]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
mm/nommu: fix memory leak
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
21afa38e 75/* Whether the swap controller is active */
c255a458 76#ifdef CONFIG_MEMCG_SWAP
c077719b 77int do_swap_account __read_mostly;
c077719b 78#else
a0db00fc 79#define do_swap_account 0
c077719b
KH
80#endif
81
af7c4b0e
JW
82static const char * const mem_cgroup_stat_names[] = {
83 "cache",
84 "rss",
b070e65c 85 "rss_huge",
af7c4b0e 86 "mapped_file",
3ea67d06 87 "writeback",
af7c4b0e
JW
88 "swap",
89};
90
af7c4b0e
JW
91static const char * const mem_cgroup_events_names[] = {
92 "pgpgin",
93 "pgpgout",
94 "pgfault",
95 "pgmajfault",
96};
97
58cf188e
SZ
98static const char * const mem_cgroup_lru_names[] = {
99 "inactive_anon",
100 "active_anon",
101 "inactive_file",
102 "active_file",
103 "unevictable",
104};
105
7a159cc9
JW
106/*
107 * Per memcg event counter is incremented at every pagein/pageout. With THP,
108 * it will be incremated by the number of pages. This counter is used for
109 * for trigger some periodic events. This is straightforward and better
110 * than using jiffies etc. to handle periodic memcg event.
111 */
112enum mem_cgroup_events_target {
113 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 114 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 115 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
116 MEM_CGROUP_NTARGETS,
117};
a0db00fc
KS
118#define THRESHOLDS_EVENTS_TARGET 128
119#define SOFTLIMIT_EVENTS_TARGET 1024
120#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 121
d52aa412 122struct mem_cgroup_stat_cpu {
7a159cc9 123 long count[MEM_CGROUP_STAT_NSTATS];
241994ed 124 unsigned long events[MEMCG_NR_EVENTS];
13114716 125 unsigned long nr_page_events;
7a159cc9 126 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
127};
128
5ac8fb31
JW
129struct reclaim_iter {
130 struct mem_cgroup *position;
527a5ec9
JW
131 /* scan generation, increased every round-trip */
132 unsigned int generation;
133};
134
6d12e2d8
KH
135/*
136 * per-zone information in memory controller.
137 */
6d12e2d8 138struct mem_cgroup_per_zone {
6290df54 139 struct lruvec lruvec;
1eb49272 140 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 141
5ac8fb31 142 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 143
bb4cc1a8 144 struct rb_node tree_node; /* RB tree node */
3e32cb2e 145 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
146 /* the soft limit is exceeded*/
147 bool on_tree;
d79154bb 148 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 149 /* use container_of */
6d12e2d8 150};
6d12e2d8
KH
151
152struct mem_cgroup_per_node {
153 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
154};
155
bb4cc1a8
AM
156/*
157 * Cgroups above their limits are maintained in a RB-Tree, independent of
158 * their hierarchy representation
159 */
160
161struct mem_cgroup_tree_per_zone {
162 struct rb_root rb_root;
163 spinlock_t lock;
164};
165
166struct mem_cgroup_tree_per_node {
167 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
168};
169
170struct mem_cgroup_tree {
171 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
172};
173
174static struct mem_cgroup_tree soft_limit_tree __read_mostly;
175
2e72b634
KS
176struct mem_cgroup_threshold {
177 struct eventfd_ctx *eventfd;
3e32cb2e 178 unsigned long threshold;
2e72b634
KS
179};
180
9490ff27 181/* For threshold */
2e72b634 182struct mem_cgroup_threshold_ary {
748dad36 183 /* An array index points to threshold just below or equal to usage. */
5407a562 184 int current_threshold;
2e72b634
KS
185 /* Size of entries[] */
186 unsigned int size;
187 /* Array of thresholds */
188 struct mem_cgroup_threshold entries[0];
189};
2c488db2
KS
190
191struct mem_cgroup_thresholds {
192 /* Primary thresholds array */
193 struct mem_cgroup_threshold_ary *primary;
194 /*
195 * Spare threshold array.
196 * This is needed to make mem_cgroup_unregister_event() "never fail".
197 * It must be able to store at least primary->size - 1 entries.
198 */
199 struct mem_cgroup_threshold_ary *spare;
200};
201
9490ff27
KH
202/* for OOM */
203struct mem_cgroup_eventfd_list {
204 struct list_head list;
205 struct eventfd_ctx *eventfd;
206};
2e72b634 207
79bd9814
TH
208/*
209 * cgroup_event represents events which userspace want to receive.
210 */
3bc942f3 211struct mem_cgroup_event {
79bd9814 212 /*
59b6f873 213 * memcg which the event belongs to.
79bd9814 214 */
59b6f873 215 struct mem_cgroup *memcg;
79bd9814
TH
216 /*
217 * eventfd to signal userspace about the event.
218 */
219 struct eventfd_ctx *eventfd;
220 /*
221 * Each of these stored in a list by the cgroup.
222 */
223 struct list_head list;
fba94807
TH
224 /*
225 * register_event() callback will be used to add new userspace
226 * waiter for changes related to this event. Use eventfd_signal()
227 * on eventfd to send notification to userspace.
228 */
59b6f873 229 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 230 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
231 /*
232 * unregister_event() callback will be called when userspace closes
233 * the eventfd or on cgroup removing. This callback must be set,
234 * if you want provide notification functionality.
235 */
59b6f873 236 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 237 struct eventfd_ctx *eventfd);
79bd9814
TH
238 /*
239 * All fields below needed to unregister event when
240 * userspace closes eventfd.
241 */
242 poll_table pt;
243 wait_queue_head_t *wqh;
244 wait_queue_t wait;
245 struct work_struct remove;
246};
247
c0ff4b85
R
248static void mem_cgroup_threshold(struct mem_cgroup *memcg);
249static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 250
8cdea7c0
BS
251/*
252 * The memory controller data structure. The memory controller controls both
253 * page cache and RSS per cgroup. We would eventually like to provide
254 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
255 * to help the administrator determine what knobs to tune.
256 *
257 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
258 * we hit the water mark. May be even add a low water mark, such that
259 * no reclaim occurs from a cgroup at it's low water mark, this is
260 * a feature that will be implemented much later in the future.
8cdea7c0
BS
261 */
262struct mem_cgroup {
263 struct cgroup_subsys_state css;
3e32cb2e
JW
264
265 /* Accounted resources */
266 struct page_counter memory;
267 struct page_counter memsw;
268 struct page_counter kmem;
269
241994ed
JW
270 /* Normal memory consumption range */
271 unsigned long low;
272 unsigned long high;
273
3e32cb2e 274 unsigned long soft_limit;
59927fb9 275
70ddf637
AV
276 /* vmpressure notifications */
277 struct vmpressure vmpressure;
278
2f7dd7a4
JW
279 /* css_online() has been completed */
280 int initialized;
281
18f59ea7
BS
282 /*
283 * Should the accounting and control be hierarchical, per subtree?
284 */
285 bool use_hierarchy;
79dfdacc
MH
286
287 bool oom_lock;
288 atomic_t under_oom;
3812c8c8 289 atomic_t oom_wakeups;
79dfdacc 290
1f4c025b 291 int swappiness;
3c11ecf4
KH
292 /* OOM-Killer disable */
293 int oom_kill_disable;
a7885eb8 294
2e72b634
KS
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
2c488db2 299 struct mem_cgroup_thresholds thresholds;
907860ed 300
2e72b634 301 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 303
9490ff27
KH
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
185efc0f 306
7dc74be0
DN
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
f894ffa8 311 unsigned long move_charge_at_immigrate;
619d094b
KH
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
6de22619 315 atomic_t moving_account;
312734c0 316 /* taken only while moving_account > 0 */
6de22619
JW
317 spinlock_t move_lock;
318 struct task_struct *move_lock_task;
319 unsigned long move_lock_flags;
d52aa412 320 /*
c62b1a3b 321 * percpu counter.
d52aa412 322 */
3a7951b4 323 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
324 /*
325 * used when a cpu is offlined or other synchronizations
326 * See mem_cgroup_read_stat().
327 */
328 struct mem_cgroup_stat_cpu nocpu_base;
329 spinlock_t pcp_counter_lock;
d1a4c0b3 330
4bd2c1ee 331#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 332 struct cg_proto tcp_mem;
d1a4c0b3 333#endif
2633d7a0 334#if defined(CONFIG_MEMCG_KMEM)
f7ce3190 335 /* Index in the kmem_cache->memcg_params.memcg_caches array */
2633d7a0 336 int kmemcg_id;
2788cf0c 337 bool kmem_acct_activated;
2a4db7eb 338 bool kmem_acct_active;
2633d7a0 339#endif
45cf7ebd
GC
340
341 int last_scanned_node;
342#if MAX_NUMNODES > 1
343 nodemask_t scan_nodes;
344 atomic_t numainfo_events;
345 atomic_t numainfo_updating;
346#endif
70ddf637 347
fba94807
TH
348 /* List of events which userspace want to receive */
349 struct list_head event_list;
350 spinlock_t event_list_lock;
351
54f72fe0
JW
352 struct mem_cgroup_per_node *nodeinfo[0];
353 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
354};
355
510fc4e1 356#ifdef CONFIG_MEMCG_KMEM
cb731d6c 357bool memcg_kmem_is_active(struct mem_cgroup *memcg)
7de37682 358{
2a4db7eb 359 return memcg->kmem_acct_active;
7de37682 360}
510fc4e1
GC
361#endif
362
7dc74be0
DN
363/* Stuffs for move charges at task migration. */
364/*
1dfab5ab 365 * Types of charges to be moved.
7dc74be0 366 */
1dfab5ab
JW
367#define MOVE_ANON 0x1U
368#define MOVE_FILE 0x2U
369#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 370
4ffef5fe
DN
371/* "mc" and its members are protected by cgroup_mutex */
372static struct move_charge_struct {
b1dd693e 373 spinlock_t lock; /* for from, to */
4ffef5fe
DN
374 struct mem_cgroup *from;
375 struct mem_cgroup *to;
1dfab5ab 376 unsigned long flags;
4ffef5fe 377 unsigned long precharge;
854ffa8d 378 unsigned long moved_charge;
483c30b5 379 unsigned long moved_swap;
8033b97c
DN
380 struct task_struct *moving_task; /* a task moving charges */
381 wait_queue_head_t waitq; /* a waitq for other context */
382} mc = {
2bd9bb20 383 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
384 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
385};
4ffef5fe 386
4e416953
BS
387/*
388 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
389 * limit reclaim to prevent infinite loops, if they ever occur.
390 */
a0db00fc 391#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 392#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 393
217bc319
KH
394enum charge_type {
395 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 396 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 397 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 398 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
399 NR_CHARGE_TYPE,
400};
401
8c7c6e34 402/* for encoding cft->private value on file */
86ae53e1
GC
403enum res_type {
404 _MEM,
405 _MEMSWAP,
406 _OOM_TYPE,
510fc4e1 407 _KMEM,
86ae53e1
GC
408};
409
a0db00fc
KS
410#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
411#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 412#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
413/* Used for OOM nofiier */
414#define OOM_CONTROL (0)
8c7c6e34 415
0999821b
GC
416/*
417 * The memcg_create_mutex will be held whenever a new cgroup is created.
418 * As a consequence, any change that needs to protect against new child cgroups
419 * appearing has to hold it as well.
420 */
421static DEFINE_MUTEX(memcg_create_mutex);
422
b2145145
WL
423struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
424{
a7c6d554 425 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
426}
427
70ddf637
AV
428/* Some nice accessors for the vmpressure. */
429struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
430{
431 if (!memcg)
432 memcg = root_mem_cgroup;
433 return &memcg->vmpressure;
434}
435
436struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
437{
438 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
439}
440
7ffc0edc
MH
441static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
442{
443 return (memcg == root_mem_cgroup);
444}
445
4219b2da
LZ
446/*
447 * We restrict the id in the range of [1, 65535], so it can fit into
448 * an unsigned short.
449 */
450#define MEM_CGROUP_ID_MAX USHRT_MAX
451
34c00c31
LZ
452static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
453{
15a4c835 454 return memcg->css.id;
34c00c31
LZ
455}
456
457static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
458{
459 struct cgroup_subsys_state *css;
460
7d699ddb 461 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
462 return mem_cgroup_from_css(css);
463}
464
e1aab161 465/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 466#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 467
e1aab161
GC
468void sock_update_memcg(struct sock *sk)
469{
376be5ff 470 if (mem_cgroup_sockets_enabled) {
e1aab161 471 struct mem_cgroup *memcg;
3f134619 472 struct cg_proto *cg_proto;
e1aab161
GC
473
474 BUG_ON(!sk->sk_prot->proto_cgroup);
475
f3f511e1
GC
476 /* Socket cloning can throw us here with sk_cgrp already
477 * filled. It won't however, necessarily happen from
478 * process context. So the test for root memcg given
479 * the current task's memcg won't help us in this case.
480 *
481 * Respecting the original socket's memcg is a better
482 * decision in this case.
483 */
484 if (sk->sk_cgrp) {
485 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 486 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
487 return;
488 }
489
e1aab161
GC
490 rcu_read_lock();
491 memcg = mem_cgroup_from_task(current);
3f134619 492 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 493 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
494 memcg_proto_active(cg_proto) &&
495 css_tryget_online(&memcg->css)) {
3f134619 496 sk->sk_cgrp = cg_proto;
e1aab161
GC
497 }
498 rcu_read_unlock();
499 }
500}
501EXPORT_SYMBOL(sock_update_memcg);
502
503void sock_release_memcg(struct sock *sk)
504{
376be5ff 505 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
506 struct mem_cgroup *memcg;
507 WARN_ON(!sk->sk_cgrp->memcg);
508 memcg = sk->sk_cgrp->memcg;
5347e5ae 509 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
510 }
511}
d1a4c0b3
GC
512
513struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
514{
515 if (!memcg || mem_cgroup_is_root(memcg))
516 return NULL;
517
2e685cad 518 return &memcg->tcp_mem;
d1a4c0b3
GC
519}
520EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 521
3f134619
GC
522#endif
523
a8964b9b 524#ifdef CONFIG_MEMCG_KMEM
55007d84 525/*
f7ce3190 526 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
527 * The main reason for not using cgroup id for this:
528 * this works better in sparse environments, where we have a lot of memcgs,
529 * but only a few kmem-limited. Or also, if we have, for instance, 200
530 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
531 * 200 entry array for that.
55007d84 532 *
dbcf73e2
VD
533 * The current size of the caches array is stored in memcg_nr_cache_ids. It
534 * will double each time we have to increase it.
55007d84 535 */
dbcf73e2
VD
536static DEFINE_IDA(memcg_cache_ida);
537int memcg_nr_cache_ids;
749c5415 538
05257a1a
VD
539/* Protects memcg_nr_cache_ids */
540static DECLARE_RWSEM(memcg_cache_ids_sem);
541
542void memcg_get_cache_ids(void)
543{
544 down_read(&memcg_cache_ids_sem);
545}
546
547void memcg_put_cache_ids(void)
548{
549 up_read(&memcg_cache_ids_sem);
550}
551
55007d84
GC
552/*
553 * MIN_SIZE is different than 1, because we would like to avoid going through
554 * the alloc/free process all the time. In a small machine, 4 kmem-limited
555 * cgroups is a reasonable guess. In the future, it could be a parameter or
556 * tunable, but that is strictly not necessary.
557 *
b8627835 558 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
559 * this constant directly from cgroup, but it is understandable that this is
560 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 561 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
562 * increase ours as well if it increases.
563 */
564#define MEMCG_CACHES_MIN_SIZE 4
b8627835 565#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 566
d7f25f8a
GC
567/*
568 * A lot of the calls to the cache allocation functions are expected to be
569 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
570 * conditional to this static branch, we'll have to allow modules that does
571 * kmem_cache_alloc and the such to see this symbol as well
572 */
a8964b9b 573struct static_key memcg_kmem_enabled_key;
d7f25f8a 574EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 575
a8964b9b
GC
576#endif /* CONFIG_MEMCG_KMEM */
577
f64c3f54 578static struct mem_cgroup_per_zone *
e231875b 579mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 580{
e231875b
JZ
581 int nid = zone_to_nid(zone);
582 int zid = zone_idx(zone);
583
54f72fe0 584 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
585}
586
c0ff4b85 587struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 588{
c0ff4b85 589 return &memcg->css;
d324236b
WF
590}
591
f64c3f54 592static struct mem_cgroup_per_zone *
e231875b 593mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 594{
97a6c37b
JW
595 int nid = page_to_nid(page);
596 int zid = page_zonenum(page);
f64c3f54 597
e231875b 598 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
599}
600
bb4cc1a8
AM
601static struct mem_cgroup_tree_per_zone *
602soft_limit_tree_node_zone(int nid, int zid)
603{
604 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
605}
606
607static struct mem_cgroup_tree_per_zone *
608soft_limit_tree_from_page(struct page *page)
609{
610 int nid = page_to_nid(page);
611 int zid = page_zonenum(page);
612
613 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
614}
615
cf2c8127
JW
616static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
617 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 618 unsigned long new_usage_in_excess)
bb4cc1a8
AM
619{
620 struct rb_node **p = &mctz->rb_root.rb_node;
621 struct rb_node *parent = NULL;
622 struct mem_cgroup_per_zone *mz_node;
623
624 if (mz->on_tree)
625 return;
626
627 mz->usage_in_excess = new_usage_in_excess;
628 if (!mz->usage_in_excess)
629 return;
630 while (*p) {
631 parent = *p;
632 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
633 tree_node);
634 if (mz->usage_in_excess < mz_node->usage_in_excess)
635 p = &(*p)->rb_left;
636 /*
637 * We can't avoid mem cgroups that are over their soft
638 * limit by the same amount
639 */
640 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
641 p = &(*p)->rb_right;
642 }
643 rb_link_node(&mz->tree_node, parent, p);
644 rb_insert_color(&mz->tree_node, &mctz->rb_root);
645 mz->on_tree = true;
646}
647
cf2c8127
JW
648static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
649 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
650{
651 if (!mz->on_tree)
652 return;
653 rb_erase(&mz->tree_node, &mctz->rb_root);
654 mz->on_tree = false;
655}
656
cf2c8127
JW
657static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
658 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 659{
0a31bc97
JW
660 unsigned long flags;
661
662 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 663 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 664 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
665}
666
3e32cb2e
JW
667static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
668{
669 unsigned long nr_pages = page_counter_read(&memcg->memory);
670 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
671 unsigned long excess = 0;
672
673 if (nr_pages > soft_limit)
674 excess = nr_pages - soft_limit;
675
676 return excess;
677}
bb4cc1a8
AM
678
679static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
680{
3e32cb2e 681 unsigned long excess;
bb4cc1a8
AM
682 struct mem_cgroup_per_zone *mz;
683 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 684
e231875b 685 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
686 /*
687 * Necessary to update all ancestors when hierarchy is used.
688 * because their event counter is not touched.
689 */
690 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 691 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 692 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
693 /*
694 * We have to update the tree if mz is on RB-tree or
695 * mem is over its softlimit.
696 */
697 if (excess || mz->on_tree) {
0a31bc97
JW
698 unsigned long flags;
699
700 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
701 /* if on-tree, remove it */
702 if (mz->on_tree)
cf2c8127 703 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
704 /*
705 * Insert again. mz->usage_in_excess will be updated.
706 * If excess is 0, no tree ops.
707 */
cf2c8127 708 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 709 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
710 }
711 }
712}
713
714static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
715{
bb4cc1a8 716 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
717 struct mem_cgroup_per_zone *mz;
718 int nid, zid;
bb4cc1a8 719
e231875b
JZ
720 for_each_node(nid) {
721 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
722 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
723 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 724 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
725 }
726 }
727}
728
729static struct mem_cgroup_per_zone *
730__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
731{
732 struct rb_node *rightmost = NULL;
733 struct mem_cgroup_per_zone *mz;
734
735retry:
736 mz = NULL;
737 rightmost = rb_last(&mctz->rb_root);
738 if (!rightmost)
739 goto done; /* Nothing to reclaim from */
740
741 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
742 /*
743 * Remove the node now but someone else can add it back,
744 * we will to add it back at the end of reclaim to its correct
745 * position in the tree.
746 */
cf2c8127 747 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 748 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 749 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
750 goto retry;
751done:
752 return mz;
753}
754
755static struct mem_cgroup_per_zone *
756mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
757{
758 struct mem_cgroup_per_zone *mz;
759
0a31bc97 760 spin_lock_irq(&mctz->lock);
bb4cc1a8 761 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 762 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
763 return mz;
764}
765
711d3d2c
KH
766/*
767 * Implementation Note: reading percpu statistics for memcg.
768 *
769 * Both of vmstat[] and percpu_counter has threshold and do periodic
770 * synchronization to implement "quick" read. There are trade-off between
771 * reading cost and precision of value. Then, we may have a chance to implement
772 * a periodic synchronizion of counter in memcg's counter.
773 *
774 * But this _read() function is used for user interface now. The user accounts
775 * memory usage by memory cgroup and he _always_ requires exact value because
776 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
777 * have to visit all online cpus and make sum. So, for now, unnecessary
778 * synchronization is not implemented. (just implemented for cpu hotplug)
779 *
780 * If there are kernel internal actions which can make use of some not-exact
781 * value, and reading all cpu value can be performance bottleneck in some
782 * common workload, threashold and synchonization as vmstat[] should be
783 * implemented.
784 */
c0ff4b85 785static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 786 enum mem_cgroup_stat_index idx)
c62b1a3b 787{
7a159cc9 788 long val = 0;
c62b1a3b 789 int cpu;
c62b1a3b 790
711d3d2c
KH
791 get_online_cpus();
792 for_each_online_cpu(cpu)
c0ff4b85 793 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 794#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
795 spin_lock(&memcg->pcp_counter_lock);
796 val += memcg->nocpu_base.count[idx];
797 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
798#endif
799 put_online_cpus();
c62b1a3b
KH
800 return val;
801}
802
c0ff4b85 803static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
804 enum mem_cgroup_events_index idx)
805{
806 unsigned long val = 0;
807 int cpu;
808
9c567512 809 get_online_cpus();
e9f8974f 810 for_each_online_cpu(cpu)
c0ff4b85 811 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 812#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
813 spin_lock(&memcg->pcp_counter_lock);
814 val += memcg->nocpu_base.events[idx];
815 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 816#endif
9c567512 817 put_online_cpus();
e9f8974f
JW
818 return val;
819}
820
c0ff4b85 821static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 822 struct page *page,
0a31bc97 823 int nr_pages)
d52aa412 824{
b2402857
KH
825 /*
826 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
827 * counted as CACHE even if it's on ANON LRU.
828 */
0a31bc97 829 if (PageAnon(page))
b2402857 830 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 831 nr_pages);
d52aa412 832 else
b2402857 833 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 834 nr_pages);
55e462b0 835
b070e65c
DR
836 if (PageTransHuge(page))
837 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
838 nr_pages);
839
e401f176
KH
840 /* pagein of a big page is an event. So, ignore page size */
841 if (nr_pages > 0)
c0ff4b85 842 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 843 else {
c0ff4b85 844 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
845 nr_pages = -nr_pages; /* for event */
846 }
e401f176 847
13114716 848 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
849}
850
e231875b 851unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
852{
853 struct mem_cgroup_per_zone *mz;
854
855 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
856 return mz->lru_size[lru];
857}
858
e231875b
JZ
859static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
860 int nid,
861 unsigned int lru_mask)
bb2a0de9 862{
e231875b 863 unsigned long nr = 0;
889976db
YH
864 int zid;
865
e231875b 866 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 867
e231875b
JZ
868 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
869 struct mem_cgroup_per_zone *mz;
870 enum lru_list lru;
871
872 for_each_lru(lru) {
873 if (!(BIT(lru) & lru_mask))
874 continue;
875 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
876 nr += mz->lru_size[lru];
877 }
878 }
879 return nr;
889976db 880}
bb2a0de9 881
c0ff4b85 882static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 883 unsigned int lru_mask)
6d12e2d8 884{
e231875b 885 unsigned long nr = 0;
889976db 886 int nid;
6d12e2d8 887
31aaea4a 888 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
889 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
890 return nr;
d52aa412
KH
891}
892
f53d7ce3
JW
893static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
894 enum mem_cgroup_events_target target)
7a159cc9
JW
895{
896 unsigned long val, next;
897
13114716 898 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 899 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 900 /* from time_after() in jiffies.h */
f53d7ce3
JW
901 if ((long)next - (long)val < 0) {
902 switch (target) {
903 case MEM_CGROUP_TARGET_THRESH:
904 next = val + THRESHOLDS_EVENTS_TARGET;
905 break;
bb4cc1a8
AM
906 case MEM_CGROUP_TARGET_SOFTLIMIT:
907 next = val + SOFTLIMIT_EVENTS_TARGET;
908 break;
f53d7ce3
JW
909 case MEM_CGROUP_TARGET_NUMAINFO:
910 next = val + NUMAINFO_EVENTS_TARGET;
911 break;
912 default:
913 break;
914 }
915 __this_cpu_write(memcg->stat->targets[target], next);
916 return true;
7a159cc9 917 }
f53d7ce3 918 return false;
d2265e6f
KH
919}
920
921/*
922 * Check events in order.
923 *
924 */
c0ff4b85 925static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
926{
927 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
928 if (unlikely(mem_cgroup_event_ratelimit(memcg,
929 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 930 bool do_softlimit;
82b3f2a7 931 bool do_numainfo __maybe_unused;
f53d7ce3 932
bb4cc1a8
AM
933 do_softlimit = mem_cgroup_event_ratelimit(memcg,
934 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
935#if MAX_NUMNODES > 1
936 do_numainfo = mem_cgroup_event_ratelimit(memcg,
937 MEM_CGROUP_TARGET_NUMAINFO);
938#endif
c0ff4b85 939 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
940 if (unlikely(do_softlimit))
941 mem_cgroup_update_tree(memcg, page);
453a9bf3 942#if MAX_NUMNODES > 1
f53d7ce3 943 if (unlikely(do_numainfo))
c0ff4b85 944 atomic_inc(&memcg->numainfo_events);
453a9bf3 945#endif
0a31bc97 946 }
d2265e6f
KH
947}
948
cf475ad2 949struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 950{
31a78f23
BS
951 /*
952 * mm_update_next_owner() may clear mm->owner to NULL
953 * if it races with swapoff, page migration, etc.
954 * So this can be called with p == NULL.
955 */
956 if (unlikely(!p))
957 return NULL;
958
073219e9 959 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
960}
961
df381975 962static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 963{
c0ff4b85 964 struct mem_cgroup *memcg = NULL;
0b7f569e 965
54595fe2
KH
966 rcu_read_lock();
967 do {
6f6acb00
MH
968 /*
969 * Page cache insertions can happen withou an
970 * actual mm context, e.g. during disk probing
971 * on boot, loopback IO, acct() writes etc.
972 */
973 if (unlikely(!mm))
df381975 974 memcg = root_mem_cgroup;
6f6acb00
MH
975 else {
976 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
977 if (unlikely(!memcg))
978 memcg = root_mem_cgroup;
979 }
ec903c0c 980 } while (!css_tryget_online(&memcg->css));
54595fe2 981 rcu_read_unlock();
c0ff4b85 982 return memcg;
54595fe2
KH
983}
984
5660048c
JW
985/**
986 * mem_cgroup_iter - iterate over memory cgroup hierarchy
987 * @root: hierarchy root
988 * @prev: previously returned memcg, NULL on first invocation
989 * @reclaim: cookie for shared reclaim walks, NULL for full walks
990 *
991 * Returns references to children of the hierarchy below @root, or
992 * @root itself, or %NULL after a full round-trip.
993 *
994 * Caller must pass the return value in @prev on subsequent
995 * invocations for reference counting, or use mem_cgroup_iter_break()
996 * to cancel a hierarchy walk before the round-trip is complete.
997 *
998 * Reclaimers can specify a zone and a priority level in @reclaim to
999 * divide up the memcgs in the hierarchy among all concurrent
1000 * reclaimers operating on the same zone and priority.
1001 */
694fbc0f 1002struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1003 struct mem_cgroup *prev,
694fbc0f 1004 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1005{
5ac8fb31
JW
1006 struct reclaim_iter *uninitialized_var(iter);
1007 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1008 struct mem_cgroup *memcg = NULL;
5ac8fb31 1009 struct mem_cgroup *pos = NULL;
711d3d2c 1010
694fbc0f
AM
1011 if (mem_cgroup_disabled())
1012 return NULL;
5660048c 1013
9f3a0d09
JW
1014 if (!root)
1015 root = root_mem_cgroup;
7d74b06f 1016
9f3a0d09 1017 if (prev && !reclaim)
5ac8fb31 1018 pos = prev;
14067bb3 1019
9f3a0d09
JW
1020 if (!root->use_hierarchy && root != root_mem_cgroup) {
1021 if (prev)
5ac8fb31 1022 goto out;
694fbc0f 1023 return root;
9f3a0d09 1024 }
14067bb3 1025
542f85f9 1026 rcu_read_lock();
5f578161 1027
5ac8fb31
JW
1028 if (reclaim) {
1029 struct mem_cgroup_per_zone *mz;
1030
1031 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1032 iter = &mz->iter[reclaim->priority];
1033
1034 if (prev && reclaim->generation != iter->generation)
1035 goto out_unlock;
1036
1037 do {
1038 pos = ACCESS_ONCE(iter->position);
1039 /*
1040 * A racing update may change the position and
1041 * put the last reference, hence css_tryget(),
1042 * or retry to see the updated position.
1043 */
1044 } while (pos && !css_tryget(&pos->css));
1045 }
1046
1047 if (pos)
1048 css = &pos->css;
1049
1050 for (;;) {
1051 css = css_next_descendant_pre(css, &root->css);
1052 if (!css) {
1053 /*
1054 * Reclaimers share the hierarchy walk, and a
1055 * new one might jump in right at the end of
1056 * the hierarchy - make sure they see at least
1057 * one group and restart from the beginning.
1058 */
1059 if (!prev)
1060 continue;
1061 break;
527a5ec9 1062 }
7d74b06f 1063
5ac8fb31
JW
1064 /*
1065 * Verify the css and acquire a reference. The root
1066 * is provided by the caller, so we know it's alive
1067 * and kicking, and don't take an extra reference.
1068 */
1069 memcg = mem_cgroup_from_css(css);
14067bb3 1070
5ac8fb31
JW
1071 if (css == &root->css)
1072 break;
14067bb3 1073
b2052564 1074 if (css_tryget(css)) {
5ac8fb31
JW
1075 /*
1076 * Make sure the memcg is initialized:
1077 * mem_cgroup_css_online() orders the the
1078 * initialization against setting the flag.
1079 */
1080 if (smp_load_acquire(&memcg->initialized))
1081 break;
542f85f9 1082
5ac8fb31 1083 css_put(css);
527a5ec9 1084 }
9f3a0d09 1085
5ac8fb31 1086 memcg = NULL;
9f3a0d09 1087 }
5ac8fb31
JW
1088
1089 if (reclaim) {
1090 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1091 if (memcg)
1092 css_get(&memcg->css);
1093 if (pos)
1094 css_put(&pos->css);
1095 }
1096
1097 /*
1098 * pairs with css_tryget when dereferencing iter->position
1099 * above.
1100 */
1101 if (pos)
1102 css_put(&pos->css);
1103
1104 if (!memcg)
1105 iter->generation++;
1106 else if (!prev)
1107 reclaim->generation = iter->generation;
9f3a0d09 1108 }
5ac8fb31 1109
542f85f9
MH
1110out_unlock:
1111 rcu_read_unlock();
5ac8fb31 1112out:
c40046f3
MH
1113 if (prev && prev != root)
1114 css_put(&prev->css);
1115
9f3a0d09 1116 return memcg;
14067bb3 1117}
7d74b06f 1118
5660048c
JW
1119/**
1120 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1121 * @root: hierarchy root
1122 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1123 */
1124void mem_cgroup_iter_break(struct mem_cgroup *root,
1125 struct mem_cgroup *prev)
9f3a0d09
JW
1126{
1127 if (!root)
1128 root = root_mem_cgroup;
1129 if (prev && prev != root)
1130 css_put(&prev->css);
1131}
7d74b06f 1132
9f3a0d09
JW
1133/*
1134 * Iteration constructs for visiting all cgroups (under a tree). If
1135 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1136 * be used for reference counting.
1137 */
1138#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1139 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1140 iter != NULL; \
527a5ec9 1141 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1142
9f3a0d09 1143#define for_each_mem_cgroup(iter) \
527a5ec9 1144 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1145 iter != NULL; \
527a5ec9 1146 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1147
68ae564b 1148void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1149{
c0ff4b85 1150 struct mem_cgroup *memcg;
456f998e 1151
456f998e 1152 rcu_read_lock();
c0ff4b85
R
1153 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1154 if (unlikely(!memcg))
456f998e
YH
1155 goto out;
1156
1157 switch (idx) {
456f998e 1158 case PGFAULT:
0e574a93
JW
1159 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1160 break;
1161 case PGMAJFAULT:
1162 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1163 break;
1164 default:
1165 BUG();
1166 }
1167out:
1168 rcu_read_unlock();
1169}
68ae564b 1170EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1171
925b7673
JW
1172/**
1173 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1174 * @zone: zone of the wanted lruvec
fa9add64 1175 * @memcg: memcg of the wanted lruvec
925b7673
JW
1176 *
1177 * Returns the lru list vector holding pages for the given @zone and
1178 * @mem. This can be the global zone lruvec, if the memory controller
1179 * is disabled.
1180 */
1181struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1182 struct mem_cgroup *memcg)
1183{
1184 struct mem_cgroup_per_zone *mz;
bea8c150 1185 struct lruvec *lruvec;
925b7673 1186
bea8c150
HD
1187 if (mem_cgroup_disabled()) {
1188 lruvec = &zone->lruvec;
1189 goto out;
1190 }
925b7673 1191
e231875b 1192 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1193 lruvec = &mz->lruvec;
1194out:
1195 /*
1196 * Since a node can be onlined after the mem_cgroup was created,
1197 * we have to be prepared to initialize lruvec->zone here;
1198 * and if offlined then reonlined, we need to reinitialize it.
1199 */
1200 if (unlikely(lruvec->zone != zone))
1201 lruvec->zone = zone;
1202 return lruvec;
925b7673
JW
1203}
1204
925b7673 1205/**
dfe0e773 1206 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1207 * @page: the page
fa9add64 1208 * @zone: zone of the page
dfe0e773
JW
1209 *
1210 * This function is only safe when following the LRU page isolation
1211 * and putback protocol: the LRU lock must be held, and the page must
1212 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1213 */
fa9add64 1214struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1215{
08e552c6 1216 struct mem_cgroup_per_zone *mz;
925b7673 1217 struct mem_cgroup *memcg;
bea8c150 1218 struct lruvec *lruvec;
6d12e2d8 1219
bea8c150
HD
1220 if (mem_cgroup_disabled()) {
1221 lruvec = &zone->lruvec;
1222 goto out;
1223 }
925b7673 1224
1306a85a 1225 memcg = page->mem_cgroup;
7512102c 1226 /*
dfe0e773 1227 * Swapcache readahead pages are added to the LRU - and
29833315 1228 * possibly migrated - before they are charged.
7512102c 1229 */
29833315
JW
1230 if (!memcg)
1231 memcg = root_mem_cgroup;
7512102c 1232
e231875b 1233 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1234 lruvec = &mz->lruvec;
1235out:
1236 /*
1237 * Since a node can be onlined after the mem_cgroup was created,
1238 * we have to be prepared to initialize lruvec->zone here;
1239 * and if offlined then reonlined, we need to reinitialize it.
1240 */
1241 if (unlikely(lruvec->zone != zone))
1242 lruvec->zone = zone;
1243 return lruvec;
08e552c6 1244}
b69408e8 1245
925b7673 1246/**
fa9add64
HD
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
1250 * @nr_pages: positive when adding or negative when removing
925b7673 1251 *
fa9add64
HD
1252 * This function must be called when a page is added to or removed from an
1253 * lru list.
3f58a829 1254 */
fa9add64
HD
1255void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1256 int nr_pages)
3f58a829
MK
1257{
1258 struct mem_cgroup_per_zone *mz;
fa9add64 1259 unsigned long *lru_size;
3f58a829
MK
1260
1261 if (mem_cgroup_disabled())
1262 return;
1263
fa9add64
HD
1264 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1265 lru_size = mz->lru_size + lru;
1266 *lru_size += nr_pages;
1267 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1268}
544122e5 1269
2314b42d 1270bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1271{
2314b42d 1272 if (root == memcg)
91c63734 1273 return true;
2314b42d 1274 if (!root->use_hierarchy)
91c63734 1275 return false;
2314b42d 1276 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1277}
1278
2314b42d 1279bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1280{
2314b42d 1281 struct mem_cgroup *task_memcg;
158e0a2d 1282 struct task_struct *p;
ffbdccf5 1283 bool ret;
4c4a2214 1284
158e0a2d 1285 p = find_lock_task_mm(task);
de077d22 1286 if (p) {
2314b42d 1287 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1288 task_unlock(p);
1289 } else {
1290 /*
1291 * All threads may have already detached their mm's, but the oom
1292 * killer still needs to detect if they have already been oom
1293 * killed to prevent needlessly killing additional tasks.
1294 */
ffbdccf5 1295 rcu_read_lock();
2314b42d
JW
1296 task_memcg = mem_cgroup_from_task(task);
1297 css_get(&task_memcg->css);
ffbdccf5 1298 rcu_read_unlock();
de077d22 1299 }
2314b42d
JW
1300 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1301 css_put(&task_memcg->css);
4c4a2214
DR
1302 return ret;
1303}
1304
c56d5c7d 1305int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1306{
9b272977 1307 unsigned long inactive_ratio;
14797e23 1308 unsigned long inactive;
9b272977 1309 unsigned long active;
c772be93 1310 unsigned long gb;
14797e23 1311
4d7dcca2
HD
1312 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1313 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1314
c772be93
KM
1315 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1316 if (gb)
1317 inactive_ratio = int_sqrt(10 * gb);
1318 else
1319 inactive_ratio = 1;
1320
9b272977 1321 return inactive * inactive_ratio < active;
14797e23
KM
1322}
1323
90cbc250
VD
1324bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1325{
1326 struct mem_cgroup_per_zone *mz;
1327 struct mem_cgroup *memcg;
1328
1329 if (mem_cgroup_disabled())
1330 return true;
1331
1332 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1333 memcg = mz->memcg;
1334
1335 return !!(memcg->css.flags & CSS_ONLINE);
1336}
1337
3e32cb2e 1338#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1339 container_of(counter, struct mem_cgroup, member)
1340
19942822 1341/**
9d11ea9f 1342 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1343 * @memcg: the memory cgroup
19942822 1344 *
9d11ea9f 1345 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1346 * pages.
19942822 1347 */
c0ff4b85 1348static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1349{
3e32cb2e
JW
1350 unsigned long margin = 0;
1351 unsigned long count;
1352 unsigned long limit;
9d11ea9f 1353
3e32cb2e
JW
1354 count = page_counter_read(&memcg->memory);
1355 limit = ACCESS_ONCE(memcg->memory.limit);
1356 if (count < limit)
1357 margin = limit - count;
1358
1359 if (do_swap_account) {
1360 count = page_counter_read(&memcg->memsw);
1361 limit = ACCESS_ONCE(memcg->memsw.limit);
1362 if (count <= limit)
1363 margin = min(margin, limit - count);
1364 }
1365
1366 return margin;
19942822
JW
1367}
1368
1f4c025b 1369int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1370{
a7885eb8 1371 /* root ? */
14208b0e 1372 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1373 return vm_swappiness;
1374
bf1ff263 1375 return memcg->swappiness;
a7885eb8
KM
1376}
1377
32047e2a 1378/*
bdcbb659 1379 * A routine for checking "mem" is under move_account() or not.
32047e2a 1380 *
bdcbb659
QH
1381 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1382 * moving cgroups. This is for waiting at high-memory pressure
1383 * caused by "move".
32047e2a 1384 */
c0ff4b85 1385static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1386{
2bd9bb20
KH
1387 struct mem_cgroup *from;
1388 struct mem_cgroup *to;
4b534334 1389 bool ret = false;
2bd9bb20
KH
1390 /*
1391 * Unlike task_move routines, we access mc.to, mc.from not under
1392 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1393 */
1394 spin_lock(&mc.lock);
1395 from = mc.from;
1396 to = mc.to;
1397 if (!from)
1398 goto unlock;
3e92041d 1399
2314b42d
JW
1400 ret = mem_cgroup_is_descendant(from, memcg) ||
1401 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1402unlock:
1403 spin_unlock(&mc.lock);
4b534334
KH
1404 return ret;
1405}
1406
c0ff4b85 1407static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1408{
1409 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1410 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1411 DEFINE_WAIT(wait);
1412 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1413 /* moving charge context might have finished. */
1414 if (mc.moving_task)
1415 schedule();
1416 finish_wait(&mc.waitq, &wait);
1417 return true;
1418 }
1419 }
1420 return false;
1421}
1422
58cf188e 1423#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1424/**
58cf188e 1425 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1426 * @memcg: The memory cgroup that went over limit
1427 * @p: Task that is going to be killed
1428 *
1429 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1430 * enabled
1431 */
1432void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1433{
e61734c5 1434 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1435 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1436 struct mem_cgroup *iter;
1437 unsigned int i;
e222432b 1438
58cf188e 1439 if (!p)
e222432b
BS
1440 return;
1441
08088cb9 1442 mutex_lock(&oom_info_lock);
e222432b
BS
1443 rcu_read_lock();
1444
e61734c5
TH
1445 pr_info("Task in ");
1446 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
0346dadb 1447 pr_cont(" killed as a result of limit of ");
e61734c5 1448 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1449 pr_cont("\n");
e222432b 1450
e222432b
BS
1451 rcu_read_unlock();
1452
3e32cb2e
JW
1453 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1454 K((u64)page_counter_read(&memcg->memory)),
1455 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1456 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1457 K((u64)page_counter_read(&memcg->memsw)),
1458 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1459 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1460 K((u64)page_counter_read(&memcg->kmem)),
1461 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1462
1463 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1464 pr_info("Memory cgroup stats for ");
1465 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1466 pr_cont(":");
1467
1468 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1469 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1470 continue;
1471 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1472 K(mem_cgroup_read_stat(iter, i)));
1473 }
1474
1475 for (i = 0; i < NR_LRU_LISTS; i++)
1476 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1477 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1478
1479 pr_cont("\n");
1480 }
08088cb9 1481 mutex_unlock(&oom_info_lock);
e222432b
BS
1482}
1483
81d39c20
KH
1484/*
1485 * This function returns the number of memcg under hierarchy tree. Returns
1486 * 1(self count) if no children.
1487 */
c0ff4b85 1488static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1489{
1490 int num = 0;
7d74b06f
KH
1491 struct mem_cgroup *iter;
1492
c0ff4b85 1493 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1494 num++;
81d39c20
KH
1495 return num;
1496}
1497
a63d83f4
DR
1498/*
1499 * Return the memory (and swap, if configured) limit for a memcg.
1500 */
3e32cb2e 1501static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1502{
3e32cb2e 1503 unsigned long limit;
f3e8eb70 1504
3e32cb2e 1505 limit = memcg->memory.limit;
9a5a8f19 1506 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1507 unsigned long memsw_limit;
9a5a8f19 1508
3e32cb2e
JW
1509 memsw_limit = memcg->memsw.limit;
1510 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1511 }
9a5a8f19 1512 return limit;
a63d83f4
DR
1513}
1514
19965460
DR
1515static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1516 int order)
9cbb78bb
DR
1517{
1518 struct mem_cgroup *iter;
1519 unsigned long chosen_points = 0;
1520 unsigned long totalpages;
1521 unsigned int points = 0;
1522 struct task_struct *chosen = NULL;
1523
876aafbf 1524 /*
465adcf1
DR
1525 * If current has a pending SIGKILL or is exiting, then automatically
1526 * select it. The goal is to allow it to allocate so that it may
1527 * quickly exit and free its memory.
876aafbf 1528 */
d003f371 1529 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
49550b60 1530 mark_tsk_oom_victim(current);
876aafbf
DR
1531 return;
1532 }
1533
1534 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1535 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1536 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1537 struct css_task_iter it;
9cbb78bb
DR
1538 struct task_struct *task;
1539
72ec7029
TH
1540 css_task_iter_start(&iter->css, &it);
1541 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1542 switch (oom_scan_process_thread(task, totalpages, NULL,
1543 false)) {
1544 case OOM_SCAN_SELECT:
1545 if (chosen)
1546 put_task_struct(chosen);
1547 chosen = task;
1548 chosen_points = ULONG_MAX;
1549 get_task_struct(chosen);
1550 /* fall through */
1551 case OOM_SCAN_CONTINUE:
1552 continue;
1553 case OOM_SCAN_ABORT:
72ec7029 1554 css_task_iter_end(&it);
9cbb78bb
DR
1555 mem_cgroup_iter_break(memcg, iter);
1556 if (chosen)
1557 put_task_struct(chosen);
1558 return;
1559 case OOM_SCAN_OK:
1560 break;
1561 };
1562 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1563 if (!points || points < chosen_points)
1564 continue;
1565 /* Prefer thread group leaders for display purposes */
1566 if (points == chosen_points &&
1567 thread_group_leader(chosen))
1568 continue;
1569
1570 if (chosen)
1571 put_task_struct(chosen);
1572 chosen = task;
1573 chosen_points = points;
1574 get_task_struct(chosen);
9cbb78bb 1575 }
72ec7029 1576 css_task_iter_end(&it);
9cbb78bb
DR
1577 }
1578
1579 if (!chosen)
1580 return;
1581 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1582 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1583 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1584}
1585
ae6e71d3
MC
1586#if MAX_NUMNODES > 1
1587
4d0c066d
KH
1588/**
1589 * test_mem_cgroup_node_reclaimable
dad7557e 1590 * @memcg: the target memcg
4d0c066d
KH
1591 * @nid: the node ID to be checked.
1592 * @noswap : specify true here if the user wants flle only information.
1593 *
1594 * This function returns whether the specified memcg contains any
1595 * reclaimable pages on a node. Returns true if there are any reclaimable
1596 * pages in the node.
1597 */
c0ff4b85 1598static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1599 int nid, bool noswap)
1600{
c0ff4b85 1601 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1602 return true;
1603 if (noswap || !total_swap_pages)
1604 return false;
c0ff4b85 1605 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1606 return true;
1607 return false;
1608
1609}
889976db
YH
1610
1611/*
1612 * Always updating the nodemask is not very good - even if we have an empty
1613 * list or the wrong list here, we can start from some node and traverse all
1614 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1615 *
1616 */
c0ff4b85 1617static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1618{
1619 int nid;
453a9bf3
KH
1620 /*
1621 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1622 * pagein/pageout changes since the last update.
1623 */
c0ff4b85 1624 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1625 return;
c0ff4b85 1626 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1627 return;
1628
889976db 1629 /* make a nodemask where this memcg uses memory from */
31aaea4a 1630 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1631
31aaea4a 1632 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1633
c0ff4b85
R
1634 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1635 node_clear(nid, memcg->scan_nodes);
889976db 1636 }
453a9bf3 1637
c0ff4b85
R
1638 atomic_set(&memcg->numainfo_events, 0);
1639 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1640}
1641
1642/*
1643 * Selecting a node where we start reclaim from. Because what we need is just
1644 * reducing usage counter, start from anywhere is O,K. Considering
1645 * memory reclaim from current node, there are pros. and cons.
1646 *
1647 * Freeing memory from current node means freeing memory from a node which
1648 * we'll use or we've used. So, it may make LRU bad. And if several threads
1649 * hit limits, it will see a contention on a node. But freeing from remote
1650 * node means more costs for memory reclaim because of memory latency.
1651 *
1652 * Now, we use round-robin. Better algorithm is welcomed.
1653 */
c0ff4b85 1654int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1655{
1656 int node;
1657
c0ff4b85
R
1658 mem_cgroup_may_update_nodemask(memcg);
1659 node = memcg->last_scanned_node;
889976db 1660
c0ff4b85 1661 node = next_node(node, memcg->scan_nodes);
889976db 1662 if (node == MAX_NUMNODES)
c0ff4b85 1663 node = first_node(memcg->scan_nodes);
889976db
YH
1664 /*
1665 * We call this when we hit limit, not when pages are added to LRU.
1666 * No LRU may hold pages because all pages are UNEVICTABLE or
1667 * memcg is too small and all pages are not on LRU. In that case,
1668 * we use curret node.
1669 */
1670 if (unlikely(node == MAX_NUMNODES))
1671 node = numa_node_id();
1672
c0ff4b85 1673 memcg->last_scanned_node = node;
889976db
YH
1674 return node;
1675}
889976db 1676#else
c0ff4b85 1677int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1678{
1679 return 0;
1680}
1681#endif
1682
0608f43d
AM
1683static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1684 struct zone *zone,
1685 gfp_t gfp_mask,
1686 unsigned long *total_scanned)
1687{
1688 struct mem_cgroup *victim = NULL;
1689 int total = 0;
1690 int loop = 0;
1691 unsigned long excess;
1692 unsigned long nr_scanned;
1693 struct mem_cgroup_reclaim_cookie reclaim = {
1694 .zone = zone,
1695 .priority = 0,
1696 };
1697
3e32cb2e 1698 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1699
1700 while (1) {
1701 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1702 if (!victim) {
1703 loop++;
1704 if (loop >= 2) {
1705 /*
1706 * If we have not been able to reclaim
1707 * anything, it might because there are
1708 * no reclaimable pages under this hierarchy
1709 */
1710 if (!total)
1711 break;
1712 /*
1713 * We want to do more targeted reclaim.
1714 * excess >> 2 is not to excessive so as to
1715 * reclaim too much, nor too less that we keep
1716 * coming back to reclaim from this cgroup
1717 */
1718 if (total >= (excess >> 2) ||
1719 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1720 break;
1721 }
1722 continue;
1723 }
0608f43d
AM
1724 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1725 zone, &nr_scanned);
1726 *total_scanned += nr_scanned;
3e32cb2e 1727 if (!soft_limit_excess(root_memcg))
0608f43d 1728 break;
6d61ef40 1729 }
0608f43d
AM
1730 mem_cgroup_iter_break(root_memcg, victim);
1731 return total;
6d61ef40
BS
1732}
1733
0056f4e6
JW
1734#ifdef CONFIG_LOCKDEP
1735static struct lockdep_map memcg_oom_lock_dep_map = {
1736 .name = "memcg_oom_lock",
1737};
1738#endif
1739
fb2a6fc5
JW
1740static DEFINE_SPINLOCK(memcg_oom_lock);
1741
867578cb
KH
1742/*
1743 * Check OOM-Killer is already running under our hierarchy.
1744 * If someone is running, return false.
1745 */
fb2a6fc5 1746static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1747{
79dfdacc 1748 struct mem_cgroup *iter, *failed = NULL;
a636b327 1749
fb2a6fc5
JW
1750 spin_lock(&memcg_oom_lock);
1751
9f3a0d09 1752 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1753 if (iter->oom_lock) {
79dfdacc
MH
1754 /*
1755 * this subtree of our hierarchy is already locked
1756 * so we cannot give a lock.
1757 */
79dfdacc 1758 failed = iter;
9f3a0d09
JW
1759 mem_cgroup_iter_break(memcg, iter);
1760 break;
23751be0
JW
1761 } else
1762 iter->oom_lock = true;
7d74b06f 1763 }
867578cb 1764
fb2a6fc5
JW
1765 if (failed) {
1766 /*
1767 * OK, we failed to lock the whole subtree so we have
1768 * to clean up what we set up to the failing subtree
1769 */
1770 for_each_mem_cgroup_tree(iter, memcg) {
1771 if (iter == failed) {
1772 mem_cgroup_iter_break(memcg, iter);
1773 break;
1774 }
1775 iter->oom_lock = false;
79dfdacc 1776 }
0056f4e6
JW
1777 } else
1778 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1779
1780 spin_unlock(&memcg_oom_lock);
1781
1782 return !failed;
a636b327 1783}
0b7f569e 1784
fb2a6fc5 1785static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1786{
7d74b06f
KH
1787 struct mem_cgroup *iter;
1788
fb2a6fc5 1789 spin_lock(&memcg_oom_lock);
0056f4e6 1790 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1791 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1792 iter->oom_lock = false;
fb2a6fc5 1793 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1794}
1795
c0ff4b85 1796static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1797{
1798 struct mem_cgroup *iter;
1799
c0ff4b85 1800 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1801 atomic_inc(&iter->under_oom);
1802}
1803
c0ff4b85 1804static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1805{
1806 struct mem_cgroup *iter;
1807
867578cb
KH
1808 /*
1809 * When a new child is created while the hierarchy is under oom,
1810 * mem_cgroup_oom_lock() may not be called. We have to use
1811 * atomic_add_unless() here.
1812 */
c0ff4b85 1813 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1814 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1815}
1816
867578cb
KH
1817static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1818
dc98df5a 1819struct oom_wait_info {
d79154bb 1820 struct mem_cgroup *memcg;
dc98df5a
KH
1821 wait_queue_t wait;
1822};
1823
1824static int memcg_oom_wake_function(wait_queue_t *wait,
1825 unsigned mode, int sync, void *arg)
1826{
d79154bb
HD
1827 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1828 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1829 struct oom_wait_info *oom_wait_info;
1830
1831 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1832 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1833
2314b42d
JW
1834 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1835 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1836 return 0;
dc98df5a
KH
1837 return autoremove_wake_function(wait, mode, sync, arg);
1838}
1839
c0ff4b85 1840static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1841{
3812c8c8 1842 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1843 /* for filtering, pass "memcg" as argument. */
1844 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1845}
1846
c0ff4b85 1847static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1848{
c0ff4b85
R
1849 if (memcg && atomic_read(&memcg->under_oom))
1850 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1851}
1852
3812c8c8 1853static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1854{
3812c8c8
JW
1855 if (!current->memcg_oom.may_oom)
1856 return;
867578cb 1857 /*
49426420
JW
1858 * We are in the middle of the charge context here, so we
1859 * don't want to block when potentially sitting on a callstack
1860 * that holds all kinds of filesystem and mm locks.
1861 *
1862 * Also, the caller may handle a failed allocation gracefully
1863 * (like optional page cache readahead) and so an OOM killer
1864 * invocation might not even be necessary.
1865 *
1866 * That's why we don't do anything here except remember the
1867 * OOM context and then deal with it at the end of the page
1868 * fault when the stack is unwound, the locks are released,
1869 * and when we know whether the fault was overall successful.
867578cb 1870 */
49426420
JW
1871 css_get(&memcg->css);
1872 current->memcg_oom.memcg = memcg;
1873 current->memcg_oom.gfp_mask = mask;
1874 current->memcg_oom.order = order;
3812c8c8
JW
1875}
1876
1877/**
1878 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1879 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1880 *
49426420
JW
1881 * This has to be called at the end of a page fault if the memcg OOM
1882 * handler was enabled.
3812c8c8 1883 *
49426420 1884 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1885 * sleep on a waitqueue until the userspace task resolves the
1886 * situation. Sleeping directly in the charge context with all kinds
1887 * of locks held is not a good idea, instead we remember an OOM state
1888 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1889 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1890 *
1891 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1892 * completed, %false otherwise.
3812c8c8 1893 */
49426420 1894bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1895{
49426420 1896 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1897 struct oom_wait_info owait;
49426420 1898 bool locked;
3812c8c8
JW
1899
1900 /* OOM is global, do not handle */
3812c8c8 1901 if (!memcg)
49426420 1902 return false;
3812c8c8 1903
c32b3cbe 1904 if (!handle || oom_killer_disabled)
49426420 1905 goto cleanup;
3812c8c8
JW
1906
1907 owait.memcg = memcg;
1908 owait.wait.flags = 0;
1909 owait.wait.func = memcg_oom_wake_function;
1910 owait.wait.private = current;
1911 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1912
3812c8c8 1913 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1914 mem_cgroup_mark_under_oom(memcg);
1915
1916 locked = mem_cgroup_oom_trylock(memcg);
1917
1918 if (locked)
1919 mem_cgroup_oom_notify(memcg);
1920
1921 if (locked && !memcg->oom_kill_disable) {
1922 mem_cgroup_unmark_under_oom(memcg);
1923 finish_wait(&memcg_oom_waitq, &owait.wait);
1924 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1925 current->memcg_oom.order);
1926 } else {
3812c8c8 1927 schedule();
49426420
JW
1928 mem_cgroup_unmark_under_oom(memcg);
1929 finish_wait(&memcg_oom_waitq, &owait.wait);
1930 }
1931
1932 if (locked) {
fb2a6fc5
JW
1933 mem_cgroup_oom_unlock(memcg);
1934 /*
1935 * There is no guarantee that an OOM-lock contender
1936 * sees the wakeups triggered by the OOM kill
1937 * uncharges. Wake any sleepers explicitely.
1938 */
1939 memcg_oom_recover(memcg);
1940 }
49426420
JW
1941cleanup:
1942 current->memcg_oom.memcg = NULL;
3812c8c8 1943 css_put(&memcg->css);
867578cb 1944 return true;
0b7f569e
KH
1945}
1946
d7365e78
JW
1947/**
1948 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1949 * @page: page that is going to change accounted state
32047e2a 1950 *
d7365e78
JW
1951 * This function must mark the beginning of an accounted page state
1952 * change to prevent double accounting when the page is concurrently
1953 * being moved to another memcg:
32047e2a 1954 *
6de22619 1955 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1956 * if (TestClearPageState(page))
1957 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1958 * mem_cgroup_end_page_stat(memcg);
d69b042f 1959 */
6de22619 1960struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1961{
1962 struct mem_cgroup *memcg;
6de22619 1963 unsigned long flags;
89c06bd5 1964
6de22619
JW
1965 /*
1966 * The RCU lock is held throughout the transaction. The fast
1967 * path can get away without acquiring the memcg->move_lock
1968 * because page moving starts with an RCU grace period.
1969 *
1970 * The RCU lock also protects the memcg from being freed when
1971 * the page state that is going to change is the only thing
1972 * preventing the page from being uncharged.
1973 * E.g. end-writeback clearing PageWriteback(), which allows
1974 * migration to go ahead and uncharge the page before the
1975 * account transaction might be complete.
1976 */
d7365e78
JW
1977 rcu_read_lock();
1978
1979 if (mem_cgroup_disabled())
1980 return NULL;
89c06bd5 1981again:
1306a85a 1982 memcg = page->mem_cgroup;
29833315 1983 if (unlikely(!memcg))
d7365e78
JW
1984 return NULL;
1985
bdcbb659 1986 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1987 return memcg;
89c06bd5 1988
6de22619 1989 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1990 if (memcg != page->mem_cgroup) {
6de22619 1991 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1992 goto again;
1993 }
6de22619
JW
1994
1995 /*
1996 * When charge migration first begins, we can have locked and
1997 * unlocked page stat updates happening concurrently. Track
1998 * the task who has the lock for mem_cgroup_end_page_stat().
1999 */
2000 memcg->move_lock_task = current;
2001 memcg->move_lock_flags = flags;
d7365e78
JW
2002
2003 return memcg;
89c06bd5
KH
2004}
2005
d7365e78
JW
2006/**
2007 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2008 * @memcg: the memcg that was accounted against
d7365e78 2009 */
6de22619 2010void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 2011{
6de22619
JW
2012 if (memcg && memcg->move_lock_task == current) {
2013 unsigned long flags = memcg->move_lock_flags;
2014
2015 memcg->move_lock_task = NULL;
2016 memcg->move_lock_flags = 0;
2017
2018 spin_unlock_irqrestore(&memcg->move_lock, flags);
2019 }
89c06bd5 2020
d7365e78 2021 rcu_read_unlock();
89c06bd5
KH
2022}
2023
d7365e78
JW
2024/**
2025 * mem_cgroup_update_page_stat - update page state statistics
2026 * @memcg: memcg to account against
2027 * @idx: page state item to account
2028 * @val: number of pages (positive or negative)
2029 *
2030 * See mem_cgroup_begin_page_stat() for locking requirements.
2031 */
2032void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2033 enum mem_cgroup_stat_index idx, int val)
d69b042f 2034{
658b72c5 2035 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2036
d7365e78
JW
2037 if (memcg)
2038 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2039}
26174efd 2040
cdec2e42
KH
2041/*
2042 * size of first charge trial. "32" comes from vmscan.c's magic value.
2043 * TODO: maybe necessary to use big numbers in big irons.
2044 */
7ec99d62 2045#define CHARGE_BATCH 32U
cdec2e42
KH
2046struct memcg_stock_pcp {
2047 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2048 unsigned int nr_pages;
cdec2e42 2049 struct work_struct work;
26fe6168 2050 unsigned long flags;
a0db00fc 2051#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2052};
2053static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2054static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2055
a0956d54
SS
2056/**
2057 * consume_stock: Try to consume stocked charge on this cpu.
2058 * @memcg: memcg to consume from.
2059 * @nr_pages: how many pages to charge.
2060 *
2061 * The charges will only happen if @memcg matches the current cpu's memcg
2062 * stock, and at least @nr_pages are available in that stock. Failure to
2063 * service an allocation will refill the stock.
2064 *
2065 * returns true if successful, false otherwise.
cdec2e42 2066 */
a0956d54 2067static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2068{
2069 struct memcg_stock_pcp *stock;
3e32cb2e 2070 bool ret = false;
cdec2e42 2071
a0956d54 2072 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2073 return ret;
a0956d54 2074
cdec2e42 2075 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2076 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2077 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2078 ret = true;
2079 }
cdec2e42
KH
2080 put_cpu_var(memcg_stock);
2081 return ret;
2082}
2083
2084/*
3e32cb2e 2085 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2086 */
2087static void drain_stock(struct memcg_stock_pcp *stock)
2088{
2089 struct mem_cgroup *old = stock->cached;
2090
11c9ea4e 2091 if (stock->nr_pages) {
3e32cb2e 2092 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2093 if (do_swap_account)
3e32cb2e 2094 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2095 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2096 stock->nr_pages = 0;
cdec2e42
KH
2097 }
2098 stock->cached = NULL;
cdec2e42
KH
2099}
2100
2101/*
2102 * This must be called under preempt disabled or must be called by
2103 * a thread which is pinned to local cpu.
2104 */
2105static void drain_local_stock(struct work_struct *dummy)
2106{
7c8e0181 2107 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2108 drain_stock(stock);
26fe6168 2109 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2110}
2111
2112/*
3e32cb2e 2113 * Cache charges(val) to local per_cpu area.
320cc51d 2114 * This will be consumed by consume_stock() function, later.
cdec2e42 2115 */
c0ff4b85 2116static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2117{
2118 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2119
c0ff4b85 2120 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2121 drain_stock(stock);
c0ff4b85 2122 stock->cached = memcg;
cdec2e42 2123 }
11c9ea4e 2124 stock->nr_pages += nr_pages;
cdec2e42
KH
2125 put_cpu_var(memcg_stock);
2126}
2127
2128/*
c0ff4b85 2129 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2130 * of the hierarchy under it.
cdec2e42 2131 */
6d3d6aa2 2132static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2133{
26fe6168 2134 int cpu, curcpu;
d38144b7 2135
6d3d6aa2
JW
2136 /* If someone's already draining, avoid adding running more workers. */
2137 if (!mutex_trylock(&percpu_charge_mutex))
2138 return;
cdec2e42 2139 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2140 get_online_cpus();
5af12d0e 2141 curcpu = get_cpu();
cdec2e42
KH
2142 for_each_online_cpu(cpu) {
2143 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2144 struct mem_cgroup *memcg;
26fe6168 2145
c0ff4b85
R
2146 memcg = stock->cached;
2147 if (!memcg || !stock->nr_pages)
26fe6168 2148 continue;
2314b42d 2149 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2150 continue;
d1a05b69
MH
2151 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2152 if (cpu == curcpu)
2153 drain_local_stock(&stock->work);
2154 else
2155 schedule_work_on(cpu, &stock->work);
2156 }
cdec2e42 2157 }
5af12d0e 2158 put_cpu();
f894ffa8 2159 put_online_cpus();
9f50fad6 2160 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2161}
2162
711d3d2c
KH
2163/*
2164 * This function drains percpu counter value from DEAD cpu and
2165 * move it to local cpu. Note that this function can be preempted.
2166 */
c0ff4b85 2167static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2168{
2169 int i;
2170
c0ff4b85 2171 spin_lock(&memcg->pcp_counter_lock);
6104621d 2172 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2173 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2174
c0ff4b85
R
2175 per_cpu(memcg->stat->count[i], cpu) = 0;
2176 memcg->nocpu_base.count[i] += x;
711d3d2c 2177 }
e9f8974f 2178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2179 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2180
c0ff4b85
R
2181 per_cpu(memcg->stat->events[i], cpu) = 0;
2182 memcg->nocpu_base.events[i] += x;
e9f8974f 2183 }
c0ff4b85 2184 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2185}
2186
0db0628d 2187static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2188 unsigned long action,
2189 void *hcpu)
2190{
2191 int cpu = (unsigned long)hcpu;
2192 struct memcg_stock_pcp *stock;
711d3d2c 2193 struct mem_cgroup *iter;
cdec2e42 2194
619d094b 2195 if (action == CPU_ONLINE)
1489ebad 2196 return NOTIFY_OK;
1489ebad 2197
d833049b 2198 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2199 return NOTIFY_OK;
711d3d2c 2200
9f3a0d09 2201 for_each_mem_cgroup(iter)
711d3d2c
KH
2202 mem_cgroup_drain_pcp_counter(iter, cpu);
2203
cdec2e42
KH
2204 stock = &per_cpu(memcg_stock, cpu);
2205 drain_stock(stock);
2206 return NOTIFY_OK;
2207}
2208
00501b53
JW
2209static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2210 unsigned int nr_pages)
8a9f3ccd 2211{
7ec99d62 2212 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2213 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2214 struct mem_cgroup *mem_over_limit;
3e32cb2e 2215 struct page_counter *counter;
6539cc05 2216 unsigned long nr_reclaimed;
b70a2a21
JW
2217 bool may_swap = true;
2218 bool drained = false;
05b84301 2219 int ret = 0;
a636b327 2220
ce00a967
JW
2221 if (mem_cgroup_is_root(memcg))
2222 goto done;
6539cc05 2223retry:
b6b6cc72
MH
2224 if (consume_stock(memcg, nr_pages))
2225 goto done;
8a9f3ccd 2226
3fbe7244 2227 if (!do_swap_account ||
3e32cb2e
JW
2228 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2229 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2230 goto done_restock;
3fbe7244 2231 if (do_swap_account)
3e32cb2e
JW
2232 page_counter_uncharge(&memcg->memsw, batch);
2233 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2234 } else {
3e32cb2e 2235 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2236 may_swap = false;
3fbe7244 2237 }
7a81b88c 2238
6539cc05
JW
2239 if (batch > nr_pages) {
2240 batch = nr_pages;
2241 goto retry;
2242 }
6d61ef40 2243
06b078fc
JW
2244 /*
2245 * Unlike in global OOM situations, memcg is not in a physical
2246 * memory shortage. Allow dying and OOM-killed tasks to
2247 * bypass the last charges so that they can exit quickly and
2248 * free their memory.
2249 */
2250 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2251 fatal_signal_pending(current) ||
2252 current->flags & PF_EXITING))
2253 goto bypass;
2254
2255 if (unlikely(task_in_memcg_oom(current)))
2256 goto nomem;
2257
6539cc05
JW
2258 if (!(gfp_mask & __GFP_WAIT))
2259 goto nomem;
4b534334 2260
241994ed
JW
2261 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2262
b70a2a21
JW
2263 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2264 gfp_mask, may_swap);
6539cc05 2265
61e02c74 2266 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2267 goto retry;
28c34c29 2268
b70a2a21 2269 if (!drained) {
6d3d6aa2 2270 drain_all_stock(mem_over_limit);
b70a2a21
JW
2271 drained = true;
2272 goto retry;
2273 }
2274
28c34c29
JW
2275 if (gfp_mask & __GFP_NORETRY)
2276 goto nomem;
6539cc05
JW
2277 /*
2278 * Even though the limit is exceeded at this point, reclaim
2279 * may have been able to free some pages. Retry the charge
2280 * before killing the task.
2281 *
2282 * Only for regular pages, though: huge pages are rather
2283 * unlikely to succeed so close to the limit, and we fall back
2284 * to regular pages anyway in case of failure.
2285 */
61e02c74 2286 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2287 goto retry;
2288 /*
2289 * At task move, charge accounts can be doubly counted. So, it's
2290 * better to wait until the end of task_move if something is going on.
2291 */
2292 if (mem_cgroup_wait_acct_move(mem_over_limit))
2293 goto retry;
2294
9b130619
JW
2295 if (nr_retries--)
2296 goto retry;
2297
06b078fc
JW
2298 if (gfp_mask & __GFP_NOFAIL)
2299 goto bypass;
2300
6539cc05
JW
2301 if (fatal_signal_pending(current))
2302 goto bypass;
2303
241994ed
JW
2304 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2305
61e02c74 2306 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2307nomem:
6d1fdc48 2308 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2309 return -ENOMEM;
867578cb 2310bypass:
ce00a967 2311 return -EINTR;
6539cc05
JW
2312
2313done_restock:
e8ea14cc 2314 css_get_many(&memcg->css, batch);
6539cc05
JW
2315 if (batch > nr_pages)
2316 refill_stock(memcg, batch - nr_pages);
241994ed
JW
2317 /*
2318 * If the hierarchy is above the normal consumption range,
2319 * make the charging task trim their excess contribution.
2320 */
2321 do {
2322 if (page_counter_read(&memcg->memory) <= memcg->high)
2323 continue;
2324 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2325 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2326 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2327done:
05b84301 2328 return ret;
7a81b88c 2329}
8a9f3ccd 2330
00501b53 2331static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2332{
ce00a967
JW
2333 if (mem_cgroup_is_root(memcg))
2334 return;
2335
3e32cb2e 2336 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2337 if (do_swap_account)
3e32cb2e 2338 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2339
e8ea14cc 2340 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2341}
2342
a3b2d692
KH
2343/*
2344 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2345 * rcu_read_lock(). The caller is responsible for calling
2346 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2347 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2348 */
2349static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2350{
a3b2d692
KH
2351 /* ID 0 is unused ID */
2352 if (!id)
2353 return NULL;
34c00c31 2354 return mem_cgroup_from_id(id);
a3b2d692
KH
2355}
2356
0a31bc97
JW
2357/*
2358 * try_get_mem_cgroup_from_page - look up page's memcg association
2359 * @page: the page
2360 *
2361 * Look up, get a css reference, and return the memcg that owns @page.
2362 *
2363 * The page must be locked to prevent racing with swap-in and page
2364 * cache charges. If coming from an unlocked page table, the caller
2365 * must ensure the page is on the LRU or this can race with charging.
2366 */
e42d9d5d 2367struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2368{
29833315 2369 struct mem_cgroup *memcg;
a3b2d692 2370 unsigned short id;
b5a84319
KH
2371 swp_entry_t ent;
2372
309381fe 2373 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2374
1306a85a 2375 memcg = page->mem_cgroup;
29833315
JW
2376 if (memcg) {
2377 if (!css_tryget_online(&memcg->css))
c0ff4b85 2378 memcg = NULL;
e42d9d5d 2379 } else if (PageSwapCache(page)) {
3c776e64 2380 ent.val = page_private(page);
9fb4b7cc 2381 id = lookup_swap_cgroup_id(ent);
a3b2d692 2382 rcu_read_lock();
c0ff4b85 2383 memcg = mem_cgroup_lookup(id);
ec903c0c 2384 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2385 memcg = NULL;
a3b2d692 2386 rcu_read_unlock();
3c776e64 2387 }
c0ff4b85 2388 return memcg;
b5a84319
KH
2389}
2390
0a31bc97
JW
2391static void lock_page_lru(struct page *page, int *isolated)
2392{
2393 struct zone *zone = page_zone(page);
2394
2395 spin_lock_irq(&zone->lru_lock);
2396 if (PageLRU(page)) {
2397 struct lruvec *lruvec;
2398
2399 lruvec = mem_cgroup_page_lruvec(page, zone);
2400 ClearPageLRU(page);
2401 del_page_from_lru_list(page, lruvec, page_lru(page));
2402 *isolated = 1;
2403 } else
2404 *isolated = 0;
2405}
2406
2407static void unlock_page_lru(struct page *page, int isolated)
2408{
2409 struct zone *zone = page_zone(page);
2410
2411 if (isolated) {
2412 struct lruvec *lruvec;
2413
2414 lruvec = mem_cgroup_page_lruvec(page, zone);
2415 VM_BUG_ON_PAGE(PageLRU(page), page);
2416 SetPageLRU(page);
2417 add_page_to_lru_list(page, lruvec, page_lru(page));
2418 }
2419 spin_unlock_irq(&zone->lru_lock);
2420}
2421
00501b53 2422static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2423 bool lrucare)
7a81b88c 2424{
0a31bc97 2425 int isolated;
9ce70c02 2426
1306a85a 2427 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2428
2429 /*
2430 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2431 * may already be on some other mem_cgroup's LRU. Take care of it.
2432 */
0a31bc97
JW
2433 if (lrucare)
2434 lock_page_lru(page, &isolated);
9ce70c02 2435
0a31bc97
JW
2436 /*
2437 * Nobody should be changing or seriously looking at
1306a85a 2438 * page->mem_cgroup at this point:
0a31bc97
JW
2439 *
2440 * - the page is uncharged
2441 *
2442 * - the page is off-LRU
2443 *
2444 * - an anonymous fault has exclusive page access, except for
2445 * a locked page table
2446 *
2447 * - a page cache insertion, a swapin fault, or a migration
2448 * have the page locked
2449 */
1306a85a 2450 page->mem_cgroup = memcg;
9ce70c02 2451
0a31bc97
JW
2452 if (lrucare)
2453 unlock_page_lru(page, isolated);
7a81b88c 2454}
66e1707b 2455
7ae1e1d0 2456#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2457int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2458 unsigned long nr_pages)
7ae1e1d0 2459{
3e32cb2e 2460 struct page_counter *counter;
7ae1e1d0 2461 int ret = 0;
7ae1e1d0 2462
3e32cb2e
JW
2463 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2464 if (ret < 0)
7ae1e1d0
GC
2465 return ret;
2466
3e32cb2e 2467 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2468 if (ret == -EINTR) {
2469 /*
00501b53
JW
2470 * try_charge() chose to bypass to root due to OOM kill or
2471 * fatal signal. Since our only options are to either fail
2472 * the allocation or charge it to this cgroup, do it as a
2473 * temporary condition. But we can't fail. From a kmem/slab
2474 * perspective, the cache has already been selected, by
2475 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2476 * our minds.
2477 *
2478 * This condition will only trigger if the task entered
00501b53
JW
2479 * memcg_charge_kmem in a sane state, but was OOM-killed
2480 * during try_charge() above. Tasks that were already dying
2481 * when the allocation triggers should have been already
7ae1e1d0
GC
2482 * directed to the root cgroup in memcontrol.h
2483 */
3e32cb2e 2484 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2485 if (do_swap_account)
3e32cb2e 2486 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2487 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2488 ret = 0;
2489 } else if (ret)
3e32cb2e 2490 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2491
2492 return ret;
2493}
2494
dbf22eb6 2495void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2496{
3e32cb2e 2497 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2498 if (do_swap_account)
3e32cb2e 2499 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2500
64f21993 2501 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2502
e8ea14cc 2503 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2504}
2505
2633d7a0
GC
2506/*
2507 * helper for acessing a memcg's index. It will be used as an index in the
2508 * child cache array in kmem_cache, and also to derive its name. This function
2509 * will return -1 when this is not a kmem-limited memcg.
2510 */
2511int memcg_cache_id(struct mem_cgroup *memcg)
2512{
2513 return memcg ? memcg->kmemcg_id : -1;
2514}
2515
f3bb3043 2516static int memcg_alloc_cache_id(void)
55007d84 2517{
f3bb3043
VD
2518 int id, size;
2519 int err;
2520
dbcf73e2 2521 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2522 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2523 if (id < 0)
2524 return id;
55007d84 2525
dbcf73e2 2526 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2527 return id;
2528
2529 /*
2530 * There's no space for the new id in memcg_caches arrays,
2531 * so we have to grow them.
2532 */
05257a1a 2533 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2534
2535 size = 2 * (id + 1);
55007d84
GC
2536 if (size < MEMCG_CACHES_MIN_SIZE)
2537 size = MEMCG_CACHES_MIN_SIZE;
2538 else if (size > MEMCG_CACHES_MAX_SIZE)
2539 size = MEMCG_CACHES_MAX_SIZE;
2540
f3bb3043 2541 err = memcg_update_all_caches(size);
60d3fd32
VD
2542 if (!err)
2543 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2544 if (!err)
2545 memcg_nr_cache_ids = size;
2546
2547 up_write(&memcg_cache_ids_sem);
2548
f3bb3043 2549 if (err) {
dbcf73e2 2550 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2551 return err;
2552 }
2553 return id;
2554}
2555
2556static void memcg_free_cache_id(int id)
2557{
dbcf73e2 2558 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2559}
2560
d5b3cf71 2561struct memcg_kmem_cache_create_work {
5722d094
VD
2562 struct mem_cgroup *memcg;
2563 struct kmem_cache *cachep;
2564 struct work_struct work;
2565};
2566
d5b3cf71 2567static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2568{
d5b3cf71
VD
2569 struct memcg_kmem_cache_create_work *cw =
2570 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2571 struct mem_cgroup *memcg = cw->memcg;
2572 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2573
d5b3cf71 2574 memcg_create_kmem_cache(memcg, cachep);
bd673145 2575
5722d094 2576 css_put(&memcg->css);
d7f25f8a
GC
2577 kfree(cw);
2578}
2579
2580/*
2581 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2582 */
d5b3cf71
VD
2583static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2584 struct kmem_cache *cachep)
d7f25f8a 2585{
d5b3cf71 2586 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2587
776ed0f0 2588 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2589 if (!cw)
d7f25f8a 2590 return;
8135be5a
VD
2591
2592 css_get(&memcg->css);
d7f25f8a
GC
2593
2594 cw->memcg = memcg;
2595 cw->cachep = cachep;
d5b3cf71 2596 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2597
d7f25f8a
GC
2598 schedule_work(&cw->work);
2599}
2600
d5b3cf71
VD
2601static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2602 struct kmem_cache *cachep)
0e9d92f2
GC
2603{
2604 /*
2605 * We need to stop accounting when we kmalloc, because if the
2606 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2607 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2608 *
2609 * However, it is better to enclose the whole function. Depending on
2610 * the debugging options enabled, INIT_WORK(), for instance, can
2611 * trigger an allocation. This too, will make us recurse. Because at
2612 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2613 * the safest choice is to do it like this, wrapping the whole function.
2614 */
6f185c29 2615 current->memcg_kmem_skip_account = 1;
d5b3cf71 2616 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2617 current->memcg_kmem_skip_account = 0;
0e9d92f2 2618}
c67a8a68 2619
d7f25f8a
GC
2620/*
2621 * Return the kmem_cache we're supposed to use for a slab allocation.
2622 * We try to use the current memcg's version of the cache.
2623 *
2624 * If the cache does not exist yet, if we are the first user of it,
2625 * we either create it immediately, if possible, or create it asynchronously
2626 * in a workqueue.
2627 * In the latter case, we will let the current allocation go through with
2628 * the original cache.
2629 *
2630 * Can't be called in interrupt context or from kernel threads.
2631 * This function needs to be called with rcu_read_lock() held.
2632 */
056b7cce 2633struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2634{
2635 struct mem_cgroup *memcg;
959c8963 2636 struct kmem_cache *memcg_cachep;
2a4db7eb 2637 int kmemcg_id;
d7f25f8a 2638
f7ce3190 2639 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2640
9d100c5e 2641 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2642 return cachep;
2643
8135be5a 2644 memcg = get_mem_cgroup_from_mm(current->mm);
2a4db7eb
VD
2645 kmemcg_id = ACCESS_ONCE(memcg->kmemcg_id);
2646 if (kmemcg_id < 0)
ca0dde97 2647 goto out;
d7f25f8a 2648
2a4db7eb 2649 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2650 if (likely(memcg_cachep))
2651 return memcg_cachep;
ca0dde97
LZ
2652
2653 /*
2654 * If we are in a safe context (can wait, and not in interrupt
2655 * context), we could be be predictable and return right away.
2656 * This would guarantee that the allocation being performed
2657 * already belongs in the new cache.
2658 *
2659 * However, there are some clashes that can arrive from locking.
2660 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2661 * memcg_create_kmem_cache, this means no further allocation
2662 * could happen with the slab_mutex held. So it's better to
2663 * defer everything.
ca0dde97 2664 */
d5b3cf71 2665 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2666out:
8135be5a 2667 css_put(&memcg->css);
ca0dde97 2668 return cachep;
d7f25f8a 2669}
d7f25f8a 2670
8135be5a
VD
2671void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2672{
2673 if (!is_root_cache(cachep))
f7ce3190 2674 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2675}
2676
7ae1e1d0
GC
2677/*
2678 * We need to verify if the allocation against current->mm->owner's memcg is
2679 * possible for the given order. But the page is not allocated yet, so we'll
2680 * need a further commit step to do the final arrangements.
2681 *
2682 * It is possible for the task to switch cgroups in this mean time, so at
2683 * commit time, we can't rely on task conversion any longer. We'll then use
2684 * the handle argument to return to the caller which cgroup we should commit
2685 * against. We could also return the memcg directly and avoid the pointer
2686 * passing, but a boolean return value gives better semantics considering
2687 * the compiled-out case as well.
2688 *
2689 * Returning true means the allocation is possible.
2690 */
2691bool
2692__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2693{
2694 struct mem_cgroup *memcg;
2695 int ret;
2696
2697 *_memcg = NULL;
6d42c232 2698
df381975 2699 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2700
cf2b8fbf 2701 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2702 css_put(&memcg->css);
2703 return true;
2704 }
2705
3e32cb2e 2706 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2707 if (!ret)
2708 *_memcg = memcg;
7ae1e1d0
GC
2709
2710 css_put(&memcg->css);
2711 return (ret == 0);
2712}
2713
2714void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2715 int order)
2716{
7ae1e1d0
GC
2717 VM_BUG_ON(mem_cgroup_is_root(memcg));
2718
2719 /* The page allocation failed. Revert */
2720 if (!page) {
3e32cb2e 2721 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2722 return;
2723 }
1306a85a 2724 page->mem_cgroup = memcg;
7ae1e1d0
GC
2725}
2726
2727void __memcg_kmem_uncharge_pages(struct page *page, int order)
2728{
1306a85a 2729 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2730
7ae1e1d0
GC
2731 if (!memcg)
2732 return;
2733
309381fe 2734 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2735
3e32cb2e 2736 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2737 page->mem_cgroup = NULL;
7ae1e1d0 2738}
60d3fd32
VD
2739
2740struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2741{
2742 struct mem_cgroup *memcg = NULL;
2743 struct kmem_cache *cachep;
2744 struct page *page;
2745
2746 page = virt_to_head_page(ptr);
2747 if (PageSlab(page)) {
2748 cachep = page->slab_cache;
2749 if (!is_root_cache(cachep))
f7ce3190 2750 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2751 } else
2752 /* page allocated by alloc_kmem_pages */
2753 memcg = page->mem_cgroup;
2754
2755 return memcg;
2756}
7ae1e1d0
GC
2757#endif /* CONFIG_MEMCG_KMEM */
2758
ca3e0214
KH
2759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2760
ca3e0214
KH
2761/*
2762 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2763 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2764 * charge/uncharge will be never happen and move_account() is done under
2765 * compound_lock(), so we don't have to take care of races.
ca3e0214 2766 */
e94c8a9c 2767void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2768{
e94c8a9c 2769 int i;
ca3e0214 2770
3d37c4a9
KH
2771 if (mem_cgroup_disabled())
2772 return;
b070e65c 2773
29833315 2774 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2775 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2776
1306a85a 2777 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2778 HPAGE_PMD_NR);
ca3e0214 2779}
12d27107 2780#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2781
f817ed48 2782/**
de3638d9 2783 * mem_cgroup_move_account - move account of the page
5564e88b 2784 * @page: the page
7ec99d62 2785 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2786 * @from: mem_cgroup which the page is moved from.
2787 * @to: mem_cgroup which the page is moved to. @from != @to.
2788 *
2789 * The caller must confirm following.
08e552c6 2790 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2791 * - compound_lock is held when nr_pages > 1
f817ed48 2792 *
2f3479b1
KH
2793 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2794 * from old cgroup.
f817ed48 2795 */
7ec99d62
JW
2796static int mem_cgroup_move_account(struct page *page,
2797 unsigned int nr_pages,
7ec99d62 2798 struct mem_cgroup *from,
2f3479b1 2799 struct mem_cgroup *to)
f817ed48 2800{
de3638d9
JW
2801 unsigned long flags;
2802 int ret;
987eba66 2803
f817ed48 2804 VM_BUG_ON(from == to);
309381fe 2805 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
2806 /*
2807 * The page is isolated from LRU. So, collapse function
2808 * will not handle this page. But page splitting can happen.
2809 * Do this check under compound_page_lock(). The caller should
2810 * hold it.
2811 */
2812 ret = -EBUSY;
7ec99d62 2813 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2814 goto out;
2815
0a31bc97 2816 /*
1306a85a 2817 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
0a31bc97
JW
2818 * of its source page while we change it: page migration takes
2819 * both pages off the LRU, but page cache replacement doesn't.
2820 */
2821 if (!trylock_page(page))
2822 goto out;
de3638d9
JW
2823
2824 ret = -EINVAL;
1306a85a 2825 if (page->mem_cgroup != from)
0a31bc97 2826 goto out_unlock;
de3638d9 2827
354a4783 2828 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 2829
0a31bc97 2830 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
2831 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2832 nr_pages);
2833 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2834 nr_pages);
2835 }
3ea67d06 2836
59d1d256
JW
2837 if (PageWriteback(page)) {
2838 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2839 nr_pages);
2840 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2841 nr_pages);
2842 }
3ea67d06 2843
0a31bc97 2844 /*
1306a85a 2845 * It is safe to change page->mem_cgroup here because the page
0a31bc97
JW
2846 * is referenced, charged, and isolated - we can't race with
2847 * uncharging, charging, migration, or LRU putback.
2848 */
d69b042f 2849
854ffa8d 2850 /* caller should have done css_get */
1306a85a 2851 page->mem_cgroup = to;
354a4783
JW
2852 spin_unlock_irqrestore(&from->move_lock, flags);
2853
de3638d9 2854 ret = 0;
0a31bc97
JW
2855
2856 local_irq_disable();
2857 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 2858 memcg_check_events(to, page);
0a31bc97 2859 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 2860 memcg_check_events(from, page);
0a31bc97
JW
2861 local_irq_enable();
2862out_unlock:
2863 unlock_page(page);
de3638d9 2864out:
f817ed48
KH
2865 return ret;
2866}
2867
c255a458 2868#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2869static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2870 bool charge)
d13d1443 2871{
0a31bc97
JW
2872 int val = (charge) ? 1 : -1;
2873 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2874}
02491447
DN
2875
2876/**
2877 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2878 * @entry: swap entry to be moved
2879 * @from: mem_cgroup which the entry is moved from
2880 * @to: mem_cgroup which the entry is moved to
2881 *
2882 * It succeeds only when the swap_cgroup's record for this entry is the same
2883 * as the mem_cgroup's id of @from.
2884 *
2885 * Returns 0 on success, -EINVAL on failure.
2886 *
3e32cb2e 2887 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2888 * both res and memsw, and called css_get().
2889 */
2890static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2891 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2892{
2893 unsigned short old_id, new_id;
2894
34c00c31
LZ
2895 old_id = mem_cgroup_id(from);
2896 new_id = mem_cgroup_id(to);
02491447
DN
2897
2898 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2899 mem_cgroup_swap_statistics(from, false);
483c30b5 2900 mem_cgroup_swap_statistics(to, true);
02491447
DN
2901 return 0;
2902 }
2903 return -EINVAL;
2904}
2905#else
2906static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2907 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2908{
2909 return -EINVAL;
2910}
8c7c6e34 2911#endif
d13d1443 2912
3e32cb2e 2913static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2914
d38d2a75 2915static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2916 unsigned long limit)
628f4235 2917{
3e32cb2e
JW
2918 unsigned long curusage;
2919 unsigned long oldusage;
2920 bool enlarge = false;
81d39c20 2921 int retry_count;
3e32cb2e 2922 int ret;
81d39c20
KH
2923
2924 /*
2925 * For keeping hierarchical_reclaim simple, how long we should retry
2926 * is depends on callers. We set our retry-count to be function
2927 * of # of children which we should visit in this loop.
2928 */
3e32cb2e
JW
2929 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2930 mem_cgroup_count_children(memcg);
81d39c20 2931
3e32cb2e 2932 oldusage = page_counter_read(&memcg->memory);
628f4235 2933
3e32cb2e 2934 do {
628f4235
KH
2935 if (signal_pending(current)) {
2936 ret = -EINTR;
2937 break;
2938 }
3e32cb2e
JW
2939
2940 mutex_lock(&memcg_limit_mutex);
2941 if (limit > memcg->memsw.limit) {
2942 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2943 ret = -EINVAL;
628f4235
KH
2944 break;
2945 }
3e32cb2e
JW
2946 if (limit > memcg->memory.limit)
2947 enlarge = true;
2948 ret = page_counter_limit(&memcg->memory, limit);
2949 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2950
2951 if (!ret)
2952 break;
2953
b70a2a21
JW
2954 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2955
3e32cb2e 2956 curusage = page_counter_read(&memcg->memory);
81d39c20 2957 /* Usage is reduced ? */
f894ffa8 2958 if (curusage >= oldusage)
81d39c20
KH
2959 retry_count--;
2960 else
2961 oldusage = curusage;
3e32cb2e
JW
2962 } while (retry_count);
2963
3c11ecf4
KH
2964 if (!ret && enlarge)
2965 memcg_oom_recover(memcg);
14797e23 2966
8c7c6e34
KH
2967 return ret;
2968}
2969
338c8431 2970static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2971 unsigned long limit)
8c7c6e34 2972{
3e32cb2e
JW
2973 unsigned long curusage;
2974 unsigned long oldusage;
2975 bool enlarge = false;
81d39c20 2976 int retry_count;
3e32cb2e 2977 int ret;
8c7c6e34 2978
81d39c20 2979 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2980 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2981 mem_cgroup_count_children(memcg);
2982
2983 oldusage = page_counter_read(&memcg->memsw);
2984
2985 do {
8c7c6e34
KH
2986 if (signal_pending(current)) {
2987 ret = -EINTR;
2988 break;
2989 }
3e32cb2e
JW
2990
2991 mutex_lock(&memcg_limit_mutex);
2992 if (limit < memcg->memory.limit) {
2993 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2994 ret = -EINVAL;
8c7c6e34
KH
2995 break;
2996 }
3e32cb2e
JW
2997 if (limit > memcg->memsw.limit)
2998 enlarge = true;
2999 ret = page_counter_limit(&memcg->memsw, limit);
3000 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3001
3002 if (!ret)
3003 break;
3004
b70a2a21
JW
3005 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3006
3e32cb2e 3007 curusage = page_counter_read(&memcg->memsw);
81d39c20 3008 /* Usage is reduced ? */
8c7c6e34 3009 if (curusage >= oldusage)
628f4235 3010 retry_count--;
81d39c20
KH
3011 else
3012 oldusage = curusage;
3e32cb2e
JW
3013 } while (retry_count);
3014
3c11ecf4
KH
3015 if (!ret && enlarge)
3016 memcg_oom_recover(memcg);
3e32cb2e 3017
628f4235
KH
3018 return ret;
3019}
3020
0608f43d
AM
3021unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3022 gfp_t gfp_mask,
3023 unsigned long *total_scanned)
3024{
3025 unsigned long nr_reclaimed = 0;
3026 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3027 unsigned long reclaimed;
3028 int loop = 0;
3029 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3030 unsigned long excess;
0608f43d
AM
3031 unsigned long nr_scanned;
3032
3033 if (order > 0)
3034 return 0;
3035
3036 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3037 /*
3038 * This loop can run a while, specially if mem_cgroup's continuously
3039 * keep exceeding their soft limit and putting the system under
3040 * pressure
3041 */
3042 do {
3043 if (next_mz)
3044 mz = next_mz;
3045 else
3046 mz = mem_cgroup_largest_soft_limit_node(mctz);
3047 if (!mz)
3048 break;
3049
3050 nr_scanned = 0;
3051 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3052 gfp_mask, &nr_scanned);
3053 nr_reclaimed += reclaimed;
3054 *total_scanned += nr_scanned;
0a31bc97 3055 spin_lock_irq(&mctz->lock);
bc2f2e7f 3056 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3057
3058 /*
3059 * If we failed to reclaim anything from this memory cgroup
3060 * it is time to move on to the next cgroup
3061 */
3062 next_mz = NULL;
bc2f2e7f
VD
3063 if (!reclaimed)
3064 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3065
3e32cb2e 3066 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3067 /*
3068 * One school of thought says that we should not add
3069 * back the node to the tree if reclaim returns 0.
3070 * But our reclaim could return 0, simply because due
3071 * to priority we are exposing a smaller subset of
3072 * memory to reclaim from. Consider this as a longer
3073 * term TODO.
3074 */
3075 /* If excess == 0, no tree ops */
cf2c8127 3076 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3077 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3078 css_put(&mz->memcg->css);
3079 loop++;
3080 /*
3081 * Could not reclaim anything and there are no more
3082 * mem cgroups to try or we seem to be looping without
3083 * reclaiming anything.
3084 */
3085 if (!nr_reclaimed &&
3086 (next_mz == NULL ||
3087 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3088 break;
3089 } while (!nr_reclaimed);
3090 if (next_mz)
3091 css_put(&next_mz->memcg->css);
3092 return nr_reclaimed;
3093}
3094
ea280e7b
TH
3095/*
3096 * Test whether @memcg has children, dead or alive. Note that this
3097 * function doesn't care whether @memcg has use_hierarchy enabled and
3098 * returns %true if there are child csses according to the cgroup
3099 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3100 */
b5f99b53
GC
3101static inline bool memcg_has_children(struct mem_cgroup *memcg)
3102{
ea280e7b
TH
3103 bool ret;
3104
696ac172 3105 /*
ea280e7b
TH
3106 * The lock does not prevent addition or deletion of children, but
3107 * it prevents a new child from being initialized based on this
3108 * parent in css_online(), so it's enough to decide whether
3109 * hierarchically inherited attributes can still be changed or not.
696ac172 3110 */
ea280e7b
TH
3111 lockdep_assert_held(&memcg_create_mutex);
3112
3113 rcu_read_lock();
3114 ret = css_next_child(NULL, &memcg->css);
3115 rcu_read_unlock();
3116 return ret;
b5f99b53
GC
3117}
3118
c26251f9
MH
3119/*
3120 * Reclaims as many pages from the given memcg as possible and moves
3121 * the rest to the parent.
3122 *
3123 * Caller is responsible for holding css reference for memcg.
3124 */
3125static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3126{
3127 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3128
c1e862c1
KH
3129 /* we call try-to-free pages for make this cgroup empty */
3130 lru_add_drain_all();
f817ed48 3131 /* try to free all pages in this cgroup */
3e32cb2e 3132 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3133 int progress;
c1e862c1 3134
c26251f9
MH
3135 if (signal_pending(current))
3136 return -EINTR;
3137
b70a2a21
JW
3138 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3139 GFP_KERNEL, true);
c1e862c1 3140 if (!progress) {
f817ed48 3141 nr_retries--;
c1e862c1 3142 /* maybe some writeback is necessary */
8aa7e847 3143 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3144 }
f817ed48
KH
3145
3146 }
ab5196c2
MH
3147
3148 return 0;
cc847582
KH
3149}
3150
6770c64e
TH
3151static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3152 char *buf, size_t nbytes,
3153 loff_t off)
c1e862c1 3154{
6770c64e 3155 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3156
d8423011
MH
3157 if (mem_cgroup_is_root(memcg))
3158 return -EINVAL;
6770c64e 3159 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3160}
3161
182446d0
TH
3162static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3163 struct cftype *cft)
18f59ea7 3164{
182446d0 3165 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3166}
3167
182446d0
TH
3168static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3169 struct cftype *cft, u64 val)
18f59ea7
BS
3170{
3171 int retval = 0;
182446d0 3172 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3173 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3174
0999821b 3175 mutex_lock(&memcg_create_mutex);
567fb435
GC
3176
3177 if (memcg->use_hierarchy == val)
3178 goto out;
3179
18f59ea7 3180 /*
af901ca1 3181 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3182 * in the child subtrees. If it is unset, then the change can
3183 * occur, provided the current cgroup has no children.
3184 *
3185 * For the root cgroup, parent_mem is NULL, we allow value to be
3186 * set if there are no children.
3187 */
c0ff4b85 3188 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3189 (val == 1 || val == 0)) {
ea280e7b 3190 if (!memcg_has_children(memcg))
c0ff4b85 3191 memcg->use_hierarchy = val;
18f59ea7
BS
3192 else
3193 retval = -EBUSY;
3194 } else
3195 retval = -EINVAL;
567fb435
GC
3196
3197out:
0999821b 3198 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3199
3200 return retval;
3201}
3202
3e32cb2e
JW
3203static unsigned long tree_stat(struct mem_cgroup *memcg,
3204 enum mem_cgroup_stat_index idx)
ce00a967
JW
3205{
3206 struct mem_cgroup *iter;
3207 long val = 0;
3208
3209 /* Per-cpu values can be negative, use a signed accumulator */
3210 for_each_mem_cgroup_tree(iter, memcg)
3211 val += mem_cgroup_read_stat(iter, idx);
3212
3213 if (val < 0) /* race ? */
3214 val = 0;
3215 return val;
3216}
3217
3218static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3219{
3220 u64 val;
3221
3e32cb2e
JW
3222 if (mem_cgroup_is_root(memcg)) {
3223 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3224 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3225 if (swap)
3226 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3227 } else {
ce00a967 3228 if (!swap)
3e32cb2e 3229 val = page_counter_read(&memcg->memory);
ce00a967 3230 else
3e32cb2e 3231 val = page_counter_read(&memcg->memsw);
ce00a967 3232 }
ce00a967
JW
3233 return val << PAGE_SHIFT;
3234}
3235
3e32cb2e
JW
3236enum {
3237 RES_USAGE,
3238 RES_LIMIT,
3239 RES_MAX_USAGE,
3240 RES_FAILCNT,
3241 RES_SOFT_LIMIT,
3242};
ce00a967 3243
791badbd 3244static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3245 struct cftype *cft)
8cdea7c0 3246{
182446d0 3247 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3248 struct page_counter *counter;
af36f906 3249
3e32cb2e 3250 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3251 case _MEM:
3e32cb2e
JW
3252 counter = &memcg->memory;
3253 break;
8c7c6e34 3254 case _MEMSWAP:
3e32cb2e
JW
3255 counter = &memcg->memsw;
3256 break;
510fc4e1 3257 case _KMEM:
3e32cb2e 3258 counter = &memcg->kmem;
510fc4e1 3259 break;
8c7c6e34
KH
3260 default:
3261 BUG();
8c7c6e34 3262 }
3e32cb2e
JW
3263
3264 switch (MEMFILE_ATTR(cft->private)) {
3265 case RES_USAGE:
3266 if (counter == &memcg->memory)
3267 return mem_cgroup_usage(memcg, false);
3268 if (counter == &memcg->memsw)
3269 return mem_cgroup_usage(memcg, true);
3270 return (u64)page_counter_read(counter) * PAGE_SIZE;
3271 case RES_LIMIT:
3272 return (u64)counter->limit * PAGE_SIZE;
3273 case RES_MAX_USAGE:
3274 return (u64)counter->watermark * PAGE_SIZE;
3275 case RES_FAILCNT:
3276 return counter->failcnt;
3277 case RES_SOFT_LIMIT:
3278 return (u64)memcg->soft_limit * PAGE_SIZE;
3279 default:
3280 BUG();
3281 }
8cdea7c0 3282}
510fc4e1 3283
510fc4e1 3284#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3285static int memcg_activate_kmem(struct mem_cgroup *memcg,
3286 unsigned long nr_pages)
d6441637
VD
3287{
3288 int err = 0;
3289 int memcg_id;
3290
2a4db7eb 3291 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 3292 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 3293 BUG_ON(memcg->kmem_acct_active);
d6441637 3294
510fc4e1
GC
3295 /*
3296 * For simplicity, we won't allow this to be disabled. It also can't
3297 * be changed if the cgroup has children already, or if tasks had
3298 * already joined.
3299 *
3300 * If tasks join before we set the limit, a person looking at
3301 * kmem.usage_in_bytes will have no way to determine when it took
3302 * place, which makes the value quite meaningless.
3303 *
3304 * After it first became limited, changes in the value of the limit are
3305 * of course permitted.
510fc4e1 3306 */
0999821b 3307 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3308 if (cgroup_has_tasks(memcg->css.cgroup) ||
3309 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3310 err = -EBUSY;
3311 mutex_unlock(&memcg_create_mutex);
3312 if (err)
3313 goto out;
510fc4e1 3314
f3bb3043 3315 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3316 if (memcg_id < 0) {
3317 err = memcg_id;
3318 goto out;
3319 }
3320
d6441637 3321 /*
900a38f0
VD
3322 * We couldn't have accounted to this cgroup, because it hasn't got
3323 * activated yet, so this should succeed.
d6441637 3324 */
3e32cb2e 3325 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3326 VM_BUG_ON(err);
3327
3328 static_key_slow_inc(&memcg_kmem_enabled_key);
3329 /*
900a38f0
VD
3330 * A memory cgroup is considered kmem-active as soon as it gets
3331 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3332 * guarantee no one starts accounting before all call sites are
3333 * patched.
3334 */
900a38f0 3335 memcg->kmemcg_id = memcg_id;
2788cf0c 3336 memcg->kmem_acct_activated = true;
2a4db7eb 3337 memcg->kmem_acct_active = true;
510fc4e1 3338out:
d6441637 3339 return err;
d6441637
VD
3340}
3341
d6441637 3342static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3343 unsigned long limit)
d6441637
VD
3344{
3345 int ret;
3346
3e32cb2e 3347 mutex_lock(&memcg_limit_mutex);
d6441637 3348 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3349 ret = memcg_activate_kmem(memcg, limit);
d6441637 3350 else
3e32cb2e
JW
3351 ret = page_counter_limit(&memcg->kmem, limit);
3352 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3353 return ret;
3354}
3355
55007d84 3356static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3357{
55007d84 3358 int ret = 0;
510fc4e1 3359 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3360
d6441637
VD
3361 if (!parent)
3362 return 0;
55007d84 3363
8c0145b6 3364 mutex_lock(&memcg_limit_mutex);
55007d84 3365 /*
d6441637
VD
3366 * If the parent cgroup is not kmem-active now, it cannot be activated
3367 * after this point, because it has at least one child already.
55007d84 3368 */
d6441637 3369 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3370 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3371 mutex_unlock(&memcg_limit_mutex);
55007d84 3372 return ret;
510fc4e1 3373}
d6441637
VD
3374#else
3375static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3376 unsigned long limit)
d6441637
VD
3377{
3378 return -EINVAL;
3379}
6d043990 3380#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3381
628f4235
KH
3382/*
3383 * The user of this function is...
3384 * RES_LIMIT.
3385 */
451af504
TH
3386static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3387 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3388{
451af504 3389 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3390 unsigned long nr_pages;
628f4235
KH
3391 int ret;
3392
451af504 3393 buf = strstrip(buf);
650c5e56 3394 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3395 if (ret)
3396 return ret;
af36f906 3397
3e32cb2e 3398 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3399 case RES_LIMIT:
4b3bde4c
BS
3400 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3401 ret = -EINVAL;
3402 break;
3403 }
3e32cb2e
JW
3404 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3405 case _MEM:
3406 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3407 break;
3e32cb2e
JW
3408 case _MEMSWAP:
3409 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3410 break;
3e32cb2e
JW
3411 case _KMEM:
3412 ret = memcg_update_kmem_limit(memcg, nr_pages);
3413 break;
3414 }
296c81d8 3415 break;
3e32cb2e
JW
3416 case RES_SOFT_LIMIT:
3417 memcg->soft_limit = nr_pages;
3418 ret = 0;
628f4235
KH
3419 break;
3420 }
451af504 3421 return ret ?: nbytes;
8cdea7c0
BS
3422}
3423
6770c64e
TH
3424static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3425 size_t nbytes, loff_t off)
c84872e1 3426{
6770c64e 3427 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3428 struct page_counter *counter;
c84872e1 3429
3e32cb2e
JW
3430 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3431 case _MEM:
3432 counter = &memcg->memory;
3433 break;
3434 case _MEMSWAP:
3435 counter = &memcg->memsw;
3436 break;
3437 case _KMEM:
3438 counter = &memcg->kmem;
3439 break;
3440 default:
3441 BUG();
3442 }
af36f906 3443
3e32cb2e 3444 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3445 case RES_MAX_USAGE:
3e32cb2e 3446 page_counter_reset_watermark(counter);
29f2a4da
PE
3447 break;
3448 case RES_FAILCNT:
3e32cb2e 3449 counter->failcnt = 0;
29f2a4da 3450 break;
3e32cb2e
JW
3451 default:
3452 BUG();
29f2a4da 3453 }
f64c3f54 3454
6770c64e 3455 return nbytes;
c84872e1
PE
3456}
3457
182446d0 3458static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3459 struct cftype *cft)
3460{
182446d0 3461 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3462}
3463
02491447 3464#ifdef CONFIG_MMU
182446d0 3465static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3466 struct cftype *cft, u64 val)
3467{
182446d0 3468 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3469
1dfab5ab 3470 if (val & ~MOVE_MASK)
7dc74be0 3471 return -EINVAL;
ee5e8472 3472
7dc74be0 3473 /*
ee5e8472
GC
3474 * No kind of locking is needed in here, because ->can_attach() will
3475 * check this value once in the beginning of the process, and then carry
3476 * on with stale data. This means that changes to this value will only
3477 * affect task migrations starting after the change.
7dc74be0 3478 */
c0ff4b85 3479 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3480 return 0;
3481}
02491447 3482#else
182446d0 3483static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3484 struct cftype *cft, u64 val)
3485{
3486 return -ENOSYS;
3487}
3488#endif
7dc74be0 3489
406eb0c9 3490#ifdef CONFIG_NUMA
2da8ca82 3491static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3492{
25485de6
GT
3493 struct numa_stat {
3494 const char *name;
3495 unsigned int lru_mask;
3496 };
3497
3498 static const struct numa_stat stats[] = {
3499 { "total", LRU_ALL },
3500 { "file", LRU_ALL_FILE },
3501 { "anon", LRU_ALL_ANON },
3502 { "unevictable", BIT(LRU_UNEVICTABLE) },
3503 };
3504 const struct numa_stat *stat;
406eb0c9 3505 int nid;
25485de6 3506 unsigned long nr;
2da8ca82 3507 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3508
25485de6
GT
3509 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3510 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3511 seq_printf(m, "%s=%lu", stat->name, nr);
3512 for_each_node_state(nid, N_MEMORY) {
3513 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3514 stat->lru_mask);
3515 seq_printf(m, " N%d=%lu", nid, nr);
3516 }
3517 seq_putc(m, '\n');
406eb0c9 3518 }
406eb0c9 3519
071aee13
YH
3520 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3521 struct mem_cgroup *iter;
3522
3523 nr = 0;
3524 for_each_mem_cgroup_tree(iter, memcg)
3525 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3526 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3527 for_each_node_state(nid, N_MEMORY) {
3528 nr = 0;
3529 for_each_mem_cgroup_tree(iter, memcg)
3530 nr += mem_cgroup_node_nr_lru_pages(
3531 iter, nid, stat->lru_mask);
3532 seq_printf(m, " N%d=%lu", nid, nr);
3533 }
3534 seq_putc(m, '\n');
406eb0c9 3535 }
406eb0c9 3536
406eb0c9
YH
3537 return 0;
3538}
3539#endif /* CONFIG_NUMA */
3540
2da8ca82 3541static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3542{
2da8ca82 3543 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3544 unsigned long memory, memsw;
af7c4b0e
JW
3545 struct mem_cgroup *mi;
3546 unsigned int i;
406eb0c9 3547
0ca44b14
GT
3548 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3549 MEM_CGROUP_STAT_NSTATS);
3550 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3551 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3552 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3553
af7c4b0e 3554 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3555 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3556 continue;
af7c4b0e
JW
3557 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3558 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3559 }
7b854121 3560
af7c4b0e
JW
3561 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3562 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3563 mem_cgroup_read_events(memcg, i));
3564
3565 for (i = 0; i < NR_LRU_LISTS; i++)
3566 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3567 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3568
14067bb3 3569 /* Hierarchical information */
3e32cb2e
JW
3570 memory = memsw = PAGE_COUNTER_MAX;
3571 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3572 memory = min(memory, mi->memory.limit);
3573 memsw = min(memsw, mi->memsw.limit);
fee7b548 3574 }
3e32cb2e
JW
3575 seq_printf(m, "hierarchical_memory_limit %llu\n",
3576 (u64)memory * PAGE_SIZE);
3577 if (do_swap_account)
3578 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3579 (u64)memsw * PAGE_SIZE);
7f016ee8 3580
af7c4b0e
JW
3581 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3582 long long val = 0;
3583
bff6bb83 3584 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3585 continue;
af7c4b0e
JW
3586 for_each_mem_cgroup_tree(mi, memcg)
3587 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3588 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3589 }
3590
3591 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3592 unsigned long long val = 0;
3593
3594 for_each_mem_cgroup_tree(mi, memcg)
3595 val += mem_cgroup_read_events(mi, i);
3596 seq_printf(m, "total_%s %llu\n",
3597 mem_cgroup_events_names[i], val);
3598 }
3599
3600 for (i = 0; i < NR_LRU_LISTS; i++) {
3601 unsigned long long val = 0;
3602
3603 for_each_mem_cgroup_tree(mi, memcg)
3604 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3605 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3606 }
14067bb3 3607
7f016ee8 3608#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3609 {
3610 int nid, zid;
3611 struct mem_cgroup_per_zone *mz;
89abfab1 3612 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3613 unsigned long recent_rotated[2] = {0, 0};
3614 unsigned long recent_scanned[2] = {0, 0};
3615
3616 for_each_online_node(nid)
3617 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3618 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3619 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3620
89abfab1
HD
3621 recent_rotated[0] += rstat->recent_rotated[0];
3622 recent_rotated[1] += rstat->recent_rotated[1];
3623 recent_scanned[0] += rstat->recent_scanned[0];
3624 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3625 }
78ccf5b5
JW
3626 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3627 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3628 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3629 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3630 }
3631#endif
3632
d2ceb9b7
KH
3633 return 0;
3634}
3635
182446d0
TH
3636static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3637 struct cftype *cft)
a7885eb8 3638{
182446d0 3639 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3640
1f4c025b 3641 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3642}
3643
182446d0
TH
3644static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3645 struct cftype *cft, u64 val)
a7885eb8 3646{
182446d0 3647 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3648
3dae7fec 3649 if (val > 100)
a7885eb8
KM
3650 return -EINVAL;
3651
14208b0e 3652 if (css->parent)
3dae7fec
JW
3653 memcg->swappiness = val;
3654 else
3655 vm_swappiness = val;
068b38c1 3656
a7885eb8
KM
3657 return 0;
3658}
3659
2e72b634
KS
3660static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3661{
3662 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3663 unsigned long usage;
2e72b634
KS
3664 int i;
3665
3666 rcu_read_lock();
3667 if (!swap)
2c488db2 3668 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3669 else
2c488db2 3670 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3671
3672 if (!t)
3673 goto unlock;
3674
ce00a967 3675 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3676
3677 /*
748dad36 3678 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3679 * If it's not true, a threshold was crossed after last
3680 * call of __mem_cgroup_threshold().
3681 */
5407a562 3682 i = t->current_threshold;
2e72b634
KS
3683
3684 /*
3685 * Iterate backward over array of thresholds starting from
3686 * current_threshold and check if a threshold is crossed.
3687 * If none of thresholds below usage is crossed, we read
3688 * only one element of the array here.
3689 */
3690 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3691 eventfd_signal(t->entries[i].eventfd, 1);
3692
3693 /* i = current_threshold + 1 */
3694 i++;
3695
3696 /*
3697 * Iterate forward over array of thresholds starting from
3698 * current_threshold+1 and check if a threshold is crossed.
3699 * If none of thresholds above usage is crossed, we read
3700 * only one element of the array here.
3701 */
3702 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3703 eventfd_signal(t->entries[i].eventfd, 1);
3704
3705 /* Update current_threshold */
5407a562 3706 t->current_threshold = i - 1;
2e72b634
KS
3707unlock:
3708 rcu_read_unlock();
3709}
3710
3711static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3712{
ad4ca5f4
KS
3713 while (memcg) {
3714 __mem_cgroup_threshold(memcg, false);
3715 if (do_swap_account)
3716 __mem_cgroup_threshold(memcg, true);
3717
3718 memcg = parent_mem_cgroup(memcg);
3719 }
2e72b634
KS
3720}
3721
3722static int compare_thresholds(const void *a, const void *b)
3723{
3724 const struct mem_cgroup_threshold *_a = a;
3725 const struct mem_cgroup_threshold *_b = b;
3726
2bff24a3
GT
3727 if (_a->threshold > _b->threshold)
3728 return 1;
3729
3730 if (_a->threshold < _b->threshold)
3731 return -1;
3732
3733 return 0;
2e72b634
KS
3734}
3735
c0ff4b85 3736static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3737{
3738 struct mem_cgroup_eventfd_list *ev;
3739
2bcf2e92
MH
3740 spin_lock(&memcg_oom_lock);
3741
c0ff4b85 3742 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3743 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3744
3745 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3746 return 0;
3747}
3748
c0ff4b85 3749static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3750{
7d74b06f
KH
3751 struct mem_cgroup *iter;
3752
c0ff4b85 3753 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3754 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3755}
3756
59b6f873 3757static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3758 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3759{
2c488db2
KS
3760 struct mem_cgroup_thresholds *thresholds;
3761 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3762 unsigned long threshold;
3763 unsigned long usage;
2c488db2 3764 int i, size, ret;
2e72b634 3765
650c5e56 3766 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3767 if (ret)
3768 return ret;
3769
3770 mutex_lock(&memcg->thresholds_lock);
2c488db2 3771
05b84301 3772 if (type == _MEM) {
2c488db2 3773 thresholds = &memcg->thresholds;
ce00a967 3774 usage = mem_cgroup_usage(memcg, false);
05b84301 3775 } else if (type == _MEMSWAP) {
2c488db2 3776 thresholds = &memcg->memsw_thresholds;
ce00a967 3777 usage = mem_cgroup_usage(memcg, true);
05b84301 3778 } else
2e72b634
KS
3779 BUG();
3780
2e72b634 3781 /* Check if a threshold crossed before adding a new one */
2c488db2 3782 if (thresholds->primary)
2e72b634
KS
3783 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3784
2c488db2 3785 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3786
3787 /* Allocate memory for new array of thresholds */
2c488db2 3788 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3789 GFP_KERNEL);
2c488db2 3790 if (!new) {
2e72b634
KS
3791 ret = -ENOMEM;
3792 goto unlock;
3793 }
2c488db2 3794 new->size = size;
2e72b634
KS
3795
3796 /* Copy thresholds (if any) to new array */
2c488db2
KS
3797 if (thresholds->primary) {
3798 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3799 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3800 }
3801
2e72b634 3802 /* Add new threshold */
2c488db2
KS
3803 new->entries[size - 1].eventfd = eventfd;
3804 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3805
3806 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3807 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3808 compare_thresholds, NULL);
3809
3810 /* Find current threshold */
2c488db2 3811 new->current_threshold = -1;
2e72b634 3812 for (i = 0; i < size; i++) {
748dad36 3813 if (new->entries[i].threshold <= usage) {
2e72b634 3814 /*
2c488db2
KS
3815 * new->current_threshold will not be used until
3816 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3817 * it here.
3818 */
2c488db2 3819 ++new->current_threshold;
748dad36
SZ
3820 } else
3821 break;
2e72b634
KS
3822 }
3823
2c488db2
KS
3824 /* Free old spare buffer and save old primary buffer as spare */
3825 kfree(thresholds->spare);
3826 thresholds->spare = thresholds->primary;
3827
3828 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3829
907860ed 3830 /* To be sure that nobody uses thresholds */
2e72b634
KS
3831 synchronize_rcu();
3832
2e72b634
KS
3833unlock:
3834 mutex_unlock(&memcg->thresholds_lock);
3835
3836 return ret;
3837}
3838
59b6f873 3839static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3840 struct eventfd_ctx *eventfd, const char *args)
3841{
59b6f873 3842 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3843}
3844
59b6f873 3845static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3846 struct eventfd_ctx *eventfd, const char *args)
3847{
59b6f873 3848 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3849}
3850
59b6f873 3851static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3852 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3853{
2c488db2
KS
3854 struct mem_cgroup_thresholds *thresholds;
3855 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3856 unsigned long usage;
2c488db2 3857 int i, j, size;
2e72b634
KS
3858
3859 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3860
3861 if (type == _MEM) {
2c488db2 3862 thresholds = &memcg->thresholds;
ce00a967 3863 usage = mem_cgroup_usage(memcg, false);
05b84301 3864 } else if (type == _MEMSWAP) {
2c488db2 3865 thresholds = &memcg->memsw_thresholds;
ce00a967 3866 usage = mem_cgroup_usage(memcg, true);
05b84301 3867 } else
2e72b634
KS
3868 BUG();
3869
371528ca
AV
3870 if (!thresholds->primary)
3871 goto unlock;
3872
2e72b634
KS
3873 /* Check if a threshold crossed before removing */
3874 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3875
3876 /* Calculate new number of threshold */
2c488db2
KS
3877 size = 0;
3878 for (i = 0; i < thresholds->primary->size; i++) {
3879 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3880 size++;
3881 }
3882
2c488db2 3883 new = thresholds->spare;
907860ed 3884
2e72b634
KS
3885 /* Set thresholds array to NULL if we don't have thresholds */
3886 if (!size) {
2c488db2
KS
3887 kfree(new);
3888 new = NULL;
907860ed 3889 goto swap_buffers;
2e72b634
KS
3890 }
3891
2c488db2 3892 new->size = size;
2e72b634
KS
3893
3894 /* Copy thresholds and find current threshold */
2c488db2
KS
3895 new->current_threshold = -1;
3896 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3897 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3898 continue;
3899
2c488db2 3900 new->entries[j] = thresholds->primary->entries[i];
748dad36 3901 if (new->entries[j].threshold <= usage) {
2e72b634 3902 /*
2c488db2 3903 * new->current_threshold will not be used
2e72b634
KS
3904 * until rcu_assign_pointer(), so it's safe to increment
3905 * it here.
3906 */
2c488db2 3907 ++new->current_threshold;
2e72b634
KS
3908 }
3909 j++;
3910 }
3911
907860ed 3912swap_buffers:
2c488db2
KS
3913 /* Swap primary and spare array */
3914 thresholds->spare = thresholds->primary;
8c757763
SZ
3915 /* If all events are unregistered, free the spare array */
3916 if (!new) {
3917 kfree(thresholds->spare);
3918 thresholds->spare = NULL;
3919 }
3920
2c488db2 3921 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3922
907860ed 3923 /* To be sure that nobody uses thresholds */
2e72b634 3924 synchronize_rcu();
371528ca 3925unlock:
2e72b634 3926 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3927}
c1e862c1 3928
59b6f873 3929static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3930 struct eventfd_ctx *eventfd)
3931{
59b6f873 3932 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3933}
3934
59b6f873 3935static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3936 struct eventfd_ctx *eventfd)
3937{
59b6f873 3938 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3939}
3940
59b6f873 3941static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3942 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3943{
9490ff27 3944 struct mem_cgroup_eventfd_list *event;
9490ff27 3945
9490ff27
KH
3946 event = kmalloc(sizeof(*event), GFP_KERNEL);
3947 if (!event)
3948 return -ENOMEM;
3949
1af8efe9 3950 spin_lock(&memcg_oom_lock);
9490ff27
KH
3951
3952 event->eventfd = eventfd;
3953 list_add(&event->list, &memcg->oom_notify);
3954
3955 /* already in OOM ? */
79dfdacc 3956 if (atomic_read(&memcg->under_oom))
9490ff27 3957 eventfd_signal(eventfd, 1);
1af8efe9 3958 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3959
3960 return 0;
3961}
3962
59b6f873 3963static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3964 struct eventfd_ctx *eventfd)
9490ff27 3965{
9490ff27 3966 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3967
1af8efe9 3968 spin_lock(&memcg_oom_lock);
9490ff27 3969
c0ff4b85 3970 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3971 if (ev->eventfd == eventfd) {
3972 list_del(&ev->list);
3973 kfree(ev);
3974 }
3975 }
3976
1af8efe9 3977 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3978}
3979
2da8ca82 3980static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3981{
2da8ca82 3982 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3983
791badbd
TH
3984 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3985 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
3986 return 0;
3987}
3988
182446d0 3989static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3990 struct cftype *cft, u64 val)
3991{
182446d0 3992 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3993
3994 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3995 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3996 return -EINVAL;
3997
c0ff4b85 3998 memcg->oom_kill_disable = val;
4d845ebf 3999 if (!val)
c0ff4b85 4000 memcg_oom_recover(memcg);
3dae7fec 4001
3c11ecf4
KH
4002 return 0;
4003}
4004
c255a458 4005#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4006static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4007{
55007d84
GC
4008 int ret;
4009
55007d84
GC
4010 ret = memcg_propagate_kmem(memcg);
4011 if (ret)
4012 return ret;
2633d7a0 4013
1d62e436 4014 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4015}
e5671dfa 4016
2a4db7eb
VD
4017static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
4018{
2788cf0c
VD
4019 struct cgroup_subsys_state *css;
4020 struct mem_cgroup *parent, *child;
4021 int kmemcg_id;
4022
2a4db7eb
VD
4023 if (!memcg->kmem_acct_active)
4024 return;
4025
4026 /*
4027 * Clear the 'active' flag before clearing memcg_caches arrays entries.
4028 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
4029 * guarantees no cache will be created for this cgroup after we are
4030 * done (see memcg_create_kmem_cache()).
4031 */
4032 memcg->kmem_acct_active = false;
4033
4034 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
4035
4036 kmemcg_id = memcg->kmemcg_id;
4037 BUG_ON(kmemcg_id < 0);
4038
4039 parent = parent_mem_cgroup(memcg);
4040 if (!parent)
4041 parent = root_mem_cgroup;
4042
4043 /*
4044 * Change kmemcg_id of this cgroup and all its descendants to the
4045 * parent's id, and then move all entries from this cgroup's list_lrus
4046 * to ones of the parent. After we have finished, all list_lrus
4047 * corresponding to this cgroup are guaranteed to remain empty. The
4048 * ordering is imposed by list_lru_node->lock taken by
4049 * memcg_drain_all_list_lrus().
4050 */
4051 css_for_each_descendant_pre(css, &memcg->css) {
4052 child = mem_cgroup_from_css(css);
4053 BUG_ON(child->kmemcg_id != kmemcg_id);
4054 child->kmemcg_id = parent->kmemcg_id;
4055 if (!memcg->use_hierarchy)
4056 break;
4057 }
4058 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
4059
4060 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
4061}
4062
10d5ebf4 4063static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4064{
f48b80a5
VD
4065 if (memcg->kmem_acct_activated) {
4066 memcg_destroy_kmem_caches(memcg);
4067 static_key_slow_dec(&memcg_kmem_enabled_key);
4068 WARN_ON(page_counter_read(&memcg->kmem));
4069 }
1d62e436 4070 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4071}
e5671dfa 4072#else
cbe128e3 4073static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4074{
4075 return 0;
4076}
d1a4c0b3 4077
2a4db7eb
VD
4078static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
4079{
4080}
4081
10d5ebf4
LZ
4082static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4083{
4084}
e5671dfa
GC
4085#endif
4086
3bc942f3
TH
4087/*
4088 * DO NOT USE IN NEW FILES.
4089 *
4090 * "cgroup.event_control" implementation.
4091 *
4092 * This is way over-engineered. It tries to support fully configurable
4093 * events for each user. Such level of flexibility is completely
4094 * unnecessary especially in the light of the planned unified hierarchy.
4095 *
4096 * Please deprecate this and replace with something simpler if at all
4097 * possible.
4098 */
4099
79bd9814
TH
4100/*
4101 * Unregister event and free resources.
4102 *
4103 * Gets called from workqueue.
4104 */
3bc942f3 4105static void memcg_event_remove(struct work_struct *work)
79bd9814 4106{
3bc942f3
TH
4107 struct mem_cgroup_event *event =
4108 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4109 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4110
4111 remove_wait_queue(event->wqh, &event->wait);
4112
59b6f873 4113 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4114
4115 /* Notify userspace the event is going away. */
4116 eventfd_signal(event->eventfd, 1);
4117
4118 eventfd_ctx_put(event->eventfd);
4119 kfree(event);
59b6f873 4120 css_put(&memcg->css);
79bd9814
TH
4121}
4122
4123/*
4124 * Gets called on POLLHUP on eventfd when user closes it.
4125 *
4126 * Called with wqh->lock held and interrupts disabled.
4127 */
3bc942f3
TH
4128static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4129 int sync, void *key)
79bd9814 4130{
3bc942f3
TH
4131 struct mem_cgroup_event *event =
4132 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4133 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4134 unsigned long flags = (unsigned long)key;
4135
4136 if (flags & POLLHUP) {
4137 /*
4138 * If the event has been detached at cgroup removal, we
4139 * can simply return knowing the other side will cleanup
4140 * for us.
4141 *
4142 * We can't race against event freeing since the other
4143 * side will require wqh->lock via remove_wait_queue(),
4144 * which we hold.
4145 */
fba94807 4146 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4147 if (!list_empty(&event->list)) {
4148 list_del_init(&event->list);
4149 /*
4150 * We are in atomic context, but cgroup_event_remove()
4151 * may sleep, so we have to call it in workqueue.
4152 */
4153 schedule_work(&event->remove);
4154 }
fba94807 4155 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4156 }
4157
4158 return 0;
4159}
4160
3bc942f3 4161static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4162 wait_queue_head_t *wqh, poll_table *pt)
4163{
3bc942f3
TH
4164 struct mem_cgroup_event *event =
4165 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4166
4167 event->wqh = wqh;
4168 add_wait_queue(wqh, &event->wait);
4169}
4170
4171/*
3bc942f3
TH
4172 * DO NOT USE IN NEW FILES.
4173 *
79bd9814
TH
4174 * Parse input and register new cgroup event handler.
4175 *
4176 * Input must be in format '<event_fd> <control_fd> <args>'.
4177 * Interpretation of args is defined by control file implementation.
4178 */
451af504
TH
4179static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4180 char *buf, size_t nbytes, loff_t off)
79bd9814 4181{
451af504 4182 struct cgroup_subsys_state *css = of_css(of);
fba94807 4183 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4184 struct mem_cgroup_event *event;
79bd9814
TH
4185 struct cgroup_subsys_state *cfile_css;
4186 unsigned int efd, cfd;
4187 struct fd efile;
4188 struct fd cfile;
fba94807 4189 const char *name;
79bd9814
TH
4190 char *endp;
4191 int ret;
4192
451af504
TH
4193 buf = strstrip(buf);
4194
4195 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4196 if (*endp != ' ')
4197 return -EINVAL;
451af504 4198 buf = endp + 1;
79bd9814 4199
451af504 4200 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4201 if ((*endp != ' ') && (*endp != '\0'))
4202 return -EINVAL;
451af504 4203 buf = endp + 1;
79bd9814
TH
4204
4205 event = kzalloc(sizeof(*event), GFP_KERNEL);
4206 if (!event)
4207 return -ENOMEM;
4208
59b6f873 4209 event->memcg = memcg;
79bd9814 4210 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4211 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4212 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4213 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4214
4215 efile = fdget(efd);
4216 if (!efile.file) {
4217 ret = -EBADF;
4218 goto out_kfree;
4219 }
4220
4221 event->eventfd = eventfd_ctx_fileget(efile.file);
4222 if (IS_ERR(event->eventfd)) {
4223 ret = PTR_ERR(event->eventfd);
4224 goto out_put_efile;
4225 }
4226
4227 cfile = fdget(cfd);
4228 if (!cfile.file) {
4229 ret = -EBADF;
4230 goto out_put_eventfd;
4231 }
4232
4233 /* the process need read permission on control file */
4234 /* AV: shouldn't we check that it's been opened for read instead? */
4235 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4236 if (ret < 0)
4237 goto out_put_cfile;
4238
fba94807
TH
4239 /*
4240 * Determine the event callbacks and set them in @event. This used
4241 * to be done via struct cftype but cgroup core no longer knows
4242 * about these events. The following is crude but the whole thing
4243 * is for compatibility anyway.
3bc942f3
TH
4244 *
4245 * DO NOT ADD NEW FILES.
fba94807 4246 */
b583043e 4247 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4248
4249 if (!strcmp(name, "memory.usage_in_bytes")) {
4250 event->register_event = mem_cgroup_usage_register_event;
4251 event->unregister_event = mem_cgroup_usage_unregister_event;
4252 } else if (!strcmp(name, "memory.oom_control")) {
4253 event->register_event = mem_cgroup_oom_register_event;
4254 event->unregister_event = mem_cgroup_oom_unregister_event;
4255 } else if (!strcmp(name, "memory.pressure_level")) {
4256 event->register_event = vmpressure_register_event;
4257 event->unregister_event = vmpressure_unregister_event;
4258 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4259 event->register_event = memsw_cgroup_usage_register_event;
4260 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4261 } else {
4262 ret = -EINVAL;
4263 goto out_put_cfile;
4264 }
4265
79bd9814 4266 /*
b5557c4c
TH
4267 * Verify @cfile should belong to @css. Also, remaining events are
4268 * automatically removed on cgroup destruction but the removal is
4269 * asynchronous, so take an extra ref on @css.
79bd9814 4270 */
b583043e 4271 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4272 &memory_cgrp_subsys);
79bd9814 4273 ret = -EINVAL;
5a17f543 4274 if (IS_ERR(cfile_css))
79bd9814 4275 goto out_put_cfile;
5a17f543
TH
4276 if (cfile_css != css) {
4277 css_put(cfile_css);
79bd9814 4278 goto out_put_cfile;
5a17f543 4279 }
79bd9814 4280
451af504 4281 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4282 if (ret)
4283 goto out_put_css;
4284
4285 efile.file->f_op->poll(efile.file, &event->pt);
4286
fba94807
TH
4287 spin_lock(&memcg->event_list_lock);
4288 list_add(&event->list, &memcg->event_list);
4289 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4290
4291 fdput(cfile);
4292 fdput(efile);
4293
451af504 4294 return nbytes;
79bd9814
TH
4295
4296out_put_css:
b5557c4c 4297 css_put(css);
79bd9814
TH
4298out_put_cfile:
4299 fdput(cfile);
4300out_put_eventfd:
4301 eventfd_ctx_put(event->eventfd);
4302out_put_efile:
4303 fdput(efile);
4304out_kfree:
4305 kfree(event);
4306
4307 return ret;
4308}
4309
241994ed 4310static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4311 {
0eea1030 4312 .name = "usage_in_bytes",
8c7c6e34 4313 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4314 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4315 },
c84872e1
PE
4316 {
4317 .name = "max_usage_in_bytes",
8c7c6e34 4318 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4319 .write = mem_cgroup_reset,
791badbd 4320 .read_u64 = mem_cgroup_read_u64,
c84872e1 4321 },
8cdea7c0 4322 {
0eea1030 4323 .name = "limit_in_bytes",
8c7c6e34 4324 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4325 .write = mem_cgroup_write,
791badbd 4326 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4327 },
296c81d8
BS
4328 {
4329 .name = "soft_limit_in_bytes",
4330 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4331 .write = mem_cgroup_write,
791badbd 4332 .read_u64 = mem_cgroup_read_u64,
296c81d8 4333 },
8cdea7c0
BS
4334 {
4335 .name = "failcnt",
8c7c6e34 4336 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4337 .write = mem_cgroup_reset,
791badbd 4338 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4339 },
d2ceb9b7
KH
4340 {
4341 .name = "stat",
2da8ca82 4342 .seq_show = memcg_stat_show,
d2ceb9b7 4343 },
c1e862c1
KH
4344 {
4345 .name = "force_empty",
6770c64e 4346 .write = mem_cgroup_force_empty_write,
c1e862c1 4347 },
18f59ea7
BS
4348 {
4349 .name = "use_hierarchy",
4350 .write_u64 = mem_cgroup_hierarchy_write,
4351 .read_u64 = mem_cgroup_hierarchy_read,
4352 },
79bd9814 4353 {
3bc942f3 4354 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4355 .write = memcg_write_event_control,
79bd9814
TH
4356 .flags = CFTYPE_NO_PREFIX,
4357 .mode = S_IWUGO,
4358 },
a7885eb8
KM
4359 {
4360 .name = "swappiness",
4361 .read_u64 = mem_cgroup_swappiness_read,
4362 .write_u64 = mem_cgroup_swappiness_write,
4363 },
7dc74be0
DN
4364 {
4365 .name = "move_charge_at_immigrate",
4366 .read_u64 = mem_cgroup_move_charge_read,
4367 .write_u64 = mem_cgroup_move_charge_write,
4368 },
9490ff27
KH
4369 {
4370 .name = "oom_control",
2da8ca82 4371 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4372 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4373 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4374 },
70ddf637
AV
4375 {
4376 .name = "pressure_level",
70ddf637 4377 },
406eb0c9
YH
4378#ifdef CONFIG_NUMA
4379 {
4380 .name = "numa_stat",
2da8ca82 4381 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4382 },
4383#endif
510fc4e1
GC
4384#ifdef CONFIG_MEMCG_KMEM
4385 {
4386 .name = "kmem.limit_in_bytes",
4387 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4388 .write = mem_cgroup_write,
791badbd 4389 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4390 },
4391 {
4392 .name = "kmem.usage_in_bytes",
4393 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4394 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4395 },
4396 {
4397 .name = "kmem.failcnt",
4398 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4399 .write = mem_cgroup_reset,
791badbd 4400 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4401 },
4402 {
4403 .name = "kmem.max_usage_in_bytes",
4404 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4405 .write = mem_cgroup_reset,
791badbd 4406 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4407 },
749c5415
GC
4408#ifdef CONFIG_SLABINFO
4409 {
4410 .name = "kmem.slabinfo",
b047501c
VD
4411 .seq_start = slab_start,
4412 .seq_next = slab_next,
4413 .seq_stop = slab_stop,
4414 .seq_show = memcg_slab_show,
749c5415
GC
4415 },
4416#endif
8c7c6e34 4417#endif
6bc10349 4418 { }, /* terminate */
af36f906 4419};
8c7c6e34 4420
c0ff4b85 4421static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4422{
4423 struct mem_cgroup_per_node *pn;
1ecaab2b 4424 struct mem_cgroup_per_zone *mz;
41e3355d 4425 int zone, tmp = node;
1ecaab2b
KH
4426 /*
4427 * This routine is called against possible nodes.
4428 * But it's BUG to call kmalloc() against offline node.
4429 *
4430 * TODO: this routine can waste much memory for nodes which will
4431 * never be onlined. It's better to use memory hotplug callback
4432 * function.
4433 */
41e3355d
KH
4434 if (!node_state(node, N_NORMAL_MEMORY))
4435 tmp = -1;
17295c88 4436 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4437 if (!pn)
4438 return 1;
1ecaab2b 4439
1ecaab2b
KH
4440 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4441 mz = &pn->zoneinfo[zone];
bea8c150 4442 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4443 mz->usage_in_excess = 0;
4444 mz->on_tree = false;
d79154bb 4445 mz->memcg = memcg;
1ecaab2b 4446 }
54f72fe0 4447 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4448 return 0;
4449}
4450
c0ff4b85 4451static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4452{
54f72fe0 4453 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4454}
4455
33327948
KH
4456static struct mem_cgroup *mem_cgroup_alloc(void)
4457{
d79154bb 4458 struct mem_cgroup *memcg;
8ff69e2c 4459 size_t size;
33327948 4460
8ff69e2c
VD
4461 size = sizeof(struct mem_cgroup);
4462 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4463
8ff69e2c 4464 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4465 if (!memcg)
e7bbcdf3
DC
4466 return NULL;
4467
d79154bb
HD
4468 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4469 if (!memcg->stat)
d2e61b8d 4470 goto out_free;
d79154bb
HD
4471 spin_lock_init(&memcg->pcp_counter_lock);
4472 return memcg;
d2e61b8d
DC
4473
4474out_free:
8ff69e2c 4475 kfree(memcg);
d2e61b8d 4476 return NULL;
33327948
KH
4477}
4478
59927fb9 4479/*
c8b2a36f
GC
4480 * At destroying mem_cgroup, references from swap_cgroup can remain.
4481 * (scanning all at force_empty is too costly...)
4482 *
4483 * Instead of clearing all references at force_empty, we remember
4484 * the number of reference from swap_cgroup and free mem_cgroup when
4485 * it goes down to 0.
4486 *
4487 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4488 */
c8b2a36f
GC
4489
4490static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4491{
c8b2a36f 4492 int node;
59927fb9 4493
bb4cc1a8 4494 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4495
4496 for_each_node(node)
4497 free_mem_cgroup_per_zone_info(memcg, node);
4498
4499 free_percpu(memcg->stat);
8ff69e2c 4500 kfree(memcg);
59927fb9 4501}
3afe36b1 4502
7bcc1bb1
DN
4503/*
4504 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4505 */
e1aab161 4506struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4507{
3e32cb2e 4508 if (!memcg->memory.parent)
7bcc1bb1 4509 return NULL;
3e32cb2e 4510 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4511}
e1aab161 4512EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4513
0eb253e2 4514static struct cgroup_subsys_state * __ref
eb95419b 4515mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4516{
d142e3e6 4517 struct mem_cgroup *memcg;
04046e1a 4518 long error = -ENOMEM;
6d12e2d8 4519 int node;
8cdea7c0 4520
c0ff4b85
R
4521 memcg = mem_cgroup_alloc();
4522 if (!memcg)
04046e1a 4523 return ERR_PTR(error);
78fb7466 4524
3ed28fa1 4525 for_each_node(node)
c0ff4b85 4526 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4527 goto free_out;
f64c3f54 4528
c077719b 4529 /* root ? */
eb95419b 4530 if (parent_css == NULL) {
a41c58a6 4531 root_mem_cgroup = memcg;
3e32cb2e 4532 page_counter_init(&memcg->memory, NULL);
241994ed 4533 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4534 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4535 page_counter_init(&memcg->memsw, NULL);
4536 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4537 }
28dbc4b6 4538
d142e3e6
GC
4539 memcg->last_scanned_node = MAX_NUMNODES;
4540 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4541 memcg->move_charge_at_immigrate = 0;
4542 mutex_init(&memcg->thresholds_lock);
4543 spin_lock_init(&memcg->move_lock);
70ddf637 4544 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4545 INIT_LIST_HEAD(&memcg->event_list);
4546 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4547#ifdef CONFIG_MEMCG_KMEM
4548 memcg->kmemcg_id = -1;
900a38f0 4549#endif
d142e3e6
GC
4550
4551 return &memcg->css;
4552
4553free_out:
4554 __mem_cgroup_free(memcg);
4555 return ERR_PTR(error);
4556}
4557
4558static int
eb95419b 4559mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4560{
eb95419b 4561 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4562 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4563 int ret;
d142e3e6 4564
15a4c835 4565 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4566 return -ENOSPC;
4567
63876986 4568 if (!parent)
d142e3e6
GC
4569 return 0;
4570
0999821b 4571 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4572
4573 memcg->use_hierarchy = parent->use_hierarchy;
4574 memcg->oom_kill_disable = parent->oom_kill_disable;
4575 memcg->swappiness = mem_cgroup_swappiness(parent);
4576
4577 if (parent->use_hierarchy) {
3e32cb2e 4578 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4579 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4580 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4581 page_counter_init(&memcg->memsw, &parent->memsw);
4582 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4583
7bcc1bb1 4584 /*
8d76a979
LZ
4585 * No need to take a reference to the parent because cgroup
4586 * core guarantees its existence.
7bcc1bb1 4587 */
18f59ea7 4588 } else {
3e32cb2e 4589 page_counter_init(&memcg->memory, NULL);
241994ed 4590 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4591 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4592 page_counter_init(&memcg->memsw, NULL);
4593 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4594 /*
4595 * Deeper hierachy with use_hierarchy == false doesn't make
4596 * much sense so let cgroup subsystem know about this
4597 * unfortunate state in our controller.
4598 */
d142e3e6 4599 if (parent != root_mem_cgroup)
073219e9 4600 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4601 }
0999821b 4602 mutex_unlock(&memcg_create_mutex);
d6441637 4603
2f7dd7a4
JW
4604 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4605 if (ret)
4606 return ret;
4607
4608 /*
4609 * Make sure the memcg is initialized: mem_cgroup_iter()
4610 * orders reading memcg->initialized against its callers
4611 * reading the memcg members.
4612 */
4613 smp_store_release(&memcg->initialized, 1);
4614
4615 return 0;
8cdea7c0
BS
4616}
4617
eb95419b 4618static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4619{
eb95419b 4620 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4621 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4622
4623 /*
4624 * Unregister events and notify userspace.
4625 * Notify userspace about cgroup removing only after rmdir of cgroup
4626 * directory to avoid race between userspace and kernelspace.
4627 */
fba94807
TH
4628 spin_lock(&memcg->event_list_lock);
4629 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4630 list_del_init(&event->list);
4631 schedule_work(&event->remove);
4632 }
fba94807 4633 spin_unlock(&memcg->event_list_lock);
ec64f515 4634
33cb876e 4635 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4636
4637 memcg_deactivate_kmem(memcg);
df878fb0
KH
4638}
4639
eb95419b 4640static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4641{
eb95419b 4642 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4643
10d5ebf4 4644 memcg_destroy_kmem(memcg);
465939a1 4645 __mem_cgroup_free(memcg);
8cdea7c0
BS
4646}
4647
1ced953b
TH
4648/**
4649 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4650 * @css: the target css
4651 *
4652 * Reset the states of the mem_cgroup associated with @css. This is
4653 * invoked when the userland requests disabling on the default hierarchy
4654 * but the memcg is pinned through dependency. The memcg should stop
4655 * applying policies and should revert to the vanilla state as it may be
4656 * made visible again.
4657 *
4658 * The current implementation only resets the essential configurations.
4659 * This needs to be expanded to cover all the visible parts.
4660 */
4661static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4662{
4663 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4664
3e32cb2e
JW
4665 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4666 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4667 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4668 memcg->low = 0;
4669 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4670 memcg->soft_limit = PAGE_COUNTER_MAX;
1ced953b
TH
4671}
4672
02491447 4673#ifdef CONFIG_MMU
7dc74be0 4674/* Handlers for move charge at task migration. */
854ffa8d 4675static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4676{
05b84301 4677 int ret;
9476db97
JW
4678
4679 /* Try a single bulk charge without reclaim first */
00501b53 4680 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4681 if (!ret) {
854ffa8d 4682 mc.precharge += count;
854ffa8d
DN
4683 return ret;
4684 }
692e7c45 4685 if (ret == -EINTR) {
00501b53 4686 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4687 return ret;
4688 }
9476db97
JW
4689
4690 /* Try charges one by one with reclaim */
854ffa8d 4691 while (count--) {
00501b53 4692 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4693 /*
4694 * In case of failure, any residual charges against
4695 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4696 * later on. However, cancel any charges that are
4697 * bypassed to root right away or they'll be lost.
9476db97 4698 */
692e7c45 4699 if (ret == -EINTR)
00501b53 4700 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4701 if (ret)
38c5d72f 4702 return ret;
854ffa8d 4703 mc.precharge++;
9476db97 4704 cond_resched();
854ffa8d 4705 }
9476db97 4706 return 0;
4ffef5fe
DN
4707}
4708
4709/**
8d32ff84 4710 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4711 * @vma: the vma the pte to be checked belongs
4712 * @addr: the address corresponding to the pte to be checked
4713 * @ptent: the pte to be checked
02491447 4714 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4715 *
4716 * Returns
4717 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4718 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4719 * move charge. if @target is not NULL, the page is stored in target->page
4720 * with extra refcnt got(Callers should handle it).
02491447
DN
4721 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4722 * target for charge migration. if @target is not NULL, the entry is stored
4723 * in target->ent.
4ffef5fe
DN
4724 *
4725 * Called with pte lock held.
4726 */
4ffef5fe
DN
4727union mc_target {
4728 struct page *page;
02491447 4729 swp_entry_t ent;
4ffef5fe
DN
4730};
4731
4ffef5fe 4732enum mc_target_type {
8d32ff84 4733 MC_TARGET_NONE = 0,
4ffef5fe 4734 MC_TARGET_PAGE,
02491447 4735 MC_TARGET_SWAP,
4ffef5fe
DN
4736};
4737
90254a65
DN
4738static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4739 unsigned long addr, pte_t ptent)
4ffef5fe 4740{
90254a65 4741 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4742
90254a65
DN
4743 if (!page || !page_mapped(page))
4744 return NULL;
4745 if (PageAnon(page)) {
1dfab5ab 4746 if (!(mc.flags & MOVE_ANON))
90254a65 4747 return NULL;
1dfab5ab
JW
4748 } else {
4749 if (!(mc.flags & MOVE_FILE))
4750 return NULL;
4751 }
90254a65
DN
4752 if (!get_page_unless_zero(page))
4753 return NULL;
4754
4755 return page;
4756}
4757
4b91355e 4758#ifdef CONFIG_SWAP
90254a65
DN
4759static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4760 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4761{
90254a65
DN
4762 struct page *page = NULL;
4763 swp_entry_t ent = pte_to_swp_entry(ptent);
4764
1dfab5ab 4765 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4766 return NULL;
4b91355e
KH
4767 /*
4768 * Because lookup_swap_cache() updates some statistics counter,
4769 * we call find_get_page() with swapper_space directly.
4770 */
33806f06 4771 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4772 if (do_swap_account)
4773 entry->val = ent.val;
4774
4775 return page;
4776}
4b91355e
KH
4777#else
4778static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4779 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4780{
4781 return NULL;
4782}
4783#endif
90254a65 4784
87946a72
DN
4785static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4786 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4787{
4788 struct page *page = NULL;
87946a72
DN
4789 struct address_space *mapping;
4790 pgoff_t pgoff;
4791
4792 if (!vma->vm_file) /* anonymous vma */
4793 return NULL;
1dfab5ab 4794 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4795 return NULL;
4796
87946a72 4797 mapping = vma->vm_file->f_mapping;
0661a336 4798 pgoff = linear_page_index(vma, addr);
87946a72
DN
4799
4800 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4801#ifdef CONFIG_SWAP
4802 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4803 if (shmem_mapping(mapping)) {
4804 page = find_get_entry(mapping, pgoff);
4805 if (radix_tree_exceptional_entry(page)) {
4806 swp_entry_t swp = radix_to_swp_entry(page);
4807 if (do_swap_account)
4808 *entry = swp;
4809 page = find_get_page(swap_address_space(swp), swp.val);
4810 }
4811 } else
4812 page = find_get_page(mapping, pgoff);
4813#else
4814 page = find_get_page(mapping, pgoff);
aa3b1895 4815#endif
87946a72
DN
4816 return page;
4817}
4818
8d32ff84 4819static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4820 unsigned long addr, pte_t ptent, union mc_target *target)
4821{
4822 struct page *page = NULL;
8d32ff84 4823 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4824 swp_entry_t ent = { .val = 0 };
4825
4826 if (pte_present(ptent))
4827 page = mc_handle_present_pte(vma, addr, ptent);
4828 else if (is_swap_pte(ptent))
4829 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4830 else if (pte_none(ptent))
87946a72 4831 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4832
4833 if (!page && !ent.val)
8d32ff84 4834 return ret;
02491447 4835 if (page) {
02491447 4836 /*
0a31bc97 4837 * Do only loose check w/o serialization.
1306a85a 4838 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4839 * not under LRU exclusion.
02491447 4840 */
1306a85a 4841 if (page->mem_cgroup == mc.from) {
02491447
DN
4842 ret = MC_TARGET_PAGE;
4843 if (target)
4844 target->page = page;
4845 }
4846 if (!ret || !target)
4847 put_page(page);
4848 }
90254a65
DN
4849 /* There is a swap entry and a page doesn't exist or isn't charged */
4850 if (ent.val && !ret &&
34c00c31 4851 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4852 ret = MC_TARGET_SWAP;
4853 if (target)
4854 target->ent = ent;
4ffef5fe 4855 }
4ffef5fe
DN
4856 return ret;
4857}
4858
12724850
NH
4859#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4860/*
4861 * We don't consider swapping or file mapped pages because THP does not
4862 * support them for now.
4863 * Caller should make sure that pmd_trans_huge(pmd) is true.
4864 */
4865static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4866 unsigned long addr, pmd_t pmd, union mc_target *target)
4867{
4868 struct page *page = NULL;
12724850
NH
4869 enum mc_target_type ret = MC_TARGET_NONE;
4870
4871 page = pmd_page(pmd);
309381fe 4872 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4873 if (!(mc.flags & MOVE_ANON))
12724850 4874 return ret;
1306a85a 4875 if (page->mem_cgroup == mc.from) {
12724850
NH
4876 ret = MC_TARGET_PAGE;
4877 if (target) {
4878 get_page(page);
4879 target->page = page;
4880 }
4881 }
4882 return ret;
4883}
4884#else
4885static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4886 unsigned long addr, pmd_t pmd, union mc_target *target)
4887{
4888 return MC_TARGET_NONE;
4889}
4890#endif
4891
4ffef5fe
DN
4892static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4893 unsigned long addr, unsigned long end,
4894 struct mm_walk *walk)
4895{
26bcd64a 4896 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4897 pte_t *pte;
4898 spinlock_t *ptl;
4899
bf929152 4900 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4901 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4902 mc.precharge += HPAGE_PMD_NR;
bf929152 4903 spin_unlock(ptl);
1a5a9906 4904 return 0;
12724850 4905 }
03319327 4906
45f83cef
AA
4907 if (pmd_trans_unstable(pmd))
4908 return 0;
4ffef5fe
DN
4909 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4910 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4911 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4912 mc.precharge++; /* increment precharge temporarily */
4913 pte_unmap_unlock(pte - 1, ptl);
4914 cond_resched();
4915
7dc74be0
DN
4916 return 0;
4917}
4918
4ffef5fe
DN
4919static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4920{
4921 unsigned long precharge;
4ffef5fe 4922
26bcd64a
NH
4923 struct mm_walk mem_cgroup_count_precharge_walk = {
4924 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4925 .mm = mm,
4926 };
dfe076b0 4927 down_read(&mm->mmap_sem);
26bcd64a 4928 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4929 up_read(&mm->mmap_sem);
4ffef5fe
DN
4930
4931 precharge = mc.precharge;
4932 mc.precharge = 0;
4933
4934 return precharge;
4935}
4936
4ffef5fe
DN
4937static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4938{
dfe076b0
DN
4939 unsigned long precharge = mem_cgroup_count_precharge(mm);
4940
4941 VM_BUG_ON(mc.moving_task);
4942 mc.moving_task = current;
4943 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4944}
4945
dfe076b0
DN
4946/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4947static void __mem_cgroup_clear_mc(void)
4ffef5fe 4948{
2bd9bb20
KH
4949 struct mem_cgroup *from = mc.from;
4950 struct mem_cgroup *to = mc.to;
4951
4ffef5fe 4952 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4953 if (mc.precharge) {
00501b53 4954 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4955 mc.precharge = 0;
4956 }
4957 /*
4958 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4959 * we must uncharge here.
4960 */
4961 if (mc.moved_charge) {
00501b53 4962 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4963 mc.moved_charge = 0;
4ffef5fe 4964 }
483c30b5
DN
4965 /* we must fixup refcnts and charges */
4966 if (mc.moved_swap) {
483c30b5 4967 /* uncharge swap account from the old cgroup */
ce00a967 4968 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4969 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4970
05b84301 4971 /*
3e32cb2e
JW
4972 * we charged both to->memory and to->memsw, so we
4973 * should uncharge to->memory.
05b84301 4974 */
ce00a967 4975 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4976 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4977
e8ea14cc 4978 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4979
4050377b 4980 /* we've already done css_get(mc.to) */
483c30b5
DN
4981 mc.moved_swap = 0;
4982 }
dfe076b0
DN
4983 memcg_oom_recover(from);
4984 memcg_oom_recover(to);
4985 wake_up_all(&mc.waitq);
4986}
4987
4988static void mem_cgroup_clear_mc(void)
4989{
dfe076b0
DN
4990 /*
4991 * we must clear moving_task before waking up waiters at the end of
4992 * task migration.
4993 */
4994 mc.moving_task = NULL;
4995 __mem_cgroup_clear_mc();
2bd9bb20 4996 spin_lock(&mc.lock);
4ffef5fe
DN
4997 mc.from = NULL;
4998 mc.to = NULL;
2bd9bb20 4999 spin_unlock(&mc.lock);
4ffef5fe
DN
5000}
5001
eb95419b 5002static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5003 struct cgroup_taskset *tset)
7dc74be0 5004{
2f7ee569 5005 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5006 int ret = 0;
eb95419b 5007 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1dfab5ab 5008 unsigned long move_flags;
7dc74be0 5009
ee5e8472
GC
5010 /*
5011 * We are now commited to this value whatever it is. Changes in this
5012 * tunable will only affect upcoming migrations, not the current one.
5013 * So we need to save it, and keep it going.
5014 */
1dfab5ab
JW
5015 move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
5016 if (move_flags) {
7dc74be0
DN
5017 struct mm_struct *mm;
5018 struct mem_cgroup *from = mem_cgroup_from_task(p);
5019
c0ff4b85 5020 VM_BUG_ON(from == memcg);
7dc74be0
DN
5021
5022 mm = get_task_mm(p);
5023 if (!mm)
5024 return 0;
7dc74be0 5025 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5026 if (mm->owner == p) {
5027 VM_BUG_ON(mc.from);
5028 VM_BUG_ON(mc.to);
5029 VM_BUG_ON(mc.precharge);
854ffa8d 5030 VM_BUG_ON(mc.moved_charge);
483c30b5 5031 VM_BUG_ON(mc.moved_swap);
247b1447 5032
2bd9bb20 5033 spin_lock(&mc.lock);
4ffef5fe 5034 mc.from = from;
c0ff4b85 5035 mc.to = memcg;
1dfab5ab 5036 mc.flags = move_flags;
2bd9bb20 5037 spin_unlock(&mc.lock);
dfe076b0 5038 /* We set mc.moving_task later */
4ffef5fe
DN
5039
5040 ret = mem_cgroup_precharge_mc(mm);
5041 if (ret)
5042 mem_cgroup_clear_mc();
dfe076b0
DN
5043 }
5044 mmput(mm);
7dc74be0
DN
5045 }
5046 return ret;
5047}
5048
eb95419b 5049static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5050 struct cgroup_taskset *tset)
7dc74be0 5051{
4e2f245d
JW
5052 if (mc.to)
5053 mem_cgroup_clear_mc();
7dc74be0
DN
5054}
5055
4ffef5fe
DN
5056static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5057 unsigned long addr, unsigned long end,
5058 struct mm_walk *walk)
7dc74be0 5059{
4ffef5fe 5060 int ret = 0;
26bcd64a 5061 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5062 pte_t *pte;
5063 spinlock_t *ptl;
12724850
NH
5064 enum mc_target_type target_type;
5065 union mc_target target;
5066 struct page *page;
4ffef5fe 5067
12724850
NH
5068 /*
5069 * We don't take compound_lock() here but no race with splitting thp
5070 * happens because:
5071 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5072 * under splitting, which means there's no concurrent thp split,
5073 * - if another thread runs into split_huge_page() just after we
5074 * entered this if-block, the thread must wait for page table lock
5075 * to be unlocked in __split_huge_page_splitting(), where the main
5076 * part of thp split is not executed yet.
5077 */
bf929152 5078 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5079 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5080 spin_unlock(ptl);
12724850
NH
5081 return 0;
5082 }
5083 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5084 if (target_type == MC_TARGET_PAGE) {
5085 page = target.page;
5086 if (!isolate_lru_page(page)) {
12724850 5087 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5088 mc.from, mc.to)) {
12724850
NH
5089 mc.precharge -= HPAGE_PMD_NR;
5090 mc.moved_charge += HPAGE_PMD_NR;
5091 }
5092 putback_lru_page(page);
5093 }
5094 put_page(page);
5095 }
bf929152 5096 spin_unlock(ptl);
1a5a9906 5097 return 0;
12724850
NH
5098 }
5099
45f83cef
AA
5100 if (pmd_trans_unstable(pmd))
5101 return 0;
4ffef5fe
DN
5102retry:
5103 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5104 for (; addr != end; addr += PAGE_SIZE) {
5105 pte_t ptent = *(pte++);
02491447 5106 swp_entry_t ent;
4ffef5fe
DN
5107
5108 if (!mc.precharge)
5109 break;
5110
8d32ff84 5111 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5112 case MC_TARGET_PAGE:
5113 page = target.page;
5114 if (isolate_lru_page(page))
5115 goto put;
1306a85a 5116 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5117 mc.precharge--;
854ffa8d
DN
5118 /* we uncharge from mc.from later. */
5119 mc.moved_charge++;
4ffef5fe
DN
5120 }
5121 putback_lru_page(page);
8d32ff84 5122put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5123 put_page(page);
5124 break;
02491447
DN
5125 case MC_TARGET_SWAP:
5126 ent = target.ent;
e91cbb42 5127 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5128 mc.precharge--;
483c30b5
DN
5129 /* we fixup refcnts and charges later. */
5130 mc.moved_swap++;
5131 }
02491447 5132 break;
4ffef5fe
DN
5133 default:
5134 break;
5135 }
5136 }
5137 pte_unmap_unlock(pte - 1, ptl);
5138 cond_resched();
5139
5140 if (addr != end) {
5141 /*
5142 * We have consumed all precharges we got in can_attach().
5143 * We try charge one by one, but don't do any additional
5144 * charges to mc.to if we have failed in charge once in attach()
5145 * phase.
5146 */
854ffa8d 5147 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5148 if (!ret)
5149 goto retry;
5150 }
5151
5152 return ret;
5153}
5154
5155static void mem_cgroup_move_charge(struct mm_struct *mm)
5156{
26bcd64a
NH
5157 struct mm_walk mem_cgroup_move_charge_walk = {
5158 .pmd_entry = mem_cgroup_move_charge_pte_range,
5159 .mm = mm,
5160 };
4ffef5fe
DN
5161
5162 lru_add_drain_all();
312722cb
JW
5163 /*
5164 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5165 * move_lock while we're moving its pages to another memcg.
5166 * Then wait for already started RCU-only updates to finish.
5167 */
5168 atomic_inc(&mc.from->moving_account);
5169 synchronize_rcu();
dfe076b0
DN
5170retry:
5171 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5172 /*
5173 * Someone who are holding the mmap_sem might be waiting in
5174 * waitq. So we cancel all extra charges, wake up all waiters,
5175 * and retry. Because we cancel precharges, we might not be able
5176 * to move enough charges, but moving charge is a best-effort
5177 * feature anyway, so it wouldn't be a big problem.
5178 */
5179 __mem_cgroup_clear_mc();
5180 cond_resched();
5181 goto retry;
5182 }
26bcd64a
NH
5183 /*
5184 * When we have consumed all precharges and failed in doing
5185 * additional charge, the page walk just aborts.
5186 */
5187 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5188 up_read(&mm->mmap_sem);
312722cb 5189 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5190}
5191
eb95419b 5192static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5193 struct cgroup_taskset *tset)
67e465a7 5194{
2f7ee569 5195 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5196 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5197
dfe076b0 5198 if (mm) {
a433658c
KM
5199 if (mc.to)
5200 mem_cgroup_move_charge(mm);
dfe076b0
DN
5201 mmput(mm);
5202 }
a433658c
KM
5203 if (mc.to)
5204 mem_cgroup_clear_mc();
67e465a7 5205}
5cfb80a7 5206#else /* !CONFIG_MMU */
eb95419b 5207static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5208 struct cgroup_taskset *tset)
5cfb80a7
DN
5209{
5210 return 0;
5211}
eb95419b 5212static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5213 struct cgroup_taskset *tset)
5cfb80a7
DN
5214{
5215}
eb95419b 5216static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5217 struct cgroup_taskset *tset)
5cfb80a7
DN
5218{
5219}
5220#endif
67e465a7 5221
f00baae7
TH
5222/*
5223 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5224 * to verify whether we're attached to the default hierarchy on each mount
5225 * attempt.
f00baae7 5226 */
eb95419b 5227static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5228{
5229 /*
aa6ec29b 5230 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5231 * guarantees that @root doesn't have any children, so turning it
5232 * on for the root memcg is enough.
5233 */
aa6ec29b 5234 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5235 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5236}
5237
241994ed
JW
5238static u64 memory_current_read(struct cgroup_subsys_state *css,
5239 struct cftype *cft)
5240{
5241 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5242}
5243
5244static int memory_low_show(struct seq_file *m, void *v)
5245{
5246 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5247 unsigned long low = ACCESS_ONCE(memcg->low);
5248
5249 if (low == PAGE_COUNTER_MAX)
5250 seq_puts(m, "infinity\n");
5251 else
5252 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5253
5254 return 0;
5255}
5256
5257static ssize_t memory_low_write(struct kernfs_open_file *of,
5258 char *buf, size_t nbytes, loff_t off)
5259{
5260 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5261 unsigned long low;
5262 int err;
5263
5264 buf = strstrip(buf);
5265 err = page_counter_memparse(buf, "infinity", &low);
5266 if (err)
5267 return err;
5268
5269 memcg->low = low;
5270
5271 return nbytes;
5272}
5273
5274static int memory_high_show(struct seq_file *m, void *v)
5275{
5276 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5277 unsigned long high = ACCESS_ONCE(memcg->high);
5278
5279 if (high == PAGE_COUNTER_MAX)
5280 seq_puts(m, "infinity\n");
5281 else
5282 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5283
5284 return 0;
5285}
5286
5287static ssize_t memory_high_write(struct kernfs_open_file *of,
5288 char *buf, size_t nbytes, loff_t off)
5289{
5290 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5291 unsigned long high;
5292 int err;
5293
5294 buf = strstrip(buf);
5295 err = page_counter_memparse(buf, "infinity", &high);
5296 if (err)
5297 return err;
5298
5299 memcg->high = high;
5300
5301 return nbytes;
5302}
5303
5304static int memory_max_show(struct seq_file *m, void *v)
5305{
5306 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5307 unsigned long max = ACCESS_ONCE(memcg->memory.limit);
5308
5309 if (max == PAGE_COUNTER_MAX)
5310 seq_puts(m, "infinity\n");
5311 else
5312 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5313
5314 return 0;
5315}
5316
5317static ssize_t memory_max_write(struct kernfs_open_file *of,
5318 char *buf, size_t nbytes, loff_t off)
5319{
5320 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5321 unsigned long max;
5322 int err;
5323
5324 buf = strstrip(buf);
5325 err = page_counter_memparse(buf, "infinity", &max);
5326 if (err)
5327 return err;
5328
5329 err = mem_cgroup_resize_limit(memcg, max);
5330 if (err)
5331 return err;
5332
5333 return nbytes;
5334}
5335
5336static int memory_events_show(struct seq_file *m, void *v)
5337{
5338 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5339
5340 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5341 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5342 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5343 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5344
5345 return 0;
5346}
5347
5348static struct cftype memory_files[] = {
5349 {
5350 .name = "current",
5351 .read_u64 = memory_current_read,
5352 },
5353 {
5354 .name = "low",
5355 .flags = CFTYPE_NOT_ON_ROOT,
5356 .seq_show = memory_low_show,
5357 .write = memory_low_write,
5358 },
5359 {
5360 .name = "high",
5361 .flags = CFTYPE_NOT_ON_ROOT,
5362 .seq_show = memory_high_show,
5363 .write = memory_high_write,
5364 },
5365 {
5366 .name = "max",
5367 .flags = CFTYPE_NOT_ON_ROOT,
5368 .seq_show = memory_max_show,
5369 .write = memory_max_write,
5370 },
5371 {
5372 .name = "events",
5373 .flags = CFTYPE_NOT_ON_ROOT,
5374 .seq_show = memory_events_show,
5375 },
5376 { } /* terminate */
5377};
5378
073219e9 5379struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5380 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5381 .css_online = mem_cgroup_css_online,
92fb9748
TH
5382 .css_offline = mem_cgroup_css_offline,
5383 .css_free = mem_cgroup_css_free,
1ced953b 5384 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5385 .can_attach = mem_cgroup_can_attach,
5386 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5387 .attach = mem_cgroup_move_task,
f00baae7 5388 .bind = mem_cgroup_bind,
241994ed
JW
5389 .dfl_cftypes = memory_files,
5390 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5391 .early_init = 0,
8cdea7c0 5392};
c077719b 5393
241994ed
JW
5394/**
5395 * mem_cgroup_events - count memory events against a cgroup
5396 * @memcg: the memory cgroup
5397 * @idx: the event index
5398 * @nr: the number of events to account for
5399 */
5400void mem_cgroup_events(struct mem_cgroup *memcg,
5401 enum mem_cgroup_events_index idx,
5402 unsigned int nr)
5403{
5404 this_cpu_add(memcg->stat->events[idx], nr);
5405}
5406
5407/**
5408 * mem_cgroup_low - check if memory consumption is below the normal range
5409 * @root: the highest ancestor to consider
5410 * @memcg: the memory cgroup to check
5411 *
5412 * Returns %true if memory consumption of @memcg, and that of all
5413 * configurable ancestors up to @root, is below the normal range.
5414 */
5415bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5416{
5417 if (mem_cgroup_disabled())
5418 return false;
5419
5420 /*
5421 * The toplevel group doesn't have a configurable range, so
5422 * it's never low when looked at directly, and it is not
5423 * considered an ancestor when assessing the hierarchy.
5424 */
5425
5426 if (memcg == root_mem_cgroup)
5427 return false;
5428
5429 if (page_counter_read(&memcg->memory) > memcg->low)
5430 return false;
5431
5432 while (memcg != root) {
5433 memcg = parent_mem_cgroup(memcg);
5434
5435 if (memcg == root_mem_cgroup)
5436 break;
5437
5438 if (page_counter_read(&memcg->memory) > memcg->low)
5439 return false;
5440 }
5441 return true;
5442}
5443
00501b53
JW
5444/**
5445 * mem_cgroup_try_charge - try charging a page
5446 * @page: page to charge
5447 * @mm: mm context of the victim
5448 * @gfp_mask: reclaim mode
5449 * @memcgp: charged memcg return
5450 *
5451 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5452 * pages according to @gfp_mask if necessary.
5453 *
5454 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5455 * Otherwise, an error code is returned.
5456 *
5457 * After page->mapping has been set up, the caller must finalize the
5458 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5459 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5460 */
5461int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5462 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5463{
5464 struct mem_cgroup *memcg = NULL;
5465 unsigned int nr_pages = 1;
5466 int ret = 0;
5467
5468 if (mem_cgroup_disabled())
5469 goto out;
5470
5471 if (PageSwapCache(page)) {
00501b53
JW
5472 /*
5473 * Every swap fault against a single page tries to charge the
5474 * page, bail as early as possible. shmem_unuse() encounters
5475 * already charged pages, too. The USED bit is protected by
5476 * the page lock, which serializes swap cache removal, which
5477 * in turn serializes uncharging.
5478 */
1306a85a 5479 if (page->mem_cgroup)
00501b53
JW
5480 goto out;
5481 }
5482
5483 if (PageTransHuge(page)) {
5484 nr_pages <<= compound_order(page);
5485 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5486 }
5487
5488 if (do_swap_account && PageSwapCache(page))
5489 memcg = try_get_mem_cgroup_from_page(page);
5490 if (!memcg)
5491 memcg = get_mem_cgroup_from_mm(mm);
5492
5493 ret = try_charge(memcg, gfp_mask, nr_pages);
5494
5495 css_put(&memcg->css);
5496
5497 if (ret == -EINTR) {
5498 memcg = root_mem_cgroup;
5499 ret = 0;
5500 }
5501out:
5502 *memcgp = memcg;
5503 return ret;
5504}
5505
5506/**
5507 * mem_cgroup_commit_charge - commit a page charge
5508 * @page: page to charge
5509 * @memcg: memcg to charge the page to
5510 * @lrucare: page might be on LRU already
5511 *
5512 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5513 * after page->mapping has been set up. This must happen atomically
5514 * as part of the page instantiation, i.e. under the page table lock
5515 * for anonymous pages, under the page lock for page and swap cache.
5516 *
5517 * In addition, the page must not be on the LRU during the commit, to
5518 * prevent racing with task migration. If it might be, use @lrucare.
5519 *
5520 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5521 */
5522void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5523 bool lrucare)
5524{
5525 unsigned int nr_pages = 1;
5526
5527 VM_BUG_ON_PAGE(!page->mapping, page);
5528 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5529
5530 if (mem_cgroup_disabled())
5531 return;
5532 /*
5533 * Swap faults will attempt to charge the same page multiple
5534 * times. But reuse_swap_page() might have removed the page
5535 * from swapcache already, so we can't check PageSwapCache().
5536 */
5537 if (!memcg)
5538 return;
5539
6abb5a86
JW
5540 commit_charge(page, memcg, lrucare);
5541
00501b53
JW
5542 if (PageTransHuge(page)) {
5543 nr_pages <<= compound_order(page);
5544 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5545 }
5546
6abb5a86
JW
5547 local_irq_disable();
5548 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5549 memcg_check_events(memcg, page);
5550 local_irq_enable();
00501b53
JW
5551
5552 if (do_swap_account && PageSwapCache(page)) {
5553 swp_entry_t entry = { .val = page_private(page) };
5554 /*
5555 * The swap entry might not get freed for a long time,
5556 * let's not wait for it. The page already received a
5557 * memory+swap charge, drop the swap entry duplicate.
5558 */
5559 mem_cgroup_uncharge_swap(entry);
5560 }
5561}
5562
5563/**
5564 * mem_cgroup_cancel_charge - cancel a page charge
5565 * @page: page to charge
5566 * @memcg: memcg to charge the page to
5567 *
5568 * Cancel a charge transaction started by mem_cgroup_try_charge().
5569 */
5570void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5571{
5572 unsigned int nr_pages = 1;
5573
5574 if (mem_cgroup_disabled())
5575 return;
5576 /*
5577 * Swap faults will attempt to charge the same page multiple
5578 * times. But reuse_swap_page() might have removed the page
5579 * from swapcache already, so we can't check PageSwapCache().
5580 */
5581 if (!memcg)
5582 return;
5583
5584 if (PageTransHuge(page)) {
5585 nr_pages <<= compound_order(page);
5586 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5587 }
5588
5589 cancel_charge(memcg, nr_pages);
5590}
5591
747db954 5592static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5593 unsigned long nr_anon, unsigned long nr_file,
5594 unsigned long nr_huge, struct page *dummy_page)
5595{
18eca2e6 5596 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5597 unsigned long flags;
5598
ce00a967 5599 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5600 page_counter_uncharge(&memcg->memory, nr_pages);
5601 if (do_swap_account)
5602 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5603 memcg_oom_recover(memcg);
5604 }
747db954
JW
5605
5606 local_irq_save(flags);
5607 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5608 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5609 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5610 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5611 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5612 memcg_check_events(memcg, dummy_page);
5613 local_irq_restore(flags);
e8ea14cc
JW
5614
5615 if (!mem_cgroup_is_root(memcg))
18eca2e6 5616 css_put_many(&memcg->css, nr_pages);
747db954
JW
5617}
5618
5619static void uncharge_list(struct list_head *page_list)
5620{
5621 struct mem_cgroup *memcg = NULL;
747db954
JW
5622 unsigned long nr_anon = 0;
5623 unsigned long nr_file = 0;
5624 unsigned long nr_huge = 0;
5625 unsigned long pgpgout = 0;
747db954
JW
5626 struct list_head *next;
5627 struct page *page;
5628
5629 next = page_list->next;
5630 do {
5631 unsigned int nr_pages = 1;
747db954
JW
5632
5633 page = list_entry(next, struct page, lru);
5634 next = page->lru.next;
5635
5636 VM_BUG_ON_PAGE(PageLRU(page), page);
5637 VM_BUG_ON_PAGE(page_count(page), page);
5638
1306a85a 5639 if (!page->mem_cgroup)
747db954
JW
5640 continue;
5641
5642 /*
5643 * Nobody should be changing or seriously looking at
1306a85a 5644 * page->mem_cgroup at this point, we have fully
29833315 5645 * exclusive access to the page.
747db954
JW
5646 */
5647
1306a85a 5648 if (memcg != page->mem_cgroup) {
747db954 5649 if (memcg) {
18eca2e6
JW
5650 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5651 nr_huge, page);
5652 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5653 }
1306a85a 5654 memcg = page->mem_cgroup;
747db954
JW
5655 }
5656
5657 if (PageTransHuge(page)) {
5658 nr_pages <<= compound_order(page);
5659 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5660 nr_huge += nr_pages;
5661 }
5662
5663 if (PageAnon(page))
5664 nr_anon += nr_pages;
5665 else
5666 nr_file += nr_pages;
5667
1306a85a 5668 page->mem_cgroup = NULL;
747db954
JW
5669
5670 pgpgout++;
5671 } while (next != page_list);
5672
5673 if (memcg)
18eca2e6
JW
5674 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5675 nr_huge, page);
747db954
JW
5676}
5677
0a31bc97
JW
5678/**
5679 * mem_cgroup_uncharge - uncharge a page
5680 * @page: page to uncharge
5681 *
5682 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5683 * mem_cgroup_commit_charge().
5684 */
5685void mem_cgroup_uncharge(struct page *page)
5686{
0a31bc97
JW
5687 if (mem_cgroup_disabled())
5688 return;
5689
747db954 5690 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5691 if (!page->mem_cgroup)
0a31bc97
JW
5692 return;
5693
747db954
JW
5694 INIT_LIST_HEAD(&page->lru);
5695 uncharge_list(&page->lru);
5696}
0a31bc97 5697
747db954
JW
5698/**
5699 * mem_cgroup_uncharge_list - uncharge a list of page
5700 * @page_list: list of pages to uncharge
5701 *
5702 * Uncharge a list of pages previously charged with
5703 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5704 */
5705void mem_cgroup_uncharge_list(struct list_head *page_list)
5706{
5707 if (mem_cgroup_disabled())
5708 return;
0a31bc97 5709
747db954
JW
5710 if (!list_empty(page_list))
5711 uncharge_list(page_list);
0a31bc97
JW
5712}
5713
5714/**
5715 * mem_cgroup_migrate - migrate a charge to another page
5716 * @oldpage: currently charged page
5717 * @newpage: page to transfer the charge to
f5e03a49 5718 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5719 *
5720 * Migrate the charge from @oldpage to @newpage.
5721 *
5722 * Both pages must be locked, @newpage->mapping must be set up.
5723 */
5724void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5725 bool lrucare)
5726{
29833315 5727 struct mem_cgroup *memcg;
0a31bc97
JW
5728 int isolated;
5729
5730 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5731 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5732 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5733 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5734 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5735 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5736 newpage);
0a31bc97
JW
5737
5738 if (mem_cgroup_disabled())
5739 return;
5740
5741 /* Page cache replacement: new page already charged? */
1306a85a 5742 if (newpage->mem_cgroup)
0a31bc97
JW
5743 return;
5744
7d5e3245
JW
5745 /*
5746 * Swapcache readahead pages can get migrated before being
5747 * charged, and migration from compaction can happen to an
5748 * uncharged page when the PFN walker finds a page that
5749 * reclaim just put back on the LRU but has not released yet.
5750 */
1306a85a 5751 memcg = oldpage->mem_cgroup;
29833315 5752 if (!memcg)
0a31bc97
JW
5753 return;
5754
0a31bc97
JW
5755 if (lrucare)
5756 lock_page_lru(oldpage, &isolated);
5757
1306a85a 5758 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5759
5760 if (lrucare)
5761 unlock_page_lru(oldpage, isolated);
5762
29833315 5763 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5764}
5765
2d11085e 5766/*
1081312f
MH
5767 * subsys_initcall() for memory controller.
5768 *
5769 * Some parts like hotcpu_notifier() have to be initialized from this context
5770 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5771 * everything that doesn't depend on a specific mem_cgroup structure should
5772 * be initialized from here.
2d11085e
MH
5773 */
5774static int __init mem_cgroup_init(void)
5775{
95a045f6
JW
5776 int cpu, node;
5777
2d11085e 5778 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5779
5780 for_each_possible_cpu(cpu)
5781 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5782 drain_local_stock);
5783
5784 for_each_node(node) {
5785 struct mem_cgroup_tree_per_node *rtpn;
5786 int zone;
5787
5788 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5789 node_online(node) ? node : NUMA_NO_NODE);
5790
5791 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5792 struct mem_cgroup_tree_per_zone *rtpz;
5793
5794 rtpz = &rtpn->rb_tree_per_zone[zone];
5795 rtpz->rb_root = RB_ROOT;
5796 spin_lock_init(&rtpz->lock);
5797 }
5798 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5799 }
5800
2d11085e
MH
5801 return 0;
5802}
5803subsys_initcall(mem_cgroup_init);
21afa38e
JW
5804
5805#ifdef CONFIG_MEMCG_SWAP
5806/**
5807 * mem_cgroup_swapout - transfer a memsw charge to swap
5808 * @page: page whose memsw charge to transfer
5809 * @entry: swap entry to move the charge to
5810 *
5811 * Transfer the memsw charge of @page to @entry.
5812 */
5813void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5814{
5815 struct mem_cgroup *memcg;
5816 unsigned short oldid;
5817
5818 VM_BUG_ON_PAGE(PageLRU(page), page);
5819 VM_BUG_ON_PAGE(page_count(page), page);
5820
5821 if (!do_swap_account)
5822 return;
5823
5824 memcg = page->mem_cgroup;
5825
5826 /* Readahead page, never charged */
5827 if (!memcg)
5828 return;
5829
5830 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5831 VM_BUG_ON_PAGE(oldid, page);
5832 mem_cgroup_swap_statistics(memcg, true);
5833
5834 page->mem_cgroup = NULL;
5835
5836 if (!mem_cgroup_is_root(memcg))
5837 page_counter_uncharge(&memcg->memory, 1);
5838
5839 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5840 VM_BUG_ON(!irqs_disabled());
5841
5842 mem_cgroup_charge_statistics(memcg, page, -1);
5843 memcg_check_events(memcg, page);
5844}
5845
5846/**
5847 * mem_cgroup_uncharge_swap - uncharge a swap entry
5848 * @entry: swap entry to uncharge
5849 *
5850 * Drop the memsw charge associated with @entry.
5851 */
5852void mem_cgroup_uncharge_swap(swp_entry_t entry)
5853{
5854 struct mem_cgroup *memcg;
5855 unsigned short id;
5856
5857 if (!do_swap_account)
5858 return;
5859
5860 id = swap_cgroup_record(entry, 0);
5861 rcu_read_lock();
5862 memcg = mem_cgroup_lookup(id);
5863 if (memcg) {
5864 if (!mem_cgroup_is_root(memcg))
5865 page_counter_uncharge(&memcg->memsw, 1);
5866 mem_cgroup_swap_statistics(memcg, false);
5867 css_put(&memcg->css);
5868 }
5869 rcu_read_unlock();
5870}
5871
5872/* for remember boot option*/
5873#ifdef CONFIG_MEMCG_SWAP_ENABLED
5874static int really_do_swap_account __initdata = 1;
5875#else
5876static int really_do_swap_account __initdata;
5877#endif
5878
5879static int __init enable_swap_account(char *s)
5880{
5881 if (!strcmp(s, "1"))
5882 really_do_swap_account = 1;
5883 else if (!strcmp(s, "0"))
5884 really_do_swap_account = 0;
5885 return 1;
5886}
5887__setup("swapaccount=", enable_swap_account);
5888
5889static struct cftype memsw_cgroup_files[] = {
5890 {
5891 .name = "memsw.usage_in_bytes",
5892 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5893 .read_u64 = mem_cgroup_read_u64,
5894 },
5895 {
5896 .name = "memsw.max_usage_in_bytes",
5897 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5898 .write = mem_cgroup_reset,
5899 .read_u64 = mem_cgroup_read_u64,
5900 },
5901 {
5902 .name = "memsw.limit_in_bytes",
5903 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5904 .write = mem_cgroup_write,
5905 .read_u64 = mem_cgroup_read_u64,
5906 },
5907 {
5908 .name = "memsw.failcnt",
5909 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5910 .write = mem_cgroup_reset,
5911 .read_u64 = mem_cgroup_read_u64,
5912 },
5913 { }, /* terminate */
5914};
5915
5916static int __init mem_cgroup_swap_init(void)
5917{
5918 if (!mem_cgroup_disabled() && really_do_swap_account) {
5919 do_swap_account = 1;
5920 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5921 memsw_cgroup_files));
5922 }
5923 return 0;
5924}
5925subsys_initcall(mem_cgroup_swap_init);
5926
5927#endif /* CONFIG_MEMCG_SWAP */