]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
ext2: enable cgroup writeback support
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
d1a4c0b3 68#include <net/tcp_memcontrol.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
a181b0e8 78#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 79static struct mem_cgroup *root_mem_cgroup __read_mostly;
56161634 80struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
8cdea7c0 81
21afa38e 82/* Whether the swap controller is active */
c255a458 83#ifdef CONFIG_MEMCG_SWAP
c077719b 84int do_swap_account __read_mostly;
c077719b 85#else
a0db00fc 86#define do_swap_account 0
c077719b
KH
87#endif
88
af7c4b0e
JW
89static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
b070e65c 92 "rss_huge",
af7c4b0e 93 "mapped_file",
c4843a75 94 "dirty",
3ea67d06 95 "writeback",
af7c4b0e
JW
96 "swap",
97};
98
af7c4b0e
JW
99static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104};
105
58cf188e
SZ
106static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112};
113
7a159cc9
JW
114/*
115 * Per memcg event counter is incremented at every pagein/pageout. With THP,
116 * it will be incremated by the number of pages. This counter is used for
117 * for trigger some periodic events. This is straightforward and better
118 * than using jiffies etc. to handle periodic memcg event.
119 */
120enum mem_cgroup_events_target {
121 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 122 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 123 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
124 MEM_CGROUP_NTARGETS,
125};
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
d52aa412 130struct mem_cgroup_stat_cpu {
7a159cc9 131 long count[MEM_CGROUP_STAT_NSTATS];
241994ed 132 unsigned long events[MEMCG_NR_EVENTS];
13114716 133 unsigned long nr_page_events;
7a159cc9 134 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
135};
136
5ac8fb31
JW
137struct reclaim_iter {
138 struct mem_cgroup *position;
527a5ec9
JW
139 /* scan generation, increased every round-trip */
140 unsigned int generation;
141};
142
6d12e2d8
KH
143/*
144 * per-zone information in memory controller.
145 */
6d12e2d8 146struct mem_cgroup_per_zone {
6290df54 147 struct lruvec lruvec;
1eb49272 148 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 149
5ac8fb31 150 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 151
bb4cc1a8 152 struct rb_node tree_node; /* RB tree node */
3e32cb2e 153 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
154 /* the soft limit is exceeded*/
155 bool on_tree;
d79154bb 156 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 157 /* use container_of */
6d12e2d8 158};
6d12e2d8
KH
159
160struct mem_cgroup_per_node {
161 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
162};
163
bb4cc1a8
AM
164/*
165 * Cgroups above their limits are maintained in a RB-Tree, independent of
166 * their hierarchy representation
167 */
168
169struct mem_cgroup_tree_per_zone {
170 struct rb_root rb_root;
171 spinlock_t lock;
172};
173
174struct mem_cgroup_tree_per_node {
175 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176};
177
178struct mem_cgroup_tree {
179 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180};
181
182static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183
2e72b634
KS
184struct mem_cgroup_threshold {
185 struct eventfd_ctx *eventfd;
3e32cb2e 186 unsigned long threshold;
2e72b634
KS
187};
188
9490ff27 189/* For threshold */
2e72b634 190struct mem_cgroup_threshold_ary {
748dad36 191 /* An array index points to threshold just below or equal to usage. */
5407a562 192 int current_threshold;
2e72b634
KS
193 /* Size of entries[] */
194 unsigned int size;
195 /* Array of thresholds */
196 struct mem_cgroup_threshold entries[0];
197};
2c488db2
KS
198
199struct mem_cgroup_thresholds {
200 /* Primary thresholds array */
201 struct mem_cgroup_threshold_ary *primary;
202 /*
203 * Spare threshold array.
204 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 * It must be able to store at least primary->size - 1 entries.
206 */
207 struct mem_cgroup_threshold_ary *spare;
208};
209
9490ff27
KH
210/* for OOM */
211struct mem_cgroup_eventfd_list {
212 struct list_head list;
213 struct eventfd_ctx *eventfd;
214};
2e72b634 215
79bd9814
TH
216/*
217 * cgroup_event represents events which userspace want to receive.
218 */
3bc942f3 219struct mem_cgroup_event {
79bd9814 220 /*
59b6f873 221 * memcg which the event belongs to.
79bd9814 222 */
59b6f873 223 struct mem_cgroup *memcg;
79bd9814
TH
224 /*
225 * eventfd to signal userspace about the event.
226 */
227 struct eventfd_ctx *eventfd;
228 /*
229 * Each of these stored in a list by the cgroup.
230 */
231 struct list_head list;
fba94807
TH
232 /*
233 * register_event() callback will be used to add new userspace
234 * waiter for changes related to this event. Use eventfd_signal()
235 * on eventfd to send notification to userspace.
236 */
59b6f873 237 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 238 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
239 /*
240 * unregister_event() callback will be called when userspace closes
241 * the eventfd or on cgroup removing. This callback must be set,
242 * if you want provide notification functionality.
243 */
59b6f873 244 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 245 struct eventfd_ctx *eventfd);
79bd9814
TH
246 /*
247 * All fields below needed to unregister event when
248 * userspace closes eventfd.
249 */
250 poll_table pt;
251 wait_queue_head_t *wqh;
252 wait_queue_t wait;
253 struct work_struct remove;
254};
255
c0ff4b85
R
256static void mem_cgroup_threshold(struct mem_cgroup *memcg);
257static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 258
8cdea7c0
BS
259/*
260 * The memory controller data structure. The memory controller controls both
261 * page cache and RSS per cgroup. We would eventually like to provide
262 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
263 * to help the administrator determine what knobs to tune.
8cdea7c0
BS
264 */
265struct mem_cgroup {
266 struct cgroup_subsys_state css;
3e32cb2e
JW
267
268 /* Accounted resources */
269 struct page_counter memory;
270 struct page_counter memsw;
271 struct page_counter kmem;
272
241994ed
JW
273 /* Normal memory consumption range */
274 unsigned long low;
275 unsigned long high;
276
3e32cb2e 277 unsigned long soft_limit;
59927fb9 278
70ddf637
AV
279 /* vmpressure notifications */
280 struct vmpressure vmpressure;
281
2f7dd7a4
JW
282 /* css_online() has been completed */
283 int initialized;
284
18f59ea7
BS
285 /*
286 * Should the accounting and control be hierarchical, per subtree?
287 */
288 bool use_hierarchy;
79dfdacc
MH
289
290 bool oom_lock;
291 atomic_t under_oom;
3812c8c8 292 atomic_t oom_wakeups;
79dfdacc 293
1f4c025b 294 int swappiness;
3c11ecf4
KH
295 /* OOM-Killer disable */
296 int oom_kill_disable;
a7885eb8 297
2e72b634
KS
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock;
300
301 /* thresholds for memory usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds thresholds;
907860ed 303
2e72b634 304 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 305 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 306
9490ff27
KH
307 /* For oom notifier event fd */
308 struct list_head oom_notify;
185efc0f 309
7dc74be0
DN
310 /*
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
313 */
f894ffa8 314 unsigned long move_charge_at_immigrate;
619d094b
KH
315 /*
316 * set > 0 if pages under this cgroup are moving to other cgroup.
317 */
6de22619 318 atomic_t moving_account;
312734c0 319 /* taken only while moving_account > 0 */
6de22619
JW
320 spinlock_t move_lock;
321 struct task_struct *move_lock_task;
322 unsigned long move_lock_flags;
d52aa412 323 /*
c62b1a3b 324 * percpu counter.
d52aa412 325 */
3a7951b4 326 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
327 /*
328 * used when a cpu is offlined or other synchronizations
329 * See mem_cgroup_read_stat().
330 */
331 struct mem_cgroup_stat_cpu nocpu_base;
332 spinlock_t pcp_counter_lock;
d1a4c0b3 333
4bd2c1ee 334#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 335 struct cg_proto tcp_mem;
d1a4c0b3 336#endif
2633d7a0 337#if defined(CONFIG_MEMCG_KMEM)
f7ce3190 338 /* Index in the kmem_cache->memcg_params.memcg_caches array */
2633d7a0 339 int kmemcg_id;
2788cf0c 340 bool kmem_acct_activated;
2a4db7eb 341 bool kmem_acct_active;
2633d7a0 342#endif
45cf7ebd
GC
343
344 int last_scanned_node;
345#if MAX_NUMNODES > 1
346 nodemask_t scan_nodes;
347 atomic_t numainfo_events;
348 atomic_t numainfo_updating;
349#endif
70ddf637 350
52ebea74
TH
351#ifdef CONFIG_CGROUP_WRITEBACK
352 struct list_head cgwb_list;
353#endif
354
fba94807
TH
355 /* List of events which userspace want to receive */
356 struct list_head event_list;
357 spinlock_t event_list_lock;
358
54f72fe0
JW
359 struct mem_cgroup_per_node *nodeinfo[0];
360 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
361};
362
510fc4e1 363#ifdef CONFIG_MEMCG_KMEM
cb731d6c 364bool memcg_kmem_is_active(struct mem_cgroup *memcg)
7de37682 365{
2a4db7eb 366 return memcg->kmem_acct_active;
7de37682 367}
510fc4e1
GC
368#endif
369
7dc74be0
DN
370/* Stuffs for move charges at task migration. */
371/*
1dfab5ab 372 * Types of charges to be moved.
7dc74be0 373 */
1dfab5ab
JW
374#define MOVE_ANON 0x1U
375#define MOVE_FILE 0x2U
376#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 377
4ffef5fe
DN
378/* "mc" and its members are protected by cgroup_mutex */
379static struct move_charge_struct {
b1dd693e 380 spinlock_t lock; /* for from, to */
4ffef5fe
DN
381 struct mem_cgroup *from;
382 struct mem_cgroup *to;
1dfab5ab 383 unsigned long flags;
4ffef5fe 384 unsigned long precharge;
854ffa8d 385 unsigned long moved_charge;
483c30b5 386 unsigned long moved_swap;
8033b97c
DN
387 struct task_struct *moving_task; /* a task moving charges */
388 wait_queue_head_t waitq; /* a waitq for other context */
389} mc = {
2bd9bb20 390 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
391 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
392};
4ffef5fe 393
4e416953
BS
394/*
395 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
396 * limit reclaim to prevent infinite loops, if they ever occur.
397 */
a0db00fc 398#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 399#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 400
217bc319
KH
401enum charge_type {
402 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 403 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 404 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 405 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
406 NR_CHARGE_TYPE,
407};
408
8c7c6e34 409/* for encoding cft->private value on file */
86ae53e1
GC
410enum res_type {
411 _MEM,
412 _MEMSWAP,
413 _OOM_TYPE,
510fc4e1 414 _KMEM,
86ae53e1
GC
415};
416
a0db00fc
KS
417#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
418#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 419#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
420/* Used for OOM nofiier */
421#define OOM_CONTROL (0)
8c7c6e34 422
0999821b
GC
423/*
424 * The memcg_create_mutex will be held whenever a new cgroup is created.
425 * As a consequence, any change that needs to protect against new child cgroups
426 * appearing has to hold it as well.
427 */
428static DEFINE_MUTEX(memcg_create_mutex);
429
b2145145
WL
430struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
431{
a7c6d554 432 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
433}
434
70ddf637
AV
435/* Some nice accessors for the vmpressure. */
436struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
437{
438 if (!memcg)
439 memcg = root_mem_cgroup;
440 return &memcg->vmpressure;
441}
442
443struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
444{
445 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
446}
447
7ffc0edc
MH
448static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
449{
450 return (memcg == root_mem_cgroup);
451}
452
4219b2da
LZ
453/*
454 * We restrict the id in the range of [1, 65535], so it can fit into
455 * an unsigned short.
456 */
457#define MEM_CGROUP_ID_MAX USHRT_MAX
458
34c00c31
LZ
459static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
460{
15a4c835 461 return memcg->css.id;
34c00c31
LZ
462}
463
adbe427b
VD
464/*
465 * A helper function to get mem_cgroup from ID. must be called under
466 * rcu_read_lock(). The caller is responsible for calling
467 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
468 * refcnt from swap can be called against removed memcg.)
469 */
34c00c31
LZ
470static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
471{
472 struct cgroup_subsys_state *css;
473
7d699ddb 474 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
475 return mem_cgroup_from_css(css);
476}
477
e1aab161 478/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 479#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 480
e1aab161
GC
481void sock_update_memcg(struct sock *sk)
482{
376be5ff 483 if (mem_cgroup_sockets_enabled) {
e1aab161 484 struct mem_cgroup *memcg;
3f134619 485 struct cg_proto *cg_proto;
e1aab161
GC
486
487 BUG_ON(!sk->sk_prot->proto_cgroup);
488
f3f511e1
GC
489 /* Socket cloning can throw us here with sk_cgrp already
490 * filled. It won't however, necessarily happen from
491 * process context. So the test for root memcg given
492 * the current task's memcg won't help us in this case.
493 *
494 * Respecting the original socket's memcg is a better
495 * decision in this case.
496 */
497 if (sk->sk_cgrp) {
498 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 499 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
500 return;
501 }
502
e1aab161
GC
503 rcu_read_lock();
504 memcg = mem_cgroup_from_task(current);
3f134619 505 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 506 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
507 memcg_proto_active(cg_proto) &&
508 css_tryget_online(&memcg->css)) {
3f134619 509 sk->sk_cgrp = cg_proto;
e1aab161
GC
510 }
511 rcu_read_unlock();
512 }
513}
514EXPORT_SYMBOL(sock_update_memcg);
515
516void sock_release_memcg(struct sock *sk)
517{
376be5ff 518 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
519 struct mem_cgroup *memcg;
520 WARN_ON(!sk->sk_cgrp->memcg);
521 memcg = sk->sk_cgrp->memcg;
5347e5ae 522 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
523 }
524}
d1a4c0b3
GC
525
526struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
527{
528 if (!memcg || mem_cgroup_is_root(memcg))
529 return NULL;
530
2e685cad 531 return &memcg->tcp_mem;
d1a4c0b3
GC
532}
533EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 534
3f134619
GC
535#endif
536
a8964b9b 537#ifdef CONFIG_MEMCG_KMEM
55007d84 538/*
f7ce3190 539 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
540 * The main reason for not using cgroup id for this:
541 * this works better in sparse environments, where we have a lot of memcgs,
542 * but only a few kmem-limited. Or also, if we have, for instance, 200
543 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
544 * 200 entry array for that.
55007d84 545 *
dbcf73e2
VD
546 * The current size of the caches array is stored in memcg_nr_cache_ids. It
547 * will double each time we have to increase it.
55007d84 548 */
dbcf73e2
VD
549static DEFINE_IDA(memcg_cache_ida);
550int memcg_nr_cache_ids;
749c5415 551
05257a1a
VD
552/* Protects memcg_nr_cache_ids */
553static DECLARE_RWSEM(memcg_cache_ids_sem);
554
555void memcg_get_cache_ids(void)
556{
557 down_read(&memcg_cache_ids_sem);
558}
559
560void memcg_put_cache_ids(void)
561{
562 up_read(&memcg_cache_ids_sem);
563}
564
55007d84
GC
565/*
566 * MIN_SIZE is different than 1, because we would like to avoid going through
567 * the alloc/free process all the time. In a small machine, 4 kmem-limited
568 * cgroups is a reasonable guess. In the future, it could be a parameter or
569 * tunable, but that is strictly not necessary.
570 *
b8627835 571 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
572 * this constant directly from cgroup, but it is understandable that this is
573 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 574 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
575 * increase ours as well if it increases.
576 */
577#define MEMCG_CACHES_MIN_SIZE 4
b8627835 578#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 579
d7f25f8a
GC
580/*
581 * A lot of the calls to the cache allocation functions are expected to be
582 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
583 * conditional to this static branch, we'll have to allow modules that does
584 * kmem_cache_alloc and the such to see this symbol as well
585 */
a8964b9b 586struct static_key memcg_kmem_enabled_key;
d7f25f8a 587EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 588
a8964b9b
GC
589#endif /* CONFIG_MEMCG_KMEM */
590
f64c3f54 591static struct mem_cgroup_per_zone *
e231875b 592mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 593{
e231875b
JZ
594 int nid = zone_to_nid(zone);
595 int zid = zone_idx(zone);
596
54f72fe0 597 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
598}
599
c0ff4b85 600struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 601{
c0ff4b85 602 return &memcg->css;
d324236b
WF
603}
604
ad7fa852
TH
605/**
606 * mem_cgroup_css_from_page - css of the memcg associated with a page
607 * @page: page of interest
608 *
609 * If memcg is bound to the default hierarchy, css of the memcg associated
610 * with @page is returned. The returned css remains associated with @page
611 * until it is released.
612 *
613 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
614 * is returned.
615 *
616 * XXX: The above description of behavior on the default hierarchy isn't
617 * strictly true yet as replace_page_cache_page() can modify the
618 * association before @page is released even on the default hierarchy;
619 * however, the current and planned usages don't mix the the two functions
620 * and replace_page_cache_page() will soon be updated to make the invariant
621 * actually true.
622 */
623struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
624{
625 struct mem_cgroup *memcg;
626
627 rcu_read_lock();
628
629 memcg = page->mem_cgroup;
630
631 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
632 memcg = root_mem_cgroup;
633
634 rcu_read_unlock();
635 return &memcg->css;
636}
637
f64c3f54 638static struct mem_cgroup_per_zone *
e231875b 639mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 640{
97a6c37b
JW
641 int nid = page_to_nid(page);
642 int zid = page_zonenum(page);
f64c3f54 643
e231875b 644 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
645}
646
bb4cc1a8
AM
647static struct mem_cgroup_tree_per_zone *
648soft_limit_tree_node_zone(int nid, int zid)
649{
650 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
651}
652
653static struct mem_cgroup_tree_per_zone *
654soft_limit_tree_from_page(struct page *page)
655{
656 int nid = page_to_nid(page);
657 int zid = page_zonenum(page);
658
659 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
660}
661
cf2c8127
JW
662static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
663 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 664 unsigned long new_usage_in_excess)
bb4cc1a8
AM
665{
666 struct rb_node **p = &mctz->rb_root.rb_node;
667 struct rb_node *parent = NULL;
668 struct mem_cgroup_per_zone *mz_node;
669
670 if (mz->on_tree)
671 return;
672
673 mz->usage_in_excess = new_usage_in_excess;
674 if (!mz->usage_in_excess)
675 return;
676 while (*p) {
677 parent = *p;
678 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
679 tree_node);
680 if (mz->usage_in_excess < mz_node->usage_in_excess)
681 p = &(*p)->rb_left;
682 /*
683 * We can't avoid mem cgroups that are over their soft
684 * limit by the same amount
685 */
686 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
687 p = &(*p)->rb_right;
688 }
689 rb_link_node(&mz->tree_node, parent, p);
690 rb_insert_color(&mz->tree_node, &mctz->rb_root);
691 mz->on_tree = true;
692}
693
cf2c8127
JW
694static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
695 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
696{
697 if (!mz->on_tree)
698 return;
699 rb_erase(&mz->tree_node, &mctz->rb_root);
700 mz->on_tree = false;
701}
702
cf2c8127
JW
703static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
704 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 705{
0a31bc97
JW
706 unsigned long flags;
707
708 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 709 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 710 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
711}
712
3e32cb2e
JW
713static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
714{
715 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 716 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
717 unsigned long excess = 0;
718
719 if (nr_pages > soft_limit)
720 excess = nr_pages - soft_limit;
721
722 return excess;
723}
bb4cc1a8
AM
724
725static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
726{
3e32cb2e 727 unsigned long excess;
bb4cc1a8
AM
728 struct mem_cgroup_per_zone *mz;
729 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 730
e231875b 731 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
732 /*
733 * Necessary to update all ancestors when hierarchy is used.
734 * because their event counter is not touched.
735 */
736 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 737 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 738 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
739 /*
740 * We have to update the tree if mz is on RB-tree or
741 * mem is over its softlimit.
742 */
743 if (excess || mz->on_tree) {
0a31bc97
JW
744 unsigned long flags;
745
746 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
747 /* if on-tree, remove it */
748 if (mz->on_tree)
cf2c8127 749 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
750 /*
751 * Insert again. mz->usage_in_excess will be updated.
752 * If excess is 0, no tree ops.
753 */
cf2c8127 754 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 755 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
756 }
757 }
758}
759
760static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
761{
bb4cc1a8 762 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
763 struct mem_cgroup_per_zone *mz;
764 int nid, zid;
bb4cc1a8 765
e231875b
JZ
766 for_each_node(nid) {
767 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
768 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
769 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 770 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
771 }
772 }
773}
774
775static struct mem_cgroup_per_zone *
776__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
777{
778 struct rb_node *rightmost = NULL;
779 struct mem_cgroup_per_zone *mz;
780
781retry:
782 mz = NULL;
783 rightmost = rb_last(&mctz->rb_root);
784 if (!rightmost)
785 goto done; /* Nothing to reclaim from */
786
787 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
788 /*
789 * Remove the node now but someone else can add it back,
790 * we will to add it back at the end of reclaim to its correct
791 * position in the tree.
792 */
cf2c8127 793 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 794 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 795 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
796 goto retry;
797done:
798 return mz;
799}
800
801static struct mem_cgroup_per_zone *
802mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
803{
804 struct mem_cgroup_per_zone *mz;
805
0a31bc97 806 spin_lock_irq(&mctz->lock);
bb4cc1a8 807 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 808 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
809 return mz;
810}
811
711d3d2c
KH
812/*
813 * Implementation Note: reading percpu statistics for memcg.
814 *
815 * Both of vmstat[] and percpu_counter has threshold and do periodic
816 * synchronization to implement "quick" read. There are trade-off between
817 * reading cost and precision of value. Then, we may have a chance to implement
818 * a periodic synchronizion of counter in memcg's counter.
819 *
820 * But this _read() function is used for user interface now. The user accounts
821 * memory usage by memory cgroup and he _always_ requires exact value because
822 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
823 * have to visit all online cpus and make sum. So, for now, unnecessary
824 * synchronization is not implemented. (just implemented for cpu hotplug)
825 *
826 * If there are kernel internal actions which can make use of some not-exact
827 * value, and reading all cpu value can be performance bottleneck in some
828 * common workload, threashold and synchonization as vmstat[] should be
829 * implemented.
830 */
c0ff4b85 831static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 832 enum mem_cgroup_stat_index idx)
c62b1a3b 833{
7a159cc9 834 long val = 0;
c62b1a3b 835 int cpu;
c62b1a3b 836
711d3d2c
KH
837 get_online_cpus();
838 for_each_online_cpu(cpu)
c0ff4b85 839 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 840#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
841 spin_lock(&memcg->pcp_counter_lock);
842 val += memcg->nocpu_base.count[idx];
843 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
844#endif
845 put_online_cpus();
c62b1a3b
KH
846 return val;
847}
848
c0ff4b85 849static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
850 enum mem_cgroup_events_index idx)
851{
852 unsigned long val = 0;
853 int cpu;
854
9c567512 855 get_online_cpus();
e9f8974f 856 for_each_online_cpu(cpu)
c0ff4b85 857 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 858#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
859 spin_lock(&memcg->pcp_counter_lock);
860 val += memcg->nocpu_base.events[idx];
861 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 862#endif
9c567512 863 put_online_cpus();
e9f8974f
JW
864 return val;
865}
866
c0ff4b85 867static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 868 struct page *page,
0a31bc97 869 int nr_pages)
d52aa412 870{
b2402857
KH
871 /*
872 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
873 * counted as CACHE even if it's on ANON LRU.
874 */
0a31bc97 875 if (PageAnon(page))
b2402857 876 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 877 nr_pages);
d52aa412 878 else
b2402857 879 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 880 nr_pages);
55e462b0 881
b070e65c
DR
882 if (PageTransHuge(page))
883 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
884 nr_pages);
885
e401f176
KH
886 /* pagein of a big page is an event. So, ignore page size */
887 if (nr_pages > 0)
c0ff4b85 888 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 889 else {
c0ff4b85 890 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
891 nr_pages = -nr_pages; /* for event */
892 }
e401f176 893
13114716 894 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
895}
896
e231875b 897unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
898{
899 struct mem_cgroup_per_zone *mz;
900
901 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
902 return mz->lru_size[lru];
903}
904
e231875b
JZ
905static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
906 int nid,
907 unsigned int lru_mask)
bb2a0de9 908{
e231875b 909 unsigned long nr = 0;
889976db
YH
910 int zid;
911
e231875b 912 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 913
e231875b
JZ
914 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
915 struct mem_cgroup_per_zone *mz;
916 enum lru_list lru;
917
918 for_each_lru(lru) {
919 if (!(BIT(lru) & lru_mask))
920 continue;
921 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
922 nr += mz->lru_size[lru];
923 }
924 }
925 return nr;
889976db 926}
bb2a0de9 927
c0ff4b85 928static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 929 unsigned int lru_mask)
6d12e2d8 930{
e231875b 931 unsigned long nr = 0;
889976db 932 int nid;
6d12e2d8 933
31aaea4a 934 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
935 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
936 return nr;
d52aa412
KH
937}
938
f53d7ce3
JW
939static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
940 enum mem_cgroup_events_target target)
7a159cc9
JW
941{
942 unsigned long val, next;
943
13114716 944 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 945 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 946 /* from time_after() in jiffies.h */
f53d7ce3
JW
947 if ((long)next - (long)val < 0) {
948 switch (target) {
949 case MEM_CGROUP_TARGET_THRESH:
950 next = val + THRESHOLDS_EVENTS_TARGET;
951 break;
bb4cc1a8
AM
952 case MEM_CGROUP_TARGET_SOFTLIMIT:
953 next = val + SOFTLIMIT_EVENTS_TARGET;
954 break;
f53d7ce3
JW
955 case MEM_CGROUP_TARGET_NUMAINFO:
956 next = val + NUMAINFO_EVENTS_TARGET;
957 break;
958 default:
959 break;
960 }
961 __this_cpu_write(memcg->stat->targets[target], next);
962 return true;
7a159cc9 963 }
f53d7ce3 964 return false;
d2265e6f
KH
965}
966
967/*
968 * Check events in order.
969 *
970 */
c0ff4b85 971static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
972{
973 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
974 if (unlikely(mem_cgroup_event_ratelimit(memcg,
975 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 976 bool do_softlimit;
82b3f2a7 977 bool do_numainfo __maybe_unused;
f53d7ce3 978
bb4cc1a8
AM
979 do_softlimit = mem_cgroup_event_ratelimit(memcg,
980 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
981#if MAX_NUMNODES > 1
982 do_numainfo = mem_cgroup_event_ratelimit(memcg,
983 MEM_CGROUP_TARGET_NUMAINFO);
984#endif
c0ff4b85 985 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
986 if (unlikely(do_softlimit))
987 mem_cgroup_update_tree(memcg, page);
453a9bf3 988#if MAX_NUMNODES > 1
f53d7ce3 989 if (unlikely(do_numainfo))
c0ff4b85 990 atomic_inc(&memcg->numainfo_events);
453a9bf3 991#endif
0a31bc97 992 }
d2265e6f
KH
993}
994
cf475ad2 995struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 996{
31a78f23
BS
997 /*
998 * mm_update_next_owner() may clear mm->owner to NULL
999 * if it races with swapoff, page migration, etc.
1000 * So this can be called with p == NULL.
1001 */
1002 if (unlikely(!p))
1003 return NULL;
1004
073219e9 1005 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1006}
1007
df381975 1008static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1009{
c0ff4b85 1010 struct mem_cgroup *memcg = NULL;
0b7f569e 1011
54595fe2
KH
1012 rcu_read_lock();
1013 do {
6f6acb00
MH
1014 /*
1015 * Page cache insertions can happen withou an
1016 * actual mm context, e.g. during disk probing
1017 * on boot, loopback IO, acct() writes etc.
1018 */
1019 if (unlikely(!mm))
df381975 1020 memcg = root_mem_cgroup;
6f6acb00
MH
1021 else {
1022 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1023 if (unlikely(!memcg))
1024 memcg = root_mem_cgroup;
1025 }
ec903c0c 1026 } while (!css_tryget_online(&memcg->css));
54595fe2 1027 rcu_read_unlock();
c0ff4b85 1028 return memcg;
54595fe2
KH
1029}
1030
5660048c
JW
1031/**
1032 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1033 * @root: hierarchy root
1034 * @prev: previously returned memcg, NULL on first invocation
1035 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1036 *
1037 * Returns references to children of the hierarchy below @root, or
1038 * @root itself, or %NULL after a full round-trip.
1039 *
1040 * Caller must pass the return value in @prev on subsequent
1041 * invocations for reference counting, or use mem_cgroup_iter_break()
1042 * to cancel a hierarchy walk before the round-trip is complete.
1043 *
1044 * Reclaimers can specify a zone and a priority level in @reclaim to
1045 * divide up the memcgs in the hierarchy among all concurrent
1046 * reclaimers operating on the same zone and priority.
1047 */
694fbc0f 1048struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1049 struct mem_cgroup *prev,
694fbc0f 1050 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1051{
5ac8fb31
JW
1052 struct reclaim_iter *uninitialized_var(iter);
1053 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1054 struct mem_cgroup *memcg = NULL;
5ac8fb31 1055 struct mem_cgroup *pos = NULL;
711d3d2c 1056
694fbc0f
AM
1057 if (mem_cgroup_disabled())
1058 return NULL;
5660048c 1059
9f3a0d09
JW
1060 if (!root)
1061 root = root_mem_cgroup;
7d74b06f 1062
9f3a0d09 1063 if (prev && !reclaim)
5ac8fb31 1064 pos = prev;
14067bb3 1065
9f3a0d09
JW
1066 if (!root->use_hierarchy && root != root_mem_cgroup) {
1067 if (prev)
5ac8fb31 1068 goto out;
694fbc0f 1069 return root;
9f3a0d09 1070 }
14067bb3 1071
542f85f9 1072 rcu_read_lock();
5f578161 1073
5ac8fb31
JW
1074 if (reclaim) {
1075 struct mem_cgroup_per_zone *mz;
1076
1077 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1078 iter = &mz->iter[reclaim->priority];
1079
1080 if (prev && reclaim->generation != iter->generation)
1081 goto out_unlock;
1082
1083 do {
4db0c3c2 1084 pos = READ_ONCE(iter->position);
5ac8fb31
JW
1085 /*
1086 * A racing update may change the position and
1087 * put the last reference, hence css_tryget(),
1088 * or retry to see the updated position.
1089 */
1090 } while (pos && !css_tryget(&pos->css));
1091 }
1092
1093 if (pos)
1094 css = &pos->css;
1095
1096 for (;;) {
1097 css = css_next_descendant_pre(css, &root->css);
1098 if (!css) {
1099 /*
1100 * Reclaimers share the hierarchy walk, and a
1101 * new one might jump in right at the end of
1102 * the hierarchy - make sure they see at least
1103 * one group and restart from the beginning.
1104 */
1105 if (!prev)
1106 continue;
1107 break;
527a5ec9 1108 }
7d74b06f 1109
5ac8fb31
JW
1110 /*
1111 * Verify the css and acquire a reference. The root
1112 * is provided by the caller, so we know it's alive
1113 * and kicking, and don't take an extra reference.
1114 */
1115 memcg = mem_cgroup_from_css(css);
14067bb3 1116
5ac8fb31
JW
1117 if (css == &root->css)
1118 break;
14067bb3 1119
b2052564 1120 if (css_tryget(css)) {
5ac8fb31
JW
1121 /*
1122 * Make sure the memcg is initialized:
1123 * mem_cgroup_css_online() orders the the
1124 * initialization against setting the flag.
1125 */
1126 if (smp_load_acquire(&memcg->initialized))
1127 break;
542f85f9 1128
5ac8fb31 1129 css_put(css);
527a5ec9 1130 }
9f3a0d09 1131
5ac8fb31 1132 memcg = NULL;
9f3a0d09 1133 }
5ac8fb31
JW
1134
1135 if (reclaim) {
1136 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1137 if (memcg)
1138 css_get(&memcg->css);
1139 if (pos)
1140 css_put(&pos->css);
1141 }
1142
1143 /*
1144 * pairs with css_tryget when dereferencing iter->position
1145 * above.
1146 */
1147 if (pos)
1148 css_put(&pos->css);
1149
1150 if (!memcg)
1151 iter->generation++;
1152 else if (!prev)
1153 reclaim->generation = iter->generation;
9f3a0d09 1154 }
5ac8fb31 1155
542f85f9
MH
1156out_unlock:
1157 rcu_read_unlock();
5ac8fb31 1158out:
c40046f3
MH
1159 if (prev && prev != root)
1160 css_put(&prev->css);
1161
9f3a0d09 1162 return memcg;
14067bb3 1163}
7d74b06f 1164
5660048c
JW
1165/**
1166 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1167 * @root: hierarchy root
1168 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1169 */
1170void mem_cgroup_iter_break(struct mem_cgroup *root,
1171 struct mem_cgroup *prev)
9f3a0d09
JW
1172{
1173 if (!root)
1174 root = root_mem_cgroup;
1175 if (prev && prev != root)
1176 css_put(&prev->css);
1177}
7d74b06f 1178
9f3a0d09
JW
1179/*
1180 * Iteration constructs for visiting all cgroups (under a tree). If
1181 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1182 * be used for reference counting.
1183 */
1184#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1185 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1186 iter != NULL; \
527a5ec9 1187 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1188
9f3a0d09 1189#define for_each_mem_cgroup(iter) \
527a5ec9 1190 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1191 iter != NULL; \
527a5ec9 1192 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1193
68ae564b 1194void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1195{
c0ff4b85 1196 struct mem_cgroup *memcg;
456f998e 1197
456f998e 1198 rcu_read_lock();
c0ff4b85
R
1199 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1200 if (unlikely(!memcg))
456f998e
YH
1201 goto out;
1202
1203 switch (idx) {
456f998e 1204 case PGFAULT:
0e574a93
JW
1205 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1206 break;
1207 case PGMAJFAULT:
1208 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1209 break;
1210 default:
1211 BUG();
1212 }
1213out:
1214 rcu_read_unlock();
1215}
68ae564b 1216EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1217
925b7673
JW
1218/**
1219 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1220 * @zone: zone of the wanted lruvec
fa9add64 1221 * @memcg: memcg of the wanted lruvec
925b7673
JW
1222 *
1223 * Returns the lru list vector holding pages for the given @zone and
1224 * @mem. This can be the global zone lruvec, if the memory controller
1225 * is disabled.
1226 */
1227struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1228 struct mem_cgroup *memcg)
1229{
1230 struct mem_cgroup_per_zone *mz;
bea8c150 1231 struct lruvec *lruvec;
925b7673 1232
bea8c150
HD
1233 if (mem_cgroup_disabled()) {
1234 lruvec = &zone->lruvec;
1235 goto out;
1236 }
925b7673 1237
e231875b 1238 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1239 lruvec = &mz->lruvec;
1240out:
1241 /*
1242 * Since a node can be onlined after the mem_cgroup was created,
1243 * we have to be prepared to initialize lruvec->zone here;
1244 * and if offlined then reonlined, we need to reinitialize it.
1245 */
1246 if (unlikely(lruvec->zone != zone))
1247 lruvec->zone = zone;
1248 return lruvec;
925b7673
JW
1249}
1250
925b7673 1251/**
dfe0e773 1252 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1253 * @page: the page
fa9add64 1254 * @zone: zone of the page
dfe0e773
JW
1255 *
1256 * This function is only safe when following the LRU page isolation
1257 * and putback protocol: the LRU lock must be held, and the page must
1258 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1259 */
fa9add64 1260struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1261{
08e552c6 1262 struct mem_cgroup_per_zone *mz;
925b7673 1263 struct mem_cgroup *memcg;
bea8c150 1264 struct lruvec *lruvec;
6d12e2d8 1265
bea8c150
HD
1266 if (mem_cgroup_disabled()) {
1267 lruvec = &zone->lruvec;
1268 goto out;
1269 }
925b7673 1270
1306a85a 1271 memcg = page->mem_cgroup;
7512102c 1272 /*
dfe0e773 1273 * Swapcache readahead pages are added to the LRU - and
29833315 1274 * possibly migrated - before they are charged.
7512102c 1275 */
29833315
JW
1276 if (!memcg)
1277 memcg = root_mem_cgroup;
7512102c 1278
e231875b 1279 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1280 lruvec = &mz->lruvec;
1281out:
1282 /*
1283 * Since a node can be onlined after the mem_cgroup was created,
1284 * we have to be prepared to initialize lruvec->zone here;
1285 * and if offlined then reonlined, we need to reinitialize it.
1286 */
1287 if (unlikely(lruvec->zone != zone))
1288 lruvec->zone = zone;
1289 return lruvec;
08e552c6 1290}
b69408e8 1291
925b7673 1292/**
fa9add64
HD
1293 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1294 * @lruvec: mem_cgroup per zone lru vector
1295 * @lru: index of lru list the page is sitting on
1296 * @nr_pages: positive when adding or negative when removing
925b7673 1297 *
fa9add64
HD
1298 * This function must be called when a page is added to or removed from an
1299 * lru list.
3f58a829 1300 */
fa9add64
HD
1301void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1302 int nr_pages)
3f58a829
MK
1303{
1304 struct mem_cgroup_per_zone *mz;
fa9add64 1305 unsigned long *lru_size;
3f58a829
MK
1306
1307 if (mem_cgroup_disabled())
1308 return;
1309
fa9add64
HD
1310 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1311 lru_size = mz->lru_size + lru;
1312 *lru_size += nr_pages;
1313 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1314}
544122e5 1315
2314b42d 1316bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1317{
2314b42d 1318 if (root == memcg)
91c63734 1319 return true;
2314b42d 1320 if (!root->use_hierarchy)
91c63734 1321 return false;
2314b42d 1322 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1323}
1324
2314b42d 1325bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1326{
2314b42d 1327 struct mem_cgroup *task_memcg;
158e0a2d 1328 struct task_struct *p;
ffbdccf5 1329 bool ret;
4c4a2214 1330
158e0a2d 1331 p = find_lock_task_mm(task);
de077d22 1332 if (p) {
2314b42d 1333 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1334 task_unlock(p);
1335 } else {
1336 /*
1337 * All threads may have already detached their mm's, but the oom
1338 * killer still needs to detect if they have already been oom
1339 * killed to prevent needlessly killing additional tasks.
1340 */
ffbdccf5 1341 rcu_read_lock();
2314b42d
JW
1342 task_memcg = mem_cgroup_from_task(task);
1343 css_get(&task_memcg->css);
ffbdccf5 1344 rcu_read_unlock();
de077d22 1345 }
2314b42d
JW
1346 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1347 css_put(&task_memcg->css);
4c4a2214
DR
1348 return ret;
1349}
1350
c56d5c7d 1351int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1352{
9b272977 1353 unsigned long inactive_ratio;
14797e23 1354 unsigned long inactive;
9b272977 1355 unsigned long active;
c772be93 1356 unsigned long gb;
14797e23 1357
4d7dcca2
HD
1358 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1359 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1360
c772be93
KM
1361 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1362 if (gb)
1363 inactive_ratio = int_sqrt(10 * gb);
1364 else
1365 inactive_ratio = 1;
1366
9b272977 1367 return inactive * inactive_ratio < active;
14797e23
KM
1368}
1369
90cbc250
VD
1370bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1371{
1372 struct mem_cgroup_per_zone *mz;
1373 struct mem_cgroup *memcg;
1374
1375 if (mem_cgroup_disabled())
1376 return true;
1377
1378 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1379 memcg = mz->memcg;
1380
1381 return !!(memcg->css.flags & CSS_ONLINE);
1382}
1383
3e32cb2e 1384#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1385 container_of(counter, struct mem_cgroup, member)
1386
19942822 1387/**
9d11ea9f 1388 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1389 * @memcg: the memory cgroup
19942822 1390 *
9d11ea9f 1391 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1392 * pages.
19942822 1393 */
c0ff4b85 1394static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1395{
3e32cb2e
JW
1396 unsigned long margin = 0;
1397 unsigned long count;
1398 unsigned long limit;
9d11ea9f 1399
3e32cb2e 1400 count = page_counter_read(&memcg->memory);
4db0c3c2 1401 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1402 if (count < limit)
1403 margin = limit - count;
1404
1405 if (do_swap_account) {
1406 count = page_counter_read(&memcg->memsw);
4db0c3c2 1407 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1408 if (count <= limit)
1409 margin = min(margin, limit - count);
1410 }
1411
1412 return margin;
19942822
JW
1413}
1414
1f4c025b 1415int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1416{
a7885eb8 1417 /* root ? */
14208b0e 1418 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1419 return vm_swappiness;
1420
bf1ff263 1421 return memcg->swappiness;
a7885eb8
KM
1422}
1423
32047e2a 1424/*
bdcbb659 1425 * A routine for checking "mem" is under move_account() or not.
32047e2a 1426 *
bdcbb659
QH
1427 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1428 * moving cgroups. This is for waiting at high-memory pressure
1429 * caused by "move".
32047e2a 1430 */
c0ff4b85 1431static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1432{
2bd9bb20
KH
1433 struct mem_cgroup *from;
1434 struct mem_cgroup *to;
4b534334 1435 bool ret = false;
2bd9bb20
KH
1436 /*
1437 * Unlike task_move routines, we access mc.to, mc.from not under
1438 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1439 */
1440 spin_lock(&mc.lock);
1441 from = mc.from;
1442 to = mc.to;
1443 if (!from)
1444 goto unlock;
3e92041d 1445
2314b42d
JW
1446 ret = mem_cgroup_is_descendant(from, memcg) ||
1447 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1448unlock:
1449 spin_unlock(&mc.lock);
4b534334
KH
1450 return ret;
1451}
1452
c0ff4b85 1453static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1454{
1455 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1456 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1457 DEFINE_WAIT(wait);
1458 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1459 /* moving charge context might have finished. */
1460 if (mc.moving_task)
1461 schedule();
1462 finish_wait(&mc.waitq, &wait);
1463 return true;
1464 }
1465 }
1466 return false;
1467}
1468
58cf188e 1469#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1470/**
58cf188e 1471 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1472 * @memcg: The memory cgroup that went over limit
1473 * @p: Task that is going to be killed
1474 *
1475 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1476 * enabled
1477 */
1478void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1479{
e61734c5 1480 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1481 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1482 struct mem_cgroup *iter;
1483 unsigned int i;
e222432b 1484
08088cb9 1485 mutex_lock(&oom_info_lock);
e222432b
BS
1486 rcu_read_lock();
1487
2415b9f5
BV
1488 if (p) {
1489 pr_info("Task in ");
1490 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1491 pr_cont(" killed as a result of limit of ");
1492 } else {
1493 pr_info("Memory limit reached of cgroup ");
1494 }
1495
e61734c5 1496 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1497 pr_cont("\n");
e222432b 1498
e222432b
BS
1499 rcu_read_unlock();
1500
3e32cb2e
JW
1501 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1502 K((u64)page_counter_read(&memcg->memory)),
1503 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1504 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1505 K((u64)page_counter_read(&memcg->memsw)),
1506 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1507 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1508 K((u64)page_counter_read(&memcg->kmem)),
1509 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1510
1511 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1512 pr_info("Memory cgroup stats for ");
1513 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1514 pr_cont(":");
1515
1516 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1517 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1518 continue;
1519 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1520 K(mem_cgroup_read_stat(iter, i)));
1521 }
1522
1523 for (i = 0; i < NR_LRU_LISTS; i++)
1524 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1525 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1526
1527 pr_cont("\n");
1528 }
08088cb9 1529 mutex_unlock(&oom_info_lock);
e222432b
BS
1530}
1531
81d39c20
KH
1532/*
1533 * This function returns the number of memcg under hierarchy tree. Returns
1534 * 1(self count) if no children.
1535 */
c0ff4b85 1536static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1537{
1538 int num = 0;
7d74b06f
KH
1539 struct mem_cgroup *iter;
1540
c0ff4b85 1541 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1542 num++;
81d39c20
KH
1543 return num;
1544}
1545
a63d83f4
DR
1546/*
1547 * Return the memory (and swap, if configured) limit for a memcg.
1548 */
3e32cb2e 1549static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1550{
3e32cb2e 1551 unsigned long limit;
f3e8eb70 1552
3e32cb2e 1553 limit = memcg->memory.limit;
9a5a8f19 1554 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1555 unsigned long memsw_limit;
9a5a8f19 1556
3e32cb2e
JW
1557 memsw_limit = memcg->memsw.limit;
1558 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1559 }
9a5a8f19 1560 return limit;
a63d83f4
DR
1561}
1562
19965460
DR
1563static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1564 int order)
9cbb78bb
DR
1565{
1566 struct mem_cgroup *iter;
1567 unsigned long chosen_points = 0;
1568 unsigned long totalpages;
1569 unsigned int points = 0;
1570 struct task_struct *chosen = NULL;
1571
876aafbf 1572 /*
465adcf1
DR
1573 * If current has a pending SIGKILL or is exiting, then automatically
1574 * select it. The goal is to allow it to allocate so that it may
1575 * quickly exit and free its memory.
876aafbf 1576 */
d003f371 1577 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
49550b60 1578 mark_tsk_oom_victim(current);
876aafbf
DR
1579 return;
1580 }
1581
2415b9f5 1582 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
3e32cb2e 1583 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1584 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1585 struct css_task_iter it;
9cbb78bb
DR
1586 struct task_struct *task;
1587
72ec7029
TH
1588 css_task_iter_start(&iter->css, &it);
1589 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1590 switch (oom_scan_process_thread(task, totalpages, NULL,
1591 false)) {
1592 case OOM_SCAN_SELECT:
1593 if (chosen)
1594 put_task_struct(chosen);
1595 chosen = task;
1596 chosen_points = ULONG_MAX;
1597 get_task_struct(chosen);
1598 /* fall through */
1599 case OOM_SCAN_CONTINUE:
1600 continue;
1601 case OOM_SCAN_ABORT:
72ec7029 1602 css_task_iter_end(&it);
9cbb78bb
DR
1603 mem_cgroup_iter_break(memcg, iter);
1604 if (chosen)
1605 put_task_struct(chosen);
1606 return;
1607 case OOM_SCAN_OK:
1608 break;
1609 };
1610 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1611 if (!points || points < chosen_points)
1612 continue;
1613 /* Prefer thread group leaders for display purposes */
1614 if (points == chosen_points &&
1615 thread_group_leader(chosen))
1616 continue;
1617
1618 if (chosen)
1619 put_task_struct(chosen);
1620 chosen = task;
1621 chosen_points = points;
1622 get_task_struct(chosen);
9cbb78bb 1623 }
72ec7029 1624 css_task_iter_end(&it);
9cbb78bb
DR
1625 }
1626
1627 if (!chosen)
1628 return;
1629 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1630 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1631 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1632}
1633
ae6e71d3
MC
1634#if MAX_NUMNODES > 1
1635
4d0c066d
KH
1636/**
1637 * test_mem_cgroup_node_reclaimable
dad7557e 1638 * @memcg: the target memcg
4d0c066d
KH
1639 * @nid: the node ID to be checked.
1640 * @noswap : specify true here if the user wants flle only information.
1641 *
1642 * This function returns whether the specified memcg contains any
1643 * reclaimable pages on a node. Returns true if there are any reclaimable
1644 * pages in the node.
1645 */
c0ff4b85 1646static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1647 int nid, bool noswap)
1648{
c0ff4b85 1649 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1650 return true;
1651 if (noswap || !total_swap_pages)
1652 return false;
c0ff4b85 1653 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1654 return true;
1655 return false;
1656
1657}
889976db
YH
1658
1659/*
1660 * Always updating the nodemask is not very good - even if we have an empty
1661 * list or the wrong list here, we can start from some node and traverse all
1662 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1663 *
1664 */
c0ff4b85 1665static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1666{
1667 int nid;
453a9bf3
KH
1668 /*
1669 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1670 * pagein/pageout changes since the last update.
1671 */
c0ff4b85 1672 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1673 return;
c0ff4b85 1674 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1675 return;
1676
889976db 1677 /* make a nodemask where this memcg uses memory from */
31aaea4a 1678 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1679
31aaea4a 1680 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1681
c0ff4b85
R
1682 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1683 node_clear(nid, memcg->scan_nodes);
889976db 1684 }
453a9bf3 1685
c0ff4b85
R
1686 atomic_set(&memcg->numainfo_events, 0);
1687 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1688}
1689
1690/*
1691 * Selecting a node where we start reclaim from. Because what we need is just
1692 * reducing usage counter, start from anywhere is O,K. Considering
1693 * memory reclaim from current node, there are pros. and cons.
1694 *
1695 * Freeing memory from current node means freeing memory from a node which
1696 * we'll use or we've used. So, it may make LRU bad. And if several threads
1697 * hit limits, it will see a contention on a node. But freeing from remote
1698 * node means more costs for memory reclaim because of memory latency.
1699 *
1700 * Now, we use round-robin. Better algorithm is welcomed.
1701 */
c0ff4b85 1702int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1703{
1704 int node;
1705
c0ff4b85
R
1706 mem_cgroup_may_update_nodemask(memcg);
1707 node = memcg->last_scanned_node;
889976db 1708
c0ff4b85 1709 node = next_node(node, memcg->scan_nodes);
889976db 1710 if (node == MAX_NUMNODES)
c0ff4b85 1711 node = first_node(memcg->scan_nodes);
889976db
YH
1712 /*
1713 * We call this when we hit limit, not when pages are added to LRU.
1714 * No LRU may hold pages because all pages are UNEVICTABLE or
1715 * memcg is too small and all pages are not on LRU. In that case,
1716 * we use curret node.
1717 */
1718 if (unlikely(node == MAX_NUMNODES))
1719 node = numa_node_id();
1720
c0ff4b85 1721 memcg->last_scanned_node = node;
889976db
YH
1722 return node;
1723}
889976db 1724#else
c0ff4b85 1725int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1726{
1727 return 0;
1728}
1729#endif
1730
0608f43d
AM
1731static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1732 struct zone *zone,
1733 gfp_t gfp_mask,
1734 unsigned long *total_scanned)
1735{
1736 struct mem_cgroup *victim = NULL;
1737 int total = 0;
1738 int loop = 0;
1739 unsigned long excess;
1740 unsigned long nr_scanned;
1741 struct mem_cgroup_reclaim_cookie reclaim = {
1742 .zone = zone,
1743 .priority = 0,
1744 };
1745
3e32cb2e 1746 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1747
1748 while (1) {
1749 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1750 if (!victim) {
1751 loop++;
1752 if (loop >= 2) {
1753 /*
1754 * If we have not been able to reclaim
1755 * anything, it might because there are
1756 * no reclaimable pages under this hierarchy
1757 */
1758 if (!total)
1759 break;
1760 /*
1761 * We want to do more targeted reclaim.
1762 * excess >> 2 is not to excessive so as to
1763 * reclaim too much, nor too less that we keep
1764 * coming back to reclaim from this cgroup
1765 */
1766 if (total >= (excess >> 2) ||
1767 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1768 break;
1769 }
1770 continue;
1771 }
0608f43d
AM
1772 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1773 zone, &nr_scanned);
1774 *total_scanned += nr_scanned;
3e32cb2e 1775 if (!soft_limit_excess(root_memcg))
0608f43d 1776 break;
6d61ef40 1777 }
0608f43d
AM
1778 mem_cgroup_iter_break(root_memcg, victim);
1779 return total;
6d61ef40
BS
1780}
1781
0056f4e6
JW
1782#ifdef CONFIG_LOCKDEP
1783static struct lockdep_map memcg_oom_lock_dep_map = {
1784 .name = "memcg_oom_lock",
1785};
1786#endif
1787
fb2a6fc5
JW
1788static DEFINE_SPINLOCK(memcg_oom_lock);
1789
867578cb
KH
1790/*
1791 * Check OOM-Killer is already running under our hierarchy.
1792 * If someone is running, return false.
1793 */
fb2a6fc5 1794static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1795{
79dfdacc 1796 struct mem_cgroup *iter, *failed = NULL;
a636b327 1797
fb2a6fc5
JW
1798 spin_lock(&memcg_oom_lock);
1799
9f3a0d09 1800 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1801 if (iter->oom_lock) {
79dfdacc
MH
1802 /*
1803 * this subtree of our hierarchy is already locked
1804 * so we cannot give a lock.
1805 */
79dfdacc 1806 failed = iter;
9f3a0d09
JW
1807 mem_cgroup_iter_break(memcg, iter);
1808 break;
23751be0
JW
1809 } else
1810 iter->oom_lock = true;
7d74b06f 1811 }
867578cb 1812
fb2a6fc5
JW
1813 if (failed) {
1814 /*
1815 * OK, we failed to lock the whole subtree so we have
1816 * to clean up what we set up to the failing subtree
1817 */
1818 for_each_mem_cgroup_tree(iter, memcg) {
1819 if (iter == failed) {
1820 mem_cgroup_iter_break(memcg, iter);
1821 break;
1822 }
1823 iter->oom_lock = false;
79dfdacc 1824 }
0056f4e6
JW
1825 } else
1826 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1827
1828 spin_unlock(&memcg_oom_lock);
1829
1830 return !failed;
a636b327 1831}
0b7f569e 1832
fb2a6fc5 1833static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1834{
7d74b06f
KH
1835 struct mem_cgroup *iter;
1836
fb2a6fc5 1837 spin_lock(&memcg_oom_lock);
0056f4e6 1838 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1839 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1840 iter->oom_lock = false;
fb2a6fc5 1841 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1842}
1843
c0ff4b85 1844static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1845{
1846 struct mem_cgroup *iter;
1847
c0ff4b85 1848 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1849 atomic_inc(&iter->under_oom);
1850}
1851
c0ff4b85 1852static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1853{
1854 struct mem_cgroup *iter;
1855
867578cb
KH
1856 /*
1857 * When a new child is created while the hierarchy is under oom,
1858 * mem_cgroup_oom_lock() may not be called. We have to use
1859 * atomic_add_unless() here.
1860 */
c0ff4b85 1861 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1862 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1863}
1864
867578cb
KH
1865static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1866
dc98df5a 1867struct oom_wait_info {
d79154bb 1868 struct mem_cgroup *memcg;
dc98df5a
KH
1869 wait_queue_t wait;
1870};
1871
1872static int memcg_oom_wake_function(wait_queue_t *wait,
1873 unsigned mode, int sync, void *arg)
1874{
d79154bb
HD
1875 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1876 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1877 struct oom_wait_info *oom_wait_info;
1878
1879 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1880 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1881
2314b42d
JW
1882 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1883 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1884 return 0;
dc98df5a
KH
1885 return autoremove_wake_function(wait, mode, sync, arg);
1886}
1887
c0ff4b85 1888static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1889{
3812c8c8 1890 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1891 /* for filtering, pass "memcg" as argument. */
1892 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1893}
1894
c0ff4b85 1895static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1896{
c0ff4b85
R
1897 if (memcg && atomic_read(&memcg->under_oom))
1898 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1899}
1900
3812c8c8 1901static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1902{
3812c8c8
JW
1903 if (!current->memcg_oom.may_oom)
1904 return;
867578cb 1905 /*
49426420
JW
1906 * We are in the middle of the charge context here, so we
1907 * don't want to block when potentially sitting on a callstack
1908 * that holds all kinds of filesystem and mm locks.
1909 *
1910 * Also, the caller may handle a failed allocation gracefully
1911 * (like optional page cache readahead) and so an OOM killer
1912 * invocation might not even be necessary.
1913 *
1914 * That's why we don't do anything here except remember the
1915 * OOM context and then deal with it at the end of the page
1916 * fault when the stack is unwound, the locks are released,
1917 * and when we know whether the fault was overall successful.
867578cb 1918 */
49426420
JW
1919 css_get(&memcg->css);
1920 current->memcg_oom.memcg = memcg;
1921 current->memcg_oom.gfp_mask = mask;
1922 current->memcg_oom.order = order;
3812c8c8
JW
1923}
1924
1925/**
1926 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1927 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1928 *
49426420
JW
1929 * This has to be called at the end of a page fault if the memcg OOM
1930 * handler was enabled.
3812c8c8 1931 *
49426420 1932 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1933 * sleep on a waitqueue until the userspace task resolves the
1934 * situation. Sleeping directly in the charge context with all kinds
1935 * of locks held is not a good idea, instead we remember an OOM state
1936 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1937 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1938 *
1939 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1940 * completed, %false otherwise.
3812c8c8 1941 */
49426420 1942bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1943{
49426420 1944 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1945 struct oom_wait_info owait;
49426420 1946 bool locked;
3812c8c8
JW
1947
1948 /* OOM is global, do not handle */
3812c8c8 1949 if (!memcg)
49426420 1950 return false;
3812c8c8 1951
c32b3cbe 1952 if (!handle || oom_killer_disabled)
49426420 1953 goto cleanup;
3812c8c8
JW
1954
1955 owait.memcg = memcg;
1956 owait.wait.flags = 0;
1957 owait.wait.func = memcg_oom_wake_function;
1958 owait.wait.private = current;
1959 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1960
3812c8c8 1961 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1962 mem_cgroup_mark_under_oom(memcg);
1963
1964 locked = mem_cgroup_oom_trylock(memcg);
1965
1966 if (locked)
1967 mem_cgroup_oom_notify(memcg);
1968
1969 if (locked && !memcg->oom_kill_disable) {
1970 mem_cgroup_unmark_under_oom(memcg);
1971 finish_wait(&memcg_oom_waitq, &owait.wait);
1972 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1973 current->memcg_oom.order);
1974 } else {
3812c8c8 1975 schedule();
49426420
JW
1976 mem_cgroup_unmark_under_oom(memcg);
1977 finish_wait(&memcg_oom_waitq, &owait.wait);
1978 }
1979
1980 if (locked) {
fb2a6fc5
JW
1981 mem_cgroup_oom_unlock(memcg);
1982 /*
1983 * There is no guarantee that an OOM-lock contender
1984 * sees the wakeups triggered by the OOM kill
1985 * uncharges. Wake any sleepers explicitely.
1986 */
1987 memcg_oom_recover(memcg);
1988 }
49426420
JW
1989cleanup:
1990 current->memcg_oom.memcg = NULL;
3812c8c8 1991 css_put(&memcg->css);
867578cb 1992 return true;
0b7f569e
KH
1993}
1994
d7365e78
JW
1995/**
1996 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1997 * @page: page that is going to change accounted state
32047e2a 1998 *
d7365e78
JW
1999 * This function must mark the beginning of an accounted page state
2000 * change to prevent double accounting when the page is concurrently
2001 * being moved to another memcg:
32047e2a 2002 *
6de22619 2003 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
2004 * if (TestClearPageState(page))
2005 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 2006 * mem_cgroup_end_page_stat(memcg);
d69b042f 2007 */
6de22619 2008struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
2009{
2010 struct mem_cgroup *memcg;
6de22619 2011 unsigned long flags;
89c06bd5 2012
6de22619
JW
2013 /*
2014 * The RCU lock is held throughout the transaction. The fast
2015 * path can get away without acquiring the memcg->move_lock
2016 * because page moving starts with an RCU grace period.
2017 *
2018 * The RCU lock also protects the memcg from being freed when
2019 * the page state that is going to change is the only thing
2020 * preventing the page from being uncharged.
2021 * E.g. end-writeback clearing PageWriteback(), which allows
2022 * migration to go ahead and uncharge the page before the
2023 * account transaction might be complete.
2024 */
d7365e78
JW
2025 rcu_read_lock();
2026
2027 if (mem_cgroup_disabled())
2028 return NULL;
89c06bd5 2029again:
1306a85a 2030 memcg = page->mem_cgroup;
29833315 2031 if (unlikely(!memcg))
d7365e78
JW
2032 return NULL;
2033
bdcbb659 2034 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2035 return memcg;
89c06bd5 2036
6de22619 2037 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2038 if (memcg != page->mem_cgroup) {
6de22619 2039 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2040 goto again;
2041 }
6de22619
JW
2042
2043 /*
2044 * When charge migration first begins, we can have locked and
2045 * unlocked page stat updates happening concurrently. Track
2046 * the task who has the lock for mem_cgroup_end_page_stat().
2047 */
2048 memcg->move_lock_task = current;
2049 memcg->move_lock_flags = flags;
d7365e78
JW
2050
2051 return memcg;
89c06bd5 2052}
c4843a75 2053EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 2054
d7365e78
JW
2055/**
2056 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2057 * @memcg: the memcg that was accounted against
d7365e78 2058 */
6de22619 2059void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 2060{
6de22619
JW
2061 if (memcg && memcg->move_lock_task == current) {
2062 unsigned long flags = memcg->move_lock_flags;
2063
2064 memcg->move_lock_task = NULL;
2065 memcg->move_lock_flags = 0;
2066
2067 spin_unlock_irqrestore(&memcg->move_lock, flags);
2068 }
89c06bd5 2069
d7365e78 2070 rcu_read_unlock();
89c06bd5 2071}
c4843a75 2072EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 2073
d7365e78
JW
2074/**
2075 * mem_cgroup_update_page_stat - update page state statistics
2076 * @memcg: memcg to account against
2077 * @idx: page state item to account
2078 * @val: number of pages (positive or negative)
2079 *
2080 * See mem_cgroup_begin_page_stat() for locking requirements.
2081 */
2082void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2083 enum mem_cgroup_stat_index idx, int val)
d69b042f 2084{
658b72c5 2085 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2086
d7365e78
JW
2087 if (memcg)
2088 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2089}
26174efd 2090
cdec2e42
KH
2091/*
2092 * size of first charge trial. "32" comes from vmscan.c's magic value.
2093 * TODO: maybe necessary to use big numbers in big irons.
2094 */
7ec99d62 2095#define CHARGE_BATCH 32U
cdec2e42
KH
2096struct memcg_stock_pcp {
2097 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2098 unsigned int nr_pages;
cdec2e42 2099 struct work_struct work;
26fe6168 2100 unsigned long flags;
a0db00fc 2101#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2102};
2103static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2104static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2105
a0956d54
SS
2106/**
2107 * consume_stock: Try to consume stocked charge on this cpu.
2108 * @memcg: memcg to consume from.
2109 * @nr_pages: how many pages to charge.
2110 *
2111 * The charges will only happen if @memcg matches the current cpu's memcg
2112 * stock, and at least @nr_pages are available in that stock. Failure to
2113 * service an allocation will refill the stock.
2114 *
2115 * returns true if successful, false otherwise.
cdec2e42 2116 */
a0956d54 2117static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2118{
2119 struct memcg_stock_pcp *stock;
3e32cb2e 2120 bool ret = false;
cdec2e42 2121
a0956d54 2122 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2123 return ret;
a0956d54 2124
cdec2e42 2125 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2126 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2127 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2128 ret = true;
2129 }
cdec2e42
KH
2130 put_cpu_var(memcg_stock);
2131 return ret;
2132}
2133
2134/*
3e32cb2e 2135 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2136 */
2137static void drain_stock(struct memcg_stock_pcp *stock)
2138{
2139 struct mem_cgroup *old = stock->cached;
2140
11c9ea4e 2141 if (stock->nr_pages) {
3e32cb2e 2142 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2143 if (do_swap_account)
3e32cb2e 2144 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2145 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2146 stock->nr_pages = 0;
cdec2e42
KH
2147 }
2148 stock->cached = NULL;
cdec2e42
KH
2149}
2150
2151/*
2152 * This must be called under preempt disabled or must be called by
2153 * a thread which is pinned to local cpu.
2154 */
2155static void drain_local_stock(struct work_struct *dummy)
2156{
7c8e0181 2157 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2158 drain_stock(stock);
26fe6168 2159 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2160}
2161
2162/*
3e32cb2e 2163 * Cache charges(val) to local per_cpu area.
320cc51d 2164 * This will be consumed by consume_stock() function, later.
cdec2e42 2165 */
c0ff4b85 2166static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2167{
2168 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2169
c0ff4b85 2170 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2171 drain_stock(stock);
c0ff4b85 2172 stock->cached = memcg;
cdec2e42 2173 }
11c9ea4e 2174 stock->nr_pages += nr_pages;
cdec2e42
KH
2175 put_cpu_var(memcg_stock);
2176}
2177
2178/*
c0ff4b85 2179 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2180 * of the hierarchy under it.
cdec2e42 2181 */
6d3d6aa2 2182static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2183{
26fe6168 2184 int cpu, curcpu;
d38144b7 2185
6d3d6aa2
JW
2186 /* If someone's already draining, avoid adding running more workers. */
2187 if (!mutex_trylock(&percpu_charge_mutex))
2188 return;
cdec2e42 2189 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2190 get_online_cpus();
5af12d0e 2191 curcpu = get_cpu();
cdec2e42
KH
2192 for_each_online_cpu(cpu) {
2193 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2194 struct mem_cgroup *memcg;
26fe6168 2195
c0ff4b85
R
2196 memcg = stock->cached;
2197 if (!memcg || !stock->nr_pages)
26fe6168 2198 continue;
2314b42d 2199 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2200 continue;
d1a05b69
MH
2201 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2202 if (cpu == curcpu)
2203 drain_local_stock(&stock->work);
2204 else
2205 schedule_work_on(cpu, &stock->work);
2206 }
cdec2e42 2207 }
5af12d0e 2208 put_cpu();
f894ffa8 2209 put_online_cpus();
9f50fad6 2210 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2211}
2212
711d3d2c
KH
2213/*
2214 * This function drains percpu counter value from DEAD cpu and
2215 * move it to local cpu. Note that this function can be preempted.
2216 */
c0ff4b85 2217static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2218{
2219 int i;
2220
c0ff4b85 2221 spin_lock(&memcg->pcp_counter_lock);
6104621d 2222 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2223 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2224
c0ff4b85
R
2225 per_cpu(memcg->stat->count[i], cpu) = 0;
2226 memcg->nocpu_base.count[i] += x;
711d3d2c 2227 }
e9f8974f 2228 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2229 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2230
c0ff4b85
R
2231 per_cpu(memcg->stat->events[i], cpu) = 0;
2232 memcg->nocpu_base.events[i] += x;
e9f8974f 2233 }
c0ff4b85 2234 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2235}
2236
0db0628d 2237static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2238 unsigned long action,
2239 void *hcpu)
2240{
2241 int cpu = (unsigned long)hcpu;
2242 struct memcg_stock_pcp *stock;
711d3d2c 2243 struct mem_cgroup *iter;
cdec2e42 2244
619d094b 2245 if (action == CPU_ONLINE)
1489ebad 2246 return NOTIFY_OK;
1489ebad 2247
d833049b 2248 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2249 return NOTIFY_OK;
711d3d2c 2250
9f3a0d09 2251 for_each_mem_cgroup(iter)
711d3d2c
KH
2252 mem_cgroup_drain_pcp_counter(iter, cpu);
2253
cdec2e42
KH
2254 stock = &per_cpu(memcg_stock, cpu);
2255 drain_stock(stock);
2256 return NOTIFY_OK;
2257}
2258
00501b53
JW
2259static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2260 unsigned int nr_pages)
8a9f3ccd 2261{
7ec99d62 2262 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2263 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2264 struct mem_cgroup *mem_over_limit;
3e32cb2e 2265 struct page_counter *counter;
6539cc05 2266 unsigned long nr_reclaimed;
b70a2a21
JW
2267 bool may_swap = true;
2268 bool drained = false;
05b84301 2269 int ret = 0;
a636b327 2270
ce00a967
JW
2271 if (mem_cgroup_is_root(memcg))
2272 goto done;
6539cc05 2273retry:
b6b6cc72
MH
2274 if (consume_stock(memcg, nr_pages))
2275 goto done;
8a9f3ccd 2276
3fbe7244 2277 if (!do_swap_account ||
3e32cb2e
JW
2278 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2279 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2280 goto done_restock;
3fbe7244 2281 if (do_swap_account)
3e32cb2e
JW
2282 page_counter_uncharge(&memcg->memsw, batch);
2283 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2284 } else {
3e32cb2e 2285 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2286 may_swap = false;
3fbe7244 2287 }
7a81b88c 2288
6539cc05
JW
2289 if (batch > nr_pages) {
2290 batch = nr_pages;
2291 goto retry;
2292 }
6d61ef40 2293
06b078fc
JW
2294 /*
2295 * Unlike in global OOM situations, memcg is not in a physical
2296 * memory shortage. Allow dying and OOM-killed tasks to
2297 * bypass the last charges so that they can exit quickly and
2298 * free their memory.
2299 */
2300 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2301 fatal_signal_pending(current) ||
2302 current->flags & PF_EXITING))
2303 goto bypass;
2304
2305 if (unlikely(task_in_memcg_oom(current)))
2306 goto nomem;
2307
6539cc05
JW
2308 if (!(gfp_mask & __GFP_WAIT))
2309 goto nomem;
4b534334 2310
241994ed
JW
2311 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2312
b70a2a21
JW
2313 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2314 gfp_mask, may_swap);
6539cc05 2315
61e02c74 2316 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2317 goto retry;
28c34c29 2318
b70a2a21 2319 if (!drained) {
6d3d6aa2 2320 drain_all_stock(mem_over_limit);
b70a2a21
JW
2321 drained = true;
2322 goto retry;
2323 }
2324
28c34c29
JW
2325 if (gfp_mask & __GFP_NORETRY)
2326 goto nomem;
6539cc05
JW
2327 /*
2328 * Even though the limit is exceeded at this point, reclaim
2329 * may have been able to free some pages. Retry the charge
2330 * before killing the task.
2331 *
2332 * Only for regular pages, though: huge pages are rather
2333 * unlikely to succeed so close to the limit, and we fall back
2334 * to regular pages anyway in case of failure.
2335 */
61e02c74 2336 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2337 goto retry;
2338 /*
2339 * At task move, charge accounts can be doubly counted. So, it's
2340 * better to wait until the end of task_move if something is going on.
2341 */
2342 if (mem_cgroup_wait_acct_move(mem_over_limit))
2343 goto retry;
2344
9b130619
JW
2345 if (nr_retries--)
2346 goto retry;
2347
06b078fc
JW
2348 if (gfp_mask & __GFP_NOFAIL)
2349 goto bypass;
2350
6539cc05
JW
2351 if (fatal_signal_pending(current))
2352 goto bypass;
2353
241994ed
JW
2354 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2355
61e02c74 2356 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2357nomem:
6d1fdc48 2358 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2359 return -ENOMEM;
867578cb 2360bypass:
ce00a967 2361 return -EINTR;
6539cc05
JW
2362
2363done_restock:
e8ea14cc 2364 css_get_many(&memcg->css, batch);
6539cc05
JW
2365 if (batch > nr_pages)
2366 refill_stock(memcg, batch - nr_pages);
241994ed
JW
2367 /*
2368 * If the hierarchy is above the normal consumption range,
2369 * make the charging task trim their excess contribution.
2370 */
2371 do {
2372 if (page_counter_read(&memcg->memory) <= memcg->high)
2373 continue;
2374 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2375 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2376 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2377done:
05b84301 2378 return ret;
7a81b88c 2379}
8a9f3ccd 2380
00501b53 2381static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2382{
ce00a967
JW
2383 if (mem_cgroup_is_root(memcg))
2384 return;
2385
3e32cb2e 2386 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2387 if (do_swap_account)
3e32cb2e 2388 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2389
e8ea14cc 2390 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2391}
2392
0a31bc97
JW
2393/*
2394 * try_get_mem_cgroup_from_page - look up page's memcg association
2395 * @page: the page
2396 *
2397 * Look up, get a css reference, and return the memcg that owns @page.
2398 *
2399 * The page must be locked to prevent racing with swap-in and page
2400 * cache charges. If coming from an unlocked page table, the caller
2401 * must ensure the page is on the LRU or this can race with charging.
2402 */
e42d9d5d 2403struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2404{
29833315 2405 struct mem_cgroup *memcg;
a3b2d692 2406 unsigned short id;
b5a84319
KH
2407 swp_entry_t ent;
2408
309381fe 2409 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2410
1306a85a 2411 memcg = page->mem_cgroup;
29833315
JW
2412 if (memcg) {
2413 if (!css_tryget_online(&memcg->css))
c0ff4b85 2414 memcg = NULL;
e42d9d5d 2415 } else if (PageSwapCache(page)) {
3c776e64 2416 ent.val = page_private(page);
9fb4b7cc 2417 id = lookup_swap_cgroup_id(ent);
a3b2d692 2418 rcu_read_lock();
adbe427b 2419 memcg = mem_cgroup_from_id(id);
ec903c0c 2420 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2421 memcg = NULL;
a3b2d692 2422 rcu_read_unlock();
3c776e64 2423 }
c0ff4b85 2424 return memcg;
b5a84319
KH
2425}
2426
0a31bc97
JW
2427static void lock_page_lru(struct page *page, int *isolated)
2428{
2429 struct zone *zone = page_zone(page);
2430
2431 spin_lock_irq(&zone->lru_lock);
2432 if (PageLRU(page)) {
2433 struct lruvec *lruvec;
2434
2435 lruvec = mem_cgroup_page_lruvec(page, zone);
2436 ClearPageLRU(page);
2437 del_page_from_lru_list(page, lruvec, page_lru(page));
2438 *isolated = 1;
2439 } else
2440 *isolated = 0;
2441}
2442
2443static void unlock_page_lru(struct page *page, int isolated)
2444{
2445 struct zone *zone = page_zone(page);
2446
2447 if (isolated) {
2448 struct lruvec *lruvec;
2449
2450 lruvec = mem_cgroup_page_lruvec(page, zone);
2451 VM_BUG_ON_PAGE(PageLRU(page), page);
2452 SetPageLRU(page);
2453 add_page_to_lru_list(page, lruvec, page_lru(page));
2454 }
2455 spin_unlock_irq(&zone->lru_lock);
2456}
2457
00501b53 2458static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2459 bool lrucare)
7a81b88c 2460{
0a31bc97 2461 int isolated;
9ce70c02 2462
1306a85a 2463 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2464
2465 /*
2466 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2467 * may already be on some other mem_cgroup's LRU. Take care of it.
2468 */
0a31bc97
JW
2469 if (lrucare)
2470 lock_page_lru(page, &isolated);
9ce70c02 2471
0a31bc97
JW
2472 /*
2473 * Nobody should be changing or seriously looking at
1306a85a 2474 * page->mem_cgroup at this point:
0a31bc97
JW
2475 *
2476 * - the page is uncharged
2477 *
2478 * - the page is off-LRU
2479 *
2480 * - an anonymous fault has exclusive page access, except for
2481 * a locked page table
2482 *
2483 * - a page cache insertion, a swapin fault, or a migration
2484 * have the page locked
2485 */
1306a85a 2486 page->mem_cgroup = memcg;
9ce70c02 2487
0a31bc97
JW
2488 if (lrucare)
2489 unlock_page_lru(page, isolated);
7a81b88c 2490}
66e1707b 2491
7ae1e1d0 2492#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2493int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2494 unsigned long nr_pages)
7ae1e1d0 2495{
3e32cb2e 2496 struct page_counter *counter;
7ae1e1d0 2497 int ret = 0;
7ae1e1d0 2498
3e32cb2e
JW
2499 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2500 if (ret < 0)
7ae1e1d0
GC
2501 return ret;
2502
3e32cb2e 2503 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2504 if (ret == -EINTR) {
2505 /*
00501b53
JW
2506 * try_charge() chose to bypass to root due to OOM kill or
2507 * fatal signal. Since our only options are to either fail
2508 * the allocation or charge it to this cgroup, do it as a
2509 * temporary condition. But we can't fail. From a kmem/slab
2510 * perspective, the cache has already been selected, by
2511 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2512 * our minds.
2513 *
2514 * This condition will only trigger if the task entered
00501b53
JW
2515 * memcg_charge_kmem in a sane state, but was OOM-killed
2516 * during try_charge() above. Tasks that were already dying
2517 * when the allocation triggers should have been already
7ae1e1d0
GC
2518 * directed to the root cgroup in memcontrol.h
2519 */
3e32cb2e 2520 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2521 if (do_swap_account)
3e32cb2e 2522 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2523 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2524 ret = 0;
2525 } else if (ret)
3e32cb2e 2526 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2527
2528 return ret;
2529}
2530
dbf22eb6 2531void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2532{
3e32cb2e 2533 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2534 if (do_swap_account)
3e32cb2e 2535 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2536
64f21993 2537 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2538
e8ea14cc 2539 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2540}
2541
2633d7a0
GC
2542/*
2543 * helper for acessing a memcg's index. It will be used as an index in the
2544 * child cache array in kmem_cache, and also to derive its name. This function
2545 * will return -1 when this is not a kmem-limited memcg.
2546 */
2547int memcg_cache_id(struct mem_cgroup *memcg)
2548{
2549 return memcg ? memcg->kmemcg_id : -1;
2550}
2551
f3bb3043 2552static int memcg_alloc_cache_id(void)
55007d84 2553{
f3bb3043
VD
2554 int id, size;
2555 int err;
2556
dbcf73e2 2557 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2558 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2559 if (id < 0)
2560 return id;
55007d84 2561
dbcf73e2 2562 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2563 return id;
2564
2565 /*
2566 * There's no space for the new id in memcg_caches arrays,
2567 * so we have to grow them.
2568 */
05257a1a 2569 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2570
2571 size = 2 * (id + 1);
55007d84
GC
2572 if (size < MEMCG_CACHES_MIN_SIZE)
2573 size = MEMCG_CACHES_MIN_SIZE;
2574 else if (size > MEMCG_CACHES_MAX_SIZE)
2575 size = MEMCG_CACHES_MAX_SIZE;
2576
f3bb3043 2577 err = memcg_update_all_caches(size);
60d3fd32
VD
2578 if (!err)
2579 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2580 if (!err)
2581 memcg_nr_cache_ids = size;
2582
2583 up_write(&memcg_cache_ids_sem);
2584
f3bb3043 2585 if (err) {
dbcf73e2 2586 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2587 return err;
2588 }
2589 return id;
2590}
2591
2592static void memcg_free_cache_id(int id)
2593{
dbcf73e2 2594 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2595}
2596
d5b3cf71 2597struct memcg_kmem_cache_create_work {
5722d094
VD
2598 struct mem_cgroup *memcg;
2599 struct kmem_cache *cachep;
2600 struct work_struct work;
2601};
2602
d5b3cf71 2603static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2604{
d5b3cf71
VD
2605 struct memcg_kmem_cache_create_work *cw =
2606 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2607 struct mem_cgroup *memcg = cw->memcg;
2608 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2609
d5b3cf71 2610 memcg_create_kmem_cache(memcg, cachep);
bd673145 2611
5722d094 2612 css_put(&memcg->css);
d7f25f8a
GC
2613 kfree(cw);
2614}
2615
2616/*
2617 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2618 */
d5b3cf71
VD
2619static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2620 struct kmem_cache *cachep)
d7f25f8a 2621{
d5b3cf71 2622 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2623
776ed0f0 2624 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2625 if (!cw)
d7f25f8a 2626 return;
8135be5a
VD
2627
2628 css_get(&memcg->css);
d7f25f8a
GC
2629
2630 cw->memcg = memcg;
2631 cw->cachep = cachep;
d5b3cf71 2632 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2633
d7f25f8a
GC
2634 schedule_work(&cw->work);
2635}
2636
d5b3cf71
VD
2637static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2638 struct kmem_cache *cachep)
0e9d92f2
GC
2639{
2640 /*
2641 * We need to stop accounting when we kmalloc, because if the
2642 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2643 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2644 *
2645 * However, it is better to enclose the whole function. Depending on
2646 * the debugging options enabled, INIT_WORK(), for instance, can
2647 * trigger an allocation. This too, will make us recurse. Because at
2648 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2649 * the safest choice is to do it like this, wrapping the whole function.
2650 */
6f185c29 2651 current->memcg_kmem_skip_account = 1;
d5b3cf71 2652 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2653 current->memcg_kmem_skip_account = 0;
0e9d92f2 2654}
c67a8a68 2655
d7f25f8a
GC
2656/*
2657 * Return the kmem_cache we're supposed to use for a slab allocation.
2658 * We try to use the current memcg's version of the cache.
2659 *
2660 * If the cache does not exist yet, if we are the first user of it,
2661 * we either create it immediately, if possible, or create it asynchronously
2662 * in a workqueue.
2663 * In the latter case, we will let the current allocation go through with
2664 * the original cache.
2665 *
2666 * Can't be called in interrupt context or from kernel threads.
2667 * This function needs to be called with rcu_read_lock() held.
2668 */
056b7cce 2669struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2670{
2671 struct mem_cgroup *memcg;
959c8963 2672 struct kmem_cache *memcg_cachep;
2a4db7eb 2673 int kmemcg_id;
d7f25f8a 2674
f7ce3190 2675 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2676
9d100c5e 2677 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2678 return cachep;
2679
8135be5a 2680 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2681 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2682 if (kmemcg_id < 0)
ca0dde97 2683 goto out;
d7f25f8a 2684
2a4db7eb 2685 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2686 if (likely(memcg_cachep))
2687 return memcg_cachep;
ca0dde97
LZ
2688
2689 /*
2690 * If we are in a safe context (can wait, and not in interrupt
2691 * context), we could be be predictable and return right away.
2692 * This would guarantee that the allocation being performed
2693 * already belongs in the new cache.
2694 *
2695 * However, there are some clashes that can arrive from locking.
2696 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2697 * memcg_create_kmem_cache, this means no further allocation
2698 * could happen with the slab_mutex held. So it's better to
2699 * defer everything.
ca0dde97 2700 */
d5b3cf71 2701 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2702out:
8135be5a 2703 css_put(&memcg->css);
ca0dde97 2704 return cachep;
d7f25f8a 2705}
d7f25f8a 2706
8135be5a
VD
2707void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2708{
2709 if (!is_root_cache(cachep))
f7ce3190 2710 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2711}
2712
7ae1e1d0
GC
2713/*
2714 * We need to verify if the allocation against current->mm->owner's memcg is
2715 * possible for the given order. But the page is not allocated yet, so we'll
2716 * need a further commit step to do the final arrangements.
2717 *
2718 * It is possible for the task to switch cgroups in this mean time, so at
2719 * commit time, we can't rely on task conversion any longer. We'll then use
2720 * the handle argument to return to the caller which cgroup we should commit
2721 * against. We could also return the memcg directly and avoid the pointer
2722 * passing, but a boolean return value gives better semantics considering
2723 * the compiled-out case as well.
2724 *
2725 * Returning true means the allocation is possible.
2726 */
2727bool
2728__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2729{
2730 struct mem_cgroup *memcg;
2731 int ret;
2732
2733 *_memcg = NULL;
6d42c232 2734
df381975 2735 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2736
cf2b8fbf 2737 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2738 css_put(&memcg->css);
2739 return true;
2740 }
2741
3e32cb2e 2742 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2743 if (!ret)
2744 *_memcg = memcg;
7ae1e1d0
GC
2745
2746 css_put(&memcg->css);
2747 return (ret == 0);
2748}
2749
2750void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2751 int order)
2752{
7ae1e1d0
GC
2753 VM_BUG_ON(mem_cgroup_is_root(memcg));
2754
2755 /* The page allocation failed. Revert */
2756 if (!page) {
3e32cb2e 2757 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2758 return;
2759 }
1306a85a 2760 page->mem_cgroup = memcg;
7ae1e1d0
GC
2761}
2762
2763void __memcg_kmem_uncharge_pages(struct page *page, int order)
2764{
1306a85a 2765 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2766
7ae1e1d0
GC
2767 if (!memcg)
2768 return;
2769
309381fe 2770 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2771
3e32cb2e 2772 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2773 page->mem_cgroup = NULL;
7ae1e1d0 2774}
60d3fd32
VD
2775
2776struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2777{
2778 struct mem_cgroup *memcg = NULL;
2779 struct kmem_cache *cachep;
2780 struct page *page;
2781
2782 page = virt_to_head_page(ptr);
2783 if (PageSlab(page)) {
2784 cachep = page->slab_cache;
2785 if (!is_root_cache(cachep))
f7ce3190 2786 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2787 } else
2788 /* page allocated by alloc_kmem_pages */
2789 memcg = page->mem_cgroup;
2790
2791 return memcg;
2792}
7ae1e1d0
GC
2793#endif /* CONFIG_MEMCG_KMEM */
2794
ca3e0214
KH
2795#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2796
ca3e0214
KH
2797/*
2798 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2799 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2800 * charge/uncharge will be never happen and move_account() is done under
2801 * compound_lock(), so we don't have to take care of races.
ca3e0214 2802 */
e94c8a9c 2803void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2804{
e94c8a9c 2805 int i;
ca3e0214 2806
3d37c4a9
KH
2807 if (mem_cgroup_disabled())
2808 return;
b070e65c 2809
29833315 2810 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2811 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2812
1306a85a 2813 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2814 HPAGE_PMD_NR);
ca3e0214 2815}
12d27107 2816#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2817
c255a458 2818#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2819static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2820 bool charge)
d13d1443 2821{
0a31bc97
JW
2822 int val = (charge) ? 1 : -1;
2823 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2824}
02491447
DN
2825
2826/**
2827 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2828 * @entry: swap entry to be moved
2829 * @from: mem_cgroup which the entry is moved from
2830 * @to: mem_cgroup which the entry is moved to
2831 *
2832 * It succeeds only when the swap_cgroup's record for this entry is the same
2833 * as the mem_cgroup's id of @from.
2834 *
2835 * Returns 0 on success, -EINVAL on failure.
2836 *
3e32cb2e 2837 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2838 * both res and memsw, and called css_get().
2839 */
2840static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2841 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2842{
2843 unsigned short old_id, new_id;
2844
34c00c31
LZ
2845 old_id = mem_cgroup_id(from);
2846 new_id = mem_cgroup_id(to);
02491447
DN
2847
2848 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2849 mem_cgroup_swap_statistics(from, false);
483c30b5 2850 mem_cgroup_swap_statistics(to, true);
02491447
DN
2851 return 0;
2852 }
2853 return -EINVAL;
2854}
2855#else
2856static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2857 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2858{
2859 return -EINVAL;
2860}
8c7c6e34 2861#endif
d13d1443 2862
3e32cb2e 2863static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2864
d38d2a75 2865static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2866 unsigned long limit)
628f4235 2867{
3e32cb2e
JW
2868 unsigned long curusage;
2869 unsigned long oldusage;
2870 bool enlarge = false;
81d39c20 2871 int retry_count;
3e32cb2e 2872 int ret;
81d39c20
KH
2873
2874 /*
2875 * For keeping hierarchical_reclaim simple, how long we should retry
2876 * is depends on callers. We set our retry-count to be function
2877 * of # of children which we should visit in this loop.
2878 */
3e32cb2e
JW
2879 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2880 mem_cgroup_count_children(memcg);
81d39c20 2881
3e32cb2e 2882 oldusage = page_counter_read(&memcg->memory);
628f4235 2883
3e32cb2e 2884 do {
628f4235
KH
2885 if (signal_pending(current)) {
2886 ret = -EINTR;
2887 break;
2888 }
3e32cb2e
JW
2889
2890 mutex_lock(&memcg_limit_mutex);
2891 if (limit > memcg->memsw.limit) {
2892 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2893 ret = -EINVAL;
628f4235
KH
2894 break;
2895 }
3e32cb2e
JW
2896 if (limit > memcg->memory.limit)
2897 enlarge = true;
2898 ret = page_counter_limit(&memcg->memory, limit);
2899 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2900
2901 if (!ret)
2902 break;
2903
b70a2a21
JW
2904 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2905
3e32cb2e 2906 curusage = page_counter_read(&memcg->memory);
81d39c20 2907 /* Usage is reduced ? */
f894ffa8 2908 if (curusage >= oldusage)
81d39c20
KH
2909 retry_count--;
2910 else
2911 oldusage = curusage;
3e32cb2e
JW
2912 } while (retry_count);
2913
3c11ecf4
KH
2914 if (!ret && enlarge)
2915 memcg_oom_recover(memcg);
14797e23 2916
8c7c6e34
KH
2917 return ret;
2918}
2919
338c8431 2920static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2921 unsigned long limit)
8c7c6e34 2922{
3e32cb2e
JW
2923 unsigned long curusage;
2924 unsigned long oldusage;
2925 bool enlarge = false;
81d39c20 2926 int retry_count;
3e32cb2e 2927 int ret;
8c7c6e34 2928
81d39c20 2929 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2930 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2931 mem_cgroup_count_children(memcg);
2932
2933 oldusage = page_counter_read(&memcg->memsw);
2934
2935 do {
8c7c6e34
KH
2936 if (signal_pending(current)) {
2937 ret = -EINTR;
2938 break;
2939 }
3e32cb2e
JW
2940
2941 mutex_lock(&memcg_limit_mutex);
2942 if (limit < memcg->memory.limit) {
2943 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2944 ret = -EINVAL;
8c7c6e34
KH
2945 break;
2946 }
3e32cb2e
JW
2947 if (limit > memcg->memsw.limit)
2948 enlarge = true;
2949 ret = page_counter_limit(&memcg->memsw, limit);
2950 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2951
2952 if (!ret)
2953 break;
2954
b70a2a21
JW
2955 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2956
3e32cb2e 2957 curusage = page_counter_read(&memcg->memsw);
81d39c20 2958 /* Usage is reduced ? */
8c7c6e34 2959 if (curusage >= oldusage)
628f4235 2960 retry_count--;
81d39c20
KH
2961 else
2962 oldusage = curusage;
3e32cb2e
JW
2963 } while (retry_count);
2964
3c11ecf4
KH
2965 if (!ret && enlarge)
2966 memcg_oom_recover(memcg);
3e32cb2e 2967
628f4235
KH
2968 return ret;
2969}
2970
0608f43d
AM
2971unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2972 gfp_t gfp_mask,
2973 unsigned long *total_scanned)
2974{
2975 unsigned long nr_reclaimed = 0;
2976 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2977 unsigned long reclaimed;
2978 int loop = 0;
2979 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2980 unsigned long excess;
0608f43d
AM
2981 unsigned long nr_scanned;
2982
2983 if (order > 0)
2984 return 0;
2985
2986 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2987 /*
2988 * This loop can run a while, specially if mem_cgroup's continuously
2989 * keep exceeding their soft limit and putting the system under
2990 * pressure
2991 */
2992 do {
2993 if (next_mz)
2994 mz = next_mz;
2995 else
2996 mz = mem_cgroup_largest_soft_limit_node(mctz);
2997 if (!mz)
2998 break;
2999
3000 nr_scanned = 0;
3001 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3002 gfp_mask, &nr_scanned);
3003 nr_reclaimed += reclaimed;
3004 *total_scanned += nr_scanned;
0a31bc97 3005 spin_lock_irq(&mctz->lock);
bc2f2e7f 3006 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3007
3008 /*
3009 * If we failed to reclaim anything from this memory cgroup
3010 * it is time to move on to the next cgroup
3011 */
3012 next_mz = NULL;
bc2f2e7f
VD
3013 if (!reclaimed)
3014 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3015
3e32cb2e 3016 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3017 /*
3018 * One school of thought says that we should not add
3019 * back the node to the tree if reclaim returns 0.
3020 * But our reclaim could return 0, simply because due
3021 * to priority we are exposing a smaller subset of
3022 * memory to reclaim from. Consider this as a longer
3023 * term TODO.
3024 */
3025 /* If excess == 0, no tree ops */
cf2c8127 3026 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3027 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3028 css_put(&mz->memcg->css);
3029 loop++;
3030 /*
3031 * Could not reclaim anything and there are no more
3032 * mem cgroups to try or we seem to be looping without
3033 * reclaiming anything.
3034 */
3035 if (!nr_reclaimed &&
3036 (next_mz == NULL ||
3037 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3038 break;
3039 } while (!nr_reclaimed);
3040 if (next_mz)
3041 css_put(&next_mz->memcg->css);
3042 return nr_reclaimed;
3043}
3044
ea280e7b
TH
3045/*
3046 * Test whether @memcg has children, dead or alive. Note that this
3047 * function doesn't care whether @memcg has use_hierarchy enabled and
3048 * returns %true if there are child csses according to the cgroup
3049 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3050 */
b5f99b53
GC
3051static inline bool memcg_has_children(struct mem_cgroup *memcg)
3052{
ea280e7b
TH
3053 bool ret;
3054
696ac172 3055 /*
ea280e7b
TH
3056 * The lock does not prevent addition or deletion of children, but
3057 * it prevents a new child from being initialized based on this
3058 * parent in css_online(), so it's enough to decide whether
3059 * hierarchically inherited attributes can still be changed or not.
696ac172 3060 */
ea280e7b
TH
3061 lockdep_assert_held(&memcg_create_mutex);
3062
3063 rcu_read_lock();
3064 ret = css_next_child(NULL, &memcg->css);
3065 rcu_read_unlock();
3066 return ret;
b5f99b53
GC
3067}
3068
c26251f9
MH
3069/*
3070 * Reclaims as many pages from the given memcg as possible and moves
3071 * the rest to the parent.
3072 *
3073 * Caller is responsible for holding css reference for memcg.
3074 */
3075static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3076{
3077 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3078
c1e862c1
KH
3079 /* we call try-to-free pages for make this cgroup empty */
3080 lru_add_drain_all();
f817ed48 3081 /* try to free all pages in this cgroup */
3e32cb2e 3082 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3083 int progress;
c1e862c1 3084
c26251f9
MH
3085 if (signal_pending(current))
3086 return -EINTR;
3087
b70a2a21
JW
3088 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3089 GFP_KERNEL, true);
c1e862c1 3090 if (!progress) {
f817ed48 3091 nr_retries--;
c1e862c1 3092 /* maybe some writeback is necessary */
8aa7e847 3093 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3094 }
f817ed48
KH
3095
3096 }
ab5196c2
MH
3097
3098 return 0;
cc847582
KH
3099}
3100
6770c64e
TH
3101static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3102 char *buf, size_t nbytes,
3103 loff_t off)
c1e862c1 3104{
6770c64e 3105 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3106
d8423011
MH
3107 if (mem_cgroup_is_root(memcg))
3108 return -EINVAL;
6770c64e 3109 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3110}
3111
182446d0
TH
3112static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3113 struct cftype *cft)
18f59ea7 3114{
182446d0 3115 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3116}
3117
182446d0
TH
3118static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3119 struct cftype *cft, u64 val)
18f59ea7
BS
3120{
3121 int retval = 0;
182446d0 3122 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3123 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3124
0999821b 3125 mutex_lock(&memcg_create_mutex);
567fb435
GC
3126
3127 if (memcg->use_hierarchy == val)
3128 goto out;
3129
18f59ea7 3130 /*
af901ca1 3131 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3132 * in the child subtrees. If it is unset, then the change can
3133 * occur, provided the current cgroup has no children.
3134 *
3135 * For the root cgroup, parent_mem is NULL, we allow value to be
3136 * set if there are no children.
3137 */
c0ff4b85 3138 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3139 (val == 1 || val == 0)) {
ea280e7b 3140 if (!memcg_has_children(memcg))
c0ff4b85 3141 memcg->use_hierarchy = val;
18f59ea7
BS
3142 else
3143 retval = -EBUSY;
3144 } else
3145 retval = -EINVAL;
567fb435
GC
3146
3147out:
0999821b 3148 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3149
3150 return retval;
3151}
3152
3e32cb2e
JW
3153static unsigned long tree_stat(struct mem_cgroup *memcg,
3154 enum mem_cgroup_stat_index idx)
ce00a967
JW
3155{
3156 struct mem_cgroup *iter;
3157 long val = 0;
3158
3159 /* Per-cpu values can be negative, use a signed accumulator */
3160 for_each_mem_cgroup_tree(iter, memcg)
3161 val += mem_cgroup_read_stat(iter, idx);
3162
3163 if (val < 0) /* race ? */
3164 val = 0;
3165 return val;
3166}
3167
3168static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3169{
3170 u64 val;
3171
3e32cb2e
JW
3172 if (mem_cgroup_is_root(memcg)) {
3173 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3174 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3175 if (swap)
3176 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3177 } else {
ce00a967 3178 if (!swap)
3e32cb2e 3179 val = page_counter_read(&memcg->memory);
ce00a967 3180 else
3e32cb2e 3181 val = page_counter_read(&memcg->memsw);
ce00a967 3182 }
ce00a967
JW
3183 return val << PAGE_SHIFT;
3184}
3185
3e32cb2e
JW
3186enum {
3187 RES_USAGE,
3188 RES_LIMIT,
3189 RES_MAX_USAGE,
3190 RES_FAILCNT,
3191 RES_SOFT_LIMIT,
3192};
ce00a967 3193
791badbd 3194static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3195 struct cftype *cft)
8cdea7c0 3196{
182446d0 3197 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3198 struct page_counter *counter;
af36f906 3199
3e32cb2e 3200 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3201 case _MEM:
3e32cb2e
JW
3202 counter = &memcg->memory;
3203 break;
8c7c6e34 3204 case _MEMSWAP:
3e32cb2e
JW
3205 counter = &memcg->memsw;
3206 break;
510fc4e1 3207 case _KMEM:
3e32cb2e 3208 counter = &memcg->kmem;
510fc4e1 3209 break;
8c7c6e34
KH
3210 default:
3211 BUG();
8c7c6e34 3212 }
3e32cb2e
JW
3213
3214 switch (MEMFILE_ATTR(cft->private)) {
3215 case RES_USAGE:
3216 if (counter == &memcg->memory)
3217 return mem_cgroup_usage(memcg, false);
3218 if (counter == &memcg->memsw)
3219 return mem_cgroup_usage(memcg, true);
3220 return (u64)page_counter_read(counter) * PAGE_SIZE;
3221 case RES_LIMIT:
3222 return (u64)counter->limit * PAGE_SIZE;
3223 case RES_MAX_USAGE:
3224 return (u64)counter->watermark * PAGE_SIZE;
3225 case RES_FAILCNT:
3226 return counter->failcnt;
3227 case RES_SOFT_LIMIT:
3228 return (u64)memcg->soft_limit * PAGE_SIZE;
3229 default:
3230 BUG();
3231 }
8cdea7c0 3232}
510fc4e1 3233
510fc4e1 3234#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3235static int memcg_activate_kmem(struct mem_cgroup *memcg,
3236 unsigned long nr_pages)
d6441637
VD
3237{
3238 int err = 0;
3239 int memcg_id;
3240
2a4db7eb 3241 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 3242 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 3243 BUG_ON(memcg->kmem_acct_active);
d6441637 3244
510fc4e1
GC
3245 /*
3246 * For simplicity, we won't allow this to be disabled. It also can't
3247 * be changed if the cgroup has children already, or if tasks had
3248 * already joined.
3249 *
3250 * If tasks join before we set the limit, a person looking at
3251 * kmem.usage_in_bytes will have no way to determine when it took
3252 * place, which makes the value quite meaningless.
3253 *
3254 * After it first became limited, changes in the value of the limit are
3255 * of course permitted.
510fc4e1 3256 */
0999821b 3257 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3258 if (cgroup_has_tasks(memcg->css.cgroup) ||
3259 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3260 err = -EBUSY;
3261 mutex_unlock(&memcg_create_mutex);
3262 if (err)
3263 goto out;
510fc4e1 3264
f3bb3043 3265 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3266 if (memcg_id < 0) {
3267 err = memcg_id;
3268 goto out;
3269 }
3270
d6441637 3271 /*
900a38f0
VD
3272 * We couldn't have accounted to this cgroup, because it hasn't got
3273 * activated yet, so this should succeed.
d6441637 3274 */
3e32cb2e 3275 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3276 VM_BUG_ON(err);
3277
3278 static_key_slow_inc(&memcg_kmem_enabled_key);
3279 /*
900a38f0
VD
3280 * A memory cgroup is considered kmem-active as soon as it gets
3281 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3282 * guarantee no one starts accounting before all call sites are
3283 * patched.
3284 */
900a38f0 3285 memcg->kmemcg_id = memcg_id;
2788cf0c 3286 memcg->kmem_acct_activated = true;
2a4db7eb 3287 memcg->kmem_acct_active = true;
510fc4e1 3288out:
d6441637 3289 return err;
d6441637
VD
3290}
3291
d6441637 3292static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3293 unsigned long limit)
d6441637
VD
3294{
3295 int ret;
3296
3e32cb2e 3297 mutex_lock(&memcg_limit_mutex);
d6441637 3298 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3299 ret = memcg_activate_kmem(memcg, limit);
d6441637 3300 else
3e32cb2e
JW
3301 ret = page_counter_limit(&memcg->kmem, limit);
3302 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3303 return ret;
3304}
3305
55007d84 3306static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3307{
55007d84 3308 int ret = 0;
510fc4e1 3309 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3310
d6441637
VD
3311 if (!parent)
3312 return 0;
55007d84 3313
8c0145b6 3314 mutex_lock(&memcg_limit_mutex);
55007d84 3315 /*
d6441637
VD
3316 * If the parent cgroup is not kmem-active now, it cannot be activated
3317 * after this point, because it has at least one child already.
55007d84 3318 */
d6441637 3319 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3320 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3321 mutex_unlock(&memcg_limit_mutex);
55007d84 3322 return ret;
510fc4e1 3323}
d6441637
VD
3324#else
3325static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3326 unsigned long limit)
d6441637
VD
3327{
3328 return -EINVAL;
3329}
6d043990 3330#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3331
628f4235
KH
3332/*
3333 * The user of this function is...
3334 * RES_LIMIT.
3335 */
451af504
TH
3336static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3337 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3338{
451af504 3339 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3340 unsigned long nr_pages;
628f4235
KH
3341 int ret;
3342
451af504 3343 buf = strstrip(buf);
650c5e56 3344 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3345 if (ret)
3346 return ret;
af36f906 3347
3e32cb2e 3348 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3349 case RES_LIMIT:
4b3bde4c
BS
3350 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3351 ret = -EINVAL;
3352 break;
3353 }
3e32cb2e
JW
3354 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3355 case _MEM:
3356 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3357 break;
3e32cb2e
JW
3358 case _MEMSWAP:
3359 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3360 break;
3e32cb2e
JW
3361 case _KMEM:
3362 ret = memcg_update_kmem_limit(memcg, nr_pages);
3363 break;
3364 }
296c81d8 3365 break;
3e32cb2e
JW
3366 case RES_SOFT_LIMIT:
3367 memcg->soft_limit = nr_pages;
3368 ret = 0;
628f4235
KH
3369 break;
3370 }
451af504 3371 return ret ?: nbytes;
8cdea7c0
BS
3372}
3373
6770c64e
TH
3374static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3375 size_t nbytes, loff_t off)
c84872e1 3376{
6770c64e 3377 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3378 struct page_counter *counter;
c84872e1 3379
3e32cb2e
JW
3380 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3381 case _MEM:
3382 counter = &memcg->memory;
3383 break;
3384 case _MEMSWAP:
3385 counter = &memcg->memsw;
3386 break;
3387 case _KMEM:
3388 counter = &memcg->kmem;
3389 break;
3390 default:
3391 BUG();
3392 }
af36f906 3393
3e32cb2e 3394 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3395 case RES_MAX_USAGE:
3e32cb2e 3396 page_counter_reset_watermark(counter);
29f2a4da
PE
3397 break;
3398 case RES_FAILCNT:
3e32cb2e 3399 counter->failcnt = 0;
29f2a4da 3400 break;
3e32cb2e
JW
3401 default:
3402 BUG();
29f2a4da 3403 }
f64c3f54 3404
6770c64e 3405 return nbytes;
c84872e1
PE
3406}
3407
182446d0 3408static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3409 struct cftype *cft)
3410{
182446d0 3411 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3412}
3413
02491447 3414#ifdef CONFIG_MMU
182446d0 3415static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3416 struct cftype *cft, u64 val)
3417{
182446d0 3418 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3419
1dfab5ab 3420 if (val & ~MOVE_MASK)
7dc74be0 3421 return -EINVAL;
ee5e8472 3422
7dc74be0 3423 /*
ee5e8472
GC
3424 * No kind of locking is needed in here, because ->can_attach() will
3425 * check this value once in the beginning of the process, and then carry
3426 * on with stale data. This means that changes to this value will only
3427 * affect task migrations starting after the change.
7dc74be0 3428 */
c0ff4b85 3429 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3430 return 0;
3431}
02491447 3432#else
182446d0 3433static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3434 struct cftype *cft, u64 val)
3435{
3436 return -ENOSYS;
3437}
3438#endif
7dc74be0 3439
406eb0c9 3440#ifdef CONFIG_NUMA
2da8ca82 3441static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3442{
25485de6
GT
3443 struct numa_stat {
3444 const char *name;
3445 unsigned int lru_mask;
3446 };
3447
3448 static const struct numa_stat stats[] = {
3449 { "total", LRU_ALL },
3450 { "file", LRU_ALL_FILE },
3451 { "anon", LRU_ALL_ANON },
3452 { "unevictable", BIT(LRU_UNEVICTABLE) },
3453 };
3454 const struct numa_stat *stat;
406eb0c9 3455 int nid;
25485de6 3456 unsigned long nr;
2da8ca82 3457 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3458
25485de6
GT
3459 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3460 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3461 seq_printf(m, "%s=%lu", stat->name, nr);
3462 for_each_node_state(nid, N_MEMORY) {
3463 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3464 stat->lru_mask);
3465 seq_printf(m, " N%d=%lu", nid, nr);
3466 }
3467 seq_putc(m, '\n');
406eb0c9 3468 }
406eb0c9 3469
071aee13
YH
3470 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3471 struct mem_cgroup *iter;
3472
3473 nr = 0;
3474 for_each_mem_cgroup_tree(iter, memcg)
3475 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3476 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3477 for_each_node_state(nid, N_MEMORY) {
3478 nr = 0;
3479 for_each_mem_cgroup_tree(iter, memcg)
3480 nr += mem_cgroup_node_nr_lru_pages(
3481 iter, nid, stat->lru_mask);
3482 seq_printf(m, " N%d=%lu", nid, nr);
3483 }
3484 seq_putc(m, '\n');
406eb0c9 3485 }
406eb0c9 3486
406eb0c9
YH
3487 return 0;
3488}
3489#endif /* CONFIG_NUMA */
3490
2da8ca82 3491static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3492{
2da8ca82 3493 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3494 unsigned long memory, memsw;
af7c4b0e
JW
3495 struct mem_cgroup *mi;
3496 unsigned int i;
406eb0c9 3497
0ca44b14
GT
3498 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3499 MEM_CGROUP_STAT_NSTATS);
3500 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3501 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3502 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3503
af7c4b0e 3504 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3505 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3506 continue;
af7c4b0e
JW
3507 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3508 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3509 }
7b854121 3510
af7c4b0e
JW
3511 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3512 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3513 mem_cgroup_read_events(memcg, i));
3514
3515 for (i = 0; i < NR_LRU_LISTS; i++)
3516 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3517 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3518
14067bb3 3519 /* Hierarchical information */
3e32cb2e
JW
3520 memory = memsw = PAGE_COUNTER_MAX;
3521 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3522 memory = min(memory, mi->memory.limit);
3523 memsw = min(memsw, mi->memsw.limit);
fee7b548 3524 }
3e32cb2e
JW
3525 seq_printf(m, "hierarchical_memory_limit %llu\n",
3526 (u64)memory * PAGE_SIZE);
3527 if (do_swap_account)
3528 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3529 (u64)memsw * PAGE_SIZE);
7f016ee8 3530
af7c4b0e
JW
3531 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3532 long long val = 0;
3533
bff6bb83 3534 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3535 continue;
af7c4b0e
JW
3536 for_each_mem_cgroup_tree(mi, memcg)
3537 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3538 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3539 }
3540
3541 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3542 unsigned long long val = 0;
3543
3544 for_each_mem_cgroup_tree(mi, memcg)
3545 val += mem_cgroup_read_events(mi, i);
3546 seq_printf(m, "total_%s %llu\n",
3547 mem_cgroup_events_names[i], val);
3548 }
3549
3550 for (i = 0; i < NR_LRU_LISTS; i++) {
3551 unsigned long long val = 0;
3552
3553 for_each_mem_cgroup_tree(mi, memcg)
3554 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3555 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3556 }
14067bb3 3557
7f016ee8 3558#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3559 {
3560 int nid, zid;
3561 struct mem_cgroup_per_zone *mz;
89abfab1 3562 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3563 unsigned long recent_rotated[2] = {0, 0};
3564 unsigned long recent_scanned[2] = {0, 0};
3565
3566 for_each_online_node(nid)
3567 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3568 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3569 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3570
89abfab1
HD
3571 recent_rotated[0] += rstat->recent_rotated[0];
3572 recent_rotated[1] += rstat->recent_rotated[1];
3573 recent_scanned[0] += rstat->recent_scanned[0];
3574 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3575 }
78ccf5b5
JW
3576 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3577 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3578 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3579 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3580 }
3581#endif
3582
d2ceb9b7
KH
3583 return 0;
3584}
3585
182446d0
TH
3586static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3587 struct cftype *cft)
a7885eb8 3588{
182446d0 3589 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3590
1f4c025b 3591 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3592}
3593
182446d0
TH
3594static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3595 struct cftype *cft, u64 val)
a7885eb8 3596{
182446d0 3597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3598
3dae7fec 3599 if (val > 100)
a7885eb8
KM
3600 return -EINVAL;
3601
14208b0e 3602 if (css->parent)
3dae7fec
JW
3603 memcg->swappiness = val;
3604 else
3605 vm_swappiness = val;
068b38c1 3606
a7885eb8
KM
3607 return 0;
3608}
3609
2e72b634
KS
3610static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3611{
3612 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3613 unsigned long usage;
2e72b634
KS
3614 int i;
3615
3616 rcu_read_lock();
3617 if (!swap)
2c488db2 3618 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3619 else
2c488db2 3620 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3621
3622 if (!t)
3623 goto unlock;
3624
ce00a967 3625 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3626
3627 /*
748dad36 3628 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3629 * If it's not true, a threshold was crossed after last
3630 * call of __mem_cgroup_threshold().
3631 */
5407a562 3632 i = t->current_threshold;
2e72b634
KS
3633
3634 /*
3635 * Iterate backward over array of thresholds starting from
3636 * current_threshold and check if a threshold is crossed.
3637 * If none of thresholds below usage is crossed, we read
3638 * only one element of the array here.
3639 */
3640 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3641 eventfd_signal(t->entries[i].eventfd, 1);
3642
3643 /* i = current_threshold + 1 */
3644 i++;
3645
3646 /*
3647 * Iterate forward over array of thresholds starting from
3648 * current_threshold+1 and check if a threshold is crossed.
3649 * If none of thresholds above usage is crossed, we read
3650 * only one element of the array here.
3651 */
3652 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3653 eventfd_signal(t->entries[i].eventfd, 1);
3654
3655 /* Update current_threshold */
5407a562 3656 t->current_threshold = i - 1;
2e72b634
KS
3657unlock:
3658 rcu_read_unlock();
3659}
3660
3661static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3662{
ad4ca5f4
KS
3663 while (memcg) {
3664 __mem_cgroup_threshold(memcg, false);
3665 if (do_swap_account)
3666 __mem_cgroup_threshold(memcg, true);
3667
3668 memcg = parent_mem_cgroup(memcg);
3669 }
2e72b634
KS
3670}
3671
3672static int compare_thresholds(const void *a, const void *b)
3673{
3674 const struct mem_cgroup_threshold *_a = a;
3675 const struct mem_cgroup_threshold *_b = b;
3676
2bff24a3
GT
3677 if (_a->threshold > _b->threshold)
3678 return 1;
3679
3680 if (_a->threshold < _b->threshold)
3681 return -1;
3682
3683 return 0;
2e72b634
KS
3684}
3685
c0ff4b85 3686static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3687{
3688 struct mem_cgroup_eventfd_list *ev;
3689
2bcf2e92
MH
3690 spin_lock(&memcg_oom_lock);
3691
c0ff4b85 3692 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3693 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3694
3695 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3696 return 0;
3697}
3698
c0ff4b85 3699static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3700{
7d74b06f
KH
3701 struct mem_cgroup *iter;
3702
c0ff4b85 3703 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3704 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3705}
3706
59b6f873 3707static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3708 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3709{
2c488db2
KS
3710 struct mem_cgroup_thresholds *thresholds;
3711 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3712 unsigned long threshold;
3713 unsigned long usage;
2c488db2 3714 int i, size, ret;
2e72b634 3715
650c5e56 3716 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3717 if (ret)
3718 return ret;
3719
3720 mutex_lock(&memcg->thresholds_lock);
2c488db2 3721
05b84301 3722 if (type == _MEM) {
2c488db2 3723 thresholds = &memcg->thresholds;
ce00a967 3724 usage = mem_cgroup_usage(memcg, false);
05b84301 3725 } else if (type == _MEMSWAP) {
2c488db2 3726 thresholds = &memcg->memsw_thresholds;
ce00a967 3727 usage = mem_cgroup_usage(memcg, true);
05b84301 3728 } else
2e72b634
KS
3729 BUG();
3730
2e72b634 3731 /* Check if a threshold crossed before adding a new one */
2c488db2 3732 if (thresholds->primary)
2e72b634
KS
3733 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3734
2c488db2 3735 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3736
3737 /* Allocate memory for new array of thresholds */
2c488db2 3738 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3739 GFP_KERNEL);
2c488db2 3740 if (!new) {
2e72b634
KS
3741 ret = -ENOMEM;
3742 goto unlock;
3743 }
2c488db2 3744 new->size = size;
2e72b634
KS
3745
3746 /* Copy thresholds (if any) to new array */
2c488db2
KS
3747 if (thresholds->primary) {
3748 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3749 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3750 }
3751
2e72b634 3752 /* Add new threshold */
2c488db2
KS
3753 new->entries[size - 1].eventfd = eventfd;
3754 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3755
3756 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3757 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3758 compare_thresholds, NULL);
3759
3760 /* Find current threshold */
2c488db2 3761 new->current_threshold = -1;
2e72b634 3762 for (i = 0; i < size; i++) {
748dad36 3763 if (new->entries[i].threshold <= usage) {
2e72b634 3764 /*
2c488db2
KS
3765 * new->current_threshold will not be used until
3766 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3767 * it here.
3768 */
2c488db2 3769 ++new->current_threshold;
748dad36
SZ
3770 } else
3771 break;
2e72b634
KS
3772 }
3773
2c488db2
KS
3774 /* Free old spare buffer and save old primary buffer as spare */
3775 kfree(thresholds->spare);
3776 thresholds->spare = thresholds->primary;
3777
3778 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3779
907860ed 3780 /* To be sure that nobody uses thresholds */
2e72b634
KS
3781 synchronize_rcu();
3782
2e72b634
KS
3783unlock:
3784 mutex_unlock(&memcg->thresholds_lock);
3785
3786 return ret;
3787}
3788
59b6f873 3789static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3790 struct eventfd_ctx *eventfd, const char *args)
3791{
59b6f873 3792 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3793}
3794
59b6f873 3795static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3796 struct eventfd_ctx *eventfd, const char *args)
3797{
59b6f873 3798 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3799}
3800
59b6f873 3801static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3802 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3803{
2c488db2
KS
3804 struct mem_cgroup_thresholds *thresholds;
3805 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3806 unsigned long usage;
2c488db2 3807 int i, j, size;
2e72b634
KS
3808
3809 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3810
3811 if (type == _MEM) {
2c488db2 3812 thresholds = &memcg->thresholds;
ce00a967 3813 usage = mem_cgroup_usage(memcg, false);
05b84301 3814 } else if (type == _MEMSWAP) {
2c488db2 3815 thresholds = &memcg->memsw_thresholds;
ce00a967 3816 usage = mem_cgroup_usage(memcg, true);
05b84301 3817 } else
2e72b634
KS
3818 BUG();
3819
371528ca
AV
3820 if (!thresholds->primary)
3821 goto unlock;
3822
2e72b634
KS
3823 /* Check if a threshold crossed before removing */
3824 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3825
3826 /* Calculate new number of threshold */
2c488db2
KS
3827 size = 0;
3828 for (i = 0; i < thresholds->primary->size; i++) {
3829 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3830 size++;
3831 }
3832
2c488db2 3833 new = thresholds->spare;
907860ed 3834
2e72b634
KS
3835 /* Set thresholds array to NULL if we don't have thresholds */
3836 if (!size) {
2c488db2
KS
3837 kfree(new);
3838 new = NULL;
907860ed 3839 goto swap_buffers;
2e72b634
KS
3840 }
3841
2c488db2 3842 new->size = size;
2e72b634
KS
3843
3844 /* Copy thresholds and find current threshold */
2c488db2
KS
3845 new->current_threshold = -1;
3846 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3847 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3848 continue;
3849
2c488db2 3850 new->entries[j] = thresholds->primary->entries[i];
748dad36 3851 if (new->entries[j].threshold <= usage) {
2e72b634 3852 /*
2c488db2 3853 * new->current_threshold will not be used
2e72b634
KS
3854 * until rcu_assign_pointer(), so it's safe to increment
3855 * it here.
3856 */
2c488db2 3857 ++new->current_threshold;
2e72b634
KS
3858 }
3859 j++;
3860 }
3861
907860ed 3862swap_buffers:
2c488db2
KS
3863 /* Swap primary and spare array */
3864 thresholds->spare = thresholds->primary;
8c757763
SZ
3865 /* If all events are unregistered, free the spare array */
3866 if (!new) {
3867 kfree(thresholds->spare);
3868 thresholds->spare = NULL;
3869 }
3870
2c488db2 3871 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3872
907860ed 3873 /* To be sure that nobody uses thresholds */
2e72b634 3874 synchronize_rcu();
371528ca 3875unlock:
2e72b634 3876 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3877}
c1e862c1 3878
59b6f873 3879static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3880 struct eventfd_ctx *eventfd)
3881{
59b6f873 3882 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3883}
3884
59b6f873 3885static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3886 struct eventfd_ctx *eventfd)
3887{
59b6f873 3888 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3889}
3890
59b6f873 3891static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3892 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3893{
9490ff27 3894 struct mem_cgroup_eventfd_list *event;
9490ff27 3895
9490ff27
KH
3896 event = kmalloc(sizeof(*event), GFP_KERNEL);
3897 if (!event)
3898 return -ENOMEM;
3899
1af8efe9 3900 spin_lock(&memcg_oom_lock);
9490ff27
KH
3901
3902 event->eventfd = eventfd;
3903 list_add(&event->list, &memcg->oom_notify);
3904
3905 /* already in OOM ? */
79dfdacc 3906 if (atomic_read(&memcg->under_oom))
9490ff27 3907 eventfd_signal(eventfd, 1);
1af8efe9 3908 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3909
3910 return 0;
3911}
3912
59b6f873 3913static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3914 struct eventfd_ctx *eventfd)
9490ff27 3915{
9490ff27 3916 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3917
1af8efe9 3918 spin_lock(&memcg_oom_lock);
9490ff27 3919
c0ff4b85 3920 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3921 if (ev->eventfd == eventfd) {
3922 list_del(&ev->list);
3923 kfree(ev);
3924 }
3925 }
3926
1af8efe9 3927 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3928}
3929
2da8ca82 3930static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3931{
2da8ca82 3932 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3933
791badbd
TH
3934 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3935 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
3936 return 0;
3937}
3938
182446d0 3939static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3940 struct cftype *cft, u64 val)
3941{
182446d0 3942 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3943
3944 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3945 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3946 return -EINVAL;
3947
c0ff4b85 3948 memcg->oom_kill_disable = val;
4d845ebf 3949 if (!val)
c0ff4b85 3950 memcg_oom_recover(memcg);
3dae7fec 3951
3c11ecf4
KH
3952 return 0;
3953}
3954
c255a458 3955#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3956static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3957{
55007d84
GC
3958 int ret;
3959
55007d84
GC
3960 ret = memcg_propagate_kmem(memcg);
3961 if (ret)
3962 return ret;
2633d7a0 3963
1d62e436 3964 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3965}
e5671dfa 3966
2a4db7eb
VD
3967static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3968{
2788cf0c
VD
3969 struct cgroup_subsys_state *css;
3970 struct mem_cgroup *parent, *child;
3971 int kmemcg_id;
3972
2a4db7eb
VD
3973 if (!memcg->kmem_acct_active)
3974 return;
3975
3976 /*
3977 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3978 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3979 * guarantees no cache will be created for this cgroup after we are
3980 * done (see memcg_create_kmem_cache()).
3981 */
3982 memcg->kmem_acct_active = false;
3983
3984 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3985
3986 kmemcg_id = memcg->kmemcg_id;
3987 BUG_ON(kmemcg_id < 0);
3988
3989 parent = parent_mem_cgroup(memcg);
3990 if (!parent)
3991 parent = root_mem_cgroup;
3992
3993 /*
3994 * Change kmemcg_id of this cgroup and all its descendants to the
3995 * parent's id, and then move all entries from this cgroup's list_lrus
3996 * to ones of the parent. After we have finished, all list_lrus
3997 * corresponding to this cgroup are guaranteed to remain empty. The
3998 * ordering is imposed by list_lru_node->lock taken by
3999 * memcg_drain_all_list_lrus().
4000 */
4001 css_for_each_descendant_pre(css, &memcg->css) {
4002 child = mem_cgroup_from_css(css);
4003 BUG_ON(child->kmemcg_id != kmemcg_id);
4004 child->kmemcg_id = parent->kmemcg_id;
4005 if (!memcg->use_hierarchy)
4006 break;
4007 }
4008 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
4009
4010 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
4011}
4012
10d5ebf4 4013static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4014{
f48b80a5
VD
4015 if (memcg->kmem_acct_activated) {
4016 memcg_destroy_kmem_caches(memcg);
4017 static_key_slow_dec(&memcg_kmem_enabled_key);
4018 WARN_ON(page_counter_read(&memcg->kmem));
4019 }
1d62e436 4020 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4021}
e5671dfa 4022#else
cbe128e3 4023static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4024{
4025 return 0;
4026}
d1a4c0b3 4027
2a4db7eb
VD
4028static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
4029{
4030}
4031
10d5ebf4
LZ
4032static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4033{
4034}
e5671dfa
GC
4035#endif
4036
52ebea74
TH
4037#ifdef CONFIG_CGROUP_WRITEBACK
4038
4039struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
4040{
4041 return &memcg->cgwb_list;
4042}
4043
4044#endif /* CONFIG_CGROUP_WRITEBACK */
4045
3bc942f3
TH
4046/*
4047 * DO NOT USE IN NEW FILES.
4048 *
4049 * "cgroup.event_control" implementation.
4050 *
4051 * This is way over-engineered. It tries to support fully configurable
4052 * events for each user. Such level of flexibility is completely
4053 * unnecessary especially in the light of the planned unified hierarchy.
4054 *
4055 * Please deprecate this and replace with something simpler if at all
4056 * possible.
4057 */
4058
79bd9814
TH
4059/*
4060 * Unregister event and free resources.
4061 *
4062 * Gets called from workqueue.
4063 */
3bc942f3 4064static void memcg_event_remove(struct work_struct *work)
79bd9814 4065{
3bc942f3
TH
4066 struct mem_cgroup_event *event =
4067 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4068 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4069
4070 remove_wait_queue(event->wqh, &event->wait);
4071
59b6f873 4072 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4073
4074 /* Notify userspace the event is going away. */
4075 eventfd_signal(event->eventfd, 1);
4076
4077 eventfd_ctx_put(event->eventfd);
4078 kfree(event);
59b6f873 4079 css_put(&memcg->css);
79bd9814
TH
4080}
4081
4082/*
4083 * Gets called on POLLHUP on eventfd when user closes it.
4084 *
4085 * Called with wqh->lock held and interrupts disabled.
4086 */
3bc942f3
TH
4087static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4088 int sync, void *key)
79bd9814 4089{
3bc942f3
TH
4090 struct mem_cgroup_event *event =
4091 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4092 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4093 unsigned long flags = (unsigned long)key;
4094
4095 if (flags & POLLHUP) {
4096 /*
4097 * If the event has been detached at cgroup removal, we
4098 * can simply return knowing the other side will cleanup
4099 * for us.
4100 *
4101 * We can't race against event freeing since the other
4102 * side will require wqh->lock via remove_wait_queue(),
4103 * which we hold.
4104 */
fba94807 4105 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4106 if (!list_empty(&event->list)) {
4107 list_del_init(&event->list);
4108 /*
4109 * We are in atomic context, but cgroup_event_remove()
4110 * may sleep, so we have to call it in workqueue.
4111 */
4112 schedule_work(&event->remove);
4113 }
fba94807 4114 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4115 }
4116
4117 return 0;
4118}
4119
3bc942f3 4120static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4121 wait_queue_head_t *wqh, poll_table *pt)
4122{
3bc942f3
TH
4123 struct mem_cgroup_event *event =
4124 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4125
4126 event->wqh = wqh;
4127 add_wait_queue(wqh, &event->wait);
4128}
4129
4130/*
3bc942f3
TH
4131 * DO NOT USE IN NEW FILES.
4132 *
79bd9814
TH
4133 * Parse input and register new cgroup event handler.
4134 *
4135 * Input must be in format '<event_fd> <control_fd> <args>'.
4136 * Interpretation of args is defined by control file implementation.
4137 */
451af504
TH
4138static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4139 char *buf, size_t nbytes, loff_t off)
79bd9814 4140{
451af504 4141 struct cgroup_subsys_state *css = of_css(of);
fba94807 4142 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4143 struct mem_cgroup_event *event;
79bd9814
TH
4144 struct cgroup_subsys_state *cfile_css;
4145 unsigned int efd, cfd;
4146 struct fd efile;
4147 struct fd cfile;
fba94807 4148 const char *name;
79bd9814
TH
4149 char *endp;
4150 int ret;
4151
451af504
TH
4152 buf = strstrip(buf);
4153
4154 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4155 if (*endp != ' ')
4156 return -EINVAL;
451af504 4157 buf = endp + 1;
79bd9814 4158
451af504 4159 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4160 if ((*endp != ' ') && (*endp != '\0'))
4161 return -EINVAL;
451af504 4162 buf = endp + 1;
79bd9814
TH
4163
4164 event = kzalloc(sizeof(*event), GFP_KERNEL);
4165 if (!event)
4166 return -ENOMEM;
4167
59b6f873 4168 event->memcg = memcg;
79bd9814 4169 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4170 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4171 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4172 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4173
4174 efile = fdget(efd);
4175 if (!efile.file) {
4176 ret = -EBADF;
4177 goto out_kfree;
4178 }
4179
4180 event->eventfd = eventfd_ctx_fileget(efile.file);
4181 if (IS_ERR(event->eventfd)) {
4182 ret = PTR_ERR(event->eventfd);
4183 goto out_put_efile;
4184 }
4185
4186 cfile = fdget(cfd);
4187 if (!cfile.file) {
4188 ret = -EBADF;
4189 goto out_put_eventfd;
4190 }
4191
4192 /* the process need read permission on control file */
4193 /* AV: shouldn't we check that it's been opened for read instead? */
4194 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4195 if (ret < 0)
4196 goto out_put_cfile;
4197
fba94807
TH
4198 /*
4199 * Determine the event callbacks and set them in @event. This used
4200 * to be done via struct cftype but cgroup core no longer knows
4201 * about these events. The following is crude but the whole thing
4202 * is for compatibility anyway.
3bc942f3
TH
4203 *
4204 * DO NOT ADD NEW FILES.
fba94807 4205 */
b583043e 4206 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4207
4208 if (!strcmp(name, "memory.usage_in_bytes")) {
4209 event->register_event = mem_cgroup_usage_register_event;
4210 event->unregister_event = mem_cgroup_usage_unregister_event;
4211 } else if (!strcmp(name, "memory.oom_control")) {
4212 event->register_event = mem_cgroup_oom_register_event;
4213 event->unregister_event = mem_cgroup_oom_unregister_event;
4214 } else if (!strcmp(name, "memory.pressure_level")) {
4215 event->register_event = vmpressure_register_event;
4216 event->unregister_event = vmpressure_unregister_event;
4217 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4218 event->register_event = memsw_cgroup_usage_register_event;
4219 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4220 } else {
4221 ret = -EINVAL;
4222 goto out_put_cfile;
4223 }
4224
79bd9814 4225 /*
b5557c4c
TH
4226 * Verify @cfile should belong to @css. Also, remaining events are
4227 * automatically removed on cgroup destruction but the removal is
4228 * asynchronous, so take an extra ref on @css.
79bd9814 4229 */
b583043e 4230 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4231 &memory_cgrp_subsys);
79bd9814 4232 ret = -EINVAL;
5a17f543 4233 if (IS_ERR(cfile_css))
79bd9814 4234 goto out_put_cfile;
5a17f543
TH
4235 if (cfile_css != css) {
4236 css_put(cfile_css);
79bd9814 4237 goto out_put_cfile;
5a17f543 4238 }
79bd9814 4239
451af504 4240 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4241 if (ret)
4242 goto out_put_css;
4243
4244 efile.file->f_op->poll(efile.file, &event->pt);
4245
fba94807
TH
4246 spin_lock(&memcg->event_list_lock);
4247 list_add(&event->list, &memcg->event_list);
4248 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4249
4250 fdput(cfile);
4251 fdput(efile);
4252
451af504 4253 return nbytes;
79bd9814
TH
4254
4255out_put_css:
b5557c4c 4256 css_put(css);
79bd9814
TH
4257out_put_cfile:
4258 fdput(cfile);
4259out_put_eventfd:
4260 eventfd_ctx_put(event->eventfd);
4261out_put_efile:
4262 fdput(efile);
4263out_kfree:
4264 kfree(event);
4265
4266 return ret;
4267}
4268
241994ed 4269static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4270 {
0eea1030 4271 .name = "usage_in_bytes",
8c7c6e34 4272 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4273 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4274 },
c84872e1
PE
4275 {
4276 .name = "max_usage_in_bytes",
8c7c6e34 4277 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4278 .write = mem_cgroup_reset,
791badbd 4279 .read_u64 = mem_cgroup_read_u64,
c84872e1 4280 },
8cdea7c0 4281 {
0eea1030 4282 .name = "limit_in_bytes",
8c7c6e34 4283 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4284 .write = mem_cgroup_write,
791badbd 4285 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4286 },
296c81d8
BS
4287 {
4288 .name = "soft_limit_in_bytes",
4289 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4290 .write = mem_cgroup_write,
791badbd 4291 .read_u64 = mem_cgroup_read_u64,
296c81d8 4292 },
8cdea7c0
BS
4293 {
4294 .name = "failcnt",
8c7c6e34 4295 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4296 .write = mem_cgroup_reset,
791badbd 4297 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4298 },
d2ceb9b7
KH
4299 {
4300 .name = "stat",
2da8ca82 4301 .seq_show = memcg_stat_show,
d2ceb9b7 4302 },
c1e862c1
KH
4303 {
4304 .name = "force_empty",
6770c64e 4305 .write = mem_cgroup_force_empty_write,
c1e862c1 4306 },
18f59ea7
BS
4307 {
4308 .name = "use_hierarchy",
4309 .write_u64 = mem_cgroup_hierarchy_write,
4310 .read_u64 = mem_cgroup_hierarchy_read,
4311 },
79bd9814 4312 {
3bc942f3 4313 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4314 .write = memcg_write_event_control,
79bd9814
TH
4315 .flags = CFTYPE_NO_PREFIX,
4316 .mode = S_IWUGO,
4317 },
a7885eb8
KM
4318 {
4319 .name = "swappiness",
4320 .read_u64 = mem_cgroup_swappiness_read,
4321 .write_u64 = mem_cgroup_swappiness_write,
4322 },
7dc74be0
DN
4323 {
4324 .name = "move_charge_at_immigrate",
4325 .read_u64 = mem_cgroup_move_charge_read,
4326 .write_u64 = mem_cgroup_move_charge_write,
4327 },
9490ff27
KH
4328 {
4329 .name = "oom_control",
2da8ca82 4330 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4331 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4332 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4333 },
70ddf637
AV
4334 {
4335 .name = "pressure_level",
70ddf637 4336 },
406eb0c9
YH
4337#ifdef CONFIG_NUMA
4338 {
4339 .name = "numa_stat",
2da8ca82 4340 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4341 },
4342#endif
510fc4e1
GC
4343#ifdef CONFIG_MEMCG_KMEM
4344 {
4345 .name = "kmem.limit_in_bytes",
4346 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4347 .write = mem_cgroup_write,
791badbd 4348 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4349 },
4350 {
4351 .name = "kmem.usage_in_bytes",
4352 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4353 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4354 },
4355 {
4356 .name = "kmem.failcnt",
4357 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4358 .write = mem_cgroup_reset,
791badbd 4359 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4360 },
4361 {
4362 .name = "kmem.max_usage_in_bytes",
4363 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4364 .write = mem_cgroup_reset,
791badbd 4365 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4366 },
749c5415
GC
4367#ifdef CONFIG_SLABINFO
4368 {
4369 .name = "kmem.slabinfo",
b047501c
VD
4370 .seq_start = slab_start,
4371 .seq_next = slab_next,
4372 .seq_stop = slab_stop,
4373 .seq_show = memcg_slab_show,
749c5415
GC
4374 },
4375#endif
8c7c6e34 4376#endif
6bc10349 4377 { }, /* terminate */
af36f906 4378};
8c7c6e34 4379
c0ff4b85 4380static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4381{
4382 struct mem_cgroup_per_node *pn;
1ecaab2b 4383 struct mem_cgroup_per_zone *mz;
41e3355d 4384 int zone, tmp = node;
1ecaab2b
KH
4385 /*
4386 * This routine is called against possible nodes.
4387 * But it's BUG to call kmalloc() against offline node.
4388 *
4389 * TODO: this routine can waste much memory for nodes which will
4390 * never be onlined. It's better to use memory hotplug callback
4391 * function.
4392 */
41e3355d
KH
4393 if (!node_state(node, N_NORMAL_MEMORY))
4394 tmp = -1;
17295c88 4395 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4396 if (!pn)
4397 return 1;
1ecaab2b 4398
1ecaab2b
KH
4399 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4400 mz = &pn->zoneinfo[zone];
bea8c150 4401 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4402 mz->usage_in_excess = 0;
4403 mz->on_tree = false;
d79154bb 4404 mz->memcg = memcg;
1ecaab2b 4405 }
54f72fe0 4406 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4407 return 0;
4408}
4409
c0ff4b85 4410static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4411{
54f72fe0 4412 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4413}
4414
33327948
KH
4415static struct mem_cgroup *mem_cgroup_alloc(void)
4416{
d79154bb 4417 struct mem_cgroup *memcg;
8ff69e2c 4418 size_t size;
33327948 4419
8ff69e2c
VD
4420 size = sizeof(struct mem_cgroup);
4421 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4422
8ff69e2c 4423 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4424 if (!memcg)
e7bbcdf3
DC
4425 return NULL;
4426
d79154bb
HD
4427 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4428 if (!memcg->stat)
d2e61b8d 4429 goto out_free;
d79154bb
HD
4430 spin_lock_init(&memcg->pcp_counter_lock);
4431 return memcg;
d2e61b8d
DC
4432
4433out_free:
8ff69e2c 4434 kfree(memcg);
d2e61b8d 4435 return NULL;
33327948
KH
4436}
4437
59927fb9 4438/*
c8b2a36f
GC
4439 * At destroying mem_cgroup, references from swap_cgroup can remain.
4440 * (scanning all at force_empty is too costly...)
4441 *
4442 * Instead of clearing all references at force_empty, we remember
4443 * the number of reference from swap_cgroup and free mem_cgroup when
4444 * it goes down to 0.
4445 *
4446 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4447 */
c8b2a36f
GC
4448
4449static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4450{
c8b2a36f 4451 int node;
59927fb9 4452
bb4cc1a8 4453 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4454
4455 for_each_node(node)
4456 free_mem_cgroup_per_zone_info(memcg, node);
4457
4458 free_percpu(memcg->stat);
8ff69e2c 4459 kfree(memcg);
59927fb9 4460}
3afe36b1 4461
7bcc1bb1
DN
4462/*
4463 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4464 */
e1aab161 4465struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4466{
3e32cb2e 4467 if (!memcg->memory.parent)
7bcc1bb1 4468 return NULL;
3e32cb2e 4469 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4470}
e1aab161 4471EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4472
0eb253e2 4473static struct cgroup_subsys_state * __ref
eb95419b 4474mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4475{
d142e3e6 4476 struct mem_cgroup *memcg;
04046e1a 4477 long error = -ENOMEM;
6d12e2d8 4478 int node;
8cdea7c0 4479
c0ff4b85
R
4480 memcg = mem_cgroup_alloc();
4481 if (!memcg)
04046e1a 4482 return ERR_PTR(error);
78fb7466 4483
3ed28fa1 4484 for_each_node(node)
c0ff4b85 4485 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4486 goto free_out;
f64c3f54 4487
c077719b 4488 /* root ? */
eb95419b 4489 if (parent_css == NULL) {
a41c58a6 4490 root_mem_cgroup = memcg;
56161634 4491 mem_cgroup_root_css = &memcg->css;
3e32cb2e 4492 page_counter_init(&memcg->memory, NULL);
241994ed 4493 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4494 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4495 page_counter_init(&memcg->memsw, NULL);
4496 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4497 }
28dbc4b6 4498
d142e3e6
GC
4499 memcg->last_scanned_node = MAX_NUMNODES;
4500 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4501 memcg->move_charge_at_immigrate = 0;
4502 mutex_init(&memcg->thresholds_lock);
4503 spin_lock_init(&memcg->move_lock);
70ddf637 4504 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4505 INIT_LIST_HEAD(&memcg->event_list);
4506 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4507#ifdef CONFIG_MEMCG_KMEM
4508 memcg->kmemcg_id = -1;
900a38f0 4509#endif
52ebea74
TH
4510#ifdef CONFIG_CGROUP_WRITEBACK
4511 INIT_LIST_HEAD(&memcg->cgwb_list);
4512#endif
d142e3e6
GC
4513 return &memcg->css;
4514
4515free_out:
4516 __mem_cgroup_free(memcg);
4517 return ERR_PTR(error);
4518}
4519
4520static int
eb95419b 4521mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4522{
eb95419b 4523 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4524 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4525 int ret;
d142e3e6 4526
15a4c835 4527 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4528 return -ENOSPC;
4529
63876986 4530 if (!parent)
d142e3e6
GC
4531 return 0;
4532
0999821b 4533 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4534
4535 memcg->use_hierarchy = parent->use_hierarchy;
4536 memcg->oom_kill_disable = parent->oom_kill_disable;
4537 memcg->swappiness = mem_cgroup_swappiness(parent);
4538
4539 if (parent->use_hierarchy) {
3e32cb2e 4540 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4541 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4542 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4543 page_counter_init(&memcg->memsw, &parent->memsw);
4544 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4545
7bcc1bb1 4546 /*
8d76a979
LZ
4547 * No need to take a reference to the parent because cgroup
4548 * core guarantees its existence.
7bcc1bb1 4549 */
18f59ea7 4550 } else {
3e32cb2e 4551 page_counter_init(&memcg->memory, NULL);
241994ed 4552 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4553 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4554 page_counter_init(&memcg->memsw, NULL);
4555 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4556 /*
4557 * Deeper hierachy with use_hierarchy == false doesn't make
4558 * much sense so let cgroup subsystem know about this
4559 * unfortunate state in our controller.
4560 */
d142e3e6 4561 if (parent != root_mem_cgroup)
073219e9 4562 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4563 }
0999821b 4564 mutex_unlock(&memcg_create_mutex);
d6441637 4565
2f7dd7a4
JW
4566 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4567 if (ret)
4568 return ret;
4569
4570 /*
4571 * Make sure the memcg is initialized: mem_cgroup_iter()
4572 * orders reading memcg->initialized against its callers
4573 * reading the memcg members.
4574 */
4575 smp_store_release(&memcg->initialized, 1);
4576
4577 return 0;
8cdea7c0
BS
4578}
4579
eb95419b 4580static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4581{
eb95419b 4582 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4583 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4584
4585 /*
4586 * Unregister events and notify userspace.
4587 * Notify userspace about cgroup removing only after rmdir of cgroup
4588 * directory to avoid race between userspace and kernelspace.
4589 */
fba94807
TH
4590 spin_lock(&memcg->event_list_lock);
4591 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4592 list_del_init(&event->list);
4593 schedule_work(&event->remove);
4594 }
fba94807 4595 spin_unlock(&memcg->event_list_lock);
ec64f515 4596
33cb876e 4597 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4598
4599 memcg_deactivate_kmem(memcg);
52ebea74
TH
4600
4601 wb_memcg_offline(memcg);
df878fb0
KH
4602}
4603
eb95419b 4604static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4605{
eb95419b 4606 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4607
10d5ebf4 4608 memcg_destroy_kmem(memcg);
465939a1 4609 __mem_cgroup_free(memcg);
8cdea7c0
BS
4610}
4611
1ced953b
TH
4612/**
4613 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4614 * @css: the target css
4615 *
4616 * Reset the states of the mem_cgroup associated with @css. This is
4617 * invoked when the userland requests disabling on the default hierarchy
4618 * but the memcg is pinned through dependency. The memcg should stop
4619 * applying policies and should revert to the vanilla state as it may be
4620 * made visible again.
4621 *
4622 * The current implementation only resets the essential configurations.
4623 * This needs to be expanded to cover all the visible parts.
4624 */
4625static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4626{
4627 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4628
3e32cb2e
JW
4629 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4630 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4631 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4632 memcg->low = 0;
4633 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4634 memcg->soft_limit = PAGE_COUNTER_MAX;
1ced953b
TH
4635}
4636
02491447 4637#ifdef CONFIG_MMU
7dc74be0 4638/* Handlers for move charge at task migration. */
854ffa8d 4639static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4640{
05b84301 4641 int ret;
9476db97
JW
4642
4643 /* Try a single bulk charge without reclaim first */
00501b53 4644 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4645 if (!ret) {
854ffa8d 4646 mc.precharge += count;
854ffa8d
DN
4647 return ret;
4648 }
692e7c45 4649 if (ret == -EINTR) {
00501b53 4650 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4651 return ret;
4652 }
9476db97
JW
4653
4654 /* Try charges one by one with reclaim */
854ffa8d 4655 while (count--) {
00501b53 4656 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4657 /*
4658 * In case of failure, any residual charges against
4659 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4660 * later on. However, cancel any charges that are
4661 * bypassed to root right away or they'll be lost.
9476db97 4662 */
692e7c45 4663 if (ret == -EINTR)
00501b53 4664 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4665 if (ret)
38c5d72f 4666 return ret;
854ffa8d 4667 mc.precharge++;
9476db97 4668 cond_resched();
854ffa8d 4669 }
9476db97 4670 return 0;
4ffef5fe
DN
4671}
4672
4673/**
8d32ff84 4674 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4675 * @vma: the vma the pte to be checked belongs
4676 * @addr: the address corresponding to the pte to be checked
4677 * @ptent: the pte to be checked
02491447 4678 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4679 *
4680 * Returns
4681 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4682 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4683 * move charge. if @target is not NULL, the page is stored in target->page
4684 * with extra refcnt got(Callers should handle it).
02491447
DN
4685 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4686 * target for charge migration. if @target is not NULL, the entry is stored
4687 * in target->ent.
4ffef5fe
DN
4688 *
4689 * Called with pte lock held.
4690 */
4ffef5fe
DN
4691union mc_target {
4692 struct page *page;
02491447 4693 swp_entry_t ent;
4ffef5fe
DN
4694};
4695
4ffef5fe 4696enum mc_target_type {
8d32ff84 4697 MC_TARGET_NONE = 0,
4ffef5fe 4698 MC_TARGET_PAGE,
02491447 4699 MC_TARGET_SWAP,
4ffef5fe
DN
4700};
4701
90254a65
DN
4702static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4703 unsigned long addr, pte_t ptent)
4ffef5fe 4704{
90254a65 4705 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4706
90254a65
DN
4707 if (!page || !page_mapped(page))
4708 return NULL;
4709 if (PageAnon(page)) {
1dfab5ab 4710 if (!(mc.flags & MOVE_ANON))
90254a65 4711 return NULL;
1dfab5ab
JW
4712 } else {
4713 if (!(mc.flags & MOVE_FILE))
4714 return NULL;
4715 }
90254a65
DN
4716 if (!get_page_unless_zero(page))
4717 return NULL;
4718
4719 return page;
4720}
4721
4b91355e 4722#ifdef CONFIG_SWAP
90254a65
DN
4723static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4724 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4725{
90254a65
DN
4726 struct page *page = NULL;
4727 swp_entry_t ent = pte_to_swp_entry(ptent);
4728
1dfab5ab 4729 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4730 return NULL;
4b91355e
KH
4731 /*
4732 * Because lookup_swap_cache() updates some statistics counter,
4733 * we call find_get_page() with swapper_space directly.
4734 */
33806f06 4735 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4736 if (do_swap_account)
4737 entry->val = ent.val;
4738
4739 return page;
4740}
4b91355e
KH
4741#else
4742static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4743 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4744{
4745 return NULL;
4746}
4747#endif
90254a65 4748
87946a72
DN
4749static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4750 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4751{
4752 struct page *page = NULL;
87946a72
DN
4753 struct address_space *mapping;
4754 pgoff_t pgoff;
4755
4756 if (!vma->vm_file) /* anonymous vma */
4757 return NULL;
1dfab5ab 4758 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4759 return NULL;
4760
87946a72 4761 mapping = vma->vm_file->f_mapping;
0661a336 4762 pgoff = linear_page_index(vma, addr);
87946a72
DN
4763
4764 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4765#ifdef CONFIG_SWAP
4766 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4767 if (shmem_mapping(mapping)) {
4768 page = find_get_entry(mapping, pgoff);
4769 if (radix_tree_exceptional_entry(page)) {
4770 swp_entry_t swp = radix_to_swp_entry(page);
4771 if (do_swap_account)
4772 *entry = swp;
4773 page = find_get_page(swap_address_space(swp), swp.val);
4774 }
4775 } else
4776 page = find_get_page(mapping, pgoff);
4777#else
4778 page = find_get_page(mapping, pgoff);
aa3b1895 4779#endif
87946a72
DN
4780 return page;
4781}
4782
b1b0deab
CG
4783/**
4784 * mem_cgroup_move_account - move account of the page
4785 * @page: the page
4786 * @nr_pages: number of regular pages (>1 for huge pages)
4787 * @from: mem_cgroup which the page is moved from.
4788 * @to: mem_cgroup which the page is moved to. @from != @to.
4789 *
4790 * The caller must confirm following.
4791 * - page is not on LRU (isolate_page() is useful.)
4792 * - compound_lock is held when nr_pages > 1
4793 *
4794 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4795 * from old cgroup.
4796 */
4797static int mem_cgroup_move_account(struct page *page,
4798 unsigned int nr_pages,
4799 struct mem_cgroup *from,
4800 struct mem_cgroup *to)
4801{
4802 unsigned long flags;
4803 int ret;
c4843a75 4804 bool anon;
b1b0deab
CG
4805
4806 VM_BUG_ON(from == to);
4807 VM_BUG_ON_PAGE(PageLRU(page), page);
4808 /*
4809 * The page is isolated from LRU. So, collapse function
4810 * will not handle this page. But page splitting can happen.
4811 * Do this check under compound_page_lock(). The caller should
4812 * hold it.
4813 */
4814 ret = -EBUSY;
4815 if (nr_pages > 1 && !PageTransHuge(page))
4816 goto out;
4817
4818 /*
4819 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4820 * of its source page while we change it: page migration takes
4821 * both pages off the LRU, but page cache replacement doesn't.
4822 */
4823 if (!trylock_page(page))
4824 goto out;
4825
4826 ret = -EINVAL;
4827 if (page->mem_cgroup != from)
4828 goto out_unlock;
4829
c4843a75
GT
4830 anon = PageAnon(page);
4831
b1b0deab
CG
4832 spin_lock_irqsave(&from->move_lock, flags);
4833
c4843a75 4834 if (!anon && page_mapped(page)) {
b1b0deab
CG
4835 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4836 nr_pages);
4837 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4838 nr_pages);
4839 }
4840
c4843a75
GT
4841 /*
4842 * move_lock grabbed above and caller set from->moving_account, so
4843 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4844 * So mapping should be stable for dirty pages.
4845 */
4846 if (!anon && PageDirty(page)) {
4847 struct address_space *mapping = page_mapping(page);
4848
4849 if (mapping_cap_account_dirty(mapping)) {
4850 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4851 nr_pages);
4852 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4853 nr_pages);
4854 }
4855 }
4856
b1b0deab
CG
4857 if (PageWriteback(page)) {
4858 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4859 nr_pages);
4860 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4861 nr_pages);
4862 }
4863
4864 /*
4865 * It is safe to change page->mem_cgroup here because the page
4866 * is referenced, charged, and isolated - we can't race with
4867 * uncharging, charging, migration, or LRU putback.
4868 */
4869
4870 /* caller should have done css_get */
4871 page->mem_cgroup = to;
4872 spin_unlock_irqrestore(&from->move_lock, flags);
4873
4874 ret = 0;
4875
4876 local_irq_disable();
4877 mem_cgroup_charge_statistics(to, page, nr_pages);
4878 memcg_check_events(to, page);
4879 mem_cgroup_charge_statistics(from, page, -nr_pages);
4880 memcg_check_events(from, page);
4881 local_irq_enable();
4882out_unlock:
4883 unlock_page(page);
4884out:
4885 return ret;
4886}
4887
8d32ff84 4888static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4889 unsigned long addr, pte_t ptent, union mc_target *target)
4890{
4891 struct page *page = NULL;
8d32ff84 4892 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4893 swp_entry_t ent = { .val = 0 };
4894
4895 if (pte_present(ptent))
4896 page = mc_handle_present_pte(vma, addr, ptent);
4897 else if (is_swap_pte(ptent))
4898 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4899 else if (pte_none(ptent))
87946a72 4900 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4901
4902 if (!page && !ent.val)
8d32ff84 4903 return ret;
02491447 4904 if (page) {
02491447 4905 /*
0a31bc97 4906 * Do only loose check w/o serialization.
1306a85a 4907 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4908 * not under LRU exclusion.
02491447 4909 */
1306a85a 4910 if (page->mem_cgroup == mc.from) {
02491447
DN
4911 ret = MC_TARGET_PAGE;
4912 if (target)
4913 target->page = page;
4914 }
4915 if (!ret || !target)
4916 put_page(page);
4917 }
90254a65
DN
4918 /* There is a swap entry and a page doesn't exist or isn't charged */
4919 if (ent.val && !ret &&
34c00c31 4920 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4921 ret = MC_TARGET_SWAP;
4922 if (target)
4923 target->ent = ent;
4ffef5fe 4924 }
4ffef5fe
DN
4925 return ret;
4926}
4927
12724850
NH
4928#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4929/*
4930 * We don't consider swapping or file mapped pages because THP does not
4931 * support them for now.
4932 * Caller should make sure that pmd_trans_huge(pmd) is true.
4933 */
4934static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4935 unsigned long addr, pmd_t pmd, union mc_target *target)
4936{
4937 struct page *page = NULL;
12724850
NH
4938 enum mc_target_type ret = MC_TARGET_NONE;
4939
4940 page = pmd_page(pmd);
309381fe 4941 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4942 if (!(mc.flags & MOVE_ANON))
12724850 4943 return ret;
1306a85a 4944 if (page->mem_cgroup == mc.from) {
12724850
NH
4945 ret = MC_TARGET_PAGE;
4946 if (target) {
4947 get_page(page);
4948 target->page = page;
4949 }
4950 }
4951 return ret;
4952}
4953#else
4954static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4955 unsigned long addr, pmd_t pmd, union mc_target *target)
4956{
4957 return MC_TARGET_NONE;
4958}
4959#endif
4960
4ffef5fe
DN
4961static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4962 unsigned long addr, unsigned long end,
4963 struct mm_walk *walk)
4964{
26bcd64a 4965 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4966 pte_t *pte;
4967 spinlock_t *ptl;
4968
bf929152 4969 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4970 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4971 mc.precharge += HPAGE_PMD_NR;
bf929152 4972 spin_unlock(ptl);
1a5a9906 4973 return 0;
12724850 4974 }
03319327 4975
45f83cef
AA
4976 if (pmd_trans_unstable(pmd))
4977 return 0;
4ffef5fe
DN
4978 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4979 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4980 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4981 mc.precharge++; /* increment precharge temporarily */
4982 pte_unmap_unlock(pte - 1, ptl);
4983 cond_resched();
4984
7dc74be0
DN
4985 return 0;
4986}
4987
4ffef5fe
DN
4988static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4989{
4990 unsigned long precharge;
4ffef5fe 4991
26bcd64a
NH
4992 struct mm_walk mem_cgroup_count_precharge_walk = {
4993 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4994 .mm = mm,
4995 };
dfe076b0 4996 down_read(&mm->mmap_sem);
26bcd64a 4997 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4998 up_read(&mm->mmap_sem);
4ffef5fe
DN
4999
5000 precharge = mc.precharge;
5001 mc.precharge = 0;
5002
5003 return precharge;
5004}
5005
4ffef5fe
DN
5006static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5007{
dfe076b0
DN
5008 unsigned long precharge = mem_cgroup_count_precharge(mm);
5009
5010 VM_BUG_ON(mc.moving_task);
5011 mc.moving_task = current;
5012 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5013}
5014
dfe076b0
DN
5015/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5016static void __mem_cgroup_clear_mc(void)
4ffef5fe 5017{
2bd9bb20
KH
5018 struct mem_cgroup *from = mc.from;
5019 struct mem_cgroup *to = mc.to;
5020
4ffef5fe 5021 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5022 if (mc.precharge) {
00501b53 5023 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5024 mc.precharge = 0;
5025 }
5026 /*
5027 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5028 * we must uncharge here.
5029 */
5030 if (mc.moved_charge) {
00501b53 5031 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5032 mc.moved_charge = 0;
4ffef5fe 5033 }
483c30b5
DN
5034 /* we must fixup refcnts and charges */
5035 if (mc.moved_swap) {
483c30b5 5036 /* uncharge swap account from the old cgroup */
ce00a967 5037 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5038 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5039
05b84301 5040 /*
3e32cb2e
JW
5041 * we charged both to->memory and to->memsw, so we
5042 * should uncharge to->memory.
05b84301 5043 */
ce00a967 5044 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5045 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5046
e8ea14cc 5047 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5048
4050377b 5049 /* we've already done css_get(mc.to) */
483c30b5
DN
5050 mc.moved_swap = 0;
5051 }
dfe076b0
DN
5052 memcg_oom_recover(from);
5053 memcg_oom_recover(to);
5054 wake_up_all(&mc.waitq);
5055}
5056
5057static void mem_cgroup_clear_mc(void)
5058{
dfe076b0
DN
5059 /*
5060 * we must clear moving_task before waking up waiters at the end of
5061 * task migration.
5062 */
5063 mc.moving_task = NULL;
5064 __mem_cgroup_clear_mc();
2bd9bb20 5065 spin_lock(&mc.lock);
4ffef5fe
DN
5066 mc.from = NULL;
5067 mc.to = NULL;
2bd9bb20 5068 spin_unlock(&mc.lock);
4ffef5fe
DN
5069}
5070
eb95419b 5071static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5072 struct cgroup_taskset *tset)
7dc74be0 5073{
2f7ee569 5074 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5075 int ret = 0;
eb95419b 5076 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1dfab5ab 5077 unsigned long move_flags;
7dc74be0 5078
ee5e8472
GC
5079 /*
5080 * We are now commited to this value whatever it is. Changes in this
5081 * tunable will only affect upcoming migrations, not the current one.
5082 * So we need to save it, and keep it going.
5083 */
4db0c3c2 5084 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
1dfab5ab 5085 if (move_flags) {
7dc74be0
DN
5086 struct mm_struct *mm;
5087 struct mem_cgroup *from = mem_cgroup_from_task(p);
5088
c0ff4b85 5089 VM_BUG_ON(from == memcg);
7dc74be0
DN
5090
5091 mm = get_task_mm(p);
5092 if (!mm)
5093 return 0;
7dc74be0 5094 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5095 if (mm->owner == p) {
5096 VM_BUG_ON(mc.from);
5097 VM_BUG_ON(mc.to);
5098 VM_BUG_ON(mc.precharge);
854ffa8d 5099 VM_BUG_ON(mc.moved_charge);
483c30b5 5100 VM_BUG_ON(mc.moved_swap);
247b1447 5101
2bd9bb20 5102 spin_lock(&mc.lock);
4ffef5fe 5103 mc.from = from;
c0ff4b85 5104 mc.to = memcg;
1dfab5ab 5105 mc.flags = move_flags;
2bd9bb20 5106 spin_unlock(&mc.lock);
dfe076b0 5107 /* We set mc.moving_task later */
4ffef5fe
DN
5108
5109 ret = mem_cgroup_precharge_mc(mm);
5110 if (ret)
5111 mem_cgroup_clear_mc();
dfe076b0
DN
5112 }
5113 mmput(mm);
7dc74be0
DN
5114 }
5115 return ret;
5116}
5117
eb95419b 5118static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5119 struct cgroup_taskset *tset)
7dc74be0 5120{
4e2f245d
JW
5121 if (mc.to)
5122 mem_cgroup_clear_mc();
7dc74be0
DN
5123}
5124
4ffef5fe
DN
5125static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5126 unsigned long addr, unsigned long end,
5127 struct mm_walk *walk)
7dc74be0 5128{
4ffef5fe 5129 int ret = 0;
26bcd64a 5130 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5131 pte_t *pte;
5132 spinlock_t *ptl;
12724850
NH
5133 enum mc_target_type target_type;
5134 union mc_target target;
5135 struct page *page;
4ffef5fe 5136
12724850
NH
5137 /*
5138 * We don't take compound_lock() here but no race with splitting thp
5139 * happens because:
5140 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5141 * under splitting, which means there's no concurrent thp split,
5142 * - if another thread runs into split_huge_page() just after we
5143 * entered this if-block, the thread must wait for page table lock
5144 * to be unlocked in __split_huge_page_splitting(), where the main
5145 * part of thp split is not executed yet.
5146 */
bf929152 5147 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5148 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5149 spin_unlock(ptl);
12724850
NH
5150 return 0;
5151 }
5152 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5153 if (target_type == MC_TARGET_PAGE) {
5154 page = target.page;
5155 if (!isolate_lru_page(page)) {
12724850 5156 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5157 mc.from, mc.to)) {
12724850
NH
5158 mc.precharge -= HPAGE_PMD_NR;
5159 mc.moved_charge += HPAGE_PMD_NR;
5160 }
5161 putback_lru_page(page);
5162 }
5163 put_page(page);
5164 }
bf929152 5165 spin_unlock(ptl);
1a5a9906 5166 return 0;
12724850
NH
5167 }
5168
45f83cef
AA
5169 if (pmd_trans_unstable(pmd))
5170 return 0;
4ffef5fe
DN
5171retry:
5172 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5173 for (; addr != end; addr += PAGE_SIZE) {
5174 pte_t ptent = *(pte++);
02491447 5175 swp_entry_t ent;
4ffef5fe
DN
5176
5177 if (!mc.precharge)
5178 break;
5179
8d32ff84 5180 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5181 case MC_TARGET_PAGE:
5182 page = target.page;
5183 if (isolate_lru_page(page))
5184 goto put;
1306a85a 5185 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5186 mc.precharge--;
854ffa8d
DN
5187 /* we uncharge from mc.from later. */
5188 mc.moved_charge++;
4ffef5fe
DN
5189 }
5190 putback_lru_page(page);
8d32ff84 5191put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5192 put_page(page);
5193 break;
02491447
DN
5194 case MC_TARGET_SWAP:
5195 ent = target.ent;
e91cbb42 5196 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5197 mc.precharge--;
483c30b5
DN
5198 /* we fixup refcnts and charges later. */
5199 mc.moved_swap++;
5200 }
02491447 5201 break;
4ffef5fe
DN
5202 default:
5203 break;
5204 }
5205 }
5206 pte_unmap_unlock(pte - 1, ptl);
5207 cond_resched();
5208
5209 if (addr != end) {
5210 /*
5211 * We have consumed all precharges we got in can_attach().
5212 * We try charge one by one, but don't do any additional
5213 * charges to mc.to if we have failed in charge once in attach()
5214 * phase.
5215 */
854ffa8d 5216 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5217 if (!ret)
5218 goto retry;
5219 }
5220
5221 return ret;
5222}
5223
5224static void mem_cgroup_move_charge(struct mm_struct *mm)
5225{
26bcd64a
NH
5226 struct mm_walk mem_cgroup_move_charge_walk = {
5227 .pmd_entry = mem_cgroup_move_charge_pte_range,
5228 .mm = mm,
5229 };
4ffef5fe
DN
5230
5231 lru_add_drain_all();
312722cb
JW
5232 /*
5233 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5234 * move_lock while we're moving its pages to another memcg.
5235 * Then wait for already started RCU-only updates to finish.
5236 */
5237 atomic_inc(&mc.from->moving_account);
5238 synchronize_rcu();
dfe076b0
DN
5239retry:
5240 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5241 /*
5242 * Someone who are holding the mmap_sem might be waiting in
5243 * waitq. So we cancel all extra charges, wake up all waiters,
5244 * and retry. Because we cancel precharges, we might not be able
5245 * to move enough charges, but moving charge is a best-effort
5246 * feature anyway, so it wouldn't be a big problem.
5247 */
5248 __mem_cgroup_clear_mc();
5249 cond_resched();
5250 goto retry;
5251 }
26bcd64a
NH
5252 /*
5253 * When we have consumed all precharges and failed in doing
5254 * additional charge, the page walk just aborts.
5255 */
5256 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5257 up_read(&mm->mmap_sem);
312722cb 5258 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5259}
5260
eb95419b 5261static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5262 struct cgroup_taskset *tset)
67e465a7 5263{
2f7ee569 5264 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5265 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5266
dfe076b0 5267 if (mm) {
a433658c
KM
5268 if (mc.to)
5269 mem_cgroup_move_charge(mm);
dfe076b0
DN
5270 mmput(mm);
5271 }
a433658c
KM
5272 if (mc.to)
5273 mem_cgroup_clear_mc();
67e465a7 5274}
5cfb80a7 5275#else /* !CONFIG_MMU */
eb95419b 5276static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5277 struct cgroup_taskset *tset)
5cfb80a7
DN
5278{
5279 return 0;
5280}
eb95419b 5281static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5282 struct cgroup_taskset *tset)
5cfb80a7
DN
5283{
5284}
eb95419b 5285static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5286 struct cgroup_taskset *tset)
5cfb80a7
DN
5287{
5288}
5289#endif
67e465a7 5290
f00baae7
TH
5291/*
5292 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5293 * to verify whether we're attached to the default hierarchy on each mount
5294 * attempt.
f00baae7 5295 */
eb95419b 5296static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5297{
5298 /*
aa6ec29b 5299 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5300 * guarantees that @root doesn't have any children, so turning it
5301 * on for the root memcg is enough.
5302 */
aa6ec29b 5303 if (cgroup_on_dfl(root_css->cgroup))
7feee590
VD
5304 root_mem_cgroup->use_hierarchy = true;
5305 else
5306 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5307}
5308
241994ed
JW
5309static u64 memory_current_read(struct cgroup_subsys_state *css,
5310 struct cftype *cft)
5311{
5312 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5313}
5314
5315static int memory_low_show(struct seq_file *m, void *v)
5316{
5317 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5318 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5319
5320 if (low == PAGE_COUNTER_MAX)
d2973697 5321 seq_puts(m, "max\n");
241994ed
JW
5322 else
5323 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5324
5325 return 0;
5326}
5327
5328static ssize_t memory_low_write(struct kernfs_open_file *of,
5329 char *buf, size_t nbytes, loff_t off)
5330{
5331 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5332 unsigned long low;
5333 int err;
5334
5335 buf = strstrip(buf);
d2973697 5336 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5337 if (err)
5338 return err;
5339
5340 memcg->low = low;
5341
5342 return nbytes;
5343}
5344
5345static int memory_high_show(struct seq_file *m, void *v)
5346{
5347 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5348 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5349
5350 if (high == PAGE_COUNTER_MAX)
d2973697 5351 seq_puts(m, "max\n");
241994ed
JW
5352 else
5353 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5354
5355 return 0;
5356}
5357
5358static ssize_t memory_high_write(struct kernfs_open_file *of,
5359 char *buf, size_t nbytes, loff_t off)
5360{
5361 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5362 unsigned long high;
5363 int err;
5364
5365 buf = strstrip(buf);
d2973697 5366 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5367 if (err)
5368 return err;
5369
5370 memcg->high = high;
5371
5372 return nbytes;
5373}
5374
5375static int memory_max_show(struct seq_file *m, void *v)
5376{
5377 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5378 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5379
5380 if (max == PAGE_COUNTER_MAX)
d2973697 5381 seq_puts(m, "max\n");
241994ed
JW
5382 else
5383 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5384
5385 return 0;
5386}
5387
5388static ssize_t memory_max_write(struct kernfs_open_file *of,
5389 char *buf, size_t nbytes, loff_t off)
5390{
5391 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5392 unsigned long max;
5393 int err;
5394
5395 buf = strstrip(buf);
d2973697 5396 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5397 if (err)
5398 return err;
5399
5400 err = mem_cgroup_resize_limit(memcg, max);
5401 if (err)
5402 return err;
5403
5404 return nbytes;
5405}
5406
5407static int memory_events_show(struct seq_file *m, void *v)
5408{
5409 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5410
5411 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5412 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5413 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5414 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5415
5416 return 0;
5417}
5418
5419static struct cftype memory_files[] = {
5420 {
5421 .name = "current",
5422 .read_u64 = memory_current_read,
5423 },
5424 {
5425 .name = "low",
5426 .flags = CFTYPE_NOT_ON_ROOT,
5427 .seq_show = memory_low_show,
5428 .write = memory_low_write,
5429 },
5430 {
5431 .name = "high",
5432 .flags = CFTYPE_NOT_ON_ROOT,
5433 .seq_show = memory_high_show,
5434 .write = memory_high_write,
5435 },
5436 {
5437 .name = "max",
5438 .flags = CFTYPE_NOT_ON_ROOT,
5439 .seq_show = memory_max_show,
5440 .write = memory_max_write,
5441 },
5442 {
5443 .name = "events",
5444 .flags = CFTYPE_NOT_ON_ROOT,
5445 .seq_show = memory_events_show,
5446 },
5447 { } /* terminate */
5448};
5449
073219e9 5450struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5451 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5452 .css_online = mem_cgroup_css_online,
92fb9748
TH
5453 .css_offline = mem_cgroup_css_offline,
5454 .css_free = mem_cgroup_css_free,
1ced953b 5455 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5456 .can_attach = mem_cgroup_can_attach,
5457 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5458 .attach = mem_cgroup_move_task,
f00baae7 5459 .bind = mem_cgroup_bind,
241994ed
JW
5460 .dfl_cftypes = memory_files,
5461 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5462 .early_init = 0,
8cdea7c0 5463};
c077719b 5464
241994ed
JW
5465/**
5466 * mem_cgroup_events - count memory events against a cgroup
5467 * @memcg: the memory cgroup
5468 * @idx: the event index
5469 * @nr: the number of events to account for
5470 */
5471void mem_cgroup_events(struct mem_cgroup *memcg,
5472 enum mem_cgroup_events_index idx,
5473 unsigned int nr)
5474{
5475 this_cpu_add(memcg->stat->events[idx], nr);
5476}
5477
5478/**
5479 * mem_cgroup_low - check if memory consumption is below the normal range
5480 * @root: the highest ancestor to consider
5481 * @memcg: the memory cgroup to check
5482 *
5483 * Returns %true if memory consumption of @memcg, and that of all
5484 * configurable ancestors up to @root, is below the normal range.
5485 */
5486bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5487{
5488 if (mem_cgroup_disabled())
5489 return false;
5490
5491 /*
5492 * The toplevel group doesn't have a configurable range, so
5493 * it's never low when looked at directly, and it is not
5494 * considered an ancestor when assessing the hierarchy.
5495 */
5496
5497 if (memcg == root_mem_cgroup)
5498 return false;
5499
4e54dede 5500 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5501 return false;
5502
5503 while (memcg != root) {
5504 memcg = parent_mem_cgroup(memcg);
5505
5506 if (memcg == root_mem_cgroup)
5507 break;
5508
4e54dede 5509 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5510 return false;
5511 }
5512 return true;
5513}
5514
00501b53
JW
5515/**
5516 * mem_cgroup_try_charge - try charging a page
5517 * @page: page to charge
5518 * @mm: mm context of the victim
5519 * @gfp_mask: reclaim mode
5520 * @memcgp: charged memcg return
5521 *
5522 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5523 * pages according to @gfp_mask if necessary.
5524 *
5525 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5526 * Otherwise, an error code is returned.
5527 *
5528 * After page->mapping has been set up, the caller must finalize the
5529 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5530 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5531 */
5532int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5533 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5534{
5535 struct mem_cgroup *memcg = NULL;
5536 unsigned int nr_pages = 1;
5537 int ret = 0;
5538
5539 if (mem_cgroup_disabled())
5540 goto out;
5541
5542 if (PageSwapCache(page)) {
00501b53
JW
5543 /*
5544 * Every swap fault against a single page tries to charge the
5545 * page, bail as early as possible. shmem_unuse() encounters
5546 * already charged pages, too. The USED bit is protected by
5547 * the page lock, which serializes swap cache removal, which
5548 * in turn serializes uncharging.
5549 */
1306a85a 5550 if (page->mem_cgroup)
00501b53
JW
5551 goto out;
5552 }
5553
5554 if (PageTransHuge(page)) {
5555 nr_pages <<= compound_order(page);
5556 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5557 }
5558
5559 if (do_swap_account && PageSwapCache(page))
5560 memcg = try_get_mem_cgroup_from_page(page);
5561 if (!memcg)
5562 memcg = get_mem_cgroup_from_mm(mm);
5563
5564 ret = try_charge(memcg, gfp_mask, nr_pages);
5565
5566 css_put(&memcg->css);
5567
5568 if (ret == -EINTR) {
5569 memcg = root_mem_cgroup;
5570 ret = 0;
5571 }
5572out:
5573 *memcgp = memcg;
5574 return ret;
5575}
5576
5577/**
5578 * mem_cgroup_commit_charge - commit a page charge
5579 * @page: page to charge
5580 * @memcg: memcg to charge the page to
5581 * @lrucare: page might be on LRU already
5582 *
5583 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5584 * after page->mapping has been set up. This must happen atomically
5585 * as part of the page instantiation, i.e. under the page table lock
5586 * for anonymous pages, under the page lock for page and swap cache.
5587 *
5588 * In addition, the page must not be on the LRU during the commit, to
5589 * prevent racing with task migration. If it might be, use @lrucare.
5590 *
5591 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5592 */
5593void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5594 bool lrucare)
5595{
5596 unsigned int nr_pages = 1;
5597
5598 VM_BUG_ON_PAGE(!page->mapping, page);
5599 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5600
5601 if (mem_cgroup_disabled())
5602 return;
5603 /*
5604 * Swap faults will attempt to charge the same page multiple
5605 * times. But reuse_swap_page() might have removed the page
5606 * from swapcache already, so we can't check PageSwapCache().
5607 */
5608 if (!memcg)
5609 return;
5610
6abb5a86
JW
5611 commit_charge(page, memcg, lrucare);
5612
00501b53
JW
5613 if (PageTransHuge(page)) {
5614 nr_pages <<= compound_order(page);
5615 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5616 }
5617
6abb5a86
JW
5618 local_irq_disable();
5619 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5620 memcg_check_events(memcg, page);
5621 local_irq_enable();
00501b53
JW
5622
5623 if (do_swap_account && PageSwapCache(page)) {
5624 swp_entry_t entry = { .val = page_private(page) };
5625 /*
5626 * The swap entry might not get freed for a long time,
5627 * let's not wait for it. The page already received a
5628 * memory+swap charge, drop the swap entry duplicate.
5629 */
5630 mem_cgroup_uncharge_swap(entry);
5631 }
5632}
5633
5634/**
5635 * mem_cgroup_cancel_charge - cancel a page charge
5636 * @page: page to charge
5637 * @memcg: memcg to charge the page to
5638 *
5639 * Cancel a charge transaction started by mem_cgroup_try_charge().
5640 */
5641void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5642{
5643 unsigned int nr_pages = 1;
5644
5645 if (mem_cgroup_disabled())
5646 return;
5647 /*
5648 * Swap faults will attempt to charge the same page multiple
5649 * times. But reuse_swap_page() might have removed the page
5650 * from swapcache already, so we can't check PageSwapCache().
5651 */
5652 if (!memcg)
5653 return;
5654
5655 if (PageTransHuge(page)) {
5656 nr_pages <<= compound_order(page);
5657 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5658 }
5659
5660 cancel_charge(memcg, nr_pages);
5661}
5662
747db954 5663static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5664 unsigned long nr_anon, unsigned long nr_file,
5665 unsigned long nr_huge, struct page *dummy_page)
5666{
18eca2e6 5667 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5668 unsigned long flags;
5669
ce00a967 5670 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5671 page_counter_uncharge(&memcg->memory, nr_pages);
5672 if (do_swap_account)
5673 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5674 memcg_oom_recover(memcg);
5675 }
747db954
JW
5676
5677 local_irq_save(flags);
5678 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5679 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5680 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5681 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5682 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5683 memcg_check_events(memcg, dummy_page);
5684 local_irq_restore(flags);
e8ea14cc
JW
5685
5686 if (!mem_cgroup_is_root(memcg))
18eca2e6 5687 css_put_many(&memcg->css, nr_pages);
747db954
JW
5688}
5689
5690static void uncharge_list(struct list_head *page_list)
5691{
5692 struct mem_cgroup *memcg = NULL;
747db954
JW
5693 unsigned long nr_anon = 0;
5694 unsigned long nr_file = 0;
5695 unsigned long nr_huge = 0;
5696 unsigned long pgpgout = 0;
747db954
JW
5697 struct list_head *next;
5698 struct page *page;
5699
5700 next = page_list->next;
5701 do {
5702 unsigned int nr_pages = 1;
747db954
JW
5703
5704 page = list_entry(next, struct page, lru);
5705 next = page->lru.next;
5706
5707 VM_BUG_ON_PAGE(PageLRU(page), page);
5708 VM_BUG_ON_PAGE(page_count(page), page);
5709
1306a85a 5710 if (!page->mem_cgroup)
747db954
JW
5711 continue;
5712
5713 /*
5714 * Nobody should be changing or seriously looking at
1306a85a 5715 * page->mem_cgroup at this point, we have fully
29833315 5716 * exclusive access to the page.
747db954
JW
5717 */
5718
1306a85a 5719 if (memcg != page->mem_cgroup) {
747db954 5720 if (memcg) {
18eca2e6
JW
5721 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5722 nr_huge, page);
5723 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5724 }
1306a85a 5725 memcg = page->mem_cgroup;
747db954
JW
5726 }
5727
5728 if (PageTransHuge(page)) {
5729 nr_pages <<= compound_order(page);
5730 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5731 nr_huge += nr_pages;
5732 }
5733
5734 if (PageAnon(page))
5735 nr_anon += nr_pages;
5736 else
5737 nr_file += nr_pages;
5738
1306a85a 5739 page->mem_cgroup = NULL;
747db954
JW
5740
5741 pgpgout++;
5742 } while (next != page_list);
5743
5744 if (memcg)
18eca2e6
JW
5745 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5746 nr_huge, page);
747db954
JW
5747}
5748
0a31bc97
JW
5749/**
5750 * mem_cgroup_uncharge - uncharge a page
5751 * @page: page to uncharge
5752 *
5753 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5754 * mem_cgroup_commit_charge().
5755 */
5756void mem_cgroup_uncharge(struct page *page)
5757{
0a31bc97
JW
5758 if (mem_cgroup_disabled())
5759 return;
5760
747db954 5761 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5762 if (!page->mem_cgroup)
0a31bc97
JW
5763 return;
5764
747db954
JW
5765 INIT_LIST_HEAD(&page->lru);
5766 uncharge_list(&page->lru);
5767}
0a31bc97 5768
747db954
JW
5769/**
5770 * mem_cgroup_uncharge_list - uncharge a list of page
5771 * @page_list: list of pages to uncharge
5772 *
5773 * Uncharge a list of pages previously charged with
5774 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5775 */
5776void mem_cgroup_uncharge_list(struct list_head *page_list)
5777{
5778 if (mem_cgroup_disabled())
5779 return;
0a31bc97 5780
747db954
JW
5781 if (!list_empty(page_list))
5782 uncharge_list(page_list);
0a31bc97
JW
5783}
5784
5785/**
5786 * mem_cgroup_migrate - migrate a charge to another page
5787 * @oldpage: currently charged page
5788 * @newpage: page to transfer the charge to
f5e03a49 5789 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5790 *
5791 * Migrate the charge from @oldpage to @newpage.
5792 *
5793 * Both pages must be locked, @newpage->mapping must be set up.
5794 */
5795void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5796 bool lrucare)
5797{
29833315 5798 struct mem_cgroup *memcg;
0a31bc97
JW
5799 int isolated;
5800
5801 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5802 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5803 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5804 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5805 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5806 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5807 newpage);
0a31bc97
JW
5808
5809 if (mem_cgroup_disabled())
5810 return;
5811
5812 /* Page cache replacement: new page already charged? */
1306a85a 5813 if (newpage->mem_cgroup)
0a31bc97
JW
5814 return;
5815
7d5e3245
JW
5816 /*
5817 * Swapcache readahead pages can get migrated before being
5818 * charged, and migration from compaction can happen to an
5819 * uncharged page when the PFN walker finds a page that
5820 * reclaim just put back on the LRU but has not released yet.
5821 */
1306a85a 5822 memcg = oldpage->mem_cgroup;
29833315 5823 if (!memcg)
0a31bc97
JW
5824 return;
5825
0a31bc97
JW
5826 if (lrucare)
5827 lock_page_lru(oldpage, &isolated);
5828
1306a85a 5829 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5830
5831 if (lrucare)
5832 unlock_page_lru(oldpage, isolated);
5833
29833315 5834 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5835}
5836
2d11085e 5837/*
1081312f
MH
5838 * subsys_initcall() for memory controller.
5839 *
5840 * Some parts like hotcpu_notifier() have to be initialized from this context
5841 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5842 * everything that doesn't depend on a specific mem_cgroup structure should
5843 * be initialized from here.
2d11085e
MH
5844 */
5845static int __init mem_cgroup_init(void)
5846{
95a045f6
JW
5847 int cpu, node;
5848
2d11085e 5849 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5850
5851 for_each_possible_cpu(cpu)
5852 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5853 drain_local_stock);
5854
5855 for_each_node(node) {
5856 struct mem_cgroup_tree_per_node *rtpn;
5857 int zone;
5858
5859 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5860 node_online(node) ? node : NUMA_NO_NODE);
5861
5862 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5863 struct mem_cgroup_tree_per_zone *rtpz;
5864
5865 rtpz = &rtpn->rb_tree_per_zone[zone];
5866 rtpz->rb_root = RB_ROOT;
5867 spin_lock_init(&rtpz->lock);
5868 }
5869 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5870 }
5871
2d11085e
MH
5872 return 0;
5873}
5874subsys_initcall(mem_cgroup_init);
21afa38e
JW
5875
5876#ifdef CONFIG_MEMCG_SWAP
5877/**
5878 * mem_cgroup_swapout - transfer a memsw charge to swap
5879 * @page: page whose memsw charge to transfer
5880 * @entry: swap entry to move the charge to
5881 *
5882 * Transfer the memsw charge of @page to @entry.
5883 */
5884void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5885{
5886 struct mem_cgroup *memcg;
5887 unsigned short oldid;
5888
5889 VM_BUG_ON_PAGE(PageLRU(page), page);
5890 VM_BUG_ON_PAGE(page_count(page), page);
5891
5892 if (!do_swap_account)
5893 return;
5894
5895 memcg = page->mem_cgroup;
5896
5897 /* Readahead page, never charged */
5898 if (!memcg)
5899 return;
5900
5901 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5902 VM_BUG_ON_PAGE(oldid, page);
5903 mem_cgroup_swap_statistics(memcg, true);
5904
5905 page->mem_cgroup = NULL;
5906
5907 if (!mem_cgroup_is_root(memcg))
5908 page_counter_uncharge(&memcg->memory, 1);
5909
5910 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5911 VM_BUG_ON(!irqs_disabled());
5912
5913 mem_cgroup_charge_statistics(memcg, page, -1);
5914 memcg_check_events(memcg, page);
5915}
5916
5917/**
5918 * mem_cgroup_uncharge_swap - uncharge a swap entry
5919 * @entry: swap entry to uncharge
5920 *
5921 * Drop the memsw charge associated with @entry.
5922 */
5923void mem_cgroup_uncharge_swap(swp_entry_t entry)
5924{
5925 struct mem_cgroup *memcg;
5926 unsigned short id;
5927
5928 if (!do_swap_account)
5929 return;
5930
5931 id = swap_cgroup_record(entry, 0);
5932 rcu_read_lock();
adbe427b 5933 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5934 if (memcg) {
5935 if (!mem_cgroup_is_root(memcg))
5936 page_counter_uncharge(&memcg->memsw, 1);
5937 mem_cgroup_swap_statistics(memcg, false);
5938 css_put(&memcg->css);
5939 }
5940 rcu_read_unlock();
5941}
5942
5943/* for remember boot option*/
5944#ifdef CONFIG_MEMCG_SWAP_ENABLED
5945static int really_do_swap_account __initdata = 1;
5946#else
5947static int really_do_swap_account __initdata;
5948#endif
5949
5950static int __init enable_swap_account(char *s)
5951{
5952 if (!strcmp(s, "1"))
5953 really_do_swap_account = 1;
5954 else if (!strcmp(s, "0"))
5955 really_do_swap_account = 0;
5956 return 1;
5957}
5958__setup("swapaccount=", enable_swap_account);
5959
5960static struct cftype memsw_cgroup_files[] = {
5961 {
5962 .name = "memsw.usage_in_bytes",
5963 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5964 .read_u64 = mem_cgroup_read_u64,
5965 },
5966 {
5967 .name = "memsw.max_usage_in_bytes",
5968 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5969 .write = mem_cgroup_reset,
5970 .read_u64 = mem_cgroup_read_u64,
5971 },
5972 {
5973 .name = "memsw.limit_in_bytes",
5974 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5975 .write = mem_cgroup_write,
5976 .read_u64 = mem_cgroup_read_u64,
5977 },
5978 {
5979 .name = "memsw.failcnt",
5980 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5981 .write = mem_cgroup_reset,
5982 .read_u64 = mem_cgroup_read_u64,
5983 },
5984 { }, /* terminate */
5985};
5986
5987static int __init mem_cgroup_swap_init(void)
5988{
5989 if (!mem_cgroup_disabled() && really_do_swap_account) {
5990 do_swap_account = 1;
5991 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5992 memsw_cgroup_files));
5993 }
5994 return 0;
5995}
5996subsys_initcall(mem_cgroup_swap_init);
5997
5998#endif /* CONFIG_MEMCG_SWAP */