]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
arm64: tegra: Use correct interrupts for Tegra234 TKE
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
b073d7f8 55#include <linux/kmsan.h>
9a840895 56#include <linux/ksm.h>
1da177e4 57#include <linux/rmap.h>
b95f1b31 58#include <linux/export.h>
0ff92245 59#include <linux/delayacct.h>
1da177e4 60#include <linux/init.h>
01c8f1c4 61#include <linux/pfn_t.h>
edc79b2a 62#include <linux/writeback.h>
8a9f3ccd 63#include <linux/memcontrol.h>
cddb8a5c 64#include <linux/mmu_notifier.h>
3dc14741
HD
65#include <linux/swapops.h>
66#include <linux/elf.h>
5a0e3ad6 67#include <linux/gfp.h>
4daae3b4 68#include <linux/migrate.h>
2fbc57c5 69#include <linux/string.h>
467b171a 70#include <linux/memory-tiers.h>
1592eef0 71#include <linux/debugfs.h>
6b251fc9 72#include <linux/userfaultfd_k.h>
bc2466e4 73#include <linux/dax.h>
6b31d595 74#include <linux/oom.h>
98fa15f3 75#include <linux/numa.h>
bce617ed
PX
76#include <linux/perf_event.h>
77#include <linux/ptrace.h>
e80d3909 78#include <linux/vmalloc.h>
33024536 79#include <linux/sched/sysctl.h>
1da177e4 80
b3d1411b
JFG
81#include <trace/events/kmem.h>
82
6952b61d 83#include <asm/io.h>
33a709b2 84#include <asm/mmu_context.h>
1da177e4 85#include <asm/pgalloc.h>
7c0f6ba6 86#include <linux/uaccess.h>
1da177e4
LT
87#include <asm/tlb.h>
88#include <asm/tlbflush.h>
1da177e4 89
e80d3909 90#include "pgalloc-track.h"
42b77728 91#include "internal.h"
014bb1de 92#include "swap.h"
42b77728 93
af27d940 94#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 95#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
96#endif
97
a9ee6cf5 98#ifndef CONFIG_NUMA
1da177e4 99unsigned long max_mapnr;
1da177e4 100EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
101
102struct page *mem_map;
1da177e4
LT
103EXPORT_SYMBOL(mem_map);
104#endif
105
5c041f5d 106static vm_fault_t do_fault(struct vm_fault *vmf);
2bad466c
PX
107static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108static bool vmf_pte_changed(struct vm_fault *vmf);
109
110/*
111 * Return true if the original pte was a uffd-wp pte marker (so the pte was
112 * wr-protected).
113 */
114static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115{
116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117 return false;
118
119 return pte_marker_uffd_wp(vmf->orig_pte);
120}
5c041f5d 121
1da177e4
LT
122/*
123 * A number of key systems in x86 including ioremap() rely on the assumption
124 * that high_memory defines the upper bound on direct map memory, then end
125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127 * and ZONE_HIGHMEM.
128 */
166f61b9 129void *high_memory;
1da177e4 130EXPORT_SYMBOL(high_memory);
1da177e4 131
32a93233
IM
132/*
133 * Randomize the address space (stacks, mmaps, brk, etc.).
134 *
135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136 * as ancient (libc5 based) binaries can segfault. )
137 */
138int randomize_va_space __read_mostly =
139#ifdef CONFIG_COMPAT_BRK
140 1;
141#else
142 2;
143#endif
a62eaf15 144
46bdb427
WD
145#ifndef arch_wants_old_prefaulted_pte
146static inline bool arch_wants_old_prefaulted_pte(void)
147{
148 /*
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
152 */
153 return false;
154}
155#endif
156
a62eaf15
AK
157static int __init disable_randmaps(char *s)
158{
159 randomize_va_space = 0;
9b41046c 160 return 1;
a62eaf15
AK
161}
162__setup("norandmaps", disable_randmaps);
163
62eede62 164unsigned long zero_pfn __read_mostly;
0b70068e
AB
165EXPORT_SYMBOL(zero_pfn);
166
166f61b9
TH
167unsigned long highest_memmap_pfn __read_mostly;
168
a13ea5b7
HD
169/*
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171 */
172static int __init init_zero_pfn(void)
173{
174 zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 return 0;
176}
e720e7d0 177early_initcall(init_zero_pfn);
a62eaf15 178
f1a79412 179void mm_trace_rss_stat(struct mm_struct *mm, int member)
b3d1411b 180{
f1a79412 181 trace_rss_stat(mm, member);
b3d1411b 182}
d559db08 183
1da177e4
LT
184/*
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
187 */
9e1b32ca
BH
188static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 unsigned long addr)
1da177e4 190{
2f569afd 191 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 192 pmd_clear(pmd);
9e1b32ca 193 pte_free_tlb(tlb, token, addr);
c4812909 194 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
195}
196
e0da382c
HD
197static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 unsigned long addr, unsigned long end,
199 unsigned long floor, unsigned long ceiling)
1da177e4
LT
200{
201 pmd_t *pmd;
202 unsigned long next;
e0da382c 203 unsigned long start;
1da177e4 204
e0da382c 205 start = addr;
1da177e4 206 pmd = pmd_offset(pud, addr);
1da177e4
LT
207 do {
208 next = pmd_addr_end(addr, end);
209 if (pmd_none_or_clear_bad(pmd))
210 continue;
9e1b32ca 211 free_pte_range(tlb, pmd, addr);
1da177e4
LT
212 } while (pmd++, addr = next, addr != end);
213
e0da382c
HD
214 start &= PUD_MASK;
215 if (start < floor)
216 return;
217 if (ceiling) {
218 ceiling &= PUD_MASK;
219 if (!ceiling)
220 return;
1da177e4 221 }
e0da382c
HD
222 if (end - 1 > ceiling - 1)
223 return;
224
225 pmd = pmd_offset(pud, start);
226 pud_clear(pud);
9e1b32ca 227 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 228 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
229}
230
c2febafc 231static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
1da177e4
LT
234{
235 pud_t *pud;
236 unsigned long next;
e0da382c 237 unsigned long start;
1da177e4 238
e0da382c 239 start = addr;
c2febafc 240 pud = pud_offset(p4d, addr);
1da177e4
LT
241 do {
242 next = pud_addr_end(addr, end);
243 if (pud_none_or_clear_bad(pud))
244 continue;
e0da382c 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
246 } while (pud++, addr = next, addr != end);
247
c2febafc
KS
248 start &= P4D_MASK;
249 if (start < floor)
250 return;
251 if (ceiling) {
252 ceiling &= P4D_MASK;
253 if (!ceiling)
254 return;
255 }
256 if (end - 1 > ceiling - 1)
257 return;
258
259 pud = pud_offset(p4d, start);
260 p4d_clear(p4d);
261 pud_free_tlb(tlb, pud, start);
b4e98d9a 262 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
263}
264
265static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
268{
269 p4d_t *p4d;
270 unsigned long next;
271 unsigned long start;
272
273 start = addr;
274 p4d = p4d_offset(pgd, addr);
275 do {
276 next = p4d_addr_end(addr, end);
277 if (p4d_none_or_clear_bad(p4d))
278 continue;
279 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 } while (p4d++, addr = next, addr != end);
281
e0da382c
HD
282 start &= PGDIR_MASK;
283 if (start < floor)
284 return;
285 if (ceiling) {
286 ceiling &= PGDIR_MASK;
287 if (!ceiling)
288 return;
1da177e4 289 }
e0da382c
HD
290 if (end - 1 > ceiling - 1)
291 return;
292
c2febafc 293 p4d = p4d_offset(pgd, start);
e0da382c 294 pgd_clear(pgd);
c2febafc 295 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
296}
297
298/*
e0da382c 299 * This function frees user-level page tables of a process.
1da177e4 300 */
42b77728 301void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
302 unsigned long addr, unsigned long end,
303 unsigned long floor, unsigned long ceiling)
1da177e4
LT
304{
305 pgd_t *pgd;
306 unsigned long next;
e0da382c
HD
307
308 /*
309 * The next few lines have given us lots of grief...
310 *
311 * Why are we testing PMD* at this top level? Because often
312 * there will be no work to do at all, and we'd prefer not to
313 * go all the way down to the bottom just to discover that.
314 *
315 * Why all these "- 1"s? Because 0 represents both the bottom
316 * of the address space and the top of it (using -1 for the
317 * top wouldn't help much: the masks would do the wrong thing).
318 * The rule is that addr 0 and floor 0 refer to the bottom of
319 * the address space, but end 0 and ceiling 0 refer to the top
320 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 * that end 0 case should be mythical).
322 *
323 * Wherever addr is brought up or ceiling brought down, we must
324 * be careful to reject "the opposite 0" before it confuses the
325 * subsequent tests. But what about where end is brought down
326 * by PMD_SIZE below? no, end can't go down to 0 there.
327 *
328 * Whereas we round start (addr) and ceiling down, by different
329 * masks at different levels, in order to test whether a table
330 * now has no other vmas using it, so can be freed, we don't
331 * bother to round floor or end up - the tests don't need that.
332 */
1da177e4 333
e0da382c
HD
334 addr &= PMD_MASK;
335 if (addr < floor) {
336 addr += PMD_SIZE;
337 if (!addr)
338 return;
339 }
340 if (ceiling) {
341 ceiling &= PMD_MASK;
342 if (!ceiling)
343 return;
344 }
345 if (end - 1 > ceiling - 1)
346 end -= PMD_SIZE;
347 if (addr > end - 1)
348 return;
07e32661
AK
349 /*
350 * We add page table cache pages with PAGE_SIZE,
351 * (see pte_free_tlb()), flush the tlb if we need
352 */
ed6a7935 353 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 354 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
355 do {
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
358 continue;
c2febafc 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 360 } while (pgd++, addr = next, addr != end);
e0da382c
HD
361}
362
fd892593 363void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
763ecb03 364 struct vm_area_struct *vma, unsigned long floor,
98e51a22 365 unsigned long ceiling, bool mm_wr_locked)
e0da382c 366{
763ecb03 367 do {
e0da382c 368 unsigned long addr = vma->vm_start;
763ecb03
LH
369 struct vm_area_struct *next;
370
371 /*
372 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
373 * be 0. This will underflow and is okay.
374 */
fd892593 375 next = mas_find(mas, ceiling - 1);
e0da382c 376
8f4f8c16 377 /*
25d9e2d1
NP
378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
8f4f8c16 380 */
98e51a22
SB
381 if (mm_wr_locked)
382 vma_start_write(vma);
5beb4930 383 unlink_anon_vmas(vma);
8f4f8c16
HD
384 unlink_file_vma(vma);
385
9da61aef 386 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 387 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 388 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
389 } else {
390 /*
391 * Optimization: gather nearby vmas into one call down
392 */
393 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 394 && !is_vm_hugetlb_page(next)) {
3bf5ee95 395 vma = next;
fd892593 396 next = mas_find(mas, ceiling - 1);
98e51a22
SB
397 if (mm_wr_locked)
398 vma_start_write(vma);
5beb4930 399 unlink_anon_vmas(vma);
8f4f8c16 400 unlink_file_vma(vma);
3bf5ee95
HD
401 }
402 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 403 floor, next ? next->vm_start : ceiling);
3bf5ee95 404 }
e0da382c 405 vma = next;
763ecb03 406 } while (vma);
1da177e4
LT
407}
408
03c4f204 409void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 410{
03c4f204 411 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 412
8ac1f832 413 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 414 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
415 /*
416 * Ensure all pte setup (eg. pte page lock and page clearing) are
417 * visible before the pte is made visible to other CPUs by being
418 * put into page tables.
419 *
420 * The other side of the story is the pointer chasing in the page
421 * table walking code (when walking the page table without locking;
422 * ie. most of the time). Fortunately, these data accesses consist
423 * of a chain of data-dependent loads, meaning most CPUs (alpha
424 * being the notable exception) will already guarantee loads are
425 * seen in-order. See the alpha page table accessors for the
426 * smp_rmb() barriers in page table walking code.
427 */
428 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
429 pmd_populate(mm, pmd, *pte);
430 *pte = NULL;
4b471e88 431 }
c4088ebd 432 spin_unlock(ptl);
03c4f204
QZ
433}
434
4cf58924 435int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 436{
4cf58924 437 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
438 if (!new)
439 return -ENOMEM;
440
03c4f204 441 pmd_install(mm, pmd, &new);
2f569afd
MS
442 if (new)
443 pte_free(mm, new);
1bb3630e 444 return 0;
1da177e4
LT
445}
446
4cf58924 447int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 448{
4cf58924 449 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
450 if (!new)
451 return -ENOMEM;
452
453 spin_lock(&init_mm.page_table_lock);
8ac1f832 454 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 455 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 456 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 457 new = NULL;
4b471e88 458 }
1bb3630e 459 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
460 if (new)
461 pte_free_kernel(&init_mm, new);
1bb3630e 462 return 0;
1da177e4
LT
463}
464
d559db08
KH
465static inline void init_rss_vec(int *rss)
466{
467 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
468}
469
470static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 471{
d559db08
KH
472 int i;
473
34e55232 474 if (current->mm == mm)
05af2e10 475 sync_mm_rss(mm);
d559db08
KH
476 for (i = 0; i < NR_MM_COUNTERS; i++)
477 if (rss[i])
478 add_mm_counter(mm, i, rss[i]);
ae859762
HD
479}
480
b5810039 481/*
6aab341e
LT
482 * This function is called to print an error when a bad pte
483 * is found. For example, we might have a PFN-mapped pte in
484 * a region that doesn't allow it.
b5810039
NP
485 *
486 * The calling function must still handle the error.
487 */
3dc14741
HD
488static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
489 pte_t pte, struct page *page)
b5810039 490{
3dc14741 491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
492 p4d_t *p4d = p4d_offset(pgd, addr);
493 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
494 pmd_t *pmd = pmd_offset(pud, addr);
495 struct address_space *mapping;
496 pgoff_t index;
d936cf9b
HD
497 static unsigned long resume;
498 static unsigned long nr_shown;
499 static unsigned long nr_unshown;
500
501 /*
502 * Allow a burst of 60 reports, then keep quiet for that minute;
503 * or allow a steady drip of one report per second.
504 */
505 if (nr_shown == 60) {
506 if (time_before(jiffies, resume)) {
507 nr_unshown++;
508 return;
509 }
510 if (nr_unshown) {
1170532b
JP
511 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512 nr_unshown);
d936cf9b
HD
513 nr_unshown = 0;
514 }
515 nr_shown = 0;
516 }
517 if (nr_shown++ == 0)
518 resume = jiffies + 60 * HZ;
3dc14741
HD
519
520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
521 index = linear_page_index(vma, addr);
522
1170532b
JP
523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
524 current->comm,
525 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 526 if (page)
f0b791a3 527 dump_page(page, "bad pte");
6aa9b8b2 528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
531 vma->vm_file,
532 vma->vm_ops ? vma->vm_ops->fault : NULL,
533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 534 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 535 dump_stack();
373d4d09 536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
537}
538
ee498ed7 539/*
7e675137 540 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 541 *
7e675137
NP
542 * "Special" mappings do not wish to be associated with a "struct page" (either
543 * it doesn't exist, or it exists but they don't want to touch it). In this
544 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 545 *
7e675137
NP
546 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
547 * pte bit, in which case this function is trivial. Secondly, an architecture
548 * may not have a spare pte bit, which requires a more complicated scheme,
549 * described below.
550 *
551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
552 * special mapping (even if there are underlying and valid "struct pages").
553 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 554 *
b379d790
JH
555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
558 * mapping will always honor the rule
6aab341e
LT
559 *
560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
561 *
7e675137
NP
562 * And for normal mappings this is false.
563 *
564 * This restricts such mappings to be a linear translation from virtual address
565 * to pfn. To get around this restriction, we allow arbitrary mappings so long
566 * as the vma is not a COW mapping; in that case, we know that all ptes are
567 * special (because none can have been COWed).
b379d790 568 *
b379d790 569 *
7e675137 570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
571 *
572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
573 * page" backing, however the difference is that _all_ pages with a struct
574 * page (that is, those where pfn_valid is true) are refcounted and considered
575 * normal pages by the VM. The disadvantage is that pages are refcounted
576 * (which can be slower and simply not an option for some PFNMAP users). The
577 * advantage is that we don't have to follow the strict linearity rule of
578 * PFNMAP mappings in order to support COWable mappings.
579 *
ee498ed7 580 */
25b2995a
CH
581struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
582 pte_t pte)
ee498ed7 583{
22b31eec 584 unsigned long pfn = pte_pfn(pte);
7e675137 585
00b3a331 586 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 587 if (likely(!pte_special(pte)))
22b31eec 588 goto check_pfn;
667a0a06
DV
589 if (vma->vm_ops && vma->vm_ops->find_special_page)
590 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
591 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
592 return NULL;
df6ad698
JG
593 if (is_zero_pfn(pfn))
594 return NULL;
e1fb4a08 595 if (pte_devmap(pte))
3218f871
AS
596 /*
597 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
598 * and will have refcounts incremented on their struct pages
599 * when they are inserted into PTEs, thus they are safe to
600 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
601 * do not have refcounts. Example of legacy ZONE_DEVICE is
602 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
603 */
e1fb4a08
DJ
604 return NULL;
605
df6ad698 606 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
607 return NULL;
608 }
609
00b3a331 610 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 611
b379d790
JH
612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613 if (vma->vm_flags & VM_MIXEDMAP) {
614 if (!pfn_valid(pfn))
615 return NULL;
616 goto out;
617 } else {
7e675137
NP
618 unsigned long off;
619 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
620 if (pfn == vma->vm_pgoff + off)
621 return NULL;
622 if (!is_cow_mapping(vma->vm_flags))
623 return NULL;
624 }
6aab341e
LT
625 }
626
b38af472
HD
627 if (is_zero_pfn(pfn))
628 return NULL;
00b3a331 629
22b31eec
HD
630check_pfn:
631 if (unlikely(pfn > highest_memmap_pfn)) {
632 print_bad_pte(vma, addr, pte, NULL);
633 return NULL;
634 }
6aab341e
LT
635
636 /*
7e675137 637 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 638 * eg. VDSO mappings can cause them to exist.
6aab341e 639 */
b379d790 640out:
6aab341e 641 return pfn_to_page(pfn);
ee498ed7
HD
642}
643
318e9342
VMO
644struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
645 pte_t pte)
646{
647 struct page *page = vm_normal_page(vma, addr, pte);
648
649 if (page)
650 return page_folio(page);
651 return NULL;
652}
653
28093f9f
GS
654#ifdef CONFIG_TRANSPARENT_HUGEPAGE
655struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
656 pmd_t pmd)
657{
658 unsigned long pfn = pmd_pfn(pmd);
659
660 /*
661 * There is no pmd_special() but there may be special pmds, e.g.
662 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 663 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
664 */
665 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
666 if (vma->vm_flags & VM_MIXEDMAP) {
667 if (!pfn_valid(pfn))
668 return NULL;
669 goto out;
670 } else {
671 unsigned long off;
672 off = (addr - vma->vm_start) >> PAGE_SHIFT;
673 if (pfn == vma->vm_pgoff + off)
674 return NULL;
675 if (!is_cow_mapping(vma->vm_flags))
676 return NULL;
677 }
678 }
679
e1fb4a08
DJ
680 if (pmd_devmap(pmd))
681 return NULL;
3cde287b 682 if (is_huge_zero_pmd(pmd))
28093f9f
GS
683 return NULL;
684 if (unlikely(pfn > highest_memmap_pfn))
685 return NULL;
686
687 /*
688 * NOTE! We still have PageReserved() pages in the page tables.
689 * eg. VDSO mappings can cause them to exist.
690 */
691out:
692 return pfn_to_page(pfn);
693}
694#endif
695
b756a3b5
AP
696static void restore_exclusive_pte(struct vm_area_struct *vma,
697 struct page *page, unsigned long address,
698 pte_t *ptep)
699{
c33c7948 700 pte_t orig_pte;
b756a3b5
AP
701 pte_t pte;
702 swp_entry_t entry;
703
c33c7948 704 orig_pte = ptep_get(ptep);
b756a3b5 705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
c33c7948 706 if (pte_swp_soft_dirty(orig_pte))
b756a3b5
AP
707 pte = pte_mksoft_dirty(pte);
708
c33c7948
RR
709 entry = pte_to_swp_entry(orig_pte);
710 if (pte_swp_uffd_wp(orig_pte))
b756a3b5
AP
711 pte = pte_mkuffd_wp(pte);
712 else if (is_writable_device_exclusive_entry(entry))
713 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714
6c287605
DH
715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716
b756a3b5
AP
717 /*
718 * No need to take a page reference as one was already
719 * created when the swap entry was made.
720 */
721 if (PageAnon(page))
f1e2db12 722 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
723 else
724 /*
725 * Currently device exclusive access only supports anonymous
726 * memory so the entry shouldn't point to a filebacked page.
727 */
4d8ff640 728 WARN_ON_ONCE(1);
b756a3b5 729
1eba86c0
PT
730 set_pte_at(vma->vm_mm, address, ptep, pte);
731
b756a3b5
AP
732 /*
733 * No need to invalidate - it was non-present before. However
734 * secondary CPUs may have mappings that need invalidating.
735 */
736 update_mmu_cache(vma, address, ptep);
737}
738
739/*
740 * Tries to restore an exclusive pte if the page lock can be acquired without
741 * sleeping.
742 */
743static int
744try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745 unsigned long addr)
746{
c33c7948 747 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
b756a3b5
AP
748 struct page *page = pfn_swap_entry_to_page(entry);
749
750 if (trylock_page(page)) {
751 restore_exclusive_pte(vma, page, addr, src_pte);
752 unlock_page(page);
753 return 0;
754 }
755
756 return -EBUSY;
757}
758
1da177e4
LT
759/*
760 * copy one vm_area from one task to the other. Assumes the page tables
761 * already present in the new task to be cleared in the whole range
762 * covered by this vma.
1da177e4
LT
763 */
764
df3a57d1
LT
765static unsigned long
766copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 769{
8f34f1ea 770 unsigned long vm_flags = dst_vma->vm_flags;
c33c7948
RR
771 pte_t orig_pte = ptep_get(src_pte);
772 pte_t pte = orig_pte;
1da177e4 773 struct page *page;
c33c7948 774 swp_entry_t entry = pte_to_swp_entry(orig_pte);
df3a57d1
LT
775
776 if (likely(!non_swap_entry(entry))) {
777 if (swap_duplicate(entry) < 0)
9a5cc85c 778 return -EIO;
df3a57d1
LT
779
780 /* make sure dst_mm is on swapoff's mmlist. */
781 if (unlikely(list_empty(&dst_mm->mmlist))) {
782 spin_lock(&mmlist_lock);
783 if (list_empty(&dst_mm->mmlist))
784 list_add(&dst_mm->mmlist,
785 &src_mm->mmlist);
786 spin_unlock(&mmlist_lock);
787 }
1493a191 788 /* Mark the swap entry as shared. */
c33c7948
RR
789 if (pte_swp_exclusive(orig_pte)) {
790 pte = pte_swp_clear_exclusive(orig_pte);
1493a191
DH
791 set_pte_at(src_mm, addr, src_pte, pte);
792 }
df3a57d1
LT
793 rss[MM_SWAPENTS]++;
794 } else if (is_migration_entry(entry)) {
af5cdaf8 795 page = pfn_swap_entry_to_page(entry);
1da177e4 796
df3a57d1 797 rss[mm_counter(page)]++;
5042db43 798
6c287605 799 if (!is_readable_migration_entry(entry) &&
df3a57d1 800 is_cow_mapping(vm_flags)) {
5042db43 801 /*
6c287605
DH
802 * COW mappings require pages in both parent and child
803 * to be set to read. A previously exclusive entry is
804 * now shared.
5042db43 805 */
4dd845b5
AP
806 entry = make_readable_migration_entry(
807 swp_offset(entry));
df3a57d1 808 pte = swp_entry_to_pte(entry);
c33c7948 809 if (pte_swp_soft_dirty(orig_pte))
df3a57d1 810 pte = pte_swp_mksoft_dirty(pte);
c33c7948 811 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
812 pte = pte_swp_mkuffd_wp(pte);
813 set_pte_at(src_mm, addr, src_pte, pte);
814 }
815 } else if (is_device_private_entry(entry)) {
af5cdaf8 816 page = pfn_swap_entry_to_page(entry);
5042db43 817
df3a57d1
LT
818 /*
819 * Update rss count even for unaddressable pages, as
820 * they should treated just like normal pages in this
821 * respect.
822 *
823 * We will likely want to have some new rss counters
824 * for unaddressable pages, at some point. But for now
825 * keep things as they are.
826 */
827 get_page(page);
828 rss[mm_counter(page)]++;
fb3d824d
DH
829 /* Cannot fail as these pages cannot get pinned. */
830 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
831
832 /*
833 * We do not preserve soft-dirty information, because so
834 * far, checkpoint/restore is the only feature that
835 * requires that. And checkpoint/restore does not work
836 * when a device driver is involved (you cannot easily
837 * save and restore device driver state).
838 */
4dd845b5 839 if (is_writable_device_private_entry(entry) &&
df3a57d1 840 is_cow_mapping(vm_flags)) {
4dd845b5
AP
841 entry = make_readable_device_private_entry(
842 swp_offset(entry));
df3a57d1 843 pte = swp_entry_to_pte(entry);
c33c7948 844 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
845 pte = pte_swp_mkuffd_wp(pte);
846 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 847 }
b756a3b5
AP
848 } else if (is_device_exclusive_entry(entry)) {
849 /*
850 * Make device exclusive entries present by restoring the
851 * original entry then copying as for a present pte. Device
852 * exclusive entries currently only support private writable
853 * (ie. COW) mappings.
854 */
855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857 return -EBUSY;
858 return -ENOENT;
c56d1b62 859 } else if (is_pte_marker_entry(entry)) {
af19487f
AR
860 pte_marker marker = copy_pte_marker(entry, dst_vma);
861
862 if (marker)
863 set_pte_at(dst_mm, addr, dst_pte,
864 make_pte_marker(marker));
c56d1b62 865 return 0;
1da177e4 866 }
8f34f1ea
PX
867 if (!userfaultfd_wp(dst_vma))
868 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
869 set_pte_at(dst_mm, addr, dst_pte, pte);
870 return 0;
871}
872
70e806e4 873/*
b51ad4f8 874 * Copy a present and normal page.
70e806e4 875 *
b51ad4f8
DH
876 * NOTE! The usual case is that this isn't required;
877 * instead, the caller can just increase the page refcount
878 * and re-use the pte the traditional way.
70e806e4
PX
879 *
880 * And if we need a pre-allocated page but don't yet have
881 * one, return a negative error to let the preallocation
882 * code know so that it can do so outside the page table
883 * lock.
884 */
885static inline int
c78f4636
PX
886copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 888 struct folio **prealloc, struct page *page)
70e806e4 889{
edf50470 890 struct folio *new_folio;
b51ad4f8 891 pte_t pte;
70e806e4 892
edf50470
MWO
893 new_folio = *prealloc;
894 if (!new_folio)
70e806e4
PX
895 return -EAGAIN;
896
897 /*
898 * We have a prealloc page, all good! Take it
899 * over and copy the page & arm it.
900 */
901 *prealloc = NULL;
edf50470
MWO
902 copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 __folio_mark_uptodate(new_folio);
904 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 folio_add_lru_vma(new_folio, dst_vma);
906 rss[MM_ANONPAGES]++;
70e806e4
PX
907
908 /* All done, just insert the new page copy in the child */
edf50470 909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
c78f4636 910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
c33c7948 911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
8f34f1ea 912 /* Uffd-wp needs to be delivered to dest pte as well */
f1eb1bac 913 pte = pte_mkuffd_wp(pte);
c78f4636 914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
915 return 0;
916}
917
918/*
919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
920 * is required to copy this pte.
921 */
922static inline int
c78f4636
PX
923copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 925 struct folio **prealloc)
df3a57d1 926{
c78f4636
PX
927 struct mm_struct *src_mm = src_vma->vm_mm;
928 unsigned long vm_flags = src_vma->vm_flags;
c33c7948 929 pte_t pte = ptep_get(src_pte);
df3a57d1 930 struct page *page;
14ddee41 931 struct folio *folio;
df3a57d1 932
c78f4636 933 page = vm_normal_page(src_vma, addr, pte);
14ddee41
MWO
934 if (page)
935 folio = page_folio(page);
936 if (page && folio_test_anon(folio)) {
b51ad4f8
DH
937 /*
938 * If this page may have been pinned by the parent process,
939 * copy the page immediately for the child so that we'll always
940 * guarantee the pinned page won't be randomly replaced in the
941 * future.
942 */
14ddee41 943 folio_get(folio);
fb3d824d 944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
14ddee41
MWO
945 /* Page may be pinned, we have to copy. */
946 folio_put(folio);
fb3d824d
DH
947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 addr, rss, prealloc, page);
949 }
edf50470 950 rss[MM_ANONPAGES]++;
b51ad4f8 951 } else if (page) {
14ddee41 952 folio_get(folio);
fb3d824d 953 page_dup_file_rmap(page, false);
edf50470 954 rss[mm_counter_file(page)]++;
70e806e4
PX
955 }
956
1da177e4
LT
957 /*
958 * If it's a COW mapping, write protect it both
959 * in the parent and the child
960 */
1b2de5d0 961 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 962 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 963 pte = pte_wrprotect(pte);
1da177e4 964 }
14ddee41 965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
1da177e4
LT
966
967 /*
968 * If it's a shared mapping, mark it clean in
969 * the child
970 */
971 if (vm_flags & VM_SHARED)
972 pte = pte_mkclean(pte);
973 pte = pte_mkold(pte);
6aab341e 974
8f34f1ea 975 if (!userfaultfd_wp(dst_vma))
b569a176
PX
976 pte = pte_clear_uffd_wp(pte);
977
c78f4636 978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
979 return 0;
980}
981
edf50470
MWO
982static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 struct vm_area_struct *vma, unsigned long addr)
70e806e4 984{
edf50470 985 struct folio *new_folio;
70e806e4 986
edf50470
MWO
987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988 if (!new_folio)
70e806e4
PX
989 return NULL;
990
edf50470
MWO
991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 folio_put(new_folio);
70e806e4 993 return NULL;
6aab341e 994 }
e601ded4 995 folio_throttle_swaprate(new_folio, GFP_KERNEL);
ae859762 996
edf50470 997 return new_folio;
1da177e4
LT
998}
999
c78f4636
PX
1000static int
1001copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003 unsigned long end)
1da177e4 1004{
c78f4636
PX
1005 struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1007 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1008 pte_t *src_pte, *dst_pte;
c33c7948 1009 pte_t ptent;
c74df32c 1010 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1011 int progress, ret = 0;
d559db08 1012 int rss[NR_MM_COUNTERS];
570a335b 1013 swp_entry_t entry = (swp_entry_t){0};
edf50470 1014 struct folio *prealloc = NULL;
1da177e4
LT
1015
1016again:
70e806e4 1017 progress = 0;
d559db08
KH
1018 init_rss_vec(rss);
1019
3db82b93
HD
1020 /*
1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 * error handling here, assume that exclusive mmap_lock on dst and src
1023 * protects anon from unexpected THP transitions; with shmem and file
1024 * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1026 * can remove such assumptions later, but this is good enough for now.
1027 */
c74df32c 1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1029 if (!dst_pte) {
1030 ret = -ENOMEM;
1031 goto out;
1032 }
3db82b93
HD
1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034 if (!src_pte) {
1035 pte_unmap_unlock(dst_pte, dst_ptl);
1036 /* ret == 0 */
1037 goto out;
1038 }
f20dc5f7 1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1040 orig_src_pte = src_pte;
1041 orig_dst_pte = dst_pte;
6606c3e0 1042 arch_enter_lazy_mmu_mode();
1da177e4 1043
1da177e4
LT
1044 do {
1045 /*
1046 * We are holding two locks at this point - either of them
1047 * could generate latencies in another task on another CPU.
1048 */
e040f218
HD
1049 if (progress >= 32) {
1050 progress = 0;
1051 if (need_resched() ||
95c354fe 1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1053 break;
1054 }
c33c7948
RR
1055 ptent = ptep_get(src_pte);
1056 if (pte_none(ptent)) {
1da177e4
LT
1057 progress++;
1058 continue;
1059 }
c33c7948 1060 if (unlikely(!pte_present(ptent))) {
9a5cc85c
AP
1061 ret = copy_nonpresent_pte(dst_mm, src_mm,
1062 dst_pte, src_pte,
1063 dst_vma, src_vma,
1064 addr, rss);
1065 if (ret == -EIO) {
c33c7948 1066 entry = pte_to_swp_entry(ptep_get(src_pte));
79a1971c 1067 break;
b756a3b5
AP
1068 } else if (ret == -EBUSY) {
1069 break;
1070 } else if (!ret) {
1071 progress += 8;
1072 continue;
9a5cc85c 1073 }
b756a3b5
AP
1074
1075 /*
1076 * Device exclusive entry restored, continue by copying
1077 * the now present pte.
1078 */
1079 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1080 }
70e806e4 1081 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 addr, rss, &prealloc);
70e806e4
PX
1084 /*
1085 * If we need a pre-allocated page for this pte, drop the
1086 * locks, allocate, and try again.
1087 */
1088 if (unlikely(ret == -EAGAIN))
1089 break;
1090 if (unlikely(prealloc)) {
1091 /*
1092 * pre-alloc page cannot be reused by next time so as
1093 * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 * will allocate page according to address). This
1095 * could only happen if one pinned pte changed.
1096 */
edf50470 1097 folio_put(prealloc);
70e806e4
PX
1098 prealloc = NULL;
1099 }
1da177e4
LT
1100 progress += 8;
1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1102
6606c3e0 1103 arch_leave_lazy_mmu_mode();
3db82b93 1104 pte_unmap_unlock(orig_src_pte, src_ptl);
d559db08 1105 add_mm_rss_vec(dst_mm, rss);
c36987e2 1106 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1107 cond_resched();
570a335b 1108
9a5cc85c
AP
1109 if (ret == -EIO) {
1110 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112 ret = -ENOMEM;
1113 goto out;
1114 }
1115 entry.val = 0;
b756a3b5
AP
1116 } else if (ret == -EBUSY) {
1117 goto out;
9a5cc85c 1118 } else if (ret == -EAGAIN) {
c78f4636 1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1120 if (!prealloc)
570a335b 1121 return -ENOMEM;
9a5cc85c
AP
1122 } else if (ret) {
1123 VM_WARN_ON_ONCE(1);
570a335b 1124 }
9a5cc85c
AP
1125
1126 /* We've captured and resolved the error. Reset, try again. */
1127 ret = 0;
1128
1da177e4
LT
1129 if (addr != end)
1130 goto again;
70e806e4
PX
1131out:
1132 if (unlikely(prealloc))
edf50470 1133 folio_put(prealloc);
70e806e4 1134 return ret;
1da177e4
LT
1135}
1136
c78f4636
PX
1137static inline int
1138copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140 unsigned long end)
1da177e4 1141{
c78f4636
PX
1142 struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1144 pmd_t *src_pmd, *dst_pmd;
1145 unsigned long next;
1146
1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148 if (!dst_pmd)
1149 return -ENOMEM;
1150 src_pmd = pmd_offset(src_pud, addr);
1151 do {
1152 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 || pmd_devmap(*src_pmd)) {
71e3aac0 1155 int err;
c78f4636 1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 addr, dst_vma, src_vma);
71e3aac0
AA
1159 if (err == -ENOMEM)
1160 return -ENOMEM;
1161 if (!err)
1162 continue;
1163 /* fall through */
1164 }
1da177e4
LT
1165 if (pmd_none_or_clear_bad(src_pmd))
1166 continue;
c78f4636
PX
1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168 addr, next))
1da177e4
LT
1169 return -ENOMEM;
1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171 return 0;
1172}
1173
c78f4636
PX
1174static inline int
1175copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177 unsigned long end)
1da177e4 1178{
c78f4636
PX
1179 struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1181 pud_t *src_pud, *dst_pud;
1182 unsigned long next;
1183
c2febafc 1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1185 if (!dst_pud)
1186 return -ENOMEM;
c2febafc 1187 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1188 do {
1189 next = pud_addr_end(addr, end);
a00cc7d9
MW
1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191 int err;
1192
c78f4636 1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1194 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1195 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1196 if (err == -ENOMEM)
1197 return -ENOMEM;
1198 if (!err)
1199 continue;
1200 /* fall through */
1201 }
1da177e4
LT
1202 if (pud_none_or_clear_bad(src_pud))
1203 continue;
c78f4636
PX
1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205 addr, next))
1da177e4
LT
1206 return -ENOMEM;
1207 } while (dst_pud++, src_pud++, addr = next, addr != end);
1208 return 0;
1209}
1210
c78f4636
PX
1211static inline int
1212copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214 unsigned long end)
c2febafc 1215{
c78f4636 1216 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1217 p4d_t *src_p4d, *dst_p4d;
1218 unsigned long next;
1219
1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221 if (!dst_p4d)
1222 return -ENOMEM;
1223 src_p4d = p4d_offset(src_pgd, addr);
1224 do {
1225 next = p4d_addr_end(addr, end);
1226 if (p4d_none_or_clear_bad(src_p4d))
1227 continue;
c78f4636
PX
1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229 addr, next))
c2febafc
KS
1230 return -ENOMEM;
1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232 return 0;
1233}
1234
c56d1b62
PX
1235/*
1236 * Return true if the vma needs to copy the pgtable during this fork(). Return
1237 * false when we can speed up fork() by allowing lazy page faults later until
1238 * when the child accesses the memory range.
1239 */
bc70fbf2 1240static bool
c56d1b62
PX
1241vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242{
1243 /*
1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 * contains uffd-wp protection information, that's something we can't
1247 * retrieve from page cache, and skip copying will lose those info.
1248 */
1249 if (userfaultfd_wp(dst_vma))
1250 return true;
1251
bcd51a3c 1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1253 return true;
1254
1255 if (src_vma->anon_vma)
1256 return true;
1257
1258 /*
1259 * Don't copy ptes where a page fault will fill them correctly. Fork
1260 * becomes much lighter when there are big shared or private readonly
1261 * mappings. The tradeoff is that copy_page_range is more efficient
1262 * than faulting.
1263 */
1264 return false;
1265}
1266
c78f4636
PX
1267int
1268copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1269{
1270 pgd_t *src_pgd, *dst_pgd;
1271 unsigned long next;
c78f4636
PX
1272 unsigned long addr = src_vma->vm_start;
1273 unsigned long end = src_vma->vm_end;
1274 struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1276 struct mmu_notifier_range range;
2ec74c3e 1277 bool is_cow;
cddb8a5c 1278 int ret;
1da177e4 1279
c56d1b62 1280 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1281 return 0;
d992895b 1282
c78f4636 1283 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1285
c78f4636 1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1287 /*
1288 * We do not free on error cases below as remove_vma
1289 * gets called on error from higher level routine
1290 */
c78f4636 1291 ret = track_pfn_copy(src_vma);
2ab64037 1292 if (ret)
1293 return ret;
1294 }
1295
cddb8a5c
AA
1296 /*
1297 * We need to invalidate the secondary MMU mappings only when
1298 * there could be a permission downgrade on the ptes of the
1299 * parent mm. And a permission downgrade will only happen if
1300 * is_cow_mapping() returns true.
1301 */
c78f4636 1302 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1303
1304 if (is_cow) {
7269f999 1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
7d4a8be0 1306 0, src_mm, addr, end);
ac46d4f3 1307 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1308 /*
1309 * Disabling preemption is not needed for the write side, as
1310 * the read side doesn't spin, but goes to the mmap_lock.
1311 *
1312 * Use the raw variant of the seqcount_t write API to avoid
1313 * lockdep complaining about preemptibility.
1314 */
e727bfd5 1315 vma_assert_write_locked(src_vma);
57efa1fe 1316 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1317 }
cddb8a5c
AA
1318
1319 ret = 0;
1da177e4
LT
1320 dst_pgd = pgd_offset(dst_mm, addr);
1321 src_pgd = pgd_offset(src_mm, addr);
1322 do {
1323 next = pgd_addr_end(addr, end);
1324 if (pgd_none_or_clear_bad(src_pgd))
1325 continue;
c78f4636
PX
1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327 addr, next))) {
d155df53 1328 untrack_pfn_clear(dst_vma);
cddb8a5c
AA
1329 ret = -ENOMEM;
1330 break;
1331 }
1da177e4 1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1333
57efa1fe
JG
1334 if (is_cow) {
1335 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1336 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1337 }
cddb8a5c 1338 return ret;
1da177e4
LT
1339}
1340
5abfd71d
PX
1341/* Whether we should zap all COWed (private) pages too */
1342static inline bool should_zap_cows(struct zap_details *details)
1343{
1344 /* By default, zap all pages */
1345 if (!details)
1346 return true;
1347
1348 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1349 return details->even_cows;
5abfd71d
PX
1350}
1351
2e148f1e 1352/* Decides whether we should zap this page with the page pointer specified */
254ab940 1353static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1354{
5abfd71d
PX
1355 /* If we can make a decision without *page.. */
1356 if (should_zap_cows(details))
254ab940 1357 return true;
5abfd71d
PX
1358
1359 /* E.g. the caller passes NULL for the case of a zero page */
1360 if (!page)
254ab940 1361 return true;
3506659e 1362
2e148f1e
PX
1363 /* Otherwise we should only zap non-anon pages */
1364 return !PageAnon(page);
3506659e
MWO
1365}
1366
999dad82
PX
1367static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368{
1369 if (!details)
1370 return false;
1371
1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373}
1374
1375/*
1376 * This function makes sure that we'll replace the none pte with an uffd-wp
1377 * swap special pte marker when necessary. Must be with the pgtable lock held.
1378 */
1379static inline void
1380zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381 unsigned long addr, pte_t *pte,
1382 struct zap_details *details, pte_t pteval)
1383{
2bad466c
PX
1384 /* Zap on anonymous always means dropping everything */
1385 if (vma_is_anonymous(vma))
1386 return;
1387
999dad82
PX
1388 if (zap_drop_file_uffd_wp(details))
1389 return;
1390
1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392}
1393
51c6f666 1394static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1395 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1396 unsigned long addr, unsigned long end,
97a89413 1397 struct zap_details *details)
1da177e4 1398{
b5810039 1399 struct mm_struct *mm = tlb->mm;
d16dfc55 1400 int force_flush = 0;
d559db08 1401 int rss[NR_MM_COUNTERS];
97a89413 1402 spinlock_t *ptl;
5f1a1907 1403 pte_t *start_pte;
97a89413 1404 pte_t *pte;
8a5f14a2 1405 swp_entry_t entry;
d559db08 1406
ed6a7935 1407 tlb_change_page_size(tlb, PAGE_SIZE);
e303297e 1408 init_rss_vec(rss);
3db82b93
HD
1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410 if (!pte)
1411 return addr;
1412
3ea27719 1413 flush_tlb_batched_pending(mm);
6606c3e0 1414 arch_enter_lazy_mmu_mode();
1da177e4 1415 do {
c33c7948 1416 pte_t ptent = ptep_get(pte);
8018db85
PX
1417 struct page *page;
1418
166f61b9 1419 if (pte_none(ptent))
1da177e4 1420 continue;
6f5e6b9e 1421
7b167b68
MK
1422 if (need_resched())
1423 break;
1424
1da177e4 1425 if (pte_present(ptent)) {
5df397de
LT
1426 unsigned int delay_rmap;
1427
25b2995a 1428 page = vm_normal_page(vma, addr, ptent);
254ab940 1429 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1430 continue;
b5810039 1431 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1432 tlb->fullmm);
e5136e87 1433 arch_check_zapped_pte(vma, ptent);
1da177e4 1434 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1435 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1436 ptent);
e2942062 1437 if (unlikely(!page)) {
6080d19f 1438 ksm_might_unmap_zero_page(mm, ptent);
1da177e4 1439 continue;
e2942062 1440 }
eca56ff9 1441
5df397de 1442 delay_rmap = 0;
eca56ff9 1443 if (!PageAnon(page)) {
1cf35d47 1444 if (pte_dirty(ptent)) {
6237bcd9 1445 set_page_dirty(page);
5df397de
LT
1446 if (tlb_delay_rmap(tlb)) {
1447 delay_rmap = 1;
1448 force_flush = 1;
1449 }
1cf35d47 1450 }
8788f678 1451 if (pte_young(ptent) && likely(vma_has_recency(vma)))
bf3f3bc5 1452 mark_page_accessed(page);
6237bcd9 1453 }
eca56ff9 1454 rss[mm_counter(page)]--;
5df397de
LT
1455 if (!delay_rmap) {
1456 page_remove_rmap(page, vma, false);
1457 if (unlikely(page_mapcount(page) < 0))
1458 print_bad_pte(vma, addr, ptent, page);
1459 }
1460 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1cf35d47 1461 force_flush = 1;
ce9ec37b 1462 addr += PAGE_SIZE;
d16dfc55 1463 break;
1cf35d47 1464 }
1da177e4
LT
1465 continue;
1466 }
5042db43
JG
1467
1468 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1469 if (is_device_private_entry(entry) ||
1470 is_device_exclusive_entry(entry)) {
8018db85 1471 page = pfn_swap_entry_to_page(entry);
254ab940 1472 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1473 continue;
999dad82
PX
1474 /*
1475 * Both device private/exclusive mappings should only
1476 * work with anonymous page so far, so we don't need to
1477 * consider uffd-wp bit when zap. For more information,
1478 * see zap_install_uffd_wp_if_needed().
1479 */
1480 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1481 rss[mm_counter(page)]--;
b756a3b5 1482 if (is_device_private_entry(entry))
cea86fe2 1483 page_remove_rmap(page, vma, false);
5042db43 1484 put_page(page);
8018db85 1485 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1486 /* Genuine swap entry, hence a private anon page */
1487 if (!should_zap_cows(details))
1488 continue;
8a5f14a2 1489 rss[MM_SWAPENTS]--;
8018db85
PX
1490 if (unlikely(!free_swap_and_cache(entry)))
1491 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1492 } else if (is_migration_entry(entry)) {
af5cdaf8 1493 page = pfn_swap_entry_to_page(entry);
254ab940 1494 if (!should_zap_page(details, page))
5abfd71d 1495 continue;
eca56ff9 1496 rss[mm_counter(page)]--;
999dad82 1497 } else if (pte_marker_entry_uffd_wp(entry)) {
2bad466c
PX
1498 /*
1499 * For anon: always drop the marker; for file: only
1500 * drop the marker if explicitly requested.
1501 */
1502 if (!vma_is_anonymous(vma) &&
1503 !zap_drop_file_uffd_wp(details))
999dad82 1504 continue;
9f186f9e 1505 } else if (is_hwpoison_entry(entry) ||
af19487f 1506 is_poisoned_swp_entry(entry)) {
5abfd71d
PX
1507 if (!should_zap_cows(details))
1508 continue;
1509 } else {
1510 /* We should have covered all the swap entry types */
1511 WARN_ON_ONCE(1);
b084d435 1512 }
9888a1ca 1513 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1514 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1515 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1516
d559db08 1517 add_mm_rss_vec(mm, rss);
6606c3e0 1518 arch_leave_lazy_mmu_mode();
51c6f666 1519
1cf35d47 1520 /* Do the actual TLB flush before dropping ptl */
5df397de 1521 if (force_flush) {
1cf35d47 1522 tlb_flush_mmu_tlbonly(tlb);
f036c818 1523 tlb_flush_rmaps(tlb, vma);
5df397de 1524 }
1cf35d47
LT
1525 pte_unmap_unlock(start_pte, ptl);
1526
1527 /*
1528 * If we forced a TLB flush (either due to running out of
1529 * batch buffers or because we needed to flush dirty TLB
1530 * entries before releasing the ptl), free the batched
3db82b93 1531 * memory too. Come back again if we didn't do everything.
1cf35d47 1532 */
3db82b93 1533 if (force_flush)
fa0aafb8 1534 tlb_flush_mmu(tlb);
d16dfc55 1535
51c6f666 1536 return addr;
1da177e4
LT
1537}
1538
51c6f666 1539static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1540 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1541 unsigned long addr, unsigned long end,
97a89413 1542 struct zap_details *details)
1da177e4
LT
1543{
1544 pmd_t *pmd;
1545 unsigned long next;
1546
1547 pmd = pmd_offset(pud, addr);
1548 do {
1549 next = pmd_addr_end(addr, end);
84c3fc4e 1550 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1551 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1552 __split_huge_pmd(vma, pmd, addr, false, NULL);
3db82b93
HD
1553 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1554 addr = next;
1555 continue;
1556 }
71e3aac0 1557 /* fall through */
3506659e
MWO
1558 } else if (details && details->single_folio &&
1559 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1560 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1561 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1562 /*
1563 * Take and drop THP pmd lock so that we cannot return
1564 * prematurely, while zap_huge_pmd() has cleared *pmd,
1565 * but not yet decremented compound_mapcount().
1566 */
1567 spin_unlock(ptl);
71e3aac0 1568 }
3db82b93
HD
1569 if (pmd_none(*pmd)) {
1570 addr = next;
1571 continue;
1572 }
1573 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1574 if (addr != next)
1575 pmd--;
1576 } while (pmd++, cond_resched(), addr != end);
51c6f666
RH
1577
1578 return addr;
1da177e4
LT
1579}
1580
51c6f666 1581static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1582 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1583 unsigned long addr, unsigned long end,
97a89413 1584 struct zap_details *details)
1da177e4
LT
1585{
1586 pud_t *pud;
1587 unsigned long next;
1588
c2febafc 1589 pud = pud_offset(p4d, addr);
1da177e4
LT
1590 do {
1591 next = pud_addr_end(addr, end);
a00cc7d9
MW
1592 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1593 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1594 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1595 split_huge_pud(vma, pud, addr);
1596 } else if (zap_huge_pud(tlb, vma, pud, addr))
1597 goto next;
1598 /* fall through */
1599 }
97a89413 1600 if (pud_none_or_clear_bad(pud))
1da177e4 1601 continue;
97a89413 1602 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1603next:
1604 cond_resched();
97a89413 1605 } while (pud++, addr = next, addr != end);
51c6f666
RH
1606
1607 return addr;
1da177e4
LT
1608}
1609
c2febafc
KS
1610static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1611 struct vm_area_struct *vma, pgd_t *pgd,
1612 unsigned long addr, unsigned long end,
1613 struct zap_details *details)
1614{
1615 p4d_t *p4d;
1616 unsigned long next;
1617
1618 p4d = p4d_offset(pgd, addr);
1619 do {
1620 next = p4d_addr_end(addr, end);
1621 if (p4d_none_or_clear_bad(p4d))
1622 continue;
1623 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1624 } while (p4d++, addr = next, addr != end);
1625
1626 return addr;
1627}
1628
aac45363 1629void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1630 struct vm_area_struct *vma,
1631 unsigned long addr, unsigned long end,
1632 struct zap_details *details)
1da177e4
LT
1633{
1634 pgd_t *pgd;
1635 unsigned long next;
1636
1da177e4
LT
1637 BUG_ON(addr >= end);
1638 tlb_start_vma(tlb, vma);
1639 pgd = pgd_offset(vma->vm_mm, addr);
1640 do {
1641 next = pgd_addr_end(addr, end);
97a89413 1642 if (pgd_none_or_clear_bad(pgd))
1da177e4 1643 continue;
c2febafc 1644 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1645 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1646 tlb_end_vma(tlb, vma);
1647}
51c6f666 1648
f5cc4eef
AV
1649
1650static void unmap_single_vma(struct mmu_gather *tlb,
1651 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1652 unsigned long end_addr,
68f48381 1653 struct zap_details *details, bool mm_wr_locked)
f5cc4eef
AV
1654{
1655 unsigned long start = max(vma->vm_start, start_addr);
1656 unsigned long end;
1657
1658 if (start >= vma->vm_end)
1659 return;
1660 end = min(vma->vm_end, end_addr);
1661 if (end <= vma->vm_start)
1662 return;
1663
cbc91f71
SD
1664 if (vma->vm_file)
1665 uprobe_munmap(vma, start, end);
1666
b3b9c293 1667 if (unlikely(vma->vm_flags & VM_PFNMAP))
68f48381 1668 untrack_pfn(vma, 0, 0, mm_wr_locked);
f5cc4eef
AV
1669
1670 if (start != end) {
1671 if (unlikely(is_vm_hugetlb_page(vma))) {
1672 /*
1673 * It is undesirable to test vma->vm_file as it
1674 * should be non-null for valid hugetlb area.
1675 * However, vm_file will be NULL in the error
7aa6b4ad 1676 * cleanup path of mmap_region. When
f5cc4eef 1677 * hugetlbfs ->mmap method fails,
7aa6b4ad 1678 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1679 * before calling this function to clean up.
1680 * Since no pte has actually been setup, it is
1681 * safe to do nothing in this case.
1682 */
24669e58 1683 if (vma->vm_file) {
05e90bd0
PX
1684 zap_flags_t zap_flags = details ?
1685 details->zap_flags : 0;
05e90bd0
PX
1686 __unmap_hugepage_range_final(tlb, vma, start, end,
1687 NULL, zap_flags);
24669e58 1688 }
f5cc4eef
AV
1689 } else
1690 unmap_page_range(tlb, vma, start, end, details);
1691 }
1da177e4
LT
1692}
1693
1da177e4
LT
1694/**
1695 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1696 * @tlb: address of the caller's struct mmu_gather
6e412203 1697 * @mas: the maple state
1da177e4
LT
1698 * @vma: the starting vma
1699 * @start_addr: virtual address at which to start unmapping
1700 * @end_addr: virtual address at which to end unmapping
6e412203 1701 * @tree_end: The maximum index to check
809ef83c 1702 * @mm_wr_locked: lock flag
1da177e4 1703 *
508034a3 1704 * Unmap all pages in the vma list.
1da177e4 1705 *
1da177e4
LT
1706 * Only addresses between `start' and `end' will be unmapped.
1707 *
1708 * The VMA list must be sorted in ascending virtual address order.
1709 *
1710 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1711 * range after unmap_vmas() returns. So the only responsibility here is to
1712 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1713 * drops the lock and schedules.
1714 */
fd892593 1715void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1da177e4 1716 struct vm_area_struct *vma, unsigned long start_addr,
fd892593
LH
1717 unsigned long end_addr, unsigned long tree_end,
1718 bool mm_wr_locked)
1da177e4 1719{
ac46d4f3 1720 struct mmu_notifier_range range;
999dad82 1721 struct zap_details details = {
04ada095 1722 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
999dad82
PX
1723 /* Careful - we need to zap private pages too! */
1724 .even_cows = true,
1725 };
1da177e4 1726
7d4a8be0 1727 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
6f4f13e8 1728 start_addr, end_addr);
ac46d4f3 1729 mmu_notifier_invalidate_range_start(&range);
763ecb03 1730 do {
68f48381
SB
1731 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1732 mm_wr_locked);
fd892593 1733 } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
ac46d4f3 1734 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1735}
1736
f5cc4eef
AV
1737/**
1738 * zap_page_range_single - remove user pages in a given range
1739 * @vma: vm_area_struct holding the applicable pages
1740 * @address: starting address of pages to zap
1741 * @size: number of bytes to zap
8a5f14a2 1742 * @details: details of shared cache invalidation
f5cc4eef
AV
1743 *
1744 * The range must fit into one VMA.
1da177e4 1745 */
21b85b09 1746void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1747 unsigned long size, struct zap_details *details)
1748{
21b85b09 1749 const unsigned long end = address + size;
ac46d4f3 1750 struct mmu_notifier_range range;
d16dfc55 1751 struct mmu_gather tlb;
1da177e4 1752
1da177e4 1753 lru_add_drain();
7d4a8be0 1754 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
21b85b09
MK
1755 address, end);
1756 if (is_vm_hugetlb_page(vma))
1757 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1758 &range.end);
a72afd87 1759 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1760 update_hiwater_rss(vma->vm_mm);
1761 mmu_notifier_invalidate_range_start(&range);
21b85b09
MK
1762 /*
1763 * unmap 'address-end' not 'range.start-range.end' as range
1764 * could have been expanded for hugetlb pmd sharing.
1765 */
68f48381 1766 unmap_single_vma(&tlb, vma, address, end, details, false);
ac46d4f3 1767 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1768 tlb_finish_mmu(&tlb);
1da177e4
LT
1769}
1770
c627f9cc
JS
1771/**
1772 * zap_vma_ptes - remove ptes mapping the vma
1773 * @vma: vm_area_struct holding ptes to be zapped
1774 * @address: starting address of pages to zap
1775 * @size: number of bytes to zap
1776 *
1777 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1778 *
1779 * The entire address range must be fully contained within the vma.
1780 *
c627f9cc 1781 */
27d036e3 1782void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1783 unsigned long size)
1784{
88a35912 1785 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1786 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1787 return;
1788
f5cc4eef 1789 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1790}
1791EXPORT_SYMBOL_GPL(zap_vma_ptes);
1792
8cd3984d 1793static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1794{
c2febafc
KS
1795 pgd_t *pgd;
1796 p4d_t *p4d;
1797 pud_t *pud;
1798 pmd_t *pmd;
1799
1800 pgd = pgd_offset(mm, addr);
1801 p4d = p4d_alloc(mm, pgd, addr);
1802 if (!p4d)
1803 return NULL;
1804 pud = pud_alloc(mm, p4d, addr);
1805 if (!pud)
1806 return NULL;
1807 pmd = pmd_alloc(mm, pud, addr);
1808 if (!pmd)
1809 return NULL;
1810
1811 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1812 return pmd;
1813}
1814
1815pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1816 spinlock_t **ptl)
1817{
1818 pmd_t *pmd = walk_to_pmd(mm, addr);
1819
1820 if (!pmd)
1821 return NULL;
c2febafc 1822 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1823}
1824
8efd6f5b
AR
1825static int validate_page_before_insert(struct page *page)
1826{
1827 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1828 return -EINVAL;
1829 flush_dcache_page(page);
1830 return 0;
1831}
1832
cea86fe2 1833static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1834 unsigned long addr, struct page *page, pgprot_t prot)
1835{
c33c7948 1836 if (!pte_none(ptep_get(pte)))
8efd6f5b
AR
1837 return -EBUSY;
1838 /* Ok, finally just insert the thing.. */
1839 get_page(page);
f1a79412 1840 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2
HD
1841 page_add_file_rmap(page, vma, false);
1842 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1843 return 0;
1844}
1845
238f58d8
LT
1846/*
1847 * This is the old fallback for page remapping.
1848 *
1849 * For historical reasons, it only allows reserved pages. Only
1850 * old drivers should use this, and they needed to mark their
1851 * pages reserved for the old functions anyway.
1852 */
423bad60
NP
1853static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1854 struct page *page, pgprot_t prot)
238f58d8
LT
1855{
1856 int retval;
c9cfcddf 1857 pte_t *pte;
8a9f3ccd
BS
1858 spinlock_t *ptl;
1859
8efd6f5b
AR
1860 retval = validate_page_before_insert(page);
1861 if (retval)
5b4e655e 1862 goto out;
238f58d8 1863 retval = -ENOMEM;
cea86fe2 1864 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1865 if (!pte)
5b4e655e 1866 goto out;
cea86fe2 1867 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1868 pte_unmap_unlock(pte, ptl);
1869out:
1870 return retval;
1871}
1872
cea86fe2 1873static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1874 unsigned long addr, struct page *page, pgprot_t prot)
1875{
1876 int err;
1877
1878 if (!page_count(page))
1879 return -EINVAL;
1880 err = validate_page_before_insert(page);
7f70c2a6
AR
1881 if (err)
1882 return err;
cea86fe2 1883 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1884}
1885
1886/* insert_pages() amortizes the cost of spinlock operations
bb7dbaaf 1887 * when inserting pages in a loop.
8cd3984d
AR
1888 */
1889static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1890 struct page **pages, unsigned long *num, pgprot_t prot)
1891{
1892 pmd_t *pmd = NULL;
7f70c2a6
AR
1893 pte_t *start_pte, *pte;
1894 spinlock_t *pte_lock;
8cd3984d
AR
1895 struct mm_struct *const mm = vma->vm_mm;
1896 unsigned long curr_page_idx = 0;
1897 unsigned long remaining_pages_total = *num;
1898 unsigned long pages_to_write_in_pmd;
1899 int ret;
1900more:
1901 ret = -EFAULT;
1902 pmd = walk_to_pmd(mm, addr);
1903 if (!pmd)
1904 goto out;
1905
1906 pages_to_write_in_pmd = min_t(unsigned long,
1907 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1908
1909 /* Allocate the PTE if necessary; takes PMD lock once only. */
1910 ret = -ENOMEM;
1911 if (pte_alloc(mm, pmd))
1912 goto out;
8cd3984d
AR
1913
1914 while (pages_to_write_in_pmd) {
1915 int pte_idx = 0;
1916 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1917
7f70c2a6 1918 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
3db82b93
HD
1919 if (!start_pte) {
1920 ret = -EFAULT;
1921 goto out;
1922 }
7f70c2a6 1923 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1924 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1925 addr, pages[curr_page_idx], prot);
1926 if (unlikely(err)) {
7f70c2a6 1927 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1928 ret = err;
1929 remaining_pages_total -= pte_idx;
1930 goto out;
1931 }
1932 addr += PAGE_SIZE;
1933 ++curr_page_idx;
1934 }
7f70c2a6 1935 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1936 pages_to_write_in_pmd -= batch_size;
1937 remaining_pages_total -= batch_size;
1938 }
1939 if (remaining_pages_total)
1940 goto more;
1941 ret = 0;
1942out:
1943 *num = remaining_pages_total;
1944 return ret;
1945}
8cd3984d
AR
1946
1947/**
1948 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1949 * @vma: user vma to map to
1950 * @addr: target start user address of these pages
1951 * @pages: source kernel pages
1952 * @num: in: number of pages to map. out: number of pages that were *not*
1953 * mapped. (0 means all pages were successfully mapped).
1954 *
1955 * Preferred over vm_insert_page() when inserting multiple pages.
1956 *
1957 * In case of error, we may have mapped a subset of the provided
1958 * pages. It is the caller's responsibility to account for this case.
1959 *
1960 * The same restrictions apply as in vm_insert_page().
1961 */
1962int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1963 struct page **pages, unsigned long *num)
1964{
8cd3984d
AR
1965 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1966
1967 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1968 return -EFAULT;
1969 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1970 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d 1971 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 1972 vm_flags_set(vma, VM_MIXEDMAP);
8cd3984d
AR
1973 }
1974 /* Defer page refcount checking till we're about to map that page. */
1975 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
8cd3984d
AR
1976}
1977EXPORT_SYMBOL(vm_insert_pages);
1978
bfa5bf6d
REB
1979/**
1980 * vm_insert_page - insert single page into user vma
1981 * @vma: user vma to map to
1982 * @addr: target user address of this page
1983 * @page: source kernel page
1984 *
a145dd41
LT
1985 * This allows drivers to insert individual pages they've allocated
1986 * into a user vma.
1987 *
1988 * The page has to be a nice clean _individual_ kernel allocation.
1989 * If you allocate a compound page, you need to have marked it as
1990 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1991 * (see split_page()).
a145dd41
LT
1992 *
1993 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1994 * took an arbitrary page protection parameter. This doesn't allow
1995 * that. Your vma protection will have to be set up correctly, which
1996 * means that if you want a shared writable mapping, you'd better
1997 * ask for a shared writable mapping!
1998 *
1999 * The page does not need to be reserved.
4b6e1e37
KK
2000 *
2001 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2002 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2003 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2004 * function from other places, for example from page-fault handler.
a862f68a
MR
2005 *
2006 * Return: %0 on success, negative error code otherwise.
a145dd41 2007 */
423bad60
NP
2008int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2009 struct page *page)
a145dd41
LT
2010{
2011 if (addr < vma->vm_start || addr >= vma->vm_end)
2012 return -EFAULT;
2013 if (!page_count(page))
2014 return -EINVAL;
4b6e1e37 2015 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2016 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37 2017 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 2018 vm_flags_set(vma, VM_MIXEDMAP);
4b6e1e37 2019 }
423bad60 2020 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2021}
e3c3374f 2022EXPORT_SYMBOL(vm_insert_page);
a145dd41 2023
a667d745
SJ
2024/*
2025 * __vm_map_pages - maps range of kernel pages into user vma
2026 * @vma: user vma to map to
2027 * @pages: pointer to array of source kernel pages
2028 * @num: number of pages in page array
2029 * @offset: user's requested vm_pgoff
2030 *
2031 * This allows drivers to map range of kernel pages into a user vma.
2032 *
2033 * Return: 0 on success and error code otherwise.
2034 */
2035static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2036 unsigned long num, unsigned long offset)
2037{
2038 unsigned long count = vma_pages(vma);
2039 unsigned long uaddr = vma->vm_start;
2040 int ret, i;
2041
2042 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2043 if (offset >= num)
a667d745
SJ
2044 return -ENXIO;
2045
2046 /* Fail if the user requested size exceeds available object size */
2047 if (count > num - offset)
2048 return -ENXIO;
2049
2050 for (i = 0; i < count; i++) {
2051 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2052 if (ret < 0)
2053 return ret;
2054 uaddr += PAGE_SIZE;
2055 }
2056
2057 return 0;
2058}
2059
2060/**
2061 * vm_map_pages - maps range of kernel pages starts with non zero offset
2062 * @vma: user vma to map to
2063 * @pages: pointer to array of source kernel pages
2064 * @num: number of pages in page array
2065 *
2066 * Maps an object consisting of @num pages, catering for the user's
2067 * requested vm_pgoff
2068 *
2069 * If we fail to insert any page into the vma, the function will return
2070 * immediately leaving any previously inserted pages present. Callers
2071 * from the mmap handler may immediately return the error as their caller
2072 * will destroy the vma, removing any successfully inserted pages. Other
2073 * callers should make their own arrangements for calling unmap_region().
2074 *
2075 * Context: Process context. Called by mmap handlers.
2076 * Return: 0 on success and error code otherwise.
2077 */
2078int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2079 unsigned long num)
2080{
2081 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2082}
2083EXPORT_SYMBOL(vm_map_pages);
2084
2085/**
2086 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2087 * @vma: user vma to map to
2088 * @pages: pointer to array of source kernel pages
2089 * @num: number of pages in page array
2090 *
2091 * Similar to vm_map_pages(), except that it explicitly sets the offset
2092 * to 0. This function is intended for the drivers that did not consider
2093 * vm_pgoff.
2094 *
2095 * Context: Process context. Called by mmap handlers.
2096 * Return: 0 on success and error code otherwise.
2097 */
2098int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2099 unsigned long num)
2100{
2101 return __vm_map_pages(vma, pages, num, 0);
2102}
2103EXPORT_SYMBOL(vm_map_pages_zero);
2104
9b5a8e00 2105static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2106 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2107{
2108 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2109 pte_t *pte, entry;
2110 spinlock_t *ptl;
2111
423bad60
NP
2112 pte = get_locked_pte(mm, addr, &ptl);
2113 if (!pte)
9b5a8e00 2114 return VM_FAULT_OOM;
c33c7948
RR
2115 entry = ptep_get(pte);
2116 if (!pte_none(entry)) {
b2770da6
RZ
2117 if (mkwrite) {
2118 /*
2119 * For read faults on private mappings the PFN passed
2120 * in may not match the PFN we have mapped if the
2121 * mapped PFN is a writeable COW page. In the mkwrite
2122 * case we are creating a writable PTE for a shared
f2c57d91
JK
2123 * mapping and we expect the PFNs to match. If they
2124 * don't match, we are likely racing with block
2125 * allocation and mapping invalidation so just skip the
2126 * update.
b2770da6 2127 */
c33c7948
RR
2128 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2129 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
b2770da6 2130 goto out_unlock;
f2c57d91 2131 }
c33c7948 2132 entry = pte_mkyoung(entry);
cae85cb8
JK
2133 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2134 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2135 update_mmu_cache(vma, addr, pte);
2136 }
2137 goto out_unlock;
b2770da6 2138 }
423bad60
NP
2139
2140 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2141 if (pfn_t_devmap(pfn))
2142 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2143 else
2144 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2145
b2770da6
RZ
2146 if (mkwrite) {
2147 entry = pte_mkyoung(entry);
2148 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2149 }
2150
423bad60 2151 set_pte_at(mm, addr, pte, entry);
4b3073e1 2152 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2153
423bad60
NP
2154out_unlock:
2155 pte_unmap_unlock(pte, ptl);
9b5a8e00 2156 return VM_FAULT_NOPAGE;
423bad60
NP
2157}
2158
f5e6d1d5
MW
2159/**
2160 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2161 * @vma: user vma to map to
2162 * @addr: target user address of this page
2163 * @pfn: source kernel pfn
2164 * @pgprot: pgprot flags for the inserted page
2165 *
a1a0aea5 2166 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2167 * to override pgprot on a per-page basis.
2168 *
2169 * This only makes sense for IO mappings, and it makes no sense for
2170 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2171 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2172 * impractical.
2173 *
28d8b812
LS
2174 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2175 * caching- and encryption bits different than those of @vma->vm_page_prot,
2176 * because the caching- or encryption mode may not be known at mmap() time.
2177 *
2178 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2179 * to set caching and encryption bits for those vmas (except for COW pages).
2180 * This is ensured by core vm only modifying these page table entries using
2181 * functions that don't touch caching- or encryption bits, using pte_modify()
2182 * if needed. (See for example mprotect()).
2183 *
2184 * Also when new page-table entries are created, this is only done using the
2185 * fault() callback, and never using the value of vma->vm_page_prot,
2186 * except for page-table entries that point to anonymous pages as the result
2187 * of COW.
574c5b3d 2188 *
ae2b01f3 2189 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2190 * Return: vm_fault_t value.
2191 */
2192vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2193 unsigned long pfn, pgprot_t pgprot)
2194{
6d958546
MW
2195 /*
2196 * Technically, architectures with pte_special can avoid all these
2197 * restrictions (same for remap_pfn_range). However we would like
2198 * consistency in testing and feature parity among all, so we should
2199 * try to keep these invariants in place for everybody.
2200 */
2201 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2202 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2203 (VM_PFNMAP|VM_MIXEDMAP));
2204 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2205 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2206
2207 if (addr < vma->vm_start || addr >= vma->vm_end)
2208 return VM_FAULT_SIGBUS;
2209
2210 if (!pfn_modify_allowed(pfn, pgprot))
2211 return VM_FAULT_SIGBUS;
2212
2213 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2214
9b5a8e00 2215 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2216 false);
f5e6d1d5
MW
2217}
2218EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2219
ae2b01f3
MW
2220/**
2221 * vmf_insert_pfn - insert single pfn into user vma
2222 * @vma: user vma to map to
2223 * @addr: target user address of this page
2224 * @pfn: source kernel pfn
2225 *
2226 * Similar to vm_insert_page, this allows drivers to insert individual pages
2227 * they've allocated into a user vma. Same comments apply.
2228 *
2229 * This function should only be called from a vm_ops->fault handler, and
2230 * in that case the handler should return the result of this function.
2231 *
2232 * vma cannot be a COW mapping.
2233 *
2234 * As this is called only for pages that do not currently exist, we
2235 * do not need to flush old virtual caches or the TLB.
2236 *
2237 * Context: Process context. May allocate using %GFP_KERNEL.
2238 * Return: vm_fault_t value.
2239 */
2240vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2241 unsigned long pfn)
2242{
2243 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2244}
2245EXPORT_SYMBOL(vmf_insert_pfn);
2246
785a3fab
DW
2247static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2248{
2249 /* these checks mirror the abort conditions in vm_normal_page */
2250 if (vma->vm_flags & VM_MIXEDMAP)
2251 return true;
2252 if (pfn_t_devmap(pfn))
2253 return true;
2254 if (pfn_t_special(pfn))
2255 return true;
2256 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2257 return true;
2258 return false;
2259}
2260
79f3aa5b 2261static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
28d8b812 2262 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 2263{
28d8b812 2264 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 2265 int err;
87744ab3 2266
785a3fab 2267 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2268
423bad60 2269 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2270 return VM_FAULT_SIGBUS;
308a047c
BP
2271
2272 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2273
42e4089c 2274 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2275 return VM_FAULT_SIGBUS;
42e4089c 2276
423bad60
NP
2277 /*
2278 * If we don't have pte special, then we have to use the pfn_valid()
2279 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2280 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2281 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2282 * without pte special, it would there be refcounted as a normal page.
423bad60 2283 */
00b3a331
LD
2284 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2285 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2286 struct page *page;
2287
03fc2da6
DW
2288 /*
2289 * At this point we are committed to insert_page()
2290 * regardless of whether the caller specified flags that
2291 * result in pfn_t_has_page() == false.
2292 */
2293 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2294 err = insert_page(vma, addr, page, pgprot);
2295 } else {
9b5a8e00 2296 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2297 }
b2770da6 2298
5d747637
MW
2299 if (err == -ENOMEM)
2300 return VM_FAULT_OOM;
2301 if (err < 0 && err != -EBUSY)
2302 return VM_FAULT_SIGBUS;
2303
2304 return VM_FAULT_NOPAGE;
e0dc0d8f 2305}
79f3aa5b
MW
2306
2307vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2308 pfn_t pfn)
2309{
28d8b812 2310 return __vm_insert_mixed(vma, addr, pfn, false);
79f3aa5b 2311}
5d747637 2312EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2313
ab77dab4
SJ
2314/*
2315 * If the insertion of PTE failed because someone else already added a
2316 * different entry in the mean time, we treat that as success as we assume
2317 * the same entry was actually inserted.
2318 */
ab77dab4
SJ
2319vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2320 unsigned long addr, pfn_t pfn)
b2770da6 2321{
28d8b812 2322 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 2323}
ab77dab4 2324EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2325
1da177e4
LT
2326/*
2327 * maps a range of physical memory into the requested pages. the old
2328 * mappings are removed. any references to nonexistent pages results
2329 * in null mappings (currently treated as "copy-on-access")
2330 */
2331static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2332 unsigned long addr, unsigned long end,
2333 unsigned long pfn, pgprot_t prot)
2334{
90a3e375 2335 pte_t *pte, *mapped_pte;
c74df32c 2336 spinlock_t *ptl;
42e4089c 2337 int err = 0;
1da177e4 2338
90a3e375 2339 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2340 if (!pte)
2341 return -ENOMEM;
6606c3e0 2342 arch_enter_lazy_mmu_mode();
1da177e4 2343 do {
c33c7948 2344 BUG_ON(!pte_none(ptep_get(pte)));
42e4089c
AK
2345 if (!pfn_modify_allowed(pfn, prot)) {
2346 err = -EACCES;
2347 break;
2348 }
7e675137 2349 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2350 pfn++;
2351 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2352 arch_leave_lazy_mmu_mode();
90a3e375 2353 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2354 return err;
1da177e4
LT
2355}
2356
2357static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2358 unsigned long addr, unsigned long end,
2359 unsigned long pfn, pgprot_t prot)
2360{
2361 pmd_t *pmd;
2362 unsigned long next;
42e4089c 2363 int err;
1da177e4
LT
2364
2365 pfn -= addr >> PAGE_SHIFT;
2366 pmd = pmd_alloc(mm, pud, addr);
2367 if (!pmd)
2368 return -ENOMEM;
f66055ab 2369 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2370 do {
2371 next = pmd_addr_end(addr, end);
42e4089c
AK
2372 err = remap_pte_range(mm, pmd, addr, next,
2373 pfn + (addr >> PAGE_SHIFT), prot);
2374 if (err)
2375 return err;
1da177e4
LT
2376 } while (pmd++, addr = next, addr != end);
2377 return 0;
2378}
2379
c2febafc 2380static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2381 unsigned long addr, unsigned long end,
2382 unsigned long pfn, pgprot_t prot)
2383{
2384 pud_t *pud;
2385 unsigned long next;
42e4089c 2386 int err;
1da177e4
LT
2387
2388 pfn -= addr >> PAGE_SHIFT;
c2febafc 2389 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2390 if (!pud)
2391 return -ENOMEM;
2392 do {
2393 next = pud_addr_end(addr, end);
42e4089c
AK
2394 err = remap_pmd_range(mm, pud, addr, next,
2395 pfn + (addr >> PAGE_SHIFT), prot);
2396 if (err)
2397 return err;
1da177e4
LT
2398 } while (pud++, addr = next, addr != end);
2399 return 0;
2400}
2401
c2febafc
KS
2402static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2403 unsigned long addr, unsigned long end,
2404 unsigned long pfn, pgprot_t prot)
2405{
2406 p4d_t *p4d;
2407 unsigned long next;
42e4089c 2408 int err;
c2febafc
KS
2409
2410 pfn -= addr >> PAGE_SHIFT;
2411 p4d = p4d_alloc(mm, pgd, addr);
2412 if (!p4d)
2413 return -ENOMEM;
2414 do {
2415 next = p4d_addr_end(addr, end);
42e4089c
AK
2416 err = remap_pud_range(mm, p4d, addr, next,
2417 pfn + (addr >> PAGE_SHIFT), prot);
2418 if (err)
2419 return err;
c2febafc
KS
2420 } while (p4d++, addr = next, addr != end);
2421 return 0;
2422}
2423
74ffa5a3
CH
2424/*
2425 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2426 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2427 */
74ffa5a3
CH
2428int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2429 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2430{
2431 pgd_t *pgd;
2432 unsigned long next;
2d15cab8 2433 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2434 struct mm_struct *mm = vma->vm_mm;
2435 int err;
2436
0c4123e3
AZ
2437 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2438 return -EINVAL;
2439
1da177e4
LT
2440 /*
2441 * Physically remapped pages are special. Tell the
2442 * rest of the world about it:
2443 * VM_IO tells people not to look at these pages
2444 * (accesses can have side effects).
6aab341e
LT
2445 * VM_PFNMAP tells the core MM that the base pages are just
2446 * raw PFN mappings, and do not have a "struct page" associated
2447 * with them.
314e51b9
KK
2448 * VM_DONTEXPAND
2449 * Disable vma merging and expanding with mremap().
2450 * VM_DONTDUMP
2451 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2452 *
2453 * There's a horrible special case to handle copy-on-write
2454 * behaviour that some programs depend on. We mark the "original"
2455 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2456 * See vm_normal_page() for details.
1da177e4 2457 */
b3b9c293
KK
2458 if (is_cow_mapping(vma->vm_flags)) {
2459 if (addr != vma->vm_start || end != vma->vm_end)
2460 return -EINVAL;
fb155c16 2461 vma->vm_pgoff = pfn;
b3b9c293
KK
2462 }
2463
1c71222e 2464 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1da177e4
LT
2465
2466 BUG_ON(addr >= end);
2467 pfn -= addr >> PAGE_SHIFT;
2468 pgd = pgd_offset(mm, addr);
2469 flush_cache_range(vma, addr, end);
1da177e4
LT
2470 do {
2471 next = pgd_addr_end(addr, end);
c2febafc 2472 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2473 pfn + (addr >> PAGE_SHIFT), prot);
2474 if (err)
74ffa5a3 2475 return err;
1da177e4 2476 } while (pgd++, addr = next, addr != end);
2ab64037 2477
74ffa5a3
CH
2478 return 0;
2479}
2480
2481/**
2482 * remap_pfn_range - remap kernel memory to userspace
2483 * @vma: user vma to map to
2484 * @addr: target page aligned user address to start at
2485 * @pfn: page frame number of kernel physical memory address
2486 * @size: size of mapping area
2487 * @prot: page protection flags for this mapping
2488 *
2489 * Note: this is only safe if the mm semaphore is held when called.
2490 *
2491 * Return: %0 on success, negative error code otherwise.
2492 */
2493int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2494 unsigned long pfn, unsigned long size, pgprot_t prot)
2495{
2496 int err;
2497
2498 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2499 if (err)
74ffa5a3 2500 return -EINVAL;
2ab64037 2501
74ffa5a3
CH
2502 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2503 if (err)
68f48381 2504 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
1da177e4
LT
2505 return err;
2506}
2507EXPORT_SYMBOL(remap_pfn_range);
2508
b4cbb197
LT
2509/**
2510 * vm_iomap_memory - remap memory to userspace
2511 * @vma: user vma to map to
abd69b9e 2512 * @start: start of the physical memory to be mapped
b4cbb197
LT
2513 * @len: size of area
2514 *
2515 * This is a simplified io_remap_pfn_range() for common driver use. The
2516 * driver just needs to give us the physical memory range to be mapped,
2517 * we'll figure out the rest from the vma information.
2518 *
2519 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2520 * whatever write-combining details or similar.
a862f68a
MR
2521 *
2522 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2523 */
2524int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2525{
2526 unsigned long vm_len, pfn, pages;
2527
2528 /* Check that the physical memory area passed in looks valid */
2529 if (start + len < start)
2530 return -EINVAL;
2531 /*
2532 * You *really* shouldn't map things that aren't page-aligned,
2533 * but we've historically allowed it because IO memory might
2534 * just have smaller alignment.
2535 */
2536 len += start & ~PAGE_MASK;
2537 pfn = start >> PAGE_SHIFT;
2538 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2539 if (pfn + pages < pfn)
2540 return -EINVAL;
2541
2542 /* We start the mapping 'vm_pgoff' pages into the area */
2543 if (vma->vm_pgoff > pages)
2544 return -EINVAL;
2545 pfn += vma->vm_pgoff;
2546 pages -= vma->vm_pgoff;
2547
2548 /* Can we fit all of the mapping? */
2549 vm_len = vma->vm_end - vma->vm_start;
2550 if (vm_len >> PAGE_SHIFT > pages)
2551 return -EINVAL;
2552
2553 /* Ok, let it rip */
2554 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2555}
2556EXPORT_SYMBOL(vm_iomap_memory);
2557
aee16b3c
JF
2558static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2559 unsigned long addr, unsigned long end,
e80d3909
JR
2560 pte_fn_t fn, void *data, bool create,
2561 pgtbl_mod_mask *mask)
aee16b3c 2562{
8abb50c7 2563 pte_t *pte, *mapped_pte;
be1db475 2564 int err = 0;
3f649ab7 2565 spinlock_t *ptl;
aee16b3c 2566
be1db475 2567 if (create) {
8abb50c7 2568 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2569 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2570 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2571 if (!pte)
2572 return -ENOMEM;
2573 } else {
8abb50c7 2574 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2575 pte_offset_kernel(pmd, addr) :
2576 pte_offset_map_lock(mm, pmd, addr, &ptl);
3db82b93
HD
2577 if (!pte)
2578 return -EINVAL;
be1db475 2579 }
aee16b3c 2580
38e0edb1
JF
2581 arch_enter_lazy_mmu_mode();
2582
eeb4a05f
CH
2583 if (fn) {
2584 do {
c33c7948 2585 if (create || !pte_none(ptep_get(pte))) {
eeb4a05f
CH
2586 err = fn(pte++, addr, data);
2587 if (err)
2588 break;
2589 }
2590 } while (addr += PAGE_SIZE, addr != end);
2591 }
e80d3909 2592 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2593
38e0edb1
JF
2594 arch_leave_lazy_mmu_mode();
2595
aee16b3c 2596 if (mm != &init_mm)
8abb50c7 2597 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2598 return err;
2599}
2600
2601static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2602 unsigned long addr, unsigned long end,
e80d3909
JR
2603 pte_fn_t fn, void *data, bool create,
2604 pgtbl_mod_mask *mask)
aee16b3c
JF
2605{
2606 pmd_t *pmd;
2607 unsigned long next;
be1db475 2608 int err = 0;
aee16b3c 2609
ceb86879
AK
2610 BUG_ON(pud_huge(*pud));
2611
be1db475 2612 if (create) {
e80d3909 2613 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2614 if (!pmd)
2615 return -ENOMEM;
2616 } else {
2617 pmd = pmd_offset(pud, addr);
2618 }
aee16b3c
JF
2619 do {
2620 next = pmd_addr_end(addr, end);
0c95cba4
NP
2621 if (pmd_none(*pmd) && !create)
2622 continue;
2623 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2624 return -EINVAL;
2625 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2626 if (!create)
2627 continue;
2628 pmd_clear_bad(pmd);
be1db475 2629 }
0c95cba4
NP
2630 err = apply_to_pte_range(mm, pmd, addr, next,
2631 fn, data, create, mask);
2632 if (err)
2633 break;
aee16b3c 2634 } while (pmd++, addr = next, addr != end);
0c95cba4 2635
aee16b3c
JF
2636 return err;
2637}
2638
c2febafc 2639static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2640 unsigned long addr, unsigned long end,
e80d3909
JR
2641 pte_fn_t fn, void *data, bool create,
2642 pgtbl_mod_mask *mask)
aee16b3c
JF
2643{
2644 pud_t *pud;
2645 unsigned long next;
be1db475 2646 int err = 0;
aee16b3c 2647
be1db475 2648 if (create) {
e80d3909 2649 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2650 if (!pud)
2651 return -ENOMEM;
2652 } else {
2653 pud = pud_offset(p4d, addr);
2654 }
aee16b3c
JF
2655 do {
2656 next = pud_addr_end(addr, end);
0c95cba4
NP
2657 if (pud_none(*pud) && !create)
2658 continue;
2659 if (WARN_ON_ONCE(pud_leaf(*pud)))
2660 return -EINVAL;
2661 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2662 if (!create)
2663 continue;
2664 pud_clear_bad(pud);
be1db475 2665 }
0c95cba4
NP
2666 err = apply_to_pmd_range(mm, pud, addr, next,
2667 fn, data, create, mask);
2668 if (err)
2669 break;
aee16b3c 2670 } while (pud++, addr = next, addr != end);
0c95cba4 2671
aee16b3c
JF
2672 return err;
2673}
2674
c2febafc
KS
2675static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2676 unsigned long addr, unsigned long end,
e80d3909
JR
2677 pte_fn_t fn, void *data, bool create,
2678 pgtbl_mod_mask *mask)
c2febafc
KS
2679{
2680 p4d_t *p4d;
2681 unsigned long next;
be1db475 2682 int err = 0;
c2febafc 2683
be1db475 2684 if (create) {
e80d3909 2685 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2686 if (!p4d)
2687 return -ENOMEM;
2688 } else {
2689 p4d = p4d_offset(pgd, addr);
2690 }
c2febafc
KS
2691 do {
2692 next = p4d_addr_end(addr, end);
0c95cba4
NP
2693 if (p4d_none(*p4d) && !create)
2694 continue;
2695 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2696 return -EINVAL;
2697 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2698 if (!create)
2699 continue;
2700 p4d_clear_bad(p4d);
be1db475 2701 }
0c95cba4
NP
2702 err = apply_to_pud_range(mm, p4d, addr, next,
2703 fn, data, create, mask);
2704 if (err)
2705 break;
c2febafc 2706 } while (p4d++, addr = next, addr != end);
0c95cba4 2707
c2febafc
KS
2708 return err;
2709}
2710
be1db475
DA
2711static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2712 unsigned long size, pte_fn_t fn,
2713 void *data, bool create)
aee16b3c
JF
2714{
2715 pgd_t *pgd;
e80d3909 2716 unsigned long start = addr, next;
57250a5b 2717 unsigned long end = addr + size;
e80d3909 2718 pgtbl_mod_mask mask = 0;
be1db475 2719 int err = 0;
aee16b3c 2720
9cb65bc3
MP
2721 if (WARN_ON(addr >= end))
2722 return -EINVAL;
2723
aee16b3c
JF
2724 pgd = pgd_offset(mm, addr);
2725 do {
2726 next = pgd_addr_end(addr, end);
0c95cba4 2727 if (pgd_none(*pgd) && !create)
be1db475 2728 continue;
0c95cba4
NP
2729 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2730 return -EINVAL;
2731 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2732 if (!create)
2733 continue;
2734 pgd_clear_bad(pgd);
2735 }
2736 err = apply_to_p4d_range(mm, pgd, addr, next,
2737 fn, data, create, &mask);
aee16b3c
JF
2738 if (err)
2739 break;
2740 } while (pgd++, addr = next, addr != end);
57250a5b 2741
e80d3909
JR
2742 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2743 arch_sync_kernel_mappings(start, start + size);
2744
aee16b3c
JF
2745 return err;
2746}
be1db475
DA
2747
2748/*
2749 * Scan a region of virtual memory, filling in page tables as necessary
2750 * and calling a provided function on each leaf page table.
2751 */
2752int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2753 unsigned long size, pte_fn_t fn, void *data)
2754{
2755 return __apply_to_page_range(mm, addr, size, fn, data, true);
2756}
aee16b3c
JF
2757EXPORT_SYMBOL_GPL(apply_to_page_range);
2758
be1db475
DA
2759/*
2760 * Scan a region of virtual memory, calling a provided function on
2761 * each leaf page table where it exists.
2762 *
2763 * Unlike apply_to_page_range, this does _not_ fill in page tables
2764 * where they are absent.
2765 */
2766int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2767 unsigned long size, pte_fn_t fn, void *data)
2768{
2769 return __apply_to_page_range(mm, addr, size, fn, data, false);
2770}
2771EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2772
8f4e2101 2773/*
9b4bdd2f
KS
2774 * handle_pte_fault chooses page fault handler according to an entry which was
2775 * read non-atomically. Before making any commitment, on those architectures
2776 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2777 * parts, do_swap_page must check under lock before unmapping the pte and
2778 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2779 * and do_anonymous_page can safely check later on).
8f4e2101 2780 */
2ca99358 2781static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2782{
2783 int same = 1;
923717cb 2784#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2785 if (sizeof(pte_t) > sizeof(unsigned long)) {
c7ad0880 2786 spin_lock(vmf->ptl);
c33c7948 2787 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
c7ad0880 2788 spin_unlock(vmf->ptl);
8f4e2101
HD
2789 }
2790#endif
2ca99358
PX
2791 pte_unmap(vmf->pte);
2792 vmf->pte = NULL;
8f4e2101
HD
2793 return same;
2794}
2795
a873dfe1
TL
2796/*
2797 * Return:
2798 * 0: copied succeeded
2799 * -EHWPOISON: copy failed due to hwpoison in source page
2800 * -EAGAIN: copied failed (some other reason)
2801 */
2802static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2803 struct vm_fault *vmf)
6aab341e 2804{
a873dfe1 2805 int ret;
83d116c5
JH
2806 void *kaddr;
2807 void __user *uaddr;
83d116c5
JH
2808 struct vm_area_struct *vma = vmf->vma;
2809 struct mm_struct *mm = vma->vm_mm;
2810 unsigned long addr = vmf->address;
2811
83d116c5 2812 if (likely(src)) {
d302c239
TL
2813 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2814 memory_failure_queue(page_to_pfn(src), 0);
a873dfe1 2815 return -EHWPOISON;
d302c239 2816 }
a873dfe1 2817 return 0;
83d116c5
JH
2818 }
2819
6aab341e
LT
2820 /*
2821 * If the source page was a PFN mapping, we don't have
2822 * a "struct page" for it. We do a best-effort copy by
2823 * just copying from the original user address. If that
2824 * fails, we just zero-fill it. Live with it.
2825 */
83d116c5
JH
2826 kaddr = kmap_atomic(dst);
2827 uaddr = (void __user *)(addr & PAGE_MASK);
2828
2829 /*
2830 * On architectures with software "accessed" bits, we would
2831 * take a double page fault, so mark it accessed here.
2832 */
3db82b93 2833 vmf->pte = NULL;
e1fd09e3 2834 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2835 pte_t entry;
5d2a2dbb 2836
83d116c5 2837 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 2838 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
83d116c5
JH
2839 /*
2840 * Other thread has already handled the fault
7df67697 2841 * and update local tlb only
83d116c5 2842 */
a92cbb82
HD
2843 if (vmf->pte)
2844 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2845 ret = -EAGAIN;
83d116c5
JH
2846 goto pte_unlock;
2847 }
2848
2849 entry = pte_mkyoung(vmf->orig_pte);
2850 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
5003a2bd 2851 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
83d116c5
JH
2852 }
2853
2854 /*
2855 * This really shouldn't fail, because the page is there
2856 * in the page tables. But it might just be unreadable,
2857 * in which case we just give up and fill the result with
2858 * zeroes.
2859 */
2860 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3db82b93 2861 if (vmf->pte)
c3e5ea6e
KS
2862 goto warn;
2863
2864 /* Re-validate under PTL if the page is still mapped */
2865 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 2866 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
7df67697 2867 /* The PTE changed under us, update local tlb */
a92cbb82
HD
2868 if (vmf->pte)
2869 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2870 ret = -EAGAIN;
c3e5ea6e
KS
2871 goto pte_unlock;
2872 }
2873
5d2a2dbb 2874 /*
985ba004 2875 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2876 * Try to copy again under PTL.
5d2a2dbb 2877 */
c3e5ea6e
KS
2878 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2879 /*
2880 * Give a warn in case there can be some obscure
2881 * use-case
2882 */
2883warn:
2884 WARN_ON_ONCE(1);
2885 clear_page(kaddr);
2886 }
83d116c5
JH
2887 }
2888
a873dfe1 2889 ret = 0;
83d116c5
JH
2890
2891pte_unlock:
3db82b93 2892 if (vmf->pte)
83d116c5
JH
2893 pte_unmap_unlock(vmf->pte, vmf->ptl);
2894 kunmap_atomic(kaddr);
2895 flush_dcache_page(dst);
2896
2897 return ret;
6aab341e
LT
2898}
2899
c20cd45e
MH
2900static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2901{
2902 struct file *vm_file = vma->vm_file;
2903
2904 if (vm_file)
2905 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2906
2907 /*
2908 * Special mappings (e.g. VDSO) do not have any file so fake
2909 * a default GFP_KERNEL for them.
2910 */
2911 return GFP_KERNEL;
2912}
2913
fb09a464
KS
2914/*
2915 * Notify the address space that the page is about to become writable so that
2916 * it can prohibit this or wait for the page to get into an appropriate state.
2917 *
2918 * We do this without the lock held, so that it can sleep if it needs to.
2919 */
86aa6998 2920static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
fb09a464 2921{
2b740303 2922 vm_fault_t ret;
38b8cb7f 2923 unsigned int old_flags = vmf->flags;
fb09a464 2924
38b8cb7f 2925 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2926
dc617f29
DW
2927 if (vmf->vma->vm_file &&
2928 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2929 return VM_FAULT_SIGBUS;
2930
11bac800 2931 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2932 /* Restore original flags so that caller is not surprised */
2933 vmf->flags = old_flags;
fb09a464
KS
2934 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2935 return ret;
2936 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3d243659
SK
2937 folio_lock(folio);
2938 if (!folio->mapping) {
2939 folio_unlock(folio);
fb09a464
KS
2940 return 0; /* retry */
2941 }
2942 ret |= VM_FAULT_LOCKED;
2943 } else
3d243659 2944 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fb09a464
KS
2945 return ret;
2946}
2947
97ba0c2b
JK
2948/*
2949 * Handle dirtying of a page in shared file mapping on a write fault.
2950 *
2951 * The function expects the page to be locked and unlocks it.
2952 */
89b15332 2953static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2954{
89b15332 2955 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2956 struct address_space *mapping;
15b4919a 2957 struct folio *folio = page_folio(vmf->page);
97ba0c2b
JK
2958 bool dirtied;
2959 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2960
15b4919a
Z
2961 dirtied = folio_mark_dirty(folio);
2962 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
97ba0c2b 2963 /*
15b4919a
Z
2964 * Take a local copy of the address_space - folio.mapping may be zeroed
2965 * by truncate after folio_unlock(). The address_space itself remains
2966 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
97ba0c2b
JK
2967 * release semantics to prevent the compiler from undoing this copying.
2968 */
15b4919a
Z
2969 mapping = folio_raw_mapping(folio);
2970 folio_unlock(folio);
97ba0c2b 2971
89b15332
JW
2972 if (!page_mkwrite)
2973 file_update_time(vma->vm_file);
2974
2975 /*
2976 * Throttle page dirtying rate down to writeback speed.
2977 *
2978 * mapping may be NULL here because some device drivers do not
2979 * set page.mapping but still dirty their pages
2980 *
c1e8d7c6 2981 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2982 * is pinning the mapping, as per above.
2983 */
97ba0c2b 2984 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2985 struct file *fpin;
2986
2987 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2988 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2989 if (fpin) {
2990 fput(fpin);
d9272525 2991 return VM_FAULT_COMPLETED;
89b15332 2992 }
97ba0c2b
JK
2993 }
2994
89b15332 2995 return 0;
97ba0c2b
JK
2996}
2997
4e047f89
SR
2998/*
2999 * Handle write page faults for pages that can be reused in the current vma
3000 *
3001 * This can happen either due to the mapping being with the VM_SHARED flag,
3002 * or due to us being the last reference standing to the page. In either
3003 * case, all we need to do here is to mark the page as writable and update
3004 * any related book-keeping.
3005 */
997dd98d 3006static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 3007 __releases(vmf->ptl)
4e047f89 3008{
82b0f8c3 3009 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3010 struct page *page = vmf->page;
4e047f89 3011 pte_t entry;
6c287605 3012
c89357e2 3013 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
cdb281e6 3014 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
6c287605 3015
4e047f89
SR
3016 /*
3017 * Clear the pages cpupid information as the existing
3018 * information potentially belongs to a now completely
3019 * unrelated process.
3020 */
3021 if (page)
3022 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3023
2994302b
JK
3024 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3025 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3026 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3 3027 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
5003a2bd 3028 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
82b0f8c3 3029 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3030 count_vm_event(PGREUSE);
4e047f89
SR
3031}
3032
2f38ab2c 3033/*
c89357e2
DH
3034 * Handle the case of a page which we actually need to copy to a new page,
3035 * either due to COW or unsharing.
2f38ab2c 3036 *
c1e8d7c6 3037 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3038 * without the ptl held.
3039 *
3040 * High level logic flow:
3041 *
3042 * - Allocate a page, copy the content of the old page to the new one.
3043 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3044 * - Take the PTL. If the pte changed, bail out and release the allocated page
3045 * - If the pte is still the way we remember it, update the page table and all
3046 * relevant references. This includes dropping the reference the page-table
3047 * held to the old page, as well as updating the rmap.
3048 * - In any case, unlock the PTL and drop the reference we took to the old page.
3049 */
2b740303 3050static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3051{
c89357e2 3052 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3053 struct vm_area_struct *vma = vmf->vma;
bae473a4 3054 struct mm_struct *mm = vma->vm_mm;
28d41a48
MWO
3055 struct folio *old_folio = NULL;
3056 struct folio *new_folio = NULL;
2f38ab2c
SR
3057 pte_t entry;
3058 int page_copied = 0;
ac46d4f3 3059 struct mmu_notifier_range range;
a873dfe1 3060 int ret;
2f38ab2c 3061
662ce1dc
YY
3062 delayacct_wpcopy_start();
3063
28d41a48
MWO
3064 if (vmf->page)
3065 old_folio = page_folio(vmf->page);
2f38ab2c
SR
3066 if (unlikely(anon_vma_prepare(vma)))
3067 goto oom;
3068
2994302b 3069 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
6bc56a4d
MWO
3070 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3071 if (!new_folio)
2f38ab2c
SR
3072 goto oom;
3073 } else {
28d41a48
MWO
3074 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3075 vmf->address, false);
3076 if (!new_folio)
2f38ab2c 3077 goto oom;
83d116c5 3078
28d41a48 3079 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
a873dfe1 3080 if (ret) {
83d116c5
JH
3081 /*
3082 * COW failed, if the fault was solved by other,
3083 * it's fine. If not, userspace would re-fault on
3084 * the same address and we will handle the fault
3085 * from the second attempt.
a873dfe1 3086 * The -EHWPOISON case will not be retried.
83d116c5 3087 */
28d41a48
MWO
3088 folio_put(new_folio);
3089 if (old_folio)
3090 folio_put(old_folio);
662ce1dc
YY
3091
3092 delayacct_wpcopy_end();
a873dfe1 3093 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
83d116c5 3094 }
28d41a48 3095 kmsan_copy_page_meta(&new_folio->page, vmf->page);
2f38ab2c 3096 }
2f38ab2c 3097
28d41a48 3098 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
2f38ab2c 3099 goto oom_free_new;
4d4f75bf 3100 folio_throttle_swaprate(new_folio, GFP_KERNEL);
2f38ab2c 3101
28d41a48 3102 __folio_mark_uptodate(new_folio);
eb3c24f3 3103
7d4a8be0 3104 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6f4f13e8 3105 vmf->address & PAGE_MASK,
ac46d4f3
JG
3106 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3107 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3108
3109 /*
3110 * Re-check the pte - we dropped the lock
3111 */
82b0f8c3 3112 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
c33c7948 3113 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
28d41a48
MWO
3114 if (old_folio) {
3115 if (!folio_test_anon(old_folio)) {
3116 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
f1a79412 3117 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c
SR
3118 }
3119 } else {
6080d19f 3120 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
f1a79412 3121 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c 3122 }
2994302b 3123 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
28d41a48 3124 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
50c25ee9 3125 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3126 if (unlikely(unshare)) {
3127 if (pte_soft_dirty(vmf->orig_pte))
3128 entry = pte_mksoft_dirty(entry);
3129 if (pte_uffd_wp(vmf->orig_pte))
3130 entry = pte_mkuffd_wp(entry);
3131 } else {
3132 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3133 }
111fe718 3134
2f38ab2c
SR
3135 /*
3136 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3137 * pte with the new entry, to keep TLBs on different CPUs in
3138 * sync. This code used to set the new PTE then flush TLBs, but
3139 * that left a window where the new PTE could be loaded into
3140 * some TLBs while the old PTE remains in others.
2f38ab2c 3141 */
ec8832d0 3142 ptep_clear_flush(vma, vmf->address, vmf->pte);
28d41a48
MWO
3143 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3144 folio_add_lru_vma(new_folio, vma);
2f38ab2c
SR
3145 /*
3146 * We call the notify macro here because, when using secondary
3147 * mmu page tables (such as kvm shadow page tables), we want the
3148 * new page to be mapped directly into the secondary page table.
3149 */
c89357e2 3150 BUG_ON(unshare && pte_write(entry));
82b0f8c3 3151 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
5003a2bd 3152 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
28d41a48 3153 if (old_folio) {
2f38ab2c
SR
3154 /*
3155 * Only after switching the pte to the new page may
3156 * we remove the mapcount here. Otherwise another
3157 * process may come and find the rmap count decremented
3158 * before the pte is switched to the new page, and
3159 * "reuse" the old page writing into it while our pte
3160 * here still points into it and can be read by other
3161 * threads.
3162 *
3163 * The critical issue is to order this
3164 * page_remove_rmap with the ptp_clear_flush above.
3165 * Those stores are ordered by (if nothing else,)
3166 * the barrier present in the atomic_add_negative
3167 * in page_remove_rmap.
3168 *
3169 * Then the TLB flush in ptep_clear_flush ensures that
3170 * no process can access the old page before the
3171 * decremented mapcount is visible. And the old page
3172 * cannot be reused until after the decremented
3173 * mapcount is visible. So transitively, TLBs to
3174 * old page will be flushed before it can be reused.
3175 */
28d41a48 3176 page_remove_rmap(vmf->page, vma, false);
2f38ab2c
SR
3177 }
3178
3179 /* Free the old page.. */
28d41a48 3180 new_folio = old_folio;
2f38ab2c 3181 page_copied = 1;
3db82b93
HD
3182 pte_unmap_unlock(vmf->pte, vmf->ptl);
3183 } else if (vmf->pte) {
7df67697 3184 update_mmu_tlb(vma, vmf->address, vmf->pte);
3db82b93 3185 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
3186 }
3187
ec8832d0 3188 mmu_notifier_invalidate_range_end(&range);
3db82b93
HD
3189
3190 if (new_folio)
3191 folio_put(new_folio);
28d41a48 3192 if (old_folio) {
f4c4a3f4 3193 if (page_copied)
28d41a48
MWO
3194 free_swap_cache(&old_folio->page);
3195 folio_put(old_folio);
2f38ab2c 3196 }
662ce1dc
YY
3197
3198 delayacct_wpcopy_end();
cb8d8633 3199 return 0;
2f38ab2c 3200oom_free_new:
28d41a48 3201 folio_put(new_folio);
2f38ab2c 3202oom:
28d41a48
MWO
3203 if (old_folio)
3204 folio_put(old_folio);
662ce1dc
YY
3205
3206 delayacct_wpcopy_end();
2f38ab2c
SR
3207 return VM_FAULT_OOM;
3208}
3209
66a6197c
JK
3210/**
3211 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3212 * writeable once the page is prepared
3213 *
3214 * @vmf: structure describing the fault
3215 *
3216 * This function handles all that is needed to finish a write page fault in a
3217 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3218 * It handles locking of PTE and modifying it.
66a6197c
JK
3219 *
3220 * The function expects the page to be locked or other protection against
3221 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3222 *
2797e79f 3223 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3224 * we acquired PTE lock.
66a6197c 3225 */
2b740303 3226vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3227{
3228 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3229 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3230 &vmf->ptl);
3db82b93
HD
3231 if (!vmf->pte)
3232 return VM_FAULT_NOPAGE;
66a6197c
JK
3233 /*
3234 * We might have raced with another page fault while we released the
3235 * pte_offset_map_lock.
3236 */
c33c7948 3237 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
7df67697 3238 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3239 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3240 return VM_FAULT_NOPAGE;
66a6197c
JK
3241 }
3242 wp_page_reuse(vmf);
a19e2553 3243 return 0;
66a6197c
JK
3244}
3245
dd906184
BH
3246/*
3247 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3248 * mapping
3249 */
2b740303 3250static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3251{
82b0f8c3 3252 struct vm_area_struct *vma = vmf->vma;
bae473a4 3253
dd906184 3254 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3255 vm_fault_t ret;
dd906184 3256
82b0f8c3 3257 pte_unmap_unlock(vmf->pte, vmf->ptl);
063e60d8
MWO
3258 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3259 vma_end_read(vmf->vma);
3260 return VM_FAULT_RETRY;
3261 }
3262
fe82221f 3263 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3264 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3265 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3266 return ret;
66a6197c 3267 return finish_mkwrite_fault(vmf);
dd906184 3268 }
997dd98d 3269 wp_page_reuse(vmf);
cb8d8633 3270 return 0;
dd906184
BH
3271}
3272
5a97858b 3273static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
82b0f8c3 3274 __releases(vmf->ptl)
93e478d4 3275{
82b0f8c3 3276 struct vm_area_struct *vma = vmf->vma;
cb8d8633 3277 vm_fault_t ret = 0;
93e478d4 3278
5a97858b 3279 folio_get(folio);
93e478d4 3280
93e478d4 3281 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3282 vm_fault_t tmp;
93e478d4 3283
82b0f8c3 3284 pte_unmap_unlock(vmf->pte, vmf->ptl);
063e60d8
MWO
3285 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3286 folio_put(folio);
3287 vma_end_read(vmf->vma);
3288 return VM_FAULT_RETRY;
3289 }
3290
86aa6998 3291 tmp = do_page_mkwrite(vmf, folio);
93e478d4
SR
3292 if (unlikely(!tmp || (tmp &
3293 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5a97858b 3294 folio_put(folio);
93e478d4
SR
3295 return tmp;
3296 }
66a6197c 3297 tmp = finish_mkwrite_fault(vmf);
a19e2553 3298 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
5a97858b
SK
3299 folio_unlock(folio);
3300 folio_put(folio);
66a6197c 3301 return tmp;
93e478d4 3302 }
66a6197c
JK
3303 } else {
3304 wp_page_reuse(vmf);
5a97858b 3305 folio_lock(folio);
93e478d4 3306 }
89b15332 3307 ret |= fault_dirty_shared_page(vmf);
5a97858b 3308 folio_put(folio);
93e478d4 3309
89b15332 3310 return ret;
93e478d4
SR
3311}
3312
1da177e4 3313/*
c89357e2
DH
3314 * This routine handles present pages, when
3315 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3316 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3317 * (FAULT_FLAG_UNSHARE)
3318 *
3319 * It is done by copying the page to a new address and decrementing the
3320 * shared-page counter for the old page.
1da177e4 3321 *
1da177e4
LT
3322 * Note that this routine assumes that the protection checks have been
3323 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3324 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3325 * done any necessary COW.
1da177e4 3326 *
c89357e2
DH
3327 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3328 * though the page will change only once the write actually happens. This
3329 * avoids a few races, and potentially makes it more efficient.
1da177e4 3330 *
c1e8d7c6 3331 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3332 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3333 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3334 */
2b740303 3335static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3336 __releases(vmf->ptl)
1da177e4 3337{
c89357e2 3338 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3339 struct vm_area_struct *vma = vmf->vma;
b9086fde 3340 struct folio *folio = NULL;
1da177e4 3341
c89357e2 3342 if (likely(!unshare)) {
c33c7948 3343 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
c89357e2
DH
3344 pte_unmap_unlock(vmf->pte, vmf->ptl);
3345 return handle_userfault(vmf, VM_UFFD_WP);
3346 }
3347
3348 /*
3349 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3350 * is flushed in this case before copying.
3351 */
3352 if (unlikely(userfaultfd_wp(vmf->vma) &&
3353 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3354 flush_tlb_page(vmf->vma, vmf->address);
3355 }
6ce64428 3356
a41b70d6 3357 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
c89357e2 3358
5a97858b
SK
3359 if (vmf->page)
3360 folio = page_folio(vmf->page);
3361
b9086fde
DH
3362 /*
3363 * Shared mapping: we are guaranteed to have VM_WRITE and
3364 * FAULT_FLAG_WRITE set at this point.
3365 */
3366 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
251b97f5 3367 /*
64e45507
PF
3368 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3369 * VM_PFNMAP VMA.
251b97f5
PZ
3370 *
3371 * We should not cow pages in a shared writeable mapping.
dd906184 3372 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5 3373 */
b9086fde 3374 if (!vmf->page)
2994302b 3375 return wp_pfn_shared(vmf);
5a97858b 3376 return wp_page_shared(vmf, folio);
251b97f5 3377 }
1da177e4 3378
d08b3851 3379 /*
b9086fde
DH
3380 * Private mapping: create an exclusive anonymous page copy if reuse
3381 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
d08b3851 3382 */
b9086fde 3383 if (folio && folio_test_anon(folio)) {
6c287605
DH
3384 /*
3385 * If the page is exclusive to this process we must reuse the
3386 * page without further checks.
3387 */
e4a2ed94 3388 if (PageAnonExclusive(vmf->page))
6c287605
DH
3389 goto reuse;
3390
53a05ad9 3391 /*
e4a2ed94
MWO
3392 * We have to verify under folio lock: these early checks are
3393 * just an optimization to avoid locking the folio and freeing
53a05ad9
DH
3394 * the swapcache if there is little hope that we can reuse.
3395 *
e4a2ed94 3396 * KSM doesn't necessarily raise the folio refcount.
53a05ad9 3397 */
e4a2ed94 3398 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
d4c47097 3399 goto copy;
e4a2ed94 3400 if (!folio_test_lru(folio))
d4c47097 3401 /*
1fec6890
MWO
3402 * We cannot easily detect+handle references from
3403 * remote LRU caches or references to LRU folios.
d4c47097
DH
3404 */
3405 lru_add_drain();
e4a2ed94 3406 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
09854ba9 3407 goto copy;
e4a2ed94 3408 if (!folio_trylock(folio))
09854ba9 3409 goto copy;
e4a2ed94
MWO
3410 if (folio_test_swapcache(folio))
3411 folio_free_swap(folio);
3412 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3413 folio_unlock(folio);
52d1e606 3414 goto copy;
b009c024 3415 }
09854ba9 3416 /*
e4a2ed94
MWO
3417 * Ok, we've got the only folio reference from our mapping
3418 * and the folio is locked, it's dark out, and we're wearing
53a05ad9 3419 * sunglasses. Hit it.
09854ba9 3420 */
e4a2ed94
MWO
3421 page_move_anon_rmap(vmf->page, vma);
3422 folio_unlock(folio);
6c287605 3423reuse:
c89357e2
DH
3424 if (unlikely(unshare)) {
3425 pte_unmap_unlock(vmf->pte, vmf->ptl);
3426 return 0;
3427 }
be068f29 3428 wp_page_reuse(vmf);
cb8d8633 3429 return 0;
1da177e4 3430 }
52d1e606 3431copy:
063e60d8
MWO
3432 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3433 pte_unmap_unlock(vmf->pte, vmf->ptl);
3434 vma_end_read(vmf->vma);
3435 return VM_FAULT_RETRY;
3436 }
3437
1da177e4
LT
3438 /*
3439 * Ok, we need to copy. Oh, well..
3440 */
b9086fde
DH
3441 if (folio)
3442 folio_get(folio);
28766805 3443
82b0f8c3 3444 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b 3445#ifdef CONFIG_KSM
b9086fde 3446 if (folio && folio_test_ksm(folio))
94bfe85b
YY
3447 count_vm_event(COW_KSM);
3448#endif
a41b70d6 3449 return wp_page_copy(vmf);
1da177e4
LT
3450}
3451
97a89413 3452static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3453 unsigned long start_addr, unsigned long end_addr,
3454 struct zap_details *details)
3455{
f5cc4eef 3456 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3457}
3458
f808c13f 3459static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3460 pgoff_t first_index,
3461 pgoff_t last_index,
1da177e4
LT
3462 struct zap_details *details)
3463{
3464 struct vm_area_struct *vma;
1da177e4
LT
3465 pgoff_t vba, vea, zba, zea;
3466
232a6a1c 3467 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3468 vba = vma->vm_pgoff;
d6e93217 3469 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3470 zba = max(first_index, vba);
3471 zea = min(last_index, vea);
1da177e4 3472
97a89413 3473 unmap_mapping_range_vma(vma,
1da177e4
LT
3474 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3475 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3476 details);
1da177e4
LT
3477 }
3478}
3479
22061a1f 3480/**
3506659e
MWO
3481 * unmap_mapping_folio() - Unmap single folio from processes.
3482 * @folio: The locked folio to be unmapped.
22061a1f 3483 *
3506659e 3484 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3485 * Typically, for efficiency, the range of nearby pages has already been
3486 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3487 * truncation or invalidation holds the lock on a folio, it may find that
3488 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3489 * to unmap it finally.
3490 */
3506659e 3491void unmap_mapping_folio(struct folio *folio)
22061a1f 3492{
3506659e 3493 struct address_space *mapping = folio->mapping;
22061a1f 3494 struct zap_details details = { };
232a6a1c
PX
3495 pgoff_t first_index;
3496 pgoff_t last_index;
22061a1f 3497
3506659e 3498 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3499
3506659e 3500 first_index = folio->index;
87b11f86 3501 last_index = folio_next_index(folio) - 1;
232a6a1c 3502
2e148f1e 3503 details.even_cows = false;
3506659e 3504 details.single_folio = folio;
999dad82 3505 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3506
2c865995 3507 i_mmap_lock_read(mapping);
22061a1f 3508 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3509 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3510 last_index, &details);
2c865995 3511 i_mmap_unlock_read(mapping);
22061a1f
HD
3512}
3513
977fbdcd
MW
3514/**
3515 * unmap_mapping_pages() - Unmap pages from processes.
3516 * @mapping: The address space containing pages to be unmapped.
3517 * @start: Index of first page to be unmapped.
3518 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3519 * @even_cows: Whether to unmap even private COWed pages.
3520 *
3521 * Unmap the pages in this address space from any userspace process which
3522 * has them mmaped. Generally, you want to remove COWed pages as well when
3523 * a file is being truncated, but not when invalidating pages from the page
3524 * cache.
3525 */
3526void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3527 pgoff_t nr, bool even_cows)
3528{
3529 struct zap_details details = { };
232a6a1c
PX
3530 pgoff_t first_index = start;
3531 pgoff_t last_index = start + nr - 1;
977fbdcd 3532
2e148f1e 3533 details.even_cows = even_cows;
232a6a1c
PX
3534 if (last_index < first_index)
3535 last_index = ULONG_MAX;
977fbdcd 3536
2c865995 3537 i_mmap_lock_read(mapping);
977fbdcd 3538 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3539 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3540 last_index, &details);
2c865995 3541 i_mmap_unlock_read(mapping);
977fbdcd 3542}
6e0e99d5 3543EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3544
1da177e4 3545/**
8a5f14a2 3546 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3547 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3548 * file.
3549 *
3d41088f 3550 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3551 * @holebegin: byte in first page to unmap, relative to the start of
3552 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3553 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3554 * must keep the partial page. In contrast, we must get rid of
3555 * partial pages.
3556 * @holelen: size of prospective hole in bytes. This will be rounded
3557 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3558 * end of the file.
3559 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3560 * but 0 when invalidating pagecache, don't throw away private data.
3561 */
3562void unmap_mapping_range(struct address_space *mapping,
3563 loff_t const holebegin, loff_t const holelen, int even_cows)
3564{
1da177e4
LT
3565 pgoff_t hba = holebegin >> PAGE_SHIFT;
3566 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3567
3568 /* Check for overflow. */
3569 if (sizeof(holelen) > sizeof(hlen)) {
3570 long long holeend =
3571 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3572 if (holeend & ~(long long)ULONG_MAX)
3573 hlen = ULONG_MAX - hba + 1;
3574 }
3575
977fbdcd 3576 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3577}
3578EXPORT_SYMBOL(unmap_mapping_range);
3579
b756a3b5
AP
3580/*
3581 * Restore a potential device exclusive pte to a working pte entry
3582 */
3583static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3584{
19672a9e 3585 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3586 struct vm_area_struct *vma = vmf->vma;
3587 struct mmu_notifier_range range;
fdc724d6 3588 vm_fault_t ret;
b756a3b5 3589
7c7b9629
AP
3590 /*
3591 * We need a reference to lock the folio because we don't hold
3592 * the PTL so a racing thread can remove the device-exclusive
3593 * entry and unmap it. If the folio is free the entry must
3594 * have been removed already. If it happens to have already
3595 * been re-allocated after being freed all we do is lock and
3596 * unlock it.
3597 */
3598 if (!folio_try_get(folio))
3599 return 0;
3600
fdc724d6
SB
3601 ret = folio_lock_or_retry(folio, vmf);
3602 if (ret) {
7c7b9629 3603 folio_put(folio);
fdc724d6 3604 return ret;
7c7b9629 3605 }
7d4a8be0 3606 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
b756a3b5
AP
3607 vma->vm_mm, vmf->address & PAGE_MASK,
3608 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3609 mmu_notifier_invalidate_range_start(&range);
3610
3611 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3612 &vmf->ptl);
c33c7948 3613 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
19672a9e 3614 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5 3615
3db82b93
HD
3616 if (vmf->pte)
3617 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3618 folio_unlock(folio);
7c7b9629 3619 folio_put(folio);
b756a3b5
AP
3620
3621 mmu_notifier_invalidate_range_end(&range);
3622 return 0;
3623}
3624
a160e537 3625static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3626 struct vm_area_struct *vma,
3627 unsigned int fault_flags)
3628{
a160e537 3629 if (!folio_test_swapcache(folio))
c145e0b4 3630 return false;
9202d527 3631 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3632 folio_test_mlocked(folio))
c145e0b4
DH
3633 return true;
3634 /*
3635 * If we want to map a page that's in the swapcache writable, we
3636 * have to detect via the refcount if we're really the exclusive
3637 * user. Try freeing the swapcache to get rid of the swapcache
3638 * reference only in case it's likely that we'll be the exlusive user.
3639 */
a160e537
MWO
3640 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3641 folio_ref_count(folio) == 2;
c145e0b4
DH
3642}
3643
9c28a205
PX
3644static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3645{
3646 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3647 vmf->address, &vmf->ptl);
3db82b93
HD
3648 if (!vmf->pte)
3649 return 0;
9c28a205
PX
3650 /*
3651 * Be careful so that we will only recover a special uffd-wp pte into a
3652 * none pte. Otherwise it means the pte could have changed, so retry.
7e3ce3f8
PX
3653 *
3654 * This should also cover the case where e.g. the pte changed
af19487f 3655 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
7e3ce3f8 3656 * So is_pte_marker() check is not enough to safely drop the pte.
9c28a205 3657 */
c33c7948 3658 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
9c28a205
PX
3659 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3660 pte_unmap_unlock(vmf->pte, vmf->ptl);
3661 return 0;
3662}
3663
2bad466c
PX
3664static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3665{
3666 if (vma_is_anonymous(vmf->vma))
3667 return do_anonymous_page(vmf);
3668 else
3669 return do_fault(vmf);
3670}
3671
9c28a205
PX
3672/*
3673 * This is actually a page-missing access, but with uffd-wp special pte
3674 * installed. It means this pte was wr-protected before being unmapped.
3675 */
3676static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3677{
3678 /*
3679 * Just in case there're leftover special ptes even after the region
7a079ba2 3680 * got unregistered - we can simply clear them.
9c28a205 3681 */
2bad466c 3682 if (unlikely(!userfaultfd_wp(vmf->vma)))
9c28a205
PX
3683 return pte_marker_clear(vmf);
3684
2bad466c 3685 return do_pte_missing(vmf);
9c28a205
PX
3686}
3687
5c041f5d
PX
3688static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3689{
3690 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3691 unsigned long marker = pte_marker_get(entry);
3692
3693 /*
ca92ea3d
PX
3694 * PTE markers should never be empty. If anything weird happened,
3695 * the best thing to do is to kill the process along with its mm.
5c041f5d 3696 */
ca92ea3d 3697 if (WARN_ON_ONCE(!marker))
5c041f5d
PX
3698 return VM_FAULT_SIGBUS;
3699
15520a3f 3700 /* Higher priority than uffd-wp when data corrupted */
af19487f
AR
3701 if (marker & PTE_MARKER_POISONED)
3702 return VM_FAULT_HWPOISON;
15520a3f 3703
9c28a205
PX
3704 if (pte_marker_entry_uffd_wp(entry))
3705 return pte_marker_handle_uffd_wp(vmf);
3706
3707 /* This is an unknown pte marker */
3708 return VM_FAULT_SIGBUS;
5c041f5d
PX
3709}
3710
1da177e4 3711/*
c1e8d7c6 3712 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3713 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3714 * We return with pte unmapped and unlocked.
3715 *
c1e8d7c6 3716 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3717 * as does filemap_fault().
1da177e4 3718 */
2b740303 3719vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3720{
82b0f8c3 3721 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3722 struct folio *swapcache, *folio = NULL;
3723 struct page *page;
2799e775 3724 struct swap_info_struct *si = NULL;
14f9135d 3725 rmap_t rmap_flags = RMAP_NONE;
1493a191 3726 bool exclusive = false;
65500d23 3727 swp_entry_t entry;
1da177e4 3728 pte_t pte;
2b740303 3729 vm_fault_t ret = 0;
aae466b0 3730 void *shadow = NULL;
1da177e4 3731
2ca99358 3732 if (!pte_unmap_same(vmf))
8f4e2101 3733 goto out;
65500d23 3734
2994302b 3735 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3736 if (unlikely(non_swap_entry(entry))) {
3737 if (is_migration_entry(entry)) {
82b0f8c3
JK
3738 migration_entry_wait(vma->vm_mm, vmf->pmd,
3739 vmf->address);
b756a3b5
AP
3740 } else if (is_device_exclusive_entry(entry)) {
3741 vmf->page = pfn_swap_entry_to_page(entry);
3742 ret = remove_device_exclusive_entry(vmf);
5042db43 3743 } else if (is_device_private_entry(entry)) {
1235ccd0
SB
3744 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3745 /*
3746 * migrate_to_ram is not yet ready to operate
3747 * under VMA lock.
3748 */
3749 vma_end_read(vma);
3750 ret = VM_FAULT_RETRY;
3751 goto out;
3752 }
3753
af5cdaf8 3754 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3755 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3756 vmf->address, &vmf->ptl);
3db82b93 3757 if (unlikely(!vmf->pte ||
c33c7948
RR
3758 !pte_same(ptep_get(vmf->pte),
3759 vmf->orig_pte)))
3b65f437 3760 goto unlock;
16ce101d
AP
3761
3762 /*
3763 * Get a page reference while we know the page can't be
3764 * freed.
3765 */
3766 get_page(vmf->page);
3767 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a955bed 3768 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
16ce101d 3769 put_page(vmf->page);
d1737fdb
AK
3770 } else if (is_hwpoison_entry(entry)) {
3771 ret = VM_FAULT_HWPOISON;
5c041f5d
PX
3772 } else if (is_pte_marker_entry(entry)) {
3773 ret = handle_pte_marker(vmf);
d1737fdb 3774 } else {
2994302b 3775 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3776 ret = VM_FAULT_SIGBUS;
d1737fdb 3777 }
0697212a
CL
3778 goto out;
3779 }
0bcac06f 3780
2799e775
ML
3781 /* Prevent swapoff from happening to us. */
3782 si = get_swap_device(entry);
3783 if (unlikely(!si))
3784 goto out;
0bcac06f 3785
5a423081
MWO
3786 folio = swap_cache_get_folio(entry, vma, vmf->address);
3787 if (folio)
3788 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 3789 swapcache = folio;
f8020772 3790
d4f9565a 3791 if (!folio) {
a449bf58
QC
3792 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3793 __swap_count(entry) == 1) {
0bcac06f 3794 /* skip swapcache */
63ad4add
MWO
3795 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3796 vma, vmf->address, false);
3797 page = &folio->page;
3798 if (folio) {
3799 __folio_set_locked(folio);
3800 __folio_set_swapbacked(folio);
4c6355b2 3801
65995918 3802 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
3803 vma->vm_mm, GFP_KERNEL,
3804 entry)) {
545b1b07 3805 ret = VM_FAULT_OOM;
4c6355b2 3806 goto out_page;
545b1b07 3807 }
0add0c77 3808 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3809
aae466b0
JK
3810 shadow = get_shadow_from_swap_cache(entry);
3811 if (shadow)
63ad4add 3812 workingset_refault(folio, shadow);
0076f029 3813
63ad4add 3814 folio_add_lru(folio);
0add0c77
SB
3815
3816 /* To provide entry to swap_readpage() */
3d2c9087 3817 folio->swap = entry;
5169b844 3818 swap_readpage(page, true, NULL);
63ad4add 3819 folio->private = NULL;
0bcac06f 3820 }
aa8d22a1 3821 } else {
e9e9b7ec
MK
3822 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3823 vmf);
63ad4add
MWO
3824 if (page)
3825 folio = page_folio(page);
d4f9565a 3826 swapcache = folio;
0bcac06f
MK
3827 }
3828
d4f9565a 3829 if (!folio) {
1da177e4 3830 /*
8f4e2101
HD
3831 * Back out if somebody else faulted in this pte
3832 * while we released the pte lock.
1da177e4 3833 */
82b0f8c3
JK
3834 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3835 vmf->address, &vmf->ptl);
c33c7948
RR
3836 if (likely(vmf->pte &&
3837 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
1da177e4 3838 ret = VM_FAULT_OOM;
65500d23 3839 goto unlock;
1da177e4
LT
3840 }
3841
3842 /* Had to read the page from swap area: Major fault */
3843 ret = VM_FAULT_MAJOR;
f8891e5e 3844 count_vm_event(PGMAJFAULT);
2262185c 3845 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3846 } else if (PageHWPoison(page)) {
71f72525
WF
3847 /*
3848 * hwpoisoned dirty swapcache pages are kept for killing
3849 * owner processes (which may be unknown at hwpoison time)
3850 */
d1737fdb 3851 ret = VM_FAULT_HWPOISON;
4779cb31 3852 goto out_release;
1da177e4
LT
3853 }
3854
fdc724d6
SB
3855 ret |= folio_lock_or_retry(folio, vmf);
3856 if (ret & VM_FAULT_RETRY)
d065bd81 3857 goto out_release;
073e587e 3858
84d60fdd
DH
3859 if (swapcache) {
3860 /*
3b344157 3861 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
3862 * swapcache from under us. The page pin, and pte_same test
3863 * below, are not enough to exclude that. Even if it is still
3864 * swapcache, we need to check that the page's swap has not
3865 * changed.
3866 */
63ad4add 3867 if (unlikely(!folio_test_swapcache(folio) ||
cfeed8ff 3868 page_swap_entry(page).val != entry.val))
84d60fdd
DH
3869 goto out_page;
3870
3871 /*
3872 * KSM sometimes has to copy on read faults, for example, if
3873 * page->index of !PageKSM() pages would be nonlinear inside the
3874 * anon VMA -- PageKSM() is lost on actual swapout.
3875 */
3876 page = ksm_might_need_to_copy(page, vma, vmf->address);
3877 if (unlikely(!page)) {
3878 ret = VM_FAULT_OOM;
84d60fdd 3879 goto out_page;
6b970599
KW
3880 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3881 ret = VM_FAULT_HWPOISON;
3882 goto out_page;
84d60fdd 3883 }
63ad4add 3884 folio = page_folio(page);
c145e0b4
DH
3885
3886 /*
3887 * If we want to map a page that's in the swapcache writable, we
3888 * have to detect via the refcount if we're really the exclusive
3889 * owner. Try removing the extra reference from the local LRU
1fec6890 3890 * caches if required.
c145e0b4 3891 */
d4f9565a 3892 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 3893 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 3894 lru_add_drain();
5ad64688
HD
3895 }
3896
4231f842 3897 folio_throttle_swaprate(folio, GFP_KERNEL);
8a9f3ccd 3898
1da177e4 3899 /*
8f4e2101 3900 * Back out if somebody else already faulted in this pte.
1da177e4 3901 */
82b0f8c3
JK
3902 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3903 &vmf->ptl);
c33c7948 3904 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
b8107480 3905 goto out_nomap;
b8107480 3906
63ad4add 3907 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
3908 ret = VM_FAULT_SIGBUS;
3909 goto out_nomap;
1da177e4
LT
3910 }
3911
78fbe906
DH
3912 /*
3913 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3914 * must never point at an anonymous page in the swapcache that is
3915 * PG_anon_exclusive. Sanity check that this holds and especially, that
3916 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3917 * check after taking the PT lock and making sure that nobody
3918 * concurrently faulted in this page and set PG_anon_exclusive.
3919 */
63ad4add
MWO
3920 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3921 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 3922
1493a191
DH
3923 /*
3924 * Check under PT lock (to protect against concurrent fork() sharing
3925 * the swap entry concurrently) for certainly exclusive pages.
3926 */
63ad4add 3927 if (!folio_test_ksm(folio)) {
1493a191 3928 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 3929 if (folio != swapcache) {
1493a191
DH
3930 /*
3931 * We have a fresh page that is not exposed to the
3932 * swapcache -> certainly exclusive.
3933 */
3934 exclusive = true;
63ad4add 3935 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 3936 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3937 /*
3938 * This is tricky: not all swap backends support
3939 * concurrent page modifications while under writeback.
3940 *
3941 * So if we stumble over such a page in the swapcache
3942 * we must not set the page exclusive, otherwise we can
3943 * map it writable without further checks and modify it
3944 * while still under writeback.
3945 *
3946 * For these problematic swap backends, simply drop the
3947 * exclusive marker: this is perfectly fine as we start
3948 * writeback only if we fully unmapped the page and
3949 * there are no unexpected references on the page after
3950 * unmapping succeeded. After fully unmapped, no
3951 * further GUP references (FOLL_GET and FOLL_PIN) can
3952 * appear, so dropping the exclusive marker and mapping
3953 * it only R/O is fine.
3954 */
3955 exclusive = false;
3956 }
3957 }
3958
6dca4ac6
PC
3959 /*
3960 * Some architectures may have to restore extra metadata to the page
3961 * when reading from swap. This metadata may be indexed by swap entry
3962 * so this must be called before swap_free().
3963 */
3964 arch_swap_restore(entry, folio);
3965
8c7c6e34 3966 /*
c145e0b4
DH
3967 * Remove the swap entry and conditionally try to free up the swapcache.
3968 * We're already holding a reference on the page but haven't mapped it
3969 * yet.
8c7c6e34 3970 */
c145e0b4 3971 swap_free(entry);
a160e537
MWO
3972 if (should_try_to_free_swap(folio, vma, vmf->flags))
3973 folio_free_swap(folio);
1da177e4 3974
f1a79412
SB
3975 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3976 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1da177e4 3977 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3978
3979 /*
1493a191
DH
3980 * Same logic as in do_wp_page(); however, optimize for pages that are
3981 * certainly not shared either because we just allocated them without
3982 * exposing them to the swapcache or because the swap entry indicates
3983 * exclusivity.
c145e0b4 3984 */
63ad4add
MWO
3985 if (!folio_test_ksm(folio) &&
3986 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
3987 if (vmf->flags & FAULT_FLAG_WRITE) {
3988 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3989 vmf->flags &= ~FAULT_FLAG_WRITE;
6c287605 3990 }
14f9135d 3991 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 3992 }
1da177e4 3993 flush_icache_page(vma, page);
2994302b 3994 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3995 pte = pte_mksoft_dirty(pte);
f1eb1bac 3996 if (pte_swp_uffd_wp(vmf->orig_pte))
f45ec5ff 3997 pte = pte_mkuffd_wp(pte);
2994302b 3998 vmf->orig_pte = pte;
0bcac06f
MK
3999
4000 /* ksm created a completely new copy */
d4f9565a 4001 if (unlikely(folio != swapcache && swapcache)) {
40f2bbf7 4002 page_add_new_anon_rmap(page, vma, vmf->address);
63ad4add 4003 folio_add_lru_vma(folio, vma);
0bcac06f 4004 } else {
f1e2db12 4005 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 4006 }
1da177e4 4007
63ad4add
MWO
4008 VM_BUG_ON(!folio_test_anon(folio) ||
4009 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
4010 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4011 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4012
63ad4add 4013 folio_unlock(folio);
d4f9565a 4014 if (folio != swapcache && swapcache) {
4969c119
AA
4015 /*
4016 * Hold the lock to avoid the swap entry to be reused
4017 * until we take the PT lock for the pte_same() check
4018 * (to avoid false positives from pte_same). For
4019 * further safety release the lock after the swap_free
4020 * so that the swap count won't change under a
4021 * parallel locked swapcache.
4022 */
d4f9565a
MWO
4023 folio_unlock(swapcache);
4024 folio_put(swapcache);
4969c119 4025 }
c475a8ab 4026
82b0f8c3 4027 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 4028 ret |= do_wp_page(vmf);
61469f1d
HD
4029 if (ret & VM_FAULT_ERROR)
4030 ret &= VM_FAULT_ERROR;
1da177e4
LT
4031 goto out;
4032 }
4033
4034 /* No need to invalidate - it was non-present before */
5003a2bd 4035 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
65500d23 4036unlock:
3db82b93
HD
4037 if (vmf->pte)
4038 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 4039out:
2799e775
ML
4040 if (si)
4041 put_swap_device(si);
1da177e4 4042 return ret;
b8107480 4043out_nomap:
3db82b93
HD
4044 if (vmf->pte)
4045 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4046out_page:
63ad4add 4047 folio_unlock(folio);
4779cb31 4048out_release:
63ad4add 4049 folio_put(folio);
d4f9565a
MWO
4050 if (folio != swapcache && swapcache) {
4051 folio_unlock(swapcache);
4052 folio_put(swapcache);
4969c119 4053 }
2799e775
ML
4054 if (si)
4055 put_swap_device(si);
65500d23 4056 return ret;
1da177e4
LT
4057}
4058
4059/*
c1e8d7c6 4060 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4061 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4062 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4063 */
2b740303 4064static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4065{
2bad466c 4066 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4067 struct vm_area_struct *vma = vmf->vma;
6bc56a4d 4068 struct folio *folio;
2b740303 4069 vm_fault_t ret = 0;
1da177e4 4070 pte_t entry;
1da177e4 4071
6b7339f4
KS
4072 /* File mapping without ->vm_ops ? */
4073 if (vma->vm_flags & VM_SHARED)
4074 return VM_FAULT_SIGBUS;
4075
7267ec00 4076 /*
3db82b93
HD
4077 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4078 * be distinguished from a transient failure of pte_offset_map().
7267ec00 4079 */
4cf58924 4080 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4081 return VM_FAULT_OOM;
4082
11ac5524 4083 /* Use the zero-page for reads */
82b0f8c3 4084 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4085 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4086 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4087 vma->vm_page_prot));
82b0f8c3
JK
4088 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4089 vmf->address, &vmf->ptl);
3db82b93
HD
4090 if (!vmf->pte)
4091 goto unlock;
2bad466c 4092 if (vmf_pte_changed(vmf)) {
7df67697 4093 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4094 goto unlock;
7df67697 4095 }
6b31d595
MH
4096 ret = check_stable_address_space(vma->vm_mm);
4097 if (ret)
4098 goto unlock;
6b251fc9
AA
4099 /* Deliver the page fault to userland, check inside PT lock */
4100 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4101 pte_unmap_unlock(vmf->pte, vmf->ptl);
4102 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4103 }
a13ea5b7
HD
4104 goto setpte;
4105 }
4106
557ed1fa 4107 /* Allocate our own private page. */
557ed1fa
NP
4108 if (unlikely(anon_vma_prepare(vma)))
4109 goto oom;
6bc56a4d
MWO
4110 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4111 if (!folio)
557ed1fa 4112 goto oom;
eb3c24f3 4113
6bc56a4d 4114 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
eb3c24f3 4115 goto oom_free_page;
e2bf3e2c 4116 folio_throttle_swaprate(folio, GFP_KERNEL);
eb3c24f3 4117
52f37629 4118 /*
cb3184de 4119 * The memory barrier inside __folio_mark_uptodate makes sure that
f4f5329d 4120 * preceding stores to the page contents become visible before
52f37629
MK
4121 * the set_pte_at() write.
4122 */
cb3184de 4123 __folio_mark_uptodate(folio);
8f4e2101 4124
cb3184de 4125 entry = mk_pte(&folio->page, vma->vm_page_prot);
50c25ee9 4126 entry = pte_sw_mkyoung(entry);
1ac0cb5d 4127 if (vma->vm_flags & VM_WRITE)
161e393c 4128 entry = pte_mkwrite(pte_mkdirty(entry), vma);
1da177e4 4129
82b0f8c3
JK
4130 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4131 &vmf->ptl);
3db82b93
HD
4132 if (!vmf->pte)
4133 goto release;
2bad466c 4134 if (vmf_pte_changed(vmf)) {
bce8cb3c 4135 update_mmu_tlb(vma, vmf->address, vmf->pte);
557ed1fa 4136 goto release;
7df67697 4137 }
9ba69294 4138
6b31d595
MH
4139 ret = check_stable_address_space(vma->vm_mm);
4140 if (ret)
4141 goto release;
4142
6b251fc9
AA
4143 /* Deliver the page fault to userland, check inside PT lock */
4144 if (userfaultfd_missing(vma)) {
82b0f8c3 4145 pte_unmap_unlock(vmf->pte, vmf->ptl);
cb3184de 4146 folio_put(folio);
82b0f8c3 4147 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4148 }
4149
f1a79412 4150 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
cb3184de
MWO
4151 folio_add_new_anon_rmap(folio, vma, vmf->address);
4152 folio_add_lru_vma(folio, vma);
a13ea5b7 4153setpte:
2bad466c
PX
4154 if (uffd_wp)
4155 entry = pte_mkuffd_wp(entry);
82b0f8c3 4156 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4157
4158 /* No need to invalidate - it was non-present before */
5003a2bd 4159 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
65500d23 4160unlock:
3db82b93
HD
4161 if (vmf->pte)
4162 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4163 return ret;
8f4e2101 4164release:
cb3184de 4165 folio_put(folio);
8f4e2101 4166 goto unlock;
8a9f3ccd 4167oom_free_page:
cb3184de 4168 folio_put(folio);
65500d23 4169oom:
1da177e4
LT
4170 return VM_FAULT_OOM;
4171}
4172
9a95f3cf 4173/*
c1e8d7c6 4174 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4175 * released depending on flags and vma->vm_ops->fault() return value.
4176 * See filemap_fault() and __lock_page_retry().
4177 */
2b740303 4178static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4179{
82b0f8c3 4180 struct vm_area_struct *vma = vmf->vma;
2b740303 4181 vm_fault_t ret;
7eae74af 4182
63f3655f
MH
4183 /*
4184 * Preallocate pte before we take page_lock because this might lead to
4185 * deadlocks for memcg reclaim which waits for pages under writeback:
4186 * lock_page(A)
4187 * SetPageWriteback(A)
4188 * unlock_page(A)
4189 * lock_page(B)
4190 * lock_page(B)
d383807a 4191 * pte_alloc_one
63f3655f
MH
4192 * shrink_page_list
4193 * wait_on_page_writeback(A)
4194 * SetPageWriteback(B)
4195 * unlock_page(B)
4196 * # flush A, B to clear the writeback
4197 */
4198 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4199 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4200 if (!vmf->prealloc_pte)
4201 return VM_FAULT_OOM;
63f3655f
MH
4202 }
4203
11bac800 4204 ret = vma->vm_ops->fault(vmf);
3917048d 4205 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4206 VM_FAULT_DONE_COW)))
bc2466e4 4207 return ret;
7eae74af 4208
667240e0 4209 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4210 struct page *page = vmf->page;
e53ac737
RR
4211 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4212 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4213 if (page_mapped(page))
4214 unmap_mapping_pages(page_mapping(page),
4215 page->index, 1, false);
e53ac737 4216 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4217 if (invalidate_inode_page(page))
4218 poisonret = VM_FAULT_NOPAGE;
4219 unlock_page(page);
e53ac737 4220 }
3149c79f 4221 put_page(page);
936ca80d 4222 vmf->page = NULL;
e53ac737 4223 return poisonret;
7eae74af
KS
4224 }
4225
4226 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4227 lock_page(vmf->page);
7eae74af 4228 else
667240e0 4229 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4230
7eae74af
KS
4231 return ret;
4232}
4233
396bcc52 4234#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4235static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4236{
82b0f8c3 4237 struct vm_area_struct *vma = vmf->vma;
953c66c2 4238
82b0f8c3 4239 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4240 /*
4241 * We are going to consume the prealloc table,
4242 * count that as nr_ptes.
4243 */
c4812909 4244 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4245 vmf->prealloc_pte = NULL;
953c66c2
AK
4246}
4247
f9ce0be7 4248vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4249{
82b0f8c3
JK
4250 struct vm_area_struct *vma = vmf->vma;
4251 bool write = vmf->flags & FAULT_FLAG_WRITE;
4252 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4253 pmd_t entry;
d01ac3c3 4254 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4255
4256 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4257 return ret;
10102459 4258
10102459 4259 page = compound_head(page);
d01ac3c3
MWO
4260 if (compound_order(page) != HPAGE_PMD_ORDER)
4261 return ret;
10102459 4262
eac96c3e
YS
4263 /*
4264 * Just backoff if any subpage of a THP is corrupted otherwise
4265 * the corrupted page may mapped by PMD silently to escape the
4266 * check. This kind of THP just can be PTE mapped. Access to
4267 * the corrupted subpage should trigger SIGBUS as expected.
4268 */
4269 if (unlikely(PageHasHWPoisoned(page)))
4270 return ret;
4271
953c66c2 4272 /*
f0953a1b 4273 * Archs like ppc64 need additional space to store information
953c66c2
AK
4274 * related to pte entry. Use the preallocated table for that.
4275 */
82b0f8c3 4276 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4277 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4278 if (!vmf->prealloc_pte)
953c66c2 4279 return VM_FAULT_OOM;
953c66c2
AK
4280 }
4281
82b0f8c3
JK
4282 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4283 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4284 goto out;
4285
9f1f5b60 4286 flush_icache_pages(vma, page, HPAGE_PMD_NR);
10102459
KS
4287
4288 entry = mk_huge_pmd(page, vma->vm_page_prot);
4289 if (write)
f55e1014 4290 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4291
fadae295 4292 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4293 page_add_file_rmap(page, vma, true);
4294
953c66c2
AK
4295 /*
4296 * deposit and withdraw with pmd lock held
4297 */
4298 if (arch_needs_pgtable_deposit())
82b0f8c3 4299 deposit_prealloc_pte(vmf);
10102459 4300
82b0f8c3 4301 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4302
82b0f8c3 4303 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4304
4305 /* fault is handled */
4306 ret = 0;
95ecedcd 4307 count_vm_event(THP_FILE_MAPPED);
10102459 4308out:
82b0f8c3 4309 spin_unlock(vmf->ptl);
10102459
KS
4310 return ret;
4311}
4312#else
f9ce0be7 4313vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4314{
f9ce0be7 4315 return VM_FAULT_FALLBACK;
10102459
KS
4316}
4317#endif
4318
3bd786f7
YF
4319/**
4320 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4321 * @vmf: Fault decription.
4322 * @folio: The folio that contains @page.
4323 * @page: The first page to create a PTE for.
4324 * @nr: The number of PTEs to create.
4325 * @addr: The first address to create a PTE for.
4326 */
4327void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4328 struct page *page, unsigned int nr, unsigned long addr)
3bb97794 4329{
82b0f8c3 4330 struct vm_area_struct *vma = vmf->vma;
2bad466c 4331 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4332 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bd786f7 4333 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
3bb97794 4334 pte_t entry;
7267ec00 4335
3bd786f7 4336 flush_icache_pages(vma, page, nr);
3bb97794 4337 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4338
4339 if (prefault && arch_wants_old_prefaulted_pte())
4340 entry = pte_mkold(entry);
50c25ee9
TB
4341 else
4342 entry = pte_sw_mkyoung(entry);
46bdb427 4343
3bb97794
KS
4344 if (write)
4345 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205 4346 if (unlikely(uffd_wp))
f1eb1bac 4347 entry = pte_mkuffd_wp(entry);
bae473a4
KS
4348 /* copy-on-write page */
4349 if (write && !(vma->vm_flags & VM_SHARED)) {
3bd786f7
YF
4350 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4351 VM_BUG_ON_FOLIO(nr != 1, folio);
4352 folio_add_new_anon_rmap(folio, vma, addr);
4353 folio_add_lru_vma(folio, vma);
3bb97794 4354 } else {
3bd786f7
YF
4355 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4356 folio_add_file_rmap_range(folio, page, nr, vma, false);
3bb97794 4357 }
3bd786f7
YF
4358 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4359
4360 /* no need to invalidate: a not-present page won't be cached */
4361 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
3bb97794
KS
4362}
4363
f46f2ade
PX
4364static bool vmf_pte_changed(struct vm_fault *vmf)
4365{
4366 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
c33c7948 4367 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
f46f2ade 4368
c33c7948 4369 return !pte_none(ptep_get(vmf->pte));
f46f2ade
PX
4370}
4371
9118c0cb
JK
4372/**
4373 * finish_fault - finish page fault once we have prepared the page to fault
4374 *
4375 * @vmf: structure describing the fault
4376 *
4377 * This function handles all that is needed to finish a page fault once the
4378 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4379 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4380 * addition.
9118c0cb
JK
4381 *
4382 * The function expects the page to be locked and on success it consumes a
4383 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4384 *
4385 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4386 */
2b740303 4387vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4388{
f9ce0be7 4389 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4390 struct page *page;
f9ce0be7 4391 vm_fault_t ret;
9118c0cb
JK
4392
4393 /* Did we COW the page? */
f9ce0be7 4394 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4395 page = vmf->cow_page;
4396 else
4397 page = vmf->page;
6b31d595
MH
4398
4399 /*
4400 * check even for read faults because we might have lost our CoWed
4401 * page
4402 */
f9ce0be7
KS
4403 if (!(vma->vm_flags & VM_SHARED)) {
4404 ret = check_stable_address_space(vma->vm_mm);
4405 if (ret)
4406 return ret;
4407 }
4408
4409 if (pmd_none(*vmf->pmd)) {
4410 if (PageTransCompound(page)) {
4411 ret = do_set_pmd(vmf, page);
4412 if (ret != VM_FAULT_FALLBACK)
4413 return ret;
4414 }
4415
03c4f204
QZ
4416 if (vmf->prealloc_pte)
4417 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4418 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4419 return VM_FAULT_OOM;
4420 }
4421
f9ce0be7
KS
4422 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4423 vmf->address, &vmf->ptl);
3db82b93
HD
4424 if (!vmf->pte)
4425 return VM_FAULT_NOPAGE;
70427f6e 4426
f9ce0be7 4427 /* Re-check under ptl */
70427f6e 4428 if (likely(!vmf_pte_changed(vmf))) {
3bd786f7 4429 struct folio *folio = page_folio(page);
70427f6e 4430
3bd786f7 4431 set_pte_range(vmf, folio, page, 1, vmf->address);
70427f6e
SA
4432 ret = 0;
4433 } else {
4434 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4435 ret = VM_FAULT_NOPAGE;
70427f6e 4436 }
f9ce0be7 4437
f9ce0be7 4438 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4439 return ret;
4440}
4441
53d36a56
LS
4442static unsigned long fault_around_pages __read_mostly =
4443 65536 >> PAGE_SHIFT;
a9b0f861 4444
a9b0f861
KS
4445#ifdef CONFIG_DEBUG_FS
4446static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4447{
53d36a56 4448 *val = fault_around_pages << PAGE_SHIFT;
1592eef0
KS
4449 return 0;
4450}
4451
b4903d6e 4452/*
da391d64
WK
4453 * fault_around_bytes must be rounded down to the nearest page order as it's
4454 * what do_fault_around() expects to see.
b4903d6e 4455 */
a9b0f861 4456static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4457{
a9b0f861 4458 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4459 return -EINVAL;
53d36a56
LS
4460
4461 /*
4462 * The minimum value is 1 page, however this results in no fault-around
4463 * at all. See should_fault_around().
4464 */
4465 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4466
1592eef0
KS
4467 return 0;
4468}
0a1345f8 4469DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4470 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4471
4472static int __init fault_around_debugfs(void)
4473{
d9f7979c
GKH
4474 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4475 &fault_around_bytes_fops);
1592eef0
KS
4476 return 0;
4477}
4478late_initcall(fault_around_debugfs);
1592eef0 4479#endif
8c6e50b0 4480
1fdb412b
KS
4481/*
4482 * do_fault_around() tries to map few pages around the fault address. The hope
4483 * is that the pages will be needed soon and this will lower the number of
4484 * faults to handle.
4485 *
4486 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4487 * not ready to be mapped: not up-to-date, locked, etc.
4488 *
9042599e
LS
4489 * This function doesn't cross VMA or page table boundaries, in order to call
4490 * map_pages() and acquire a PTE lock only once.
1fdb412b 4491 *
53d36a56 4492 * fault_around_pages defines how many pages we'll try to map.
da391d64
WK
4493 * do_fault_around() expects it to be set to a power of two less than or equal
4494 * to PTRS_PER_PTE.
1fdb412b 4495 *
da391d64 4496 * The virtual address of the area that we map is naturally aligned to
53d36a56 4497 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
da391d64
WK
4498 * (and therefore to page order). This way it's easier to guarantee
4499 * that we don't cross page table boundaries.
1fdb412b 4500 */
2b740303 4501static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4502{
53d36a56 4503 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
9042599e
LS
4504 pgoff_t pte_off = pte_index(vmf->address);
4505 /* The page offset of vmf->address within the VMA. */
4506 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4507 pgoff_t from_pte, to_pte;
58ef47ef 4508 vm_fault_t ret;
8c6e50b0 4509
9042599e
LS
4510 /* The PTE offset of the start address, clamped to the VMA. */
4511 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4512 pte_off - min(pte_off, vma_off));
aecd6f44 4513
9042599e
LS
4514 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4515 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4516 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
8c6e50b0 4517
82b0f8c3 4518 if (pmd_none(*vmf->pmd)) {
4cf58924 4519 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4520 if (!vmf->prealloc_pte)
f9ce0be7 4521 return VM_FAULT_OOM;
8c6e50b0
KS
4522 }
4523
58ef47ef
MWO
4524 rcu_read_lock();
4525 ret = vmf->vma->vm_ops->map_pages(vmf,
4526 vmf->pgoff + from_pte - pte_off,
4527 vmf->pgoff + to_pte - pte_off);
4528 rcu_read_unlock();
4529
4530 return ret;
8c6e50b0
KS
4531}
4532
9c28a205
PX
4533/* Return true if we should do read fault-around, false otherwise */
4534static inline bool should_fault_around(struct vm_fault *vmf)
4535{
4536 /* No ->map_pages? No way to fault around... */
4537 if (!vmf->vma->vm_ops->map_pages)
4538 return false;
4539
4540 if (uffd_disable_fault_around(vmf->vma))
4541 return false;
4542
53d36a56
LS
4543 /* A single page implies no faulting 'around' at all. */
4544 return fault_around_pages > 1;
9c28a205
PX
4545}
4546
2b740303 4547static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4548{
2b740303 4549 vm_fault_t ret = 0;
22d1e68f 4550 struct folio *folio;
8c6e50b0
KS
4551
4552 /*
4553 * Let's call ->map_pages() first and use ->fault() as fallback
4554 * if page by the offset is not ready to be mapped (cold cache or
4555 * something).
4556 */
9c28a205
PX
4557 if (should_fault_around(vmf)) {
4558 ret = do_fault_around(vmf);
4559 if (ret)
4560 return ret;
8c6e50b0 4561 }
e655fb29 4562
f5617ffe
MWO
4563 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4564 vma_end_read(vmf->vma);
4565 return VM_FAULT_RETRY;
4566 }
4567
936ca80d 4568 ret = __do_fault(vmf);
e655fb29
KS
4569 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4570 return ret;
4571
9118c0cb 4572 ret |= finish_fault(vmf);
22d1e68f
SK
4573 folio = page_folio(vmf->page);
4574 folio_unlock(folio);
7267ec00 4575 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
22d1e68f 4576 folio_put(folio);
e655fb29
KS
4577 return ret;
4578}
4579
2b740303 4580static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4581{
82b0f8c3 4582 struct vm_area_struct *vma = vmf->vma;
2b740303 4583 vm_fault_t ret;
ec47c3b9 4584
61a4b8d3
MWO
4585 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4586 vma_end_read(vma);
4587 return VM_FAULT_RETRY;
4588 }
4589
ec47c3b9
KS
4590 if (unlikely(anon_vma_prepare(vma)))
4591 return VM_FAULT_OOM;
4592
936ca80d
JK
4593 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4594 if (!vmf->cow_page)
ec47c3b9
KS
4595 return VM_FAULT_OOM;
4596
8f425e4e
MWO
4597 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4598 GFP_KERNEL)) {
936ca80d 4599 put_page(vmf->cow_page);
ec47c3b9
KS
4600 return VM_FAULT_OOM;
4601 }
68fa572b 4602 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
ec47c3b9 4603
936ca80d 4604 ret = __do_fault(vmf);
ec47c3b9
KS
4605 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4606 goto uncharge_out;
3917048d
JK
4607 if (ret & VM_FAULT_DONE_COW)
4608 return ret;
ec47c3b9 4609
b1aa812b 4610 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4611 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4612
9118c0cb 4613 ret |= finish_fault(vmf);
b1aa812b
JK
4614 unlock_page(vmf->page);
4615 put_page(vmf->page);
7267ec00
KS
4616 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4617 goto uncharge_out;
ec47c3b9
KS
4618 return ret;
4619uncharge_out:
936ca80d 4620 put_page(vmf->cow_page);
ec47c3b9
KS
4621 return ret;
4622}
4623
2b740303 4624static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4625{
82b0f8c3 4626 struct vm_area_struct *vma = vmf->vma;
2b740303 4627 vm_fault_t ret, tmp;
6f609b7e 4628 struct folio *folio;
1d65f86d 4629
61a4b8d3
MWO
4630 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4631 vma_end_read(vma);
4632 return VM_FAULT_RETRY;
4633 }
1d65f86d 4634
936ca80d 4635 ret = __do_fault(vmf);
7eae74af 4636 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4637 return ret;
1da177e4 4638
6f609b7e
SK
4639 folio = page_folio(vmf->page);
4640
1da177e4 4641 /*
f0c6d4d2
KS
4642 * Check if the backing address space wants to know that the page is
4643 * about to become writable
1da177e4 4644 */
fb09a464 4645 if (vma->vm_ops->page_mkwrite) {
6f609b7e 4646 folio_unlock(folio);
86aa6998 4647 tmp = do_page_mkwrite(vmf, folio);
fb09a464
KS
4648 if (unlikely(!tmp ||
4649 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
6f609b7e 4650 folio_put(folio);
fb09a464 4651 return tmp;
4294621f 4652 }
fb09a464
KS
4653 }
4654
9118c0cb 4655 ret |= finish_fault(vmf);
7267ec00
KS
4656 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4657 VM_FAULT_RETRY))) {
6f609b7e
SK
4658 folio_unlock(folio);
4659 folio_put(folio);
f0c6d4d2 4660 return ret;
1da177e4 4661 }
b827e496 4662
89b15332 4663 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4664 return ret;
54cb8821 4665}
d00806b1 4666
9a95f3cf 4667/*
c1e8d7c6 4668 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4669 * but allow concurrent faults).
c1e8d7c6 4670 * The mmap_lock may have been released depending on flags and our
9138e47e 4671 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4672 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4673 * by other thread calling munmap()).
9a95f3cf 4674 */
2b740303 4675static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4676{
82b0f8c3 4677 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4678 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4679 vm_fault_t ret;
54cb8821 4680
ff09d7ec
AK
4681 /*
4682 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4683 */
4684 if (!vma->vm_ops->fault) {
3db82b93
HD
4685 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4686 vmf->address, &vmf->ptl);
4687 if (unlikely(!vmf->pte))
ff09d7ec
AK
4688 ret = VM_FAULT_SIGBUS;
4689 else {
ff09d7ec
AK
4690 /*
4691 * Make sure this is not a temporary clearing of pte
4692 * by holding ptl and checking again. A R/M/W update
4693 * of pte involves: take ptl, clearing the pte so that
4694 * we don't have concurrent modification by hardware
4695 * followed by an update.
4696 */
c33c7948 4697 if (unlikely(pte_none(ptep_get(vmf->pte))))
ff09d7ec
AK
4698 ret = VM_FAULT_SIGBUS;
4699 else
4700 ret = VM_FAULT_NOPAGE;
4701
4702 pte_unmap_unlock(vmf->pte, vmf->ptl);
4703 }
4704 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4705 ret = do_read_fault(vmf);
4706 else if (!(vma->vm_flags & VM_SHARED))
4707 ret = do_cow_fault(vmf);
4708 else
4709 ret = do_shared_fault(vmf);
4710
4711 /* preallocated pagetable is unused: free it */
4712 if (vmf->prealloc_pte) {
fc8efd2d 4713 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4714 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4715 }
4716 return ret;
54cb8821
NP
4717}
4718
f4c0d836
YS
4719int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4720 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4721{
4722 get_page(page);
4723
fc137c0d
R
4724 /* Record the current PID acceesing VMA */
4725 vma_set_access_pid_bit(vma);
4726
9532fec1 4727 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4728 if (page_nid == numa_node_id()) {
9532fec1 4729 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4730 *flags |= TNF_FAULT_LOCAL;
4731 }
9532fec1
MG
4732
4733 return mpol_misplaced(page, vma, addr);
4734}
4735
2b740303 4736static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4737{
82b0f8c3 4738 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4739 struct page *page = NULL;
98fa15f3 4740 int page_nid = NUMA_NO_NODE;
6a56ccbc 4741 bool writable = false;
90572890 4742 int last_cpupid;
cbee9f88 4743 int target_nid;
04a86453 4744 pte_t pte, old_pte;
6688cc05 4745 int flags = 0;
d10e63f2
MG
4746
4747 /*
166f61b9
TH
4748 * The "pte" at this point cannot be used safely without
4749 * validation through pte_unmap_same(). It's of NUMA type but
4750 * the pfn may be screwed if the read is non atomic.
166f61b9 4751 */
82b0f8c3 4752 spin_lock(vmf->ptl);
c33c7948 4753 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
82b0f8c3 4754 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4755 goto out;
4756 }
4757
b99a342d
HY
4758 /* Get the normal PTE */
4759 old_pte = ptep_get(vmf->pte);
04a86453 4760 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4761
6a56ccbc
DH
4762 /*
4763 * Detect now whether the PTE could be writable; this information
4764 * is only valid while holding the PT lock.
4765 */
4766 writable = pte_write(pte);
4767 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4768 can_change_pte_writable(vma, vmf->address, pte))
4769 writable = true;
4770
82b0f8c3 4771 page = vm_normal_page(vma, vmf->address, pte);
3218f871 4772 if (!page || is_zone_device_page(page))
b99a342d 4773 goto out_map;
d10e63f2 4774
e81c4802 4775 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4776 if (PageCompound(page))
4777 goto out_map;
e81c4802 4778
6688cc05 4779 /*
bea66fbd
MG
4780 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4781 * much anyway since they can be in shared cache state. This misses
4782 * the case where a mapping is writable but the process never writes
4783 * to it but pte_write gets cleared during protection updates and
4784 * pte_dirty has unpredictable behaviour between PTE scan updates,
4785 * background writeback, dirty balancing and application behaviour.
6688cc05 4786 */
6a56ccbc 4787 if (!writable)
6688cc05
PZ
4788 flags |= TNF_NO_GROUP;
4789
dabe1d99
RR
4790 /*
4791 * Flag if the page is shared between multiple address spaces. This
4792 * is later used when determining whether to group tasks together
4793 */
4794 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4795 flags |= TNF_SHARED;
4796
8191acbd 4797 page_nid = page_to_nid(page);
33024536
HY
4798 /*
4799 * For memory tiering mode, cpupid of slow memory page is used
4800 * to record page access time. So use default value.
4801 */
4802 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4803 !node_is_toptier(page_nid))
4804 last_cpupid = (-1 & LAST_CPUPID_MASK);
4805 else
4806 last_cpupid = page_cpupid_last(page);
82b0f8c3 4807 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4808 &flags);
98fa15f3 4809 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4810 put_page(page);
b99a342d 4811 goto out_map;
4daae3b4 4812 }
b99a342d 4813 pte_unmap_unlock(vmf->pte, vmf->ptl);
6a56ccbc 4814 writable = false;
4daae3b4
MG
4815
4816 /* Migrate to the requested node */
bf90ac19 4817 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4818 page_nid = target_nid;
6688cc05 4819 flags |= TNF_MIGRATED;
b99a342d 4820 } else {
074c2381 4821 flags |= TNF_MIGRATE_FAIL;
c7ad0880
HD
4822 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4823 vmf->address, &vmf->ptl);
4824 if (unlikely(!vmf->pte))
4825 goto out;
c33c7948 4826 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
b99a342d
HY
4827 pte_unmap_unlock(vmf->pte, vmf->ptl);
4828 goto out;
4829 }
4830 goto out_map;
4831 }
4daae3b4
MG
4832
4833out:
98fa15f3 4834 if (page_nid != NUMA_NO_NODE)
6688cc05 4835 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4836 return 0;
b99a342d
HY
4837out_map:
4838 /*
4839 * Make it present again, depending on how arch implements
4840 * non-accessible ptes, some can allow access by kernel mode.
4841 */
4842 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4843 pte = pte_modify(old_pte, vma->vm_page_prot);
4844 pte = pte_mkyoung(pte);
6a56ccbc 4845 if (writable)
161e393c 4846 pte = pte_mkwrite(pte, vma);
b99a342d 4847 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
5003a2bd 4848 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
b99a342d
HY
4849 pte_unmap_unlock(vmf->pte, vmf->ptl);
4850 goto out;
d10e63f2
MG
4851}
4852
2b740303 4853static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4854{
8f5fd0e1
MWO
4855 struct vm_area_struct *vma = vmf->vma;
4856 if (vma_is_anonymous(vma))
82b0f8c3 4857 return do_huge_pmd_anonymous_page(vmf);
40d49a3c 4858 if (vma->vm_ops->huge_fault)
1d024e7a 4859 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
b96375f7
MW
4860 return VM_FAULT_FALLBACK;
4861}
4862
183f24aa 4863/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4864static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4865{
8f5fd0e1 4866 struct vm_area_struct *vma = vmf->vma;
c89357e2 4867 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
aea06577 4868 vm_fault_t ret;
c89357e2 4869
8f5fd0e1 4870 if (vma_is_anonymous(vma)) {
c89357e2 4871 if (likely(!unshare) &&
8f5fd0e1 4872 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
529b930b 4873 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4874 return do_huge_pmd_wp_page(vmf);
529b930b 4875 }
327e9fd4 4876
8f5fd0e1
MWO
4877 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4878 if (vma->vm_ops->huge_fault) {
1d024e7a 4879 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
aea06577
DH
4880 if (!(ret & VM_FAULT_FALLBACK))
4881 return ret;
4882 }
327e9fd4 4883 }
af9e4d5f 4884
327e9fd4 4885 /* COW or write-notify handled on pte level: split pmd. */
8f5fd0e1 4886 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4887
b96375f7
MW
4888 return VM_FAULT_FALLBACK;
4889}
4890
2b740303 4891static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4892{
14c99d65
GJ
4893#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4894 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 4895 struct vm_area_struct *vma = vmf->vma;
14c99d65 4896 /* No support for anonymous transparent PUD pages yet */
c4fd825e 4897 if (vma_is_anonymous(vma))
14c99d65 4898 return VM_FAULT_FALLBACK;
40d49a3c 4899 if (vma->vm_ops->huge_fault)
1d024e7a 4900 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
14c99d65
GJ
4901#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4902 return VM_FAULT_FALLBACK;
4903}
4904
4905static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4906{
327e9fd4
THV
4907#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4908 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 4909 struct vm_area_struct *vma = vmf->vma;
aea06577
DH
4910 vm_fault_t ret;
4911
a00cc7d9 4912 /* No support for anonymous transparent PUD pages yet */
c4fd825e 4913 if (vma_is_anonymous(vma))
327e9fd4 4914 goto split;
c4fd825e
MWO
4915 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4916 if (vma->vm_ops->huge_fault) {
1d024e7a 4917 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
aea06577
DH
4918 if (!(ret & VM_FAULT_FALLBACK))
4919 return ret;
4920 }
327e9fd4
THV
4921 }
4922split:
4923 /* COW or write-notify not handled on PUD level: split pud.*/
c4fd825e 4924 __split_huge_pud(vma, vmf->pud, vmf->address);
14c99d65 4925#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
4926 return VM_FAULT_FALLBACK;
4927}
4928
1da177e4
LT
4929/*
4930 * These routines also need to handle stuff like marking pages dirty
4931 * and/or accessed for architectures that don't do it in hardware (most
4932 * RISC architectures). The early dirtying is also good on the i386.
4933 *
4934 * There is also a hook called "update_mmu_cache()" that architectures
4935 * with external mmu caches can use to update those (ie the Sparc or
4936 * PowerPC hashed page tables that act as extended TLBs).
4937 *
c1e8d7c6 4938 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4939 * concurrent faults).
9a95f3cf 4940 *
c1e8d7c6 4941 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4942 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4943 */
2b740303 4944static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4945{
4946 pte_t entry;
4947
82b0f8c3 4948 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4949 /*
4950 * Leave __pte_alloc() until later: because vm_ops->fault may
4951 * want to allocate huge page, and if we expose page table
4952 * for an instant, it will be difficult to retract from
4953 * concurrent faults and from rmap lookups.
4954 */
82b0f8c3 4955 vmf->pte = NULL;
f46f2ade 4956 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4957 } else {
7267ec00
KS
4958 /*
4959 * A regular pmd is established and it can't morph into a huge
c7ad0880
HD
4960 * pmd by anon khugepaged, since that takes mmap_lock in write
4961 * mode; but shmem or file collapse to THP could still morph
4962 * it into a huge pmd: just retry later if so.
7267ec00 4963 */
c7ad0880
HD
4964 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4965 vmf->address, &vmf->ptl);
4966 if (unlikely(!vmf->pte))
4967 return 0;
26e1a0c3 4968 vmf->orig_pte = ptep_get_lockless(vmf->pte);
f46f2ade 4969 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4970
2994302b 4971 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4972 pte_unmap(vmf->pte);
4973 vmf->pte = NULL;
65500d23 4974 }
1da177e4
LT
4975 }
4976
2bad466c
PX
4977 if (!vmf->pte)
4978 return do_pte_missing(vmf);
7267ec00 4979
2994302b
JK
4980 if (!pte_present(vmf->orig_pte))
4981 return do_swap_page(vmf);
7267ec00 4982
2994302b
JK
4983 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4984 return do_numa_page(vmf);
d10e63f2 4985
82b0f8c3 4986 spin_lock(vmf->ptl);
2994302b 4987 entry = vmf->orig_pte;
c33c7948 4988 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
7df67697 4989 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4990 goto unlock;
7df67697 4991 }
c89357e2 4992 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 4993 if (!pte_write(entry))
2994302b 4994 return do_wp_page(vmf);
c89357e2
DH
4995 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4996 entry = pte_mkdirty(entry);
1da177e4
LT
4997 }
4998 entry = pte_mkyoung(entry);
82b0f8c3
JK
4999 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5000 vmf->flags & FAULT_FLAG_WRITE)) {
5003a2bd
MWO
5001 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5002 vmf->pte, 1);
1a44e149 5003 } else {
b7333b58
YS
5004 /* Skip spurious TLB flush for retried page fault */
5005 if (vmf->flags & FAULT_FLAG_TRIED)
5006 goto unlock;
1a44e149
AA
5007 /*
5008 * This is needed only for protection faults but the arch code
5009 * is not yet telling us if this is a protection fault or not.
5010 * This still avoids useless tlb flushes for .text page faults
5011 * with threads.
5012 */
82b0f8c3 5013 if (vmf->flags & FAULT_FLAG_WRITE)
99c29133
GS
5014 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5015 vmf->pte);
1a44e149 5016 }
8f4e2101 5017unlock:
82b0f8c3 5018 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 5019 return 0;
1da177e4
LT
5020}
5021
5022/*
4ec31152
MWO
5023 * On entry, we hold either the VMA lock or the mmap_lock
5024 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5025 * the result, the mmap_lock is not held on exit. See filemap_fault()
5026 * and __folio_lock_or_retry().
1da177e4 5027 */
2b740303
SJ
5028static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5029 unsigned long address, unsigned int flags)
1da177e4 5030{
82b0f8c3 5031 struct vm_fault vmf = {
bae473a4 5032 .vma = vma,
1a29d85e 5033 .address = address & PAGE_MASK,
824ddc60 5034 .real_address = address,
bae473a4 5035 .flags = flags,
0721ec8b 5036 .pgoff = linear_page_index(vma, address),
667240e0 5037 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 5038 };
dcddffd4 5039 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 5040 unsigned long vm_flags = vma->vm_flags;
1da177e4 5041 pgd_t *pgd;
c2febafc 5042 p4d_t *p4d;
2b740303 5043 vm_fault_t ret;
1da177e4 5044
1da177e4 5045 pgd = pgd_offset(mm, address);
c2febafc
KS
5046 p4d = p4d_alloc(mm, pgd, address);
5047 if (!p4d)
5048 return VM_FAULT_OOM;
a00cc7d9 5049
c2febafc 5050 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 5051 if (!vmf.pud)
c74df32c 5052 return VM_FAULT_OOM;
625110b5 5053retry_pud:
7da4e2cb 5054 if (pud_none(*vmf.pud) &&
a7f4e6e4 5055 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a00cc7d9
MW
5056 ret = create_huge_pud(&vmf);
5057 if (!(ret & VM_FAULT_FALLBACK))
5058 return ret;
5059 } else {
5060 pud_t orig_pud = *vmf.pud;
5061
5062 barrier();
5063 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 5064
c89357e2
DH
5065 /*
5066 * TODO once we support anonymous PUDs: NUMA case and
5067 * FAULT_FLAG_UNSHARE handling.
5068 */
5069 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5070 ret = wp_huge_pud(&vmf, orig_pud);
5071 if (!(ret & VM_FAULT_FALLBACK))
5072 return ret;
5073 } else {
5074 huge_pud_set_accessed(&vmf, orig_pud);
5075 return 0;
5076 }
5077 }
5078 }
5079
5080 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5081 if (!vmf.pmd)
c74df32c 5082 return VM_FAULT_OOM;
625110b5
TH
5083
5084 /* Huge pud page fault raced with pmd_alloc? */
5085 if (pud_trans_unstable(vmf.pud))
5086 goto retry_pud;
5087
7da4e2cb 5088 if (pmd_none(*vmf.pmd) &&
a7f4e6e4 5089 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a2d58167 5090 ret = create_huge_pmd(&vmf);
c0292554
KS
5091 if (!(ret & VM_FAULT_FALLBACK))
5092 return ret;
71e3aac0 5093 } else {
26e1a0c3 5094 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
1f1d06c3 5095
5db4f15c 5096 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5097 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5098 !is_pmd_migration_entry(vmf.orig_pmd));
5099 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5100 pmd_migration_entry_wait(mm, vmf.pmd);
5101 return 0;
5102 }
5db4f15c
YS
5103 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5104 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5105 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5106
c89357e2
DH
5107 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5108 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5109 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5110 if (!(ret & VM_FAULT_FALLBACK))
5111 return ret;
a1dd450b 5112 } else {
5db4f15c 5113 huge_pmd_set_accessed(&vmf);
9845cbbd 5114 return 0;
1f1d06c3 5115 }
71e3aac0
AA
5116 }
5117 }
5118
82b0f8c3 5119 return handle_pte_fault(&vmf);
1da177e4
LT
5120}
5121
bce617ed 5122/**
f0953a1b 5123 * mm_account_fault - Do page fault accounting
809ef83c 5124 * @mm: mm from which memcg should be extracted. It can be NULL.
bce617ed
PX
5125 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5126 * of perf event counters, but we'll still do the per-task accounting to
5127 * the task who triggered this page fault.
5128 * @address: the faulted address.
5129 * @flags: the fault flags.
5130 * @ret: the fault retcode.
5131 *
f0953a1b 5132 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5133 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5134 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5135 * still be in per-arch page fault handlers at the entry of page fault.
5136 */
53156443 5137static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
bce617ed
PX
5138 unsigned long address, unsigned int flags,
5139 vm_fault_t ret)
5140{
5141 bool major;
5142
53156443
SB
5143 /* Incomplete faults will be accounted upon completion. */
5144 if (ret & VM_FAULT_RETRY)
5145 return;
5146
bce617ed 5147 /*
53156443
SB
5148 * To preserve the behavior of older kernels, PGFAULT counters record
5149 * both successful and failed faults, as opposed to perf counters,
5150 * which ignore failed cases.
bce617ed 5151 */
53156443
SB
5152 count_vm_event(PGFAULT);
5153 count_memcg_event_mm(mm, PGFAULT);
5154
5155 /*
5156 * Do not account for unsuccessful faults (e.g. when the address wasn't
5157 * valid). That includes arch_vma_access_permitted() failing before
5158 * reaching here. So this is not a "this many hardware page faults"
5159 * counter. We should use the hw profiling for that.
5160 */
5161 if (ret & VM_FAULT_ERROR)
bce617ed
PX
5162 return;
5163
5164 /*
5165 * We define the fault as a major fault when the final successful fault
5166 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5167 * handle it immediately previously).
5168 */
5169 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5170
a2beb5f1
PX
5171 if (major)
5172 current->maj_flt++;
5173 else
5174 current->min_flt++;
5175
bce617ed 5176 /*
a2beb5f1
PX
5177 * If the fault is done for GUP, regs will be NULL. We only do the
5178 * accounting for the per thread fault counters who triggered the
5179 * fault, and we skip the perf event updates.
bce617ed
PX
5180 */
5181 if (!regs)
5182 return;
5183
a2beb5f1 5184 if (major)
bce617ed 5185 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5186 else
bce617ed 5187 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5188}
5189
ec1c86b2
YZ
5190#ifdef CONFIG_LRU_GEN
5191static void lru_gen_enter_fault(struct vm_area_struct *vma)
5192{
8788f678
YZ
5193 /* the LRU algorithm only applies to accesses with recency */
5194 current->in_lru_fault = vma_has_recency(vma);
ec1c86b2
YZ
5195}
5196
5197static void lru_gen_exit_fault(void)
5198{
5199 current->in_lru_fault = false;
5200}
5201#else
5202static void lru_gen_enter_fault(struct vm_area_struct *vma)
5203{
5204}
5205
5206static void lru_gen_exit_fault(void)
5207{
5208}
5209#endif /* CONFIG_LRU_GEN */
5210
cdc5021c
DH
5211static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5212 unsigned int *flags)
5213{
5214 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5215 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5216 return VM_FAULT_SIGSEGV;
5217 /*
5218 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5219 * just treat it like an ordinary read-fault otherwise.
5220 */
5221 if (!is_cow_mapping(vma->vm_flags))
5222 *flags &= ~FAULT_FLAG_UNSHARE;
79881fed
DH
5223 } else if (*flags & FAULT_FLAG_WRITE) {
5224 /* Write faults on read-only mappings are impossible ... */
5225 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5226 return VM_FAULT_SIGSEGV;
5227 /* ... and FOLL_FORCE only applies to COW mappings. */
5228 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5229 !is_cow_mapping(vma->vm_flags)))
5230 return VM_FAULT_SIGSEGV;
cdc5021c 5231 }
4089eef0
SB
5232#ifdef CONFIG_PER_VMA_LOCK
5233 /*
5234 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5235 * the assumption that lock is dropped on VM_FAULT_RETRY.
5236 */
5237 if (WARN_ON_ONCE((*flags &
5238 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5239 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5240 return VM_FAULT_SIGSEGV;
5241#endif
5242
cdc5021c
DH
5243 return 0;
5244}
5245
9a95f3cf
PC
5246/*
5247 * By the time we get here, we already hold the mm semaphore
5248 *
c1e8d7c6 5249 * The mmap_lock may have been released depending on flags and our
9138e47e 5250 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5251 */
2b740303 5252vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5253 unsigned int flags, struct pt_regs *regs)
519e5247 5254{
53156443
SB
5255 /* If the fault handler drops the mmap_lock, vma may be freed */
5256 struct mm_struct *mm = vma->vm_mm;
2b740303 5257 vm_fault_t ret;
519e5247
JW
5258
5259 __set_current_state(TASK_RUNNING);
5260
cdc5021c
DH
5261 ret = sanitize_fault_flags(vma, &flags);
5262 if (ret)
53156443 5263 goto out;
cdc5021c 5264
de0c799b
LD
5265 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5266 flags & FAULT_FLAG_INSTRUCTION,
53156443
SB
5267 flags & FAULT_FLAG_REMOTE)) {
5268 ret = VM_FAULT_SIGSEGV;
5269 goto out;
5270 }
de0c799b 5271
519e5247
JW
5272 /*
5273 * Enable the memcg OOM handling for faults triggered in user
5274 * space. Kernel faults are handled more gracefully.
5275 */
5276 if (flags & FAULT_FLAG_USER)
29ef680a 5277 mem_cgroup_enter_user_fault();
519e5247 5278
ec1c86b2
YZ
5279 lru_gen_enter_fault(vma);
5280
bae473a4
KS
5281 if (unlikely(is_vm_hugetlb_page(vma)))
5282 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5283 else
5284 ret = __handle_mm_fault(vma, address, flags);
519e5247 5285
ec1c86b2
YZ
5286 lru_gen_exit_fault();
5287
49426420 5288 if (flags & FAULT_FLAG_USER) {
29ef680a 5289 mem_cgroup_exit_user_fault();
166f61b9
TH
5290 /*
5291 * The task may have entered a memcg OOM situation but
5292 * if the allocation error was handled gracefully (no
5293 * VM_FAULT_OOM), there is no need to kill anything.
5294 * Just clean up the OOM state peacefully.
5295 */
5296 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5297 mem_cgroup_oom_synchronize(false);
49426420 5298 }
53156443
SB
5299out:
5300 mm_account_fault(mm, regs, address, flags, ret);
bce617ed 5301
519e5247
JW
5302 return ret;
5303}
e1d6d01a 5304EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5305
c2508ec5
LT
5306#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5307#include <linux/extable.h>
5308
5309static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5310{
4542057e 5311 if (likely(mmap_read_trylock(mm)))
c2508ec5 5312 return true;
c2508ec5
LT
5313
5314 if (regs && !user_mode(regs)) {
5315 unsigned long ip = instruction_pointer(regs);
5316 if (!search_exception_tables(ip))
5317 return false;
5318 }
5319
eda00472 5320 return !mmap_read_lock_killable(mm);
c2508ec5
LT
5321}
5322
5323static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5324{
5325 /*
5326 * We don't have this operation yet.
5327 *
5328 * It should be easy enough to do: it's basically a
5329 * atomic_long_try_cmpxchg_acquire()
5330 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5331 * it also needs the proper lockdep magic etc.
5332 */
5333 return false;
5334}
5335
5336static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5337{
5338 mmap_read_unlock(mm);
5339 if (regs && !user_mode(regs)) {
5340 unsigned long ip = instruction_pointer(regs);
5341 if (!search_exception_tables(ip))
5342 return false;
5343 }
eda00472 5344 return !mmap_write_lock_killable(mm);
c2508ec5
LT
5345}
5346
5347/*
5348 * Helper for page fault handling.
5349 *
5350 * This is kind of equivalend to "mmap_read_lock()" followed
5351 * by "find_extend_vma()", except it's a lot more careful about
5352 * the locking (and will drop the lock on failure).
5353 *
5354 * For example, if we have a kernel bug that causes a page
5355 * fault, we don't want to just use mmap_read_lock() to get
5356 * the mm lock, because that would deadlock if the bug were
5357 * to happen while we're holding the mm lock for writing.
5358 *
5359 * So this checks the exception tables on kernel faults in
5360 * order to only do this all for instructions that are actually
5361 * expected to fault.
5362 *
5363 * We can also actually take the mm lock for writing if we
5364 * need to extend the vma, which helps the VM layer a lot.
5365 */
5366struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5367 unsigned long addr, struct pt_regs *regs)
5368{
5369 struct vm_area_struct *vma;
5370
5371 if (!get_mmap_lock_carefully(mm, regs))
5372 return NULL;
5373
5374 vma = find_vma(mm, addr);
5375 if (likely(vma && (vma->vm_start <= addr)))
5376 return vma;
5377
5378 /*
5379 * Well, dang. We might still be successful, but only
5380 * if we can extend a vma to do so.
5381 */
5382 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5383 mmap_read_unlock(mm);
5384 return NULL;
5385 }
5386
5387 /*
5388 * We can try to upgrade the mmap lock atomically,
5389 * in which case we can continue to use the vma
5390 * we already looked up.
5391 *
5392 * Otherwise we'll have to drop the mmap lock and
5393 * re-take it, and also look up the vma again,
5394 * re-checking it.
5395 */
5396 if (!mmap_upgrade_trylock(mm)) {
5397 if (!upgrade_mmap_lock_carefully(mm, regs))
5398 return NULL;
5399
5400 vma = find_vma(mm, addr);
5401 if (!vma)
5402 goto fail;
5403 if (vma->vm_start <= addr)
5404 goto success;
5405 if (!(vma->vm_flags & VM_GROWSDOWN))
5406 goto fail;
5407 }
5408
8d7071af 5409 if (expand_stack_locked(vma, addr))
c2508ec5
LT
5410 goto fail;
5411
5412success:
5413 mmap_write_downgrade(mm);
5414 return vma;
5415
5416fail:
5417 mmap_write_unlock(mm);
5418 return NULL;
5419}
5420#endif
5421
50ee3253
SB
5422#ifdef CONFIG_PER_VMA_LOCK
5423/*
5424 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5425 * stable and not isolated. If the VMA is not found or is being modified the
5426 * function returns NULL.
5427 */
5428struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5429 unsigned long address)
5430{
5431 MA_STATE(mas, &mm->mm_mt, address, address);
5432 struct vm_area_struct *vma;
5433
5434 rcu_read_lock();
5435retry:
5436 vma = mas_walk(&mas);
5437 if (!vma)
5438 goto inval;
5439
50ee3253
SB
5440 if (!vma_start_read(vma))
5441 goto inval;
5442
657b5146
JH
5443 /*
5444 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5445 * This check must happen after vma_start_read(); otherwise, a
5446 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5447 * from its anon_vma.
5448 */
29a22b9e 5449 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
657b5146 5450 goto inval_end_read;
444eeb17 5451
50ee3253 5452 /* Check since vm_start/vm_end might change before we lock the VMA */
657b5146
JH
5453 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5454 goto inval_end_read;
50ee3253
SB
5455
5456 /* Check if the VMA got isolated after we found it */
5457 if (vma->detached) {
5458 vma_end_read(vma);
52f23865 5459 count_vm_vma_lock_event(VMA_LOCK_MISS);
50ee3253
SB
5460 /* The area was replaced with another one */
5461 goto retry;
5462 }
5463
5464 rcu_read_unlock();
5465 return vma;
657b5146
JH
5466
5467inval_end_read:
5468 vma_end_read(vma);
50ee3253
SB
5469inval:
5470 rcu_read_unlock();
52f23865 5471 count_vm_vma_lock_event(VMA_LOCK_ABORT);
50ee3253
SB
5472 return NULL;
5473}
5474#endif /* CONFIG_PER_VMA_LOCK */
5475
90eceff1
KS
5476#ifndef __PAGETABLE_P4D_FOLDED
5477/*
5478 * Allocate p4d page table.
5479 * We've already handled the fast-path in-line.
5480 */
5481int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5482{
5483 p4d_t *new = p4d_alloc_one(mm, address);
5484 if (!new)
5485 return -ENOMEM;
5486
90eceff1 5487 spin_lock(&mm->page_table_lock);
ed33b5a6 5488 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5489 p4d_free(mm, new);
ed33b5a6
QZ
5490 } else {
5491 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5492 pgd_populate(mm, pgd, new);
ed33b5a6 5493 }
90eceff1
KS
5494 spin_unlock(&mm->page_table_lock);
5495 return 0;
5496}
5497#endif /* __PAGETABLE_P4D_FOLDED */
5498
1da177e4
LT
5499#ifndef __PAGETABLE_PUD_FOLDED
5500/*
5501 * Allocate page upper directory.
872fec16 5502 * We've already handled the fast-path in-line.
1da177e4 5503 */
c2febafc 5504int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5505{
c74df32c
HD
5506 pud_t *new = pud_alloc_one(mm, address);
5507 if (!new)
1bb3630e 5508 return -ENOMEM;
1da177e4 5509
872fec16 5510 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5511 if (!p4d_present(*p4d)) {
5512 mm_inc_nr_puds(mm);
ed33b5a6 5513 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5514 p4d_populate(mm, p4d, new);
b4e98d9a 5515 } else /* Another has populated it */
5e541973 5516 pud_free(mm, new);
c74df32c 5517 spin_unlock(&mm->page_table_lock);
1bb3630e 5518 return 0;
1da177e4
LT
5519}
5520#endif /* __PAGETABLE_PUD_FOLDED */
5521
5522#ifndef __PAGETABLE_PMD_FOLDED
5523/*
5524 * Allocate page middle directory.
872fec16 5525 * We've already handled the fast-path in-line.
1da177e4 5526 */
1bb3630e 5527int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5528{
a00cc7d9 5529 spinlock_t *ptl;
c74df32c
HD
5530 pmd_t *new = pmd_alloc_one(mm, address);
5531 if (!new)
1bb3630e 5532 return -ENOMEM;
1da177e4 5533
a00cc7d9 5534 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5535 if (!pud_present(*pud)) {
5536 mm_inc_nr_pmds(mm);
ed33b5a6 5537 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5538 pud_populate(mm, pud, new);
ed33b5a6 5539 } else { /* Another has populated it */
5e541973 5540 pmd_free(mm, new);
ed33b5a6 5541 }
a00cc7d9 5542 spin_unlock(ptl);
1bb3630e 5543 return 0;
e0f39591 5544}
1da177e4
LT
5545#endif /* __PAGETABLE_PMD_FOLDED */
5546
0e5e64c0
MS
5547/**
5548 * follow_pte - look up PTE at a user virtual address
5549 * @mm: the mm_struct of the target address space
5550 * @address: user virtual address
5551 * @ptepp: location to store found PTE
5552 * @ptlp: location to store the lock for the PTE
5553 *
5554 * On a successful return, the pointer to the PTE is stored in @ptepp;
5555 * the corresponding lock is taken and its location is stored in @ptlp.
5556 * The contents of the PTE are only stable until @ptlp is released;
5557 * any further use, if any, must be protected against invalidation
5558 * with MMU notifiers.
5559 *
5560 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5561 * should be taken for read.
5562 *
5563 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5564 * it is not a good general-purpose API.
5565 *
5566 * Return: zero on success, -ve otherwise.
5567 */
5568int follow_pte(struct mm_struct *mm, unsigned long address,
5569 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5570{
5571 pgd_t *pgd;
c2febafc 5572 p4d_t *p4d;
f8ad0f49
JW
5573 pud_t *pud;
5574 pmd_t *pmd;
5575 pte_t *ptep;
5576
5577 pgd = pgd_offset(mm, address);
5578 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5579 goto out;
5580
c2febafc
KS
5581 p4d = p4d_offset(pgd, address);
5582 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5583 goto out;
5584
5585 pud = pud_offset(p4d, address);
f8ad0f49
JW
5586 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5587 goto out;
5588
5589 pmd = pmd_offset(pud, address);
f66055ab 5590 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5591
f8ad0f49 5592 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3db82b93
HD
5593 if (!ptep)
5594 goto out;
c33c7948 5595 if (!pte_present(ptep_get(ptep)))
f8ad0f49
JW
5596 goto unlock;
5597 *ptepp = ptep;
5598 return 0;
5599unlock:
5600 pte_unmap_unlock(ptep, *ptlp);
5601out:
5602 return -EINVAL;
5603}
9fd6dad1
PB
5604EXPORT_SYMBOL_GPL(follow_pte);
5605
3b6748e2
JW
5606/**
5607 * follow_pfn - look up PFN at a user virtual address
5608 * @vma: memory mapping
5609 * @address: user virtual address
5610 * @pfn: location to store found PFN
5611 *
5612 * Only IO mappings and raw PFN mappings are allowed.
5613 *
9fd6dad1
PB
5614 * This function does not allow the caller to read the permissions
5615 * of the PTE. Do not use it.
5616 *
a862f68a 5617 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5618 */
5619int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5620 unsigned long *pfn)
5621{
5622 int ret = -EINVAL;
5623 spinlock_t *ptl;
5624 pte_t *ptep;
5625
5626 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5627 return ret;
5628
9fd6dad1 5629 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5630 if (ret)
5631 return ret;
c33c7948 5632 *pfn = pte_pfn(ptep_get(ptep));
3b6748e2
JW
5633 pte_unmap_unlock(ptep, ptl);
5634 return 0;
5635}
5636EXPORT_SYMBOL(follow_pfn);
5637
28b2ee20 5638#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5639int follow_phys(struct vm_area_struct *vma,
5640 unsigned long address, unsigned int flags,
5641 unsigned long *prot, resource_size_t *phys)
28b2ee20 5642{
03668a4d 5643 int ret = -EINVAL;
28b2ee20
RR
5644 pte_t *ptep, pte;
5645 spinlock_t *ptl;
28b2ee20 5646
d87fe660 5647 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5648 goto out;
28b2ee20 5649
9fd6dad1 5650 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5651 goto out;
c33c7948 5652 pte = ptep_get(ptep);
03668a4d 5653
f6f37321 5654 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5655 goto unlock;
28b2ee20
RR
5656
5657 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5658 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5659
03668a4d 5660 ret = 0;
28b2ee20
RR
5661unlock:
5662 pte_unmap_unlock(ptep, ptl);
5663out:
d87fe660 5664 return ret;
28b2ee20
RR
5665}
5666
96667f8a
DV
5667/**
5668 * generic_access_phys - generic implementation for iomem mmap access
5669 * @vma: the vma to access
f0953a1b 5670 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
5671 * @buf: buffer to read/write
5672 * @len: length of transfer
5673 * @write: set to FOLL_WRITE when writing, otherwise reading
5674 *
5675 * This is a generic implementation for &vm_operations_struct.access for an
5676 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5677 * not page based.
5678 */
28b2ee20
RR
5679int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5680 void *buf, int len, int write)
5681{
5682 resource_size_t phys_addr;
5683 unsigned long prot = 0;
2bc7273b 5684 void __iomem *maddr;
96667f8a
DV
5685 pte_t *ptep, pte;
5686 spinlock_t *ptl;
5687 int offset = offset_in_page(addr);
5688 int ret = -EINVAL;
5689
5690 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5691 return -EINVAL;
5692
5693retry:
e913a8cd 5694 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a 5695 return -EINVAL;
c33c7948 5696 pte = ptep_get(ptep);
96667f8a 5697 pte_unmap_unlock(ptep, ptl);
28b2ee20 5698
96667f8a
DV
5699 prot = pgprot_val(pte_pgprot(pte));
5700 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5701
5702 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5703 return -EINVAL;
5704
9cb12d7b 5705 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5706 if (!maddr)
5707 return -ENOMEM;
5708
e913a8cd 5709 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5710 goto out_unmap;
5711
c33c7948 5712 if (!pte_same(pte, ptep_get(ptep))) {
96667f8a
DV
5713 pte_unmap_unlock(ptep, ptl);
5714 iounmap(maddr);
5715
5716 goto retry;
5717 }
5718
28b2ee20
RR
5719 if (write)
5720 memcpy_toio(maddr + offset, buf, len);
5721 else
5722 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
5723 ret = len;
5724 pte_unmap_unlock(ptep, ptl);
5725out_unmap:
28b2ee20
RR
5726 iounmap(maddr);
5727
96667f8a 5728 return ret;
28b2ee20 5729}
5a73633e 5730EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5731#endif
5732
0ec76a11 5733/*
d3f5ffca 5734 * Access another process' address space as given in mm.
0ec76a11 5735 */
d3f5ffca
JH
5736int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5737 int len, unsigned int gup_flags)
0ec76a11 5738{
0ec76a11 5739 void *old_buf = buf;
442486ec 5740 int write = gup_flags & FOLL_WRITE;
0ec76a11 5741
d8ed45c5 5742 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5743 return 0;
5744
22883973
KS
5745 /* Untag the address before looking up the VMA */
5746 addr = untagged_addr_remote(mm, addr);
5747
eee9c708
LT
5748 /* Avoid triggering the temporary warning in __get_user_pages */
5749 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5750 return 0;
5751
183ff22b 5752 /* ignore errors, just check how much was successfully transferred */
0ec76a11 5753 while (len) {
ca5e8632 5754 int bytes, offset;
0ec76a11 5755 void *maddr;
ca5e8632
LS
5756 struct vm_area_struct *vma = NULL;
5757 struct page *page = get_user_page_vma_remote(mm, addr,
5758 gup_flags, &vma);
0ec76a11 5759
ca5e8632 5760 if (IS_ERR_OR_NULL(page)) {
9471f1f2
LT
5761 /* We might need to expand the stack to access it */
5762 vma = vma_lookup(mm, addr);
5763 if (!vma) {
5764 vma = expand_stack(mm, addr);
5765
5766 /* mmap_lock was dropped on failure */
5767 if (!vma)
5768 return buf - old_buf;
5769
5770 /* Try again if stack expansion worked */
5771 continue;
5772 }
5773
ca5e8632 5774
28b2ee20
RR
5775 /*
5776 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5777 * we can access using slightly different code.
5778 */
9471f1f2
LT
5779 bytes = 0;
5780#ifdef CONFIG_HAVE_IOREMAP_PROT
28b2ee20 5781 if (vma->vm_ops && vma->vm_ops->access)
9471f1f2
LT
5782 bytes = vma->vm_ops->access(vma, addr, buf,
5783 len, write);
dbffcd03 5784#endif
9471f1f2
LT
5785 if (bytes <= 0)
5786 break;
0ec76a11 5787 } else {
28b2ee20
RR
5788 bytes = len;
5789 offset = addr & (PAGE_SIZE-1);
5790 if (bytes > PAGE_SIZE-offset)
5791 bytes = PAGE_SIZE-offset;
5792
5793 maddr = kmap(page);
5794 if (write) {
5795 copy_to_user_page(vma, page, addr,
5796 maddr + offset, buf, bytes);
5797 set_page_dirty_lock(page);
5798 } else {
5799 copy_from_user_page(vma, page, addr,
5800 buf, maddr + offset, bytes);
5801 }
5802 kunmap(page);
09cbfeaf 5803 put_page(page);
0ec76a11 5804 }
0ec76a11
DH
5805 len -= bytes;
5806 buf += bytes;
5807 addr += bytes;
5808 }
d8ed45c5 5809 mmap_read_unlock(mm);
0ec76a11
DH
5810
5811 return buf - old_buf;
5812}
03252919 5813
5ddd36b9 5814/**
ae91dbfc 5815 * access_remote_vm - access another process' address space
5ddd36b9
SW
5816 * @mm: the mm_struct of the target address space
5817 * @addr: start address to access
5818 * @buf: source or destination buffer
5819 * @len: number of bytes to transfer
6347e8d5 5820 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5821 *
5822 * The caller must hold a reference on @mm.
a862f68a
MR
5823 *
5824 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5825 */
5826int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5827 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5828{
d3f5ffca 5829 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5830}
5831
206cb636
SW
5832/*
5833 * Access another process' address space.
5834 * Source/target buffer must be kernel space,
5835 * Do not walk the page table directly, use get_user_pages
5836 */
5837int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5838 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5839{
5840 struct mm_struct *mm;
5841 int ret;
5842
5843 mm = get_task_mm(tsk);
5844 if (!mm)
5845 return 0;
5846
d3f5ffca 5847 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5848
206cb636
SW
5849 mmput(mm);
5850
5851 return ret;
5852}
fcd35857 5853EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5854
03252919
AK
5855/*
5856 * Print the name of a VMA.
5857 */
5858void print_vma_addr(char *prefix, unsigned long ip)
5859{
5860 struct mm_struct *mm = current->mm;
5861 struct vm_area_struct *vma;
5862
e8bff74a 5863 /*
0a7f682d 5864 * we might be running from an atomic context so we cannot sleep
e8bff74a 5865 */
d8ed45c5 5866 if (!mmap_read_trylock(mm))
e8bff74a
IM
5867 return;
5868
03252919
AK
5869 vma = find_vma(mm, ip);
5870 if (vma && vma->vm_file) {
5871 struct file *f = vma->vm_file;
0a7f682d 5872 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5873 if (buf) {
2fbc57c5 5874 char *p;
03252919 5875
9bf39ab2 5876 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5877 if (IS_ERR(p))
5878 p = "?";
2fbc57c5 5879 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5880 vma->vm_start,
5881 vma->vm_end - vma->vm_start);
5882 free_page((unsigned long)buf);
5883 }
5884 }
d8ed45c5 5885 mmap_read_unlock(mm);
03252919 5886}
3ee1afa3 5887
662bbcb2 5888#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5889void __might_fault(const char *file, int line)
3ee1afa3 5890{
9ec23531 5891 if (pagefault_disabled())
662bbcb2 5892 return;
42a38756 5893 __might_sleep(file, line);
9ec23531 5894#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5895 if (current->mm)
da1c55f1 5896 might_lock_read(&current->mm->mmap_lock);
9ec23531 5897#endif
3ee1afa3 5898}
9ec23531 5899EXPORT_SYMBOL(__might_fault);
3ee1afa3 5900#endif
47ad8475
AA
5901
5902#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5903/*
5904 * Process all subpages of the specified huge page with the specified
5905 * operation. The target subpage will be processed last to keep its
5906 * cache lines hot.
5907 */
1cb9dc4b 5908static inline int process_huge_page(
c6ddfb6c 5909 unsigned long addr_hint, unsigned int pages_per_huge_page,
1cb9dc4b 5910 int (*process_subpage)(unsigned long addr, int idx, void *arg),
c6ddfb6c 5911 void *arg)
47ad8475 5912{
1cb9dc4b 5913 int i, n, base, l, ret;
c79b57e4
HY
5914 unsigned long addr = addr_hint &
5915 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5916
c6ddfb6c 5917 /* Process target subpage last to keep its cache lines hot */
47ad8475 5918 might_sleep();
c79b57e4
HY
5919 n = (addr_hint - addr) / PAGE_SIZE;
5920 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5921 /* If target subpage in first half of huge page */
c79b57e4
HY
5922 base = 0;
5923 l = n;
c6ddfb6c 5924 /* Process subpages at the end of huge page */
c79b57e4
HY
5925 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5926 cond_resched();
1cb9dc4b
LS
5927 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5928 if (ret)
5929 return ret;
c79b57e4
HY
5930 }
5931 } else {
c6ddfb6c 5932 /* If target subpage in second half of huge page */
c79b57e4
HY
5933 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5934 l = pages_per_huge_page - n;
c6ddfb6c 5935 /* Process subpages at the begin of huge page */
c79b57e4
HY
5936 for (i = 0; i < base; i++) {
5937 cond_resched();
1cb9dc4b
LS
5938 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5939 if (ret)
5940 return ret;
c79b57e4
HY
5941 }
5942 }
5943 /*
c6ddfb6c
HY
5944 * Process remaining subpages in left-right-left-right pattern
5945 * towards the target subpage
c79b57e4
HY
5946 */
5947 for (i = 0; i < l; i++) {
5948 int left_idx = base + i;
5949 int right_idx = base + 2 * l - 1 - i;
5950
5951 cond_resched();
1cb9dc4b
LS
5952 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5953 if (ret)
5954 return ret;
47ad8475 5955 cond_resched();
1cb9dc4b
LS
5956 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5957 if (ret)
5958 return ret;
47ad8475 5959 }
1cb9dc4b 5960 return 0;
47ad8475
AA
5961}
5962
c6ddfb6c
HY
5963static void clear_gigantic_page(struct page *page,
5964 unsigned long addr,
5965 unsigned int pages_per_huge_page)
5966{
5967 int i;
14455eab 5968 struct page *p;
c6ddfb6c
HY
5969
5970 might_sleep();
14455eab
CL
5971 for (i = 0; i < pages_per_huge_page; i++) {
5972 p = nth_page(page, i);
c6ddfb6c
HY
5973 cond_resched();
5974 clear_user_highpage(p, addr + i * PAGE_SIZE);
5975 }
5976}
5977
1cb9dc4b 5978static int clear_subpage(unsigned long addr, int idx, void *arg)
c6ddfb6c
HY
5979{
5980 struct page *page = arg;
5981
5982 clear_user_highpage(page + idx, addr);
1cb9dc4b 5983 return 0;
c6ddfb6c
HY
5984}
5985
5986void clear_huge_page(struct page *page,
5987 unsigned long addr_hint, unsigned int pages_per_huge_page)
5988{
5989 unsigned long addr = addr_hint &
5990 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5991
5992 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5993 clear_gigantic_page(page, addr, pages_per_huge_page);
5994 return;
5995 }
5996
5997 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5998}
5999
1cb9dc4b 6000static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
c0e8150e
Z
6001 unsigned long addr,
6002 struct vm_area_struct *vma,
6003 unsigned int pages_per_huge_page)
47ad8475
AA
6004{
6005 int i;
c0e8150e
Z
6006 struct page *dst_page;
6007 struct page *src_page;
47ad8475 6008
14455eab 6009 for (i = 0; i < pages_per_huge_page; i++) {
c0e8150e
Z
6010 dst_page = folio_page(dst, i);
6011 src_page = folio_page(src, i);
14455eab 6012
47ad8475 6013 cond_resched();
1cb9dc4b
LS
6014 if (copy_mc_user_highpage(dst_page, src_page,
6015 addr + i*PAGE_SIZE, vma)) {
6016 memory_failure_queue(page_to_pfn(src_page), 0);
6017 return -EHWPOISON;
6018 }
47ad8475 6019 }
1cb9dc4b 6020 return 0;
47ad8475
AA
6021}
6022
c9f4cd71
HY
6023struct copy_subpage_arg {
6024 struct page *dst;
6025 struct page *src;
6026 struct vm_area_struct *vma;
6027};
6028
1cb9dc4b 6029static int copy_subpage(unsigned long addr, int idx, void *arg)
c9f4cd71
HY
6030{
6031 struct copy_subpage_arg *copy_arg = arg;
6032
1cb9dc4b
LS
6033 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6034 addr, copy_arg->vma)) {
6035 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6036 return -EHWPOISON;
6037 }
6038 return 0;
c9f4cd71
HY
6039}
6040
1cb9dc4b
LS
6041int copy_user_large_folio(struct folio *dst, struct folio *src,
6042 unsigned long addr_hint, struct vm_area_struct *vma)
47ad8475 6043{
c0e8150e 6044 unsigned int pages_per_huge_page = folio_nr_pages(dst);
c9f4cd71
HY
6045 unsigned long addr = addr_hint &
6046 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6047 struct copy_subpage_arg arg = {
c0e8150e
Z
6048 .dst = &dst->page,
6049 .src = &src->page,
c9f4cd71
HY
6050 .vma = vma,
6051 };
47ad8475 6052
1cb9dc4b
LS
6053 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6054 return copy_user_gigantic_page(dst, src, addr, vma,
6055 pages_per_huge_page);
47ad8475 6056
1cb9dc4b 6057 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 6058}
fa4d75c1 6059
e87340ca
Z
6060long copy_folio_from_user(struct folio *dst_folio,
6061 const void __user *usr_src,
6062 bool allow_pagefault)
fa4d75c1 6063{
e87340ca 6064 void *kaddr;
fa4d75c1 6065 unsigned long i, rc = 0;
e87340ca
Z
6066 unsigned int nr_pages = folio_nr_pages(dst_folio);
6067 unsigned long ret_val = nr_pages * PAGE_SIZE;
14455eab 6068 struct page *subpage;
fa4d75c1 6069
e87340ca
Z
6070 for (i = 0; i < nr_pages; i++) {
6071 subpage = folio_page(dst_folio, i);
6072 kaddr = kmap_local_page(subpage);
0d508c1f
Z
6073 if (!allow_pagefault)
6074 pagefault_disable();
e87340ca 6075 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
0d508c1f
Z
6076 if (!allow_pagefault)
6077 pagefault_enable();
e87340ca 6078 kunmap_local(kaddr);
fa4d75c1
MK
6079
6080 ret_val -= (PAGE_SIZE - rc);
6081 if (rc)
6082 break;
6083
e763243c
MS
6084 flush_dcache_page(subpage);
6085
fa4d75c1
MK
6086 cond_resched();
6087 }
6088 return ret_val;
6089}
47ad8475 6090#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 6091
40b64acd 6092#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
6093
6094static struct kmem_cache *page_ptl_cachep;
6095
6096void __init ptlock_cache_init(void)
6097{
6098 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6099 SLAB_PANIC, NULL);
6100}
6101
f5ecca06 6102bool ptlock_alloc(struct ptdesc *ptdesc)
49076ec2
KS
6103{
6104 spinlock_t *ptl;
6105
b35f1819 6106 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
6107 if (!ptl)
6108 return false;
f5ecca06 6109 ptdesc->ptl = ptl;
49076ec2
KS
6110 return true;
6111}
6112
6ed1b8a0 6113void ptlock_free(struct ptdesc *ptdesc)
49076ec2 6114{
6ed1b8a0 6115 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
49076ec2
KS
6116}
6117#endif