]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
mm: memcontrol: remove unnecessary PCG_MEM memory charge flag
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
3812c8c8 303 atomic_t oom_wakeups;
79dfdacc 304
1f4c025b 305 int swappiness;
3c11ecf4
KH
306 /* OOM-Killer disable */
307 int oom_kill_disable;
a7885eb8 308
2e72b634
KS
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds thresholds;
907860ed 314
2e72b634 315 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 316 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 317
9490ff27
KH
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
185efc0f 320
7dc74be0
DN
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
f894ffa8 325 unsigned long move_charge_at_immigrate;
619d094b
KH
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
312734c0
KH
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
d52aa412 332 /*
c62b1a3b 333 * percpu counter.
d52aa412 334 */
3a7951b4 335 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
d1a4c0b3 342
4bd2c1ee 343#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 344 struct cg_proto tcp_mem;
d1a4c0b3 345#endif
2633d7a0 346#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
2633d7a0 349 struct list_head memcg_slab_caches;
2633d7a0
GC
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352#endif
45cf7ebd
GC
353
354 int last_scanned_node;
355#if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359#endif
70ddf637 360
fba94807
TH
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
510fc4e1
GC
369/* internal only representation about the status of kmem accounting. */
370enum {
6de64beb 371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
510fc4e1
GC
372};
373
510fc4e1
GC
374#ifdef CONFIG_MEMCG_KMEM
375static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376{
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378}
7de37682
GC
379
380static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381{
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383}
384
510fc4e1
GC
385#endif
386
7dc74be0
DN
387/* Stuffs for move charges at task migration. */
388/*
ee5e8472
GC
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
391 */
392enum move_type {
4ffef5fe 393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
395 NR_MOVE_TYPE,
396};
397
4ffef5fe
DN
398/* "mc" and its members are protected by cgroup_mutex */
399static struct move_charge_struct {
b1dd693e 400 spinlock_t lock; /* for from, to */
4ffef5fe
DN
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
ee5e8472 403 unsigned long immigrate_flags;
4ffef5fe 404 unsigned long precharge;
854ffa8d 405 unsigned long moved_charge;
483c30b5 406 unsigned long moved_swap;
8033b97c
DN
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409} mc = {
2bd9bb20 410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412};
4ffef5fe 413
90254a65
DN
414static bool move_anon(void)
415{
ee5e8472 416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
417}
418
87946a72
DN
419static bool move_file(void)
420{
ee5e8472 421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
422}
423
4e416953
BS
424/*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
a0db00fc 428#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 429#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 430
217bc319
KH
431enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 433 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
436 NR_CHARGE_TYPE,
437};
438
8c7c6e34 439/* for encoding cft->private value on file */
86ae53e1
GC
440enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
510fc4e1 444 _KMEM,
86ae53e1
GC
445};
446
a0db00fc
KS
447#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 449#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
450/* Used for OOM nofiier */
451#define OOM_CONTROL (0)
8c7c6e34 452
0999821b
GC
453/*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458static DEFINE_MUTEX(memcg_create_mutex);
459
b2145145
WL
460struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461{
a7c6d554 462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
463}
464
70ddf637
AV
465/* Some nice accessors for the vmpressure. */
466struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467{
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471}
472
473struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474{
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476}
477
7ffc0edc
MH
478static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479{
480 return (memcg == root_mem_cgroup);
481}
482
4219b2da
LZ
483/*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487#define MEM_CGROUP_ID_MAX USHRT_MAX
488
34c00c31
LZ
489static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490{
15a4c835 491 return memcg->css.id;
34c00c31
LZ
492}
493
494static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495{
496 struct cgroup_subsys_state *css;
497
7d699ddb 498 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
499 return mem_cgroup_from_css(css);
500}
501
e1aab161 502/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 503#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 504
e1aab161
GC
505void sock_update_memcg(struct sock *sk)
506{
376be5ff 507 if (mem_cgroup_sockets_enabled) {
e1aab161 508 struct mem_cgroup *memcg;
3f134619 509 struct cg_proto *cg_proto;
e1aab161
GC
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
f3f511e1
GC
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 523 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
524 return;
525 }
526
e1aab161
GC
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
3f134619 529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 530 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
3f134619 533 sk->sk_cgrp = cg_proto;
e1aab161
GC
534 }
535 rcu_read_unlock();
536 }
537}
538EXPORT_SYMBOL(sock_update_memcg);
539
540void sock_release_memcg(struct sock *sk)
541{
376be5ff 542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
5347e5ae 546 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
547 }
548}
d1a4c0b3
GC
549
550struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551{
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
2e685cad 555 return &memcg->tcp_mem;
d1a4c0b3
GC
556}
557EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 558
3f134619
GC
559static void disarm_sock_keys(struct mem_cgroup *memcg)
560{
2e685cad 561 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564}
565#else
566static void disarm_sock_keys(struct mem_cgroup *memcg)
567{
568}
569#endif
570
a8964b9b 571#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
572/*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
55007d84
GC
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
585int memcg_limited_groups_array_size;
586
55007d84
GC
587/*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
b8627835 593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
597 * increase ours as well if it increases.
598 */
599#define MEMCG_CACHES_MIN_SIZE 4
b8627835 600#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 601
d7f25f8a
GC
602/*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
a8964b9b 608struct static_key memcg_kmem_enabled_key;
d7f25f8a 609EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 610
f3bb3043
VD
611static void memcg_free_cache_id(int id);
612
a8964b9b
GC
613static void disarm_kmem_keys(struct mem_cgroup *memcg)
614{
55007d84 615 if (memcg_kmem_is_active(memcg)) {
a8964b9b 616 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 617 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 618 }
bea207c8
GC
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
3e32cb2e 623 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
624}
625#else
626static void disarm_kmem_keys(struct mem_cgroup *memcg)
627{
628}
629#endif /* CONFIG_MEMCG_KMEM */
630
631static void disarm_static_keys(struct mem_cgroup *memcg)
632{
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635}
636
f64c3f54 637static struct mem_cgroup_per_zone *
e231875b 638mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 639{
e231875b
JZ
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
54f72fe0 643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
644}
645
c0ff4b85 646struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 647{
c0ff4b85 648 return &memcg->css;
d324236b
WF
649}
650
f64c3f54 651static struct mem_cgroup_per_zone *
e231875b 652mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 653{
97a6c37b
JW
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
f64c3f54 656
e231875b 657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
658}
659
bb4cc1a8
AM
660static struct mem_cgroup_tree_per_zone *
661soft_limit_tree_node_zone(int nid, int zid)
662{
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664}
665
666static struct mem_cgroup_tree_per_zone *
667soft_limit_tree_from_page(struct page *page)
668{
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673}
674
cf2c8127
JW
675static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 677 unsigned long new_usage_in_excess)
bb4cc1a8
AM
678{
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705}
706
cf2c8127
JW
707static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
709{
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714}
715
cf2c8127
JW
716static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 718{
0a31bc97
JW
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 722 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 723 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
724}
725
3e32cb2e
JW
726static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727{
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736}
bb4cc1a8
AM
737
738static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739{
3e32cb2e 740 unsigned long excess;
bb4cc1a8
AM
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 743
e231875b 744 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 750 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 751 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
0a31bc97
JW
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
760 /* if on-tree, remove it */
761 if (mz->on_tree)
cf2c8127 762 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
cf2c8127 767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 768 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
769 }
770 }
771}
772
773static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774{
bb4cc1a8 775 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
bb4cc1a8 778
e231875b
JZ
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 783 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
784 }
785 }
786}
787
788static struct mem_cgroup_per_zone *
789__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790{
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
cf2c8127 806 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 807 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 808 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
809 goto retry;
810done:
811 return mz;
812}
813
814static struct mem_cgroup_per_zone *
815mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816{
817 struct mem_cgroup_per_zone *mz;
818
0a31bc97 819 spin_lock_irq(&mctz->lock);
bb4cc1a8 820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 821 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
822 return mz;
823}
824
711d3d2c
KH
825/*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
c0ff4b85 844static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 845 enum mem_cgroup_stat_index idx)
c62b1a3b 846{
7a159cc9 847 long val = 0;
c62b1a3b 848 int cpu;
c62b1a3b 849
711d3d2c
KH
850 get_online_cpus();
851 for_each_online_cpu(cpu)
c0ff4b85 852 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 853#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
857#endif
858 put_online_cpus();
c62b1a3b
KH
859 return val;
860}
861
c0ff4b85 862static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
863 enum mem_cgroup_events_index idx)
864{
865 unsigned long val = 0;
866 int cpu;
867
9c567512 868 get_online_cpus();
e9f8974f 869 for_each_online_cpu(cpu)
c0ff4b85 870 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 871#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 875#endif
9c567512 876 put_online_cpus();
e9f8974f
JW
877 return val;
878}
879
c0ff4b85 880static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 881 struct page *page,
0a31bc97 882 int nr_pages)
d52aa412 883{
b2402857
KH
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
0a31bc97 888 if (PageAnon(page))
b2402857 889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 890 nr_pages);
d52aa412 891 else
b2402857 892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 893 nr_pages);
55e462b0 894
b070e65c
DR
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
e401f176
KH
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
c0ff4b85 901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 902 else {
c0ff4b85 903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
904 nr_pages = -nr_pages; /* for event */
905 }
e401f176 906
13114716 907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
908}
909
e231875b 910unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
911{
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916}
917
e231875b
JZ
918static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
bb2a0de9 921{
e231875b 922 unsigned long nr = 0;
889976db
YH
923 int zid;
924
e231875b 925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 926
e231875b
JZ
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
889976db 939}
bb2a0de9 940
c0ff4b85 941static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 942 unsigned int lru_mask)
6d12e2d8 943{
e231875b 944 unsigned long nr = 0;
889976db 945 int nid;
6d12e2d8 946
31aaea4a 947 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
d52aa412
KH
950}
951
f53d7ce3
JW
952static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
7a159cc9
JW
954{
955 unsigned long val, next;
956
13114716 957 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 958 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 959 /* from time_after() in jiffies.h */
f53d7ce3
JW
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
bb4cc1a8
AM
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
f53d7ce3
JW
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
7a159cc9 976 }
f53d7ce3 977 return false;
d2265e6f
KH
978}
979
980/*
981 * Check events in order.
982 *
983 */
c0ff4b85 984static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
985{
986 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 989 bool do_softlimit;
82b3f2a7 990 bool do_numainfo __maybe_unused;
f53d7ce3 991
bb4cc1a8
AM
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
994#if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997#endif
c0ff4b85 998 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
453a9bf3 1001#if MAX_NUMNODES > 1
f53d7ce3 1002 if (unlikely(do_numainfo))
c0ff4b85 1003 atomic_inc(&memcg->numainfo_events);
453a9bf3 1004#endif
0a31bc97 1005 }
d2265e6f
KH
1006}
1007
cf475ad2 1008struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1009{
31a78f23
BS
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
073219e9 1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1019}
1020
df381975 1021static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1022{
c0ff4b85 1023 struct mem_cgroup *memcg = NULL;
0b7f569e 1024
54595fe2
KH
1025 rcu_read_lock();
1026 do {
6f6acb00
MH
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
df381975 1033 memcg = root_mem_cgroup;
6f6acb00
MH
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
ec903c0c 1039 } while (!css_tryget_online(&memcg->css));
54595fe2 1040 rcu_read_unlock();
c0ff4b85 1041 return memcg;
54595fe2
KH
1042}
1043
5660048c
JW
1044/**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
694fbc0f 1061struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1062 struct mem_cgroup *prev,
694fbc0f 1063 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1064{
5ac8fb31
JW
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1067 struct mem_cgroup *memcg = NULL;
5ac8fb31 1068 struct mem_cgroup *pos = NULL;
711d3d2c 1069
694fbc0f
AM
1070 if (mem_cgroup_disabled())
1071 return NULL;
5660048c 1072
9f3a0d09
JW
1073 if (!root)
1074 root = root_mem_cgroup;
7d74b06f 1075
9f3a0d09 1076 if (prev && !reclaim)
5ac8fb31 1077 pos = prev;
14067bb3 1078
9f3a0d09
JW
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
5ac8fb31 1081 goto out;
694fbc0f 1082 return root;
9f3a0d09 1083 }
14067bb3 1084
542f85f9 1085 rcu_read_lock();
5f578161 1086
5ac8fb31
JW
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
527a5ec9 1121 }
7d74b06f 1122
5ac8fb31
JW
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
14067bb3 1129
5ac8fb31
JW
1130 if (css == &root->css)
1131 break;
542f85f9 1132
b2052564 1133 if (css_tryget(css)) {
5ac8fb31
JW
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
1141
1142 css_put(css);
527a5ec9 1143 }
9f3a0d09 1144
5ac8fb31
JW
1145 memcg = NULL;
1146 }
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
9f3a0d09 1167 }
5ac8fb31 1168
542f85f9
MH
1169out_unlock:
1170 rcu_read_unlock();
5ac8fb31 1171out:
c40046f3
MH
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
9f3a0d09 1175 return memcg;
14067bb3 1176}
7d74b06f 1177
5660048c
JW
1178/**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
9f3a0d09
JW
1185{
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190}
7d74b06f 1191
9f3a0d09
JW
1192/*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1199 iter != NULL; \
527a5ec9 1200 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1201
9f3a0d09 1202#define for_each_mem_cgroup(iter) \
527a5ec9 1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1204 iter != NULL; \
527a5ec9 1205 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1206
68ae564b 1207void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1208{
c0ff4b85 1209 struct mem_cgroup *memcg;
456f998e 1210
456f998e 1211 rcu_read_lock();
c0ff4b85
R
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
456f998e
YH
1214 goto out;
1215
1216 switch (idx) {
456f998e 1217 case PGFAULT:
0e574a93
JW
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1222 break;
1223 default:
1224 BUG();
1225 }
1226out:
1227 rcu_read_unlock();
1228}
68ae564b 1229EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1230
925b7673
JW
1231/**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
fa9add64 1234 * @memcg: memcg of the wanted lruvec
925b7673
JW
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242{
1243 struct mem_cgroup_per_zone *mz;
bea8c150 1244 struct lruvec *lruvec;
925b7673 1245
bea8c150
HD
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
925b7673 1250
e231875b 1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1252 lruvec = &mz->lruvec;
1253out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
925b7673
JW
1262}
1263
925b7673 1264/**
dfe0e773 1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1266 * @page: the page
fa9add64 1267 * @zone: zone of the page
dfe0e773
JW
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1272 */
fa9add64 1273struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1274{
08e552c6 1275 struct mem_cgroup_per_zone *mz;
925b7673
JW
1276 struct mem_cgroup *memcg;
1277 struct page_cgroup *pc;
bea8c150 1278 struct lruvec *lruvec;
6d12e2d8 1279
bea8c150
HD
1280 if (mem_cgroup_disabled()) {
1281 lruvec = &zone->lruvec;
1282 goto out;
1283 }
925b7673 1284
08e552c6 1285 pc = lookup_page_cgroup(page);
38c5d72f 1286 memcg = pc->mem_cgroup;
7512102c
HD
1287
1288 /*
dfe0e773
JW
1289 * Swapcache readahead pages are added to the LRU - and
1290 * possibly migrated - before they are charged. Ensure
1291 * pc->mem_cgroup is sane.
7512102c 1292 */
fa9add64 1293 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1294 pc->mem_cgroup = memcg = root_mem_cgroup;
1295
e231875b 1296 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1297 lruvec = &mz->lruvec;
1298out:
1299 /*
1300 * Since a node can be onlined after the mem_cgroup was created,
1301 * we have to be prepared to initialize lruvec->zone here;
1302 * and if offlined then reonlined, we need to reinitialize it.
1303 */
1304 if (unlikely(lruvec->zone != zone))
1305 lruvec->zone = zone;
1306 return lruvec;
08e552c6 1307}
b69408e8 1308
925b7673 1309/**
fa9add64
HD
1310 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1311 * @lruvec: mem_cgroup per zone lru vector
1312 * @lru: index of lru list the page is sitting on
1313 * @nr_pages: positive when adding or negative when removing
925b7673 1314 *
fa9add64
HD
1315 * This function must be called when a page is added to or removed from an
1316 * lru list.
3f58a829 1317 */
fa9add64
HD
1318void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1319 int nr_pages)
3f58a829
MK
1320{
1321 struct mem_cgroup_per_zone *mz;
fa9add64 1322 unsigned long *lru_size;
3f58a829
MK
1323
1324 if (mem_cgroup_disabled())
1325 return;
1326
fa9add64
HD
1327 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1328 lru_size = mz->lru_size + lru;
1329 *lru_size += nr_pages;
1330 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1331}
544122e5 1332
3e92041d 1333/*
c0ff4b85 1334 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1335 * hierarchy subtree
1336 */
c3ac9a8a
JW
1337bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1338 struct mem_cgroup *memcg)
3e92041d 1339{
91c63734
JW
1340 if (root_memcg == memcg)
1341 return true;
3a981f48 1342 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1343 return false;
b47f77b5 1344 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1345}
1346
1347static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1348 struct mem_cgroup *memcg)
1349{
1350 bool ret;
1351
91c63734 1352 rcu_read_lock();
c3ac9a8a 1353 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1354 rcu_read_unlock();
1355 return ret;
3e92041d
MH
1356}
1357
ffbdccf5
DR
1358bool task_in_mem_cgroup(struct task_struct *task,
1359 const struct mem_cgroup *memcg)
4c4a2214 1360{
0b7f569e 1361 struct mem_cgroup *curr = NULL;
158e0a2d 1362 struct task_struct *p;
ffbdccf5 1363 bool ret;
4c4a2214 1364
158e0a2d 1365 p = find_lock_task_mm(task);
de077d22 1366 if (p) {
df381975 1367 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1368 task_unlock(p);
1369 } else {
1370 /*
1371 * All threads may have already detached their mm's, but the oom
1372 * killer still needs to detect if they have already been oom
1373 * killed to prevent needlessly killing additional tasks.
1374 */
ffbdccf5 1375 rcu_read_lock();
de077d22
DR
1376 curr = mem_cgroup_from_task(task);
1377 if (curr)
1378 css_get(&curr->css);
ffbdccf5 1379 rcu_read_unlock();
de077d22 1380 }
d31f56db 1381 /*
c0ff4b85 1382 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1383 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1384 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1385 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1386 */
c0ff4b85 1387 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1388 css_put(&curr->css);
4c4a2214
DR
1389 return ret;
1390}
1391
c56d5c7d 1392int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1393{
9b272977 1394 unsigned long inactive_ratio;
14797e23 1395 unsigned long inactive;
9b272977 1396 unsigned long active;
c772be93 1397 unsigned long gb;
14797e23 1398
4d7dcca2
HD
1399 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1400 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1401
c772be93
KM
1402 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1403 if (gb)
1404 inactive_ratio = int_sqrt(10 * gb);
1405 else
1406 inactive_ratio = 1;
1407
9b272977 1408 return inactive * inactive_ratio < active;
14797e23
KM
1409}
1410
3e32cb2e 1411#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1412 container_of(counter, struct mem_cgroup, member)
1413
19942822 1414/**
9d11ea9f 1415 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1416 * @memcg: the memory cgroup
19942822 1417 *
9d11ea9f 1418 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1419 * pages.
19942822 1420 */
c0ff4b85 1421static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1422{
3e32cb2e
JW
1423 unsigned long margin = 0;
1424 unsigned long count;
1425 unsigned long limit;
9d11ea9f 1426
3e32cb2e
JW
1427 count = page_counter_read(&memcg->memory);
1428 limit = ACCESS_ONCE(memcg->memory.limit);
1429 if (count < limit)
1430 margin = limit - count;
1431
1432 if (do_swap_account) {
1433 count = page_counter_read(&memcg->memsw);
1434 limit = ACCESS_ONCE(memcg->memsw.limit);
1435 if (count <= limit)
1436 margin = min(margin, limit - count);
1437 }
1438
1439 return margin;
19942822
JW
1440}
1441
1f4c025b 1442int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1443{
a7885eb8 1444 /* root ? */
14208b0e 1445 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1446 return vm_swappiness;
1447
bf1ff263 1448 return memcg->swappiness;
a7885eb8
KM
1449}
1450
619d094b
KH
1451/*
1452 * memcg->moving_account is used for checking possibility that some thread is
1453 * calling move_account(). When a thread on CPU-A starts moving pages under
1454 * a memcg, other threads should check memcg->moving_account under
1455 * rcu_read_lock(), like this:
1456 *
1457 * CPU-A CPU-B
1458 * rcu_read_lock()
1459 * memcg->moving_account+1 if (memcg->mocing_account)
1460 * take heavy locks.
1461 * synchronize_rcu() update something.
1462 * rcu_read_unlock()
1463 * start move here.
1464 */
4331f7d3 1465
c0ff4b85 1466static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1467{
619d094b 1468 atomic_inc(&memcg->moving_account);
32047e2a
KH
1469 synchronize_rcu();
1470}
1471
c0ff4b85 1472static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1473{
619d094b
KH
1474 /*
1475 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1476 * We check NULL in callee rather than caller.
1477 */
d7365e78 1478 if (memcg)
619d094b 1479 atomic_dec(&memcg->moving_account);
32047e2a 1480}
619d094b 1481
32047e2a 1482/*
bdcbb659 1483 * A routine for checking "mem" is under move_account() or not.
32047e2a 1484 *
bdcbb659
QH
1485 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1486 * moving cgroups. This is for waiting at high-memory pressure
1487 * caused by "move".
32047e2a 1488 */
c0ff4b85 1489static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1490{
2bd9bb20
KH
1491 struct mem_cgroup *from;
1492 struct mem_cgroup *to;
4b534334 1493 bool ret = false;
2bd9bb20
KH
1494 /*
1495 * Unlike task_move routines, we access mc.to, mc.from not under
1496 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1497 */
1498 spin_lock(&mc.lock);
1499 from = mc.from;
1500 to = mc.to;
1501 if (!from)
1502 goto unlock;
3e92041d 1503
c0ff4b85
R
1504 ret = mem_cgroup_same_or_subtree(memcg, from)
1505 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1506unlock:
1507 spin_unlock(&mc.lock);
4b534334
KH
1508 return ret;
1509}
1510
c0ff4b85 1511static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1512{
1513 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1514 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1515 DEFINE_WAIT(wait);
1516 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1517 /* moving charge context might have finished. */
1518 if (mc.moving_task)
1519 schedule();
1520 finish_wait(&mc.waitq, &wait);
1521 return true;
1522 }
1523 }
1524 return false;
1525}
1526
312734c0
KH
1527/*
1528 * Take this lock when
1529 * - a code tries to modify page's memcg while it's USED.
1530 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1531 */
1532static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1533 unsigned long *flags)
1534{
1535 spin_lock_irqsave(&memcg->move_lock, *flags);
1536}
1537
1538static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1539 unsigned long *flags)
1540{
1541 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1542}
1543
58cf188e 1544#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1545/**
58cf188e 1546 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1547 * @memcg: The memory cgroup that went over limit
1548 * @p: Task that is going to be killed
1549 *
1550 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1551 * enabled
1552 */
1553void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1554{
e61734c5 1555 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1556 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1557 struct mem_cgroup *iter;
1558 unsigned int i;
e222432b 1559
58cf188e 1560 if (!p)
e222432b
BS
1561 return;
1562
08088cb9 1563 mutex_lock(&oom_info_lock);
e222432b
BS
1564 rcu_read_lock();
1565
e61734c5
TH
1566 pr_info("Task in ");
1567 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1568 pr_info(" killed as a result of limit of ");
1569 pr_cont_cgroup_path(memcg->css.cgroup);
1570 pr_info("\n");
e222432b 1571
e222432b
BS
1572 rcu_read_unlock();
1573
3e32cb2e
JW
1574 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1575 K((u64)page_counter_read(&memcg->memory)),
1576 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1577 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1578 K((u64)page_counter_read(&memcg->memsw)),
1579 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1580 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1581 K((u64)page_counter_read(&memcg->kmem)),
1582 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1583
1584 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1585 pr_info("Memory cgroup stats for ");
1586 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1587 pr_cont(":");
1588
1589 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1590 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1591 continue;
1592 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1593 K(mem_cgroup_read_stat(iter, i)));
1594 }
1595
1596 for (i = 0; i < NR_LRU_LISTS; i++)
1597 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1598 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1599
1600 pr_cont("\n");
1601 }
08088cb9 1602 mutex_unlock(&oom_info_lock);
e222432b
BS
1603}
1604
81d39c20
KH
1605/*
1606 * This function returns the number of memcg under hierarchy tree. Returns
1607 * 1(self count) if no children.
1608 */
c0ff4b85 1609static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1610{
1611 int num = 0;
7d74b06f
KH
1612 struct mem_cgroup *iter;
1613
c0ff4b85 1614 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1615 num++;
81d39c20
KH
1616 return num;
1617}
1618
a63d83f4
DR
1619/*
1620 * Return the memory (and swap, if configured) limit for a memcg.
1621 */
3e32cb2e 1622static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1623{
3e32cb2e 1624 unsigned long limit;
a63d83f4 1625
3e32cb2e 1626 limit = memcg->memory.limit;
9a5a8f19 1627 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1628 unsigned long memsw_limit;
9a5a8f19 1629
3e32cb2e
JW
1630 memsw_limit = memcg->memsw.limit;
1631 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1632 }
9a5a8f19 1633 return limit;
a63d83f4
DR
1634}
1635
19965460
DR
1636static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1637 int order)
9cbb78bb
DR
1638{
1639 struct mem_cgroup *iter;
1640 unsigned long chosen_points = 0;
1641 unsigned long totalpages;
1642 unsigned int points = 0;
1643 struct task_struct *chosen = NULL;
1644
876aafbf 1645 /*
465adcf1
DR
1646 * If current has a pending SIGKILL or is exiting, then automatically
1647 * select it. The goal is to allow it to allocate so that it may
1648 * quickly exit and free its memory.
876aafbf 1649 */
465adcf1 1650 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1651 set_thread_flag(TIF_MEMDIE);
1652 return;
1653 }
1654
1655 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1656 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1657 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1658 struct css_task_iter it;
9cbb78bb
DR
1659 struct task_struct *task;
1660
72ec7029
TH
1661 css_task_iter_start(&iter->css, &it);
1662 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1663 switch (oom_scan_process_thread(task, totalpages, NULL,
1664 false)) {
1665 case OOM_SCAN_SELECT:
1666 if (chosen)
1667 put_task_struct(chosen);
1668 chosen = task;
1669 chosen_points = ULONG_MAX;
1670 get_task_struct(chosen);
1671 /* fall through */
1672 case OOM_SCAN_CONTINUE:
1673 continue;
1674 case OOM_SCAN_ABORT:
72ec7029 1675 css_task_iter_end(&it);
9cbb78bb
DR
1676 mem_cgroup_iter_break(memcg, iter);
1677 if (chosen)
1678 put_task_struct(chosen);
1679 return;
1680 case OOM_SCAN_OK:
1681 break;
1682 };
1683 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1684 if (!points || points < chosen_points)
1685 continue;
1686 /* Prefer thread group leaders for display purposes */
1687 if (points == chosen_points &&
1688 thread_group_leader(chosen))
1689 continue;
1690
1691 if (chosen)
1692 put_task_struct(chosen);
1693 chosen = task;
1694 chosen_points = points;
1695 get_task_struct(chosen);
9cbb78bb 1696 }
72ec7029 1697 css_task_iter_end(&it);
9cbb78bb
DR
1698 }
1699
1700 if (!chosen)
1701 return;
1702 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1703 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1704 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1705}
1706
4d0c066d
KH
1707/**
1708 * test_mem_cgroup_node_reclaimable
dad7557e 1709 * @memcg: the target memcg
4d0c066d
KH
1710 * @nid: the node ID to be checked.
1711 * @noswap : specify true here if the user wants flle only information.
1712 *
1713 * This function returns whether the specified memcg contains any
1714 * reclaimable pages on a node. Returns true if there are any reclaimable
1715 * pages in the node.
1716 */
c0ff4b85 1717static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1718 int nid, bool noswap)
1719{
c0ff4b85 1720 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1721 return true;
1722 if (noswap || !total_swap_pages)
1723 return false;
c0ff4b85 1724 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1725 return true;
1726 return false;
1727
1728}
bb4cc1a8 1729#if MAX_NUMNODES > 1
889976db
YH
1730
1731/*
1732 * Always updating the nodemask is not very good - even if we have an empty
1733 * list or the wrong list here, we can start from some node and traverse all
1734 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1735 *
1736 */
c0ff4b85 1737static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1738{
1739 int nid;
453a9bf3
KH
1740 /*
1741 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1742 * pagein/pageout changes since the last update.
1743 */
c0ff4b85 1744 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1745 return;
c0ff4b85 1746 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1747 return;
1748
889976db 1749 /* make a nodemask where this memcg uses memory from */
31aaea4a 1750 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1751
31aaea4a 1752 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1753
c0ff4b85
R
1754 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1755 node_clear(nid, memcg->scan_nodes);
889976db 1756 }
453a9bf3 1757
c0ff4b85
R
1758 atomic_set(&memcg->numainfo_events, 0);
1759 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1760}
1761
1762/*
1763 * Selecting a node where we start reclaim from. Because what we need is just
1764 * reducing usage counter, start from anywhere is O,K. Considering
1765 * memory reclaim from current node, there are pros. and cons.
1766 *
1767 * Freeing memory from current node means freeing memory from a node which
1768 * we'll use or we've used. So, it may make LRU bad. And if several threads
1769 * hit limits, it will see a contention on a node. But freeing from remote
1770 * node means more costs for memory reclaim because of memory latency.
1771 *
1772 * Now, we use round-robin. Better algorithm is welcomed.
1773 */
c0ff4b85 1774int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1775{
1776 int node;
1777
c0ff4b85
R
1778 mem_cgroup_may_update_nodemask(memcg);
1779 node = memcg->last_scanned_node;
889976db 1780
c0ff4b85 1781 node = next_node(node, memcg->scan_nodes);
889976db 1782 if (node == MAX_NUMNODES)
c0ff4b85 1783 node = first_node(memcg->scan_nodes);
889976db
YH
1784 /*
1785 * We call this when we hit limit, not when pages are added to LRU.
1786 * No LRU may hold pages because all pages are UNEVICTABLE or
1787 * memcg is too small and all pages are not on LRU. In that case,
1788 * we use curret node.
1789 */
1790 if (unlikely(node == MAX_NUMNODES))
1791 node = numa_node_id();
1792
c0ff4b85 1793 memcg->last_scanned_node = node;
889976db
YH
1794 return node;
1795}
1796
bb4cc1a8
AM
1797/*
1798 * Check all nodes whether it contains reclaimable pages or not.
1799 * For quick scan, we make use of scan_nodes. This will allow us to skip
1800 * unused nodes. But scan_nodes is lazily updated and may not cotain
1801 * enough new information. We need to do double check.
1802 */
1803static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1804{
1805 int nid;
1806
1807 /*
1808 * quick check...making use of scan_node.
1809 * We can skip unused nodes.
1810 */
1811 if (!nodes_empty(memcg->scan_nodes)) {
1812 for (nid = first_node(memcg->scan_nodes);
1813 nid < MAX_NUMNODES;
1814 nid = next_node(nid, memcg->scan_nodes)) {
1815
1816 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1817 return true;
1818 }
1819 }
1820 /*
1821 * Check rest of nodes.
1822 */
1823 for_each_node_state(nid, N_MEMORY) {
1824 if (node_isset(nid, memcg->scan_nodes))
1825 continue;
1826 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1827 return true;
1828 }
1829 return false;
1830}
1831
889976db 1832#else
c0ff4b85 1833int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1834{
1835 return 0;
1836}
4d0c066d 1837
bb4cc1a8
AM
1838static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1839{
1840 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1841}
889976db
YH
1842#endif
1843
0608f43d
AM
1844static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1845 struct zone *zone,
1846 gfp_t gfp_mask,
1847 unsigned long *total_scanned)
1848{
1849 struct mem_cgroup *victim = NULL;
1850 int total = 0;
1851 int loop = 0;
1852 unsigned long excess;
1853 unsigned long nr_scanned;
1854 struct mem_cgroup_reclaim_cookie reclaim = {
1855 .zone = zone,
1856 .priority = 0,
1857 };
1858
3e32cb2e 1859 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1860
1861 while (1) {
1862 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1863 if (!victim) {
1864 loop++;
1865 if (loop >= 2) {
1866 /*
1867 * If we have not been able to reclaim
1868 * anything, it might because there are
1869 * no reclaimable pages under this hierarchy
1870 */
1871 if (!total)
1872 break;
1873 /*
1874 * We want to do more targeted reclaim.
1875 * excess >> 2 is not to excessive so as to
1876 * reclaim too much, nor too less that we keep
1877 * coming back to reclaim from this cgroup
1878 */
1879 if (total >= (excess >> 2) ||
1880 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1881 break;
1882 }
1883 continue;
1884 }
1885 if (!mem_cgroup_reclaimable(victim, false))
1886 continue;
1887 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1888 zone, &nr_scanned);
1889 *total_scanned += nr_scanned;
3e32cb2e 1890 if (!soft_limit_excess(root_memcg))
0608f43d 1891 break;
6d61ef40 1892 }
0608f43d
AM
1893 mem_cgroup_iter_break(root_memcg, victim);
1894 return total;
6d61ef40
BS
1895}
1896
0056f4e6
JW
1897#ifdef CONFIG_LOCKDEP
1898static struct lockdep_map memcg_oom_lock_dep_map = {
1899 .name = "memcg_oom_lock",
1900};
1901#endif
1902
fb2a6fc5
JW
1903static DEFINE_SPINLOCK(memcg_oom_lock);
1904
867578cb
KH
1905/*
1906 * Check OOM-Killer is already running under our hierarchy.
1907 * If someone is running, return false.
1908 */
fb2a6fc5 1909static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1910{
79dfdacc 1911 struct mem_cgroup *iter, *failed = NULL;
a636b327 1912
fb2a6fc5
JW
1913 spin_lock(&memcg_oom_lock);
1914
9f3a0d09 1915 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1916 if (iter->oom_lock) {
79dfdacc
MH
1917 /*
1918 * this subtree of our hierarchy is already locked
1919 * so we cannot give a lock.
1920 */
79dfdacc 1921 failed = iter;
9f3a0d09
JW
1922 mem_cgroup_iter_break(memcg, iter);
1923 break;
23751be0
JW
1924 } else
1925 iter->oom_lock = true;
7d74b06f 1926 }
867578cb 1927
fb2a6fc5
JW
1928 if (failed) {
1929 /*
1930 * OK, we failed to lock the whole subtree so we have
1931 * to clean up what we set up to the failing subtree
1932 */
1933 for_each_mem_cgroup_tree(iter, memcg) {
1934 if (iter == failed) {
1935 mem_cgroup_iter_break(memcg, iter);
1936 break;
1937 }
1938 iter->oom_lock = false;
79dfdacc 1939 }
0056f4e6
JW
1940 } else
1941 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1942
1943 spin_unlock(&memcg_oom_lock);
1944
1945 return !failed;
a636b327 1946}
0b7f569e 1947
fb2a6fc5 1948static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1949{
7d74b06f
KH
1950 struct mem_cgroup *iter;
1951
fb2a6fc5 1952 spin_lock(&memcg_oom_lock);
0056f4e6 1953 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1954 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1955 iter->oom_lock = false;
fb2a6fc5 1956 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1957}
1958
c0ff4b85 1959static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1960{
1961 struct mem_cgroup *iter;
1962
c0ff4b85 1963 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1964 atomic_inc(&iter->under_oom);
1965}
1966
c0ff4b85 1967static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1968{
1969 struct mem_cgroup *iter;
1970
867578cb
KH
1971 /*
1972 * When a new child is created while the hierarchy is under oom,
1973 * mem_cgroup_oom_lock() may not be called. We have to use
1974 * atomic_add_unless() here.
1975 */
c0ff4b85 1976 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1977 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1978}
1979
867578cb
KH
1980static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1981
dc98df5a 1982struct oom_wait_info {
d79154bb 1983 struct mem_cgroup *memcg;
dc98df5a
KH
1984 wait_queue_t wait;
1985};
1986
1987static int memcg_oom_wake_function(wait_queue_t *wait,
1988 unsigned mode, int sync, void *arg)
1989{
d79154bb
HD
1990 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1991 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1992 struct oom_wait_info *oom_wait_info;
1993
1994 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1995 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1996
dc98df5a 1997 /*
d79154bb 1998 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1999 * Then we can use css_is_ancestor without taking care of RCU.
2000 */
c0ff4b85
R
2001 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2002 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2003 return 0;
dc98df5a
KH
2004 return autoremove_wake_function(wait, mode, sync, arg);
2005}
2006
c0ff4b85 2007static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2008{
3812c8c8 2009 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2010 /* for filtering, pass "memcg" as argument. */
2011 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2012}
2013
c0ff4b85 2014static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2015{
c0ff4b85
R
2016 if (memcg && atomic_read(&memcg->under_oom))
2017 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2018}
2019
3812c8c8 2020static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2021{
3812c8c8
JW
2022 if (!current->memcg_oom.may_oom)
2023 return;
867578cb 2024 /*
49426420
JW
2025 * We are in the middle of the charge context here, so we
2026 * don't want to block when potentially sitting on a callstack
2027 * that holds all kinds of filesystem and mm locks.
2028 *
2029 * Also, the caller may handle a failed allocation gracefully
2030 * (like optional page cache readahead) and so an OOM killer
2031 * invocation might not even be necessary.
2032 *
2033 * That's why we don't do anything here except remember the
2034 * OOM context and then deal with it at the end of the page
2035 * fault when the stack is unwound, the locks are released,
2036 * and when we know whether the fault was overall successful.
867578cb 2037 */
49426420
JW
2038 css_get(&memcg->css);
2039 current->memcg_oom.memcg = memcg;
2040 current->memcg_oom.gfp_mask = mask;
2041 current->memcg_oom.order = order;
3812c8c8
JW
2042}
2043
2044/**
2045 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2046 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2047 *
49426420
JW
2048 * This has to be called at the end of a page fault if the memcg OOM
2049 * handler was enabled.
3812c8c8 2050 *
49426420 2051 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2052 * sleep on a waitqueue until the userspace task resolves the
2053 * situation. Sleeping directly in the charge context with all kinds
2054 * of locks held is not a good idea, instead we remember an OOM state
2055 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2056 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2057 *
2058 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2059 * completed, %false otherwise.
3812c8c8 2060 */
49426420 2061bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2062{
49426420 2063 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2064 struct oom_wait_info owait;
49426420 2065 bool locked;
3812c8c8
JW
2066
2067 /* OOM is global, do not handle */
3812c8c8 2068 if (!memcg)
49426420 2069 return false;
3812c8c8 2070
49426420
JW
2071 if (!handle)
2072 goto cleanup;
3812c8c8
JW
2073
2074 owait.memcg = memcg;
2075 owait.wait.flags = 0;
2076 owait.wait.func = memcg_oom_wake_function;
2077 owait.wait.private = current;
2078 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2079
3812c8c8 2080 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2081 mem_cgroup_mark_under_oom(memcg);
2082
2083 locked = mem_cgroup_oom_trylock(memcg);
2084
2085 if (locked)
2086 mem_cgroup_oom_notify(memcg);
2087
2088 if (locked && !memcg->oom_kill_disable) {
2089 mem_cgroup_unmark_under_oom(memcg);
2090 finish_wait(&memcg_oom_waitq, &owait.wait);
2091 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2092 current->memcg_oom.order);
2093 } else {
3812c8c8 2094 schedule();
49426420
JW
2095 mem_cgroup_unmark_under_oom(memcg);
2096 finish_wait(&memcg_oom_waitq, &owait.wait);
2097 }
2098
2099 if (locked) {
fb2a6fc5
JW
2100 mem_cgroup_oom_unlock(memcg);
2101 /*
2102 * There is no guarantee that an OOM-lock contender
2103 * sees the wakeups triggered by the OOM kill
2104 * uncharges. Wake any sleepers explicitely.
2105 */
2106 memcg_oom_recover(memcg);
2107 }
49426420
JW
2108cleanup:
2109 current->memcg_oom.memcg = NULL;
3812c8c8 2110 css_put(&memcg->css);
867578cb 2111 return true;
0b7f569e
KH
2112}
2113
d7365e78
JW
2114/**
2115 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2116 * @page: page that is going to change accounted state
2117 * @locked: &memcg->move_lock slowpath was taken
2118 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 2119 *
d7365e78
JW
2120 * This function must mark the beginning of an accounted page state
2121 * change to prevent double accounting when the page is concurrently
2122 * being moved to another memcg:
32047e2a 2123 *
d7365e78
JW
2124 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2125 * if (TestClearPageState(page))
2126 * mem_cgroup_update_page_stat(memcg, state, -1);
2127 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 2128 *
d7365e78
JW
2129 * The RCU lock is held throughout the transaction. The fast path can
2130 * get away without acquiring the memcg->move_lock (@locked is false)
2131 * because page moving starts with an RCU grace period.
32047e2a 2132 *
d7365e78
JW
2133 * The RCU lock also protects the memcg from being freed when the page
2134 * state that is going to change is the only thing preventing the page
2135 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2136 * which allows migration to go ahead and uncharge the page before the
2137 * account transaction might be complete.
d69b042f 2138 */
d7365e78
JW
2139struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2140 bool *locked,
2141 unsigned long *flags)
89c06bd5
KH
2142{
2143 struct mem_cgroup *memcg;
2144 struct page_cgroup *pc;
2145
d7365e78
JW
2146 rcu_read_lock();
2147
2148 if (mem_cgroup_disabled())
2149 return NULL;
2150
89c06bd5
KH
2151 pc = lookup_page_cgroup(page);
2152again:
2153 memcg = pc->mem_cgroup;
2154 if (unlikely(!memcg || !PageCgroupUsed(pc)))
d7365e78
JW
2155 return NULL;
2156
2157 *locked = false;
bdcbb659 2158 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2159 return memcg;
89c06bd5
KH
2160
2161 move_lock_mem_cgroup(memcg, flags);
2162 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2163 move_unlock_mem_cgroup(memcg, flags);
2164 goto again;
2165 }
2166 *locked = true;
d7365e78
JW
2167
2168 return memcg;
89c06bd5
KH
2169}
2170
d7365e78
JW
2171/**
2172 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2173 * @memcg: the memcg that was accounted against
2174 * @locked: value received from mem_cgroup_begin_page_stat()
2175 * @flags: value received from mem_cgroup_begin_page_stat()
2176 */
2177void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2178 unsigned long flags)
89c06bd5 2179{
d7365e78
JW
2180 if (memcg && locked)
2181 move_unlock_mem_cgroup(memcg, &flags);
89c06bd5 2182
d7365e78 2183 rcu_read_unlock();
89c06bd5
KH
2184}
2185
d7365e78
JW
2186/**
2187 * mem_cgroup_update_page_stat - update page state statistics
2188 * @memcg: memcg to account against
2189 * @idx: page state item to account
2190 * @val: number of pages (positive or negative)
2191 *
2192 * See mem_cgroup_begin_page_stat() for locking requirements.
2193 */
2194void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2195 enum mem_cgroup_stat_index idx, int val)
d69b042f 2196{
658b72c5 2197 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2198
d7365e78
JW
2199 if (memcg)
2200 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2201}
26174efd 2202
cdec2e42
KH
2203/*
2204 * size of first charge trial. "32" comes from vmscan.c's magic value.
2205 * TODO: maybe necessary to use big numbers in big irons.
2206 */
7ec99d62 2207#define CHARGE_BATCH 32U
cdec2e42
KH
2208struct memcg_stock_pcp {
2209 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2210 unsigned int nr_pages;
cdec2e42 2211 struct work_struct work;
26fe6168 2212 unsigned long flags;
a0db00fc 2213#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2214};
2215static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2216static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2217
a0956d54
SS
2218/**
2219 * consume_stock: Try to consume stocked charge on this cpu.
2220 * @memcg: memcg to consume from.
2221 * @nr_pages: how many pages to charge.
2222 *
2223 * The charges will only happen if @memcg matches the current cpu's memcg
2224 * stock, and at least @nr_pages are available in that stock. Failure to
2225 * service an allocation will refill the stock.
2226 *
2227 * returns true if successful, false otherwise.
cdec2e42 2228 */
a0956d54 2229static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2230{
2231 struct memcg_stock_pcp *stock;
3e32cb2e 2232 bool ret = false;
cdec2e42 2233
a0956d54 2234 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2235 return ret;
a0956d54 2236
cdec2e42 2237 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2238 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2239 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2240 ret = true;
2241 }
cdec2e42
KH
2242 put_cpu_var(memcg_stock);
2243 return ret;
2244}
2245
2246/*
3e32cb2e 2247 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2248 */
2249static void drain_stock(struct memcg_stock_pcp *stock)
2250{
2251 struct mem_cgroup *old = stock->cached;
2252
11c9ea4e 2253 if (stock->nr_pages) {
3e32cb2e 2254 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2255 if (do_swap_account)
3e32cb2e 2256 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2257 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2258 stock->nr_pages = 0;
cdec2e42
KH
2259 }
2260 stock->cached = NULL;
cdec2e42
KH
2261}
2262
2263/*
2264 * This must be called under preempt disabled or must be called by
2265 * a thread which is pinned to local cpu.
2266 */
2267static void drain_local_stock(struct work_struct *dummy)
2268{
7c8e0181 2269 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2270 drain_stock(stock);
26fe6168 2271 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2272}
2273
e4777496
MH
2274static void __init memcg_stock_init(void)
2275{
2276 int cpu;
2277
2278 for_each_possible_cpu(cpu) {
2279 struct memcg_stock_pcp *stock =
2280 &per_cpu(memcg_stock, cpu);
2281 INIT_WORK(&stock->work, drain_local_stock);
2282 }
2283}
2284
cdec2e42 2285/*
3e32cb2e 2286 * Cache charges(val) to local per_cpu area.
320cc51d 2287 * This will be consumed by consume_stock() function, later.
cdec2e42 2288 */
c0ff4b85 2289static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2290{
2291 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2292
c0ff4b85 2293 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2294 drain_stock(stock);
c0ff4b85 2295 stock->cached = memcg;
cdec2e42 2296 }
11c9ea4e 2297 stock->nr_pages += nr_pages;
cdec2e42
KH
2298 put_cpu_var(memcg_stock);
2299}
2300
2301/*
c0ff4b85 2302 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2303 * of the hierarchy under it.
cdec2e42 2304 */
6d3d6aa2 2305static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2306{
26fe6168 2307 int cpu, curcpu;
d38144b7 2308
6d3d6aa2
JW
2309 /* If someone's already draining, avoid adding running more workers. */
2310 if (!mutex_trylock(&percpu_charge_mutex))
2311 return;
cdec2e42 2312 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2313 get_online_cpus();
5af12d0e 2314 curcpu = get_cpu();
cdec2e42
KH
2315 for_each_online_cpu(cpu) {
2316 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2317 struct mem_cgroup *memcg;
26fe6168 2318
c0ff4b85
R
2319 memcg = stock->cached;
2320 if (!memcg || !stock->nr_pages)
26fe6168 2321 continue;
c0ff4b85 2322 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2323 continue;
d1a05b69
MH
2324 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2325 if (cpu == curcpu)
2326 drain_local_stock(&stock->work);
2327 else
2328 schedule_work_on(cpu, &stock->work);
2329 }
cdec2e42 2330 }
5af12d0e 2331 put_cpu();
f894ffa8 2332 put_online_cpus();
9f50fad6 2333 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2334}
2335
711d3d2c
KH
2336/*
2337 * This function drains percpu counter value from DEAD cpu and
2338 * move it to local cpu. Note that this function can be preempted.
2339 */
c0ff4b85 2340static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2341{
2342 int i;
2343
c0ff4b85 2344 spin_lock(&memcg->pcp_counter_lock);
6104621d 2345 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2346 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2347
c0ff4b85
R
2348 per_cpu(memcg->stat->count[i], cpu) = 0;
2349 memcg->nocpu_base.count[i] += x;
711d3d2c 2350 }
e9f8974f 2351 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2352 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2353
c0ff4b85
R
2354 per_cpu(memcg->stat->events[i], cpu) = 0;
2355 memcg->nocpu_base.events[i] += x;
e9f8974f 2356 }
c0ff4b85 2357 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2358}
2359
0db0628d 2360static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2361 unsigned long action,
2362 void *hcpu)
2363{
2364 int cpu = (unsigned long)hcpu;
2365 struct memcg_stock_pcp *stock;
711d3d2c 2366 struct mem_cgroup *iter;
cdec2e42 2367
619d094b 2368 if (action == CPU_ONLINE)
1489ebad 2369 return NOTIFY_OK;
1489ebad 2370
d833049b 2371 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2372 return NOTIFY_OK;
711d3d2c 2373
9f3a0d09 2374 for_each_mem_cgroup(iter)
711d3d2c
KH
2375 mem_cgroup_drain_pcp_counter(iter, cpu);
2376
cdec2e42
KH
2377 stock = &per_cpu(memcg_stock, cpu);
2378 drain_stock(stock);
2379 return NOTIFY_OK;
2380}
2381
00501b53
JW
2382static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2383 unsigned int nr_pages)
8a9f3ccd 2384{
7ec99d62 2385 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2386 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2387 struct mem_cgroup *mem_over_limit;
3e32cb2e 2388 struct page_counter *counter;
6539cc05 2389 unsigned long nr_reclaimed;
b70a2a21
JW
2390 bool may_swap = true;
2391 bool drained = false;
05b84301 2392 int ret = 0;
a636b327 2393
ce00a967
JW
2394 if (mem_cgroup_is_root(memcg))
2395 goto done;
6539cc05 2396retry:
b6b6cc72
MH
2397 if (consume_stock(memcg, nr_pages))
2398 goto done;
8a9f3ccd 2399
3fbe7244 2400 if (!do_swap_account ||
3e32cb2e
JW
2401 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2402 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2403 goto done_restock;
3fbe7244 2404 if (do_swap_account)
3e32cb2e
JW
2405 page_counter_uncharge(&memcg->memsw, batch);
2406 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2407 } else {
3e32cb2e 2408 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2409 may_swap = false;
3fbe7244 2410 }
7a81b88c 2411
6539cc05
JW
2412 if (batch > nr_pages) {
2413 batch = nr_pages;
2414 goto retry;
2415 }
6d61ef40 2416
06b078fc
JW
2417 /*
2418 * Unlike in global OOM situations, memcg is not in a physical
2419 * memory shortage. Allow dying and OOM-killed tasks to
2420 * bypass the last charges so that they can exit quickly and
2421 * free their memory.
2422 */
2423 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2424 fatal_signal_pending(current) ||
2425 current->flags & PF_EXITING))
2426 goto bypass;
2427
2428 if (unlikely(task_in_memcg_oom(current)))
2429 goto nomem;
2430
6539cc05
JW
2431 if (!(gfp_mask & __GFP_WAIT))
2432 goto nomem;
4b534334 2433
b70a2a21
JW
2434 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2435 gfp_mask, may_swap);
6539cc05 2436
61e02c74 2437 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2438 goto retry;
28c34c29 2439
b70a2a21 2440 if (!drained) {
6d3d6aa2 2441 drain_all_stock(mem_over_limit);
b70a2a21
JW
2442 drained = true;
2443 goto retry;
2444 }
2445
28c34c29
JW
2446 if (gfp_mask & __GFP_NORETRY)
2447 goto nomem;
6539cc05
JW
2448 /*
2449 * Even though the limit is exceeded at this point, reclaim
2450 * may have been able to free some pages. Retry the charge
2451 * before killing the task.
2452 *
2453 * Only for regular pages, though: huge pages are rather
2454 * unlikely to succeed so close to the limit, and we fall back
2455 * to regular pages anyway in case of failure.
2456 */
61e02c74 2457 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2458 goto retry;
2459 /*
2460 * At task move, charge accounts can be doubly counted. So, it's
2461 * better to wait until the end of task_move if something is going on.
2462 */
2463 if (mem_cgroup_wait_acct_move(mem_over_limit))
2464 goto retry;
2465
9b130619
JW
2466 if (nr_retries--)
2467 goto retry;
2468
06b078fc
JW
2469 if (gfp_mask & __GFP_NOFAIL)
2470 goto bypass;
2471
6539cc05
JW
2472 if (fatal_signal_pending(current))
2473 goto bypass;
2474
61e02c74 2475 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2476nomem:
6d1fdc48 2477 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2478 return -ENOMEM;
867578cb 2479bypass:
ce00a967 2480 return -EINTR;
6539cc05
JW
2481
2482done_restock:
e8ea14cc 2483 css_get_many(&memcg->css, batch);
6539cc05
JW
2484 if (batch > nr_pages)
2485 refill_stock(memcg, batch - nr_pages);
2486done:
05b84301 2487 return ret;
7a81b88c 2488}
8a9f3ccd 2489
00501b53 2490static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2491{
ce00a967
JW
2492 if (mem_cgroup_is_root(memcg))
2493 return;
2494
3e32cb2e 2495 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2496 if (do_swap_account)
3e32cb2e 2497 page_counter_uncharge(&memcg->memsw, nr_pages);
e8ea14cc
JW
2498
2499 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2500}
2501
a3b2d692
KH
2502/*
2503 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2504 * rcu_read_lock(). The caller is responsible for calling
2505 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2506 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2507 */
2508static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2509{
a3b2d692
KH
2510 /* ID 0 is unused ID */
2511 if (!id)
2512 return NULL;
34c00c31 2513 return mem_cgroup_from_id(id);
a3b2d692
KH
2514}
2515
0a31bc97
JW
2516/*
2517 * try_get_mem_cgroup_from_page - look up page's memcg association
2518 * @page: the page
2519 *
2520 * Look up, get a css reference, and return the memcg that owns @page.
2521 *
2522 * The page must be locked to prevent racing with swap-in and page
2523 * cache charges. If coming from an unlocked page table, the caller
2524 * must ensure the page is on the LRU or this can race with charging.
2525 */
e42d9d5d 2526struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2527{
c0ff4b85 2528 struct mem_cgroup *memcg = NULL;
3c776e64 2529 struct page_cgroup *pc;
a3b2d692 2530 unsigned short id;
b5a84319
KH
2531 swp_entry_t ent;
2532
309381fe 2533 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2534
3c776e64 2535 pc = lookup_page_cgroup(page);
a3b2d692 2536 if (PageCgroupUsed(pc)) {
c0ff4b85 2537 memcg = pc->mem_cgroup;
ec903c0c 2538 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2539 memcg = NULL;
e42d9d5d 2540 } else if (PageSwapCache(page)) {
3c776e64 2541 ent.val = page_private(page);
9fb4b7cc 2542 id = lookup_swap_cgroup_id(ent);
a3b2d692 2543 rcu_read_lock();
c0ff4b85 2544 memcg = mem_cgroup_lookup(id);
ec903c0c 2545 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2546 memcg = NULL;
a3b2d692 2547 rcu_read_unlock();
3c776e64 2548 }
c0ff4b85 2549 return memcg;
b5a84319
KH
2550}
2551
0a31bc97
JW
2552static void lock_page_lru(struct page *page, int *isolated)
2553{
2554 struct zone *zone = page_zone(page);
2555
2556 spin_lock_irq(&zone->lru_lock);
2557 if (PageLRU(page)) {
2558 struct lruvec *lruvec;
2559
2560 lruvec = mem_cgroup_page_lruvec(page, zone);
2561 ClearPageLRU(page);
2562 del_page_from_lru_list(page, lruvec, page_lru(page));
2563 *isolated = 1;
2564 } else
2565 *isolated = 0;
2566}
2567
2568static void unlock_page_lru(struct page *page, int isolated)
2569{
2570 struct zone *zone = page_zone(page);
2571
2572 if (isolated) {
2573 struct lruvec *lruvec;
2574
2575 lruvec = mem_cgroup_page_lruvec(page, zone);
2576 VM_BUG_ON_PAGE(PageLRU(page), page);
2577 SetPageLRU(page);
2578 add_page_to_lru_list(page, lruvec, page_lru(page));
2579 }
2580 spin_unlock_irq(&zone->lru_lock);
2581}
2582
00501b53 2583static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2584 bool lrucare)
7a81b88c 2585{
ce587e65 2586 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2587 int isolated;
9ce70c02 2588
309381fe 2589 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2590 /*
2591 * we don't need page_cgroup_lock about tail pages, becase they are not
2592 * accessed by any other context at this point.
2593 */
9ce70c02
HD
2594
2595 /*
2596 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2597 * may already be on some other mem_cgroup's LRU. Take care of it.
2598 */
0a31bc97
JW
2599 if (lrucare)
2600 lock_page_lru(page, &isolated);
9ce70c02 2601
0a31bc97
JW
2602 /*
2603 * Nobody should be changing or seriously looking at
2604 * pc->mem_cgroup and pc->flags at this point:
2605 *
2606 * - the page is uncharged
2607 *
2608 * - the page is off-LRU
2609 *
2610 * - an anonymous fault has exclusive page access, except for
2611 * a locked page table
2612 *
2613 * - a page cache insertion, a swapin fault, or a migration
2614 * have the page locked
2615 */
c0ff4b85 2616 pc->mem_cgroup = memcg;
f4aaa8b4 2617 pc->flags = PCG_USED;
9ce70c02 2618
0a31bc97
JW
2619 if (lrucare)
2620 unlock_page_lru(page, isolated);
7a81b88c 2621}
66e1707b 2622
7ae1e1d0 2623#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2624/*
2625 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2626 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2627 */
2628static DEFINE_MUTEX(memcg_slab_mutex);
2629
1f458cbf
GC
2630/*
2631 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2632 * in the memcg_cache_params struct.
2633 */
2634static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2635{
2636 struct kmem_cache *cachep;
2637
2638 VM_BUG_ON(p->is_root_cache);
2639 cachep = p->root_cache;
7a67d7ab 2640 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2641}
2642
749c5415 2643#ifdef CONFIG_SLABINFO
2da8ca82 2644static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2645{
2da8ca82 2646 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2647 struct memcg_cache_params *params;
2648
cf2b8fbf 2649 if (!memcg_kmem_is_active(memcg))
749c5415
GC
2650 return -EIO;
2651
2652 print_slabinfo_header(m);
2653
bd673145 2654 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2655 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2656 cache_show(memcg_params_to_cache(params), m);
bd673145 2657 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2658
2659 return 0;
2660}
2661#endif
2662
3e32cb2e
JW
2663static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2664 unsigned long nr_pages)
7ae1e1d0 2665{
3e32cb2e 2666 struct page_counter *counter;
7ae1e1d0 2667 int ret = 0;
7ae1e1d0 2668
3e32cb2e
JW
2669 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2670 if (ret < 0)
7ae1e1d0
GC
2671 return ret;
2672
3e32cb2e 2673 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2674 if (ret == -EINTR) {
2675 /*
00501b53
JW
2676 * try_charge() chose to bypass to root due to OOM kill or
2677 * fatal signal. Since our only options are to either fail
2678 * the allocation or charge it to this cgroup, do it as a
2679 * temporary condition. But we can't fail. From a kmem/slab
2680 * perspective, the cache has already been selected, by
2681 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2682 * our minds.
2683 *
2684 * This condition will only trigger if the task entered
00501b53
JW
2685 * memcg_charge_kmem in a sane state, but was OOM-killed
2686 * during try_charge() above. Tasks that were already dying
2687 * when the allocation triggers should have been already
7ae1e1d0
GC
2688 * directed to the root cgroup in memcontrol.h
2689 */
3e32cb2e 2690 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2691 if (do_swap_account)
3e32cb2e 2692 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2693 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2694 ret = 0;
2695 } else if (ret)
3e32cb2e 2696 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2697
2698 return ret;
2699}
2700
3e32cb2e
JW
2701static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2702 unsigned long nr_pages)
7ae1e1d0 2703{
3e32cb2e 2704 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2705 if (do_swap_account)
3e32cb2e 2706 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2707
64f21993 2708 page_counter_uncharge(&memcg->kmem, nr_pages);
e8ea14cc
JW
2709
2710 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2711}
2712
2633d7a0
GC
2713/*
2714 * helper for acessing a memcg's index. It will be used as an index in the
2715 * child cache array in kmem_cache, and also to derive its name. This function
2716 * will return -1 when this is not a kmem-limited memcg.
2717 */
2718int memcg_cache_id(struct mem_cgroup *memcg)
2719{
2720 return memcg ? memcg->kmemcg_id : -1;
2721}
2722
f3bb3043 2723static int memcg_alloc_cache_id(void)
55007d84 2724{
f3bb3043
VD
2725 int id, size;
2726 int err;
2727
2728 id = ida_simple_get(&kmem_limited_groups,
2729 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2730 if (id < 0)
2731 return id;
55007d84 2732
f3bb3043
VD
2733 if (id < memcg_limited_groups_array_size)
2734 return id;
2735
2736 /*
2737 * There's no space for the new id in memcg_caches arrays,
2738 * so we have to grow them.
2739 */
2740
2741 size = 2 * (id + 1);
55007d84
GC
2742 if (size < MEMCG_CACHES_MIN_SIZE)
2743 size = MEMCG_CACHES_MIN_SIZE;
2744 else if (size > MEMCG_CACHES_MAX_SIZE)
2745 size = MEMCG_CACHES_MAX_SIZE;
2746
f3bb3043
VD
2747 mutex_lock(&memcg_slab_mutex);
2748 err = memcg_update_all_caches(size);
2749 mutex_unlock(&memcg_slab_mutex);
2750
2751 if (err) {
2752 ida_simple_remove(&kmem_limited_groups, id);
2753 return err;
2754 }
2755 return id;
2756}
2757
2758static void memcg_free_cache_id(int id)
2759{
2760 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2761}
2762
2763/*
2764 * We should update the current array size iff all caches updates succeed. This
2765 * can only be done from the slab side. The slab mutex needs to be held when
2766 * calling this.
2767 */
2768void memcg_update_array_size(int num)
2769{
f3bb3043 2770 memcg_limited_groups_array_size = num;
55007d84
GC
2771}
2772
776ed0f0
VD
2773static void memcg_register_cache(struct mem_cgroup *memcg,
2774 struct kmem_cache *root_cache)
2633d7a0 2775{
93f39eea
VD
2776 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2777 memcg_slab_mutex */
bd673145 2778 struct kmem_cache *cachep;
d7f25f8a
GC
2779 int id;
2780
bd673145
VD
2781 lockdep_assert_held(&memcg_slab_mutex);
2782
2783 id = memcg_cache_id(memcg);
2784
2785 /*
2786 * Since per-memcg caches are created asynchronously on first
2787 * allocation (see memcg_kmem_get_cache()), several threads can try to
2788 * create the same cache, but only one of them may succeed.
2789 */
2790 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2791 return;
2792
073ee1c6 2793 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2794 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2795 /*
bd673145
VD
2796 * If we could not create a memcg cache, do not complain, because
2797 * that's not critical at all as we can always proceed with the root
2798 * cache.
2edefe11 2799 */
bd673145
VD
2800 if (!cachep)
2801 return;
2edefe11 2802
33a690c4 2803 css_get(&memcg->css);
bd673145 2804 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2805
d7f25f8a 2806 /*
959c8963
VD
2807 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2808 * barrier here to ensure nobody will see the kmem_cache partially
2809 * initialized.
d7f25f8a 2810 */
959c8963
VD
2811 smp_wmb();
2812
bd673145
VD
2813 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2814 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2815}
d7f25f8a 2816
776ed0f0 2817static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2818{
bd673145 2819 struct kmem_cache *root_cache;
1aa13254
VD
2820 struct mem_cgroup *memcg;
2821 int id;
2822
bd673145 2823 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2824
bd673145 2825 BUG_ON(is_root_cache(cachep));
2edefe11 2826
bd673145
VD
2827 root_cache = cachep->memcg_params->root_cache;
2828 memcg = cachep->memcg_params->memcg;
96403da2 2829 id = memcg_cache_id(memcg);
d7f25f8a 2830
bd673145
VD
2831 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2832 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2833
bd673145
VD
2834 list_del(&cachep->memcg_params->list);
2835
2836 kmem_cache_destroy(cachep);
33a690c4
VD
2837
2838 /* drop the reference taken in memcg_register_cache */
2839 css_put(&memcg->css);
2633d7a0
GC
2840}
2841
0e9d92f2
GC
2842/*
2843 * During the creation a new cache, we need to disable our accounting mechanism
2844 * altogether. This is true even if we are not creating, but rather just
2845 * enqueing new caches to be created.
2846 *
2847 * This is because that process will trigger allocations; some visible, like
2848 * explicit kmallocs to auxiliary data structures, name strings and internal
2849 * cache structures; some well concealed, like INIT_WORK() that can allocate
2850 * objects during debug.
2851 *
2852 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2853 * to it. This may not be a bounded recursion: since the first cache creation
2854 * failed to complete (waiting on the allocation), we'll just try to create the
2855 * cache again, failing at the same point.
2856 *
2857 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2858 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2859 * inside the following two functions.
2860 */
2861static inline void memcg_stop_kmem_account(void)
2862{
2863 VM_BUG_ON(!current->mm);
2864 current->memcg_kmem_skip_account++;
2865}
2866
2867static inline void memcg_resume_kmem_account(void)
2868{
2869 VM_BUG_ON(!current->mm);
2870 current->memcg_kmem_skip_account--;
2871}
2872
776ed0f0 2873int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2874{
2875 struct kmem_cache *c;
b8529907 2876 int i, failed = 0;
7cf27982 2877
bd673145 2878 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2879 for_each_memcg_cache_index(i) {
2880 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2881 if (!c)
2882 continue;
2883
776ed0f0 2884 memcg_unregister_cache(c);
b8529907
VD
2885
2886 if (cache_from_memcg_idx(s, i))
2887 failed++;
7cf27982 2888 }
bd673145 2889 mutex_unlock(&memcg_slab_mutex);
b8529907 2890 return failed;
7cf27982
GC
2891}
2892
776ed0f0 2893static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2894{
2895 struct kmem_cache *cachep;
bd673145 2896 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2897
2898 if (!memcg_kmem_is_active(memcg))
2899 return;
2900
bd673145
VD
2901 mutex_lock(&memcg_slab_mutex);
2902 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2903 cachep = memcg_params_to_cache(params);
bd673145
VD
2904 kmem_cache_shrink(cachep);
2905 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 2906 memcg_unregister_cache(cachep);
1f458cbf 2907 }
bd673145 2908 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2909}
2910
776ed0f0 2911struct memcg_register_cache_work {
5722d094
VD
2912 struct mem_cgroup *memcg;
2913 struct kmem_cache *cachep;
2914 struct work_struct work;
2915};
2916
776ed0f0 2917static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2918{
776ed0f0
VD
2919 struct memcg_register_cache_work *cw =
2920 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2921 struct mem_cgroup *memcg = cw->memcg;
2922 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2923
bd673145 2924 mutex_lock(&memcg_slab_mutex);
776ed0f0 2925 memcg_register_cache(memcg, cachep);
bd673145
VD
2926 mutex_unlock(&memcg_slab_mutex);
2927
5722d094 2928 css_put(&memcg->css);
d7f25f8a
GC
2929 kfree(cw);
2930}
2931
2932/*
2933 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2934 */
776ed0f0
VD
2935static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2936 struct kmem_cache *cachep)
d7f25f8a 2937{
776ed0f0 2938 struct memcg_register_cache_work *cw;
d7f25f8a 2939
776ed0f0 2940 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
2941 if (cw == NULL) {
2942 css_put(&memcg->css);
d7f25f8a
GC
2943 return;
2944 }
2945
2946 cw->memcg = memcg;
2947 cw->cachep = cachep;
2948
776ed0f0 2949 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
2950 schedule_work(&cw->work);
2951}
2952
776ed0f0
VD
2953static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2954 struct kmem_cache *cachep)
0e9d92f2
GC
2955{
2956 /*
2957 * We need to stop accounting when we kmalloc, because if the
2958 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 2959 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
2960 *
2961 * However, it is better to enclose the whole function. Depending on
2962 * the debugging options enabled, INIT_WORK(), for instance, can
2963 * trigger an allocation. This too, will make us recurse. Because at
2964 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2965 * the safest choice is to do it like this, wrapping the whole function.
2966 */
2967 memcg_stop_kmem_account();
776ed0f0 2968 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
2969 memcg_resume_kmem_account();
2970}
c67a8a68
VD
2971
2972int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2973{
3e32cb2e 2974 unsigned int nr_pages = 1 << order;
c67a8a68
VD
2975 int res;
2976
3e32cb2e 2977 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 2978 if (!res)
3e32cb2e 2979 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2980 return res;
2981}
2982
2983void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2984{
3e32cb2e
JW
2985 unsigned int nr_pages = 1 << order;
2986
2987 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2988 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2989}
2990
d7f25f8a
GC
2991/*
2992 * Return the kmem_cache we're supposed to use for a slab allocation.
2993 * We try to use the current memcg's version of the cache.
2994 *
2995 * If the cache does not exist yet, if we are the first user of it,
2996 * we either create it immediately, if possible, or create it asynchronously
2997 * in a workqueue.
2998 * In the latter case, we will let the current allocation go through with
2999 * the original cache.
3000 *
3001 * Can't be called in interrupt context or from kernel threads.
3002 * This function needs to be called with rcu_read_lock() held.
3003 */
3004struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3005 gfp_t gfp)
3006{
3007 struct mem_cgroup *memcg;
959c8963 3008 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3009
3010 VM_BUG_ON(!cachep->memcg_params);
3011 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3012
0e9d92f2
GC
3013 if (!current->mm || current->memcg_kmem_skip_account)
3014 return cachep;
3015
d7f25f8a
GC
3016 rcu_read_lock();
3017 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 3018
cf2b8fbf 3019 if (!memcg_kmem_is_active(memcg))
ca0dde97 3020 goto out;
d7f25f8a 3021
959c8963
VD
3022 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3023 if (likely(memcg_cachep)) {
3024 cachep = memcg_cachep;
ca0dde97 3025 goto out;
d7f25f8a
GC
3026 }
3027
ca0dde97 3028 /* The corresponding put will be done in the workqueue. */
ec903c0c 3029 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3030 goto out;
3031 rcu_read_unlock();
3032
3033 /*
3034 * If we are in a safe context (can wait, and not in interrupt
3035 * context), we could be be predictable and return right away.
3036 * This would guarantee that the allocation being performed
3037 * already belongs in the new cache.
3038 *
3039 * However, there are some clashes that can arrive from locking.
3040 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3041 * memcg_create_kmem_cache, this means no further allocation
3042 * could happen with the slab_mutex held. So it's better to
3043 * defer everything.
ca0dde97 3044 */
776ed0f0 3045 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3046 return cachep;
3047out:
3048 rcu_read_unlock();
3049 return cachep;
d7f25f8a 3050}
d7f25f8a 3051
7ae1e1d0
GC
3052/*
3053 * We need to verify if the allocation against current->mm->owner's memcg is
3054 * possible for the given order. But the page is not allocated yet, so we'll
3055 * need a further commit step to do the final arrangements.
3056 *
3057 * It is possible for the task to switch cgroups in this mean time, so at
3058 * commit time, we can't rely on task conversion any longer. We'll then use
3059 * the handle argument to return to the caller which cgroup we should commit
3060 * against. We could also return the memcg directly and avoid the pointer
3061 * passing, but a boolean return value gives better semantics considering
3062 * the compiled-out case as well.
3063 *
3064 * Returning true means the allocation is possible.
3065 */
3066bool
3067__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3068{
3069 struct mem_cgroup *memcg;
3070 int ret;
3071
3072 *_memcg = NULL;
6d42c232
GC
3073
3074 /*
3075 * Disabling accounting is only relevant for some specific memcg
3076 * internal allocations. Therefore we would initially not have such
52383431
VD
3077 * check here, since direct calls to the page allocator that are
3078 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3079 * outside memcg core. We are mostly concerned with cache allocations,
3080 * and by having this test at memcg_kmem_get_cache, we are already able
3081 * to relay the allocation to the root cache and bypass the memcg cache
3082 * altogether.
6d42c232
GC
3083 *
3084 * There is one exception, though: the SLUB allocator does not create
3085 * large order caches, but rather service large kmallocs directly from
3086 * the page allocator. Therefore, the following sequence when backed by
3087 * the SLUB allocator:
3088 *
f894ffa8
AM
3089 * memcg_stop_kmem_account();
3090 * kmalloc(<large_number>)
3091 * memcg_resume_kmem_account();
6d42c232
GC
3092 *
3093 * would effectively ignore the fact that we should skip accounting,
3094 * since it will drive us directly to this function without passing
3095 * through the cache selector memcg_kmem_get_cache. Such large
3096 * allocations are extremely rare but can happen, for instance, for the
3097 * cache arrays. We bring this test here.
3098 */
3099 if (!current->mm || current->memcg_kmem_skip_account)
3100 return true;
3101
df381975 3102 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 3103
cf2b8fbf 3104 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
3105 css_put(&memcg->css);
3106 return true;
3107 }
3108
3e32cb2e 3109 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
3110 if (!ret)
3111 *_memcg = memcg;
7ae1e1d0
GC
3112
3113 css_put(&memcg->css);
3114 return (ret == 0);
3115}
3116
3117void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3118 int order)
3119{
3120 struct page_cgroup *pc;
3121
3122 VM_BUG_ON(mem_cgroup_is_root(memcg));
3123
3124 /* The page allocation failed. Revert */
3125 if (!page) {
3e32cb2e 3126 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
3127 return;
3128 }
a840cda6
JW
3129 /*
3130 * The page is freshly allocated and not visible to any
3131 * outside callers yet. Set up pc non-atomically.
3132 */
7ae1e1d0 3133 pc = lookup_page_cgroup(page);
7ae1e1d0 3134 pc->mem_cgroup = memcg;
a840cda6 3135 pc->flags = PCG_USED;
7ae1e1d0
GC
3136}
3137
3138void __memcg_kmem_uncharge_pages(struct page *page, int order)
3139{
3140 struct mem_cgroup *memcg = NULL;
3141 struct page_cgroup *pc;
3142
3143
3144 pc = lookup_page_cgroup(page);
7ae1e1d0
GC
3145 if (!PageCgroupUsed(pc))
3146 return;
3147
a840cda6
JW
3148 memcg = pc->mem_cgroup;
3149 pc->flags = 0;
7ae1e1d0
GC
3150
3151 /*
3152 * We trust that only if there is a memcg associated with the page, it
3153 * is a valid allocation
3154 */
3155 if (!memcg)
3156 return;
3157
309381fe 3158 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3e32cb2e 3159 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0 3160}
1f458cbf 3161#else
776ed0f0 3162static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3163{
3164}
7ae1e1d0
GC
3165#endif /* CONFIG_MEMCG_KMEM */
3166
ca3e0214
KH
3167#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3168
ca3e0214
KH
3169/*
3170 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3171 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3172 * charge/uncharge will be never happen and move_account() is done under
3173 * compound_lock(), so we don't have to take care of races.
ca3e0214 3174 */
e94c8a9c 3175void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3176{
b9982f8d 3177 struct page_cgroup *head_pc;
e94c8a9c 3178 struct page_cgroup *pc;
b070e65c 3179 struct mem_cgroup *memcg;
e94c8a9c 3180 int i;
ca3e0214 3181
3d37c4a9
KH
3182 if (mem_cgroup_disabled())
3183 return;
b070e65c 3184
b9982f8d
MH
3185 head_pc = lookup_page_cgroup(head);
3186
b070e65c 3187 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3188 for (i = 1; i < HPAGE_PMD_NR; i++) {
3189 pc = head_pc + i;
b070e65c 3190 pc->mem_cgroup = memcg;
0a31bc97 3191 pc->flags = head_pc->flags;
e94c8a9c 3192 }
b070e65c
DR
3193 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3194 HPAGE_PMD_NR);
ca3e0214 3195}
12d27107 3196#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3197
f817ed48 3198/**
de3638d9 3199 * mem_cgroup_move_account - move account of the page
5564e88b 3200 * @page: the page
7ec99d62 3201 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3202 * @pc: page_cgroup of the page.
3203 * @from: mem_cgroup which the page is moved from.
3204 * @to: mem_cgroup which the page is moved to. @from != @to.
3205 *
3206 * The caller must confirm following.
08e552c6 3207 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3208 * - compound_lock is held when nr_pages > 1
f817ed48 3209 *
2f3479b1
KH
3210 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3211 * from old cgroup.
f817ed48 3212 */
7ec99d62
JW
3213static int mem_cgroup_move_account(struct page *page,
3214 unsigned int nr_pages,
3215 struct page_cgroup *pc,
3216 struct mem_cgroup *from,
2f3479b1 3217 struct mem_cgroup *to)
f817ed48 3218{
de3638d9
JW
3219 unsigned long flags;
3220 int ret;
987eba66 3221
f817ed48 3222 VM_BUG_ON(from == to);
309381fe 3223 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3224 /*
3225 * The page is isolated from LRU. So, collapse function
3226 * will not handle this page. But page splitting can happen.
3227 * Do this check under compound_page_lock(). The caller should
3228 * hold it.
3229 */
3230 ret = -EBUSY;
7ec99d62 3231 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3232 goto out;
3233
0a31bc97
JW
3234 /*
3235 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3236 * of its source page while we change it: page migration takes
3237 * both pages off the LRU, but page cache replacement doesn't.
3238 */
3239 if (!trylock_page(page))
3240 goto out;
de3638d9
JW
3241
3242 ret = -EINVAL;
3243 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
0a31bc97 3244 goto out_unlock;
de3638d9 3245
312734c0 3246 move_lock_mem_cgroup(from, &flags);
f817ed48 3247
0a31bc97 3248 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3249 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3250 nr_pages);
3251 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3252 nr_pages);
3253 }
3ea67d06 3254
59d1d256
JW
3255 if (PageWriteback(page)) {
3256 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3257 nr_pages);
3258 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3259 nr_pages);
3260 }
3ea67d06 3261
0a31bc97
JW
3262 /*
3263 * It is safe to change pc->mem_cgroup here because the page
3264 * is referenced, charged, and isolated - we can't race with
3265 * uncharging, charging, migration, or LRU putback.
3266 */
d69b042f 3267
854ffa8d 3268 /* caller should have done css_get */
08e552c6 3269 pc->mem_cgroup = to;
312734c0 3270 move_unlock_mem_cgroup(from, &flags);
de3638d9 3271 ret = 0;
0a31bc97
JW
3272
3273 local_irq_disable();
3274 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3275 memcg_check_events(to, page);
0a31bc97 3276 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3277 memcg_check_events(from, page);
0a31bc97
JW
3278 local_irq_enable();
3279out_unlock:
3280 unlock_page(page);
de3638d9 3281out:
f817ed48
KH
3282 return ret;
3283}
3284
c255a458 3285#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3286static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3287 bool charge)
d13d1443 3288{
0a31bc97
JW
3289 int val = (charge) ? 1 : -1;
3290 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3291}
02491447
DN
3292
3293/**
3294 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3295 * @entry: swap entry to be moved
3296 * @from: mem_cgroup which the entry is moved from
3297 * @to: mem_cgroup which the entry is moved to
3298 *
3299 * It succeeds only when the swap_cgroup's record for this entry is the same
3300 * as the mem_cgroup's id of @from.
3301 *
3302 * Returns 0 on success, -EINVAL on failure.
3303 *
3e32cb2e 3304 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3305 * both res and memsw, and called css_get().
3306 */
3307static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3308 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3309{
3310 unsigned short old_id, new_id;
3311
34c00c31
LZ
3312 old_id = mem_cgroup_id(from);
3313 new_id = mem_cgroup_id(to);
02491447
DN
3314
3315 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3316 mem_cgroup_swap_statistics(from, false);
483c30b5 3317 mem_cgroup_swap_statistics(to, true);
02491447 3318 /*
483c30b5 3319 * This function is only called from task migration context now.
3e32cb2e 3320 * It postpones page_counter and refcount handling till the end
483c30b5 3321 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3322 * improvement. But we cannot postpone css_get(to) because if
3323 * the process that has been moved to @to does swap-in, the
3324 * refcount of @to might be decreased to 0.
3325 *
3326 * We are in attach() phase, so the cgroup is guaranteed to be
3327 * alive, so we can just call css_get().
02491447 3328 */
4050377b 3329 css_get(&to->css);
02491447
DN
3330 return 0;
3331 }
3332 return -EINVAL;
3333}
3334#else
3335static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3336 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3337{
3338 return -EINVAL;
3339}
8c7c6e34 3340#endif
d13d1443 3341
f212ad7c
DN
3342#ifdef CONFIG_DEBUG_VM
3343static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3344{
3345 struct page_cgroup *pc;
3346
3347 pc = lookup_page_cgroup(page);
cfa44946
JW
3348 /*
3349 * Can be NULL while feeding pages into the page allocator for
3350 * the first time, i.e. during boot or memory hotplug;
3351 * or when mem_cgroup_disabled().
3352 */
f212ad7c
DN
3353 if (likely(pc) && PageCgroupUsed(pc))
3354 return pc;
3355 return NULL;
3356}
3357
3358bool mem_cgroup_bad_page_check(struct page *page)
3359{
3360 if (mem_cgroup_disabled())
3361 return false;
3362
3363 return lookup_page_cgroup_used(page) != NULL;
3364}
3365
3366void mem_cgroup_print_bad_page(struct page *page)
3367{
3368 struct page_cgroup *pc;
3369
3370 pc = lookup_page_cgroup_used(page);
3371 if (pc) {
d045197f
AM
3372 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3373 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3374 }
3375}
3376#endif
3377
3e32cb2e
JW
3378static DEFINE_MUTEX(memcg_limit_mutex);
3379
d38d2a75 3380static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3381 unsigned long limit)
628f4235 3382{
3e32cb2e
JW
3383 unsigned long curusage;
3384 unsigned long oldusage;
3385 bool enlarge = false;
81d39c20 3386 int retry_count;
3e32cb2e 3387 int ret;
81d39c20
KH
3388
3389 /*
3390 * For keeping hierarchical_reclaim simple, how long we should retry
3391 * is depends on callers. We set our retry-count to be function
3392 * of # of children which we should visit in this loop.
3393 */
3e32cb2e
JW
3394 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3395 mem_cgroup_count_children(memcg);
81d39c20 3396
3e32cb2e 3397 oldusage = page_counter_read(&memcg->memory);
628f4235 3398
3e32cb2e 3399 do {
628f4235
KH
3400 if (signal_pending(current)) {
3401 ret = -EINTR;
3402 break;
3403 }
3e32cb2e
JW
3404
3405 mutex_lock(&memcg_limit_mutex);
3406 if (limit > memcg->memsw.limit) {
3407 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3408 ret = -EINVAL;
628f4235
KH
3409 break;
3410 }
3e32cb2e
JW
3411 if (limit > memcg->memory.limit)
3412 enlarge = true;
3413 ret = page_counter_limit(&memcg->memory, limit);
3414 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3415
3416 if (!ret)
3417 break;
3418
b70a2a21
JW
3419 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3420
3e32cb2e 3421 curusage = page_counter_read(&memcg->memory);
81d39c20 3422 /* Usage is reduced ? */
f894ffa8 3423 if (curusage >= oldusage)
81d39c20
KH
3424 retry_count--;
3425 else
3426 oldusage = curusage;
3e32cb2e
JW
3427 } while (retry_count);
3428
3c11ecf4
KH
3429 if (!ret && enlarge)
3430 memcg_oom_recover(memcg);
14797e23 3431
8c7c6e34
KH
3432 return ret;
3433}
3434
338c8431 3435static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3436 unsigned long limit)
8c7c6e34 3437{
3e32cb2e
JW
3438 unsigned long curusage;
3439 unsigned long oldusage;
3440 bool enlarge = false;
81d39c20 3441 int retry_count;
3e32cb2e 3442 int ret;
8c7c6e34 3443
81d39c20 3444 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3445 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3446 mem_cgroup_count_children(memcg);
3447
3448 oldusage = page_counter_read(&memcg->memsw);
3449
3450 do {
8c7c6e34
KH
3451 if (signal_pending(current)) {
3452 ret = -EINTR;
3453 break;
3454 }
3e32cb2e
JW
3455
3456 mutex_lock(&memcg_limit_mutex);
3457 if (limit < memcg->memory.limit) {
3458 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3459 ret = -EINVAL;
8c7c6e34
KH
3460 break;
3461 }
3e32cb2e
JW
3462 if (limit > memcg->memsw.limit)
3463 enlarge = true;
3464 ret = page_counter_limit(&memcg->memsw, limit);
3465 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3466
3467 if (!ret)
3468 break;
3469
b70a2a21
JW
3470 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3471
3e32cb2e 3472 curusage = page_counter_read(&memcg->memsw);
81d39c20 3473 /* Usage is reduced ? */
8c7c6e34 3474 if (curusage >= oldusage)
628f4235 3475 retry_count--;
81d39c20
KH
3476 else
3477 oldusage = curusage;
3e32cb2e
JW
3478 } while (retry_count);
3479
3c11ecf4
KH
3480 if (!ret && enlarge)
3481 memcg_oom_recover(memcg);
3e32cb2e 3482
628f4235
KH
3483 return ret;
3484}
3485
0608f43d
AM
3486unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3487 gfp_t gfp_mask,
3488 unsigned long *total_scanned)
3489{
3490 unsigned long nr_reclaimed = 0;
3491 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3492 unsigned long reclaimed;
3493 int loop = 0;
3494 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3495 unsigned long excess;
0608f43d
AM
3496 unsigned long nr_scanned;
3497
3498 if (order > 0)
3499 return 0;
3500
3501 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3502 /*
3503 * This loop can run a while, specially if mem_cgroup's continuously
3504 * keep exceeding their soft limit and putting the system under
3505 * pressure
3506 */
3507 do {
3508 if (next_mz)
3509 mz = next_mz;
3510 else
3511 mz = mem_cgroup_largest_soft_limit_node(mctz);
3512 if (!mz)
3513 break;
3514
3515 nr_scanned = 0;
3516 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3517 gfp_mask, &nr_scanned);
3518 nr_reclaimed += reclaimed;
3519 *total_scanned += nr_scanned;
0a31bc97 3520 spin_lock_irq(&mctz->lock);
bc2f2e7f 3521 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3522
3523 /*
3524 * If we failed to reclaim anything from this memory cgroup
3525 * it is time to move on to the next cgroup
3526 */
3527 next_mz = NULL;
bc2f2e7f
VD
3528 if (!reclaimed)
3529 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3530
3e32cb2e 3531 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3532 /*
3533 * One school of thought says that we should not add
3534 * back the node to the tree if reclaim returns 0.
3535 * But our reclaim could return 0, simply because due
3536 * to priority we are exposing a smaller subset of
3537 * memory to reclaim from. Consider this as a longer
3538 * term TODO.
3539 */
3540 /* If excess == 0, no tree ops */
cf2c8127 3541 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3542 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3543 css_put(&mz->memcg->css);
3544 loop++;
3545 /*
3546 * Could not reclaim anything and there are no more
3547 * mem cgroups to try or we seem to be looping without
3548 * reclaiming anything.
3549 */
3550 if (!nr_reclaimed &&
3551 (next_mz == NULL ||
3552 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3553 break;
3554 } while (!nr_reclaimed);
3555 if (next_mz)
3556 css_put(&next_mz->memcg->css);
3557 return nr_reclaimed;
3558}
3559
ea280e7b
TH
3560/*
3561 * Test whether @memcg has children, dead or alive. Note that this
3562 * function doesn't care whether @memcg has use_hierarchy enabled and
3563 * returns %true if there are child csses according to the cgroup
3564 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3565 */
b5f99b53
GC
3566static inline bool memcg_has_children(struct mem_cgroup *memcg)
3567{
ea280e7b
TH
3568 bool ret;
3569
696ac172 3570 /*
ea280e7b
TH
3571 * The lock does not prevent addition or deletion of children, but
3572 * it prevents a new child from being initialized based on this
3573 * parent in css_online(), so it's enough to decide whether
3574 * hierarchically inherited attributes can still be changed or not.
696ac172 3575 */
ea280e7b
TH
3576 lockdep_assert_held(&memcg_create_mutex);
3577
3578 rcu_read_lock();
3579 ret = css_next_child(NULL, &memcg->css);
3580 rcu_read_unlock();
3581 return ret;
b5f99b53
GC
3582}
3583
c26251f9
MH
3584/*
3585 * Reclaims as many pages from the given memcg as possible and moves
3586 * the rest to the parent.
3587 *
3588 * Caller is responsible for holding css reference for memcg.
3589 */
3590static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3591{
3592 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3593
c1e862c1
KH
3594 /* we call try-to-free pages for make this cgroup empty */
3595 lru_add_drain_all();
f817ed48 3596 /* try to free all pages in this cgroup */
3e32cb2e 3597 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3598 int progress;
c1e862c1 3599
c26251f9
MH
3600 if (signal_pending(current))
3601 return -EINTR;
3602
b70a2a21
JW
3603 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3604 GFP_KERNEL, true);
c1e862c1 3605 if (!progress) {
f817ed48 3606 nr_retries--;
c1e862c1 3607 /* maybe some writeback is necessary */
8aa7e847 3608 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3609 }
f817ed48
KH
3610
3611 }
ab5196c2
MH
3612
3613 return 0;
cc847582
KH
3614}
3615
6770c64e
TH
3616static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3617 char *buf, size_t nbytes,
3618 loff_t off)
c1e862c1 3619{
6770c64e 3620 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3621
d8423011
MH
3622 if (mem_cgroup_is_root(memcg))
3623 return -EINVAL;
6770c64e 3624 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3625}
3626
182446d0
TH
3627static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3628 struct cftype *cft)
18f59ea7 3629{
182446d0 3630 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3631}
3632
182446d0
TH
3633static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3634 struct cftype *cft, u64 val)
18f59ea7
BS
3635{
3636 int retval = 0;
182446d0 3637 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3638 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3639
0999821b 3640 mutex_lock(&memcg_create_mutex);
567fb435
GC
3641
3642 if (memcg->use_hierarchy == val)
3643 goto out;
3644
18f59ea7 3645 /*
af901ca1 3646 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3647 * in the child subtrees. If it is unset, then the change can
3648 * occur, provided the current cgroup has no children.
3649 *
3650 * For the root cgroup, parent_mem is NULL, we allow value to be
3651 * set if there are no children.
3652 */
c0ff4b85 3653 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3654 (val == 1 || val == 0)) {
ea280e7b 3655 if (!memcg_has_children(memcg))
c0ff4b85 3656 memcg->use_hierarchy = val;
18f59ea7
BS
3657 else
3658 retval = -EBUSY;
3659 } else
3660 retval = -EINVAL;
567fb435
GC
3661
3662out:
0999821b 3663 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3664
3665 return retval;
3666}
3667
3e32cb2e
JW
3668static unsigned long tree_stat(struct mem_cgroup *memcg,
3669 enum mem_cgroup_stat_index idx)
ce00a967
JW
3670{
3671 struct mem_cgroup *iter;
3672 long val = 0;
3673
3674 /* Per-cpu values can be negative, use a signed accumulator */
3675 for_each_mem_cgroup_tree(iter, memcg)
3676 val += mem_cgroup_read_stat(iter, idx);
3677
3678 if (val < 0) /* race ? */
3679 val = 0;
3680 return val;
3681}
3682
3683static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3684{
3685 u64 val;
3686
3e32cb2e
JW
3687 if (mem_cgroup_is_root(memcg)) {
3688 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3689 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3690 if (swap)
3691 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3692 } else {
ce00a967 3693 if (!swap)
3e32cb2e 3694 val = page_counter_read(&memcg->memory);
ce00a967 3695 else
3e32cb2e 3696 val = page_counter_read(&memcg->memsw);
ce00a967 3697 }
ce00a967
JW
3698 return val << PAGE_SHIFT;
3699}
3700
3e32cb2e
JW
3701enum {
3702 RES_USAGE,
3703 RES_LIMIT,
3704 RES_MAX_USAGE,
3705 RES_FAILCNT,
3706 RES_SOFT_LIMIT,
3707};
ce00a967 3708
791badbd 3709static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3710 struct cftype *cft)
8cdea7c0 3711{
182446d0 3712 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3713 struct page_counter *counter;
af36f906 3714
3e32cb2e 3715 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3716 case _MEM:
3e32cb2e
JW
3717 counter = &memcg->memory;
3718 break;
8c7c6e34 3719 case _MEMSWAP:
3e32cb2e
JW
3720 counter = &memcg->memsw;
3721 break;
510fc4e1 3722 case _KMEM:
3e32cb2e 3723 counter = &memcg->kmem;
510fc4e1 3724 break;
8c7c6e34
KH
3725 default:
3726 BUG();
8c7c6e34 3727 }
3e32cb2e
JW
3728
3729 switch (MEMFILE_ATTR(cft->private)) {
3730 case RES_USAGE:
3731 if (counter == &memcg->memory)
3732 return mem_cgroup_usage(memcg, false);
3733 if (counter == &memcg->memsw)
3734 return mem_cgroup_usage(memcg, true);
3735 return (u64)page_counter_read(counter) * PAGE_SIZE;
3736 case RES_LIMIT:
3737 return (u64)counter->limit * PAGE_SIZE;
3738 case RES_MAX_USAGE:
3739 return (u64)counter->watermark * PAGE_SIZE;
3740 case RES_FAILCNT:
3741 return counter->failcnt;
3742 case RES_SOFT_LIMIT:
3743 return (u64)memcg->soft_limit * PAGE_SIZE;
3744 default:
3745 BUG();
3746 }
8cdea7c0 3747}
510fc4e1 3748
510fc4e1 3749#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3750static int memcg_activate_kmem(struct mem_cgroup *memcg,
3751 unsigned long nr_pages)
d6441637
VD
3752{
3753 int err = 0;
3754 int memcg_id;
3755
3756 if (memcg_kmem_is_active(memcg))
3757 return 0;
3758
3759 /*
3760 * We are going to allocate memory for data shared by all memory
3761 * cgroups so let's stop accounting here.
3762 */
3763 memcg_stop_kmem_account();
3764
510fc4e1
GC
3765 /*
3766 * For simplicity, we won't allow this to be disabled. It also can't
3767 * be changed if the cgroup has children already, or if tasks had
3768 * already joined.
3769 *
3770 * If tasks join before we set the limit, a person looking at
3771 * kmem.usage_in_bytes will have no way to determine when it took
3772 * place, which makes the value quite meaningless.
3773 *
3774 * After it first became limited, changes in the value of the limit are
3775 * of course permitted.
510fc4e1 3776 */
0999821b 3777 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3778 if (cgroup_has_tasks(memcg->css.cgroup) ||
3779 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3780 err = -EBUSY;
3781 mutex_unlock(&memcg_create_mutex);
3782 if (err)
3783 goto out;
510fc4e1 3784
f3bb3043 3785 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3786 if (memcg_id < 0) {
3787 err = memcg_id;
3788 goto out;
3789 }
3790
d6441637
VD
3791 memcg->kmemcg_id = memcg_id;
3792 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
3793
3794 /*
3795 * We couldn't have accounted to this cgroup, because it hasn't got the
3796 * active bit set yet, so this should succeed.
3797 */
3e32cb2e 3798 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3799 VM_BUG_ON(err);
3800
3801 static_key_slow_inc(&memcg_kmem_enabled_key);
3802 /*
3803 * Setting the active bit after enabling static branching will
3804 * guarantee no one starts accounting before all call sites are
3805 * patched.
3806 */
3807 memcg_kmem_set_active(memcg);
510fc4e1 3808out:
d6441637
VD
3809 memcg_resume_kmem_account();
3810 return err;
d6441637
VD
3811}
3812
d6441637 3813static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3814 unsigned long limit)
d6441637
VD
3815{
3816 int ret;
3817
3e32cb2e 3818 mutex_lock(&memcg_limit_mutex);
d6441637 3819 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3820 ret = memcg_activate_kmem(memcg, limit);
d6441637 3821 else
3e32cb2e
JW
3822 ret = page_counter_limit(&memcg->kmem, limit);
3823 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3824 return ret;
3825}
3826
55007d84 3827static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3828{
55007d84 3829 int ret = 0;
510fc4e1 3830 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3831
d6441637
VD
3832 if (!parent)
3833 return 0;
55007d84 3834
8c0145b6 3835 mutex_lock(&memcg_limit_mutex);
55007d84 3836 /*
d6441637
VD
3837 * If the parent cgroup is not kmem-active now, it cannot be activated
3838 * after this point, because it has at least one child already.
55007d84 3839 */
d6441637 3840 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3841 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3842 mutex_unlock(&memcg_limit_mutex);
55007d84 3843 return ret;
510fc4e1 3844}
d6441637
VD
3845#else
3846static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3847 unsigned long limit)
d6441637
VD
3848{
3849 return -EINVAL;
3850}
6d043990 3851#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3852
628f4235
KH
3853/*
3854 * The user of this function is...
3855 * RES_LIMIT.
3856 */
451af504
TH
3857static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3858 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3859{
451af504 3860 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3861 unsigned long nr_pages;
628f4235
KH
3862 int ret;
3863
451af504 3864 buf = strstrip(buf);
3e32cb2e
JW
3865 ret = page_counter_memparse(buf, &nr_pages);
3866 if (ret)
3867 return ret;
af36f906 3868
3e32cb2e 3869 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3870 case RES_LIMIT:
4b3bde4c
BS
3871 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3872 ret = -EINVAL;
3873 break;
3874 }
3e32cb2e
JW
3875 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3876 case _MEM:
3877 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3878 break;
3e32cb2e
JW
3879 case _MEMSWAP:
3880 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3881 break;
3e32cb2e
JW
3882 case _KMEM:
3883 ret = memcg_update_kmem_limit(memcg, nr_pages);
3884 break;
3885 }
296c81d8 3886 break;
3e32cb2e
JW
3887 case RES_SOFT_LIMIT:
3888 memcg->soft_limit = nr_pages;
3889 ret = 0;
628f4235
KH
3890 break;
3891 }
451af504 3892 return ret ?: nbytes;
8cdea7c0
BS
3893}
3894
6770c64e
TH
3895static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3896 size_t nbytes, loff_t off)
c84872e1 3897{
6770c64e 3898 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3899 struct page_counter *counter;
c84872e1 3900
3e32cb2e
JW
3901 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3902 case _MEM:
3903 counter = &memcg->memory;
3904 break;
3905 case _MEMSWAP:
3906 counter = &memcg->memsw;
3907 break;
3908 case _KMEM:
3909 counter = &memcg->kmem;
3910 break;
3911 default:
3912 BUG();
3913 }
af36f906 3914
3e32cb2e 3915 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3916 case RES_MAX_USAGE:
3e32cb2e 3917 page_counter_reset_watermark(counter);
29f2a4da
PE
3918 break;
3919 case RES_FAILCNT:
3e32cb2e 3920 counter->failcnt = 0;
29f2a4da 3921 break;
3e32cb2e
JW
3922 default:
3923 BUG();
29f2a4da 3924 }
f64c3f54 3925
6770c64e 3926 return nbytes;
c84872e1
PE
3927}
3928
182446d0 3929static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3930 struct cftype *cft)
3931{
182446d0 3932 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3933}
3934
02491447 3935#ifdef CONFIG_MMU
182446d0 3936static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3937 struct cftype *cft, u64 val)
3938{
182446d0 3939 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
3940
3941 if (val >= (1 << NR_MOVE_TYPE))
3942 return -EINVAL;
ee5e8472 3943
7dc74be0 3944 /*
ee5e8472
GC
3945 * No kind of locking is needed in here, because ->can_attach() will
3946 * check this value once in the beginning of the process, and then carry
3947 * on with stale data. This means that changes to this value will only
3948 * affect task migrations starting after the change.
7dc74be0 3949 */
c0ff4b85 3950 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3951 return 0;
3952}
02491447 3953#else
182446d0 3954static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3955 struct cftype *cft, u64 val)
3956{
3957 return -ENOSYS;
3958}
3959#endif
7dc74be0 3960
406eb0c9 3961#ifdef CONFIG_NUMA
2da8ca82 3962static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3963{
25485de6
GT
3964 struct numa_stat {
3965 const char *name;
3966 unsigned int lru_mask;
3967 };
3968
3969 static const struct numa_stat stats[] = {
3970 { "total", LRU_ALL },
3971 { "file", LRU_ALL_FILE },
3972 { "anon", LRU_ALL_ANON },
3973 { "unevictable", BIT(LRU_UNEVICTABLE) },
3974 };
3975 const struct numa_stat *stat;
406eb0c9 3976 int nid;
25485de6 3977 unsigned long nr;
2da8ca82 3978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3979
25485de6
GT
3980 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3981 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3982 seq_printf(m, "%s=%lu", stat->name, nr);
3983 for_each_node_state(nid, N_MEMORY) {
3984 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3985 stat->lru_mask);
3986 seq_printf(m, " N%d=%lu", nid, nr);
3987 }
3988 seq_putc(m, '\n');
406eb0c9 3989 }
406eb0c9 3990
071aee13
YH
3991 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3992 struct mem_cgroup *iter;
3993
3994 nr = 0;
3995 for_each_mem_cgroup_tree(iter, memcg)
3996 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3997 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3998 for_each_node_state(nid, N_MEMORY) {
3999 nr = 0;
4000 for_each_mem_cgroup_tree(iter, memcg)
4001 nr += mem_cgroup_node_nr_lru_pages(
4002 iter, nid, stat->lru_mask);
4003 seq_printf(m, " N%d=%lu", nid, nr);
4004 }
4005 seq_putc(m, '\n');
406eb0c9 4006 }
406eb0c9 4007
406eb0c9
YH
4008 return 0;
4009}
4010#endif /* CONFIG_NUMA */
4011
af7c4b0e
JW
4012static inline void mem_cgroup_lru_names_not_uptodate(void)
4013{
4014 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4015}
4016
2da8ca82 4017static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4018{
2da8ca82 4019 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 4020 unsigned long memory, memsw;
af7c4b0e
JW
4021 struct mem_cgroup *mi;
4022 unsigned int i;
406eb0c9 4023
af7c4b0e 4024 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4025 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4026 continue;
af7c4b0e
JW
4027 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4028 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4029 }
7b854121 4030
af7c4b0e
JW
4031 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4032 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4033 mem_cgroup_read_events(memcg, i));
4034
4035 for (i = 0; i < NR_LRU_LISTS; i++)
4036 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4037 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4038
14067bb3 4039 /* Hierarchical information */
3e32cb2e
JW
4040 memory = memsw = PAGE_COUNTER_MAX;
4041 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4042 memory = min(memory, mi->memory.limit);
4043 memsw = min(memsw, mi->memsw.limit);
fee7b548 4044 }
3e32cb2e
JW
4045 seq_printf(m, "hierarchical_memory_limit %llu\n",
4046 (u64)memory * PAGE_SIZE);
4047 if (do_swap_account)
4048 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4049 (u64)memsw * PAGE_SIZE);
7f016ee8 4050
af7c4b0e
JW
4051 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4052 long long val = 0;
4053
bff6bb83 4054 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4055 continue;
af7c4b0e
JW
4056 for_each_mem_cgroup_tree(mi, memcg)
4057 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4058 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4059 }
4060
4061 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4062 unsigned long long val = 0;
4063
4064 for_each_mem_cgroup_tree(mi, memcg)
4065 val += mem_cgroup_read_events(mi, i);
4066 seq_printf(m, "total_%s %llu\n",
4067 mem_cgroup_events_names[i], val);
4068 }
4069
4070 for (i = 0; i < NR_LRU_LISTS; i++) {
4071 unsigned long long val = 0;
4072
4073 for_each_mem_cgroup_tree(mi, memcg)
4074 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4075 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4076 }
14067bb3 4077
7f016ee8 4078#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4079 {
4080 int nid, zid;
4081 struct mem_cgroup_per_zone *mz;
89abfab1 4082 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4083 unsigned long recent_rotated[2] = {0, 0};
4084 unsigned long recent_scanned[2] = {0, 0};
4085
4086 for_each_online_node(nid)
4087 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 4088 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 4089 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4090
89abfab1
HD
4091 recent_rotated[0] += rstat->recent_rotated[0];
4092 recent_rotated[1] += rstat->recent_rotated[1];
4093 recent_scanned[0] += rstat->recent_scanned[0];
4094 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4095 }
78ccf5b5
JW
4096 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4097 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4098 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4099 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4100 }
4101#endif
4102
d2ceb9b7
KH
4103 return 0;
4104}
4105
182446d0
TH
4106static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4107 struct cftype *cft)
a7885eb8 4108{
182446d0 4109 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4110
1f4c025b 4111 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4112}
4113
182446d0
TH
4114static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4115 struct cftype *cft, u64 val)
a7885eb8 4116{
182446d0 4117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4118
3dae7fec 4119 if (val > 100)
a7885eb8
KM
4120 return -EINVAL;
4121
14208b0e 4122 if (css->parent)
3dae7fec
JW
4123 memcg->swappiness = val;
4124 else
4125 vm_swappiness = val;
068b38c1 4126
a7885eb8
KM
4127 return 0;
4128}
4129
2e72b634
KS
4130static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4131{
4132 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4133 unsigned long usage;
2e72b634
KS
4134 int i;
4135
4136 rcu_read_lock();
4137 if (!swap)
2c488db2 4138 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4139 else
2c488db2 4140 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4141
4142 if (!t)
4143 goto unlock;
4144
ce00a967 4145 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4146
4147 /*
748dad36 4148 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4149 * If it's not true, a threshold was crossed after last
4150 * call of __mem_cgroup_threshold().
4151 */
5407a562 4152 i = t->current_threshold;
2e72b634
KS
4153
4154 /*
4155 * Iterate backward over array of thresholds starting from
4156 * current_threshold and check if a threshold is crossed.
4157 * If none of thresholds below usage is crossed, we read
4158 * only one element of the array here.
4159 */
4160 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4161 eventfd_signal(t->entries[i].eventfd, 1);
4162
4163 /* i = current_threshold + 1 */
4164 i++;
4165
4166 /*
4167 * Iterate forward over array of thresholds starting from
4168 * current_threshold+1 and check if a threshold is crossed.
4169 * If none of thresholds above usage is crossed, we read
4170 * only one element of the array here.
4171 */
4172 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4173 eventfd_signal(t->entries[i].eventfd, 1);
4174
4175 /* Update current_threshold */
5407a562 4176 t->current_threshold = i - 1;
2e72b634
KS
4177unlock:
4178 rcu_read_unlock();
4179}
4180
4181static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4182{
ad4ca5f4
KS
4183 while (memcg) {
4184 __mem_cgroup_threshold(memcg, false);
4185 if (do_swap_account)
4186 __mem_cgroup_threshold(memcg, true);
4187
4188 memcg = parent_mem_cgroup(memcg);
4189 }
2e72b634
KS
4190}
4191
4192static int compare_thresholds(const void *a, const void *b)
4193{
4194 const struct mem_cgroup_threshold *_a = a;
4195 const struct mem_cgroup_threshold *_b = b;
4196
2bff24a3
GT
4197 if (_a->threshold > _b->threshold)
4198 return 1;
4199
4200 if (_a->threshold < _b->threshold)
4201 return -1;
4202
4203 return 0;
2e72b634
KS
4204}
4205
c0ff4b85 4206static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4207{
4208 struct mem_cgroup_eventfd_list *ev;
4209
2bcf2e92
MH
4210 spin_lock(&memcg_oom_lock);
4211
c0ff4b85 4212 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4213 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4214
4215 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4216 return 0;
4217}
4218
c0ff4b85 4219static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4220{
7d74b06f
KH
4221 struct mem_cgroup *iter;
4222
c0ff4b85 4223 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4224 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4225}
4226
59b6f873 4227static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4228 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4229{
2c488db2
KS
4230 struct mem_cgroup_thresholds *thresholds;
4231 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4232 unsigned long threshold;
4233 unsigned long usage;
2c488db2 4234 int i, size, ret;
2e72b634 4235
3e32cb2e 4236 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
4237 if (ret)
4238 return ret;
4239
4240 mutex_lock(&memcg->thresholds_lock);
2c488db2 4241
05b84301 4242 if (type == _MEM) {
2c488db2 4243 thresholds = &memcg->thresholds;
ce00a967 4244 usage = mem_cgroup_usage(memcg, false);
05b84301 4245 } else if (type == _MEMSWAP) {
2c488db2 4246 thresholds = &memcg->memsw_thresholds;
ce00a967 4247 usage = mem_cgroup_usage(memcg, true);
05b84301 4248 } else
2e72b634
KS
4249 BUG();
4250
2e72b634 4251 /* Check if a threshold crossed before adding a new one */
2c488db2 4252 if (thresholds->primary)
2e72b634
KS
4253 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4254
2c488db2 4255 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4256
4257 /* Allocate memory for new array of thresholds */
2c488db2 4258 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4259 GFP_KERNEL);
2c488db2 4260 if (!new) {
2e72b634
KS
4261 ret = -ENOMEM;
4262 goto unlock;
4263 }
2c488db2 4264 new->size = size;
2e72b634
KS
4265
4266 /* Copy thresholds (if any) to new array */
2c488db2
KS
4267 if (thresholds->primary) {
4268 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4269 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4270 }
4271
2e72b634 4272 /* Add new threshold */
2c488db2
KS
4273 new->entries[size - 1].eventfd = eventfd;
4274 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4275
4276 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4277 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4278 compare_thresholds, NULL);
4279
4280 /* Find current threshold */
2c488db2 4281 new->current_threshold = -1;
2e72b634 4282 for (i = 0; i < size; i++) {
748dad36 4283 if (new->entries[i].threshold <= usage) {
2e72b634 4284 /*
2c488db2
KS
4285 * new->current_threshold will not be used until
4286 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4287 * it here.
4288 */
2c488db2 4289 ++new->current_threshold;
748dad36
SZ
4290 } else
4291 break;
2e72b634
KS
4292 }
4293
2c488db2
KS
4294 /* Free old spare buffer and save old primary buffer as spare */
4295 kfree(thresholds->spare);
4296 thresholds->spare = thresholds->primary;
4297
4298 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4299
907860ed 4300 /* To be sure that nobody uses thresholds */
2e72b634
KS
4301 synchronize_rcu();
4302
2e72b634
KS
4303unlock:
4304 mutex_unlock(&memcg->thresholds_lock);
4305
4306 return ret;
4307}
4308
59b6f873 4309static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4310 struct eventfd_ctx *eventfd, const char *args)
4311{
59b6f873 4312 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4313}
4314
59b6f873 4315static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4316 struct eventfd_ctx *eventfd, const char *args)
4317{
59b6f873 4318 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4319}
4320
59b6f873 4321static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4322 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4323{
2c488db2
KS
4324 struct mem_cgroup_thresholds *thresholds;
4325 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4326 unsigned long usage;
2c488db2 4327 int i, j, size;
2e72b634
KS
4328
4329 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4330
4331 if (type == _MEM) {
2c488db2 4332 thresholds = &memcg->thresholds;
ce00a967 4333 usage = mem_cgroup_usage(memcg, false);
05b84301 4334 } else if (type == _MEMSWAP) {
2c488db2 4335 thresholds = &memcg->memsw_thresholds;
ce00a967 4336 usage = mem_cgroup_usage(memcg, true);
05b84301 4337 } else
2e72b634
KS
4338 BUG();
4339
371528ca
AV
4340 if (!thresholds->primary)
4341 goto unlock;
4342
2e72b634
KS
4343 /* Check if a threshold crossed before removing */
4344 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4345
4346 /* Calculate new number of threshold */
2c488db2
KS
4347 size = 0;
4348 for (i = 0; i < thresholds->primary->size; i++) {
4349 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4350 size++;
4351 }
4352
2c488db2 4353 new = thresholds->spare;
907860ed 4354
2e72b634
KS
4355 /* Set thresholds array to NULL if we don't have thresholds */
4356 if (!size) {
2c488db2
KS
4357 kfree(new);
4358 new = NULL;
907860ed 4359 goto swap_buffers;
2e72b634
KS
4360 }
4361
2c488db2 4362 new->size = size;
2e72b634
KS
4363
4364 /* Copy thresholds and find current threshold */
2c488db2
KS
4365 new->current_threshold = -1;
4366 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4367 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4368 continue;
4369
2c488db2 4370 new->entries[j] = thresholds->primary->entries[i];
748dad36 4371 if (new->entries[j].threshold <= usage) {
2e72b634 4372 /*
2c488db2 4373 * new->current_threshold will not be used
2e72b634
KS
4374 * until rcu_assign_pointer(), so it's safe to increment
4375 * it here.
4376 */
2c488db2 4377 ++new->current_threshold;
2e72b634
KS
4378 }
4379 j++;
4380 }
4381
907860ed 4382swap_buffers:
2c488db2
KS
4383 /* Swap primary and spare array */
4384 thresholds->spare = thresholds->primary;
8c757763
SZ
4385 /* If all events are unregistered, free the spare array */
4386 if (!new) {
4387 kfree(thresholds->spare);
4388 thresholds->spare = NULL;
4389 }
4390
2c488db2 4391 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4392
907860ed 4393 /* To be sure that nobody uses thresholds */
2e72b634 4394 synchronize_rcu();
371528ca 4395unlock:
2e72b634 4396 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4397}
c1e862c1 4398
59b6f873 4399static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4400 struct eventfd_ctx *eventfd)
4401{
59b6f873 4402 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4403}
4404
59b6f873 4405static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4406 struct eventfd_ctx *eventfd)
4407{
59b6f873 4408 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4409}
4410
59b6f873 4411static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4412 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4413{
9490ff27 4414 struct mem_cgroup_eventfd_list *event;
9490ff27 4415
9490ff27
KH
4416 event = kmalloc(sizeof(*event), GFP_KERNEL);
4417 if (!event)
4418 return -ENOMEM;
4419
1af8efe9 4420 spin_lock(&memcg_oom_lock);
9490ff27
KH
4421
4422 event->eventfd = eventfd;
4423 list_add(&event->list, &memcg->oom_notify);
4424
4425 /* already in OOM ? */
79dfdacc 4426 if (atomic_read(&memcg->under_oom))
9490ff27 4427 eventfd_signal(eventfd, 1);
1af8efe9 4428 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4429
4430 return 0;
4431}
4432
59b6f873 4433static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4434 struct eventfd_ctx *eventfd)
9490ff27 4435{
9490ff27 4436 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4437
1af8efe9 4438 spin_lock(&memcg_oom_lock);
9490ff27 4439
c0ff4b85 4440 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4441 if (ev->eventfd == eventfd) {
4442 list_del(&ev->list);
4443 kfree(ev);
4444 }
4445 }
4446
1af8efe9 4447 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4448}
4449
2da8ca82 4450static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4451{
2da8ca82 4452 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4453
791badbd
TH
4454 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4455 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4456 return 0;
4457}
4458
182446d0 4459static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4460 struct cftype *cft, u64 val)
4461{
182446d0 4462 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4463
4464 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4465 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4466 return -EINVAL;
4467
c0ff4b85 4468 memcg->oom_kill_disable = val;
4d845ebf 4469 if (!val)
c0ff4b85 4470 memcg_oom_recover(memcg);
3dae7fec 4471
3c11ecf4
KH
4472 return 0;
4473}
4474
c255a458 4475#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4476static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4477{
55007d84
GC
4478 int ret;
4479
2633d7a0 4480 memcg->kmemcg_id = -1;
55007d84
GC
4481 ret = memcg_propagate_kmem(memcg);
4482 if (ret)
4483 return ret;
2633d7a0 4484
1d62e436 4485 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4486}
e5671dfa 4487
10d5ebf4 4488static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4489{
1d62e436 4490 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4491}
e5671dfa 4492#else
cbe128e3 4493static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4494{
4495 return 0;
4496}
d1a4c0b3 4497
10d5ebf4
LZ
4498static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4499{
4500}
e5671dfa
GC
4501#endif
4502
3bc942f3
TH
4503/*
4504 * DO NOT USE IN NEW FILES.
4505 *
4506 * "cgroup.event_control" implementation.
4507 *
4508 * This is way over-engineered. It tries to support fully configurable
4509 * events for each user. Such level of flexibility is completely
4510 * unnecessary especially in the light of the planned unified hierarchy.
4511 *
4512 * Please deprecate this and replace with something simpler if at all
4513 * possible.
4514 */
4515
79bd9814
TH
4516/*
4517 * Unregister event and free resources.
4518 *
4519 * Gets called from workqueue.
4520 */
3bc942f3 4521static void memcg_event_remove(struct work_struct *work)
79bd9814 4522{
3bc942f3
TH
4523 struct mem_cgroup_event *event =
4524 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4525 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4526
4527 remove_wait_queue(event->wqh, &event->wait);
4528
59b6f873 4529 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4530
4531 /* Notify userspace the event is going away. */
4532 eventfd_signal(event->eventfd, 1);
4533
4534 eventfd_ctx_put(event->eventfd);
4535 kfree(event);
59b6f873 4536 css_put(&memcg->css);
79bd9814
TH
4537}
4538
4539/*
4540 * Gets called on POLLHUP on eventfd when user closes it.
4541 *
4542 * Called with wqh->lock held and interrupts disabled.
4543 */
3bc942f3
TH
4544static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4545 int sync, void *key)
79bd9814 4546{
3bc942f3
TH
4547 struct mem_cgroup_event *event =
4548 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4549 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4550 unsigned long flags = (unsigned long)key;
4551
4552 if (flags & POLLHUP) {
4553 /*
4554 * If the event has been detached at cgroup removal, we
4555 * can simply return knowing the other side will cleanup
4556 * for us.
4557 *
4558 * We can't race against event freeing since the other
4559 * side will require wqh->lock via remove_wait_queue(),
4560 * which we hold.
4561 */
fba94807 4562 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4563 if (!list_empty(&event->list)) {
4564 list_del_init(&event->list);
4565 /*
4566 * We are in atomic context, but cgroup_event_remove()
4567 * may sleep, so we have to call it in workqueue.
4568 */
4569 schedule_work(&event->remove);
4570 }
fba94807 4571 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4572 }
4573
4574 return 0;
4575}
4576
3bc942f3 4577static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4578 wait_queue_head_t *wqh, poll_table *pt)
4579{
3bc942f3
TH
4580 struct mem_cgroup_event *event =
4581 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4582
4583 event->wqh = wqh;
4584 add_wait_queue(wqh, &event->wait);
4585}
4586
4587/*
3bc942f3
TH
4588 * DO NOT USE IN NEW FILES.
4589 *
79bd9814
TH
4590 * Parse input and register new cgroup event handler.
4591 *
4592 * Input must be in format '<event_fd> <control_fd> <args>'.
4593 * Interpretation of args is defined by control file implementation.
4594 */
451af504
TH
4595static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4596 char *buf, size_t nbytes, loff_t off)
79bd9814 4597{
451af504 4598 struct cgroup_subsys_state *css = of_css(of);
fba94807 4599 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4600 struct mem_cgroup_event *event;
79bd9814
TH
4601 struct cgroup_subsys_state *cfile_css;
4602 unsigned int efd, cfd;
4603 struct fd efile;
4604 struct fd cfile;
fba94807 4605 const char *name;
79bd9814
TH
4606 char *endp;
4607 int ret;
4608
451af504
TH
4609 buf = strstrip(buf);
4610
4611 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4612 if (*endp != ' ')
4613 return -EINVAL;
451af504 4614 buf = endp + 1;
79bd9814 4615
451af504 4616 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4617 if ((*endp != ' ') && (*endp != '\0'))
4618 return -EINVAL;
451af504 4619 buf = endp + 1;
79bd9814
TH
4620
4621 event = kzalloc(sizeof(*event), GFP_KERNEL);
4622 if (!event)
4623 return -ENOMEM;
4624
59b6f873 4625 event->memcg = memcg;
79bd9814 4626 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4627 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4628 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4629 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4630
4631 efile = fdget(efd);
4632 if (!efile.file) {
4633 ret = -EBADF;
4634 goto out_kfree;
4635 }
4636
4637 event->eventfd = eventfd_ctx_fileget(efile.file);
4638 if (IS_ERR(event->eventfd)) {
4639 ret = PTR_ERR(event->eventfd);
4640 goto out_put_efile;
4641 }
4642
4643 cfile = fdget(cfd);
4644 if (!cfile.file) {
4645 ret = -EBADF;
4646 goto out_put_eventfd;
4647 }
4648
4649 /* the process need read permission on control file */
4650 /* AV: shouldn't we check that it's been opened for read instead? */
4651 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4652 if (ret < 0)
4653 goto out_put_cfile;
4654
fba94807
TH
4655 /*
4656 * Determine the event callbacks and set them in @event. This used
4657 * to be done via struct cftype but cgroup core no longer knows
4658 * about these events. The following is crude but the whole thing
4659 * is for compatibility anyway.
3bc942f3
TH
4660 *
4661 * DO NOT ADD NEW FILES.
fba94807
TH
4662 */
4663 name = cfile.file->f_dentry->d_name.name;
4664
4665 if (!strcmp(name, "memory.usage_in_bytes")) {
4666 event->register_event = mem_cgroup_usage_register_event;
4667 event->unregister_event = mem_cgroup_usage_unregister_event;
4668 } else if (!strcmp(name, "memory.oom_control")) {
4669 event->register_event = mem_cgroup_oom_register_event;
4670 event->unregister_event = mem_cgroup_oom_unregister_event;
4671 } else if (!strcmp(name, "memory.pressure_level")) {
4672 event->register_event = vmpressure_register_event;
4673 event->unregister_event = vmpressure_unregister_event;
4674 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4675 event->register_event = memsw_cgroup_usage_register_event;
4676 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4677 } else {
4678 ret = -EINVAL;
4679 goto out_put_cfile;
4680 }
4681
79bd9814 4682 /*
b5557c4c
TH
4683 * Verify @cfile should belong to @css. Also, remaining events are
4684 * automatically removed on cgroup destruction but the removal is
4685 * asynchronous, so take an extra ref on @css.
79bd9814 4686 */
ec903c0c
TH
4687 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4688 &memory_cgrp_subsys);
79bd9814 4689 ret = -EINVAL;
5a17f543 4690 if (IS_ERR(cfile_css))
79bd9814 4691 goto out_put_cfile;
5a17f543
TH
4692 if (cfile_css != css) {
4693 css_put(cfile_css);
79bd9814 4694 goto out_put_cfile;
5a17f543 4695 }
79bd9814 4696
451af504 4697 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4698 if (ret)
4699 goto out_put_css;
4700
4701 efile.file->f_op->poll(efile.file, &event->pt);
4702
fba94807
TH
4703 spin_lock(&memcg->event_list_lock);
4704 list_add(&event->list, &memcg->event_list);
4705 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4706
4707 fdput(cfile);
4708 fdput(efile);
4709
451af504 4710 return nbytes;
79bd9814
TH
4711
4712out_put_css:
b5557c4c 4713 css_put(css);
79bd9814
TH
4714out_put_cfile:
4715 fdput(cfile);
4716out_put_eventfd:
4717 eventfd_ctx_put(event->eventfd);
4718out_put_efile:
4719 fdput(efile);
4720out_kfree:
4721 kfree(event);
4722
4723 return ret;
4724}
4725
8cdea7c0
BS
4726static struct cftype mem_cgroup_files[] = {
4727 {
0eea1030 4728 .name = "usage_in_bytes",
8c7c6e34 4729 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4730 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4731 },
c84872e1
PE
4732 {
4733 .name = "max_usage_in_bytes",
8c7c6e34 4734 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4735 .write = mem_cgroup_reset,
791badbd 4736 .read_u64 = mem_cgroup_read_u64,
c84872e1 4737 },
8cdea7c0 4738 {
0eea1030 4739 .name = "limit_in_bytes",
8c7c6e34 4740 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4741 .write = mem_cgroup_write,
791badbd 4742 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4743 },
296c81d8
BS
4744 {
4745 .name = "soft_limit_in_bytes",
4746 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4747 .write = mem_cgroup_write,
791badbd 4748 .read_u64 = mem_cgroup_read_u64,
296c81d8 4749 },
8cdea7c0
BS
4750 {
4751 .name = "failcnt",
8c7c6e34 4752 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4753 .write = mem_cgroup_reset,
791badbd 4754 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4755 },
d2ceb9b7
KH
4756 {
4757 .name = "stat",
2da8ca82 4758 .seq_show = memcg_stat_show,
d2ceb9b7 4759 },
c1e862c1
KH
4760 {
4761 .name = "force_empty",
6770c64e 4762 .write = mem_cgroup_force_empty_write,
c1e862c1 4763 },
18f59ea7
BS
4764 {
4765 .name = "use_hierarchy",
4766 .write_u64 = mem_cgroup_hierarchy_write,
4767 .read_u64 = mem_cgroup_hierarchy_read,
4768 },
79bd9814 4769 {
3bc942f3 4770 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4771 .write = memcg_write_event_control,
79bd9814
TH
4772 .flags = CFTYPE_NO_PREFIX,
4773 .mode = S_IWUGO,
4774 },
a7885eb8
KM
4775 {
4776 .name = "swappiness",
4777 .read_u64 = mem_cgroup_swappiness_read,
4778 .write_u64 = mem_cgroup_swappiness_write,
4779 },
7dc74be0
DN
4780 {
4781 .name = "move_charge_at_immigrate",
4782 .read_u64 = mem_cgroup_move_charge_read,
4783 .write_u64 = mem_cgroup_move_charge_write,
4784 },
9490ff27
KH
4785 {
4786 .name = "oom_control",
2da8ca82 4787 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4788 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4789 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4790 },
70ddf637
AV
4791 {
4792 .name = "pressure_level",
70ddf637 4793 },
406eb0c9
YH
4794#ifdef CONFIG_NUMA
4795 {
4796 .name = "numa_stat",
2da8ca82 4797 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4798 },
4799#endif
510fc4e1
GC
4800#ifdef CONFIG_MEMCG_KMEM
4801 {
4802 .name = "kmem.limit_in_bytes",
4803 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4804 .write = mem_cgroup_write,
791badbd 4805 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4806 },
4807 {
4808 .name = "kmem.usage_in_bytes",
4809 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4810 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4811 },
4812 {
4813 .name = "kmem.failcnt",
4814 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4815 .write = mem_cgroup_reset,
791badbd 4816 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4817 },
4818 {
4819 .name = "kmem.max_usage_in_bytes",
4820 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4821 .write = mem_cgroup_reset,
791badbd 4822 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4823 },
749c5415
GC
4824#ifdef CONFIG_SLABINFO
4825 {
4826 .name = "kmem.slabinfo",
2da8ca82 4827 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
4828 },
4829#endif
8c7c6e34 4830#endif
6bc10349 4831 { }, /* terminate */
af36f906 4832};
8c7c6e34 4833
2d11085e
MH
4834#ifdef CONFIG_MEMCG_SWAP
4835static struct cftype memsw_cgroup_files[] = {
4836 {
4837 .name = "memsw.usage_in_bytes",
4838 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4839 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4840 },
4841 {
4842 .name = "memsw.max_usage_in_bytes",
4843 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4844 .write = mem_cgroup_reset,
791badbd 4845 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4846 },
4847 {
4848 .name = "memsw.limit_in_bytes",
4849 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4850 .write = mem_cgroup_write,
791badbd 4851 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4852 },
4853 {
4854 .name = "memsw.failcnt",
4855 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4856 .write = mem_cgroup_reset,
791badbd 4857 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4858 },
4859 { }, /* terminate */
4860};
4861#endif
c0ff4b85 4862static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4863{
4864 struct mem_cgroup_per_node *pn;
1ecaab2b 4865 struct mem_cgroup_per_zone *mz;
41e3355d 4866 int zone, tmp = node;
1ecaab2b
KH
4867 /*
4868 * This routine is called against possible nodes.
4869 * But it's BUG to call kmalloc() against offline node.
4870 *
4871 * TODO: this routine can waste much memory for nodes which will
4872 * never be onlined. It's better to use memory hotplug callback
4873 * function.
4874 */
41e3355d
KH
4875 if (!node_state(node, N_NORMAL_MEMORY))
4876 tmp = -1;
17295c88 4877 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4878 if (!pn)
4879 return 1;
1ecaab2b 4880
1ecaab2b
KH
4881 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4882 mz = &pn->zoneinfo[zone];
bea8c150 4883 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4884 mz->usage_in_excess = 0;
4885 mz->on_tree = false;
d79154bb 4886 mz->memcg = memcg;
1ecaab2b 4887 }
54f72fe0 4888 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4889 return 0;
4890}
4891
c0ff4b85 4892static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4893{
54f72fe0 4894 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4895}
4896
33327948
KH
4897static struct mem_cgroup *mem_cgroup_alloc(void)
4898{
d79154bb 4899 struct mem_cgroup *memcg;
8ff69e2c 4900 size_t size;
33327948 4901
8ff69e2c
VD
4902 size = sizeof(struct mem_cgroup);
4903 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4904
8ff69e2c 4905 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4906 if (!memcg)
e7bbcdf3
DC
4907 return NULL;
4908
d79154bb
HD
4909 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4910 if (!memcg->stat)
d2e61b8d 4911 goto out_free;
d79154bb
HD
4912 spin_lock_init(&memcg->pcp_counter_lock);
4913 return memcg;
d2e61b8d
DC
4914
4915out_free:
8ff69e2c 4916 kfree(memcg);
d2e61b8d 4917 return NULL;
33327948
KH
4918}
4919
59927fb9 4920/*
c8b2a36f
GC
4921 * At destroying mem_cgroup, references from swap_cgroup can remain.
4922 * (scanning all at force_empty is too costly...)
4923 *
4924 * Instead of clearing all references at force_empty, we remember
4925 * the number of reference from swap_cgroup and free mem_cgroup when
4926 * it goes down to 0.
4927 *
4928 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4929 */
c8b2a36f
GC
4930
4931static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4932{
c8b2a36f 4933 int node;
59927fb9 4934
bb4cc1a8 4935 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4936
4937 for_each_node(node)
4938 free_mem_cgroup_per_zone_info(memcg, node);
4939
4940 free_percpu(memcg->stat);
4941
3f134619
GC
4942 /*
4943 * We need to make sure that (at least for now), the jump label
4944 * destruction code runs outside of the cgroup lock. This is because
4945 * get_online_cpus(), which is called from the static_branch update,
4946 * can't be called inside the cgroup_lock. cpusets are the ones
4947 * enforcing this dependency, so if they ever change, we might as well.
4948 *
4949 * schedule_work() will guarantee this happens. Be careful if you need
4950 * to move this code around, and make sure it is outside
4951 * the cgroup_lock.
4952 */
a8964b9b 4953 disarm_static_keys(memcg);
8ff69e2c 4954 kfree(memcg);
59927fb9 4955}
3afe36b1 4956
7bcc1bb1
DN
4957/*
4958 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4959 */
e1aab161 4960struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4961{
3e32cb2e 4962 if (!memcg->memory.parent)
7bcc1bb1 4963 return NULL;
3e32cb2e 4964 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4965}
e1aab161 4966EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4967
bb4cc1a8
AM
4968static void __init mem_cgroup_soft_limit_tree_init(void)
4969{
4970 struct mem_cgroup_tree_per_node *rtpn;
4971 struct mem_cgroup_tree_per_zone *rtpz;
4972 int tmp, node, zone;
4973
4974 for_each_node(node) {
4975 tmp = node;
4976 if (!node_state(node, N_NORMAL_MEMORY))
4977 tmp = -1;
4978 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4979 BUG_ON(!rtpn);
4980
4981 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4982
4983 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4984 rtpz = &rtpn->rb_tree_per_zone[zone];
4985 rtpz->rb_root = RB_ROOT;
4986 spin_lock_init(&rtpz->lock);
4987 }
4988 }
4989}
4990
0eb253e2 4991static struct cgroup_subsys_state * __ref
eb95419b 4992mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4993{
d142e3e6 4994 struct mem_cgroup *memcg;
04046e1a 4995 long error = -ENOMEM;
6d12e2d8 4996 int node;
8cdea7c0 4997
c0ff4b85
R
4998 memcg = mem_cgroup_alloc();
4999 if (!memcg)
04046e1a 5000 return ERR_PTR(error);
78fb7466 5001
3ed28fa1 5002 for_each_node(node)
c0ff4b85 5003 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5004 goto free_out;
f64c3f54 5005
c077719b 5006 /* root ? */
eb95419b 5007 if (parent_css == NULL) {
a41c58a6 5008 root_mem_cgroup = memcg;
3e32cb2e
JW
5009 page_counter_init(&memcg->memory, NULL);
5010 page_counter_init(&memcg->memsw, NULL);
5011 page_counter_init(&memcg->kmem, NULL);
18f59ea7 5012 }
28dbc4b6 5013
d142e3e6
GC
5014 memcg->last_scanned_node = MAX_NUMNODES;
5015 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5016 memcg->move_charge_at_immigrate = 0;
5017 mutex_init(&memcg->thresholds_lock);
5018 spin_lock_init(&memcg->move_lock);
70ddf637 5019 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5020 INIT_LIST_HEAD(&memcg->event_list);
5021 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
5022
5023 return &memcg->css;
5024
5025free_out:
5026 __mem_cgroup_free(memcg);
5027 return ERR_PTR(error);
5028}
5029
5030static int
eb95419b 5031mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 5032{
eb95419b 5033 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 5034 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 5035 int ret;
d142e3e6 5036
15a4c835 5037 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
5038 return -ENOSPC;
5039
63876986 5040 if (!parent)
d142e3e6
GC
5041 return 0;
5042
0999821b 5043 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
5044
5045 memcg->use_hierarchy = parent->use_hierarchy;
5046 memcg->oom_kill_disable = parent->oom_kill_disable;
5047 memcg->swappiness = mem_cgroup_swappiness(parent);
5048
5049 if (parent->use_hierarchy) {
3e32cb2e
JW
5050 page_counter_init(&memcg->memory, &parent->memory);
5051 page_counter_init(&memcg->memsw, &parent->memsw);
5052 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5053
7bcc1bb1 5054 /*
8d76a979
LZ
5055 * No need to take a reference to the parent because cgroup
5056 * core guarantees its existence.
7bcc1bb1 5057 */
18f59ea7 5058 } else {
3e32cb2e
JW
5059 page_counter_init(&memcg->memory, NULL);
5060 page_counter_init(&memcg->memsw, NULL);
5061 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5062 /*
5063 * Deeper hierachy with use_hierarchy == false doesn't make
5064 * much sense so let cgroup subsystem know about this
5065 * unfortunate state in our controller.
5066 */
d142e3e6 5067 if (parent != root_mem_cgroup)
073219e9 5068 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5069 }
0999821b 5070 mutex_unlock(&memcg_create_mutex);
d6441637 5071
2f7dd7a4
JW
5072 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5073 if (ret)
5074 return ret;
5075
5076 /*
5077 * Make sure the memcg is initialized: mem_cgroup_iter()
5078 * orders reading memcg->initialized against its callers
5079 * reading the memcg members.
5080 */
5081 smp_store_release(&memcg->initialized, 1);
5082
5083 return 0;
8cdea7c0
BS
5084}
5085
eb95419b 5086static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5087{
eb95419b 5088 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5089 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5090
5091 /*
5092 * Unregister events and notify userspace.
5093 * Notify userspace about cgroup removing only after rmdir of cgroup
5094 * directory to avoid race between userspace and kernelspace.
5095 */
fba94807
TH
5096 spin_lock(&memcg->event_list_lock);
5097 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5098 list_del_init(&event->list);
5099 schedule_work(&event->remove);
5100 }
fba94807 5101 spin_unlock(&memcg->event_list_lock);
ec64f515 5102
776ed0f0 5103 memcg_unregister_all_caches(memcg);
33cb876e 5104 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
5105}
5106
eb95419b 5107static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5108{
eb95419b 5109 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 5110
10d5ebf4 5111 memcg_destroy_kmem(memcg);
465939a1 5112 __mem_cgroup_free(memcg);
8cdea7c0
BS
5113}
5114
1ced953b
TH
5115/**
5116 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5117 * @css: the target css
5118 *
5119 * Reset the states of the mem_cgroup associated with @css. This is
5120 * invoked when the userland requests disabling on the default hierarchy
5121 * but the memcg is pinned through dependency. The memcg should stop
5122 * applying policies and should revert to the vanilla state as it may be
5123 * made visible again.
5124 *
5125 * The current implementation only resets the essential configurations.
5126 * This needs to be expanded to cover all the visible parts.
5127 */
5128static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5129{
5130 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5131
3e32cb2e
JW
5132 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
5133 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5134 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5135 memcg->soft_limit = 0;
1ced953b
TH
5136}
5137
02491447 5138#ifdef CONFIG_MMU
7dc74be0 5139/* Handlers for move charge at task migration. */
854ffa8d 5140static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5141{
05b84301 5142 int ret;
9476db97
JW
5143
5144 /* Try a single bulk charge without reclaim first */
00501b53 5145 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5146 if (!ret) {
854ffa8d 5147 mc.precharge += count;
854ffa8d
DN
5148 return ret;
5149 }
692e7c45 5150 if (ret == -EINTR) {
00501b53 5151 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5152 return ret;
5153 }
9476db97
JW
5154
5155 /* Try charges one by one with reclaim */
854ffa8d 5156 while (count--) {
00501b53 5157 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5158 /*
5159 * In case of failure, any residual charges against
5160 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5161 * later on. However, cancel any charges that are
5162 * bypassed to root right away or they'll be lost.
9476db97 5163 */
692e7c45 5164 if (ret == -EINTR)
00501b53 5165 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5166 if (ret)
38c5d72f 5167 return ret;
854ffa8d 5168 mc.precharge++;
9476db97 5169 cond_resched();
854ffa8d 5170 }
9476db97 5171 return 0;
4ffef5fe
DN
5172}
5173
5174/**
8d32ff84 5175 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5176 * @vma: the vma the pte to be checked belongs
5177 * @addr: the address corresponding to the pte to be checked
5178 * @ptent: the pte to be checked
02491447 5179 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5180 *
5181 * Returns
5182 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5183 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5184 * move charge. if @target is not NULL, the page is stored in target->page
5185 * with extra refcnt got(Callers should handle it).
02491447
DN
5186 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5187 * target for charge migration. if @target is not NULL, the entry is stored
5188 * in target->ent.
4ffef5fe
DN
5189 *
5190 * Called with pte lock held.
5191 */
4ffef5fe
DN
5192union mc_target {
5193 struct page *page;
02491447 5194 swp_entry_t ent;
4ffef5fe
DN
5195};
5196
4ffef5fe 5197enum mc_target_type {
8d32ff84 5198 MC_TARGET_NONE = 0,
4ffef5fe 5199 MC_TARGET_PAGE,
02491447 5200 MC_TARGET_SWAP,
4ffef5fe
DN
5201};
5202
90254a65
DN
5203static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5204 unsigned long addr, pte_t ptent)
4ffef5fe 5205{
90254a65 5206 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5207
90254a65
DN
5208 if (!page || !page_mapped(page))
5209 return NULL;
5210 if (PageAnon(page)) {
5211 /* we don't move shared anon */
4b91355e 5212 if (!move_anon())
90254a65 5213 return NULL;
87946a72
DN
5214 } else if (!move_file())
5215 /* we ignore mapcount for file pages */
90254a65
DN
5216 return NULL;
5217 if (!get_page_unless_zero(page))
5218 return NULL;
5219
5220 return page;
5221}
5222
4b91355e 5223#ifdef CONFIG_SWAP
90254a65
DN
5224static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5225 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5226{
90254a65
DN
5227 struct page *page = NULL;
5228 swp_entry_t ent = pte_to_swp_entry(ptent);
5229
5230 if (!move_anon() || non_swap_entry(ent))
5231 return NULL;
4b91355e
KH
5232 /*
5233 * Because lookup_swap_cache() updates some statistics counter,
5234 * we call find_get_page() with swapper_space directly.
5235 */
33806f06 5236 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5237 if (do_swap_account)
5238 entry->val = ent.val;
5239
5240 return page;
5241}
4b91355e
KH
5242#else
5243static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5244 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5245{
5246 return NULL;
5247}
5248#endif
90254a65 5249
87946a72
DN
5250static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5251 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5252{
5253 struct page *page = NULL;
87946a72
DN
5254 struct address_space *mapping;
5255 pgoff_t pgoff;
5256
5257 if (!vma->vm_file) /* anonymous vma */
5258 return NULL;
5259 if (!move_file())
5260 return NULL;
5261
87946a72
DN
5262 mapping = vma->vm_file->f_mapping;
5263 if (pte_none(ptent))
5264 pgoff = linear_page_index(vma, addr);
5265 else /* pte_file(ptent) is true */
5266 pgoff = pte_to_pgoff(ptent);
5267
5268 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5269#ifdef CONFIG_SWAP
5270 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5271 if (shmem_mapping(mapping)) {
5272 page = find_get_entry(mapping, pgoff);
5273 if (radix_tree_exceptional_entry(page)) {
5274 swp_entry_t swp = radix_to_swp_entry(page);
5275 if (do_swap_account)
5276 *entry = swp;
5277 page = find_get_page(swap_address_space(swp), swp.val);
5278 }
5279 } else
5280 page = find_get_page(mapping, pgoff);
5281#else
5282 page = find_get_page(mapping, pgoff);
aa3b1895 5283#endif
87946a72
DN
5284 return page;
5285}
5286
8d32ff84 5287static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5288 unsigned long addr, pte_t ptent, union mc_target *target)
5289{
5290 struct page *page = NULL;
5291 struct page_cgroup *pc;
8d32ff84 5292 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5293 swp_entry_t ent = { .val = 0 };
5294
5295 if (pte_present(ptent))
5296 page = mc_handle_present_pte(vma, addr, ptent);
5297 else if (is_swap_pte(ptent))
5298 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5299 else if (pte_none(ptent) || pte_file(ptent))
5300 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5301
5302 if (!page && !ent.val)
8d32ff84 5303 return ret;
02491447
DN
5304 if (page) {
5305 pc = lookup_page_cgroup(page);
5306 /*
0a31bc97
JW
5307 * Do only loose check w/o serialization.
5308 * mem_cgroup_move_account() checks the pc is valid or
5309 * not under LRU exclusion.
02491447
DN
5310 */
5311 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5312 ret = MC_TARGET_PAGE;
5313 if (target)
5314 target->page = page;
5315 }
5316 if (!ret || !target)
5317 put_page(page);
5318 }
90254a65
DN
5319 /* There is a swap entry and a page doesn't exist or isn't charged */
5320 if (ent.val && !ret &&
34c00c31 5321 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5322 ret = MC_TARGET_SWAP;
5323 if (target)
5324 target->ent = ent;
4ffef5fe 5325 }
4ffef5fe
DN
5326 return ret;
5327}
5328
12724850
NH
5329#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5330/*
5331 * We don't consider swapping or file mapped pages because THP does not
5332 * support them for now.
5333 * Caller should make sure that pmd_trans_huge(pmd) is true.
5334 */
5335static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5336 unsigned long addr, pmd_t pmd, union mc_target *target)
5337{
5338 struct page *page = NULL;
5339 struct page_cgroup *pc;
5340 enum mc_target_type ret = MC_TARGET_NONE;
5341
5342 page = pmd_page(pmd);
309381fe 5343 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5344 if (!move_anon())
5345 return ret;
5346 pc = lookup_page_cgroup(page);
5347 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5348 ret = MC_TARGET_PAGE;
5349 if (target) {
5350 get_page(page);
5351 target->page = page;
5352 }
5353 }
5354 return ret;
5355}
5356#else
5357static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5358 unsigned long addr, pmd_t pmd, union mc_target *target)
5359{
5360 return MC_TARGET_NONE;
5361}
5362#endif
5363
4ffef5fe
DN
5364static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5365 unsigned long addr, unsigned long end,
5366 struct mm_walk *walk)
5367{
5368 struct vm_area_struct *vma = walk->private;
5369 pte_t *pte;
5370 spinlock_t *ptl;
5371
bf929152 5372 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5373 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5374 mc.precharge += HPAGE_PMD_NR;
bf929152 5375 spin_unlock(ptl);
1a5a9906 5376 return 0;
12724850 5377 }
03319327 5378
45f83cef
AA
5379 if (pmd_trans_unstable(pmd))
5380 return 0;
4ffef5fe
DN
5381 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5382 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5383 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5384 mc.precharge++; /* increment precharge temporarily */
5385 pte_unmap_unlock(pte - 1, ptl);
5386 cond_resched();
5387
7dc74be0
DN
5388 return 0;
5389}
5390
4ffef5fe
DN
5391static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5392{
5393 unsigned long precharge;
5394 struct vm_area_struct *vma;
5395
dfe076b0 5396 down_read(&mm->mmap_sem);
4ffef5fe
DN
5397 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5398 struct mm_walk mem_cgroup_count_precharge_walk = {
5399 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5400 .mm = mm,
5401 .private = vma,
5402 };
5403 if (is_vm_hugetlb_page(vma))
5404 continue;
4ffef5fe
DN
5405 walk_page_range(vma->vm_start, vma->vm_end,
5406 &mem_cgroup_count_precharge_walk);
5407 }
dfe076b0 5408 up_read(&mm->mmap_sem);
4ffef5fe
DN
5409
5410 precharge = mc.precharge;
5411 mc.precharge = 0;
5412
5413 return precharge;
5414}
5415
4ffef5fe
DN
5416static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5417{
dfe076b0
DN
5418 unsigned long precharge = mem_cgroup_count_precharge(mm);
5419
5420 VM_BUG_ON(mc.moving_task);
5421 mc.moving_task = current;
5422 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5423}
5424
dfe076b0
DN
5425/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5426static void __mem_cgroup_clear_mc(void)
4ffef5fe 5427{
2bd9bb20
KH
5428 struct mem_cgroup *from = mc.from;
5429 struct mem_cgroup *to = mc.to;
5430
4ffef5fe 5431 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5432 if (mc.precharge) {
00501b53 5433 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5434 mc.precharge = 0;
5435 }
5436 /*
5437 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5438 * we must uncharge here.
5439 */
5440 if (mc.moved_charge) {
00501b53 5441 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5442 mc.moved_charge = 0;
4ffef5fe 5443 }
483c30b5
DN
5444 /* we must fixup refcnts and charges */
5445 if (mc.moved_swap) {
483c30b5 5446 /* uncharge swap account from the old cgroup */
ce00a967 5447 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5448 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5449
05b84301 5450 /*
3e32cb2e
JW
5451 * we charged both to->memory and to->memsw, so we
5452 * should uncharge to->memory.
05b84301 5453 */
ce00a967 5454 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5455 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5456
e8ea14cc 5457 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5458
4050377b 5459 /* we've already done css_get(mc.to) */
483c30b5
DN
5460 mc.moved_swap = 0;
5461 }
dfe076b0
DN
5462 memcg_oom_recover(from);
5463 memcg_oom_recover(to);
5464 wake_up_all(&mc.waitq);
5465}
5466
5467static void mem_cgroup_clear_mc(void)
5468{
5469 struct mem_cgroup *from = mc.from;
5470
5471 /*
5472 * we must clear moving_task before waking up waiters at the end of
5473 * task migration.
5474 */
5475 mc.moving_task = NULL;
5476 __mem_cgroup_clear_mc();
2bd9bb20 5477 spin_lock(&mc.lock);
4ffef5fe
DN
5478 mc.from = NULL;
5479 mc.to = NULL;
2bd9bb20 5480 spin_unlock(&mc.lock);
32047e2a 5481 mem_cgroup_end_move(from);
4ffef5fe
DN
5482}
5483
eb95419b 5484static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5485 struct cgroup_taskset *tset)
7dc74be0 5486{
2f7ee569 5487 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5488 int ret = 0;
eb95419b 5489 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5490 unsigned long move_charge_at_immigrate;
7dc74be0 5491
ee5e8472
GC
5492 /*
5493 * We are now commited to this value whatever it is. Changes in this
5494 * tunable will only affect upcoming migrations, not the current one.
5495 * So we need to save it, and keep it going.
5496 */
5497 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5498 if (move_charge_at_immigrate) {
7dc74be0
DN
5499 struct mm_struct *mm;
5500 struct mem_cgroup *from = mem_cgroup_from_task(p);
5501
c0ff4b85 5502 VM_BUG_ON(from == memcg);
7dc74be0
DN
5503
5504 mm = get_task_mm(p);
5505 if (!mm)
5506 return 0;
7dc74be0 5507 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5508 if (mm->owner == p) {
5509 VM_BUG_ON(mc.from);
5510 VM_BUG_ON(mc.to);
5511 VM_BUG_ON(mc.precharge);
854ffa8d 5512 VM_BUG_ON(mc.moved_charge);
483c30b5 5513 VM_BUG_ON(mc.moved_swap);
32047e2a 5514 mem_cgroup_start_move(from);
2bd9bb20 5515 spin_lock(&mc.lock);
4ffef5fe 5516 mc.from = from;
c0ff4b85 5517 mc.to = memcg;
ee5e8472 5518 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5519 spin_unlock(&mc.lock);
dfe076b0 5520 /* We set mc.moving_task later */
4ffef5fe
DN
5521
5522 ret = mem_cgroup_precharge_mc(mm);
5523 if (ret)
5524 mem_cgroup_clear_mc();
dfe076b0
DN
5525 }
5526 mmput(mm);
7dc74be0
DN
5527 }
5528 return ret;
5529}
5530
eb95419b 5531static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5532 struct cgroup_taskset *tset)
7dc74be0 5533{
4ffef5fe 5534 mem_cgroup_clear_mc();
7dc74be0
DN
5535}
5536
4ffef5fe
DN
5537static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5538 unsigned long addr, unsigned long end,
5539 struct mm_walk *walk)
7dc74be0 5540{
4ffef5fe
DN
5541 int ret = 0;
5542 struct vm_area_struct *vma = walk->private;
5543 pte_t *pte;
5544 spinlock_t *ptl;
12724850
NH
5545 enum mc_target_type target_type;
5546 union mc_target target;
5547 struct page *page;
5548 struct page_cgroup *pc;
4ffef5fe 5549
12724850
NH
5550 /*
5551 * We don't take compound_lock() here but no race with splitting thp
5552 * happens because:
5553 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5554 * under splitting, which means there's no concurrent thp split,
5555 * - if another thread runs into split_huge_page() just after we
5556 * entered this if-block, the thread must wait for page table lock
5557 * to be unlocked in __split_huge_page_splitting(), where the main
5558 * part of thp split is not executed yet.
5559 */
bf929152 5560 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5561 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5562 spin_unlock(ptl);
12724850
NH
5563 return 0;
5564 }
5565 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5566 if (target_type == MC_TARGET_PAGE) {
5567 page = target.page;
5568 if (!isolate_lru_page(page)) {
5569 pc = lookup_page_cgroup(page);
5570 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5571 pc, mc.from, mc.to)) {
12724850
NH
5572 mc.precharge -= HPAGE_PMD_NR;
5573 mc.moved_charge += HPAGE_PMD_NR;
5574 }
5575 putback_lru_page(page);
5576 }
5577 put_page(page);
5578 }
bf929152 5579 spin_unlock(ptl);
1a5a9906 5580 return 0;
12724850
NH
5581 }
5582
45f83cef
AA
5583 if (pmd_trans_unstable(pmd))
5584 return 0;
4ffef5fe
DN
5585retry:
5586 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5587 for (; addr != end; addr += PAGE_SIZE) {
5588 pte_t ptent = *(pte++);
02491447 5589 swp_entry_t ent;
4ffef5fe
DN
5590
5591 if (!mc.precharge)
5592 break;
5593
8d32ff84 5594 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5595 case MC_TARGET_PAGE:
5596 page = target.page;
5597 if (isolate_lru_page(page))
5598 goto put;
5599 pc = lookup_page_cgroup(page);
7ec99d62 5600 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5601 mc.from, mc.to)) {
4ffef5fe 5602 mc.precharge--;
854ffa8d
DN
5603 /* we uncharge from mc.from later. */
5604 mc.moved_charge++;
4ffef5fe
DN
5605 }
5606 putback_lru_page(page);
8d32ff84 5607put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5608 put_page(page);
5609 break;
02491447
DN
5610 case MC_TARGET_SWAP:
5611 ent = target.ent;
e91cbb42 5612 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5613 mc.precharge--;
483c30b5
DN
5614 /* we fixup refcnts and charges later. */
5615 mc.moved_swap++;
5616 }
02491447 5617 break;
4ffef5fe
DN
5618 default:
5619 break;
5620 }
5621 }
5622 pte_unmap_unlock(pte - 1, ptl);
5623 cond_resched();
5624
5625 if (addr != end) {
5626 /*
5627 * We have consumed all precharges we got in can_attach().
5628 * We try charge one by one, but don't do any additional
5629 * charges to mc.to if we have failed in charge once in attach()
5630 * phase.
5631 */
854ffa8d 5632 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5633 if (!ret)
5634 goto retry;
5635 }
5636
5637 return ret;
5638}
5639
5640static void mem_cgroup_move_charge(struct mm_struct *mm)
5641{
5642 struct vm_area_struct *vma;
5643
5644 lru_add_drain_all();
dfe076b0
DN
5645retry:
5646 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5647 /*
5648 * Someone who are holding the mmap_sem might be waiting in
5649 * waitq. So we cancel all extra charges, wake up all waiters,
5650 * and retry. Because we cancel precharges, we might not be able
5651 * to move enough charges, but moving charge is a best-effort
5652 * feature anyway, so it wouldn't be a big problem.
5653 */
5654 __mem_cgroup_clear_mc();
5655 cond_resched();
5656 goto retry;
5657 }
4ffef5fe
DN
5658 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5659 int ret;
5660 struct mm_walk mem_cgroup_move_charge_walk = {
5661 .pmd_entry = mem_cgroup_move_charge_pte_range,
5662 .mm = mm,
5663 .private = vma,
5664 };
5665 if (is_vm_hugetlb_page(vma))
5666 continue;
4ffef5fe
DN
5667 ret = walk_page_range(vma->vm_start, vma->vm_end,
5668 &mem_cgroup_move_charge_walk);
5669 if (ret)
5670 /*
5671 * means we have consumed all precharges and failed in
5672 * doing additional charge. Just abandon here.
5673 */
5674 break;
5675 }
dfe076b0 5676 up_read(&mm->mmap_sem);
7dc74be0
DN
5677}
5678
eb95419b 5679static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5680 struct cgroup_taskset *tset)
67e465a7 5681{
2f7ee569 5682 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5683 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5684
dfe076b0 5685 if (mm) {
a433658c
KM
5686 if (mc.to)
5687 mem_cgroup_move_charge(mm);
dfe076b0
DN
5688 mmput(mm);
5689 }
a433658c
KM
5690 if (mc.to)
5691 mem_cgroup_clear_mc();
67e465a7 5692}
5cfb80a7 5693#else /* !CONFIG_MMU */
eb95419b 5694static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5695 struct cgroup_taskset *tset)
5cfb80a7
DN
5696{
5697 return 0;
5698}
eb95419b 5699static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5700 struct cgroup_taskset *tset)
5cfb80a7
DN
5701{
5702}
eb95419b 5703static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5704 struct cgroup_taskset *tset)
5cfb80a7
DN
5705{
5706}
5707#endif
67e465a7 5708
f00baae7
TH
5709/*
5710 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5711 * to verify whether we're attached to the default hierarchy on each mount
5712 * attempt.
f00baae7 5713 */
eb95419b 5714static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5715{
5716 /*
aa6ec29b 5717 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5718 * guarantees that @root doesn't have any children, so turning it
5719 * on for the root memcg is enough.
5720 */
aa6ec29b 5721 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5722 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5723}
5724
073219e9 5725struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5726 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5727 .css_online = mem_cgroup_css_online,
92fb9748
TH
5728 .css_offline = mem_cgroup_css_offline,
5729 .css_free = mem_cgroup_css_free,
1ced953b 5730 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5731 .can_attach = mem_cgroup_can_attach,
5732 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5733 .attach = mem_cgroup_move_task,
f00baae7 5734 .bind = mem_cgroup_bind,
5577964e 5735 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5736 .early_init = 0,
8cdea7c0 5737};
c077719b 5738
c255a458 5739#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5740static int __init enable_swap_account(char *s)
5741{
a2c8990a 5742 if (!strcmp(s, "1"))
a42c390c 5743 really_do_swap_account = 1;
a2c8990a 5744 else if (!strcmp(s, "0"))
a42c390c
MH
5745 really_do_swap_account = 0;
5746 return 1;
5747}
a2c8990a 5748__setup("swapaccount=", enable_swap_account);
c077719b 5749
2d11085e
MH
5750static void __init memsw_file_init(void)
5751{
2cf669a5
TH
5752 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5753 memsw_cgroup_files));
6acc8b02
MH
5754}
5755
5756static void __init enable_swap_cgroup(void)
5757{
5758 if (!mem_cgroup_disabled() && really_do_swap_account) {
5759 do_swap_account = 1;
5760 memsw_file_init();
5761 }
2d11085e 5762}
6acc8b02 5763
2d11085e 5764#else
6acc8b02 5765static void __init enable_swap_cgroup(void)
2d11085e
MH
5766{
5767}
c077719b 5768#endif
2d11085e 5769
0a31bc97
JW
5770#ifdef CONFIG_MEMCG_SWAP
5771/**
5772 * mem_cgroup_swapout - transfer a memsw charge to swap
5773 * @page: page whose memsw charge to transfer
5774 * @entry: swap entry to move the charge to
5775 *
5776 * Transfer the memsw charge of @page to @entry.
5777 */
5778void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5779{
7bdd143c 5780 struct mem_cgroup *memcg;
0a31bc97
JW
5781 struct page_cgroup *pc;
5782 unsigned short oldid;
5783
5784 VM_BUG_ON_PAGE(PageLRU(page), page);
5785 VM_BUG_ON_PAGE(page_count(page), page);
5786
5787 if (!do_swap_account)
5788 return;
5789
5790 pc = lookup_page_cgroup(page);
5791
5792 /* Readahead page, never charged */
5793 if (!PageCgroupUsed(pc))
5794 return;
5795
7bdd143c 5796 memcg = pc->mem_cgroup;
0a31bc97 5797
7bdd143c 5798 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5799 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5800 mem_cgroup_swap_statistics(memcg, true);
5801
5802 pc->flags = 0;
5803
5804 if (!mem_cgroup_is_root(memcg))
5805 page_counter_uncharge(&memcg->memory, 1);
5806
5807 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5808 VM_BUG_ON(!irqs_disabled());
0a31bc97 5809
7bdd143c
JW
5810 mem_cgroup_charge_statistics(memcg, page, -1);
5811 memcg_check_events(memcg, page);
0a31bc97
JW
5812}
5813
5814/**
5815 * mem_cgroup_uncharge_swap - uncharge a swap entry
5816 * @entry: swap entry to uncharge
5817 *
5818 * Drop the memsw charge associated with @entry.
5819 */
5820void mem_cgroup_uncharge_swap(swp_entry_t entry)
5821{
5822 struct mem_cgroup *memcg;
5823 unsigned short id;
5824
5825 if (!do_swap_account)
5826 return;
5827
5828 id = swap_cgroup_record(entry, 0);
5829 rcu_read_lock();
5830 memcg = mem_cgroup_lookup(id);
5831 if (memcg) {
ce00a967 5832 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5833 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5834 mem_cgroup_swap_statistics(memcg, false);
5835 css_put(&memcg->css);
5836 }
5837 rcu_read_unlock();
5838}
5839#endif
5840
00501b53
JW
5841/**
5842 * mem_cgroup_try_charge - try charging a page
5843 * @page: page to charge
5844 * @mm: mm context of the victim
5845 * @gfp_mask: reclaim mode
5846 * @memcgp: charged memcg return
5847 *
5848 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5849 * pages according to @gfp_mask if necessary.
5850 *
5851 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5852 * Otherwise, an error code is returned.
5853 *
5854 * After page->mapping has been set up, the caller must finalize the
5855 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5856 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5857 */
5858int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5859 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5860{
5861 struct mem_cgroup *memcg = NULL;
5862 unsigned int nr_pages = 1;
5863 int ret = 0;
5864
5865 if (mem_cgroup_disabled())
5866 goto out;
5867
5868 if (PageSwapCache(page)) {
5869 struct page_cgroup *pc = lookup_page_cgroup(page);
5870 /*
5871 * Every swap fault against a single page tries to charge the
5872 * page, bail as early as possible. shmem_unuse() encounters
5873 * already charged pages, too. The USED bit is protected by
5874 * the page lock, which serializes swap cache removal, which
5875 * in turn serializes uncharging.
5876 */
5877 if (PageCgroupUsed(pc))
5878 goto out;
5879 }
5880
5881 if (PageTransHuge(page)) {
5882 nr_pages <<= compound_order(page);
5883 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5884 }
5885
5886 if (do_swap_account && PageSwapCache(page))
5887 memcg = try_get_mem_cgroup_from_page(page);
5888 if (!memcg)
5889 memcg = get_mem_cgroup_from_mm(mm);
5890
5891 ret = try_charge(memcg, gfp_mask, nr_pages);
5892
5893 css_put(&memcg->css);
5894
5895 if (ret == -EINTR) {
5896 memcg = root_mem_cgroup;
5897 ret = 0;
5898 }
5899out:
5900 *memcgp = memcg;
5901 return ret;
5902}
5903
5904/**
5905 * mem_cgroup_commit_charge - commit a page charge
5906 * @page: page to charge
5907 * @memcg: memcg to charge the page to
5908 * @lrucare: page might be on LRU already
5909 *
5910 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5911 * after page->mapping has been set up. This must happen atomically
5912 * as part of the page instantiation, i.e. under the page table lock
5913 * for anonymous pages, under the page lock for page and swap cache.
5914 *
5915 * In addition, the page must not be on the LRU during the commit, to
5916 * prevent racing with task migration. If it might be, use @lrucare.
5917 *
5918 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5919 */
5920void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5921 bool lrucare)
5922{
5923 unsigned int nr_pages = 1;
5924
5925 VM_BUG_ON_PAGE(!page->mapping, page);
5926 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5927
5928 if (mem_cgroup_disabled())
5929 return;
5930 /*
5931 * Swap faults will attempt to charge the same page multiple
5932 * times. But reuse_swap_page() might have removed the page
5933 * from swapcache already, so we can't check PageSwapCache().
5934 */
5935 if (!memcg)
5936 return;
5937
6abb5a86
JW
5938 commit_charge(page, memcg, lrucare);
5939
00501b53
JW
5940 if (PageTransHuge(page)) {
5941 nr_pages <<= compound_order(page);
5942 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5943 }
5944
6abb5a86
JW
5945 local_irq_disable();
5946 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5947 memcg_check_events(memcg, page);
5948 local_irq_enable();
00501b53
JW
5949
5950 if (do_swap_account && PageSwapCache(page)) {
5951 swp_entry_t entry = { .val = page_private(page) };
5952 /*
5953 * The swap entry might not get freed for a long time,
5954 * let's not wait for it. The page already received a
5955 * memory+swap charge, drop the swap entry duplicate.
5956 */
5957 mem_cgroup_uncharge_swap(entry);
5958 }
5959}
5960
5961/**
5962 * mem_cgroup_cancel_charge - cancel a page charge
5963 * @page: page to charge
5964 * @memcg: memcg to charge the page to
5965 *
5966 * Cancel a charge transaction started by mem_cgroup_try_charge().
5967 */
5968void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5969{
5970 unsigned int nr_pages = 1;
5971
5972 if (mem_cgroup_disabled())
5973 return;
5974 /*
5975 * Swap faults will attempt to charge the same page multiple
5976 * times. But reuse_swap_page() might have removed the page
5977 * from swapcache already, so we can't check PageSwapCache().
5978 */
5979 if (!memcg)
5980 return;
5981
5982 if (PageTransHuge(page)) {
5983 nr_pages <<= compound_order(page);
5984 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5985 }
5986
5987 cancel_charge(memcg, nr_pages);
5988}
5989
747db954 5990static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5991 unsigned long nr_anon, unsigned long nr_file,
5992 unsigned long nr_huge, struct page *dummy_page)
5993{
18eca2e6 5994 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5995 unsigned long flags;
5996
ce00a967 5997 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5998 page_counter_uncharge(&memcg->memory, nr_pages);
5999 if (do_swap_account)
6000 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
6001 memcg_oom_recover(memcg);
6002 }
747db954
JW
6003
6004 local_irq_save(flags);
6005 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6006 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6007 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6008 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 6009 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
6010 memcg_check_events(memcg, dummy_page);
6011 local_irq_restore(flags);
e8ea14cc
JW
6012
6013 if (!mem_cgroup_is_root(memcg))
18eca2e6 6014 css_put_many(&memcg->css, nr_pages);
747db954
JW
6015}
6016
6017static void uncharge_list(struct list_head *page_list)
6018{
6019 struct mem_cgroup *memcg = NULL;
747db954
JW
6020 unsigned long nr_anon = 0;
6021 unsigned long nr_file = 0;
6022 unsigned long nr_huge = 0;
6023 unsigned long pgpgout = 0;
747db954
JW
6024 struct list_head *next;
6025 struct page *page;
6026
6027 next = page_list->next;
6028 do {
6029 unsigned int nr_pages = 1;
6030 struct page_cgroup *pc;
6031
6032 page = list_entry(next, struct page, lru);
6033 next = page->lru.next;
6034
6035 VM_BUG_ON_PAGE(PageLRU(page), page);
6036 VM_BUG_ON_PAGE(page_count(page), page);
6037
6038 pc = lookup_page_cgroup(page);
6039 if (!PageCgroupUsed(pc))
6040 continue;
6041
6042 /*
6043 * Nobody should be changing or seriously looking at
6044 * pc->mem_cgroup and pc->flags at this point, we have
6045 * fully exclusive access to the page.
6046 */
6047
6048 if (memcg != pc->mem_cgroup) {
6049 if (memcg) {
18eca2e6
JW
6050 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
6051 nr_huge, page);
6052 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954
JW
6053 }
6054 memcg = pc->mem_cgroup;
6055 }
6056
6057 if (PageTransHuge(page)) {
6058 nr_pages <<= compound_order(page);
6059 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6060 nr_huge += nr_pages;
6061 }
6062
6063 if (PageAnon(page))
6064 nr_anon += nr_pages;
6065 else
6066 nr_file += nr_pages;
6067
747db954
JW
6068 pc->flags = 0;
6069
6070 pgpgout++;
6071 } while (next != page_list);
6072
6073 if (memcg)
18eca2e6
JW
6074 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
6075 nr_huge, page);
747db954
JW
6076}
6077
0a31bc97
JW
6078/**
6079 * mem_cgroup_uncharge - uncharge a page
6080 * @page: page to uncharge
6081 *
6082 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6083 * mem_cgroup_commit_charge().
6084 */
6085void mem_cgroup_uncharge(struct page *page)
6086{
0a31bc97 6087 struct page_cgroup *pc;
0a31bc97
JW
6088
6089 if (mem_cgroup_disabled())
6090 return;
6091
747db954 6092 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 6093 pc = lookup_page_cgroup(page);
0a31bc97
JW
6094 if (!PageCgroupUsed(pc))
6095 return;
6096
747db954
JW
6097 INIT_LIST_HEAD(&page->lru);
6098 uncharge_list(&page->lru);
6099}
0a31bc97 6100
747db954
JW
6101/**
6102 * mem_cgroup_uncharge_list - uncharge a list of page
6103 * @page_list: list of pages to uncharge
6104 *
6105 * Uncharge a list of pages previously charged with
6106 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6107 */
6108void mem_cgroup_uncharge_list(struct list_head *page_list)
6109{
6110 if (mem_cgroup_disabled())
6111 return;
0a31bc97 6112
747db954
JW
6113 if (!list_empty(page_list))
6114 uncharge_list(page_list);
0a31bc97
JW
6115}
6116
6117/**
6118 * mem_cgroup_migrate - migrate a charge to another page
6119 * @oldpage: currently charged page
6120 * @newpage: page to transfer the charge to
6121 * @lrucare: both pages might be on the LRU already
6122 *
6123 * Migrate the charge from @oldpage to @newpage.
6124 *
6125 * Both pages must be locked, @newpage->mapping must be set up.
6126 */
6127void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6128 bool lrucare)
6129{
0a31bc97
JW
6130 struct page_cgroup *pc;
6131 int isolated;
6132
6133 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6134 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6135 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6136 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6137 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6138 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6139 newpage);
0a31bc97
JW
6140
6141 if (mem_cgroup_disabled())
6142 return;
6143
6144 /* Page cache replacement: new page already charged? */
6145 pc = lookup_page_cgroup(newpage);
6146 if (PageCgroupUsed(pc))
6147 return;
6148
7d5e3245
JW
6149 /*
6150 * Swapcache readahead pages can get migrated before being
6151 * charged, and migration from compaction can happen to an
6152 * uncharged page when the PFN walker finds a page that
6153 * reclaim just put back on the LRU but has not released yet.
6154 */
0a31bc97
JW
6155 pc = lookup_page_cgroup(oldpage);
6156 if (!PageCgroupUsed(pc))
6157 return;
6158
0a31bc97
JW
6159 if (lrucare)
6160 lock_page_lru(oldpage, &isolated);
6161
6162 pc->flags = 0;
6163
6164 if (lrucare)
6165 unlock_page_lru(oldpage, isolated);
6166
6abb5a86 6167 commit_charge(newpage, pc->mem_cgroup, lrucare);
0a31bc97
JW
6168}
6169
2d11085e 6170/*
1081312f
MH
6171 * subsys_initcall() for memory controller.
6172 *
6173 * Some parts like hotcpu_notifier() have to be initialized from this context
6174 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6175 * everything that doesn't depend on a specific mem_cgroup structure should
6176 * be initialized from here.
2d11085e
MH
6177 */
6178static int __init mem_cgroup_init(void)
6179{
6180 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6181 enable_swap_cgroup();
bb4cc1a8 6182 mem_cgroup_soft_limit_tree_init();
e4777496 6183 memcg_stock_init();
2d11085e
MH
6184 return 0;
6185}
6186subsys_initcall(mem_cgroup_init);