whether the swap controller is active */
c255a458 83#ifdef CONFIG_MEMCG_SWAP
c077719b 84int do_swap_account __read_mostly;
c077719b 85#else
a0db00fc 86#define do_swap_account 0
c077719b
KH
87#endif
88
af7c4b0e
JW
89static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
b070e65c 92 "rss_huge",
af7c4b0e 93 "mapped_file",
c4843a75 94 "dirty",
3ea67d06 95 "writeback",
af7c4b0e
JW
96 "swap",
97};
98
af7c4b0e
JW
99static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104};
105
58cf188e
SZ
106static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112};
113
a0db00fc
KS
114#define THRESHOLDS_EVENTS_TARGET 128
115#define SOFTLIMIT_EVENTS_TARGET 1024
116#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 117
bb4cc1a8
AM
118/*
119 * Cgroups above their limits are maintained in a RB-Tree, independent of
120 * their hierarchy representation
121 */
122
123struct mem_cgroup_tree_per_zone {
124 struct rb_root rb_root;
125 spinlock_t lock;
126};
127
128struct mem_cgroup_tree_per_node {
129 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
130};
131
132struct mem_cgroup_tree {
133 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
134};
135
136static struct mem_cgroup_tree soft_limit_tree __read_mostly;
137
9490ff27
KH
138/* for OOM */
139struct mem_cgroup_eventfd_list {
140 struct list_head list;
141 struct eventfd_ctx *eventfd;
142};
2e72b634 143
79bd9814
TH
144/*
145 * cgroup_event represents events which userspace want to receive.
146 */
3bc942f3 147struct mem_cgroup_event {
79bd9814 148 /*
59b6f873 149 * memcg which the event belongs to.
79bd9814 150 */
59b6f873 151 struct mem_cgroup *memcg;
79bd9814
TH
152 /*
153 * eventfd to signal userspace about the event.
154 */
155 struct eventfd_ctx *eventfd;
156 /*
157 * Each of these stored in a list by the cgroup.
158 */
159 struct list_head list;
fba94807
TH
160 /*
161 * register_event() callback will be used to add new userspace
162 * waiter for changes related to this event. Use eventfd_signal()
163 * on eventfd to send notification to userspace.
164 */
59b6f873 165 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 166 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
167 /*
168 * unregister_event() callback will be called when userspace closes
169 * the eventfd or on cgroup removing. This callback must be set,
170 * if you want provide notification functionality.
171 */
59b6f873 172 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 173 struct eventfd_ctx *eventfd);
79bd9814
TH
174 /*
175 * All fields below needed to unregister event when
176 * userspace closes eventfd.
177 */
178 poll_table pt;
179 wait_queue_head_t *wqh;
180 wait_queue_t wait;
181 struct work_struct remove;
182};
183
c0ff4b85
R
184static void mem_cgroup_threshold(struct mem_cgroup *memcg);
185static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 186
7dc74be0
DN
187/* Stuffs for move charges at task migration. */
188/*
1dfab5ab 189 * Types of charges to be moved.
7dc74be0 190 */
1dfab5ab
JW
191#define MOVE_ANON 0x1U
192#define MOVE_FILE 0x2U
193#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 194
4ffef5fe
DN
195/* "mc" and its members are protected by cgroup_mutex */
196static struct move_charge_struct {
b1dd693e 197 spinlock_t lock; /* for from, to */
4ffef5fe
DN
198 struct mem_cgroup *from;
199 struct mem_cgroup *to;
1dfab5ab 200 unsigned long flags;
4ffef5fe 201 unsigned long precharge;
854ffa8d 202 unsigned long moved_charge;
483c30b5 203 unsigned long moved_swap;
8033b97c
DN
204 struct task_struct *moving_task; /* a task moving charges */
205 wait_queue_head_t waitq; /* a waitq for other context */
206} mc = {
2bd9bb20 207 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
208 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
209};
4ffef5fe 210
4e416953
BS
211/*
212 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
213 * limit reclaim to prevent infinite loops, if they ever occur.
214 */
a0db00fc 215#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 216#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 217
217bc319
KH
218enum charge_type {
219 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 220 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 221 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 222 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
223 NR_CHARGE_TYPE,
224};
225
8c7c6e34 226/* for encoding cft->private value on file */
86ae53e1
GC
227enum res_type {
228 _MEM,
229 _MEMSWAP,
230 _OOM_TYPE,
510fc4e1 231 _KMEM,
86ae53e1
GC
232};
233
a0db00fc
KS
234#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
235#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 236#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
237/* Used for OOM nofiier */
238#define OOM_CONTROL (0)
8c7c6e34 239
0999821b
GC
240/*
241 * The memcg_create_mutex will be held whenever a new cgroup is created.
242 * As a consequence, any change that needs to protect against new child cgroups
243 * appearing has to hold it as well.
244 */
245static DEFINE_MUTEX(memcg_create_mutex);
246
70ddf637
AV
247/* Some nice accessors for the vmpressure. */
248struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
249{
250 if (!memcg)
251 memcg = root_mem_cgroup;
252 return &memcg->vmpressure;
253}
254
255struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
256{
257 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
258}
259
7ffc0edc
MH
260static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
261{
262 return (memcg == root_mem_cgroup);
263}
264
4219b2da
LZ
265/*
266 * We restrict the id in the range of [1, 65535], so it can fit into
267 * an unsigned short.
268 */
269#define MEM_CGROUP_ID_MAX USHRT_MAX
270
34c00c31
LZ
271static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
272{
15a4c835 273 return memcg->css.id;
34c00c31
LZ
274}
275
adbe427b
VD
276/*
277 * A helper function to get mem_cgroup from ID. must be called under
278 * rcu_read_lock(). The caller is responsible for calling
279 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
280 * refcnt from swap can be called against removed memcg.)
281 */
34c00c31
LZ
282static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
283{
284 struct cgroup_subsys_state *css;
285
7d699ddb 286 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
287 return mem_cgroup_from_css(css);
288}
289
e1aab161 290/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 291#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 292
e1aab161
GC
293void sock_update_memcg(struct sock *sk)
294{
376be5ff 295 if (mem_cgroup_sockets_enabled) {
e1aab161 296 struct mem_cgroup *memcg;
3f134619 297 struct cg_proto *cg_proto;
e1aab161
GC
298
299 BUG_ON(!sk->sk_prot->proto_cgroup);
300
f3f511e1
GC
301 /* Socket cloning can throw us here with sk_cgrp already
302 * filled. It won't however, necessarily happen from
303 * process context. So the test for root memcg given
304 * the current task's memcg won't help us in this case.
305 *
306 * Respecting the original socket's memcg is a better
307 * decision in this case.
308 */
309 if (sk->sk_cgrp) {
310 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 311 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
312 return;
313 }
314
e1aab161
GC
315 rcu_read_lock();
316 memcg = mem_cgroup_from_task(current);
3f134619 317 cg_proto = sk->sk_prot->proto_cgroup(memcg);
e752eb68 318 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
ec903c0c 319 css_tryget_online(&memcg->css)) {
3f134619 320 sk->sk_cgrp = cg_proto;
e1aab161
GC
321 }
322 rcu_read_unlock();
323 }
324}
325EXPORT_SYMBOL(sock_update_memcg);
326
327void sock_release_memcg(struct sock *sk)
328{
376be5ff 329 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
330 struct mem_cgroup *memcg;
331 WARN_ON(!sk->sk_cgrp->memcg);
332 memcg = sk->sk_cgrp->memcg;
5347e5ae 333 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
334 }
335}
d1a4c0b3
GC
336
337struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
338{
339 if (!memcg || mem_cgroup_is_root(memcg))
340 return NULL;
341
2e685cad 342 return &memcg->tcp_mem;
d1a4c0b3
GC
343}
344EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 345
3f134619
GC
346#endif
347
a8964b9b 348#ifdef CONFIG_MEMCG_KMEM
55007d84 349/*
f7ce3190 350 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
351 * The main reason for not using cgroup id for this:
352 * this works better in sparse environments, where we have a lot of memcgs,
353 * but only a few kmem-limited. Or also, if we have, for instance, 200
354 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
355 * 200 entry array for that.
55007d84 356 *
dbcf73e2
VD
357 * The current size of the caches array is stored in memcg_nr_cache_ids. It
358 * will double each time we have to increase it.
55007d84 359 */
dbcf73e2
VD
360static DEFINE_IDA(memcg_cache_ida);
361int memcg_nr_cache_ids;
749c5415 362
05257a1a
VD
363/* Protects memcg_nr_cache_ids */
364static DECLARE_RWSEM(memcg_cache_ids_sem);
365
366void memcg_get_cache_ids(void)
367{
368 down_read(&memcg_cache_ids_sem);
369}
370
371void memcg_put_cache_ids(void)
372{
373 up_read(&memcg_cache_ids_sem);
374}
375
55007d84
GC
376/*
377 * MIN_SIZE is different than 1, because we would like to avoid going through
378 * the alloc/free process all the time. In a small machine, 4 kmem-limited
379 * cgroups is a reasonable guess. In the future, it could be a parameter or
380 * tunable, but that is strictly not necessary.
381 *
b8627835 382 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
383 * this constant directly from cgroup, but it is understandable that this is
384 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 385 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
386 * increase ours as well if it increases.
387 */
388#define MEMCG_CACHES_MIN_SIZE 4
b8627835 389#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 390
d7f25f8a
GC
391/*
392 * A lot of the calls to the cache allocation functions are expected to be
393 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
394 * conditional to this static branch, we'll have to allow modules that does
395 * kmem_cache_alloc and the such to see this symbol as well
396 */
a8964b9b 397struct static_key memcg_kmem_enabled_key;
d7f25f8a 398EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 399
a8964b9b
GC
400#endif /* CONFIG_MEMCG_KMEM */
401
f64c3f54 402static struct mem_cgroup_per_zone *
e231875b 403mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 404{
e231875b
JZ
405 int nid = zone_to_nid(zone);
406 int zid = zone_idx(zone);
407
54f72fe0 408 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
409}
410
ad7fa852
TH
411/**
412 * mem_cgroup_css_from_page - css of the memcg associated with a page
413 * @page: page of interest
414 *
415 * If memcg is bound to the default hierarchy, css of the memcg associated
416 * with @page is returned. The returned css remains associated with @page
417 * until it is released.
418 *
419 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
420 * is returned.
421 *
422 * XXX: The above description of behavior on the default hierarchy isn't
423 * strictly true yet as replace_page_cache_page() can modify the
424 * association before @page is released even on the default hierarchy;
425 * however, the current and planned usages don't mix the the two functions
426 * and replace_page_cache_page() will soon be updated to make the invariant
427 * actually true.
428 */
429struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
430{
431 struct mem_cgroup *memcg;
432
433 rcu_read_lock();
434
435 memcg = page->mem_cgroup;
436
437 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
438 memcg = root_mem_cgroup;
439
440 rcu_read_unlock();
441 return &memcg->css;
442}
443
2fc04524
VD
444/**
445 * page_cgroup_ino - return inode number of the memcg a page is charged to
446 * @page: the page
447 *
448 * Look up the closest online ancestor of the memory cgroup @page is charged to
449 * and return its inode number or 0 if @page is not charged to any cgroup. It
450 * is safe to call this function without holding a reference to @page.
451 *
452 * Note, this function is inherently racy, because there is nothing to prevent
453 * the cgroup inode from getting torn down and potentially reallocated a moment
454 * after page_cgroup_ino() returns, so it only should be used by callers that
455 * do not care (such as procfs interfaces).
456 */
457ino_t page_cgroup_ino(struct page *page)
458{
459 struct mem_cgroup *memcg;
460 unsigned long ino = 0;
461
462 rcu_read_lock();
463 memcg = READ_ONCE(page->mem_cgroup);
464 while (memcg && !(memcg->css.flags & CSS_ONLINE))
465 memcg = parent_mem_cgroup(memcg);
466 if (memcg)
467 ino = cgroup_ino(memcg->css.cgroup);
468 rcu_read_unlock();
469 return ino;
470}
471
f64c3f54 472static struct mem_cgroup_per_zone *
e231875b 473mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 474{
97a6c37b
JW
475 int nid = page_to_nid(page);
476 int zid = page_zonenum(page);
f64c3f54 477
e231875b 478 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
479}
480
bb4cc1a8
AM
481static struct mem_cgroup_tree_per_zone *
482soft_limit_tree_node_zone(int nid, int zid)
483{
484 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
485}
486
487static struct mem_cgroup_tree_per_zone *
488soft_limit_tree_from_page(struct page *page)
489{
490 int nid = page_to_nid(page);
491 int zid = page_zonenum(page);
492
493 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
494}
495
cf2c8127
JW
496static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
497 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 498 unsigned long new_usage_in_excess)
bb4cc1a8
AM
499{
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
503
504 if (mz->on_tree)
505 return;
506
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
516 /*
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
519 */
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
522 }
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
526}
527
cf2c8127
JW
528static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
529 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
530{
531 if (!mz->on_tree)
532 return;
533 rb_erase(&mz->tree_node, &mctz->rb_root);
534 mz->on_tree = false;
535}
536
cf2c8127
JW
537static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
538 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 539{
0a31bc97
JW
540 unsigned long flags;
541
542 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 543 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 544 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
545}
546
3e32cb2e
JW
547static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
548{
549 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 550 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
551 unsigned long excess = 0;
552
553 if (nr_pages > soft_limit)
554 excess = nr_pages - soft_limit;
555
556 return excess;
557}
bb4cc1a8
AM
558
559static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
560{
3e32cb2e 561 unsigned long excess;
bb4cc1a8
AM
562 struct mem_cgroup_per_zone *mz;
563 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 564
e231875b 565 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
566 /*
567 * Necessary to update all ancestors when hierarchy is used.
568 * because their event counter is not touched.
569 */
570 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 571 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 572 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
573 /*
574 * We have to update the tree if mz is on RB-tree or
575 * mem is over its softlimit.
576 */
577 if (excess || mz->on_tree) {
0a31bc97
JW
578 unsigned long flags;
579
580 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
581 /* if on-tree, remove it */
582 if (mz->on_tree)
cf2c8127 583 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
584 /*
585 * Insert again. mz->usage_in_excess will be updated.
586 * If excess is 0, no tree ops.
587 */
cf2c8127 588 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 589 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
590 }
591 }
592}
593
594static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
595{
bb4cc1a8 596 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
597 struct mem_cgroup_per_zone *mz;
598 int nid, zid;
bb4cc1a8 599
e231875b
JZ
600 for_each_node(nid) {
601 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
602 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
603 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 604 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
605 }
606 }
607}
608
609static struct mem_cgroup_per_zone *
610__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
611{
612 struct rb_node *rightmost = NULL;
613 struct mem_cgroup_per_zone *mz;
614
615retry:
616 mz = NULL;
617 rightmost = rb_last(&mctz->rb_root);
618 if (!rightmost)
619 goto done; /* Nothing to reclaim from */
620
621 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
622 /*
623 * Remove the node now but someone else can add it back,
624 * we will to add it back at the end of reclaim to its correct
625 * position in the tree.
626 */
cf2c8127 627 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 628 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 629 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
630 goto retry;
631done:
632 return mz;
633}
634
635static struct mem_cgroup_per_zone *
636mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
637{
638 struct mem_cgroup_per_zone *mz;
639
0a31bc97 640 spin_lock_irq(&mctz->lock);
bb4cc1a8 641 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 642 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
643 return mz;
644}
645
711d3d2c
KH
646/*
647 * Implementation Note: reading percpu statistics for memcg.
648 *
649 * Both of vmstat[] and percpu_counter has threshold and do periodic
650 * synchronization to implement "quick" read. There are trade-off between
651 * reading cost and precision of value. Then, we may have a chance to implement
652 * a periodic synchronizion of counter in memcg's counter.
653 *
654 * But this _read() function is used for user interface now. The user accounts
655 * memory usage by memory cgroup and he _always_ requires exact value because
656 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
657 * have to visit all online cpus and make sum. So, for now, unnecessary
658 * synchronization is not implemented. (just implemented for cpu hotplug)
659 *
660 * If there are kernel internal actions which can make use of some not-exact
661 * value, and reading all cpu value can be performance bottleneck in some
662 * common workload, threashold and synchonization as vmstat[] should be
663 * implemented.
664 */
c0ff4b85 665static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 666 enum mem_cgroup_stat_index idx)
c62b1a3b 667{
7a159cc9 668 long val = 0;
c62b1a3b 669 int cpu;
c62b1a3b 670
733a572e 671 for_each_possible_cpu(cpu)
c0ff4b85 672 val += per_cpu(memcg->stat->count[idx], cpu);
c62b1a3b
KH
673 return val;
674}
675
c0ff4b85 676static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
677 enum mem_cgroup_events_index idx)
678{
679 unsigned long val = 0;
680 int cpu;
681
733a572e 682 for_each_possible_cpu(cpu)
c0ff4b85 683 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
684 return val;
685}
686
c0ff4b85 687static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 688 struct page *page,
0a31bc97 689 int nr_pages)
d52aa412 690{
b2402857
KH
691 /*
692 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
693 * counted as CACHE even if it's on ANON LRU.
694 */
0a31bc97 695 if (PageAnon(page))
b2402857 696 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 697 nr_pages);
d52aa412 698 else
b2402857 699 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 700 nr_pages);
55e462b0 701
b070e65c
DR
702 if (PageTransHuge(page))
703 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
704 nr_pages);
705
e401f176
KH
706 /* pagein of a big page is an event. So, ignore page size */
707 if (nr_pages > 0)
c0ff4b85 708 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 709 else {
c0ff4b85 710 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
711 nr_pages = -nr_pages; /* for event */
712 }
e401f176 713
13114716 714 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
715}
716
e231875b
JZ
717static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 int nid,
719 unsigned int lru_mask)
bb2a0de9 720{
e231875b 721 unsigned long nr = 0;
889976db
YH
722 int zid;
723
e231875b 724 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 725
e231875b
JZ
726 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
727 struct mem_cgroup_per_zone *mz;
728 enum lru_list lru;
729
730 for_each_lru(lru) {
731 if (!(BIT(lru) & lru_mask))
732 continue;
733 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
734 nr += mz->lru_size[lru];
735 }
736 }
737 return nr;
889976db 738}
bb2a0de9 739
c0ff4b85 740static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 741 unsigned int lru_mask)
6d12e2d8 742{
e231875b 743 unsigned long nr = 0;
889976db 744 int nid;
6d12e2d8 745
31aaea4a 746 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
747 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
748 return nr;
d52aa412
KH
749}
750
f53d7ce3
JW
751static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
752 enum mem_cgroup_events_target target)
7a159cc9
JW
753{
754 unsigned long val, next;
755
13114716 756 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 757 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 758 /* from time_after() in jiffies.h */
f53d7ce3
JW
759 if ((long)next - (long)val < 0) {
760 switch (target) {
761 case MEM_CGROUP_TARGET_THRESH:
762 next = val + THRESHOLDS_EVENTS_TARGET;
763 break;
bb4cc1a8
AM
764 case MEM_CGROUP_TARGET_SOFTLIMIT:
765 next = val + SOFTLIMIT_EVENTS_TARGET;
766 break;
f53d7ce3
JW
767 case MEM_CGROUP_TARGET_NUMAINFO:
768 next = val + NUMAINFO_EVENTS_TARGET;
769 break;
770 default:
771 break;
772 }
773 __this_cpu_write(memcg->stat->targets[target], next);
774 return true;
7a159cc9 775 }
f53d7ce3 776 return false;
d2265e6f
KH
777}
778
779/*
780 * Check events in order.
781 *
782 */
c0ff4b85 783static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
784{
785 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
786 if (unlikely(mem_cgroup_event_ratelimit(memcg,
787 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 788 bool do_softlimit;
82b3f2a7 789 bool do_numainfo __maybe_unused;
f53d7ce3 790
bb4cc1a8
AM
791 do_softlimit = mem_cgroup_event_ratelimit(memcg,
792 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
793#if MAX_NUMNODES > 1
794 do_numainfo = mem_cgroup_event_ratelimit(memcg,
795 MEM_CGROUP_TARGET_NUMAINFO);
796#endif
c0ff4b85 797 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
798 if (unlikely(do_softlimit))
799 mem_cgroup_update_tree(memcg, page);
453a9bf3 800#if MAX_NUMNODES > 1
f53d7ce3 801 if (unlikely(do_numainfo))
c0ff4b85 802 atomic_inc(&memcg->numainfo_events);
453a9bf3 803#endif
0a31bc97 804 }
d2265e6f
KH
805}
806
cf475ad2 807struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 808{
31a78f23
BS
809 /*
810 * mm_update_next_owner() may clear mm->owner to NULL
811 * if it races with swapoff, page migration, etc.
812 * So this can be called with p == NULL.
813 */
814 if (unlikely(!p))
815 return NULL;
816
073219e9 817 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 818}
33398cf2 819EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 820
df381975 821static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 822{
c0ff4b85 823 struct mem_cgroup *memcg = NULL;
0b7f569e 824
54595fe2
KH
825 rcu_read_lock();
826 do {
6f6acb00
MH
827 /*
828 * Page cache insertions can happen withou an
829 * actual mm context, e.g. during disk probing
830 * on boot, loopback IO, acct() writes etc.
831 */
832 if (unlikely(!mm))
df381975 833 memcg = root_mem_cgroup;
6f6acb00
MH
834 else {
835 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
836 if (unlikely(!memcg))
837 memcg = root_mem_cgroup;
838 }
ec903c0c 839 } while (!css_tryget_online(&memcg->css));
54595fe2 840 rcu_read_unlock();
c0ff4b85 841 return memcg;
54595fe2
KH
842}
843
5660048c
JW
844/**
845 * mem_cgroup_iter - iterate over memory cgroup hierarchy
846 * @root: hierarchy root
847 * @prev: previously returned memcg, NULL on first invocation
848 * @reclaim: cookie for shared reclaim walks, NULL for full walks
849 *
850 * Returns references to children of the hierarchy below @root, or
851 * @root itself, or %NULL after a full round-trip.
852 *
853 * Caller must pass the return value in @prev on subsequent
854 * invocations for reference counting, or use mem_cgroup_iter_break()
855 * to cancel a hierarchy walk before the round-trip is complete.
856 *
857 * Reclaimers can specify a zone and a priority level in @reclaim to
858 * divide up the memcgs in the hierarchy among all concurrent
859 * reclaimers operating on the same zone and priority.
860 */
694fbc0f 861struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 862 struct mem_cgroup *prev,
694fbc0f 863 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 864{
33398cf2 865 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 866 struct cgroup_subsys_state *css = NULL;
9f3a0d09 867 struct mem_cgroup *memcg = NULL;
5ac8fb31 868 struct mem_cgroup *pos = NULL;
711d3d2c 869
694fbc0f
AM
870 if (mem_cgroup_disabled())
871 return NULL;
5660048c 872
9f3a0d09
JW
873 if (!root)
874 root = root_mem_cgroup;
7d74b06f 875
9f3a0d09 876 if (prev && !reclaim)
5ac8fb31 877 pos = prev;
14067bb3 878
9f3a0d09
JW
879 if (!root->use_hierarchy && root != root_mem_cgroup) {
880 if (prev)
5ac8fb31 881 goto out;
694fbc0f 882 return root;
9f3a0d09 883 }
14067bb3 884
542f85f9 885 rcu_read_lock();
5f578161 886
5ac8fb31
JW
887 if (reclaim) {
888 struct mem_cgroup_per_zone *mz;
889
890 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
891 iter = &mz->iter[reclaim->priority];
892
893 if (prev && reclaim->generation != iter->generation)
894 goto out_unlock;
895
896 do {
4db0c3c2 897 pos = READ_ONCE(iter->position);
5ac8fb31
JW
898 /*
899 * A racing update may change the position and
900 * put the last reference, hence css_tryget(),
901 * or retry to see the updated position.
902 */
903 } while (pos && !css_tryget(&pos->css));
904 }
905
906 if (pos)
907 css = &pos->css;
908
909 for (;;) {
910 css = css_next_descendant_pre(css, &root->css);
911 if (!css) {
912 /*
913 * Reclaimers share the hierarchy walk, and a
914 * new one might jump in right at the end of
915 * the hierarchy - make sure they see at least
916 * one group and restart from the beginning.
917 */
918 if (!prev)
919 continue;
920 break;
527a5ec9 921 }
7d74b06f 922
5ac8fb31
JW
923 /*
924 * Verify the css and acquire a reference. The root
925 * is provided by the caller, so we know it's alive
926 * and kicking, and don't take an extra reference.
927 */
928 memcg = mem_cgroup_from_css(css);
14067bb3 929
5ac8fb31
JW
930 if (css == &root->css)
931 break;
14067bb3 932
b2052564 933 if (css_tryget(css)) {
5ac8fb31
JW
934 /*
935 * Make sure the memcg is initialized:
936 * mem_cgroup_css_online() orders the the
937 * initialization against setting the flag.
938 */
939 if (smp_load_acquire(&memcg->initialized))
940 break;
542f85f9 941
5ac8fb31 942 css_put(css);
527a5ec9 943 }
9f3a0d09 944
5ac8fb31 945 memcg = NULL;
9f3a0d09 946 }
5ac8fb31
JW
947
948 if (reclaim) {
949 if (cmpxchg(&iter->position, pos, memcg) == pos) {
950 if (memcg)
951 css_get(&memcg->css);
952 if (pos)
953 css_put(&pos->css);
954 }
955
956 /*
957 * pairs with css_tryget when dereferencing iter->position
958 * above.
959 */
960 if (pos)
961 css_put(&pos->css);
962
963 if (!memcg)
964 iter->generation++;
965 else if (!prev)
966 reclaim->generation = iter->generation;
9f3a0d09 967 }
5ac8fb31 968
542f85f9
MH
969out_unlock:
970 rcu_read_unlock();
5ac8fb31 971out:
c40046f3
MH
972 if (prev && prev != root)
973 css_put(&prev->css);
974
9f3a0d09 975 return memcg;
14067bb3 976}
7d74b06f 977
5660048c
JW
978/**
979 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
980 * @root: hierarchy root
981 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
982 */
983void mem_cgroup_iter_break(struct mem_cgroup *root,
984 struct mem_cgroup *prev)
9f3a0d09
JW
985{
986 if (!root)
987 root = root_mem_cgroup;
988 if (prev && prev != root)
989 css_put(&prev->css);
990}
7d74b06f 991
9f3a0d09
JW
992/*
993 * Iteration constructs for visiting all cgroups (under a tree). If
994 * loops are exited prematurely (break), mem_cgroup_iter_break() must
995 * be used for reference counting.
996 */
997#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 998 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 999 iter != NULL; \
527a5ec9 1000 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1001
9f3a0d09 1002#define for_each_mem_cgroup(iter) \
527a5ec9 1003 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1004 iter != NULL; \
527a5ec9 1005 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1006
925b7673
JW
1007/**
1008 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1009 * @zone: zone of the wanted lruvec
fa9add64 1010 * @memcg: memcg of the wanted lruvec
925b7673
JW
1011 *
1012 * Returns the lru list vector holding pages for the given @zone and
1013 * @mem. This can be the global zone lruvec, if the memory controller
1014 * is disabled.
1015 */
1016struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1017 struct mem_cgroup *memcg)
1018{
1019 struct mem_cgroup_per_zone *mz;
bea8c150 1020 struct lruvec *lruvec;
925b7673 1021
bea8c150
HD
1022 if (mem_cgroup_disabled()) {
1023 lruvec = &zone->lruvec;
1024 goto out;
1025 }
925b7673 1026
e231875b 1027 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1028 lruvec = &mz->lruvec;
1029out:
1030 /*
1031 * Since a node can be onlined after the mem_cgroup was created,
1032 * we have to be prepared to initialize lruvec->zone here;
1033 * and if offlined then reonlined, we need to reinitialize it.
1034 */
1035 if (unlikely(lruvec->zone != zone))
1036 lruvec->zone = zone;
1037 return lruvec;
925b7673
JW
1038}
1039
925b7673 1040/**
dfe0e773 1041 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1042 * @page: the page
fa9add64 1043 * @zone: zone of the page
dfe0e773
JW
1044 *
1045 * This function is only safe when following the LRU page isolation
1046 * and putback protocol: the LRU lock must be held, and the page must
1047 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1048 */
fa9add64 1049struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1050{
08e552c6 1051 struct mem_cgroup_per_zone *mz;
925b7673 1052 struct mem_cgroup *memcg;
bea8c150 1053 struct lruvec *lruvec;
6d12e2d8 1054
bea8c150
HD
1055 if (mem_cgroup_disabled()) {
1056 lruvec = &zone->lruvec;
1057 goto out;
1058 }
925b7673 1059
1306a85a 1060 memcg = page->mem_cgroup;
7512102c 1061 /*
dfe0e773 1062 * Swapcache readahead pages are added to the LRU - and
29833315 1063 * possibly migrated - before they are charged.
7512102c 1064 */
29833315
JW
1065 if (!memcg)
1066 memcg = root_mem_cgroup;
7512102c 1067
e231875b 1068 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1069 lruvec = &mz->lruvec;
1070out:
1071 /*
1072 * Since a node can be onlined after the mem_cgroup was created,
1073 * we have to be prepared to initialize lruvec->zone here;
1074 * and if offlined then reonlined, we need to reinitialize it.
1075 */
1076 if (unlikely(lruvec->zone != zone))
1077 lruvec->zone = zone;
1078 return lruvec;
08e552c6 1079}
b69408e8 1080
925b7673 1081/**
fa9add64
HD
1082 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1083 * @lruvec: mem_cgroup per zone lru vector
1084 * @lru: index of lru list the page is sitting on
1085 * @nr_pages: positive when adding or negative when removing
925b7673 1086 *
fa9add64
HD
1087 * This function must be called when a page is added to or removed from an
1088 * lru list.
3f58a829 1089 */
fa9add64
HD
1090void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1091 int nr_pages)
3f58a829
MK
1092{
1093 struct mem_cgroup_per_zone *mz;
fa9add64 1094 unsigned long *lru_size;
3f58a829
MK
1095
1096 if (mem_cgroup_disabled())
1097 return;
1098
fa9add64
HD
1099 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1100 lru_size = mz->lru_size + lru;
1101 *lru_size += nr_pages;
1102 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1103}
544122e5 1104
2314b42d 1105bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1106{
2314b42d 1107 struct mem_cgroup *task_memcg;
158e0a2d 1108 struct task_struct *p;
ffbdccf5 1109 bool ret;
4c4a2214 1110
158e0a2d 1111 p = find_lock_task_mm(task);
de077d22 1112 if (p) {
2314b42d 1113 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1114 task_unlock(p);
1115 } else {
1116 /*
1117 * All threads may have already detached their mm's, but the oom
1118 * killer still needs to detect if they have already been oom
1119 * killed to prevent needlessly killing additional tasks.
1120 */
ffbdccf5 1121 rcu_read_lock();
2314b42d
JW
1122 task_memcg = mem_cgroup_from_task(task);
1123 css_get(&task_memcg->css);
ffbdccf5 1124 rcu_read_unlock();
de077d22 1125 }
2314b42d
JW
1126 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1127 css_put(&task_memcg->css);
4c4a2214
DR
1128 return ret;
1129}
1130
3e32cb2e 1131#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1132 container_of(counter, struct mem_cgroup, member)
1133
19942822 1134/**
9d11ea9f 1135 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1136 * @memcg: the memory cgroup
19942822 1137 *
9d11ea9f 1138 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1139 * pages.
19942822 1140 */
c0ff4b85 1141static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1142{
3e32cb2e
JW
1143 unsigned long margin = 0;
1144 unsigned long count;
1145 unsigned long limit;
9d11ea9f 1146
3e32cb2e 1147 count = page_counter_read(&memcg->memory);
4db0c3c2 1148 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1149 if (count < limit)
1150 margin = limit - count;
1151
1152 if (do_swap_account) {
1153 count = page_counter_read(&memcg->memsw);
4db0c3c2 1154 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1155 if (count <= limit)
1156 margin = min(margin, limit - count);
1157 }
1158
1159 return margin;
19942822
JW
1160}
1161
32047e2a 1162/*
bdcbb659 1163 * A routine for checking "mem" is under move_account() or not.
32047e2a 1164 *
bdcbb659
QH
1165 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1166 * moving cgroups. This is for waiting at high-memory pressure
1167 * caused by "move".
32047e2a 1168 */
c0ff4b85 1169static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1170{
2bd9bb20
KH
1171 struct mem_cgroup *from;
1172 struct mem_cgroup *to;
4b534334 1173 bool ret = false;
2bd9bb20
KH
1174 /*
1175 * Unlike task_move routines, we access mc.to, mc.from not under
1176 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1177 */
1178 spin_lock(&mc.lock);
1179 from = mc.from;
1180 to = mc.to;
1181 if (!from)
1182 goto unlock;
3e92041d 1183
2314b42d
JW
1184 ret = mem_cgroup_is_descendant(from, memcg) ||
1185 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1186unlock:
1187 spin_unlock(&mc.lock);
4b534334
KH
1188 return ret;
1189}
1190
c0ff4b85 1191static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1192{
1193 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1194 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1195 DEFINE_WAIT(wait);
1196 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1197 /* moving charge context might have finished. */
1198 if (mc.moving_task)
1199 schedule();
1200 finish_wait(&mc.waitq, &wait);
1201 return true;
1202 }
1203 }
1204 return false;
1205}
1206
58cf188e 1207#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1208/**
58cf188e 1209 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1210 * @memcg: The memory cgroup that went over limit
1211 * @p: Task that is going to be killed
1212 *
1213 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1214 * enabled
1215 */
1216void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1217{
e61734c5 1218 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1219 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1220 struct mem_cgroup *iter;
1221 unsigned int i;
e222432b 1222
08088cb9 1223 mutex_lock(&oom_info_lock);
e222432b
BS
1224 rcu_read_lock();
1225
2415b9f5
BV
1226 if (p) {
1227 pr_info("Task in ");
1228 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1229 pr_cont(" killed as a result of limit of ");
1230 } else {
1231 pr_info("Memory limit reached of cgroup ");
1232 }
1233
e61734c5 1234 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1235 pr_cont("\n");
e222432b 1236
e222432b
BS
1237 rcu_read_unlock();
1238
3e32cb2e
JW
1239 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1240 K((u64)page_counter_read(&memcg->memory)),
1241 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1242 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1243 K((u64)page_counter_read(&memcg->memsw)),
1244 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1245 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1246 K((u64)page_counter_read(&memcg->kmem)),
1247 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1248
1249 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1250 pr_info("Memory cgroup stats for ");
1251 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1252 pr_cont(":");
1253
1254 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1255 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1256 continue;
1257 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1258 K(mem_cgroup_read_stat(iter, i)));
1259 }
1260
1261 for (i = 0; i < NR_LRU_LISTS; i++)
1262 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1263 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1264
1265 pr_cont("\n");
1266 }
08088cb9 1267 mutex_unlock(&oom_info_lock);
e222432b
BS
1268}
1269
81d39c20
KH
1270/*
1271 * This function returns the number of memcg under hierarchy tree. Returns
1272 * 1(self count) if no children.
1273 */
c0ff4b85 1274static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1275{
1276 int num = 0;
7d74b06f
KH
1277 struct mem_cgroup *iter;
1278
c0ff4b85 1279 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1280 num++;
81d39c20
KH
1281 return num;
1282}
1283
a63d83f4
DR
1284/*
1285 * Return the memory (and swap, if configured) limit for a memcg.
1286 */
3e32cb2e 1287static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1288{
3e32cb2e 1289 unsigned long limit;
f3e8eb70 1290
3e32cb2e 1291 limit = memcg->memory.limit;
9a5a8f19 1292 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1293 unsigned long memsw_limit;
9a5a8f19 1294
3e32cb2e
JW
1295 memsw_limit = memcg->memsw.limit;
1296 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1297 }
9a5a8f19 1298 return limit;
a63d83f4
DR
1299}
1300
19965460
DR
1301static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1302 int order)
9cbb78bb 1303{
6e0fc46d
DR
1304 struct oom_control oc = {
1305 .zonelist = NULL,
1306 .nodemask = NULL,
1307 .gfp_mask = gfp_mask,
1308 .order = order,
6e0fc46d 1309 };
9cbb78bb
DR
1310 struct mem_cgroup *iter;
1311 unsigned long chosen_points = 0;
1312 unsigned long totalpages;
1313 unsigned int points = 0;
1314 struct task_struct *chosen = NULL;
1315
dc56401f
JW
1316 mutex_lock(&oom_lock);
1317
876aafbf 1318 /*
465adcf1
DR
1319 * If current has a pending SIGKILL or is exiting, then automatically
1320 * select it. The goal is to allow it to allocate so that it may
1321 * quickly exit and free its memory.
876aafbf 1322 */
d003f371 1323 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1324 mark_oom_victim(current);
dc56401f 1325 goto unlock;
876aafbf
DR
1326 }
1327
6e0fc46d 1328 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1329 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1330 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1331 struct css_task_iter it;
9cbb78bb
DR
1332 struct task_struct *task;
1333
72ec7029
TH
1334 css_task_iter_start(&iter->css, &it);
1335 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1336 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1337 case OOM_SCAN_SELECT:
1338 if (chosen)
1339 put_task_struct(chosen);
1340 chosen = task;
1341 chosen_points = ULONG_MAX;
1342 get_task_struct(chosen);
1343 /* fall through */
1344 case OOM_SCAN_CONTINUE:
1345 continue;
1346 case OOM_SCAN_ABORT:
72ec7029 1347 css_task_iter_end(&it);
9cbb78bb
DR
1348 mem_cgroup_iter_break(memcg, iter);
1349 if (chosen)
1350 put_task_struct(chosen);
dc56401f 1351 goto unlock;
9cbb78bb
DR
1352 case OOM_SCAN_OK:
1353 break;
1354 };
1355 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1356 if (!points || points < chosen_points)
1357 continue;
1358 /* Prefer thread group leaders for display purposes */
1359 if (points == chosen_points &&
1360 thread_group_leader(chosen))
1361 continue;
1362
1363 if (chosen)
1364 put_task_struct(chosen);
1365 chosen = task;
1366 chosen_points = points;
1367 get_task_struct(chosen);
9cbb78bb 1368 }
72ec7029 1369 css_task_iter_end(&it);
9cbb78bb
DR
1370 }
1371
dc56401f
JW
1372 if (chosen) {
1373 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1374 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1375 "Memory cgroup out of memory");
dc56401f
JW
1376 }
1377unlock:
1378 mutex_unlock(&oom_lock);
9cbb78bb
DR
1379}
1380
ae6e71d3
MC
1381#if MAX_NUMNODES > 1
1382
4d0c066d
KH
1383/**
1384 * test_mem_cgroup_node_reclaimable
dad7557e 1385 * @memcg: the target memcg
4d0c066d
KH
1386 * @nid: the node ID to be checked.
1387 * @noswap : specify true here if the user wants flle only information.
1388 *
1389 * This function returns whether the specified memcg contains any
1390 * reclaimable pages on a node. Returns true if there are any reclaimable
1391 * pages in the node.
1392 */
c0ff4b85 1393static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1394 int nid, bool noswap)
1395{
c0ff4b85 1396 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1397 return true;
1398 if (noswap || !total_swap_pages)
1399 return false;
c0ff4b85 1400 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1401 return true;
1402 return false;
1403
1404}
889976db
YH
1405
1406/*
1407 * Always updating the nodemask is not very good - even if we have an empty
1408 * list or the wrong list here, we can start from some node and traverse all
1409 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1410 *
1411 */
c0ff4b85 1412static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1413{
1414 int nid;
453a9bf3
KH
1415 /*
1416 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1417 * pagein/pageout changes since the last update.
1418 */
c0ff4b85 1419 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1420 return;
c0ff4b85 1421 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1422 return;
1423
889976db 1424 /* make a nodemask where this memcg uses memory from */
31aaea4a 1425 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1426
31aaea4a 1427 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1428
c0ff4b85
R
1429 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1430 node_clear(nid, memcg->scan_nodes);
889976db 1431 }
453a9bf3 1432
c0ff4b85
R
1433 atomic_set(&memcg->numainfo_events, 0);
1434 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1435}
1436
1437/*
1438 * Selecting a node where we start reclaim from. Because what we need is just
1439 * reducing usage counter, start from anywhere is O,K. Considering
1440 * memory reclaim from current node, there are pros. and cons.
1441 *
1442 * Freeing memory from current node means freeing memory from a node which
1443 * we'll use or we've used. So, it may make LRU bad. And if several threads
1444 * hit limits, it will see a contention on a node. But freeing from remote
1445 * node means more costs for memory reclaim because of memory latency.
1446 *
1447 * Now, we use round-robin. Better algorithm is welcomed.
1448 */
c0ff4b85 1449int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1450{
1451 int node;
1452
c0ff4b85
R
1453 mem_cgroup_may_update_nodemask(memcg);
1454 node = memcg->last_scanned_node;
889976db 1455
c0ff4b85 1456 node = next_node(node, memcg->scan_nodes);
889976db 1457 if (node == MAX_NUMNODES)
c0ff4b85 1458 node = first_node(memcg->scan_nodes);
889976db
YH
1459 /*
1460 * We call this when we hit limit, not when pages are added to LRU.
1461 * No LRU may hold pages because all pages are UNEVICTABLE or
1462 * memcg is too small and all pages are not on LRU. In that case,
1463 * we use curret node.
1464 */
1465 if (unlikely(node == MAX_NUMNODES))
1466 node = numa_node_id();
1467
c0ff4b85 1468 memcg->last_scanned_node = node;
889976db
YH
1469 return node;
1470}
889976db 1471#else
c0ff4b85 1472int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1473{
1474 return 0;
1475}
1476#endif
1477
0608f43d
AM
1478static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1479 struct zone *zone,
1480 gfp_t gfp_mask,
1481 unsigned long *total_scanned)
1482{
1483 struct mem_cgroup *victim = NULL;
1484 int total = 0;
1485 int loop = 0;
1486 unsigned long excess;
1487 unsigned long nr_scanned;
1488 struct mem_cgroup_reclaim_cookie reclaim = {
1489 .zone = zone,
1490 .priority = 0,
1491 };
1492
3e32cb2e 1493 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1494
1495 while (1) {
1496 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1497 if (!victim) {
1498 loop++;
1499 if (loop >= 2) {
1500 /*
1501 * If we have not been able to reclaim
1502 * anything, it might because there are
1503 * no reclaimable pages under this hierarchy
1504 */
1505 if (!total)
1506 break;
1507 /*
1508 * We want to do more targeted reclaim.
1509 * excess >> 2 is not to excessive so as to
1510 * reclaim too much, nor too less that we keep
1511 * coming back to reclaim from this cgroup
1512 */
1513 if (total >= (excess >> 2) ||
1514 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1515 break;
1516 }
1517 continue;
1518 }
0608f43d
AM
1519 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1520 zone, &nr_scanned);
1521 *total_scanned += nr_scanned;
3e32cb2e 1522 if (!soft_limit_excess(root_memcg))
0608f43d 1523 break;
6d61ef40 1524 }
0608f43d
AM
1525 mem_cgroup_iter_break(root_memcg, victim);
1526 return total;
6d61ef40
BS
1527}
1528
0056f4e6
JW
1529#ifdef CONFIG_LOCKDEP
1530static struct lockdep_map memcg_oom_lock_dep_map = {
1531 .name = "memcg_oom_lock",
1532};
1533#endif
1534
fb2a6fc5
JW
1535static DEFINE_SPINLOCK(memcg_oom_lock);
1536
867578cb
KH
1537/*
1538 * Check OOM-Killer is already running under our hierarchy.
1539 * If someone is running, return false.
1540 */
fb2a6fc5 1541static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1542{
79dfdacc 1543 struct mem_cgroup *iter, *failed = NULL;
a636b327 1544
fb2a6fc5
JW
1545 spin_lock(&memcg_oom_lock);
1546
9f3a0d09 1547 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1548 if (iter->oom_lock) {
79dfdacc
MH
1549 /*
1550 * this subtree of our hierarchy is already locked
1551 * so we cannot give a lock.
1552 */
79dfdacc 1553 failed = iter;
9f3a0d09
JW
1554 mem_cgroup_iter_break(memcg, iter);
1555 break;
23751be0
JW
1556 } else
1557 iter->oom_lock = true;
7d74b06f 1558 }
867578cb 1559
fb2a6fc5
JW
1560 if (failed) {
1561 /*
1562 * OK, we failed to lock the whole subtree so we have
1563 * to clean up what we set up to the failing subtree
1564 */
1565 for_each_mem_cgroup_tree(iter, memcg) {
1566 if (iter == failed) {
1567 mem_cgroup_iter_break(memcg, iter);
1568 break;
1569 }
1570 iter->oom_lock = false;
79dfdacc 1571 }
0056f4e6
JW
1572 } else
1573 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1574
1575 spin_unlock(&memcg_oom_lock);
1576
1577 return !failed;
a636b327 1578}
0b7f569e 1579
fb2a6fc5 1580static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1581{
7d74b06f
KH
1582 struct mem_cgroup *iter;
1583
fb2a6fc5 1584 spin_lock(&memcg_oom_lock);
0056f4e6 1585 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1586 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1587 iter->oom_lock = false;
fb2a6fc5 1588 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1589}
1590
c0ff4b85 1591static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1592{
1593 struct mem_cgroup *iter;
1594
c2b42d3c 1595 spin_lock(&memcg_oom_lock);
c0ff4b85 1596 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1597 iter->under_oom++;
1598 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1599}
1600
c0ff4b85 1601static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1602{
1603 struct mem_cgroup *iter;
1604
867578cb
KH
1605 /*
1606 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1607 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1608 */
c2b42d3c 1609 spin_lock(&memcg_oom_lock);
c0ff4b85 1610 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1611 if (iter->under_oom > 0)
1612 iter->under_oom--;
1613 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1614}
1615
867578cb
KH
1616static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1617
dc98df5a 1618struct oom_wait_info {
d79154bb 1619 struct mem_cgroup *memcg;
dc98df5a
KH
1620 wait_queue_t wait;
1621};
1622
1623static int memcg_oom_wake_function(wait_queue_t *wait,
1624 unsigned mode, int sync, void *arg)
1625{
d79154bb
HD
1626 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1627 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1628 struct oom_wait_info *oom_wait_info;
1629
1630 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1631 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1632
2314b42d
JW
1633 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1634 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1635 return 0;
dc98df5a
KH
1636 return autoremove_wake_function(wait, mode, sync, arg);
1637}
1638
c0ff4b85 1639static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1640{
c2b42d3c
TH
1641 /*
1642 * For the following lockless ->under_oom test, the only required
1643 * guarantee is that it must see the state asserted by an OOM when
1644 * this function is called as a result of userland actions
1645 * triggered by the notification of the OOM. This is trivially
1646 * achieved by invoking mem_cgroup_mark_under_oom() before
1647 * triggering notification.
1648 */
1649 if (memcg && memcg->under_oom)
f4b90b70 1650 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1651}
1652
3812c8c8 1653static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1654{
3812c8c8
JW
1655 if (!current->memcg_oom.may_oom)
1656 return;
867578cb 1657 /*
49426420
JW
1658 * We are in the middle of the charge context here, so we
1659 * don't want to block when potentially sitting on a callstack
1660 * that holds all kinds of filesystem and mm locks.
1661 *
1662 * Also, the caller may handle a failed allocation gracefully
1663 * (like optional page cache readahead) and so an OOM killer
1664 * invocation might not even be necessary.
1665 *
1666 * That's why we don't do anything here except remember the
1667 * OOM context and then deal with it at the end of the page
1668 * fault when the stack is unwound, the locks are released,
1669 * and when we know whether the fault was overall successful.
867578cb 1670 */
49426420
JW
1671 css_get(&memcg->css);
1672 current->memcg_oom.memcg = memcg;
1673 current->memcg_oom.gfp_mask = mask;
1674 current->memcg_oom.order = order;
3812c8c8
JW
1675}
1676
1677/**
1678 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1679 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1680 *
49426420
JW
1681 * This has to be called at the end of a page fault if the memcg OOM
1682 * handler was enabled.
3812c8c8 1683 *
49426420 1684 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1685 * sleep on a waitqueue until the userspace task resolves the
1686 * situation. Sleeping directly in the charge context with all kinds
1687 * of locks held is not a good idea, instead we remember an OOM state
1688 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1689 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1690 *
1691 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1692 * completed, %false otherwise.
3812c8c8 1693 */
49426420 1694bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1695{
49426420 1696 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1697 struct oom_wait_info owait;
49426420 1698 bool locked;
3812c8c8
JW
1699
1700 /* OOM is global, do not handle */
3812c8c8 1701 if (!memcg)
49426420 1702 return false;
3812c8c8 1703
c32b3cbe 1704 if (!handle || oom_killer_disabled)
49426420 1705 goto cleanup;
3812c8c8
JW
1706
1707 owait.memcg = memcg;
1708 owait.wait.flags = 0;
1709 owait.wait.func = memcg_oom_wake_function;
1710 owait.wait.private = current;
1711 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1712
3812c8c8 1713 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1714 mem_cgroup_mark_under_oom(memcg);
1715
1716 locked = mem_cgroup_oom_trylock(memcg);
1717
1718 if (locked)
1719 mem_cgroup_oom_notify(memcg);
1720
1721 if (locked && !memcg->oom_kill_disable) {
1722 mem_cgroup_unmark_under_oom(memcg);
1723 finish_wait(&memcg_oom_waitq, &owait.wait);
1724 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1725 current->memcg_oom.order);
1726 } else {
3812c8c8 1727 schedule();
49426420
JW
1728 mem_cgroup_unmark_under_oom(memcg);
1729 finish_wait(&memcg_oom_waitq, &owait.wait);
1730 }
1731
1732 if (locked) {
fb2a6fc5
JW
1733 mem_cgroup_oom_unlock(memcg);
1734 /*
1735 * There is no guarantee that an OOM-lock contender
1736 * sees the wakeups triggered by the OOM kill
1737 * uncharges. Wake any sleepers explicitely.
1738 */
1739 memcg_oom_recover(memcg);
1740 }
49426420
JW
1741cleanup:
1742 current->memcg_oom.memcg = NULL;
3812c8c8 1743 css_put(&memcg->css);
867578cb 1744 return true;
0b7f569e
KH
1745}
1746
d7365e78
JW
1747/**
1748 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1749 * @page: page that is going to change accounted state
32047e2a 1750 *
d7365e78
JW
1751 * This function must mark the beginning of an accounted page state
1752 * change to prevent double accounting when the page is concurrently
1753 * being moved to another memcg:
32047e2a 1754 *
6de22619 1755 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1756 * if (TestClearPageState(page))
1757 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1758 * mem_cgroup_end_page_stat(memcg);
d69b042f 1759 */
6de22619 1760struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1761{
1762 struct mem_cgroup *memcg;
6de22619 1763 unsigned long flags;
89c06bd5 1764
6de22619
JW
1765 /*
1766 * The RCU lock is held throughout the transaction. The fast
1767 * path can get away without acquiring the memcg->move_lock
1768 * because page moving starts with an RCU grace period.
1769 *
1770 * The RCU lock also protects the memcg from being freed when
1771 * the page state that is going to change is the only thing
1772 * preventing the page from being uncharged.
1773 * E.g. end-writeback clearing PageWriteback(), which allows
1774 * migration to go ahead and uncharge the page before the
1775 * account transaction might be complete.
1776 */
d7365e78
JW
1777 rcu_read_lock();
1778
1779 if (mem_cgroup_disabled())
1780 return NULL;
89c06bd5 1781again:
1306a85a 1782 memcg = page->mem_cgroup;
29833315 1783 if (unlikely(!memcg))
d7365e78
JW
1784 return NULL;
1785
bdcbb659 1786 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1787 return memcg;
89c06bd5 1788
6de22619 1789 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1790 if (memcg != page->mem_cgroup) {
6de22619 1791 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1792 goto again;
1793 }
6de22619
JW
1794
1795 /*
1796 * When charge migration first begins, we can have locked and
1797 * unlocked page stat updates happening concurrently. Track
1798 * the task who has the lock for mem_cgroup_end_page_stat().
1799 */
1800 memcg->move_lock_task = current;
1801 memcg->move_lock_flags = flags;
d7365e78
JW
1802
1803 return memcg;
89c06bd5 1804}
c4843a75 1805EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1806
d7365e78
JW
1807/**
1808 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1809 * @memcg: the memcg that was accounted against
d7365e78 1810 */
6de22619 1811void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1812{
6de22619
JW
1813 if (memcg && memcg->move_lock_task == current) {
1814 unsigned long flags = memcg->move_lock_flags;
1815
1816 memcg->move_lock_task = NULL;
1817 memcg->move_lock_flags = 0;
1818
1819 spin_unlock_irqrestore(&memcg->move_lock, flags);
1820 }
89c06bd5 1821
d7365e78 1822 rcu_read_unlock();
89c06bd5 1823}
c4843a75 1824EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1825
cdec2e42
KH
1826/*
1827 * size of first charge trial. "32" comes from vmscan.c's magic value.
1828 * TODO: maybe necessary to use big numbers in big irons.
1829 */
7ec99d62 1830#define CHARGE_BATCH 32U
cdec2e42
KH
1831struct memcg_stock_pcp {
1832 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1833 unsigned int nr_pages;
cdec2e42 1834 struct work_struct work;
26fe6168 1835 unsigned long flags;
a0db00fc 1836#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1837};
1838static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1839static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1840
a0956d54
SS
1841/**
1842 * consume_stock: Try to consume stocked charge on this cpu.
1843 * @memcg: memcg to consume from.
1844 * @nr_pages: how many pages to charge.
1845 *
1846 * The charges will only happen if @memcg matches the current cpu's memcg
1847 * stock, and at least @nr_pages are available in that stock. Failure to
1848 * service an allocation will refill the stock.
1849 *
1850 * returns true if successful, false otherwise.
cdec2e42 1851 */
a0956d54 1852static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1853{
1854 struct memcg_stock_pcp *stock;
3e32cb2e 1855 bool ret = false;
cdec2e42 1856
a0956d54 1857 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1858 return ret;
a0956d54 1859
cdec2e42 1860 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1861 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1862 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1863 ret = true;
1864 }
cdec2e42
KH
1865 put_cpu_var(memcg_stock);
1866 return ret;
1867}
1868
1869/*
3e32cb2e 1870 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1871 */
1872static void drain_stock(struct memcg_stock_pcp *stock)
1873{
1874 struct mem_cgroup *old = stock->cached;
1875
11c9ea4e 1876 if (stock->nr_pages) {
3e32cb2e 1877 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 1878 if (do_swap_account)
3e32cb2e 1879 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1880 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1881 stock->nr_pages = 0;
cdec2e42
KH
1882 }
1883 stock->cached = NULL;
cdec2e42
KH
1884}
1885
1886/*
1887 * This must be called under preempt disabled or must be called by
1888 * a thread which is pinned to local cpu.
1889 */
1890static void drain_local_stock(struct work_struct *dummy)
1891{
7c8e0181 1892 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1893 drain_stock(stock);
26fe6168 1894 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1895}
1896
1897/*
3e32cb2e 1898 * Cache charges(val) to local per_cpu area.
320cc51d 1899 * This will be consumed by consume_stock() function, later.
cdec2e42 1900 */
c0ff4b85 1901static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1902{
1903 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1904
c0ff4b85 1905 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1906 drain_stock(stock);
c0ff4b85 1907 stock->cached = memcg;
cdec2e42 1908 }
11c9ea4e 1909 stock->nr_pages += nr_pages;
cdec2e42
KH
1910 put_cpu_var(memcg_stock);
1911}
1912
1913/*
c0ff4b85 1914 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1915 * of the hierarchy under it.
cdec2e42 1916 */
6d3d6aa2 1917static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1918{
26fe6168 1919 int cpu, curcpu;
d38144b7 1920
6d3d6aa2
JW
1921 /* If someone's already draining, avoid adding running more workers. */
1922 if (!mutex_trylock(&percpu_charge_mutex))
1923 return;
cdec2e42 1924 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1925 get_online_cpus();
5af12d0e 1926 curcpu = get_cpu();
cdec2e42
KH
1927 for_each_online_cpu(cpu) {
1928 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1929 struct mem_cgroup *memcg;
26fe6168 1930
c0ff4b85
R
1931 memcg = stock->cached;
1932 if (!memcg || !stock->nr_pages)
26fe6168 1933 continue;
2314b42d 1934 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1935 continue;
d1a05b69
MH
1936 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1937 if (cpu == curcpu)
1938 drain_local_stock(&stock->work);
1939 else
1940 schedule_work_on(cpu, &stock->work);
1941 }
cdec2e42 1942 }
5af12d0e 1943 put_cpu();
f894ffa8 1944 put_online_cpus();
9f50fad6 1945 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1946}
1947
0db0628d 1948static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1949 unsigned long action,
1950 void *hcpu)
1951{
1952 int cpu = (unsigned long)hcpu;
1953 struct memcg_stock_pcp *stock;
1954
619d094b 1955 if (action == CPU_ONLINE)
1489ebad 1956 return NOTIFY_OK;
1489ebad 1957
d833049b 1958 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1959 return NOTIFY_OK;
711d3d2c 1960
cdec2e42
KH
1961 stock = &per_cpu(memcg_stock, cpu);
1962 drain_stock(stock);
1963 return NOTIFY_OK;
1964}
1965
00501b53
JW
1966static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1967 unsigned int nr_pages)
8a9f3ccd 1968{
7ec99d62 1969 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1970 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1971 struct mem_cgroup *mem_over_limit;
3e32cb2e 1972 struct page_counter *counter;
6539cc05 1973 unsigned long nr_reclaimed;
b70a2a21
JW
1974 bool may_swap = true;
1975 bool drained = false;
05b84301 1976 int ret = 0;
a636b327 1977
ce00a967
JW
1978 if (mem_cgroup_is_root(memcg))
1979 goto done;
6539cc05 1980retry:
b6b6cc72
MH
1981 if (consume_stock(memcg, nr_pages))
1982 goto done;
8a9f3ccd 1983
3fbe7244 1984 if (!do_swap_account ||
3e32cb2e
JW
1985 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1986 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1987 goto done_restock;
3fbe7244 1988 if (do_swap_account)
3e32cb2e
JW
1989 page_counter_uncharge(&memcg->memsw, batch);
1990 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1991 } else {
3e32cb2e 1992 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1993 may_swap = false;
3fbe7244 1994 }
7a81b88c 1995
6539cc05
JW
1996 if (batch > nr_pages) {
1997 batch = nr_pages;
1998 goto retry;
1999 }
6d61ef40 2000
06b078fc
JW
2001 /*
2002 * Unlike in global OOM situations, memcg is not in a physical
2003 * memory shortage. Allow dying and OOM-killed tasks to
2004 * bypass the last charges so that they can exit quickly and
2005 * free their memory.
2006 */
2007 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2008 fatal_signal_pending(current) ||
2009 current->flags & PF_EXITING))
2010 goto bypass;
2011
2012 if (unlikely(task_in_memcg_oom(current)))
2013 goto nomem;
2014
6539cc05
JW
2015 if (!(gfp_mask & __GFP_WAIT))
2016 goto nomem;
4b534334 2017
241994ed
JW
2018 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2019
b70a2a21
JW
2020 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2021 gfp_mask, may_swap);
6539cc05 2022
61e02c74 2023 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2024 goto retry;
28c34c29 2025
b70a2a21 2026 if (!drained) {
6d3d6aa2 2027 drain_all_stock(mem_over_limit);
b70a2a21
JW
2028 drained = true;
2029 goto retry;
2030 }
2031
28c34c29
JW
2032 if (gfp_mask & __GFP_NORETRY)
2033 goto nomem;
6539cc05
JW
2034 /*
2035 * Even though the limit is exceeded at this point, reclaim
2036 * may have been able to free some pages. Retry the charge
2037 * before killing the task.
2038 *
2039 * Only for regular pages, though: huge pages are rather
2040 * unlikely to succeed so close to the limit, and we fall back
2041 * to regular pages anyway in case of failure.
2042 */
61e02c74 2043 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2044 goto retry;
2045 /*
2046 * At task move, charge accounts can be doubly counted. So, it's
2047 * better to wait until the end of task_move if something is going on.
2048 */
2049 if (mem_cgroup_wait_acct_move(mem_over_limit))
2050 goto retry;
2051
9b130619
JW
2052 if (nr_retries--)
2053 goto retry;
2054
06b078fc
JW
2055 if (gfp_mask & __GFP_NOFAIL)
2056 goto bypass;
2057
6539cc05
JW
2058 if (fatal_signal_pending(current))
2059 goto bypass;
2060
241994ed
JW
2061 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2062
61e02c74 2063 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2064nomem:
6d1fdc48 2065 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2066 return -ENOMEM;
867578cb 2067bypass:
ce00a967 2068 return -EINTR;
6539cc05
JW
2069
2070done_restock:
e8ea14cc 2071 css_get_many(&memcg->css, batch);
6539cc05
JW
2072 if (batch > nr_pages)
2073 refill_stock(memcg, batch - nr_pages);
7d638093
VD
2074 if (!(gfp_mask & __GFP_WAIT))
2075 goto done;
241994ed
JW
2076 /*
2077 * If the hierarchy is above the normal consumption range,
2078 * make the charging task trim their excess contribution.
2079 */
2080 do {
2081 if (page_counter_read(&memcg->memory) <= memcg->high)
2082 continue;
2083 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2084 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2085 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2086done:
05b84301 2087 return ret;
7a81b88c 2088}
8a9f3ccd 2089
00501b53 2090static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2091{
ce00a967
JW
2092 if (mem_cgroup_is_root(memcg))
2093 return;
2094
3e32cb2e 2095 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2096 if (do_swap_account)
3e32cb2e 2097 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2098
e8ea14cc 2099 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2100}
2101
0a31bc97
JW
2102static void lock_page_lru(struct page *page, int *isolated)
2103{
2104 struct zone *zone = page_zone(page);
2105
2106 spin_lock_irq(&zone->lru_lock);
2107 if (PageLRU(page)) {
2108 struct lruvec *lruvec;
2109
2110 lruvec = mem_cgroup_page_lruvec(page, zone);
2111 ClearPageLRU(page);
2112 del_page_from_lru_list(page, lruvec, page_lru(page));
2113 *isolated = 1;
2114 } else
2115 *isolated = 0;
2116}
2117
2118static void unlock_page_lru(struct page *page, int isolated)
2119{
2120 struct zone *zone = page_zone(page);
2121
2122 if (isolated) {
2123 struct lruvec *lruvec;
2124
2125 lruvec = mem_cgroup_page_lruvec(page, zone);
2126 VM_BUG_ON_PAGE(PageLRU(page), page);
2127 SetPageLRU(page);
2128 add_page_to_lru_list(page, lruvec, page_lru(page));
2129 }
2130 spin_unlock_irq(&zone->lru_lock);
2131}
2132
00501b53 2133static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2134 bool lrucare)
7a81b88c 2135{
0a31bc97 2136 int isolated;
9ce70c02 2137
1306a85a 2138 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2139
2140 /*
2141 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2142 * may already be on some other mem_cgroup's LRU. Take care of it.
2143 */
0a31bc97
JW
2144 if (lrucare)
2145 lock_page_lru(page, &isolated);
9ce70c02 2146
0a31bc97
JW
2147 /*
2148 * Nobody should be changing or seriously looking at
1306a85a 2149 * page->mem_cgroup at this point:
0a31bc97
JW
2150 *
2151 * - the page is uncharged
2152 *
2153 * - the page is off-LRU
2154 *
2155 * - an anonymous fault has exclusive page access, except for
2156 * a locked page table
2157 *
2158 * - a page cache insertion, a swapin fault, or a migration
2159 * have the page locked
2160 */
1306a85a 2161 page->mem_cgroup = memcg;
9ce70c02 2162
0a31bc97
JW
2163 if (lrucare)
2164 unlock_page_lru(page, isolated);
7a81b88c 2165}
66e1707b 2166
7ae1e1d0 2167#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2168int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2169 unsigned long nr_pages)
7ae1e1d0 2170{
3e32cb2e 2171 struct page_counter *counter;
7ae1e1d0 2172 int ret = 0;
7ae1e1d0 2173
3e32cb2e
JW
2174 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2175 if (ret < 0)
7ae1e1d0
GC
2176 return ret;
2177
3e32cb2e 2178 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2179 if (ret == -EINTR) {
2180 /*
00501b53
JW
2181 * try_charge() chose to bypass to root due to OOM kill or
2182 * fatal signal. Since our only options are to either fail
2183 * the allocation or charge it to this cgroup, do it as a
2184 * temporary condition. But we can't fail. From a kmem/slab
2185 * perspective, the cache has already been selected, by
2186 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2187 * our minds.
2188 *
2189 * This condition will only trigger if the task entered
00501b53
JW
2190 * memcg_charge_kmem in a sane state, but was OOM-killed
2191 * during try_charge() above. Tasks that were already dying
2192 * when the allocation triggers should have been already
7ae1e1d0
GC
2193 * directed to the root cgroup in memcontrol.h
2194 */
3e32cb2e 2195 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2196 if (do_swap_account)
3e32cb2e 2197 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2198 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2199 ret = 0;
2200 } else if (ret)
3e32cb2e 2201 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2202
2203 return ret;
2204}
2205
dbf22eb6 2206void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2207{
3e32cb2e 2208 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2209 if (do_swap_account)
3e32cb2e 2210 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2211
64f21993 2212 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2213
e8ea14cc 2214 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2215}
2216
f3bb3043 2217static int memcg_alloc_cache_id(void)
55007d84 2218{
f3bb3043
VD
2219 int id, size;
2220 int err;
2221
dbcf73e2 2222 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2223 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2224 if (id < 0)
2225 return id;
55007d84 2226
dbcf73e2 2227 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2228 return id;
2229
2230 /*
2231 * There's no space for the new id in memcg_caches arrays,
2232 * so we have to grow them.
2233 */
05257a1a 2234 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2235
2236 size = 2 * (id + 1);
55007d84
GC
2237 if (size < MEMCG_CACHES_MIN_SIZE)
2238 size = MEMCG_CACHES_MIN_SIZE;
2239 else if (size > MEMCG_CACHES_MAX_SIZE)
2240 size = MEMCG_CACHES_MAX_SIZE;
2241
f3bb3043 2242 err = memcg_update_all_caches(size);
60d3fd32
VD
2243 if (!err)
2244 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2245 if (!err)
2246 memcg_nr_cache_ids = size;
2247
2248 up_write(&memcg_cache_ids_sem);
2249
f3bb3043 2250 if (err) {
dbcf73e2 2251 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2252 return err;
2253 }
2254 return id;
2255}
2256
2257static void memcg_free_cache_id(int id)
2258{
dbcf73e2 2259 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2260}
2261
d5b3cf71 2262struct memcg_kmem_cache_create_work {
5722d094
VD
2263 struct mem_cgroup *memcg;
2264 struct kmem_cache *cachep;
2265 struct work_struct work;
2266};
2267
d5b3cf71 2268static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2269{
d5b3cf71
VD
2270 struct memcg_kmem_cache_create_work *cw =
2271 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2272 struct mem_cgroup *memcg = cw->memcg;
2273 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2274
d5b3cf71 2275 memcg_create_kmem_cache(memcg, cachep);
bd673145 2276
5722d094 2277 css_put(&memcg->css);
d7f25f8a
GC
2278 kfree(cw);
2279}
2280
2281/*
2282 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2283 */
d5b3cf71
VD
2284static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2285 struct kmem_cache *cachep)
d7f25f8a 2286{
d5b3cf71 2287 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2288
776ed0f0 2289 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2290 if (!cw)
d7f25f8a 2291 return;
8135be5a
VD
2292
2293 css_get(&memcg->css);
d7f25f8a
GC
2294
2295 cw->memcg = memcg;
2296 cw->cachep = cachep;
d5b3cf71 2297 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2298
d7f25f8a
GC
2299 schedule_work(&cw->work);
2300}
2301
d5b3cf71
VD
2302static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2303 struct kmem_cache *cachep)
0e9d92f2
GC
2304{
2305 /*
2306 * We need to stop accounting when we kmalloc, because if the
2307 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2308 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2309 *
2310 * However, it is better to enclose the whole function. Depending on
2311 * the debugging options enabled, INIT_WORK(), for instance, can
2312 * trigger an allocation. This too, will make us recurse. Because at
2313 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2314 * the safest choice is to do it like this, wrapping the whole function.
2315 */
6f185c29 2316 current->memcg_kmem_skip_account = 1;
d5b3cf71 2317 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2318 current->memcg_kmem_skip_account = 0;
0e9d92f2 2319}
c67a8a68 2320
d7f25f8a
GC
2321/*
2322 * Return the kmem_cache we're supposed to use for a slab allocation.
2323 * We try to use the current memcg's version of the cache.
2324 *
2325 * If the cache does not exist yet, if we are the first user of it,
2326 * we either create it immediately, if possible, or create it asynchronously
2327 * in a workqueue.
2328 * In the latter case, we will let the current allocation go through with
2329 * the original cache.
2330 *
2331 * Can't be called in interrupt context or from kernel threads.
2332 * This function needs to be called with rcu_read_lock() held.
2333 */
056b7cce 2334struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2335{
2336 struct mem_cgroup *memcg;
959c8963 2337 struct kmem_cache *memcg_cachep;
2a4db7eb 2338 int kmemcg_id;
d7f25f8a 2339
f7ce3190 2340 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2341
9d100c5e 2342 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2343 return cachep;
2344
8135be5a 2345 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2346 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2347 if (kmemcg_id < 0)
ca0dde97 2348 goto out;
d7f25f8a 2349
2a4db7eb 2350 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2351 if (likely(memcg_cachep))
2352 return memcg_cachep;
ca0dde97
LZ
2353
2354 /*
2355 * If we are in a safe context (can wait, and not in interrupt
2356 * context), we could be be predictable and return right away.
2357 * This would guarantee that the allocation being performed
2358 * already belongs in the new cache.
2359 *
2360 * However, there are some clashes that can arrive from locking.
2361 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2362 * memcg_create_kmem_cache, this means no further allocation
2363 * could happen with the slab_mutex held. So it's better to
2364 * defer everything.
ca0dde97 2365 */
d5b3cf71 2366 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2367out:
8135be5a 2368 css_put(&memcg->css);
ca0dde97 2369 return cachep;
d7f25f8a 2370}
d7f25f8a 2371
8135be5a
VD
2372void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2373{
2374 if (!is_root_cache(cachep))
f7ce3190 2375 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2376}
2377
7ae1e1d0
GC
2378/*
2379 * We need to verify if the allocation against current->mm->owner's memcg is
2380 * possible for the given order. But the page is not allocated yet, so we'll
2381 * need a further commit step to do the final arrangements.
2382 *
2383 * It is possible for the task to switch cgroups in this mean time, so at
2384 * commit time, we can't rely on task conversion any longer. We'll then use
2385 * the handle argument to return to the caller which cgroup we should commit
2386 * against. We could also return the memcg directly and avoid the pointer
2387 * passing, but a boolean return value gives better semantics considering
2388 * the compiled-out case as well.
2389 *
2390 * Returning true means the allocation is possible.
2391 */
2392bool
2393__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2394{
2395 struct mem_cgroup *memcg;
2396 int ret;
2397
2398 *_memcg = NULL;
6d42c232 2399
df381975 2400 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2401
cf2b8fbf 2402 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2403 css_put(&memcg->css);
2404 return true;
2405 }
2406
3e32cb2e 2407 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2408 if (!ret)
2409 *_memcg = memcg;
7ae1e1d0
GC
2410
2411 css_put(&memcg->css);
2412 return (ret == 0);
2413}
2414
2415void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2416 int order)
2417{
7ae1e1d0
GC
2418 VM_BUG_ON(mem_cgroup_is_root(memcg));
2419
2420 /* The page allocation failed. Revert */
2421 if (!page) {
3e32cb2e 2422 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2423 return;
2424 }
1306a85a 2425 page->mem_cgroup = memcg;
7ae1e1d0
GC
2426}
2427
2428void __memcg_kmem_uncharge_pages(struct page *page, int order)
2429{
1306a85a 2430 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2431
7ae1e1d0
GC
2432 if (!memcg)
2433 return;
2434
309381fe 2435 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2436
3e32cb2e 2437 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2438 page->mem_cgroup = NULL;
7ae1e1d0 2439}
60d3fd32
VD
2440
2441struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2442{
2443 struct mem_cgroup *memcg = NULL;
2444 struct kmem_cache *cachep;
2445 struct page *page;
2446
2447 page = virt_to_head_page(ptr);
2448 if (PageSlab(page)) {
2449 cachep = page->slab_cache;
2450 if (!is_root_cache(cachep))
f7ce3190 2451 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2452 } else
2453 /* page allocated by alloc_kmem_pages */
2454 memcg = page->mem_cgroup;
2455
2456 return memcg;
2457}
7ae1e1d0
GC
2458#endif /* CONFIG_MEMCG_KMEM */
2459
ca3e0214
KH
2460#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2461
ca3e0214
KH
2462/*
2463 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2464 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2465 * charge/uncharge will be never happen and move_account() is done under
2466 * compound_lock(), so we don't have to take care of races.
ca3e0214 2467 */
e94c8a9c 2468void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2469{
e94c8a9c 2470 int i;
ca3e0214 2471
3d37c4a9
KH
2472 if (mem_cgroup_disabled())
2473 return;
b070e65c 2474
29833315 2475 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2476 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2477
1306a85a 2478 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2479 HPAGE_PMD_NR);
ca3e0214 2480}
12d27107 2481#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2482
c255a458 2483#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2484static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2485 bool charge)
d13d1443 2486{
0a31bc97
JW
2487 int val = (charge) ? 1 : -1;
2488 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2489}
02491447
DN
2490
2491/**
2492 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2493 * @entry: swap entry to be moved
2494 * @from: mem_cgroup which the entry is moved from
2495 * @to: mem_cgroup which the entry is moved to
2496 *
2497 * It succeeds only when the swap_cgroup's record for this entry is the same
2498 * as the mem_cgroup's id of @from.
2499 *
2500 * Returns 0 on success, -EINVAL on failure.
2501 *
3e32cb2e 2502 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2503 * both res and memsw, and called css_get().
2504 */
2505static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2506 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2507{
2508 unsigned short old_id, new_id;
2509
34c00c31
LZ
2510 old_id = mem_cgroup_id(from);
2511 new_id = mem_cgroup_id(to);
02491447
DN
2512
2513 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2514 mem_cgroup_swap_statistics(from, false);
483c30b5 2515 mem_cgroup_swap_statistics(to, true);
02491447
DN
2516 return 0;
2517 }
2518 return -EINVAL;
2519}
2520#else
2521static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2522 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2523{
2524 return -EINVAL;
2525}
8c7c6e34 2526#endif
d13d1443 2527
3e32cb2e 2528static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2529
d38d2a75 2530static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2531 unsigned long limit)
628f4235 2532{
3e32cb2e
JW
2533 unsigned long curusage;
2534 unsigned long oldusage;
2535 bool enlarge = false;
81d39c20 2536 int retry_count;
3e32cb2e 2537 int ret;
81d39c20
KH
2538
2539 /*
2540 * For keeping hierarchical_reclaim simple, how long we should retry
2541 * is depends on callers. We set our retry-count to be function
2542 * of # of children which we should visit in this loop.
2543 */
3e32cb2e
JW
2544 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2545 mem_cgroup_count_children(memcg);
81d39c20 2546
3e32cb2e 2547 oldusage = page_counter_read(&memcg->memory);
628f4235 2548
3e32cb2e 2549 do {
628f4235
KH
2550 if (signal_pending(current)) {
2551 ret = -EINTR;
2552 break;
2553 }
3e32cb2e
JW
2554
2555 mutex_lock(&memcg_limit_mutex);
2556 if (limit > memcg->memsw.limit) {
2557 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2558 ret = -EINVAL;
628f4235
KH
2559 break;
2560 }
3e32cb2e
JW
2561 if (limit > memcg->memory.limit)
2562 enlarge = true;
2563 ret = page_counter_limit(&memcg->memory, limit);
2564 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2565
2566 if (!ret)
2567 break;
2568
b70a2a21
JW
2569 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2570
3e32cb2e 2571 curusage = page_counter_read(&memcg->memory);
81d39c20 2572 /* Usage is reduced ? */
f894ffa8 2573 if (curusage >= oldusage)
81d39c20
KH
2574 retry_count--;
2575 else
2576 oldusage = curusage;
3e32cb2e
JW
2577 } while (retry_count);
2578
3c11ecf4
KH
2579 if (!ret && enlarge)
2580 memcg_oom_recover(memcg);
14797e23 2581
8c7c6e34
KH
2582 return ret;
2583}
2584
338c8431 2585static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2586 unsigned long limit)
8c7c6e34 2587{
3e32cb2e
JW
2588 unsigned long curusage;
2589 unsigned long oldusage;
2590 bool enlarge = false;
81d39c20 2591 int retry_count;
3e32cb2e 2592 int ret;
8c7c6e34 2593
81d39c20 2594 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2595 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2596 mem_cgroup_count_children(memcg);
2597
2598 oldusage = page_counter_read(&memcg->memsw);
2599
2600 do {
8c7c6e34
KH
2601 if (signal_pending(current)) {
2602 ret = -EINTR;
2603 break;
2604 }
3e32cb2e
JW
2605
2606 mutex_lock(&memcg_limit_mutex);
2607 if (limit < memcg->memory.limit) {
2608 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2609 ret = -EINVAL;
8c7c6e34
KH
2610 break;
2611 }
3e32cb2e
JW
2612 if (limit > memcg->memsw.limit)
2613 enlarge = true;
2614 ret = page_counter_limit(&memcg->memsw, limit);
2615 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2616
2617 if (!ret)
2618 break;
2619
b70a2a21
JW
2620 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2621
3e32cb2e 2622 curusage = page_counter_read(&memcg->memsw);
81d39c20 2623 /* Usage is reduced ? */
8c7c6e34 2624 if (curusage >= oldusage)
628f4235 2625 retry_count--;
81d39c20
KH
2626 else
2627 oldusage = curusage;
3e32cb2e
JW
2628 } while (retry_count);
2629
3c11ecf4
KH
2630 if (!ret && enlarge)
2631 memcg_oom_recover(memcg);
3e32cb2e 2632
628f4235
KH
2633 return ret;
2634}
2635
0608f43d
AM
2636unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2637 gfp_t gfp_mask,
2638 unsigned long *total_scanned)
2639{
2640 unsigned long nr_reclaimed = 0;
2641 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2642 unsigned long reclaimed;
2643 int loop = 0;
2644 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2645 unsigned long excess;
0608f43d
AM
2646 unsigned long nr_scanned;
2647
2648 if (order > 0)
2649 return 0;
2650
2651 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2652 /*
2653 * This loop can run a while, specially if mem_cgroup's continuously
2654 * keep exceeding their soft limit and putting the system under
2655 * pressure
2656 */
2657 do {
2658 if (next_mz)
2659 mz = next_mz;
2660 else
2661 mz = mem_cgroup_largest_soft_limit_node(mctz);
2662 if (!mz)
2663 break;
2664
2665 nr_scanned = 0;
2666 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2667 gfp_mask, &nr_scanned);
2668 nr_reclaimed += reclaimed;
2669 *total_scanned += nr_scanned;
0a31bc97 2670 spin_lock_irq(&mctz->lock);
bc2f2e7f 2671 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2672
2673 /*
2674 * If we failed to reclaim anything from this memory cgroup
2675 * it is time to move on to the next cgroup
2676 */
2677 next_mz = NULL;
bc2f2e7f
VD
2678 if (!reclaimed)
2679 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2680
3e32cb2e 2681 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2682 /*
2683 * One school of thought says that we should not add
2684 * back the node to the tree if reclaim returns 0.
2685 * But our reclaim could return 0, simply because due
2686 * to priority we are exposing a smaller subset of
2687 * memory to reclaim from. Consider this as a longer
2688 * term TODO.
2689 */
2690 /* If excess == 0, no tree ops */
cf2c8127 2691 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2692 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2693 css_put(&mz->memcg->css);
2694 loop++;
2695 /*
2696 * Could not reclaim anything and there are no more
2697 * mem cgroups to try or we seem to be looping without
2698 * reclaiming anything.
2699 */
2700 if (!nr_reclaimed &&
2701 (next_mz == NULL ||
2702 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2703 break;
2704 } while (!nr_reclaimed);
2705 if (next_mz)
2706 css_put(&next_mz->memcg->css);
2707 return nr_reclaimed;
2708}
2709
ea280e7b
TH
2710/*
2711 * Test whether @memcg has children, dead or alive. Note that this
2712 * function doesn't care whether @memcg has use_hierarchy enabled and
2713 * returns %true if there are child csses according to the cgroup
2714 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2715 */
b5f99b53
GC
2716static inline bool memcg_has_children(struct mem_cgroup *memcg)
2717{
ea280e7b
TH
2718 bool ret;
2719
696ac172 2720 /*
ea280e7b
TH
2721 * The lock does not prevent addition or deletion of children, but
2722 * it prevents a new child from being initialized based on this
2723 * parent in css_online(), so it's enough to decide whether
2724 * hierarchically inherited attributes can still be changed or not.
696ac172 2725 */
ea280e7b
TH
2726 lockdep_assert_held(&memcg_create_mutex);
2727
2728 rcu_read_lock();
2729 ret = css_next_child(NULL, &memcg->css);
2730 rcu_read_unlock();
2731 return ret;
b5f99b53
GC
2732}
2733
c26251f9
MH
2734/*
2735 * Reclaims as many pages from the given memcg as possible and moves
2736 * the rest to the parent.
2737 *
2738 * Caller is responsible for holding css reference for memcg.
2739 */
2740static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2741{
2742 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2743
c1e862c1
KH
2744 /* we call try-to-free pages for make this cgroup empty */
2745 lru_add_drain_all();
f817ed48 2746 /* try to free all pages in this cgroup */
3e32cb2e 2747 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2748 int progress;
c1e862c1 2749
c26251f9
MH
2750 if (signal_pending(current))
2751 return -EINTR;
2752
b70a2a21
JW
2753 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2754 GFP_KERNEL, true);
c1e862c1 2755 if (!progress) {
f817ed48 2756 nr_retries--;
c1e862c1 2757 /* maybe some writeback is necessary */
8aa7e847 2758 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2759 }
f817ed48
KH
2760
2761 }
ab5196c2
MH
2762
2763 return 0;
cc847582
KH
2764}
2765
6770c64e
TH
2766static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2767 char *buf, size_t nbytes,
2768 loff_t off)
c1e862c1 2769{
6770c64e 2770 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2771
d8423011
MH
2772 if (mem_cgroup_is_root(memcg))
2773 return -EINVAL;
6770c64e 2774 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2775}
2776
182446d0
TH
2777static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2778 struct cftype *cft)
18f59ea7 2779{
182446d0 2780 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2781}
2782
182446d0
TH
2783static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2784 struct cftype *cft, u64 val)
18f59ea7
BS
2785{
2786 int retval = 0;
182446d0 2787 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2788 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2789
0999821b 2790 mutex_lock(&memcg_create_mutex);
567fb435
GC
2791
2792 if (memcg->use_hierarchy == val)
2793 goto out;
2794
18f59ea7 2795 /*
af901ca1 2796 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2797 * in the child subtrees. If it is unset, then the change can
2798 * occur, provided the current cgroup has no children.
2799 *
2800 * For the root cgroup, parent_mem is NULL, we allow value to be
2801 * set if there are no children.
2802 */
c0ff4b85 2803 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2804 (val == 1 || val == 0)) {
ea280e7b 2805 if (!memcg_has_children(memcg))
c0ff4b85 2806 memcg->use_hierarchy = val;
18f59ea7
BS
2807 else
2808 retval = -EBUSY;
2809 } else
2810 retval = -EINVAL;
567fb435
GC
2811
2812out:
0999821b 2813 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2814
2815 return retval;
2816}
2817
3e32cb2e
JW
2818static unsigned long tree_stat(struct mem_cgroup *memcg,
2819 enum mem_cgroup_stat_index idx)
ce00a967
JW
2820{
2821 struct mem_cgroup *iter;
2822 long val = 0;
2823
2824 /* Per-cpu values can be negative, use a signed accumulator */
2825 for_each_mem_cgroup_tree(iter, memcg)
2826 val += mem_cgroup_read_stat(iter, idx);
2827
2828 if (val < 0) /* race ? */
2829 val = 0;
2830 return val;
2831}
2832
2833static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2834{
2835 u64 val;
2836
3e32cb2e
JW
2837 if (mem_cgroup_is_root(memcg)) {
2838 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2839 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2840 if (swap)
2841 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2842 } else {
ce00a967 2843 if (!swap)
3e32cb2e 2844 val = page_counter_read(&memcg->memory);
ce00a967 2845 else
3e32cb2e 2846 val = page_counter_read(&memcg->memsw);
ce00a967 2847 }
ce00a967
JW
2848 return val << PAGE_SHIFT;
2849}
2850
3e32cb2e
JW
2851enum {
2852 RES_USAGE,
2853 RES_LIMIT,
2854 RES_MAX_USAGE,
2855 RES_FAILCNT,
2856 RES_SOFT_LIMIT,
2857};
ce00a967 2858
791badbd 2859static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2860 struct cftype *cft)
8cdea7c0 2861{
182446d0 2862 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2863 struct page_counter *counter;
af36f906 2864
3e32cb2e 2865 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2866 case _MEM:
3e32cb2e
JW
2867 counter = &memcg->memory;
2868 break;
8c7c6e34 2869 case _MEMSWAP:
3e32cb2e
JW
2870 counter = &memcg->memsw;
2871 break;
510fc4e1 2872 case _KMEM:
3e32cb2e 2873 counter = &memcg->kmem;
510fc4e1 2874 break;
8c7c6e34
KH
2875 default:
2876 BUG();
8c7c6e34 2877 }
3e32cb2e
JW
2878
2879 switch (MEMFILE_ATTR(cft->private)) {
2880 case RES_USAGE:
2881 if (counter == &memcg->memory)
2882 return mem_cgroup_usage(memcg, false);
2883 if (counter == &memcg->memsw)
2884 return mem_cgroup_usage(memcg, true);
2885 return (u64)page_counter_read(counter) * PAGE_SIZE;
2886 case RES_LIMIT:
2887 return (u64)counter->limit * PAGE_SIZE;
2888 case RES_MAX_USAGE:
2889 return (u64)counter->watermark * PAGE_SIZE;
2890 case RES_FAILCNT:
2891 return counter->failcnt;
2892 case RES_SOFT_LIMIT:
2893 return (u64)memcg->soft_limit * PAGE_SIZE;
2894 default:
2895 BUG();
2896 }
8cdea7c0 2897}
510fc4e1 2898
510fc4e1 2899#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
2900static int memcg_activate_kmem(struct mem_cgroup *memcg,
2901 unsigned long nr_pages)
d6441637
VD
2902{
2903 int err = 0;
2904 int memcg_id;
2905
2a4db7eb 2906 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 2907 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 2908 BUG_ON(memcg->kmem_acct_active);
d6441637 2909
510fc4e1
GC
2910 /*
2911 * For simplicity, we won't allow this to be disabled. It also can't
2912 * be changed if the cgroup has children already, or if tasks had
2913 * already joined.
2914 *
2915 * If tasks join before we set the limit, a person looking at
2916 * kmem.usage_in_bytes will have no way to determine when it took
2917 * place, which makes the value quite meaningless.
2918 *
2919 * After it first became limited, changes in the value of the limit are
2920 * of course permitted.
510fc4e1 2921 */
0999821b 2922 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
2923 if (cgroup_has_tasks(memcg->css.cgroup) ||
2924 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2925 err = -EBUSY;
2926 mutex_unlock(&memcg_create_mutex);
2927 if (err)
2928 goto out;
510fc4e1 2929
f3bb3043 2930 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2931 if (memcg_id < 0) {
2932 err = memcg_id;
2933 goto out;
2934 }
2935
d6441637 2936 /*
900a38f0
VD
2937 * We couldn't have accounted to this cgroup, because it hasn't got
2938 * activated yet, so this should succeed.
d6441637 2939 */
3e32cb2e 2940 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
2941 VM_BUG_ON(err);
2942
2943 static_key_slow_inc(&memcg_kmem_enabled_key);
2944 /*
900a38f0
VD
2945 * A memory cgroup is considered kmem-active as soon as it gets
2946 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2947 * guarantee no one starts accounting before all call sites are
2948 * patched.
2949 */
900a38f0 2950 memcg->kmemcg_id = memcg_id;
2788cf0c 2951 memcg->kmem_acct_activated = true;
2a4db7eb 2952 memcg->kmem_acct_active = true;
510fc4e1 2953out:
d6441637 2954 return err;
d6441637
VD
2955}
2956
d6441637 2957static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2958 unsigned long limit)
d6441637
VD
2959{
2960 int ret;
2961
3e32cb2e 2962 mutex_lock(&memcg_limit_mutex);
d6441637 2963 if (!memcg_kmem_is_active(memcg))
3e32cb2e 2964 ret = memcg_activate_kmem(memcg, limit);
d6441637 2965 else
3e32cb2e
JW
2966 ret = page_counter_limit(&memcg->kmem, limit);
2967 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
2968 return ret;
2969}
2970
55007d84 2971static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 2972{
55007d84 2973 int ret = 0;
510fc4e1 2974 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 2975
d6441637
VD
2976 if (!parent)
2977 return 0;
55007d84 2978
8c0145b6 2979 mutex_lock(&memcg_limit_mutex);
55007d84 2980 /*
d6441637
VD
2981 * If the parent cgroup is not kmem-active now, it cannot be activated
2982 * after this point, because it has at least one child already.
55007d84 2983 */
d6441637 2984 if (memcg_kmem_is_active(parent))
8c0145b6
VD
2985 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2986 mutex_unlock(&memcg_limit_mutex);
55007d84 2987 return ret;
510fc4e1 2988}
d6441637
VD
2989#else
2990static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2991 unsigned long limit)
d6441637
VD
2992{
2993 return -EINVAL;
2994}
6d043990 2995#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 2996
628f4235
KH
2997/*
2998 * The user of this function is...
2999 * RES_LIMIT.
3000 */
451af504
TH
3001static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3002 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3003{
451af504 3004 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3005 unsigned long nr_pages;
628f4235
KH
3006 int ret;
3007
451af504 3008 buf = strstrip(buf);
650c5e56 3009 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3010 if (ret)
3011 return ret;
af36f906 3012
3e32cb2e 3013 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3014 case RES_LIMIT:
4b3bde4c
BS
3015 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3016 ret = -EINVAL;
3017 break;
3018 }
3e32cb2e
JW
3019 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3020 case _MEM:
3021 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3022 break;
3e32cb2e
JW
3023 case _MEMSWAP:
3024 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3025 break;
3e32cb2e
JW
3026 case _KMEM:
3027 ret = memcg_update_kmem_limit(memcg, nr_pages);
3028 break;
3029 }
296c81d8 3030 break;
3e32cb2e
JW
3031 case RES_SOFT_LIMIT:
3032 memcg->soft_limit = nr_pages;
3033 ret = 0;
628f4235
KH
3034 break;
3035 }
451af504 3036 return ret ?: nbytes;
8cdea7c0
BS
3037}
3038
6770c64e
TH
3039static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3040 size_t nbytes, loff_t off)
c84872e1 3041{
6770c64e 3042 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3043 struct page_counter *counter;
c84872e1 3044
3e32cb2e
JW
3045 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3046 case _MEM:
3047 counter = &memcg->memory;
3048 break;
3049 case _MEMSWAP:
3050 counter = &memcg->memsw;
3051 break;
3052 case _KMEM:
3053 counter = &memcg->kmem;
3054 break;
3055 default:
3056 BUG();
3057 }
af36f906 3058
3e32cb2e 3059 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3060 case RES_MAX_USAGE:
3e32cb2e 3061 page_counter_reset_watermark(counter);
29f2a4da
PE
3062 break;
3063 case RES_FAILCNT:
3e32cb2e 3064 counter->failcnt = 0;
29f2a4da 3065 break;
3e32cb2e
JW
3066 default:
3067 BUG();
29f2a4da 3068 }
f64c3f54 3069
6770c64e 3070 return nbytes;
c84872e1
PE
3071}
3072
182446d0 3073static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3074 struct cftype *cft)
3075{
182446d0 3076 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3077}
3078
02491447 3079#ifdef CONFIG_MMU
182446d0 3080static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3081 struct cftype *cft, u64 val)
3082{
182446d0 3083 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3084
1dfab5ab 3085 if (val & ~MOVE_MASK)
7dc74be0 3086 return -EINVAL;
ee5e8472 3087
7dc74be0 3088 /*
ee5e8472
GC
3089 * No kind of locking is needed in here, because ->can_attach() will
3090 * check this value once in the beginning of the process, and then carry
3091 * on with stale data. This means that changes to this value will only
3092 * affect task migrations starting after the change.
7dc74be0 3093 */
c0ff4b85 3094 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3095 return 0;
3096}
02491447 3097#else
182446d0 3098static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3099 struct cftype *cft, u64 val)
3100{
3101 return -ENOSYS;
3102}
3103#endif
7dc74be0 3104
406eb0c9 3105#ifdef CONFIG_NUMA
2da8ca82 3106static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3107{
25485de6
GT
3108 struct numa_stat {
3109 const char *name;
3110 unsigned int lru_mask;
3111 };
3112
3113 static const struct numa_stat stats[] = {
3114 { "total", LRU_ALL },
3115 { "file", LRU_ALL_FILE },
3116 { "anon", LRU_ALL_ANON },
3117 { "unevictable", BIT(LRU_UNEVICTABLE) },
3118 };
3119 const struct numa_stat *stat;
406eb0c9 3120 int nid;
25485de6 3121 unsigned long nr;
2da8ca82 3122 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3123
25485de6
GT
3124 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3125 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3126 seq_printf(m, "%s=%lu", stat->name, nr);
3127 for_each_node_state(nid, N_MEMORY) {
3128 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3129 stat->lru_mask);
3130 seq_printf(m, " N%d=%lu", nid, nr);
3131 }
3132 seq_putc(m, '\n');
406eb0c9 3133 }
406eb0c9 3134
071aee13
YH
3135 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3136 struct mem_cgroup *iter;
3137
3138 nr = 0;
3139 for_each_mem_cgroup_tree(iter, memcg)
3140 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3141 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3142 for_each_node_state(nid, N_MEMORY) {
3143 nr = 0;
3144 for_each_mem_cgroup_tree(iter, memcg)
3145 nr += mem_cgroup_node_nr_lru_pages(
3146 iter, nid, stat->lru_mask);
3147 seq_printf(m, " N%d=%lu", nid, nr);
3148 }
3149 seq_putc(m, '\n');
406eb0c9 3150 }
406eb0c9 3151
406eb0c9
YH
3152 return 0;
3153}
3154#endif /* CONFIG_NUMA */
3155
2da8ca82 3156static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3157{
2da8ca82 3158 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3159 unsigned long memory, memsw;
af7c4b0e
JW
3160 struct mem_cgroup *mi;
3161 unsigned int i;
406eb0c9 3162
0ca44b14
GT
3163 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3164 MEM_CGROUP_STAT_NSTATS);
3165 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3166 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3167 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3168
af7c4b0e 3169 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3170 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3171 continue;
af7c4b0e
JW
3172 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3173 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3174 }
7b854121 3175
af7c4b0e
JW
3176 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3177 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3178 mem_cgroup_read_events(memcg, i));
3179
3180 for (i = 0; i < NR_LRU_LISTS; i++)
3181 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3182 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3183
14067bb3 3184 /* Hierarchical information */
3e32cb2e
JW
3185 memory = memsw = PAGE_COUNTER_MAX;
3186 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3187 memory = min(memory, mi->memory.limit);
3188 memsw = min(memsw, mi->memsw.limit);
fee7b548 3189 }
3e32cb2e
JW
3190 seq_printf(m, "hierarchical_memory_limit %llu\n",
3191 (u64)memory * PAGE_SIZE);
3192 if (do_swap_account)
3193 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3194 (u64)memsw * PAGE_SIZE);
7f016ee8 3195
af7c4b0e
JW
3196 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3197 long long val = 0;
3198
bff6bb83 3199 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3200 continue;
af7c4b0e
JW
3201 for_each_mem_cgroup_tree(mi, memcg)
3202 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3203 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3204 }
3205
3206 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3207 unsigned long long val = 0;
3208
3209 for_each_mem_cgroup_tree(mi, memcg)
3210 val += mem_cgroup_read_events(mi, i);
3211 seq_printf(m, "total_%s %llu\n",
3212 mem_cgroup_events_names[i], val);
3213 }
3214
3215 for (i = 0; i < NR_LRU_LISTS; i++) {
3216 unsigned long long val = 0;
3217
3218 for_each_mem_cgroup_tree(mi, memcg)
3219 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3220 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3221 }
14067bb3 3222
7f016ee8 3223#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3224 {
3225 int nid, zid;
3226 struct mem_cgroup_per_zone *mz;
89abfab1 3227 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3228 unsigned long recent_rotated[2] = {0, 0};
3229 unsigned long recent_scanned[2] = {0, 0};
3230
3231 for_each_online_node(nid)
3232 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3233 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3234 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3235
89abfab1
HD
3236 recent_rotated[0] += rstat->recent_rotated[0];
3237 recent_rotated[1] += rstat->recent_rotated[1];
3238 recent_scanned[0] += rstat->recent_scanned[0];
3239 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3240 }
78ccf5b5
JW
3241 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3242 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3243 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3244 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3245 }
3246#endif
3247
d2ceb9b7
KH
3248 return 0;
3249}
3250
182446d0
TH
3251static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3252 struct cftype *cft)
a7885eb8 3253{
182446d0 3254 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3255
1f4c025b 3256 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3257}
3258
182446d0
TH
3259static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3260 struct cftype *cft, u64 val)
a7885eb8 3261{
182446d0 3262 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3263
3dae7fec 3264 if (val > 100)
a7885eb8
KM
3265 return -EINVAL;
3266
14208b0e 3267 if (css->parent)
3dae7fec
JW
3268 memcg->swappiness = val;
3269 else
3270 vm_swappiness = val;
068b38c1 3271
a7885eb8
KM
3272 return 0;
3273}
3274
2e72b634
KS
3275static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3276{
3277 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3278 unsigned long usage;
2e72b634
KS
3279 int i;
3280
3281 rcu_read_lock();
3282 if (!swap)
2c488db2 3283 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3284 else
2c488db2 3285 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3286
3287 if (!t)
3288 goto unlock;
3289
ce00a967 3290 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3291
3292 /*
748dad36 3293 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3294 * If it's not true, a threshold was crossed after last
3295 * call of __mem_cgroup_threshold().
3296 */
5407a562 3297 i = t->current_threshold;
2e72b634
KS
3298
3299 /*
3300 * Iterate backward over array of thresholds starting from
3301 * current_threshold and check if a threshold is crossed.
3302 * If none of thresholds below usage is crossed, we read
3303 * only one element of the array here.
3304 */
3305 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3306 eventfd_signal(t->entries[i].eventfd, 1);
3307
3308 /* i = current_threshold + 1 */
3309 i++;
3310
3311 /*
3312 * Iterate forward over array of thresholds starting from
3313 * current_threshold+1 and check if a threshold is crossed.
3314 * If none of thresholds above usage is crossed, we read
3315 * only one element of the array here.
3316 */
3317 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3318 eventfd_signal(t->entries[i].eventfd, 1);
3319
3320 /* Update current_threshold */
5407a562 3321 t->current_threshold = i - 1;
2e72b634
KS
3322unlock:
3323 rcu_read_unlock();
3324}
3325
3326static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3327{
ad4ca5f4
KS
3328 while (memcg) {
3329 __mem_cgroup_threshold(memcg, false);
3330 if (do_swap_account)
3331 __mem_cgroup_threshold(memcg, true);
3332
3333 memcg = parent_mem_cgroup(memcg);
3334 }
2e72b634
KS
3335}
3336
3337static int compare_thresholds(const void *a, const void *b)
3338{
3339 const struct mem_cgroup_threshold *_a = a;
3340 const struct mem_cgroup_threshold *_b = b;
3341
2bff24a3
GT
3342 if (_a->threshold > _b->threshold)
3343 return 1;
3344
3345 if (_a->threshold < _b->threshold)
3346 return -1;
3347
3348 return 0;
2e72b634
KS
3349}
3350
c0ff4b85 3351static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3352{
3353 struct mem_cgroup_eventfd_list *ev;
3354
2bcf2e92
MH
3355 spin_lock(&memcg_oom_lock);
3356
c0ff4b85 3357 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3358 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3359
3360 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3361 return 0;
3362}
3363
c0ff4b85 3364static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3365{
7d74b06f
KH
3366 struct mem_cgroup *iter;
3367
c0ff4b85 3368 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3369 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3370}
3371
59b6f873 3372static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3373 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3374{
2c488db2
KS
3375 struct mem_cgroup_thresholds *thresholds;
3376 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3377 unsigned long threshold;
3378 unsigned long usage;
2c488db2 3379 int i, size, ret;
2e72b634 3380
650c5e56 3381 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3382 if (ret)
3383 return ret;
3384
3385 mutex_lock(&memcg->thresholds_lock);
2c488db2 3386
05b84301 3387 if (type == _MEM) {
2c488db2 3388 thresholds = &memcg->thresholds;
ce00a967 3389 usage = mem_cgroup_usage(memcg, false);
05b84301 3390 } else if (type == _MEMSWAP) {
2c488db2 3391 thresholds = &memcg->memsw_thresholds;
ce00a967 3392 usage = mem_cgroup_usage(memcg, true);
05b84301 3393 } else
2e72b634
KS
3394 BUG();
3395
2e72b634 3396 /* Check if a threshold crossed before adding a new one */
2c488db2 3397 if (thresholds->primary)
2e72b634
KS
3398 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3399
2c488db2 3400 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3401
3402 /* Allocate memory for new array of thresholds */
2c488db2 3403 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3404 GFP_KERNEL);
2c488db2 3405 if (!new) {
2e72b634
KS
3406 ret = -ENOMEM;
3407 goto unlock;
3408 }
2c488db2 3409 new->size = size;
2e72b634
KS
3410
3411 /* Copy thresholds (if any) to new array */
2c488db2
KS
3412 if (thresholds->primary) {
3413 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3414 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3415 }
3416
2e72b634 3417 /* Add new threshold */
2c488db2
KS
3418 new->entries[size - 1].eventfd = eventfd;
3419 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3420
3421 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3422 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3423 compare_thresholds, NULL);
3424
3425 /* Find current threshold */
2c488db2 3426 new->current_threshold = -1;
2e72b634 3427 for (i = 0; i < size; i++) {
748dad36 3428 if (new->entries[i].threshold <= usage) {
2e72b634 3429 /*
2c488db2
KS
3430 * new->current_threshold will not be used until
3431 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3432 * it here.
3433 */
2c488db2 3434 ++new->current_threshold;
748dad36
SZ
3435 } else
3436 break;
2e72b634
KS
3437 }
3438
2c488db2
KS
3439 /* Free old spare buffer and save old primary buffer as spare */
3440 kfree(thresholds->spare);
3441 thresholds->spare = thresholds->primary;
3442
3443 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3444
907860ed 3445 /* To be sure that nobody uses thresholds */
2e72b634
KS
3446 synchronize_rcu();
3447
2e72b634
KS
3448unlock:
3449 mutex_unlock(&memcg->thresholds_lock);
3450
3451 return ret;
3452}
3453
59b6f873 3454static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3455 struct eventfd_ctx *eventfd, const char *args)
3456{
59b6f873 3457 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3458}
3459
59b6f873 3460static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3461 struct eventfd_ctx *eventfd, const char *args)
3462{
59b6f873 3463 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3464}
3465
59b6f873 3466static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3467 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3468{
2c488db2
KS
3469 struct mem_cgroup_thresholds *thresholds;
3470 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3471 unsigned long usage;
2c488db2 3472 int i, j, size;
2e72b634
KS
3473
3474 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3475
3476 if (type == _MEM) {
2c488db2 3477 thresholds = &memcg->thresholds;
ce00a967 3478 usage = mem_cgroup_usage(memcg, false);
05b84301 3479 } else if (type == _MEMSWAP) {
2c488db2 3480 thresholds = &memcg->memsw_thresholds;
ce00a967 3481 usage = mem_cgroup_usage(memcg, true);
05b84301 3482 } else
2e72b634
KS
3483 BUG();
3484
371528ca
AV
3485 if (!thresholds->primary)
3486 goto unlock;
3487
2e72b634
KS
3488 /* Check if a threshold crossed before removing */
3489 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3490
3491 /* Calculate new number of threshold */
2c488db2
KS
3492 size = 0;
3493 for (i = 0; i < thresholds->primary->size; i++) {
3494 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3495 size++;
3496 }
3497
2c488db2 3498 new = thresholds->spare;
907860ed 3499
2e72b634
KS
3500 /* Set thresholds array to NULL if we don't have thresholds */
3501 if (!size) {
2c488db2
KS
3502 kfree(new);
3503 new = NULL;
907860ed 3504 goto swap_buffers;
2e72b634
KS
3505 }
3506
2c488db2 3507 new->size = size;
2e72b634
KS
3508
3509 /* Copy thresholds and find current threshold */
2c488db2
KS
3510 new->current_threshold = -1;
3511 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3512 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3513 continue;
3514
2c488db2 3515 new->entries[j] = thresholds->primary->entries[i];
748dad36 3516 if (new->entries[j].threshold <= usage) {
2e72b634 3517 /*
2c488db2 3518 * new->current_threshold will not be used
2e72b634
KS
3519 * until rcu_assign_pointer(), so it's safe to increment
3520 * it here.
3521 */
2c488db2 3522 ++new->current_threshold;
2e72b634
KS
3523 }
3524 j++;
3525 }
3526
907860ed 3527swap_buffers:
2c488db2
KS
3528 /* Swap primary and spare array */
3529 thresholds->spare = thresholds->primary;
8c757763
SZ
3530 /* If all events are unregistered, free the spare array */
3531 if (!new) {
3532 kfree(thresholds->spare);
3533 thresholds->spare = NULL;
3534 }
3535
2c488db2 3536 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3537
907860ed 3538 /* To be sure that nobody uses thresholds */
2e72b634 3539 synchronize_rcu();
371528ca 3540unlock:
2e72b634 3541 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3542}
c1e862c1 3543
59b6f873 3544static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3545 struct eventfd_ctx *eventfd)
3546{
59b6f873 3547 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3548}
3549
59b6f873 3550static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3551 struct eventfd_ctx *eventfd)
3552{
59b6f873 3553 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3554}
3555
59b6f873 3556static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3557 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3558{
9490ff27 3559 struct mem_cgroup_eventfd_list *event;
9490ff27 3560
9490ff27
KH
3561 event = kmalloc(sizeof(*event), GFP_KERNEL);
3562 if (!event)
3563 return -ENOMEM;
3564
1af8efe9 3565 spin_lock(&memcg_oom_lock);
9490ff27
KH
3566
3567 event->eventfd = eventfd;
3568 list_add(&event->list, &memcg->oom_notify);
3569
3570 /* already in OOM ? */
c2b42d3c 3571 if (memcg->under_oom)
9490ff27 3572 eventfd_signal(eventfd, 1);
1af8efe9 3573 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3574
3575 return 0;
3576}
3577
59b6f873 3578static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3579 struct eventfd_ctx *eventfd)
9490ff27 3580{
9490ff27 3581 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3582
1af8efe9 3583 spin_lock(&memcg_oom_lock);
9490ff27 3584
c0ff4b85 3585 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3586 if (ev->eventfd == eventfd) {
3587 list_del(&ev->list);
3588 kfree(ev);
3589 }
3590 }
3591
1af8efe9 3592 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3593}
3594
2da8ca82 3595static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3596{
2da8ca82 3597 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3598
791badbd 3599 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3600 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3601 return 0;
3602}
3603
182446d0 3604static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3605 struct cftype *cft, u64 val)
3606{
182446d0 3607 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3608
3609 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3610 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3611 return -EINVAL;
3612
c0ff4b85 3613 memcg->oom_kill_disable = val;
4d845ebf 3614 if (!val)
c0ff4b85 3615 memcg_oom_recover(memcg);
3dae7fec 3616
3c11ecf4
KH
3617 return 0;
3618}
3619
c255a458 3620#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3621static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3622{
55007d84
GC
3623 int ret;
3624
55007d84
GC
3625 ret = memcg_propagate_kmem(memcg);
3626 if (ret)
3627 return ret;
2633d7a0 3628
1d62e436 3629 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3630}
e5671dfa 3631
2a4db7eb
VD
3632static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3633{
2788cf0c
VD
3634 struct cgroup_subsys_state *css;
3635 struct mem_cgroup *parent, *child;
3636 int kmemcg_id;
3637
2a4db7eb
VD
3638 if (!memcg->kmem_acct_active)
3639 return;
3640
3641 /*
3642 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3643 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3644 * guarantees no cache will be created for this cgroup after we are
3645 * done (see memcg_create_kmem_cache()).
3646 */
3647 memcg->kmem_acct_active = false;
3648
3649 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3650
3651 kmemcg_id = memcg->kmemcg_id;
3652 BUG_ON(kmemcg_id < 0);
3653
3654 parent = parent_mem_cgroup(memcg);
3655 if (!parent)
3656 parent = root_mem_cgroup;
3657
3658 /*
3659 * Change kmemcg_id of this cgroup and all its descendants to the
3660 * parent's id, and then move all entries from this cgroup's list_lrus
3661 * to ones of the parent. After we have finished, all list_lrus
3662 * corresponding to this cgroup are guaranteed to remain empty. The
3663 * ordering is imposed by list_lru_node->lock taken by
3664 * memcg_drain_all_list_lrus().
3665 */
3666 css_for_each_descendant_pre(css, &memcg->css) {
3667 child = mem_cgroup_from_css(css);
3668 BUG_ON(child->kmemcg_id != kmemcg_id);
3669 child->kmemcg_id = parent->kmemcg_id;
3670 if (!memcg->use_hierarchy)
3671 break;
3672 }
3673 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3674
3675 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3676}
3677
10d5ebf4 3678static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3679{
f48b80a5
VD
3680 if (memcg->kmem_acct_activated) {
3681 memcg_destroy_kmem_caches(memcg);
3682 static_key_slow_dec(&memcg_kmem_enabled_key);
3683 WARN_ON(page_counter_read(&memcg->kmem));
3684 }
1d62e436 3685 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3686}
e5671dfa 3687#else
cbe128e3 3688static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3689{
3690 return 0;
3691}
d1a4c0b3 3692
2a4db7eb
VD
3693static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3694{
3695}
3696
10d5ebf4
LZ
3697static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3698{
3699}
e5671dfa
GC
3700#endif
3701
52ebea74
TH
3702#ifdef CONFIG_CGROUP_WRITEBACK
3703
3704struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3705{
3706 return &memcg->cgwb_list;
3707}
3708
841710aa
TH
3709static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3710{
3711 return wb_domain_init(&memcg->cgwb_domain, gfp);
3712}
3713
3714static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3715{
3716 wb_domain_exit(&memcg->cgwb_domain);
3717}
3718
2529bb3a
TH
3719static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3720{
3721 wb_domain_size_changed(&memcg->cgwb_domain);
3722}
3723
841710aa
TH
3724struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3725{
3726 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3727
3728 if (!memcg->css.parent)
3729 return NULL;
3730
3731 return &memcg->cgwb_domain;
3732}
3733
c2aa723a
TH
3734/**
3735 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3736 * @wb: bdi_writeback in question
3737 * @pavail: out parameter for number of available pages
3738 * @pdirty: out parameter for number of dirty pages
3739 * @pwriteback: out parameter for number of pages under writeback
3740 *
3741 * Determine the numbers of available, dirty, and writeback pages in @wb's
3742 * memcg. Dirty and writeback are self-explanatory. Available is a bit
3743 * more involved.
3744 *
3745 * A memcg's headroom is "min(max, high) - used". The available memory is
3746 * calculated as the lowest headroom of itself and the ancestors plus the
3747 * number of pages already being used for file pages. Note that this
3748 * doesn't consider the actual amount of available memory in the system.
3749 * The caller should further cap *@pavail accordingly.
3750 */
3751void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
3752 unsigned long *pdirty, unsigned long *pwriteback)
3753{
3754 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3755 struct mem_cgroup *parent;
3756 unsigned long head_room = PAGE_COUNTER_MAX;
3757 unsigned long file_pages;
3758
3759 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3760
3761 /* this should eventually include NR_UNSTABLE_NFS */
3762 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3763
3764 file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3765 (1 << LRU_ACTIVE_FILE));
3766 while ((parent = parent_mem_cgroup(memcg))) {
3767 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3768 unsigned long used = page_counter_read(&memcg->memory);
3769
3770 head_room = min(head_room, ceiling - min(ceiling, used));
3771 memcg = parent;
3772 }
3773
3774 *pavail = file_pages + head_room;
3775}
3776
841710aa
TH
3777#else /* CONFIG_CGROUP_WRITEBACK */
3778
3779static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3780{
3781 return 0;
3782}
3783
3784static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3785{
3786}
3787
2529bb3a
TH
3788static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3789{
3790}
3791
52ebea74
TH
3792#endif /* CONFIG_CGROUP_WRITEBACK */
3793
3bc942f3
TH
3794/*
3795 * DO NOT USE IN NEW FILES.
3796 *
3797 * "cgroup.event_control" implementation.
3798 *
3799 * This is way over-engineered. It tries to support fully configurable
3800 * events for each user. Such level of flexibility is completely
3801 * unnecessary especially in the light of the planned unified hierarchy.
3802 *
3803 * Please deprecate this and replace with something simpler if at all
3804 * possible.
3805 */
3806
79bd9814
TH
3807/*
3808 * Unregister event and free resources.
3809 *
3810 * Gets called from workqueue.
3811 */
3bc942f3 3812static void memcg_event_remove(struct work_struct *work)
79bd9814 3813{
3bc942f3
TH
3814 struct mem_cgroup_event *event =
3815 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3816 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3817
3818 remove_wait_queue(event->wqh, &event->wait);
3819
59b6f873 3820 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3821
3822 /* Notify userspace the event is going away. */
3823 eventfd_signal(event->eventfd, 1);
3824
3825 eventfd_ctx_put(event->eventfd);
3826 kfree(event);
59b6f873 3827 css_put(&memcg->css);
79bd9814
TH
3828}
3829
3830/*
3831 * Gets called on POLLHUP on eventfd when user closes it.
3832 *
3833 * Called with wqh->lock held and interrupts disabled.
3834 */
3bc942f3
TH
3835static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3836 int sync, void *key)
79bd9814 3837{
3bc942f3
TH
3838 struct mem_cgroup_event *event =
3839 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3840 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3841 unsigned long flags = (unsigned long)key;
3842
3843 if (flags & POLLHUP) {
3844 /*
3845 * If the event has been detached at cgroup removal, we
3846 * can simply return knowing the other side will cleanup
3847 * for us.
3848 *
3849 * We can't race against event freeing since the other
3850 * side will require wqh->lock via remove_wait_queue(),
3851 * which we hold.
3852 */
fba94807 3853 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3854 if (!list_empty(&event->list)) {
3855 list_del_init(&event->list);
3856 /*
3857 * We are in atomic context, but cgroup_event_remove()
3858 * may sleep, so we have to call it in workqueue.
3859 */
3860 schedule_work(&event->remove);
3861 }
fba94807 3862 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3863 }
3864
3865 return 0;
3866}
3867
3bc942f3 3868static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3869 wait_queue_head_t *wqh, poll_table *pt)
3870{
3bc942f3
TH
3871 struct mem_cgroup_event *event =
3872 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3873
3874 event->wqh = wqh;
3875 add_wait_queue(wqh, &event->wait);
3876}
3877
3878/*
3bc942f3
TH
3879 * DO NOT USE IN NEW FILES.
3880 *
79bd9814
TH
3881 * Parse input and register new cgroup event handler.
3882 *
3883 * Input must be in format '<event_fd> <control_fd> <args>'.
3884 * Interpretation of args is defined by control file implementation.
3885 */
451af504
TH
3886static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3887 char *buf, size_t nbytes, loff_t off)
79bd9814 3888{
451af504 3889 struct cgroup_subsys_state *css = of_css(of);
fba94807 3890 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3891 struct mem_cgroup_event *event;
79bd9814
TH
3892 struct cgroup_subsys_state *cfile_css;
3893 unsigned int efd, cfd;
3894 struct fd efile;
3895 struct fd cfile;
fba94807 3896 const char *name;
79bd9814
TH
3897 char *endp;
3898 int ret;
3899
451af504
TH
3900 buf = strstrip(buf);
3901
3902 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3903 if (*endp != ' ')
3904 return -EINVAL;
451af504 3905 buf = endp + 1;
79bd9814 3906
451af504 3907 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3908 if ((*endp != ' ') && (*endp != '\0'))
3909 return -EINVAL;
451af504 3910 buf = endp + 1;
79bd9814
TH
3911
3912 event = kzalloc(sizeof(*event), GFP_KERNEL);
3913 if (!event)
3914 return -ENOMEM;
3915
59b6f873 3916 event->memcg = memcg;
79bd9814 3917 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3918 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3919 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3920 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3921
3922 efile = fdget(efd);
3923 if (!efile.file) {
3924 ret = -EBADF;
3925 goto out_kfree;
3926 }
3927
3928 event->eventfd = eventfd_ctx_fileget(efile.file);
3929 if (IS_ERR(event->eventfd)) {
3930 ret = PTR_ERR(event->eventfd);
3931 goto out_put_efile;
3932 }
3933
3934 cfile = fdget(cfd);
3935 if (!cfile.file) {
3936 ret = -EBADF;
3937 goto out_put_eventfd;
3938 }
3939
3940 /* the process need read permission on control file */
3941 /* AV: shouldn't we check that it's been opened for read instead? */
3942 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3943 if (ret < 0)
3944 goto out_put_cfile;
3945
fba94807
TH
3946 /*
3947 * Determine the event callbacks and set them in @event. This used
3948 * to be done via struct cftype but cgroup core no longer knows
3949 * about these events. The following is crude but the whole thing
3950 * is for compatibility anyway.
3bc942f3
TH
3951 *
3952 * DO NOT ADD NEW FILES.
fba94807 3953 */
b583043e 3954 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3955
3956 if (!strcmp(name, "memory.usage_in_bytes")) {
3957 event->register_event = mem_cgroup_usage_register_event;
3958 event->unregister_event = mem_cgroup_usage_unregister_event;
3959 } else if (!strcmp(name, "memory.oom_control")) {
3960 event->register_event = mem_cgroup_oom_register_event;
3961 event->unregister_event = mem_cgroup_oom_unregister_event;
3962 } else if (!strcmp(name, "memory.pressure_level")) {
3963 event->register_event = vmpressure_register_event;
3964 event->unregister_event = vmpressure_unregister_event;
3965 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3966 event->register_event = memsw_cgroup_usage_register_event;
3967 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3968 } else {
3969 ret = -EINVAL;
3970 goto out_put_cfile;
3971 }
3972
79bd9814 3973 /*
b5557c4c
TH
3974 * Verify @cfile should belong to @css. Also, remaining events are
3975 * automatically removed on cgroup destruction but the removal is
3976 * asynchronous, so take an extra ref on @css.
79bd9814 3977 */
b583043e 3978 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3979 &memory_cgrp_subsys);
79bd9814 3980 ret = -EINVAL;
5a17f543 3981 if (IS_ERR(cfile_css))
79bd9814 3982 goto out_put_cfile;
5a17f543
TH
3983 if (cfile_css != css) {
3984 css_put(cfile_css);
79bd9814 3985 goto out_put_cfile;
5a17f543 3986 }
79bd9814 3987
451af504 3988 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3989 if (ret)
3990 goto out_put_css;
3991
3992 efile.file->f_op->poll(efile.file, &event->pt);
3993
fba94807
TH
3994 spin_lock(&memcg->event_list_lock);
3995 list_add(&event->list, &memcg->event_list);
3996 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3997
3998 fdput(cfile);
3999 fdput(efile);
4000
451af504 4001 return nbytes;
79bd9814
TH
4002
4003out_put_css:
b5557c4c 4004 css_put(css);
79bd9814
TH
4005out_put_cfile:
4006 fdput(cfile);
4007out_put_eventfd:
4008 eventfd_ctx_put(event->eventfd);
4009out_put_efile:
4010 fdput(efile);
4011out_kfree:
4012 kfree(event);
4013
4014 return ret;
4015}
4016
241994ed 4017static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4018 {
0eea1030 4019 .name = "usage_in_bytes",
8c7c6e34 4020 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4021 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4022 },
c84872e1
PE
4023 {
4024 .name = "max_usage_in_bytes",
8c7c6e34 4025 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4026 .write = mem_cgroup_reset,
791badbd 4027 .read_u64 = mem_cgroup_read_u64,
c84872e1 4028 },
8cdea7c0 4029 {
0eea1030 4030 .name = "limit_in_bytes",
8c7c6e34 4031 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4032 .write = mem_cgroup_write,
791badbd 4033 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4034 },
296c81d8
BS
4035 {
4036 .name = "soft_limit_in_bytes",
4037 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4038 .write = mem_cgroup_write,
791badbd 4039 .read_u64 = mem_cgroup_read_u64,
296c81d8 4040 },
8cdea7c0
BS
4041 {
4042 .name = "failcnt",
8c7c6e34 4043 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4044 .write = mem_cgroup_reset,
791badbd 4045 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4046 },
d2ceb9b7
KH
4047 {
4048 .name = "stat",
2da8ca82 4049 .seq_show = memcg_stat_show,
d2ceb9b7 4050 },
c1e862c1
KH
4051 {
4052 .name = "force_empty",
6770c64e 4053 .write = mem_cgroup_force_empty_write,
c1e862c1 4054 },
18f59ea7
BS
4055 {
4056 .name = "use_hierarchy",
4057 .write_u64 = mem_cgroup_hierarchy_write,
4058 .read_u64 = mem_cgroup_hierarchy_read,
4059 },
79bd9814 4060 {
3bc942f3 4061 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4062 .write = memcg_write_event_control,
79bd9814
TH
4063 .flags = CFTYPE_NO_PREFIX,
4064 .mode = S_IWUGO,
4065 },
a7885eb8
KM
4066 {
4067 .name = "swappiness",
4068 .read_u64 = mem_cgroup_swappiness_read,
4069 .write_u64 = mem_cgroup_swappiness_write,
4070 },
7dc74be0
DN
4071 {
4072 .name = "move_charge_at_immigrate",
4073 .read_u64 = mem_cgroup_move_charge_read,
4074 .write_u64 = mem_cgroup_move_charge_write,
4075 },
9490ff27
KH
4076 {
4077 .name = "oom_control",
2da8ca82 4078 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4079 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4080 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4081 },
70ddf637
AV
4082 {
4083 .name = "pressure_level",
70ddf637 4084 },
406eb0c9
YH
4085#ifdef CONFIG_NUMA
4086 {
4087 .name = "numa_stat",
2da8ca82 4088 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4089 },
4090#endif
510fc4e1
GC
4091#ifdef CONFIG_MEMCG_KMEM
4092 {
4093 .name = "kmem.limit_in_bytes",
4094 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4095 .write = mem_cgroup_write,
791badbd 4096 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4097 },
4098 {
4099 .name = "kmem.usage_in_bytes",
4100 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4101 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4102 },
4103 {
4104 .name = "kmem.failcnt",
4105 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4106 .write = mem_cgroup_reset,
791badbd 4107 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4108 },
4109 {
4110 .name = "kmem.max_usage_in_bytes",
4111 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4112 .write = mem_cgroup_reset,
791badbd 4113 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4114 },
749c5415
GC
4115#ifdef CONFIG_SLABINFO
4116 {
4117 .name = "kmem.slabinfo",
b047501c
VD
4118 .seq_start = slab_start,
4119 .seq_next = slab_next,
4120 .seq_stop = slab_stop,
4121 .seq_show = memcg_slab_show,
749c5415
GC
4122 },
4123#endif
8c7c6e34 4124#endif
6bc10349 4125 { }, /* terminate */
af36f906 4126};
8c7c6e34 4127
c0ff4b85 4128static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4129{
4130 struct mem_cgroup_per_node *pn;
1ecaab2b 4131 struct mem_cgroup_per_zone *mz;
41e3355d 4132 int zone, tmp = node;
1ecaab2b
KH
4133 /*
4134 * This routine is called against possible nodes.
4135 * But it's BUG to call kmalloc() against offline node.
4136 *
4137 * TODO: this routine can waste much memory for nodes which will
4138 * never be onlined. It's better to use memory hotplug callback
4139 * function.
4140 */
41e3355d
KH
4141 if (!node_state(node, N_NORMAL_MEMORY))
4142 tmp = -1;
17295c88 4143 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4144 if (!pn)
4145 return 1;
1ecaab2b 4146
1ecaab2b
KH
4147 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4148 mz = &pn->zoneinfo[zone];
bea8c150 4149 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4150 mz->usage_in_excess = 0;
4151 mz->on_tree = false;
d79154bb 4152 mz->memcg = memcg;
1ecaab2b 4153 }
54f72fe0 4154 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4155 return 0;
4156}
4157
c0ff4b85 4158static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4159{
54f72fe0 4160 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4161}
4162
33327948
KH
4163static struct mem_cgroup *mem_cgroup_alloc(void)
4164{
d79154bb 4165 struct mem_cgroup *memcg;
8ff69e2c 4166 size_t size;
33327948 4167
8ff69e2c
VD
4168 size = sizeof(struct mem_cgroup);
4169 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4170
8ff69e2c 4171 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4172 if (!memcg)
e7bbcdf3
DC
4173 return NULL;
4174
d79154bb
HD
4175 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4176 if (!memcg->stat)
d2e61b8d 4177 goto out_free;
841710aa
TH
4178
4179 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4180 goto out_free_stat;
4181
d79154bb
HD
4182 spin_lock_init(&memcg->pcp_counter_lock);
4183 return memcg;
d2e61b8d 4184
841710aa
TH
4185out_free_stat:
4186 free_percpu(memcg->stat);
d2e61b8d 4187out_free:
8ff69e2c 4188 kfree(memcg);
d2e61b8d 4189 return NULL;
33327948
KH
4190}
4191
59927fb9 4192/*
c8b2a36f
GC
4193 * At destroying mem_cgroup, references from swap_cgroup can remain.
4194 * (scanning all at force_empty is too costly...)
4195 *
4196 * Instead of clearing all references at force_empty, we remember
4197 * the number of reference from swap_cgroup and free mem_cgroup when
4198 * it goes down to 0.
4199 *
4200 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4201 */
c8b2a36f
GC
4202
4203static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4204{
c8b2a36f 4205 int node;
59927fb9 4206
bb4cc1a8 4207 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4208
4209 for_each_node(node)
4210 free_mem_cgroup_per_zone_info(memcg, node);
4211
4212 free_percpu(memcg->stat);
841710aa 4213 memcg_wb_domain_exit(memcg);
8ff69e2c 4214 kfree(memcg);
59927fb9 4215}
3afe36b1 4216
7bcc1bb1
DN
4217/*
4218 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4219 */
e1aab161 4220struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4221{
3e32cb2e 4222 if (!memcg->memory.parent)
7bcc1bb1 4223 return NULL;
3e32cb2e 4224 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4225}
e1aab161 4226EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4227
0eb253e2 4228static struct cgroup_subsys_state * __ref
eb95419b 4229mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4230{
d142e3e6 4231 struct mem_cgroup *memcg;
04046e1a 4232 long error = -ENOMEM;
6d12e2d8 4233 int node;
8cdea7c0 4234
c0ff4b85
R
4235 memcg = mem_cgroup_alloc();
4236 if (!memcg)
04046e1a 4237 return ERR_PTR(error);
78fb7466 4238
3ed28fa1 4239 for_each_node(node)
c0ff4b85 4240 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4241 goto free_out;
f64c3f54 4242
c077719b 4243 /* root ? */
eb95419b 4244 if (parent_css == NULL) {
a41c58a6 4245 root_mem_cgroup = memcg;
56161634 4246 mem_cgroup_root_css = &memcg->css;
3e32cb2e 4247 page_counter_init(&memcg->memory, NULL);
241994ed 4248 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4249 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4250 page_counter_init(&memcg->memsw, NULL);
4251 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4252 }
28dbc4b6 4253
d142e3e6
GC
4254 memcg->last_scanned_node = MAX_NUMNODES;
4255 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4256 memcg->move_charge_at_immigrate = 0;
4257 mutex_init(&memcg->thresholds_lock);
4258 spin_lock_init(&memcg->move_lock);
70ddf637 4259 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4260 INIT_LIST_HEAD(&memcg->event_list);
4261 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4262#ifdef CONFIG_MEMCG_KMEM
4263 memcg->kmemcg_id = -1;
900a38f0 4264#endif
52ebea74
TH
4265#ifdef CONFIG_CGROUP_WRITEBACK
4266 INIT_LIST_HEAD(&memcg->cgwb_list);
4267#endif
d142e3e6
GC
4268 return &memcg->css;
4269
4270free_out:
4271 __mem_cgroup_free(memcg);
4272 return ERR_PTR(error);
4273}
4274
4275static int
eb95419b 4276mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4277{
eb95419b 4278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4279 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4280 int ret;
d142e3e6 4281
15a4c835 4282 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4283 return -ENOSPC;
4284
63876986 4285 if (!parent)
d142e3e6
GC
4286 return 0;
4287
0999821b 4288 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4289
4290 memcg->use_hierarchy = parent->use_hierarchy;
4291 memcg->oom_kill_disable = parent->oom_kill_disable;
4292 memcg->swappiness = mem_cgroup_swappiness(parent);
4293
4294 if (parent->use_hierarchy) {
3e32cb2e 4295 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4296 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4297 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4298 page_counter_init(&memcg->memsw, &parent->memsw);
4299 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4300
7bcc1bb1 4301 /*
8d76a979
LZ
4302 * No need to take a reference to the parent because cgroup
4303 * core guarantees its existence.
7bcc1bb1 4304 */
18f59ea7 4305 } else {
3e32cb2e 4306 page_counter_init(&memcg->memory, NULL);
241994ed 4307 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4308 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4309 page_counter_init(&memcg->memsw, NULL);
4310 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4311 /*
4312 * Deeper hierachy with use_hierarchy == false doesn't make
4313 * much sense so let cgroup subsystem know about this
4314 * unfortunate state in our controller.
4315 */
d142e3e6 4316 if (parent != root_mem_cgroup)
073219e9 4317 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4318 }
0999821b 4319 mutex_unlock(&memcg_create_mutex);
d6441637 4320
2f7dd7a4
JW
4321 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4322 if (ret)
4323 return ret;
4324
4325 /*
4326 * Make sure the memcg is initialized: mem_cgroup_iter()
4327 * orders reading memcg->initialized against its callers
4328 * reading the memcg members.
4329 */
4330 smp_store_release(&memcg->initialized, 1);
4331
4332 return 0;
8cdea7c0
BS
4333}
4334
eb95419b 4335static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4336{
eb95419b 4337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4338 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4339
4340 /*
4341 * Unregister events and notify userspace.
4342 * Notify userspace about cgroup removing only after rmdir of cgroup
4343 * directory to avoid race between userspace and kernelspace.
4344 */
fba94807
TH
4345 spin_lock(&memcg->event_list_lock);
4346 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4347 list_del_init(&event->list);
4348 schedule_work(&event->remove);
4349 }
fba94807 4350 spin_unlock(&memcg->event_list_lock);
ec64f515 4351
33cb876e 4352 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4353
4354 memcg_deactivate_kmem(memcg);
52ebea74
TH
4355
4356 wb_memcg_offline(memcg);
df878fb0
KH
4357}
4358
eb95419b 4359static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4360{
eb95419b 4361 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4362
10d5ebf4 4363 memcg_destroy_kmem(memcg);
465939a1 4364 __mem_cgroup_free(memcg);
8cdea7c0
BS
4365}
4366
1ced953b
TH
4367/**
4368 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4369 * @css: the target css
4370 *
4371 * Reset the states of the mem_cgroup associated with @css. This is
4372 * invoked when the userland requests disabling on the default hierarchy
4373 * but the memcg is pinned through dependency. The memcg should stop
4374 * applying policies and should revert to the vanilla state as it may be
4375 * made visible again.
4376 *
4377 * The current implementation only resets the essential configurations.
4378 * This needs to be expanded to cover all the visible parts.
4379 */
4380static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4381{
4382 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4383
3e32cb2e
JW
4384 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4385 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4386 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4387 memcg->low = 0;
4388 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4389 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4390 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4391}
4392
02491447 4393#ifdef CONFIG_MMU
7dc74be0 4394/* Handlers for move charge at task migration. */
854ffa8d 4395static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4396{
05b84301 4397 int ret;
9476db97
JW
4398
4399 /* Try a single bulk charge without reclaim first */
00501b53 4400 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4401 if (!ret) {
854ffa8d 4402 mc.precharge += count;
854ffa8d
DN
4403 return ret;
4404 }
692e7c45 4405 if (ret == -EINTR) {
00501b53 4406 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4407 return ret;
4408 }
9476db97
JW
4409
4410 /* Try charges one by one with reclaim */
854ffa8d 4411 while (count--) {
00501b53 4412 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4413 /*
4414 * In case of failure, any residual charges against
4415 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4416 * later on. However, cancel any charges that are
4417 * bypassed to root right away or they'll be lost.
9476db97 4418 */
692e7c45 4419 if (ret == -EINTR)
00501b53 4420 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4421 if (ret)
38c5d72f 4422 return ret;
854ffa8d 4423 mc.precharge++;
9476db97 4424 cond_resched();
854ffa8d 4425 }
9476db97 4426 return 0;
4ffef5fe
DN
4427}
4428
4429/**
8d32ff84 4430 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4431 * @vma: the vma the pte to be checked belongs
4432 * @addr: the address corresponding to the pte to be checked
4433 * @ptent: the pte to be checked
02491447 4434 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4435 *
4436 * Returns
4437 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4438 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4439 * move charge. if @target is not NULL, the page is stored in target->page
4440 * with extra refcnt got(Callers should handle it).
02491447
DN
4441 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4442 * target for charge migration. if @target is not NULL, the entry is stored
4443 * in target->ent.
4ffef5fe
DN
4444 *
4445 * Called with pte lock held.
4446 */
4ffef5fe
DN
4447union mc_target {
4448 struct page *page;
02491447 4449 swp_entry_t ent;
4ffef5fe
DN
4450};
4451
4ffef5fe 4452enum mc_target_type {
8d32ff84 4453 MC_TARGET_NONE = 0,
4ffef5fe 4454 MC_TARGET_PAGE,
02491447 4455 MC_TARGET_SWAP,
4ffef5fe
DN
4456};
4457
90254a65
DN
4458static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4459 unsigned long addr, pte_t ptent)
4ffef5fe 4460{
90254a65 4461 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4462
90254a65
DN
4463 if (!page || !page_mapped(page))
4464 return NULL;
4465 if (PageAnon(page)) {
1dfab5ab 4466 if (!(mc.flags & MOVE_ANON))
90254a65 4467 return NULL;
1dfab5ab
JW
4468 } else {
4469 if (!(mc.flags & MOVE_FILE))
4470 return NULL;
4471 }
90254a65
DN
4472 if (!get_page_unless_zero(page))
4473 return NULL;
4474
4475 return page;
4476}
4477
4b91355e 4478#ifdef CONFIG_SWAP
90254a65
DN
4479static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4480 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4481{
90254a65
DN
4482 struct page *page = NULL;
4483 swp_entry_t ent = pte_to_swp_entry(ptent);
4484
1dfab5ab 4485 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4486 return NULL;
4b91355e
KH
4487 /*
4488 * Because lookup_swap_cache() updates some statistics counter,
4489 * we call find_get_page() with swapper_space directly.
4490 */
33806f06 4491 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4492 if (do_swap_account)
4493 entry->val = ent.val;
4494
4495 return page;
4496}
4b91355e
KH
4497#else
4498static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4499 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4500{
4501 return NULL;
4502}
4503#endif
90254a65 4504
87946a72
DN
4505static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4506 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4507{
4508 struct page *page = NULL;
87946a72
DN
4509 struct address_space *mapping;
4510 pgoff_t pgoff;
4511
4512 if (!vma->vm_file) /* anonymous vma */
4513 return NULL;
1dfab5ab 4514 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4515 return NULL;
4516
87946a72 4517 mapping = vma->vm_file->f_mapping;
0661a336 4518 pgoff = linear_page_index(vma, addr);
87946a72
DN
4519
4520 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4521#ifdef CONFIG_SWAP
4522 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4523 if (shmem_mapping(mapping)) {
4524 page = find_get_entry(mapping, pgoff);
4525 if (radix_tree_exceptional_entry(page)) {
4526 swp_entry_t swp = radix_to_swp_entry(page);
4527 if (do_swap_account)
4528 *entry = swp;
4529 page = find_get_page(swap_address_space(swp), swp.val);
4530 }
4531 } else
4532 page = find_get_page(mapping, pgoff);
4533#else
4534 page = find_get_page(mapping, pgoff);
aa3b1895 4535#endif
87946a72
DN
4536 return page;
4537}
4538
b1b0deab
CG
4539/**
4540 * mem_cgroup_move_account - move account of the page
4541 * @page: the page
4542 * @nr_pages: number of regular pages (>1 for huge pages)
4543 * @from: mem_cgroup which the page is moved from.
4544 * @to: mem_cgroup which the page is moved to. @from != @to.
4545 *
4546 * The caller must confirm following.
4547 * - page is not on LRU (isolate_page() is useful.)
4548 * - compound_lock is held when nr_pages > 1
4549 *
4550 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4551 * from old cgroup.
4552 */
4553static int mem_cgroup_move_account(struct page *page,
4554 unsigned int nr_pages,
4555 struct mem_cgroup *from,
4556 struct mem_cgroup *to)
4557{
4558 unsigned long flags;
4559 int ret;
c4843a75 4560 bool anon;
b1b0deab
CG
4561
4562 VM_BUG_ON(from == to);
4563 VM_BUG_ON_PAGE(PageLRU(page), page);
4564 /*
4565 * The page is isolated from LRU. So, collapse function
4566 * will not handle this page. But page splitting can happen.
4567 * Do this check under compound_page_lock(). The caller should
4568 * hold it.
4569 */
4570 ret = -EBUSY;
4571 if (nr_pages > 1 && !PageTransHuge(page))
4572 goto out;
4573
4574 /*
4575 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4576 * of its source page while we change it: page migration takes
4577 * both pages off the LRU, but page cache replacement doesn't.
4578 */
4579 if (!trylock_page(page))
4580 goto out;
4581
4582 ret = -EINVAL;
4583 if (page->mem_cgroup != from)
4584 goto out_unlock;
4585
c4843a75
GT
4586 anon = PageAnon(page);
4587
b1b0deab
CG
4588 spin_lock_irqsave(&from->move_lock, flags);
4589
c4843a75 4590 if (!anon && page_mapped(page)) {
b1b0deab
CG
4591 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4592 nr_pages);
4593 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4594 nr_pages);
4595 }
4596
c4843a75
GT
4597 /*
4598 * move_lock grabbed above and caller set from->moving_account, so
4599 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4600 * So mapping should be stable for dirty pages.
4601 */
4602 if (!anon && PageDirty(page)) {
4603 struct address_space *mapping = page_mapping(page);
4604
4605 if (mapping_cap_account_dirty(mapping)) {
4606 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4607 nr_pages);
4608 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4609 nr_pages);
4610 }
4611 }
4612
b1b0deab
CG
4613 if (PageWriteback(page)) {
4614 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4615 nr_pages);
4616 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4617 nr_pages);
4618 }
4619
4620 /*
4621 * It is safe to change page->mem_cgroup here because the page
4622 * is referenced, charged, and isolated - we can't race with
4623 * uncharging, charging, migration, or LRU putback.
4624 */
4625
4626 /* caller should have done css_get */
4627 page->mem_cgroup = to;
4628 spin_unlock_irqrestore(&from->move_lock, flags);
4629
4630 ret = 0;
4631
4632 local_irq_disable();
4633 mem_cgroup_charge_statistics(to, page, nr_pages);
4634 memcg_check_events(to, page);
4635 mem_cgroup_charge_statistics(from, page, -nr_pages);
4636 memcg_check_events(from, page);
4637 local_irq_enable();
4638out_unlock:
4639 unlock_page(page);
4640out:
4641 return ret;
4642}
4643
8d32ff84 4644static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4645 unsigned long addr, pte_t ptent, union mc_target *target)
4646{
4647 struct page *page = NULL;
8d32ff84 4648 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4649 swp_entry_t ent = { .val = 0 };
4650
4651 if (pte_present(ptent))
4652 page = mc_handle_present_pte(vma, addr, ptent);
4653 else if (is_swap_pte(ptent))
4654 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4655 else if (pte_none(ptent))
87946a72 4656 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4657
4658 if (!page && !ent.val)
8d32ff84 4659 return ret;
02491447 4660 if (page) {
02491447 4661 /*
0a31bc97 4662 * Do only loose check w/o serialization.
1306a85a 4663 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4664 * not under LRU exclusion.
02491447 4665 */
1306a85a 4666 if (page->mem_cgroup == mc.from) {
02491447
DN
4667 ret = MC_TARGET_PAGE;
4668 if (target)
4669 target->page = page;
4670 }
4671 if (!ret || !target)
4672 put_page(page);
4673 }
90254a65
DN
4674 /* There is a swap entry and a page doesn't exist or isn't charged */
4675 if (ent.val && !ret &&
34c00c31 4676 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4677 ret = MC_TARGET_SWAP;
4678 if (target)
4679 target->ent = ent;
4ffef5fe 4680 }
4ffef5fe
DN
4681 return ret;
4682}
4683
12724850
NH
4684#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4685/*
4686 * We don't consider swapping or file mapped pages because THP does not
4687 * support them for now.
4688 * Caller should make sure that pmd_trans_huge(pmd) is true.
4689 */
4690static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4691 unsigned long addr, pmd_t pmd, union mc_target *target)
4692{
4693 struct page *page = NULL;
12724850
NH
4694 enum mc_target_type ret = MC_TARGET_NONE;
4695
4696 page = pmd_page(pmd);
309381fe 4697 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4698 if (!(mc.flags & MOVE_ANON))
12724850 4699 return ret;
1306a85a 4700 if (page->mem_cgroup == mc.from) {
12724850
NH
4701 ret = MC_TARGET_PAGE;
4702 if (target) {
4703 get_page(page);
4704 target->page = page;
4705 }
4706 }
4707 return ret;
4708}
4709#else
4710static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4711 unsigned long addr, pmd_t pmd, union mc_target *target)
4712{
4713 return MC_TARGET_NONE;
4714}
4715#endif
4716
4ffef5fe
DN
4717static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4718 unsigned long addr, unsigned long end,
4719 struct mm_walk *walk)
4720{
26bcd64a 4721 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4722 pte_t *pte;
4723 spinlock_t *ptl;
4724
bf929152 4725 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4726 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4727 mc.precharge += HPAGE_PMD_NR;
bf929152 4728 spin_unlock(ptl);
1a5a9906 4729 return 0;
12724850 4730 }
03319327 4731
45f83cef
AA
4732 if (pmd_trans_unstable(pmd))
4733 return 0;
4ffef5fe
DN
4734 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4735 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4736 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4737 mc.precharge++; /* increment precharge temporarily */
4738 pte_unmap_unlock(pte - 1, ptl);
4739 cond_resched();
4740
7dc74be0
DN
4741 return 0;
4742}
4743
4ffef5fe
DN
4744static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4745{
4746 unsigned long precharge;
4ffef5fe 4747
26bcd64a
NH
4748 struct mm_walk mem_cgroup_count_precharge_walk = {
4749 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4750 .mm = mm,
4751 };
dfe076b0 4752 down_read(&mm->mmap_sem);
26bcd64a 4753 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4754 up_read(&mm->mmap_sem);
4ffef5fe
DN
4755
4756 precharge = mc.precharge;
4757 mc.precharge = 0;
4758
4759 return precharge;
4760}
4761
4ffef5fe
DN
4762static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4763{
dfe076b0
DN
4764 unsigned long precharge = mem_cgroup_count_precharge(mm);
4765
4766 VM_BUG_ON(mc.moving_task);
4767 mc.moving_task = current;
4768 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4769}
4770
dfe076b0
DN
4771/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4772static void __mem_cgroup_clear_mc(void)
4ffef5fe 4773{
2bd9bb20
KH
4774 struct mem_cgroup *from = mc.from;
4775 struct mem_cgroup *to = mc.to;
4776
4ffef5fe 4777 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4778 if (mc.precharge) {
00501b53 4779 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4780 mc.precharge = 0;
4781 }
4782 /*
4783 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4784 * we must uncharge here.
4785 */
4786 if (mc.moved_charge) {
00501b53 4787 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4788 mc.moved_charge = 0;
4ffef5fe 4789 }
483c30b5
DN
4790 /* we must fixup refcnts and charges */
4791 if (mc.moved_swap) {
483c30b5 4792 /* uncharge swap account from the old cgroup */
ce00a967 4793 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4794 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4795
05b84301 4796 /*
3e32cb2e
JW
4797 * we charged both to->memory and to->memsw, so we
4798 * should uncharge to->memory.
05b84301 4799 */
ce00a967 4800 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4801 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4802
e8ea14cc 4803 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4804
4050377b 4805 /* we've already done css_get(mc.to) */
483c30b5
DN
4806 mc.moved_swap = 0;
4807 }
dfe076b0
DN
4808 memcg_oom_recover(from);
4809 memcg_oom_recover(to);
4810 wake_up_all(&mc.waitq);
4811}
4812
4813static void mem_cgroup_clear_mc(void)
4814{
dfe076b0
DN
4815 /*
4816 * we must clear moving_task before waking up waiters at the end of
4817 * task migration.
4818 */
4819 mc.moving_task = NULL;
4820 __mem_cgroup_clear_mc();
2bd9bb20 4821 spin_lock(&mc.lock);
4ffef5fe
DN
4822 mc.from = NULL;
4823 mc.to = NULL;
2bd9bb20 4824 spin_unlock(&mc.lock);
4ffef5fe
DN
4825}
4826
eb95419b 4827static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 4828 struct cgroup_taskset *tset)
7dc74be0 4829{
eb95419b 4830 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9f2115f9
TH
4831 struct mem_cgroup *from;
4832 struct task_struct *p;
4833 struct mm_struct *mm;
1dfab5ab 4834 unsigned long move_flags;
9f2115f9 4835 int ret = 0;
7dc74be0 4836
ee5e8472
GC
4837 /*
4838 * We are now commited to this value whatever it is. Changes in this
4839 * tunable will only affect upcoming migrations, not the current one.
4840 * So we need to save it, and keep it going.
4841 */
4db0c3c2 4842 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
9f2115f9
TH
4843 if (!move_flags)
4844 return 0;
4845
4846 p = cgroup_taskset_first(tset);
4847 from = mem_cgroup_from_task(p);
4848
4849 VM_BUG_ON(from == memcg);
4850
4851 mm = get_task_mm(p);
4852 if (!mm)
4853 return 0;
4854 /* We move charges only when we move a owner of the mm */
4855 if (mm->owner == p) {
4856 VM_BUG_ON(mc.from);
4857 VM_BUG_ON(mc.to);
4858 VM_BUG_ON(mc.precharge);
4859 VM_BUG_ON(mc.moved_charge);
4860 VM_BUG_ON(mc.moved_swap);
4861
4862 spin_lock(&mc.lock);
4863 mc.from = from;
4864 mc.to = memcg;
4865 mc.flags = move_flags;
4866 spin_unlock(&mc.lock);
4867 /* We set mc.moving_task later */
4868
4869 ret = mem_cgroup_precharge_mc(mm);
4870 if (ret)
4871 mem_cgroup_clear_mc();
7dc74be0 4872 }
9f2115f9 4873 mmput(mm);
7dc74be0
DN
4874 return ret;
4875}
4876
eb95419b 4877static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 4878 struct cgroup_taskset *tset)
7dc74be0 4879{
4e2f245d
JW
4880 if (mc.to)
4881 mem_cgroup_clear_mc();
7dc74be0
DN
4882}
4883
4ffef5fe
DN
4884static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4885 unsigned long addr, unsigned long end,
4886 struct mm_walk *walk)
7dc74be0 4887{
4ffef5fe 4888 int ret = 0;
26bcd64a 4889 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4890 pte_t *pte;
4891 spinlock_t *ptl;
12724850
NH
4892 enum mc_target_type target_type;
4893 union mc_target target;
4894 struct page *page;
4ffef5fe 4895
12724850
NH
4896 /*
4897 * We don't take compound_lock() here but no race with splitting thp
4898 * happens because:
4899 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4900 * under splitting, which means there's no concurrent thp split,
4901 * - if another thread runs into split_huge_page() just after we
4902 * entered this if-block, the thread must wait for page table lock
4903 * to be unlocked in __split_huge_page_splitting(), where the main
4904 * part of thp split is not executed yet.
4905 */
bf929152 4906 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 4907 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4908 spin_unlock(ptl);
12724850
NH
4909 return 0;
4910 }
4911 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4912 if (target_type == MC_TARGET_PAGE) {
4913 page = target.page;
4914 if (!isolate_lru_page(page)) {
12724850 4915 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 4916 mc.from, mc.to)) {
12724850
NH
4917 mc.precharge -= HPAGE_PMD_NR;
4918 mc.moved_charge += HPAGE_PMD_NR;
4919 }
4920 putback_lru_page(page);
4921 }
4922 put_page(page);
4923 }
bf929152 4924 spin_unlock(ptl);
1a5a9906 4925 return 0;
12724850
NH
4926 }
4927
45f83cef
AA
4928 if (pmd_trans_unstable(pmd))
4929 return 0;
4ffef5fe
DN
4930retry:
4931 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4932 for (; addr != end; addr += PAGE_SIZE) {
4933 pte_t ptent = *(pte++);
02491447 4934 swp_entry_t ent;
4ffef5fe
DN
4935
4936 if (!mc.precharge)
4937 break;
4938
8d32ff84 4939 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4940 case MC_TARGET_PAGE:
4941 page = target.page;
4942 if (isolate_lru_page(page))
4943 goto put;
1306a85a 4944 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 4945 mc.precharge--;
854ffa8d
DN
4946 /* we uncharge from mc.from later. */
4947 mc.moved_charge++;
4ffef5fe
DN
4948 }
4949 putback_lru_page(page);
8d32ff84 4950put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4951 put_page(page);
4952 break;
02491447
DN
4953 case MC_TARGET_SWAP:
4954 ent = target.ent;
e91cbb42 4955 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4956 mc.precharge--;
483c30b5
DN
4957 /* we fixup refcnts and charges later. */
4958 mc.moved_swap++;
4959 }
02491447 4960 break;
4ffef5fe
DN
4961 default:
4962 break;
4963 }
4964 }
4965 pte_unmap_unlock(pte - 1, ptl);
4966 cond_resched();
4967
4968 if (addr != end) {
4969 /*
4970 * We have consumed all precharges we got in can_attach().
4971 * We try charge one by one, but don't do any additional
4972 * charges to mc.to if we have failed in charge once in attach()
4973 * phase.
4974 */
854ffa8d 4975 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4976 if (!ret)
4977 goto retry;
4978 }
4979
4980 return ret;
4981}
4982
4983static void mem_cgroup_move_charge(struct mm_struct *mm)
4984{
26bcd64a
NH
4985 struct mm_walk mem_cgroup_move_charge_walk = {
4986 .pmd_entry = mem_cgroup_move_charge_pte_range,
4987 .mm = mm,
4988 };
4ffef5fe
DN
4989
4990 lru_add_drain_all();
312722cb
JW
4991 /*
4992 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4993 * move_lock while we're moving its pages to another memcg.
4994 * Then wait for already started RCU-only updates to finish.
4995 */
4996 atomic_inc(&mc.from->moving_account);
4997 synchronize_rcu();
dfe076b0
DN
4998retry:
4999 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5000 /*
5001 * Someone who are holding the mmap_sem might be waiting in
5002 * waitq. So we cancel all extra charges, wake up all waiters,
5003 * and retry. Because we cancel precharges, we might not be able
5004 * to move enough charges, but moving charge is a best-effort
5005 * feature anyway, so it wouldn't be a big problem.
5006 */
5007 __mem_cgroup_clear_mc();
5008 cond_resched();
5009 goto retry;
5010 }
26bcd64a
NH
5011 /*
5012 * When we have consumed all precharges and failed in doing
5013 * additional charge, the page walk just aborts.
5014 */
5015 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5016 up_read(&mm->mmap_sem);
312722cb 5017 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5018}
5019
eb95419b 5020static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5021 struct cgroup_taskset *tset)
67e465a7 5022{
2f7ee569 5023 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5024 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5025
dfe076b0 5026 if (mm) {
a433658c
KM
5027 if (mc.to)
5028 mem_cgroup_move_charge(mm);
dfe076b0
DN
5029 mmput(mm);
5030 }
a433658c
KM
5031 if (mc.to)
5032 mem_cgroup_clear_mc();
67e465a7 5033}
5cfb80a7 5034#else /* !CONFIG_MMU */
eb95419b 5035static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5036 struct cgroup_taskset *tset)
5cfb80a7
DN
5037{
5038 return 0;
5039}
eb95419b 5040static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5041 struct cgroup_taskset *tset)
5cfb80a7
DN
5042{
5043}
eb95419b 5044static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5045 struct cgroup_taskset *tset)
5cfb80a7
DN
5046{
5047}
5048#endif
67e465a7 5049
f00baae7
TH
5050/*
5051 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5052 * to verify whether we're attached to the default hierarchy on each mount
5053 * attempt.
f00baae7 5054 */
eb95419b 5055static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5056{
5057 /*
aa6ec29b 5058 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5059 * guarantees that @root doesn't have any children, so turning it
5060 * on for the root memcg is enough.
5061 */
aa6ec29b 5062 if (cgroup_on_dfl(root_css->cgroup))
7feee590
VD
5063 root_mem_cgroup->use_hierarchy = true;
5064 else
5065 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5066}
5067
241994ed
JW
5068static u64 memory_current_read(struct cgroup_subsys_state *css,
5069 struct cftype *cft)
5070{
5071 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5072}
5073
5074static int memory_low_show(struct seq_file *m, void *v)
5075{
5076 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5077 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5078
5079 if (low == PAGE_COUNTER_MAX)
d2973697 5080 seq_puts(m, "max\n");
241994ed
JW
5081 else
5082 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5083
5084 return 0;
5085}
5086
5087static ssize_t memory_low_write(struct kernfs_open_file *of,
5088 char *buf, size_t nbytes, loff_t off)
5089{
5090 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5091 unsigned long low;
5092 int err;
5093
5094 buf = strstrip(buf);
d2973697 5095 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5096 if (err)
5097 return err;
5098
5099 memcg->low = low;
5100
5101 return nbytes;
5102}
5103
5104static int memory_high_show(struct seq_file *m, void *v)
5105{
5106 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5107 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5108
5109 if (high == PAGE_COUNTER_MAX)
d2973697 5110 seq_puts(m, "max\n");
241994ed
JW
5111 else
5112 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5113
5114 return 0;
5115}
5116
5117static ssize_t memory_high_write(struct kernfs_open_file *of,
5118 char *buf, size_t nbytes, loff_t off)
5119{
5120 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5121 unsigned long high;
5122 int err;
5123
5124 buf = strstrip(buf);
d2973697 5125 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5126 if (err)
5127 return err;
5128
5129 memcg->high = high;
5130
2529bb3a 5131 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5132 return nbytes;
5133}
5134
5135static int memory_max_show(struct seq_file *m, void *v)
5136{
5137 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5138 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5139
5140 if (max == PAGE_COUNTER_MAX)
d2973697 5141 seq_puts(m, "max\n");
241994ed
JW
5142 else
5143 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5144
5145 return 0;
5146}
5147
5148static ssize_t memory_max_write(struct kernfs_open_file *of,
5149 char *buf, size_t nbytes, loff_t off)
5150{
5151 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5152 unsigned long max;
5153 int err;
5154
5155 buf = strstrip(buf);
d2973697 5156 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5157 if (err)
5158 return err;
5159
5160 err = mem_cgroup_resize_limit(memcg, max);
5161 if (err)
5162 return err;
5163
2529bb3a 5164 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5165 return nbytes;
5166}
5167
5168static int memory_events_show(struct seq_file *m, void *v)
5169{
5170 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5171
5172 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5173 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5174 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5175 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5176
5177 return 0;
5178}
5179
5180static struct cftype memory_files[] = {
5181 {
5182 .name = "current",
5183 .read_u64 = memory_current_read,
5184 },
5185 {
5186 .name = "low",
5187 .flags = CFTYPE_NOT_ON_ROOT,
5188 .seq_show = memory_low_show,
5189 .write = memory_low_write,
5190 },
5191 {
5192 .name = "high",
5193 .flags = CFTYPE_NOT_ON_ROOT,
5194 .seq_show = memory_high_show,
5195 .write = memory_high_write,
5196 },
5197 {
5198 .name = "max",
5199 .flags = CFTYPE_NOT_ON_ROOT,
5200 .seq_show = memory_max_show,
5201 .write = memory_max_write,
5202 },
5203 {
5204 .name = "events",
5205 .flags = CFTYPE_NOT_ON_ROOT,
5206 .seq_show = memory_events_show,
5207 },
5208 { } /* terminate */
5209};
5210
073219e9 5211struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5212 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5213 .css_online = mem_cgroup_css_online,
92fb9748
TH
5214 .css_offline = mem_cgroup_css_offline,
5215 .css_free = mem_cgroup_css_free,
1ced953b 5216 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5217 .can_attach = mem_cgroup_can_attach,
5218 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5219 .attach = mem_cgroup_move_task,
f00baae7 5220 .bind = mem_cgroup_bind,
241994ed
JW
5221 .dfl_cftypes = memory_files,
5222 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5223 .early_init = 0,
8cdea7c0 5224};
c077719b 5225
241994ed
JW
5226/**
5227 * mem_cgroup_low - check if memory consumption is below the normal range
5228 * @root: the highest ancestor to consider
5229 * @memcg: the memory cgroup to check
5230 *
5231 * Returns %true if memory consumption of @memcg, and that of all
5232 * configurable ancestors up to @root, is below the normal range.
5233 */
5234bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5235{
5236 if (mem_cgroup_disabled())
5237 return false;
5238
5239 /*
5240 * The toplevel group doesn't have a configurable range, so
5241 * it's never low when looked at directly, and it is not
5242 * considered an ancestor when assessing the hierarchy.
5243 */
5244
5245 if (memcg == root_mem_cgroup)
5246 return false;
5247
4e54dede 5248 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5249 return false;
5250
5251 while (memcg != root) {
5252 memcg = parent_mem_cgroup(memcg);
5253
5254 if (memcg == root_mem_cgroup)
5255 break;
5256
4e54dede 5257 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5258 return false;
5259 }
5260 return true;
5261}
5262
00501b53
JW
5263/**
5264 * mem_cgroup_try_charge - try charging a page
5265 * @page: page to charge
5266 * @mm: mm context of the victim
5267 * @gfp_mask: reclaim mode
5268 * @memcgp: charged memcg return
5269 *
5270 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5271 * pages according to @gfp_mask if necessary.
5272 *
5273 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5274 * Otherwise, an error code is returned.
5275 *
5276 * After page->mapping has been set up, the caller must finalize the
5277 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5278 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5279 */
5280int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5281 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5282{
5283 struct mem_cgroup *memcg = NULL;
5284 unsigned int nr_pages = 1;
5285 int ret = 0;
5286
5287 if (mem_cgroup_disabled())
5288 goto out;
5289
5290 if (PageSwapCache(page)) {
00501b53
JW
5291 /*
5292 * Every swap fault against a single page tries to charge the
5293 * page, bail as early as possible. shmem_unuse() encounters
5294 * already charged pages, too. The USED bit is protected by
5295 * the page lock, which serializes swap cache removal, which
5296 * in turn serializes uncharging.
5297 */
e993d905 5298 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5299 if (page->mem_cgroup)
00501b53 5300 goto out;
e993d905
VD
5301
5302 if (do_swap_account) {
5303 swp_entry_t ent = { .val = page_private(page), };
5304 unsigned short id = lookup_swap_cgroup_id(ent);
5305
5306 rcu_read_lock();
5307 memcg = mem_cgroup_from_id(id);
5308 if (memcg && !css_tryget_online(&memcg->css))
5309 memcg = NULL;
5310 rcu_read_unlock();
5311 }
00501b53
JW
5312 }
5313
5314 if (PageTransHuge(page)) {
5315 nr_pages <<= compound_order(page);
5316 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5317 }
5318
00501b53
JW
5319 if (!memcg)
5320 memcg = get_mem_cgroup_from_mm(mm);
5321
5322 ret = try_charge(memcg, gfp_mask, nr_pages);
5323
5324 css_put(&memcg->css);
5325
5326 if (ret == -EINTR) {
5327 memcg = root_mem_cgroup;
5328 ret = 0;
5329 }
5330out:
5331 *memcgp = memcg;
5332 return ret;
5333}
5334
5335/**
5336 * mem_cgroup_commit_charge - commit a page charge
5337 * @page: page to charge
5338 * @memcg: memcg to charge the page to
5339 * @lrucare: page might be on LRU already
5340 *
5341 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5342 * after page->mapping has been set up. This must happen atomically
5343 * as part of the page instantiation, i.e. under the page table lock
5344 * for anonymous pages, under the page lock for page and swap cache.
5345 *
5346 * In addition, the page must not be on the LRU during the commit, to
5347 * prevent racing with task migration. If it might be, use @lrucare.
5348 *
5349 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5350 */
5351void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5352 bool lrucare)
5353{
5354 unsigned int nr_pages = 1;
5355
5356 VM_BUG_ON_PAGE(!page->mapping, page);
5357 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5358
5359 if (mem_cgroup_disabled())
5360 return;
5361 /*
5362 * Swap faults will attempt to charge the same page multiple
5363 * times. But reuse_swap_page() might have removed the page
5364 * from swapcache already, so we can't check PageSwapCache().
5365 */
5366 if (!memcg)
5367 return;
5368
6abb5a86
JW
5369 commit_charge(page, memcg, lrucare);
5370
00501b53
JW
5371 if (PageTransHuge(page)) {
5372 nr_pages <<= compound_order(page);
5373 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5374 }
5375
6abb5a86
JW
5376 local_irq_disable();
5377 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5378 memcg_check_events(memcg, page);
5379 local_irq_enable();
00501b53
JW
5380
5381 if (do_swap_account && PageSwapCache(page)) {
5382 swp_entry_t entry = { .val = page_private(page) };
5383 /*
5384 * The swap entry might not get freed for a long time,
5385 * let's not wait for it. The page already received a
5386 * memory+swap charge, drop the swap entry duplicate.
5387 */
5388 mem_cgroup_uncharge_swap(entry);
5389 }
5390}
5391
5392/**
5393 * mem_cgroup_cancel_charge - cancel a page charge
5394 * @page: page to charge
5395 * @memcg: memcg to charge the page to
5396 *
5397 * Cancel a charge transaction started by mem_cgroup_try_charge().
5398 */
5399void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5400{
5401 unsigned int nr_pages = 1;
5402
5403 if (mem_cgroup_disabled())
5404 return;
5405 /*
5406 * Swap faults will attempt to charge the same page multiple
5407 * times. But reuse_swap_page() might have removed the page
5408 * from swapcache already, so we can't check PageSwapCache().
5409 */
5410 if (!memcg)
5411 return;
5412
5413 if (PageTransHuge(page)) {
5414 nr_pages <<= compound_order(page);
5415 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5416 }
5417
5418 cancel_charge(memcg, nr_pages);
5419}
5420
747db954 5421static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5422 unsigned long nr_anon, unsigned long nr_file,
5423 unsigned long nr_huge, struct page *dummy_page)
5424{
18eca2e6 5425 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5426 unsigned long flags;
5427
ce00a967 5428 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5429 page_counter_uncharge(&memcg->memory, nr_pages);
5430 if (do_swap_account)
5431 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5432 memcg_oom_recover(memcg);
5433 }
747db954
JW
5434
5435 local_irq_save(flags);
5436 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5437 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5438 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5439 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5440 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5441 memcg_check_events(memcg, dummy_page);
5442 local_irq_restore(flags);
e8ea14cc
JW
5443
5444 if (!mem_cgroup_is_root(memcg))
18eca2e6 5445 css_put_many(&memcg->css, nr_pages);
747db954
JW
5446}
5447
5448static void uncharge_list(struct list_head *page_list)
5449{
5450 struct mem_cgroup *memcg = NULL;
747db954
JW
5451 unsigned long nr_anon = 0;
5452 unsigned long nr_file = 0;
5453 unsigned long nr_huge = 0;
5454 unsigned long pgpgout = 0;
747db954
JW
5455 struct list_head *next;
5456 struct page *page;
5457
5458 next = page_list->next;
5459 do {
5460 unsigned int nr_pages = 1;
747db954
JW
5461
5462 page = list_entry(next, struct page, lru);
5463 next = page->lru.next;
5464
5465 VM_BUG_ON_PAGE(PageLRU(page), page);
5466 VM_BUG_ON_PAGE(page_count(page), page);
5467
1306a85a 5468 if (!page->mem_cgroup)
747db954
JW
5469 continue;
5470
5471 /*
5472 * Nobody should be changing or seriously looking at
1306a85a 5473 * page->mem_cgroup at this point, we have fully
29833315 5474 * exclusive access to the page.
747db954
JW
5475 */
5476
1306a85a 5477 if (memcg != page->mem_cgroup) {
747db954 5478 if (memcg) {
18eca2e6
JW
5479 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5480 nr_huge, page);
5481 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5482 }
1306a85a 5483 memcg = page->mem_cgroup;
747db954
JW
5484 }
5485
5486 if (PageTransHuge(page)) {
5487 nr_pages <<= compound_order(page);
5488 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5489 nr_huge += nr_pages;
5490 }
5491
5492 if (PageAnon(page))
5493 nr_anon += nr_pages;
5494 else
5495 nr_file += nr_pages;
5496
1306a85a 5497 page->mem_cgroup = NULL;
747db954
JW
5498
5499 pgpgout++;
5500 } while (next != page_list);
5501
5502 if (memcg)
18eca2e6
JW
5503 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5504 nr_huge, page);
747db954
JW
5505}
5506
0a31bc97
JW
5507/**
5508 * mem_cgroup_uncharge - uncharge a page
5509 * @page: page to uncharge
5510 *
5511 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5512 * mem_cgroup_commit_charge().
5513 */
5514void mem_cgroup_uncharge(struct page *page)
5515{
0a31bc97
JW
5516 if (mem_cgroup_disabled())
5517 return;
5518
747db954 5519 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5520 if (!page->mem_cgroup)
0a31bc97
JW
5521 return;
5522
747db954
JW
5523 INIT_LIST_HEAD(&page->lru);
5524 uncharge_list(&page->lru);
5525}
0a31bc97 5526
747db954
JW
5527/**
5528 * mem_cgroup_uncharge_list - uncharge a list of page
5529 * @page_list: list of pages to uncharge
5530 *
5531 * Uncharge a list of pages previously charged with
5532 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5533 */
5534void mem_cgroup_uncharge_list(struct list_head *page_list)
5535{
5536 if (mem_cgroup_disabled())
5537 return;
0a31bc97 5538
747db954
JW
5539 if (!list_empty(page_list))
5540 uncharge_list(page_list);
0a31bc97
JW
5541}
5542
5543/**
5544 * mem_cgroup_migrate - migrate a charge to another page
5545 * @oldpage: currently charged page
5546 * @newpage: page to transfer the charge to
f5e03a49 5547 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5548 *
5549 * Migrate the charge from @oldpage to @newpage.
5550 *
5551 * Both pages must be locked, @newpage->mapping must be set up.
5552 */
5553void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5554 bool lrucare)
5555{
29833315 5556 struct mem_cgroup *memcg;
0a31bc97
JW
5557 int isolated;
5558
5559 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5560 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5561 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5562 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5563 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5564 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5565 newpage);
0a31bc97
JW
5566
5567 if (mem_cgroup_disabled())
5568 return;
5569
5570 /* Page cache replacement: new page already charged? */
1306a85a 5571 if (newpage->mem_cgroup)
0a31bc97
JW
5572 return;
5573
7d5e3245
JW
5574 /*
5575 * Swapcache readahead pages can get migrated before being
5576 * charged, and migration from compaction can happen to an
5577 * uncharged page when the PFN walker finds a page that
5578 * reclaim just put back on the LRU but has not released yet.
5579 */
1306a85a 5580 memcg = oldpage->mem_cgroup;
29833315 5581 if (!memcg)
0a31bc97
JW
5582 return;
5583
0a31bc97
JW
5584 if (lrucare)
5585 lock_page_lru(oldpage, &isolated);
5586
1306a85a 5587 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5588
5589 if (lrucare)
5590 unlock_page_lru(oldpage, isolated);
5591
29833315 5592 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5593}
5594
2d11085e 5595/*
1081312f
MH
5596 * subsys_initcall() for memory controller.
5597 *
5598 * Some parts like hotcpu_notifier() have to be initialized from this context
5599 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5600 * everything that doesn't depend on a specific mem_cgroup structure should
5601 * be initialized from here.
2d11085e
MH
5602 */
5603static int __init mem_cgroup_init(void)
5604{
95a045f6
JW
5605 int cpu, node;
5606
2d11085e 5607 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5608
5609 for_each_possible_cpu(cpu)
5610 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5611 drain_local_stock);
5612
5613 for_each_node(node) {
5614 struct mem_cgroup_tree_per_node *rtpn;
5615 int zone;
5616
5617 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5618 node_online(node) ? node : NUMA_NO_NODE);
5619
5620 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5621 struct mem_cgroup_tree_per_zone *rtpz;
5622
5623 rtpz = &rtpn->rb_tree_per_zone[zone];
5624 rtpz->rb_root = RB_ROOT;
5625 spin_lock_init(&rtpz->lock);
5626 }
5627 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5628 }
5629
2d11085e
MH
5630 return 0;
5631}
5632subsys_initcall(mem_cgroup_init);
21afa38e
JW
5633
5634#ifdef CONFIG_MEMCG_SWAP
5635/**
5636 * mem_cgroup_swapout - transfer a memsw charge to swap
5637 * @page: page whose memsw charge to transfer
5638 * @entry: swap entry to move the charge to
5639 *
5640 * Transfer the memsw charge of @page to @entry.
5641 */
5642void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5643{
5644 struct mem_cgroup *memcg;
5645 unsigned short oldid;
5646
5647 VM_BUG_ON_PAGE(PageLRU(page), page);
5648 VM_BUG_ON_PAGE(page_count(page), page);
5649
5650 if (!do_swap_account)
5651 return;
5652
5653 memcg = page->mem_cgroup;
5654
5655 /* Readahead page, never charged */
5656 if (!memcg)
5657 return;
5658
5659 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5660 VM_BUG_ON_PAGE(oldid, page);
5661 mem_cgroup_swap_statistics(memcg, true);
5662
5663 page->mem_cgroup = NULL;
5664
5665 if (!mem_cgroup_is_root(memcg))
5666 page_counter_uncharge(&memcg->memory, 1);
5667
ce9ce665
SAS
5668 /*
5669 * Interrupts should be disabled here because the caller holds the
5670 * mapping->tree_lock lock which is taken with interrupts-off. It is
5671 * important here to have the interrupts disabled because it is the
5672 * only synchronisation we have for udpating the per-CPU variables.
5673 */
5674 VM_BUG_ON(!irqs_disabled());
21afa38e
JW
5675 mem_cgroup_charge_statistics(memcg, page, -1);
5676 memcg_check_events(memcg, page);
5677}
5678
5679/**
5680 * mem_cgroup_uncharge_swap - uncharge a swap entry
5681 * @entry: swap entry to uncharge
5682 *
5683 * Drop the memsw charge associated with @entry.
5684 */
5685void mem_cgroup_uncharge_swap(swp_entry_t entry)
5686{
5687 struct mem_cgroup *memcg;
5688 unsigned short id;
5689
5690 if (!do_swap_account)
5691 return;
5692
5693 id = swap_cgroup_record(entry, 0);
5694 rcu_read_lock();
adbe427b 5695 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5696 if (memcg) {
5697 if (!mem_cgroup_is_root(memcg))
5698 page_counter_uncharge(&memcg->memsw, 1);
5699 mem_cgroup_swap_statistics(memcg, false);
5700 css_put(&memcg->css);
5701 }
5702 rcu_read_unlock();
5703}
5704
5705/* for remember boot option*/
5706#ifdef CONFIG_MEMCG_SWAP_ENABLED
5707static int really_do_swap_account __initdata = 1;
5708#else
5709static int really_do_swap_account __initdata;
5710#endif
5711
5712static int __init enable_swap_account(char *s)
5713{
5714 if (!strcmp(s, "1"))
5715 really_do_swap_account = 1;
5716 else if (!strcmp(s, "0"))
5717 really_do_swap_account = 0;
5718 return 1;
5719}
5720__setup("swapaccount=", enable_swap_account);
5721
5722static struct cftype memsw_cgroup_files[] = {
5723 {
5724 .name = "memsw.usage_in_bytes",
5725 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5726 .read_u64 = mem_cgroup_read_u64,
5727 },
5728 {
5729 .name = "memsw.max_usage_in_bytes",
5730 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5731 .write = mem_cgroup_reset,
5732 .read_u64 = mem_cgroup_read_u64,
5733 },
5734 {
5735 .name = "memsw.limit_in_bytes",
5736 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5737 .write = mem_cgroup_write,
5738 .read_u64 = mem_cgroup_read_u64,
5739 },
5740 {
5741 .name = "memsw.failcnt",
5742 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5743 .write = mem_cgroup_reset,
5744 .read_u64 = mem_cgroup_read_u64,
5745 },
5746 { }, /* terminate */
5747};
5748
5749static int __init mem_cgroup_swap_init(void)
5750{
5751 if (!mem_cgroup_disabled() && really_do_swap_account) {
5752 do_swap_account = 1;
5753 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5754 memsw_cgroup_files));
5755 }
5756 return 0;
5757}
5758subsys_initcall(mem_cgroup_swap_init);
5759
5760#endif /* CONFIG_MEMCG_SWAP */