]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
thp: export maybe_mkwrite
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
5a3135c2 33#include <linux/oom.h>
1da177e4
LT
34#include <linux/notifier.h>
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
4be38e35 42#include <linux/mempolicy.h>
6811378e 43#include <linux/stop_machine.h>
c713216d
MG
44#include <linux/sort.h>
45#include <linux/pfn.h>
3fcfab16 46#include <linux/backing-dev.h>
933e312e 47#include <linux/fault-inject.h>
a5d76b54 48#include <linux/page-isolation.h>
52d4b9ac 49#include <linux/page_cgroup.h>
3ac7fe5a 50#include <linux/debugobjects.h>
dbb1f81c 51#include <linux/kmemleak.h>
925cc71e 52#include <linux/memory.h>
56de7263 53#include <linux/compaction.h>
0d3d062a 54#include <trace/events/kmem.h>
718a3821 55#include <linux/ftrace_event.h>
1da177e4
LT
56
57#include <asm/tlbflush.h>
ac924c60 58#include <asm/div64.h>
1da177e4
LT
59#include "internal.h"
60
72812019
LS
61#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62DEFINE_PER_CPU(int, numa_node);
63EXPORT_PER_CPU_SYMBOL(numa_node);
64#endif
65
7aac7898
LS
66#ifdef CONFIG_HAVE_MEMORYLESS_NODES
67/*
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
72 */
73DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75#endif
76
1da177e4 77/*
13808910 78 * Array of node states.
1da177e4 79 */
13808910
CL
80nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83#ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85#ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87#endif
88 [N_CPU] = { { [0] = 1UL } },
89#endif /* NUMA */
90};
91EXPORT_SYMBOL(node_states);
92
6c231b7b 93unsigned long totalram_pages __read_mostly;
cb45b0e9 94unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 95int percpu_pagelist_fraction;
dcce284a 96gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 97
452aa699
RW
98#ifdef CONFIG_PM_SLEEP
99/*
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
106 */
c9e664f1
RW
107
108static gfp_t saved_gfp_mask;
109
110void pm_restore_gfp_mask(void)
452aa699
RW
111{
112 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
116 }
452aa699
RW
117}
118
c9e664f1 119void pm_restrict_gfp_mask(void)
452aa699 120{
452aa699 121 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
452aa699
RW
125}
126#endif /* CONFIG_PM_SLEEP */
127
d9c23400
MG
128#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129int pageblock_order __read_mostly;
130#endif
131
d98c7a09 132static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 133
1da177e4
LT
134/*
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
141 *
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
1da177e4 144 */
2f1b6248 145int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 146#ifdef CONFIG_ZONE_DMA
2f1b6248 147 256,
4b51d669 148#endif
fb0e7942 149#ifdef CONFIG_ZONE_DMA32
2f1b6248 150 256,
fb0e7942 151#endif
e53ef38d 152#ifdef CONFIG_HIGHMEM
2a1e274a 153 32,
e53ef38d 154#endif
2a1e274a 155 32,
2f1b6248 156};
1da177e4
LT
157
158EXPORT_SYMBOL(totalram_pages);
1da177e4 159
15ad7cdc 160static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 161#ifdef CONFIG_ZONE_DMA
2f1b6248 162 "DMA",
4b51d669 163#endif
fb0e7942 164#ifdef CONFIG_ZONE_DMA32
2f1b6248 165 "DMA32",
fb0e7942 166#endif
2f1b6248 167 "Normal",
e53ef38d 168#ifdef CONFIG_HIGHMEM
2a1e274a 169 "HighMem",
e53ef38d 170#endif
2a1e274a 171 "Movable",
2f1b6248
CL
172};
173
1da177e4
LT
174int min_free_kbytes = 1024;
175
2c85f51d
JB
176static unsigned long __meminitdata nr_kernel_pages;
177static unsigned long __meminitdata nr_all_pages;
a3142c8e 178static unsigned long __meminitdata dma_reserve;
1da177e4 179
c713216d
MG
180#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181 /*
183ff22b 182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
187 */
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
200
98011f56
JB
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 205 static unsigned long __initdata required_kernelcore;
484f51f8 206 static unsigned long __initdata required_movablecore;
b69a7288 207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
208
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
c713216d
MG
212#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213
418508c1
MS
214#if MAX_NUMNODES > 1
215int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 216int nr_online_nodes __read_mostly = 1;
418508c1 217EXPORT_SYMBOL(nr_node_ids);
62bc62a8 218EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
219#endif
220
9ef9acb0
MG
221int page_group_by_mobility_disabled __read_mostly;
222
b2a0ac88
MG
223static void set_pageblock_migratetype(struct page *page, int migratetype)
224{
49255c61
MG
225
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
228
b2a0ac88
MG
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
231}
232
7f33d49a
RW
233bool oom_killer_disabled __read_mostly;
234
13e7444b 235#ifdef CONFIG_DEBUG_VM
c6a57e19 236static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 237{
bdc8cb98
DH
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
c6a57e19 241
bdc8cb98
DH
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
249
250 return ret;
c6a57e19
DH
251}
252
253static int page_is_consistent(struct zone *zone, struct page *page)
254{
14e07298 255 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 256 return 0;
1da177e4 257 if (zone != page_zone(page))
c6a57e19
DH
258 return 0;
259
260 return 1;
261}
262/*
263 * Temporary debugging check for pages not lying within a given zone.
264 */
265static int bad_range(struct zone *zone, struct page *page)
266{
267 if (page_outside_zone_boundaries(zone, page))
1da177e4 268 return 1;
c6a57e19
DH
269 if (!page_is_consistent(zone, page))
270 return 1;
271
1da177e4
LT
272 return 0;
273}
13e7444b
NP
274#else
275static inline int bad_range(struct zone *zone, struct page *page)
276{
277 return 0;
278}
279#endif
280
224abf92 281static void bad_page(struct page *page)
1da177e4 282{
d936cf9b
HD
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
286
2a7684a2
WF
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 __ClearPageBuddy(page);
290 return;
291 }
292
d936cf9b
HD
293 /*
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
296 */
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
301 }
302 if (nr_unshown) {
1e9e6365
HD
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
305 nr_unshown);
306 nr_unshown = 0;
307 }
308 nr_shown = 0;
309 }
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
312
1e9e6365 313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 314 current->comm, page_to_pfn(page));
718a3821 315 dump_page(page);
3dc14741 316
1da177e4 317 dump_stack();
d936cf9b 318out:
8cc3b392
HD
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page);
9f158333 321 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
322}
323
1da177e4
LT
324/*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
333 *
41d78ba5
HD
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
1da177e4 337 */
d98c7a09
HD
338
339static void free_compound_page(struct page *page)
340{
d85f3385 341 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
342}
343
01ad1c08 344void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
345{
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
354
355 __SetPageTail(p);
356 p->first_page = page;
357 }
358}
359
8cc3b392 360static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
361{
362 int i;
363 int nr_pages = 1 << order;
8cc3b392 364 int bad = 0;
1da177e4 365
8cc3b392
HD
366 if (unlikely(compound_order(page) != order) ||
367 unlikely(!PageHead(page))) {
224abf92 368 bad_page(page);
8cc3b392
HD
369 bad++;
370 }
1da177e4 371
6d777953 372 __ClearPageHead(page);
8cc3b392 373
18229df5
AW
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
1da177e4 376
e713a21d 377 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 378 bad_page(page);
8cc3b392
HD
379 bad++;
380 }
d85f3385 381 __ClearPageTail(p);
1da177e4 382 }
8cc3b392
HD
383
384 return bad;
1da177e4 385}
1da177e4 386
17cf4406
NP
387static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388{
389 int i;
390
6626c5d5
AM
391 /*
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 */
725d704e 395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
396 for (i = 0; i < (1 << order); i++)
397 clear_highpage(page + i);
398}
399
6aa3001b
AM
400static inline void set_page_order(struct page *page, int order)
401{
4c21e2f2 402 set_page_private(page, order);
676165a8 403 __SetPageBuddy(page);
1da177e4
LT
404}
405
406static inline void rmv_page_order(struct page *page)
407{
676165a8 408 __ClearPageBuddy(page);
4c21e2f2 409 set_page_private(page, 0);
1da177e4
LT
410}
411
412/*
413 * Locate the struct page for both the matching buddy in our
414 * pair (buddy1) and the combined O(n+1) page they form (page).
415 *
416 * 1) Any buddy B1 will have an order O twin B2 which satisfies
417 * the following equation:
418 * B2 = B1 ^ (1 << O)
419 * For example, if the starting buddy (buddy2) is #8 its order
420 * 1 buddy is #10:
421 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
422 *
423 * 2) Any buddy B will have an order O+1 parent P which
424 * satisfies the following equation:
425 * P = B & ~(1 << O)
426 *
d6e05edc 427 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
428 */
429static inline struct page *
430__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
431{
432 unsigned long buddy_idx = page_idx ^ (1 << order);
433
434 return page + (buddy_idx - page_idx);
435}
436
437static inline unsigned long
438__find_combined_index(unsigned long page_idx, unsigned int order)
439{
440 return (page_idx & ~(1 << order));
441}
442
443/*
444 * This function checks whether a page is free && is the buddy
445 * we can do coalesce a page and its buddy if
13e7444b 446 * (a) the buddy is not in a hole &&
676165a8 447 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
448 * (c) a page and its buddy have the same order &&
449 * (d) a page and its buddy are in the same zone.
676165a8
NP
450 *
451 * For recording whether a page is in the buddy system, we use PG_buddy.
452 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 453 *
676165a8 454 * For recording page's order, we use page_private(page).
1da177e4 455 */
cb2b95e1
AW
456static inline int page_is_buddy(struct page *page, struct page *buddy,
457 int order)
1da177e4 458{
14e07298 459 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 460 return 0;
13e7444b 461
cb2b95e1
AW
462 if (page_zone_id(page) != page_zone_id(buddy))
463 return 0;
464
465 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 466 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 467 return 1;
676165a8 468 }
6aa3001b 469 return 0;
1da177e4
LT
470}
471
472/*
473 * Freeing function for a buddy system allocator.
474 *
475 * The concept of a buddy system is to maintain direct-mapped table
476 * (containing bit values) for memory blocks of various "orders".
477 * The bottom level table contains the map for the smallest allocatable
478 * units of memory (here, pages), and each level above it describes
479 * pairs of units from the levels below, hence, "buddies".
480 * At a high level, all that happens here is marking the table entry
481 * at the bottom level available, and propagating the changes upward
482 * as necessary, plus some accounting needed to play nicely with other
483 * parts of the VM system.
484 * At each level, we keep a list of pages, which are heads of continuous
676165a8 485 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 486 * order is recorded in page_private(page) field.
1da177e4
LT
487 * So when we are allocating or freeing one, we can derive the state of the
488 * other. That is, if we allocate a small block, and both were
489 * free, the remainder of the region must be split into blocks.
490 * If a block is freed, and its buddy is also free, then this
491 * triggers coalescing into a block of larger size.
492 *
493 * -- wli
494 */
495
48db57f8 496static inline void __free_one_page(struct page *page,
ed0ae21d
MG
497 struct zone *zone, unsigned int order,
498 int migratetype)
1da177e4
LT
499{
500 unsigned long page_idx;
6dda9d55
CZ
501 unsigned long combined_idx;
502 struct page *buddy;
1da177e4 503
224abf92 504 if (unlikely(PageCompound(page)))
8cc3b392
HD
505 if (unlikely(destroy_compound_page(page, order)))
506 return;
1da177e4 507
ed0ae21d
MG
508 VM_BUG_ON(migratetype == -1);
509
1da177e4
LT
510 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
511
f2260e6b 512 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 513 VM_BUG_ON(bad_range(zone, page));
1da177e4 514
1da177e4 515 while (order < MAX_ORDER-1) {
1da177e4 516 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 517 if (!page_is_buddy(page, buddy, order))
3c82d0ce 518 break;
13e7444b 519
3c82d0ce 520 /* Our buddy is free, merge with it and move up one order. */
1da177e4 521 list_del(&buddy->lru);
b2a0ac88 522 zone->free_area[order].nr_free--;
1da177e4 523 rmv_page_order(buddy);
13e7444b 524 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
525 page = page + (combined_idx - page_idx);
526 page_idx = combined_idx;
527 order++;
528 }
529 set_page_order(page, order);
6dda9d55
CZ
530
531 /*
532 * If this is not the largest possible page, check if the buddy
533 * of the next-highest order is free. If it is, it's possible
534 * that pages are being freed that will coalesce soon. In case,
535 * that is happening, add the free page to the tail of the list
536 * so it's less likely to be used soon and more likely to be merged
537 * as a higher order page
538 */
b7f50cfa 539 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55
CZ
540 struct page *higher_page, *higher_buddy;
541 combined_idx = __find_combined_index(page_idx, order);
542 higher_page = page + combined_idx - page_idx;
543 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
547 goto out;
548 }
549 }
550
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552out:
1da177e4
LT
553 zone->free_area[order].nr_free++;
554}
555
092cead6
KM
556/*
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
560 */
561static inline void free_page_mlock(struct page *page)
562{
092cead6
KM
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
565}
092cead6 566
224abf92 567static inline int free_pages_check(struct page *page)
1da177e4 568{
92be2e33
NP
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
a3af9c38 571 (atomic_read(&page->_count) != 0) |
8cc3b392 572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 573 bad_page(page);
79f4b7bf 574 return 1;
8cc3b392 575 }
79f4b7bf
HD
576 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
577 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
578 return 0;
1da177e4
LT
579}
580
581/*
5f8dcc21 582 * Frees a number of pages from the PCP lists
1da177e4 583 * Assumes all pages on list are in same zone, and of same order.
207f36ee 584 * count is the number of pages to free.
1da177e4
LT
585 *
586 * If the zone was previously in an "all pages pinned" state then look to
587 * see if this freeing clears that state.
588 *
589 * And clear the zone's pages_scanned counter, to hold off the "all pages are
590 * pinned" detection logic.
591 */
5f8dcc21
MG
592static void free_pcppages_bulk(struct zone *zone, int count,
593 struct per_cpu_pages *pcp)
1da177e4 594{
5f8dcc21 595 int migratetype = 0;
a6f9edd6 596 int batch_free = 0;
72853e29 597 int to_free = count;
5f8dcc21 598
c54ad30c 599 spin_lock(&zone->lock);
93e4a89a 600 zone->all_unreclaimable = 0;
1da177e4 601 zone->pages_scanned = 0;
f2260e6b 602
72853e29 603 while (to_free) {
48db57f8 604 struct page *page;
5f8dcc21
MG
605 struct list_head *list;
606
607 /*
a6f9edd6
MG
608 * Remove pages from lists in a round-robin fashion. A
609 * batch_free count is maintained that is incremented when an
610 * empty list is encountered. This is so more pages are freed
611 * off fuller lists instead of spinning excessively around empty
612 * lists
5f8dcc21
MG
613 */
614 do {
a6f9edd6 615 batch_free++;
5f8dcc21
MG
616 if (++migratetype == MIGRATE_PCPTYPES)
617 migratetype = 0;
618 list = &pcp->lists[migratetype];
619 } while (list_empty(list));
48db57f8 620
a6f9edd6
MG
621 do {
622 page = list_entry(list->prev, struct page, lru);
623 /* must delete as __free_one_page list manipulates */
624 list_del(&page->lru);
a7016235
HD
625 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
626 __free_one_page(page, zone, 0, page_private(page));
627 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 628 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 629 }
72853e29 630 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 631 spin_unlock(&zone->lock);
1da177e4
LT
632}
633
ed0ae21d
MG
634static void free_one_page(struct zone *zone, struct page *page, int order,
635 int migratetype)
1da177e4 636{
006d22d9 637 spin_lock(&zone->lock);
93e4a89a 638 zone->all_unreclaimable = 0;
006d22d9 639 zone->pages_scanned = 0;
f2260e6b 640
ed0ae21d 641 __free_one_page(page, zone, order, migratetype);
72853e29 642 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 643 spin_unlock(&zone->lock);
48db57f8
NP
644}
645
ec95f53a 646static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 647{
1da177e4 648 int i;
8cc3b392 649 int bad = 0;
1da177e4 650
f650316c 651 trace_mm_page_free_direct(page, order);
b1eeab67
VN
652 kmemcheck_free_shadow(page, order);
653
8dd60a3a
AA
654 if (PageAnon(page))
655 page->mapping = NULL;
656 for (i = 0; i < (1 << order); i++)
657 bad += free_pages_check(page + i);
8cc3b392 658 if (bad)
ec95f53a 659 return false;
689bcebf 660
3ac7fe5a 661 if (!PageHighMem(page)) {
9858db50 662 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
663 debug_check_no_obj_freed(page_address(page),
664 PAGE_SIZE << order);
665 }
dafb1367 666 arch_free_page(page, order);
48db57f8 667 kernel_map_pages(page, 1 << order, 0);
dafb1367 668
ec95f53a
KM
669 return true;
670}
671
672static void __free_pages_ok(struct page *page, unsigned int order)
673{
674 unsigned long flags;
675 int wasMlocked = __TestClearPageMlocked(page);
676
677 if (!free_pages_prepare(page, order))
678 return;
679
c54ad30c 680 local_irq_save(flags);
c277331d 681 if (unlikely(wasMlocked))
da456f14 682 free_page_mlock(page);
f8891e5e 683 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
684 free_one_page(page_zone(page), page, order,
685 get_pageblock_migratetype(page));
c54ad30c 686 local_irq_restore(flags);
1da177e4
LT
687}
688
a226f6c8
DH
689/*
690 * permit the bootmem allocator to evade page validation on high-order frees
691 */
af370fb8 692void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
693{
694 if (order == 0) {
695 __ClearPageReserved(page);
696 set_page_count(page, 0);
7835e98b 697 set_page_refcounted(page);
545b1ea9 698 __free_page(page);
a226f6c8 699 } else {
a226f6c8
DH
700 int loop;
701
545b1ea9 702 prefetchw(page);
a226f6c8
DH
703 for (loop = 0; loop < BITS_PER_LONG; loop++) {
704 struct page *p = &page[loop];
705
545b1ea9
NP
706 if (loop + 1 < BITS_PER_LONG)
707 prefetchw(p + 1);
a226f6c8
DH
708 __ClearPageReserved(p);
709 set_page_count(p, 0);
710 }
711
7835e98b 712 set_page_refcounted(page);
545b1ea9 713 __free_pages(page, order);
a226f6c8
DH
714 }
715}
716
1da177e4
LT
717
718/*
719 * The order of subdivision here is critical for the IO subsystem.
720 * Please do not alter this order without good reasons and regression
721 * testing. Specifically, as large blocks of memory are subdivided,
722 * the order in which smaller blocks are delivered depends on the order
723 * they're subdivided in this function. This is the primary factor
724 * influencing the order in which pages are delivered to the IO
725 * subsystem according to empirical testing, and this is also justified
726 * by considering the behavior of a buddy system containing a single
727 * large block of memory acted on by a series of small allocations.
728 * This behavior is a critical factor in sglist merging's success.
729 *
730 * -- wli
731 */
085cc7d5 732static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
733 int low, int high, struct free_area *area,
734 int migratetype)
1da177e4
LT
735{
736 unsigned long size = 1 << high;
737
738 while (high > low) {
739 area--;
740 high--;
741 size >>= 1;
725d704e 742 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 743 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
744 area->nr_free++;
745 set_page_order(&page[size], high);
746 }
1da177e4
LT
747}
748
1da177e4
LT
749/*
750 * This page is about to be returned from the page allocator
751 */
2a7684a2 752static inline int check_new_page(struct page *page)
1da177e4 753{
92be2e33
NP
754 if (unlikely(page_mapcount(page) |
755 (page->mapping != NULL) |
a3af9c38 756 (atomic_read(&page->_count) != 0) |
8cc3b392 757 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 758 bad_page(page);
689bcebf 759 return 1;
8cc3b392 760 }
2a7684a2
WF
761 return 0;
762}
763
764static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
765{
766 int i;
767
768 for (i = 0; i < (1 << order); i++) {
769 struct page *p = page + i;
770 if (unlikely(check_new_page(p)))
771 return 1;
772 }
689bcebf 773
4c21e2f2 774 set_page_private(page, 0);
7835e98b 775 set_page_refcounted(page);
cc102509
NP
776
777 arch_alloc_page(page, order);
1da177e4 778 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
779
780 if (gfp_flags & __GFP_ZERO)
781 prep_zero_page(page, order, gfp_flags);
782
783 if (order && (gfp_flags & __GFP_COMP))
784 prep_compound_page(page, order);
785
689bcebf 786 return 0;
1da177e4
LT
787}
788
56fd56b8
MG
789/*
790 * Go through the free lists for the given migratetype and remove
791 * the smallest available page from the freelists
792 */
728ec980
MG
793static inline
794struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
795 int migratetype)
796{
797 unsigned int current_order;
798 struct free_area * area;
799 struct page *page;
800
801 /* Find a page of the appropriate size in the preferred list */
802 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
803 area = &(zone->free_area[current_order]);
804 if (list_empty(&area->free_list[migratetype]))
805 continue;
806
807 page = list_entry(area->free_list[migratetype].next,
808 struct page, lru);
809 list_del(&page->lru);
810 rmv_page_order(page);
811 area->nr_free--;
56fd56b8
MG
812 expand(zone, page, order, current_order, area, migratetype);
813 return page;
814 }
815
816 return NULL;
817}
818
819
b2a0ac88
MG
820/*
821 * This array describes the order lists are fallen back to when
822 * the free lists for the desirable migrate type are depleted
823 */
824static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
825 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
826 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
827 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
828 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
829};
830
c361be55
MG
831/*
832 * Move the free pages in a range to the free lists of the requested type.
d9c23400 833 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
834 * boundary. If alignment is required, use move_freepages_block()
835 */
b69a7288
AB
836static int move_freepages(struct zone *zone,
837 struct page *start_page, struct page *end_page,
838 int migratetype)
c361be55
MG
839{
840 struct page *page;
841 unsigned long order;
d100313f 842 int pages_moved = 0;
c361be55
MG
843
844#ifndef CONFIG_HOLES_IN_ZONE
845 /*
846 * page_zone is not safe to call in this context when
847 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
848 * anyway as we check zone boundaries in move_freepages_block().
849 * Remove at a later date when no bug reports exist related to
ac0e5b7a 850 * grouping pages by mobility
c361be55
MG
851 */
852 BUG_ON(page_zone(start_page) != page_zone(end_page));
853#endif
854
855 for (page = start_page; page <= end_page;) {
344c790e
AL
856 /* Make sure we are not inadvertently changing nodes */
857 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
858
c361be55
MG
859 if (!pfn_valid_within(page_to_pfn(page))) {
860 page++;
861 continue;
862 }
863
864 if (!PageBuddy(page)) {
865 page++;
866 continue;
867 }
868
869 order = page_order(page);
870 list_del(&page->lru);
871 list_add(&page->lru,
872 &zone->free_area[order].free_list[migratetype]);
873 page += 1 << order;
d100313f 874 pages_moved += 1 << order;
c361be55
MG
875 }
876
d100313f 877 return pages_moved;
c361be55
MG
878}
879
b69a7288
AB
880static int move_freepages_block(struct zone *zone, struct page *page,
881 int migratetype)
c361be55
MG
882{
883 unsigned long start_pfn, end_pfn;
884 struct page *start_page, *end_page;
885
886 start_pfn = page_to_pfn(page);
d9c23400 887 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 888 start_page = pfn_to_page(start_pfn);
d9c23400
MG
889 end_page = start_page + pageblock_nr_pages - 1;
890 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
891
892 /* Do not cross zone boundaries */
893 if (start_pfn < zone->zone_start_pfn)
894 start_page = page;
895 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
896 return 0;
897
898 return move_freepages(zone, start_page, end_page, migratetype);
899}
900
2f66a68f
MG
901static void change_pageblock_range(struct page *pageblock_page,
902 int start_order, int migratetype)
903{
904 int nr_pageblocks = 1 << (start_order - pageblock_order);
905
906 while (nr_pageblocks--) {
907 set_pageblock_migratetype(pageblock_page, migratetype);
908 pageblock_page += pageblock_nr_pages;
909 }
910}
911
b2a0ac88 912/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
913static inline struct page *
914__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
915{
916 struct free_area * area;
917 int current_order;
918 struct page *page;
919 int migratetype, i;
920
921 /* Find the largest possible block of pages in the other list */
922 for (current_order = MAX_ORDER-1; current_order >= order;
923 --current_order) {
924 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
925 migratetype = fallbacks[start_migratetype][i];
926
56fd56b8
MG
927 /* MIGRATE_RESERVE handled later if necessary */
928 if (migratetype == MIGRATE_RESERVE)
929 continue;
e010487d 930
b2a0ac88
MG
931 area = &(zone->free_area[current_order]);
932 if (list_empty(&area->free_list[migratetype]))
933 continue;
934
935 page = list_entry(area->free_list[migratetype].next,
936 struct page, lru);
937 area->nr_free--;
938
939 /*
c361be55 940 * If breaking a large block of pages, move all free
46dafbca
MG
941 * pages to the preferred allocation list. If falling
942 * back for a reclaimable kernel allocation, be more
943 * agressive about taking ownership of free pages
b2a0ac88 944 */
d9c23400 945 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
946 start_migratetype == MIGRATE_RECLAIMABLE ||
947 page_group_by_mobility_disabled) {
46dafbca
MG
948 unsigned long pages;
949 pages = move_freepages_block(zone, page,
950 start_migratetype);
951
952 /* Claim the whole block if over half of it is free */
dd5d241e
MG
953 if (pages >= (1 << (pageblock_order-1)) ||
954 page_group_by_mobility_disabled)
46dafbca
MG
955 set_pageblock_migratetype(page,
956 start_migratetype);
957
b2a0ac88 958 migratetype = start_migratetype;
c361be55 959 }
b2a0ac88
MG
960
961 /* Remove the page from the freelists */
962 list_del(&page->lru);
963 rmv_page_order(page);
b2a0ac88 964
2f66a68f
MG
965 /* Take ownership for orders >= pageblock_order */
966 if (current_order >= pageblock_order)
967 change_pageblock_range(page, current_order,
b2a0ac88
MG
968 start_migratetype);
969
970 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
971
972 trace_mm_page_alloc_extfrag(page, order, current_order,
973 start_migratetype, migratetype);
974
b2a0ac88
MG
975 return page;
976 }
977 }
978
728ec980 979 return NULL;
b2a0ac88
MG
980}
981
56fd56b8 982/*
1da177e4
LT
983 * Do the hard work of removing an element from the buddy allocator.
984 * Call me with the zone->lock already held.
985 */
b2a0ac88
MG
986static struct page *__rmqueue(struct zone *zone, unsigned int order,
987 int migratetype)
1da177e4 988{
1da177e4
LT
989 struct page *page;
990
728ec980 991retry_reserve:
56fd56b8 992 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 993
728ec980 994 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 995 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 996
728ec980
MG
997 /*
998 * Use MIGRATE_RESERVE rather than fail an allocation. goto
999 * is used because __rmqueue_smallest is an inline function
1000 * and we want just one call site
1001 */
1002 if (!page) {
1003 migratetype = MIGRATE_RESERVE;
1004 goto retry_reserve;
1005 }
1006 }
1007
0d3d062a 1008 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1009 return page;
1da177e4
LT
1010}
1011
1012/*
1013 * Obtain a specified number of elements from the buddy allocator, all under
1014 * a single hold of the lock, for efficiency. Add them to the supplied list.
1015 * Returns the number of new pages which were placed at *list.
1016 */
1017static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1018 unsigned long count, struct list_head *list,
e084b2d9 1019 int migratetype, int cold)
1da177e4 1020{
1da177e4 1021 int i;
1da177e4 1022
c54ad30c 1023 spin_lock(&zone->lock);
1da177e4 1024 for (i = 0; i < count; ++i) {
b2a0ac88 1025 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1026 if (unlikely(page == NULL))
1da177e4 1027 break;
81eabcbe
MG
1028
1029 /*
1030 * Split buddy pages returned by expand() are received here
1031 * in physical page order. The page is added to the callers and
1032 * list and the list head then moves forward. From the callers
1033 * perspective, the linked list is ordered by page number in
1034 * some conditions. This is useful for IO devices that can
1035 * merge IO requests if the physical pages are ordered
1036 * properly.
1037 */
e084b2d9
MG
1038 if (likely(cold == 0))
1039 list_add(&page->lru, list);
1040 else
1041 list_add_tail(&page->lru, list);
535131e6 1042 set_page_private(page, migratetype);
81eabcbe 1043 list = &page->lru;
1da177e4 1044 }
f2260e6b 1045 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1046 spin_unlock(&zone->lock);
085cc7d5 1047 return i;
1da177e4
LT
1048}
1049
4ae7c039 1050#ifdef CONFIG_NUMA
8fce4d8e 1051/*
4037d452
CL
1052 * Called from the vmstat counter updater to drain pagesets of this
1053 * currently executing processor on remote nodes after they have
1054 * expired.
1055 *
879336c3
CL
1056 * Note that this function must be called with the thread pinned to
1057 * a single processor.
8fce4d8e 1058 */
4037d452 1059void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1060{
4ae7c039 1061 unsigned long flags;
4037d452 1062 int to_drain;
4ae7c039 1063
4037d452
CL
1064 local_irq_save(flags);
1065 if (pcp->count >= pcp->batch)
1066 to_drain = pcp->batch;
1067 else
1068 to_drain = pcp->count;
5f8dcc21 1069 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1070 pcp->count -= to_drain;
1071 local_irq_restore(flags);
4ae7c039
CL
1072}
1073#endif
1074
9f8f2172
CL
1075/*
1076 * Drain pages of the indicated processor.
1077 *
1078 * The processor must either be the current processor and the
1079 * thread pinned to the current processor or a processor that
1080 * is not online.
1081 */
1082static void drain_pages(unsigned int cpu)
1da177e4 1083{
c54ad30c 1084 unsigned long flags;
1da177e4 1085 struct zone *zone;
1da177e4 1086
ee99c71c 1087 for_each_populated_zone(zone) {
1da177e4 1088 struct per_cpu_pageset *pset;
3dfa5721 1089 struct per_cpu_pages *pcp;
1da177e4 1090
99dcc3e5
CL
1091 local_irq_save(flags);
1092 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1093
1094 pcp = &pset->pcp;
5f8dcc21 1095 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1096 pcp->count = 0;
1097 local_irq_restore(flags);
1da177e4
LT
1098 }
1099}
1da177e4 1100
9f8f2172
CL
1101/*
1102 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1103 */
1104void drain_local_pages(void *arg)
1105{
1106 drain_pages(smp_processor_id());
1107}
1108
1109/*
1110 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1111 */
1112void drain_all_pages(void)
1113{
15c8b6c1 1114 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1115}
1116
296699de 1117#ifdef CONFIG_HIBERNATION
1da177e4
LT
1118
1119void mark_free_pages(struct zone *zone)
1120{
f623f0db
RW
1121 unsigned long pfn, max_zone_pfn;
1122 unsigned long flags;
b2a0ac88 1123 int order, t;
1da177e4
LT
1124 struct list_head *curr;
1125
1126 if (!zone->spanned_pages)
1127 return;
1128
1129 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1130
1131 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1132 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1133 if (pfn_valid(pfn)) {
1134 struct page *page = pfn_to_page(pfn);
1135
7be98234
RW
1136 if (!swsusp_page_is_forbidden(page))
1137 swsusp_unset_page_free(page);
f623f0db 1138 }
1da177e4 1139
b2a0ac88
MG
1140 for_each_migratetype_order(order, t) {
1141 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1142 unsigned long i;
1da177e4 1143
f623f0db
RW
1144 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1145 for (i = 0; i < (1UL << order); i++)
7be98234 1146 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1147 }
b2a0ac88 1148 }
1da177e4
LT
1149 spin_unlock_irqrestore(&zone->lock, flags);
1150}
e2c55dc8 1151#endif /* CONFIG_PM */
1da177e4 1152
1da177e4
LT
1153/*
1154 * Free a 0-order page
fc91668e 1155 * cold == 1 ? free a cold page : free a hot page
1da177e4 1156 */
fc91668e 1157void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1158{
1159 struct zone *zone = page_zone(page);
1160 struct per_cpu_pages *pcp;
1161 unsigned long flags;
5f8dcc21 1162 int migratetype;
451ea25d 1163 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1164
ec95f53a 1165 if (!free_pages_prepare(page, 0))
689bcebf
HD
1166 return;
1167
5f8dcc21
MG
1168 migratetype = get_pageblock_migratetype(page);
1169 set_page_private(page, migratetype);
1da177e4 1170 local_irq_save(flags);
c277331d 1171 if (unlikely(wasMlocked))
da456f14 1172 free_page_mlock(page);
f8891e5e 1173 __count_vm_event(PGFREE);
da456f14 1174
5f8dcc21
MG
1175 /*
1176 * We only track unmovable, reclaimable and movable on pcp lists.
1177 * Free ISOLATE pages back to the allocator because they are being
1178 * offlined but treat RESERVE as movable pages so we can get those
1179 * areas back if necessary. Otherwise, we may have to free
1180 * excessively into the page allocator
1181 */
1182 if (migratetype >= MIGRATE_PCPTYPES) {
1183 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1184 free_one_page(zone, page, 0, migratetype);
1185 goto out;
1186 }
1187 migratetype = MIGRATE_MOVABLE;
1188 }
1189
99dcc3e5 1190 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1191 if (cold)
5f8dcc21 1192 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1193 else
5f8dcc21 1194 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1195 pcp->count++;
48db57f8 1196 if (pcp->count >= pcp->high) {
5f8dcc21 1197 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1198 pcp->count -= pcp->batch;
1199 }
5f8dcc21
MG
1200
1201out:
1da177e4 1202 local_irq_restore(flags);
1da177e4
LT
1203}
1204
8dfcc9ba
NP
1205/*
1206 * split_page takes a non-compound higher-order page, and splits it into
1207 * n (1<<order) sub-pages: page[0..n]
1208 * Each sub-page must be freed individually.
1209 *
1210 * Note: this is probably too low level an operation for use in drivers.
1211 * Please consult with lkml before using this in your driver.
1212 */
1213void split_page(struct page *page, unsigned int order)
1214{
1215 int i;
1216
725d704e
NP
1217 VM_BUG_ON(PageCompound(page));
1218 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1219
1220#ifdef CONFIG_KMEMCHECK
1221 /*
1222 * Split shadow pages too, because free(page[0]) would
1223 * otherwise free the whole shadow.
1224 */
1225 if (kmemcheck_page_is_tracked(page))
1226 split_page(virt_to_page(page[0].shadow), order);
1227#endif
1228
7835e98b
NP
1229 for (i = 1; i < (1 << order); i++)
1230 set_page_refcounted(page + i);
8dfcc9ba 1231}
8dfcc9ba 1232
748446bb
MG
1233/*
1234 * Similar to split_page except the page is already free. As this is only
1235 * being used for migration, the migratetype of the block also changes.
1236 * As this is called with interrupts disabled, the caller is responsible
1237 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1238 * are enabled.
1239 *
1240 * Note: this is probably too low level an operation for use in drivers.
1241 * Please consult with lkml before using this in your driver.
1242 */
1243int split_free_page(struct page *page)
1244{
1245 unsigned int order;
1246 unsigned long watermark;
1247 struct zone *zone;
1248
1249 BUG_ON(!PageBuddy(page));
1250
1251 zone = page_zone(page);
1252 order = page_order(page);
1253
1254 /* Obey watermarks as if the page was being allocated */
1255 watermark = low_wmark_pages(zone) + (1 << order);
1256 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1257 return 0;
1258
1259 /* Remove page from free list */
1260 list_del(&page->lru);
1261 zone->free_area[order].nr_free--;
1262 rmv_page_order(page);
1263 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1264
1265 /* Split into individual pages */
1266 set_page_refcounted(page);
1267 split_page(page, order);
1268
1269 if (order >= pageblock_order - 1) {
1270 struct page *endpage = page + (1 << order) - 1;
1271 for (; page < endpage; page += pageblock_nr_pages)
1272 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1273 }
1274
1275 return 1 << order;
1276}
1277
1da177e4
LT
1278/*
1279 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1280 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1281 * or two.
1282 */
0a15c3e9
MG
1283static inline
1284struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1285 struct zone *zone, int order, gfp_t gfp_flags,
1286 int migratetype)
1da177e4
LT
1287{
1288 unsigned long flags;
689bcebf 1289 struct page *page;
1da177e4
LT
1290 int cold = !!(gfp_flags & __GFP_COLD);
1291
689bcebf 1292again:
48db57f8 1293 if (likely(order == 0)) {
1da177e4 1294 struct per_cpu_pages *pcp;
5f8dcc21 1295 struct list_head *list;
1da177e4 1296
1da177e4 1297 local_irq_save(flags);
99dcc3e5
CL
1298 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1299 list = &pcp->lists[migratetype];
5f8dcc21 1300 if (list_empty(list)) {
535131e6 1301 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1302 pcp->batch, list,
e084b2d9 1303 migratetype, cold);
5f8dcc21 1304 if (unlikely(list_empty(list)))
6fb332fa 1305 goto failed;
535131e6 1306 }
b92a6edd 1307
5f8dcc21
MG
1308 if (cold)
1309 page = list_entry(list->prev, struct page, lru);
1310 else
1311 page = list_entry(list->next, struct page, lru);
1312
b92a6edd
MG
1313 list_del(&page->lru);
1314 pcp->count--;
7fb1d9fc 1315 } else {
dab48dab
AM
1316 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1317 /*
1318 * __GFP_NOFAIL is not to be used in new code.
1319 *
1320 * All __GFP_NOFAIL callers should be fixed so that they
1321 * properly detect and handle allocation failures.
1322 *
1323 * We most definitely don't want callers attempting to
4923abf9 1324 * allocate greater than order-1 page units with
dab48dab
AM
1325 * __GFP_NOFAIL.
1326 */
4923abf9 1327 WARN_ON_ONCE(order > 1);
dab48dab 1328 }
1da177e4 1329 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1330 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1331 spin_unlock(&zone->lock);
1332 if (!page)
1333 goto failed;
6ccf80eb 1334 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1335 }
1336
f8891e5e 1337 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1338 zone_statistics(preferred_zone, zone);
a74609fa 1339 local_irq_restore(flags);
1da177e4 1340
725d704e 1341 VM_BUG_ON(bad_range(zone, page));
17cf4406 1342 if (prep_new_page(page, order, gfp_flags))
a74609fa 1343 goto again;
1da177e4 1344 return page;
a74609fa
NP
1345
1346failed:
1347 local_irq_restore(flags);
a74609fa 1348 return NULL;
1da177e4
LT
1349}
1350
41858966
MG
1351/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1352#define ALLOC_WMARK_MIN WMARK_MIN
1353#define ALLOC_WMARK_LOW WMARK_LOW
1354#define ALLOC_WMARK_HIGH WMARK_HIGH
1355#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1356
1357/* Mask to get the watermark bits */
1358#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1359
3148890b
NP
1360#define ALLOC_HARDER 0x10 /* try to alloc harder */
1361#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1362#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1363
933e312e
AM
1364#ifdef CONFIG_FAIL_PAGE_ALLOC
1365
1366static struct fail_page_alloc_attr {
1367 struct fault_attr attr;
1368
1369 u32 ignore_gfp_highmem;
1370 u32 ignore_gfp_wait;
54114994 1371 u32 min_order;
933e312e
AM
1372
1373#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1374
1375 struct dentry *ignore_gfp_highmem_file;
1376 struct dentry *ignore_gfp_wait_file;
54114994 1377 struct dentry *min_order_file;
933e312e
AM
1378
1379#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1380
1381} fail_page_alloc = {
1382 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1383 .ignore_gfp_wait = 1,
1384 .ignore_gfp_highmem = 1,
54114994 1385 .min_order = 1,
933e312e
AM
1386};
1387
1388static int __init setup_fail_page_alloc(char *str)
1389{
1390 return setup_fault_attr(&fail_page_alloc.attr, str);
1391}
1392__setup("fail_page_alloc=", setup_fail_page_alloc);
1393
1394static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1395{
54114994
AM
1396 if (order < fail_page_alloc.min_order)
1397 return 0;
933e312e
AM
1398 if (gfp_mask & __GFP_NOFAIL)
1399 return 0;
1400 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1401 return 0;
1402 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1403 return 0;
1404
1405 return should_fail(&fail_page_alloc.attr, 1 << order);
1406}
1407
1408#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1409
1410static int __init fail_page_alloc_debugfs(void)
1411{
1412 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1413 struct dentry *dir;
1414 int err;
1415
1416 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1417 "fail_page_alloc");
1418 if (err)
1419 return err;
1420 dir = fail_page_alloc.attr.dentries.dir;
1421
1422 fail_page_alloc.ignore_gfp_wait_file =
1423 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1424 &fail_page_alloc.ignore_gfp_wait);
1425
1426 fail_page_alloc.ignore_gfp_highmem_file =
1427 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1428 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1429 fail_page_alloc.min_order_file =
1430 debugfs_create_u32("min-order", mode, dir,
1431 &fail_page_alloc.min_order);
933e312e
AM
1432
1433 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1434 !fail_page_alloc.ignore_gfp_highmem_file ||
1435 !fail_page_alloc.min_order_file) {
933e312e
AM
1436 err = -ENOMEM;
1437 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1438 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1439 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1440 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1441 }
1442
1443 return err;
1444}
1445
1446late_initcall(fail_page_alloc_debugfs);
1447
1448#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1449
1450#else /* CONFIG_FAIL_PAGE_ALLOC */
1451
1452static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1453{
1454 return 0;
1455}
1456
1457#endif /* CONFIG_FAIL_PAGE_ALLOC */
1458
1da177e4 1459/*
88f5acf8 1460 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1461 * of the allocation.
1462 */
88f5acf8
MG
1463static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1464 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1465{
1466 /* free_pages my go negative - that's OK */
d23ad423 1467 long min = mark;
1da177e4
LT
1468 int o;
1469
88f5acf8 1470 free_pages -= (1 << order) + 1;
7fb1d9fc 1471 if (alloc_flags & ALLOC_HIGH)
1da177e4 1472 min -= min / 2;
7fb1d9fc 1473 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1474 min -= min / 4;
1475
1476 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1477 return false;
1da177e4
LT
1478 for (o = 0; o < order; o++) {
1479 /* At the next order, this order's pages become unavailable */
1480 free_pages -= z->free_area[o].nr_free << o;
1481
1482 /* Require fewer higher order pages to be free */
1483 min >>= 1;
1484
1485 if (free_pages <= min)
88f5acf8 1486 return false;
1da177e4 1487 }
88f5acf8
MG
1488 return true;
1489}
1490
1491bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1492 int classzone_idx, int alloc_flags)
1493{
1494 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1495 zone_page_state(z, NR_FREE_PAGES));
1496}
1497
1498bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1499 int classzone_idx, int alloc_flags)
1500{
1501 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1502
1503 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1504 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1505
1506 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1507 free_pages);
1da177e4
LT
1508}
1509
9276b1bc
PJ
1510#ifdef CONFIG_NUMA
1511/*
1512 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1513 * skip over zones that are not allowed by the cpuset, or that have
1514 * been recently (in last second) found to be nearly full. See further
1515 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1516 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1517 *
1518 * If the zonelist cache is present in the passed in zonelist, then
1519 * returns a pointer to the allowed node mask (either the current
37b07e41 1520 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1521 *
1522 * If the zonelist cache is not available for this zonelist, does
1523 * nothing and returns NULL.
1524 *
1525 * If the fullzones BITMAP in the zonelist cache is stale (more than
1526 * a second since last zap'd) then we zap it out (clear its bits.)
1527 *
1528 * We hold off even calling zlc_setup, until after we've checked the
1529 * first zone in the zonelist, on the theory that most allocations will
1530 * be satisfied from that first zone, so best to examine that zone as
1531 * quickly as we can.
1532 */
1533static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1534{
1535 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1536 nodemask_t *allowednodes; /* zonelist_cache approximation */
1537
1538 zlc = zonelist->zlcache_ptr;
1539 if (!zlc)
1540 return NULL;
1541
f05111f5 1542 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1543 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1544 zlc->last_full_zap = jiffies;
1545 }
1546
1547 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1548 &cpuset_current_mems_allowed :
37b07e41 1549 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1550 return allowednodes;
1551}
1552
1553/*
1554 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1555 * if it is worth looking at further for free memory:
1556 * 1) Check that the zone isn't thought to be full (doesn't have its
1557 * bit set in the zonelist_cache fullzones BITMAP).
1558 * 2) Check that the zones node (obtained from the zonelist_cache
1559 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1560 * Return true (non-zero) if zone is worth looking at further, or
1561 * else return false (zero) if it is not.
1562 *
1563 * This check -ignores- the distinction between various watermarks,
1564 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1565 * found to be full for any variation of these watermarks, it will
1566 * be considered full for up to one second by all requests, unless
1567 * we are so low on memory on all allowed nodes that we are forced
1568 * into the second scan of the zonelist.
1569 *
1570 * In the second scan we ignore this zonelist cache and exactly
1571 * apply the watermarks to all zones, even it is slower to do so.
1572 * We are low on memory in the second scan, and should leave no stone
1573 * unturned looking for a free page.
1574 */
dd1a239f 1575static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1576 nodemask_t *allowednodes)
1577{
1578 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1579 int i; /* index of *z in zonelist zones */
1580 int n; /* node that zone *z is on */
1581
1582 zlc = zonelist->zlcache_ptr;
1583 if (!zlc)
1584 return 1;
1585
dd1a239f 1586 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1587 n = zlc->z_to_n[i];
1588
1589 /* This zone is worth trying if it is allowed but not full */
1590 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1591}
1592
1593/*
1594 * Given 'z' scanning a zonelist, set the corresponding bit in
1595 * zlc->fullzones, so that subsequent attempts to allocate a page
1596 * from that zone don't waste time re-examining it.
1597 */
dd1a239f 1598static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1599{
1600 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1601 int i; /* index of *z in zonelist zones */
1602
1603 zlc = zonelist->zlcache_ptr;
1604 if (!zlc)
1605 return;
1606
dd1a239f 1607 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1608
1609 set_bit(i, zlc->fullzones);
1610}
1611
1612#else /* CONFIG_NUMA */
1613
1614static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1615{
1616 return NULL;
1617}
1618
dd1a239f 1619static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1620 nodemask_t *allowednodes)
1621{
1622 return 1;
1623}
1624
dd1a239f 1625static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1626{
1627}
1628#endif /* CONFIG_NUMA */
1629
7fb1d9fc 1630/*
0798e519 1631 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1632 * a page.
1633 */
1634static struct page *
19770b32 1635get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1636 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1637 struct zone *preferred_zone, int migratetype)
753ee728 1638{
dd1a239f 1639 struct zoneref *z;
7fb1d9fc 1640 struct page *page = NULL;
54a6eb5c 1641 int classzone_idx;
5117f45d 1642 struct zone *zone;
9276b1bc
PJ
1643 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1644 int zlc_active = 0; /* set if using zonelist_cache */
1645 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1646
19770b32 1647 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1648zonelist_scan:
7fb1d9fc 1649 /*
9276b1bc 1650 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1651 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1652 */
19770b32
MG
1653 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1654 high_zoneidx, nodemask) {
9276b1bc
PJ
1655 if (NUMA_BUILD && zlc_active &&
1656 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1657 continue;
7fb1d9fc 1658 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1659 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1660 goto try_next_zone;
7fb1d9fc 1661
41858966 1662 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1663 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1664 unsigned long mark;
fa5e084e
MG
1665 int ret;
1666
41858966 1667 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1668 if (zone_watermark_ok(zone, order, mark,
1669 classzone_idx, alloc_flags))
1670 goto try_this_zone;
1671
1672 if (zone_reclaim_mode == 0)
1673 goto this_zone_full;
1674
1675 ret = zone_reclaim(zone, gfp_mask, order);
1676 switch (ret) {
1677 case ZONE_RECLAIM_NOSCAN:
1678 /* did not scan */
1679 goto try_next_zone;
1680 case ZONE_RECLAIM_FULL:
1681 /* scanned but unreclaimable */
1682 goto this_zone_full;
1683 default:
1684 /* did we reclaim enough */
1685 if (!zone_watermark_ok(zone, order, mark,
1686 classzone_idx, alloc_flags))
9276b1bc 1687 goto this_zone_full;
0798e519 1688 }
7fb1d9fc
RS
1689 }
1690
fa5e084e 1691try_this_zone:
3dd28266
MG
1692 page = buffered_rmqueue(preferred_zone, zone, order,
1693 gfp_mask, migratetype);
0798e519 1694 if (page)
7fb1d9fc 1695 break;
9276b1bc
PJ
1696this_zone_full:
1697 if (NUMA_BUILD)
1698 zlc_mark_zone_full(zonelist, z);
1699try_next_zone:
62bc62a8 1700 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1701 /*
1702 * we do zlc_setup after the first zone is tried but only
1703 * if there are multiple nodes make it worthwhile
1704 */
9276b1bc
PJ
1705 allowednodes = zlc_setup(zonelist, alloc_flags);
1706 zlc_active = 1;
1707 did_zlc_setup = 1;
1708 }
54a6eb5c 1709 }
9276b1bc
PJ
1710
1711 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1712 /* Disable zlc cache for second zonelist scan */
1713 zlc_active = 0;
1714 goto zonelist_scan;
1715 }
7fb1d9fc 1716 return page;
753ee728
MH
1717}
1718
11e33f6a
MG
1719static inline int
1720should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1721 unsigned long pages_reclaimed)
1da177e4 1722{
11e33f6a
MG
1723 /* Do not loop if specifically requested */
1724 if (gfp_mask & __GFP_NORETRY)
1725 return 0;
1da177e4 1726
11e33f6a
MG
1727 /*
1728 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1729 * means __GFP_NOFAIL, but that may not be true in other
1730 * implementations.
1731 */
1732 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1733 return 1;
1734
1735 /*
1736 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1737 * specified, then we retry until we no longer reclaim any pages
1738 * (above), or we've reclaimed an order of pages at least as
1739 * large as the allocation's order. In both cases, if the
1740 * allocation still fails, we stop retrying.
1741 */
1742 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1743 return 1;
cf40bd16 1744
11e33f6a
MG
1745 /*
1746 * Don't let big-order allocations loop unless the caller
1747 * explicitly requests that.
1748 */
1749 if (gfp_mask & __GFP_NOFAIL)
1750 return 1;
1da177e4 1751
11e33f6a
MG
1752 return 0;
1753}
933e312e 1754
11e33f6a
MG
1755static inline struct page *
1756__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1757 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1758 nodemask_t *nodemask, struct zone *preferred_zone,
1759 int migratetype)
11e33f6a
MG
1760{
1761 struct page *page;
1762
1763 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1764 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1765 schedule_timeout_uninterruptible(1);
1da177e4
LT
1766 return NULL;
1767 }
6b1de916 1768
11e33f6a
MG
1769 /*
1770 * Go through the zonelist yet one more time, keep very high watermark
1771 * here, this is only to catch a parallel oom killing, we must fail if
1772 * we're still under heavy pressure.
1773 */
1774 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1775 order, zonelist, high_zoneidx,
5117f45d 1776 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1777 preferred_zone, migratetype);
7fb1d9fc 1778 if (page)
11e33f6a
MG
1779 goto out;
1780
4365a567
KH
1781 if (!(gfp_mask & __GFP_NOFAIL)) {
1782 /* The OOM killer will not help higher order allocs */
1783 if (order > PAGE_ALLOC_COSTLY_ORDER)
1784 goto out;
03668b3c
DR
1785 /* The OOM killer does not needlessly kill tasks for lowmem */
1786 if (high_zoneidx < ZONE_NORMAL)
1787 goto out;
4365a567
KH
1788 /*
1789 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1790 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1791 * The caller should handle page allocation failure by itself if
1792 * it specifies __GFP_THISNODE.
1793 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1794 */
1795 if (gfp_mask & __GFP_THISNODE)
1796 goto out;
1797 }
11e33f6a 1798 /* Exhausted what can be done so it's blamo time */
4365a567 1799 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1800
1801out:
1802 clear_zonelist_oom(zonelist, gfp_mask);
1803 return page;
1804}
1805
56de7263
MG
1806#ifdef CONFIG_COMPACTION
1807/* Try memory compaction for high-order allocations before reclaim */
1808static struct page *
1809__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1810 struct zonelist *zonelist, enum zone_type high_zoneidx,
1811 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1812 int migratetype, unsigned long *did_some_progress,
1813 bool sync_migration)
56de7263
MG
1814{
1815 struct page *page;
3e7d3449 1816 struct task_struct *tsk = current;
56de7263 1817
4f92e258 1818 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1819 return NULL;
1820
3e7d3449 1821 tsk->flags |= PF_MEMALLOC;
56de7263 1822 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 1823 nodemask, sync_migration);
3e7d3449 1824 tsk->flags &= ~PF_MEMALLOC;
56de7263
MG
1825 if (*did_some_progress != COMPACT_SKIPPED) {
1826
1827 /* Page migration frees to the PCP lists but we want merging */
1828 drain_pages(get_cpu());
1829 put_cpu();
1830
1831 page = get_page_from_freelist(gfp_mask, nodemask,
1832 order, zonelist, high_zoneidx,
1833 alloc_flags, preferred_zone,
1834 migratetype);
1835 if (page) {
4f92e258
MG
1836 preferred_zone->compact_considered = 0;
1837 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1838 count_vm_event(COMPACTSUCCESS);
1839 return page;
1840 }
1841
1842 /*
1843 * It's bad if compaction run occurs and fails.
1844 * The most likely reason is that pages exist,
1845 * but not enough to satisfy watermarks.
1846 */
1847 count_vm_event(COMPACTFAIL);
4f92e258 1848 defer_compaction(preferred_zone);
56de7263
MG
1849
1850 cond_resched();
1851 }
1852
1853 return NULL;
1854}
1855#else
1856static inline struct page *
1857__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1858 struct zonelist *zonelist, enum zone_type high_zoneidx,
1859 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1860 int migratetype, unsigned long *did_some_progress,
1861 bool sync_migration)
56de7263
MG
1862{
1863 return NULL;
1864}
1865#endif /* CONFIG_COMPACTION */
1866
11e33f6a
MG
1867/* The really slow allocator path where we enter direct reclaim */
1868static inline struct page *
1869__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1870 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1871 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1872 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1873{
1874 struct page *page = NULL;
1875 struct reclaim_state reclaim_state;
1876 struct task_struct *p = current;
9ee493ce 1877 bool drained = false;
11e33f6a
MG
1878
1879 cond_resched();
1880
1881 /* We now go into synchronous reclaim */
1882 cpuset_memory_pressure_bump();
11e33f6a
MG
1883 p->flags |= PF_MEMALLOC;
1884 lockdep_set_current_reclaim_state(gfp_mask);
1885 reclaim_state.reclaimed_slab = 0;
1886 p->reclaim_state = &reclaim_state;
1887
1888 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1889
1890 p->reclaim_state = NULL;
1891 lockdep_clear_current_reclaim_state();
1892 p->flags &= ~PF_MEMALLOC;
1893
1894 cond_resched();
1895
9ee493ce
MG
1896 if (unlikely(!(*did_some_progress)))
1897 return NULL;
11e33f6a 1898
9ee493ce
MG
1899retry:
1900 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1901 zonelist, high_zoneidx,
3dd28266
MG
1902 alloc_flags, preferred_zone,
1903 migratetype);
9ee493ce
MG
1904
1905 /*
1906 * If an allocation failed after direct reclaim, it could be because
1907 * pages are pinned on the per-cpu lists. Drain them and try again
1908 */
1909 if (!page && !drained) {
1910 drain_all_pages();
1911 drained = true;
1912 goto retry;
1913 }
1914
11e33f6a
MG
1915 return page;
1916}
1917
1da177e4 1918/*
11e33f6a
MG
1919 * This is called in the allocator slow-path if the allocation request is of
1920 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1921 */
11e33f6a
MG
1922static inline struct page *
1923__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1924 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1925 nodemask_t *nodemask, struct zone *preferred_zone,
1926 int migratetype)
11e33f6a
MG
1927{
1928 struct page *page;
1929
1930 do {
1931 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1932 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1933 preferred_zone, migratetype);
11e33f6a
MG
1934
1935 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 1936 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1937 } while (!page && (gfp_mask & __GFP_NOFAIL));
1938
1939 return page;
1940}
1941
1942static inline
1943void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
1944 enum zone_type high_zoneidx,
1945 enum zone_type classzone_idx)
1da177e4 1946{
dd1a239f
MG
1947 struct zoneref *z;
1948 struct zone *zone;
1da177e4 1949
11e33f6a 1950 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 1951 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 1952}
cf40bd16 1953
341ce06f
PZ
1954static inline int
1955gfp_to_alloc_flags(gfp_t gfp_mask)
1956{
1957 struct task_struct *p = current;
1958 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1959 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1960
a56f57ff 1961 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 1962 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 1963
341ce06f
PZ
1964 /*
1965 * The caller may dip into page reserves a bit more if the caller
1966 * cannot run direct reclaim, or if the caller has realtime scheduling
1967 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1968 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1969 */
e6223a3b 1970 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 1971
341ce06f
PZ
1972 if (!wait) {
1973 alloc_flags |= ALLOC_HARDER;
523b9458 1974 /*
341ce06f
PZ
1975 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1976 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1977 */
341ce06f 1978 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1979 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1980 alloc_flags |= ALLOC_HARDER;
1981
1982 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1983 if (!in_interrupt() &&
1984 ((p->flags & PF_MEMALLOC) ||
1985 unlikely(test_thread_flag(TIF_MEMDIE))))
1986 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1987 }
6b1de916 1988
341ce06f
PZ
1989 return alloc_flags;
1990}
1991
11e33f6a
MG
1992static inline struct page *
1993__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1994 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1995 nodemask_t *nodemask, struct zone *preferred_zone,
1996 int migratetype)
11e33f6a
MG
1997{
1998 const gfp_t wait = gfp_mask & __GFP_WAIT;
1999 struct page *page = NULL;
2000 int alloc_flags;
2001 unsigned long pages_reclaimed = 0;
2002 unsigned long did_some_progress;
2003 struct task_struct *p = current;
77f1fe6b 2004 bool sync_migration = false;
1da177e4 2005
72807a74
MG
2006 /*
2007 * In the slowpath, we sanity check order to avoid ever trying to
2008 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2009 * be using allocators in order of preference for an area that is
2010 * too large.
2011 */
1fc28b70
MG
2012 if (order >= MAX_ORDER) {
2013 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2014 return NULL;
1fc28b70 2015 }
1da177e4 2016
952f3b51
CL
2017 /*
2018 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2019 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2020 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2021 * using a larger set of nodes after it has established that the
2022 * allowed per node queues are empty and that nodes are
2023 * over allocated.
2024 */
2025 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2026 goto nopage;
2027
cc4a6851 2028restart:
99504748
MG
2029 wake_all_kswapd(order, zonelist, high_zoneidx,
2030 zone_idx(preferred_zone));
1da177e4 2031
9bf2229f 2032 /*
7fb1d9fc
RS
2033 * OK, we're below the kswapd watermark and have kicked background
2034 * reclaim. Now things get more complex, so set up alloc_flags according
2035 * to how we want to proceed.
9bf2229f 2036 */
341ce06f 2037 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2038
341ce06f 2039 /* This is the last chance, in general, before the goto nopage. */
19770b32 2040 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2041 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2042 preferred_zone, migratetype);
7fb1d9fc
RS
2043 if (page)
2044 goto got_pg;
1da177e4 2045
b43a57bb 2046rebalance:
11e33f6a 2047 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2048 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2049 page = __alloc_pages_high_priority(gfp_mask, order,
2050 zonelist, high_zoneidx, nodemask,
2051 preferred_zone, migratetype);
2052 if (page)
2053 goto got_pg;
1da177e4
LT
2054 }
2055
2056 /* Atomic allocations - we can't balance anything */
2057 if (!wait)
2058 goto nopage;
2059
341ce06f
PZ
2060 /* Avoid recursion of direct reclaim */
2061 if (p->flags & PF_MEMALLOC)
2062 goto nopage;
2063
6583bb64
DR
2064 /* Avoid allocations with no watermarks from looping endlessly */
2065 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2066 goto nopage;
2067
77f1fe6b
MG
2068 /*
2069 * Try direct compaction. The first pass is asynchronous. Subsequent
2070 * attempts after direct reclaim are synchronous
2071 */
56de7263
MG
2072 page = __alloc_pages_direct_compact(gfp_mask, order,
2073 zonelist, high_zoneidx,
2074 nodemask,
2075 alloc_flags, preferred_zone,
77f1fe6b
MG
2076 migratetype, &did_some_progress,
2077 sync_migration);
56de7263
MG
2078 if (page)
2079 goto got_pg;
77f1fe6b 2080 sync_migration = true;
56de7263 2081
11e33f6a
MG
2082 /* Try direct reclaim and then allocating */
2083 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2084 zonelist, high_zoneidx,
2085 nodemask,
5117f45d 2086 alloc_flags, preferred_zone,
3dd28266 2087 migratetype, &did_some_progress);
11e33f6a
MG
2088 if (page)
2089 goto got_pg;
1da177e4 2090
e33c3b5e 2091 /*
11e33f6a
MG
2092 * If we failed to make any progress reclaiming, then we are
2093 * running out of options and have to consider going OOM
e33c3b5e 2094 */
11e33f6a
MG
2095 if (!did_some_progress) {
2096 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2097 if (oom_killer_disabled)
2098 goto nopage;
11e33f6a
MG
2099 page = __alloc_pages_may_oom(gfp_mask, order,
2100 zonelist, high_zoneidx,
3dd28266
MG
2101 nodemask, preferred_zone,
2102 migratetype);
11e33f6a
MG
2103 if (page)
2104 goto got_pg;
1da177e4 2105
03668b3c
DR
2106 if (!(gfp_mask & __GFP_NOFAIL)) {
2107 /*
2108 * The oom killer is not called for high-order
2109 * allocations that may fail, so if no progress
2110 * is being made, there are no other options and
2111 * retrying is unlikely to help.
2112 */
2113 if (order > PAGE_ALLOC_COSTLY_ORDER)
2114 goto nopage;
2115 /*
2116 * The oom killer is not called for lowmem
2117 * allocations to prevent needlessly killing
2118 * innocent tasks.
2119 */
2120 if (high_zoneidx < ZONE_NORMAL)
2121 goto nopage;
2122 }
e2c55dc8 2123
ff0ceb9d
DR
2124 goto restart;
2125 }
1da177e4
LT
2126 }
2127
11e33f6a 2128 /* Check if we should retry the allocation */
a41f24ea 2129 pages_reclaimed += did_some_progress;
11e33f6a
MG
2130 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2131 /* Wait for some write requests to complete then retry */
0e093d99 2132 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2133 goto rebalance;
3e7d3449
MG
2134 } else {
2135 /*
2136 * High-order allocations do not necessarily loop after
2137 * direct reclaim and reclaim/compaction depends on compaction
2138 * being called after reclaim so call directly if necessary
2139 */
2140 page = __alloc_pages_direct_compact(gfp_mask, order,
2141 zonelist, high_zoneidx,
2142 nodemask,
2143 alloc_flags, preferred_zone,
77f1fe6b
MG
2144 migratetype, &did_some_progress,
2145 sync_migration);
3e7d3449
MG
2146 if (page)
2147 goto got_pg;
1da177e4
LT
2148 }
2149
2150nopage:
2151 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2152 printk(KERN_WARNING "%s: page allocation failure."
2153 " order:%d, mode:0x%x\n",
2154 p->comm, order, gfp_mask);
2155 dump_stack();
578c2fd6 2156 show_mem();
1da177e4 2157 }
b1eeab67 2158 return page;
1da177e4 2159got_pg:
b1eeab67
VN
2160 if (kmemcheck_enabled)
2161 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2162 return page;
11e33f6a 2163
1da177e4 2164}
11e33f6a
MG
2165
2166/*
2167 * This is the 'heart' of the zoned buddy allocator.
2168 */
2169struct page *
2170__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2171 struct zonelist *zonelist, nodemask_t *nodemask)
2172{
2173 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2174 struct zone *preferred_zone;
11e33f6a 2175 struct page *page;
3dd28266 2176 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2177
dcce284a
BH
2178 gfp_mask &= gfp_allowed_mask;
2179
11e33f6a
MG
2180 lockdep_trace_alloc(gfp_mask);
2181
2182 might_sleep_if(gfp_mask & __GFP_WAIT);
2183
2184 if (should_fail_alloc_page(gfp_mask, order))
2185 return NULL;
2186
2187 /*
2188 * Check the zones suitable for the gfp_mask contain at least one
2189 * valid zone. It's possible to have an empty zonelist as a result
2190 * of GFP_THISNODE and a memoryless node
2191 */
2192 if (unlikely(!zonelist->_zonerefs->zone))
2193 return NULL;
2194
c0ff7453 2195 get_mems_allowed();
5117f45d
MG
2196 /* The preferred zone is used for statistics later */
2197 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
c0ff7453
MX
2198 if (!preferred_zone) {
2199 put_mems_allowed();
5117f45d 2200 return NULL;
c0ff7453 2201 }
5117f45d
MG
2202
2203 /* First allocation attempt */
11e33f6a 2204 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2205 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2206 preferred_zone, migratetype);
11e33f6a
MG
2207 if (unlikely(!page))
2208 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2209 zonelist, high_zoneidx, nodemask,
3dd28266 2210 preferred_zone, migratetype);
c0ff7453 2211 put_mems_allowed();
11e33f6a 2212
4b4f278c 2213 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2214 return page;
1da177e4 2215}
d239171e 2216EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2217
2218/*
2219 * Common helper functions.
2220 */
920c7a5d 2221unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2222{
945a1113
AM
2223 struct page *page;
2224
2225 /*
2226 * __get_free_pages() returns a 32-bit address, which cannot represent
2227 * a highmem page
2228 */
2229 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2230
1da177e4
LT
2231 page = alloc_pages(gfp_mask, order);
2232 if (!page)
2233 return 0;
2234 return (unsigned long) page_address(page);
2235}
1da177e4
LT
2236EXPORT_SYMBOL(__get_free_pages);
2237
920c7a5d 2238unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2239{
945a1113 2240 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2241}
1da177e4
LT
2242EXPORT_SYMBOL(get_zeroed_page);
2243
2244void __pagevec_free(struct pagevec *pvec)
2245{
2246 int i = pagevec_count(pvec);
2247
4b4f278c
MG
2248 while (--i >= 0) {
2249 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2250 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2251 }
1da177e4
LT
2252}
2253
920c7a5d 2254void __free_pages(struct page *page, unsigned int order)
1da177e4 2255{
b5810039 2256 if (put_page_testzero(page)) {
1da177e4 2257 if (order == 0)
fc91668e 2258 free_hot_cold_page(page, 0);
1da177e4
LT
2259 else
2260 __free_pages_ok(page, order);
2261 }
2262}
2263
2264EXPORT_SYMBOL(__free_pages);
2265
920c7a5d 2266void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2267{
2268 if (addr != 0) {
725d704e 2269 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2270 __free_pages(virt_to_page((void *)addr), order);
2271 }
2272}
2273
2274EXPORT_SYMBOL(free_pages);
2275
2be0ffe2
TT
2276/**
2277 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2278 * @size: the number of bytes to allocate
2279 * @gfp_mask: GFP flags for the allocation
2280 *
2281 * This function is similar to alloc_pages(), except that it allocates the
2282 * minimum number of pages to satisfy the request. alloc_pages() can only
2283 * allocate memory in power-of-two pages.
2284 *
2285 * This function is also limited by MAX_ORDER.
2286 *
2287 * Memory allocated by this function must be released by free_pages_exact().
2288 */
2289void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2290{
2291 unsigned int order = get_order(size);
2292 unsigned long addr;
2293
2294 addr = __get_free_pages(gfp_mask, order);
2295 if (addr) {
2296 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2297 unsigned long used = addr + PAGE_ALIGN(size);
2298
5bfd7560 2299 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2300 while (used < alloc_end) {
2301 free_page(used);
2302 used += PAGE_SIZE;
2303 }
2304 }
2305
2306 return (void *)addr;
2307}
2308EXPORT_SYMBOL(alloc_pages_exact);
2309
2310/**
2311 * free_pages_exact - release memory allocated via alloc_pages_exact()
2312 * @virt: the value returned by alloc_pages_exact.
2313 * @size: size of allocation, same value as passed to alloc_pages_exact().
2314 *
2315 * Release the memory allocated by a previous call to alloc_pages_exact.
2316 */
2317void free_pages_exact(void *virt, size_t size)
2318{
2319 unsigned long addr = (unsigned long)virt;
2320 unsigned long end = addr + PAGE_ALIGN(size);
2321
2322 while (addr < end) {
2323 free_page(addr);
2324 addr += PAGE_SIZE;
2325 }
2326}
2327EXPORT_SYMBOL(free_pages_exact);
2328
1da177e4
LT
2329static unsigned int nr_free_zone_pages(int offset)
2330{
dd1a239f 2331 struct zoneref *z;
54a6eb5c
MG
2332 struct zone *zone;
2333
e310fd43 2334 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2335 unsigned int sum = 0;
2336
0e88460d 2337 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2338
54a6eb5c 2339 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2340 unsigned long size = zone->present_pages;
41858966 2341 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2342 if (size > high)
2343 sum += size - high;
1da177e4
LT
2344 }
2345
2346 return sum;
2347}
2348
2349/*
2350 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2351 */
2352unsigned int nr_free_buffer_pages(void)
2353{
af4ca457 2354 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2355}
c2f1a551 2356EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2357
2358/*
2359 * Amount of free RAM allocatable within all zones
2360 */
2361unsigned int nr_free_pagecache_pages(void)
2362{
2a1e274a 2363 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2364}
08e0f6a9
CL
2365
2366static inline void show_node(struct zone *zone)
1da177e4 2367{
08e0f6a9 2368 if (NUMA_BUILD)
25ba77c1 2369 printk("Node %d ", zone_to_nid(zone));
1da177e4 2370}
1da177e4 2371
1da177e4
LT
2372void si_meminfo(struct sysinfo *val)
2373{
2374 val->totalram = totalram_pages;
2375 val->sharedram = 0;
d23ad423 2376 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2377 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2378 val->totalhigh = totalhigh_pages;
2379 val->freehigh = nr_free_highpages();
1da177e4
LT
2380 val->mem_unit = PAGE_SIZE;
2381}
2382
2383EXPORT_SYMBOL(si_meminfo);
2384
2385#ifdef CONFIG_NUMA
2386void si_meminfo_node(struct sysinfo *val, int nid)
2387{
2388 pg_data_t *pgdat = NODE_DATA(nid);
2389
2390 val->totalram = pgdat->node_present_pages;
d23ad423 2391 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2392#ifdef CONFIG_HIGHMEM
1da177e4 2393 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2394 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2395 NR_FREE_PAGES);
98d2b0eb
CL
2396#else
2397 val->totalhigh = 0;
2398 val->freehigh = 0;
2399#endif
1da177e4
LT
2400 val->mem_unit = PAGE_SIZE;
2401}
2402#endif
2403
2404#define K(x) ((x) << (PAGE_SHIFT-10))
2405
2406/*
2407 * Show free area list (used inside shift_scroll-lock stuff)
2408 * We also calculate the percentage fragmentation. We do this by counting the
2409 * memory on each free list with the exception of the first item on the list.
2410 */
2411void show_free_areas(void)
2412{
c7241913 2413 int cpu;
1da177e4
LT
2414 struct zone *zone;
2415
ee99c71c 2416 for_each_populated_zone(zone) {
c7241913
JS
2417 show_node(zone);
2418 printk("%s per-cpu:\n", zone->name);
1da177e4 2419
6b482c67 2420 for_each_online_cpu(cpu) {
1da177e4
LT
2421 struct per_cpu_pageset *pageset;
2422
99dcc3e5 2423 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2424
3dfa5721
CL
2425 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2426 cpu, pageset->pcp.high,
2427 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2428 }
2429 }
2430
a731286d
KM
2431 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2432 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2433 " unevictable:%lu"
b76146ed 2434 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2435 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2436 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2437 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2438 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2439 global_page_state(NR_ISOLATED_ANON),
2440 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2441 global_page_state(NR_INACTIVE_FILE),
a731286d 2442 global_page_state(NR_ISOLATED_FILE),
7b854121 2443 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2444 global_page_state(NR_FILE_DIRTY),
ce866b34 2445 global_page_state(NR_WRITEBACK),
fd39fc85 2446 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2447 global_page_state(NR_FREE_PAGES),
3701b033
KM
2448 global_page_state(NR_SLAB_RECLAIMABLE),
2449 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2450 global_page_state(NR_FILE_MAPPED),
4b02108a 2451 global_page_state(NR_SHMEM),
a25700a5
AM
2452 global_page_state(NR_PAGETABLE),
2453 global_page_state(NR_BOUNCE));
1da177e4 2454
ee99c71c 2455 for_each_populated_zone(zone) {
1da177e4
LT
2456 int i;
2457
2458 show_node(zone);
2459 printk("%s"
2460 " free:%lukB"
2461 " min:%lukB"
2462 " low:%lukB"
2463 " high:%lukB"
4f98a2fe
RR
2464 " active_anon:%lukB"
2465 " inactive_anon:%lukB"
2466 " active_file:%lukB"
2467 " inactive_file:%lukB"
7b854121 2468 " unevictable:%lukB"
a731286d
KM
2469 " isolated(anon):%lukB"
2470 " isolated(file):%lukB"
1da177e4 2471 " present:%lukB"
4a0aa73f
KM
2472 " mlocked:%lukB"
2473 " dirty:%lukB"
2474 " writeback:%lukB"
2475 " mapped:%lukB"
4b02108a 2476 " shmem:%lukB"
4a0aa73f
KM
2477 " slab_reclaimable:%lukB"
2478 " slab_unreclaimable:%lukB"
c6a7f572 2479 " kernel_stack:%lukB"
4a0aa73f
KM
2480 " pagetables:%lukB"
2481 " unstable:%lukB"
2482 " bounce:%lukB"
2483 " writeback_tmp:%lukB"
1da177e4
LT
2484 " pages_scanned:%lu"
2485 " all_unreclaimable? %s"
2486 "\n",
2487 zone->name,
88f5acf8 2488 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2489 K(min_wmark_pages(zone)),
2490 K(low_wmark_pages(zone)),
2491 K(high_wmark_pages(zone)),
4f98a2fe
RR
2492 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2493 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2494 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2495 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2496 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2497 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2498 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2499 K(zone->present_pages),
4a0aa73f
KM
2500 K(zone_page_state(zone, NR_MLOCK)),
2501 K(zone_page_state(zone, NR_FILE_DIRTY)),
2502 K(zone_page_state(zone, NR_WRITEBACK)),
2503 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2504 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2505 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2506 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2507 zone_page_state(zone, NR_KERNEL_STACK) *
2508 THREAD_SIZE / 1024,
4a0aa73f
KM
2509 K(zone_page_state(zone, NR_PAGETABLE)),
2510 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2511 K(zone_page_state(zone, NR_BOUNCE)),
2512 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2513 zone->pages_scanned,
93e4a89a 2514 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2515 );
2516 printk("lowmem_reserve[]:");
2517 for (i = 0; i < MAX_NR_ZONES; i++)
2518 printk(" %lu", zone->lowmem_reserve[i]);
2519 printk("\n");
2520 }
2521
ee99c71c 2522 for_each_populated_zone(zone) {
8f9de51a 2523 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2524
2525 show_node(zone);
2526 printk("%s: ", zone->name);
1da177e4
LT
2527
2528 spin_lock_irqsave(&zone->lock, flags);
2529 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2530 nr[order] = zone->free_area[order].nr_free;
2531 total += nr[order] << order;
1da177e4
LT
2532 }
2533 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2534 for (order = 0; order < MAX_ORDER; order++)
2535 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2536 printk("= %lukB\n", K(total));
2537 }
2538
e6f3602d
LW
2539 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2540
1da177e4
LT
2541 show_swap_cache_info();
2542}
2543
19770b32
MG
2544static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2545{
2546 zoneref->zone = zone;
2547 zoneref->zone_idx = zone_idx(zone);
2548}
2549
1da177e4
LT
2550/*
2551 * Builds allocation fallback zone lists.
1a93205b
CL
2552 *
2553 * Add all populated zones of a node to the zonelist.
1da177e4 2554 */
f0c0b2b8
KH
2555static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2556 int nr_zones, enum zone_type zone_type)
1da177e4 2557{
1a93205b
CL
2558 struct zone *zone;
2559
98d2b0eb 2560 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2561 zone_type++;
02a68a5e
CL
2562
2563 do {
2f6726e5 2564 zone_type--;
070f8032 2565 zone = pgdat->node_zones + zone_type;
1a93205b 2566 if (populated_zone(zone)) {
dd1a239f
MG
2567 zoneref_set_zone(zone,
2568 &zonelist->_zonerefs[nr_zones++]);
070f8032 2569 check_highest_zone(zone_type);
1da177e4 2570 }
02a68a5e 2571
2f6726e5 2572 } while (zone_type);
070f8032 2573 return nr_zones;
1da177e4
LT
2574}
2575
f0c0b2b8
KH
2576
2577/*
2578 * zonelist_order:
2579 * 0 = automatic detection of better ordering.
2580 * 1 = order by ([node] distance, -zonetype)
2581 * 2 = order by (-zonetype, [node] distance)
2582 *
2583 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2584 * the same zonelist. So only NUMA can configure this param.
2585 */
2586#define ZONELIST_ORDER_DEFAULT 0
2587#define ZONELIST_ORDER_NODE 1
2588#define ZONELIST_ORDER_ZONE 2
2589
2590/* zonelist order in the kernel.
2591 * set_zonelist_order() will set this to NODE or ZONE.
2592 */
2593static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2594static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2595
2596
1da177e4 2597#ifdef CONFIG_NUMA
f0c0b2b8
KH
2598/* The value user specified ....changed by config */
2599static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2600/* string for sysctl */
2601#define NUMA_ZONELIST_ORDER_LEN 16
2602char numa_zonelist_order[16] = "default";
2603
2604/*
2605 * interface for configure zonelist ordering.
2606 * command line option "numa_zonelist_order"
2607 * = "[dD]efault - default, automatic configuration.
2608 * = "[nN]ode - order by node locality, then by zone within node
2609 * = "[zZ]one - order by zone, then by locality within zone
2610 */
2611
2612static int __parse_numa_zonelist_order(char *s)
2613{
2614 if (*s == 'd' || *s == 'D') {
2615 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2616 } else if (*s == 'n' || *s == 'N') {
2617 user_zonelist_order = ZONELIST_ORDER_NODE;
2618 } else if (*s == 'z' || *s == 'Z') {
2619 user_zonelist_order = ZONELIST_ORDER_ZONE;
2620 } else {
2621 printk(KERN_WARNING
2622 "Ignoring invalid numa_zonelist_order value: "
2623 "%s\n", s);
2624 return -EINVAL;
2625 }
2626 return 0;
2627}
2628
2629static __init int setup_numa_zonelist_order(char *s)
2630{
ecb256f8
VL
2631 int ret;
2632
2633 if (!s)
2634 return 0;
2635
2636 ret = __parse_numa_zonelist_order(s);
2637 if (ret == 0)
2638 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2639
2640 return ret;
f0c0b2b8
KH
2641}
2642early_param("numa_zonelist_order", setup_numa_zonelist_order);
2643
2644/*
2645 * sysctl handler for numa_zonelist_order
2646 */
2647int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2648 void __user *buffer, size_t *length,
f0c0b2b8
KH
2649 loff_t *ppos)
2650{
2651 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2652 int ret;
443c6f14 2653 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2654
443c6f14 2655 mutex_lock(&zl_order_mutex);
f0c0b2b8 2656 if (write)
443c6f14 2657 strcpy(saved_string, (char*)table->data);
8d65af78 2658 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2659 if (ret)
443c6f14 2660 goto out;
f0c0b2b8
KH
2661 if (write) {
2662 int oldval = user_zonelist_order;
2663 if (__parse_numa_zonelist_order((char*)table->data)) {
2664 /*
2665 * bogus value. restore saved string
2666 */
2667 strncpy((char*)table->data, saved_string,
2668 NUMA_ZONELIST_ORDER_LEN);
2669 user_zonelist_order = oldval;
4eaf3f64
HL
2670 } else if (oldval != user_zonelist_order) {
2671 mutex_lock(&zonelists_mutex);
1f522509 2672 build_all_zonelists(NULL);
4eaf3f64
HL
2673 mutex_unlock(&zonelists_mutex);
2674 }
f0c0b2b8 2675 }
443c6f14
AK
2676out:
2677 mutex_unlock(&zl_order_mutex);
2678 return ret;
f0c0b2b8
KH
2679}
2680
2681
62bc62a8 2682#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2683static int node_load[MAX_NUMNODES];
2684
1da177e4 2685/**
4dc3b16b 2686 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2687 * @node: node whose fallback list we're appending
2688 * @used_node_mask: nodemask_t of already used nodes
2689 *
2690 * We use a number of factors to determine which is the next node that should
2691 * appear on a given node's fallback list. The node should not have appeared
2692 * already in @node's fallback list, and it should be the next closest node
2693 * according to the distance array (which contains arbitrary distance values
2694 * from each node to each node in the system), and should also prefer nodes
2695 * with no CPUs, since presumably they'll have very little allocation pressure
2696 * on them otherwise.
2697 * It returns -1 if no node is found.
2698 */
f0c0b2b8 2699static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2700{
4cf808eb 2701 int n, val;
1da177e4
LT
2702 int min_val = INT_MAX;
2703 int best_node = -1;
a70f7302 2704 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2705
4cf808eb
LT
2706 /* Use the local node if we haven't already */
2707 if (!node_isset(node, *used_node_mask)) {
2708 node_set(node, *used_node_mask);
2709 return node;
2710 }
1da177e4 2711
37b07e41 2712 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2713
2714 /* Don't want a node to appear more than once */
2715 if (node_isset(n, *used_node_mask))
2716 continue;
2717
1da177e4
LT
2718 /* Use the distance array to find the distance */
2719 val = node_distance(node, n);
2720
4cf808eb
LT
2721 /* Penalize nodes under us ("prefer the next node") */
2722 val += (n < node);
2723
1da177e4 2724 /* Give preference to headless and unused nodes */
a70f7302
RR
2725 tmp = cpumask_of_node(n);
2726 if (!cpumask_empty(tmp))
1da177e4
LT
2727 val += PENALTY_FOR_NODE_WITH_CPUS;
2728
2729 /* Slight preference for less loaded node */
2730 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2731 val += node_load[n];
2732
2733 if (val < min_val) {
2734 min_val = val;
2735 best_node = n;
2736 }
2737 }
2738
2739 if (best_node >= 0)
2740 node_set(best_node, *used_node_mask);
2741
2742 return best_node;
2743}
2744
f0c0b2b8
KH
2745
2746/*
2747 * Build zonelists ordered by node and zones within node.
2748 * This results in maximum locality--normal zone overflows into local
2749 * DMA zone, if any--but risks exhausting DMA zone.
2750 */
2751static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2752{
f0c0b2b8 2753 int j;
1da177e4 2754 struct zonelist *zonelist;
f0c0b2b8 2755
54a6eb5c 2756 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2757 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2758 ;
2759 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2760 MAX_NR_ZONES - 1);
dd1a239f
MG
2761 zonelist->_zonerefs[j].zone = NULL;
2762 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2763}
2764
523b9458
CL
2765/*
2766 * Build gfp_thisnode zonelists
2767 */
2768static void build_thisnode_zonelists(pg_data_t *pgdat)
2769{
523b9458
CL
2770 int j;
2771 struct zonelist *zonelist;
2772
54a6eb5c
MG
2773 zonelist = &pgdat->node_zonelists[1];
2774 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2775 zonelist->_zonerefs[j].zone = NULL;
2776 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2777}
2778
f0c0b2b8
KH
2779/*
2780 * Build zonelists ordered by zone and nodes within zones.
2781 * This results in conserving DMA zone[s] until all Normal memory is
2782 * exhausted, but results in overflowing to remote node while memory
2783 * may still exist in local DMA zone.
2784 */
2785static int node_order[MAX_NUMNODES];
2786
2787static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2788{
f0c0b2b8
KH
2789 int pos, j, node;
2790 int zone_type; /* needs to be signed */
2791 struct zone *z;
2792 struct zonelist *zonelist;
2793
54a6eb5c
MG
2794 zonelist = &pgdat->node_zonelists[0];
2795 pos = 0;
2796 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2797 for (j = 0; j < nr_nodes; j++) {
2798 node = node_order[j];
2799 z = &NODE_DATA(node)->node_zones[zone_type];
2800 if (populated_zone(z)) {
dd1a239f
MG
2801 zoneref_set_zone(z,
2802 &zonelist->_zonerefs[pos++]);
54a6eb5c 2803 check_highest_zone(zone_type);
f0c0b2b8
KH
2804 }
2805 }
f0c0b2b8 2806 }
dd1a239f
MG
2807 zonelist->_zonerefs[pos].zone = NULL;
2808 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2809}
2810
2811static int default_zonelist_order(void)
2812{
2813 int nid, zone_type;
2814 unsigned long low_kmem_size,total_size;
2815 struct zone *z;
2816 int average_size;
2817 /*
88393161 2818 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2819 * If they are really small and used heavily, the system can fall
2820 * into OOM very easily.
e325c90f 2821 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2822 */
2823 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2824 low_kmem_size = 0;
2825 total_size = 0;
2826 for_each_online_node(nid) {
2827 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2828 z = &NODE_DATA(nid)->node_zones[zone_type];
2829 if (populated_zone(z)) {
2830 if (zone_type < ZONE_NORMAL)
2831 low_kmem_size += z->present_pages;
2832 total_size += z->present_pages;
e325c90f
DR
2833 } else if (zone_type == ZONE_NORMAL) {
2834 /*
2835 * If any node has only lowmem, then node order
2836 * is preferred to allow kernel allocations
2837 * locally; otherwise, they can easily infringe
2838 * on other nodes when there is an abundance of
2839 * lowmem available to allocate from.
2840 */
2841 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2842 }
2843 }
2844 }
2845 if (!low_kmem_size || /* there are no DMA area. */
2846 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2847 return ZONELIST_ORDER_NODE;
2848 /*
2849 * look into each node's config.
2850 * If there is a node whose DMA/DMA32 memory is very big area on
2851 * local memory, NODE_ORDER may be suitable.
2852 */
37b07e41
LS
2853 average_size = total_size /
2854 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2855 for_each_online_node(nid) {
2856 low_kmem_size = 0;
2857 total_size = 0;
2858 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2859 z = &NODE_DATA(nid)->node_zones[zone_type];
2860 if (populated_zone(z)) {
2861 if (zone_type < ZONE_NORMAL)
2862 low_kmem_size += z->present_pages;
2863 total_size += z->present_pages;
2864 }
2865 }
2866 if (low_kmem_size &&
2867 total_size > average_size && /* ignore small node */
2868 low_kmem_size > total_size * 70/100)
2869 return ZONELIST_ORDER_NODE;
2870 }
2871 return ZONELIST_ORDER_ZONE;
2872}
2873
2874static void set_zonelist_order(void)
2875{
2876 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2877 current_zonelist_order = default_zonelist_order();
2878 else
2879 current_zonelist_order = user_zonelist_order;
2880}
2881
2882static void build_zonelists(pg_data_t *pgdat)
2883{
2884 int j, node, load;
2885 enum zone_type i;
1da177e4 2886 nodemask_t used_mask;
f0c0b2b8
KH
2887 int local_node, prev_node;
2888 struct zonelist *zonelist;
2889 int order = current_zonelist_order;
1da177e4
LT
2890
2891 /* initialize zonelists */
523b9458 2892 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2893 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2894 zonelist->_zonerefs[0].zone = NULL;
2895 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2896 }
2897
2898 /* NUMA-aware ordering of nodes */
2899 local_node = pgdat->node_id;
62bc62a8 2900 load = nr_online_nodes;
1da177e4
LT
2901 prev_node = local_node;
2902 nodes_clear(used_mask);
f0c0b2b8 2903
f0c0b2b8
KH
2904 memset(node_order, 0, sizeof(node_order));
2905 j = 0;
2906
1da177e4 2907 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2908 int distance = node_distance(local_node, node);
2909
2910 /*
2911 * If another node is sufficiently far away then it is better
2912 * to reclaim pages in a zone before going off node.
2913 */
2914 if (distance > RECLAIM_DISTANCE)
2915 zone_reclaim_mode = 1;
2916
1da177e4
LT
2917 /*
2918 * We don't want to pressure a particular node.
2919 * So adding penalty to the first node in same
2920 * distance group to make it round-robin.
2921 */
9eeff239 2922 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2923 node_load[node] = load;
2924
1da177e4
LT
2925 prev_node = node;
2926 load--;
f0c0b2b8
KH
2927 if (order == ZONELIST_ORDER_NODE)
2928 build_zonelists_in_node_order(pgdat, node);
2929 else
2930 node_order[j++] = node; /* remember order */
2931 }
1da177e4 2932
f0c0b2b8
KH
2933 if (order == ZONELIST_ORDER_ZONE) {
2934 /* calculate node order -- i.e., DMA last! */
2935 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2936 }
523b9458
CL
2937
2938 build_thisnode_zonelists(pgdat);
1da177e4
LT
2939}
2940
9276b1bc 2941/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2942static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2943{
54a6eb5c
MG
2944 struct zonelist *zonelist;
2945 struct zonelist_cache *zlc;
dd1a239f 2946 struct zoneref *z;
9276b1bc 2947
54a6eb5c
MG
2948 zonelist = &pgdat->node_zonelists[0];
2949 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2950 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2951 for (z = zonelist->_zonerefs; z->zone; z++)
2952 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2953}
2954
7aac7898
LS
2955#ifdef CONFIG_HAVE_MEMORYLESS_NODES
2956/*
2957 * Return node id of node used for "local" allocations.
2958 * I.e., first node id of first zone in arg node's generic zonelist.
2959 * Used for initializing percpu 'numa_mem', which is used primarily
2960 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2961 */
2962int local_memory_node(int node)
2963{
2964 struct zone *zone;
2965
2966 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2967 gfp_zone(GFP_KERNEL),
2968 NULL,
2969 &zone);
2970 return zone->node;
2971}
2972#endif
f0c0b2b8 2973
1da177e4
LT
2974#else /* CONFIG_NUMA */
2975
f0c0b2b8
KH
2976static void set_zonelist_order(void)
2977{
2978 current_zonelist_order = ZONELIST_ORDER_ZONE;
2979}
2980
2981static void build_zonelists(pg_data_t *pgdat)
1da177e4 2982{
19655d34 2983 int node, local_node;
54a6eb5c
MG
2984 enum zone_type j;
2985 struct zonelist *zonelist;
1da177e4
LT
2986
2987 local_node = pgdat->node_id;
1da177e4 2988
54a6eb5c
MG
2989 zonelist = &pgdat->node_zonelists[0];
2990 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2991
54a6eb5c
MG
2992 /*
2993 * Now we build the zonelist so that it contains the zones
2994 * of all the other nodes.
2995 * We don't want to pressure a particular node, so when
2996 * building the zones for node N, we make sure that the
2997 * zones coming right after the local ones are those from
2998 * node N+1 (modulo N)
2999 */
3000 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3001 if (!node_online(node))
3002 continue;
3003 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3004 MAX_NR_ZONES - 1);
1da177e4 3005 }
54a6eb5c
MG
3006 for (node = 0; node < local_node; node++) {
3007 if (!node_online(node))
3008 continue;
3009 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3010 MAX_NR_ZONES - 1);
3011 }
3012
dd1a239f
MG
3013 zonelist->_zonerefs[j].zone = NULL;
3014 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3015}
3016
9276b1bc 3017/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3018static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3019{
54a6eb5c 3020 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3021}
3022
1da177e4
LT
3023#endif /* CONFIG_NUMA */
3024
99dcc3e5
CL
3025/*
3026 * Boot pageset table. One per cpu which is going to be used for all
3027 * zones and all nodes. The parameters will be set in such a way
3028 * that an item put on a list will immediately be handed over to
3029 * the buddy list. This is safe since pageset manipulation is done
3030 * with interrupts disabled.
3031 *
3032 * The boot_pagesets must be kept even after bootup is complete for
3033 * unused processors and/or zones. They do play a role for bootstrapping
3034 * hotplugged processors.
3035 *
3036 * zoneinfo_show() and maybe other functions do
3037 * not check if the processor is online before following the pageset pointer.
3038 * Other parts of the kernel may not check if the zone is available.
3039 */
3040static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3041static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3042static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3043
4eaf3f64
HL
3044/*
3045 * Global mutex to protect against size modification of zonelists
3046 * as well as to serialize pageset setup for the new populated zone.
3047 */
3048DEFINE_MUTEX(zonelists_mutex);
3049
9b1a4d38 3050/* return values int ....just for stop_machine() */
1f522509 3051static __init_refok int __build_all_zonelists(void *data)
1da177e4 3052{
6811378e 3053 int nid;
99dcc3e5 3054 int cpu;
9276b1bc 3055
7f9cfb31
BL
3056#ifdef CONFIG_NUMA
3057 memset(node_load, 0, sizeof(node_load));
3058#endif
9276b1bc 3059 for_each_online_node(nid) {
7ea1530a
CL
3060 pg_data_t *pgdat = NODE_DATA(nid);
3061
3062 build_zonelists(pgdat);
3063 build_zonelist_cache(pgdat);
9276b1bc 3064 }
99dcc3e5
CL
3065
3066 /*
3067 * Initialize the boot_pagesets that are going to be used
3068 * for bootstrapping processors. The real pagesets for
3069 * each zone will be allocated later when the per cpu
3070 * allocator is available.
3071 *
3072 * boot_pagesets are used also for bootstrapping offline
3073 * cpus if the system is already booted because the pagesets
3074 * are needed to initialize allocators on a specific cpu too.
3075 * F.e. the percpu allocator needs the page allocator which
3076 * needs the percpu allocator in order to allocate its pagesets
3077 * (a chicken-egg dilemma).
3078 */
7aac7898 3079 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3080 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3081
7aac7898
LS
3082#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3083 /*
3084 * We now know the "local memory node" for each node--
3085 * i.e., the node of the first zone in the generic zonelist.
3086 * Set up numa_mem percpu variable for on-line cpus. During
3087 * boot, only the boot cpu should be on-line; we'll init the
3088 * secondary cpus' numa_mem as they come on-line. During
3089 * node/memory hotplug, we'll fixup all on-line cpus.
3090 */
3091 if (cpu_online(cpu))
3092 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3093#endif
3094 }
3095
6811378e
YG
3096 return 0;
3097}
3098
4eaf3f64
HL
3099/*
3100 * Called with zonelists_mutex held always
3101 * unless system_state == SYSTEM_BOOTING.
3102 */
1f522509 3103void build_all_zonelists(void *data)
6811378e 3104{
f0c0b2b8
KH
3105 set_zonelist_order();
3106
6811378e 3107 if (system_state == SYSTEM_BOOTING) {
423b41d7 3108 __build_all_zonelists(NULL);
68ad8df4 3109 mminit_verify_zonelist();
6811378e
YG
3110 cpuset_init_current_mems_allowed();
3111 } else {
183ff22b 3112 /* we have to stop all cpus to guarantee there is no user
6811378e 3113 of zonelist */
e9959f0f
KH
3114#ifdef CONFIG_MEMORY_HOTPLUG
3115 if (data)
3116 setup_zone_pageset((struct zone *)data);
3117#endif
3118 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3119 /* cpuset refresh routine should be here */
3120 }
bd1e22b8 3121 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3122 /*
3123 * Disable grouping by mobility if the number of pages in the
3124 * system is too low to allow the mechanism to work. It would be
3125 * more accurate, but expensive to check per-zone. This check is
3126 * made on memory-hotadd so a system can start with mobility
3127 * disabled and enable it later
3128 */
d9c23400 3129 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3130 page_group_by_mobility_disabled = 1;
3131 else
3132 page_group_by_mobility_disabled = 0;
3133
3134 printk("Built %i zonelists in %s order, mobility grouping %s. "
3135 "Total pages: %ld\n",
62bc62a8 3136 nr_online_nodes,
f0c0b2b8 3137 zonelist_order_name[current_zonelist_order],
9ef9acb0 3138 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3139 vm_total_pages);
3140#ifdef CONFIG_NUMA
3141 printk("Policy zone: %s\n", zone_names[policy_zone]);
3142#endif
1da177e4
LT
3143}
3144
3145/*
3146 * Helper functions to size the waitqueue hash table.
3147 * Essentially these want to choose hash table sizes sufficiently
3148 * large so that collisions trying to wait on pages are rare.
3149 * But in fact, the number of active page waitqueues on typical
3150 * systems is ridiculously low, less than 200. So this is even
3151 * conservative, even though it seems large.
3152 *
3153 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3154 * waitqueues, i.e. the size of the waitq table given the number of pages.
3155 */
3156#define PAGES_PER_WAITQUEUE 256
3157
cca448fe 3158#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3159static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3160{
3161 unsigned long size = 1;
3162
3163 pages /= PAGES_PER_WAITQUEUE;
3164
3165 while (size < pages)
3166 size <<= 1;
3167
3168 /*
3169 * Once we have dozens or even hundreds of threads sleeping
3170 * on IO we've got bigger problems than wait queue collision.
3171 * Limit the size of the wait table to a reasonable size.
3172 */
3173 size = min(size, 4096UL);
3174
3175 return max(size, 4UL);
3176}
cca448fe
YG
3177#else
3178/*
3179 * A zone's size might be changed by hot-add, so it is not possible to determine
3180 * a suitable size for its wait_table. So we use the maximum size now.
3181 *
3182 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3183 *
3184 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3185 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3186 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3187 *
3188 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3189 * or more by the traditional way. (See above). It equals:
3190 *
3191 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3192 * ia64(16K page size) : = ( 8G + 4M)byte.
3193 * powerpc (64K page size) : = (32G +16M)byte.
3194 */
3195static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3196{
3197 return 4096UL;
3198}
3199#endif
1da177e4
LT
3200
3201/*
3202 * This is an integer logarithm so that shifts can be used later
3203 * to extract the more random high bits from the multiplicative
3204 * hash function before the remainder is taken.
3205 */
3206static inline unsigned long wait_table_bits(unsigned long size)
3207{
3208 return ffz(~size);
3209}
3210
3211#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3212
56fd56b8 3213/*
d9c23400 3214 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3215 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3216 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3217 * higher will lead to a bigger reserve which will get freed as contiguous
3218 * blocks as reclaim kicks in
3219 */
3220static void setup_zone_migrate_reserve(struct zone *zone)
3221{
3222 unsigned long start_pfn, pfn, end_pfn;
3223 struct page *page;
78986a67
MG
3224 unsigned long block_migratetype;
3225 int reserve;
56fd56b8
MG
3226
3227 /* Get the start pfn, end pfn and the number of blocks to reserve */
3228 start_pfn = zone->zone_start_pfn;
3229 end_pfn = start_pfn + zone->spanned_pages;
41858966 3230 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3231 pageblock_order;
56fd56b8 3232
78986a67
MG
3233 /*
3234 * Reserve blocks are generally in place to help high-order atomic
3235 * allocations that are short-lived. A min_free_kbytes value that
3236 * would result in more than 2 reserve blocks for atomic allocations
3237 * is assumed to be in place to help anti-fragmentation for the
3238 * future allocation of hugepages at runtime.
3239 */
3240 reserve = min(2, reserve);
3241
d9c23400 3242 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3243 if (!pfn_valid(pfn))
3244 continue;
3245 page = pfn_to_page(pfn);
3246
344c790e
AL
3247 /* Watch out for overlapping nodes */
3248 if (page_to_nid(page) != zone_to_nid(zone))
3249 continue;
3250
56fd56b8
MG
3251 /* Blocks with reserved pages will never free, skip them. */
3252 if (PageReserved(page))
3253 continue;
3254
3255 block_migratetype = get_pageblock_migratetype(page);
3256
3257 /* If this block is reserved, account for it */
3258 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3259 reserve--;
3260 continue;
3261 }
3262
3263 /* Suitable for reserving if this block is movable */
3264 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3265 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3266 move_freepages_block(zone, page, MIGRATE_RESERVE);
3267 reserve--;
3268 continue;
3269 }
3270
3271 /*
3272 * If the reserve is met and this is a previous reserved block,
3273 * take it back
3274 */
3275 if (block_migratetype == MIGRATE_RESERVE) {
3276 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3277 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3278 }
3279 }
3280}
ac0e5b7a 3281
1da177e4
LT
3282/*
3283 * Initially all pages are reserved - free ones are freed
3284 * up by free_all_bootmem() once the early boot process is
3285 * done. Non-atomic initialization, single-pass.
3286 */
c09b4240 3287void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3288 unsigned long start_pfn, enum memmap_context context)
1da177e4 3289{
1da177e4 3290 struct page *page;
29751f69
AW
3291 unsigned long end_pfn = start_pfn + size;
3292 unsigned long pfn;
86051ca5 3293 struct zone *z;
1da177e4 3294
22b31eec
HD
3295 if (highest_memmap_pfn < end_pfn - 1)
3296 highest_memmap_pfn = end_pfn - 1;
3297
86051ca5 3298 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3299 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3300 /*
3301 * There can be holes in boot-time mem_map[]s
3302 * handed to this function. They do not
3303 * exist on hotplugged memory.
3304 */
3305 if (context == MEMMAP_EARLY) {
3306 if (!early_pfn_valid(pfn))
3307 continue;
3308 if (!early_pfn_in_nid(pfn, nid))
3309 continue;
3310 }
d41dee36
AW
3311 page = pfn_to_page(pfn);
3312 set_page_links(page, zone, nid, pfn);
708614e6 3313 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3314 init_page_count(page);
1da177e4
LT
3315 reset_page_mapcount(page);
3316 SetPageReserved(page);
b2a0ac88
MG
3317 /*
3318 * Mark the block movable so that blocks are reserved for
3319 * movable at startup. This will force kernel allocations
3320 * to reserve their blocks rather than leaking throughout
3321 * the address space during boot when many long-lived
56fd56b8
MG
3322 * kernel allocations are made. Later some blocks near
3323 * the start are marked MIGRATE_RESERVE by
3324 * setup_zone_migrate_reserve()
86051ca5
KH
3325 *
3326 * bitmap is created for zone's valid pfn range. but memmap
3327 * can be created for invalid pages (for alignment)
3328 * check here not to call set_pageblock_migratetype() against
3329 * pfn out of zone.
b2a0ac88 3330 */
86051ca5
KH
3331 if ((z->zone_start_pfn <= pfn)
3332 && (pfn < z->zone_start_pfn + z->spanned_pages)
3333 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3334 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3335
1da177e4
LT
3336 INIT_LIST_HEAD(&page->lru);
3337#ifdef WANT_PAGE_VIRTUAL
3338 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3339 if (!is_highmem_idx(zone))
3212c6be 3340 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3341#endif
1da177e4
LT
3342 }
3343}
3344
1e548deb 3345static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3346{
b2a0ac88
MG
3347 int order, t;
3348 for_each_migratetype_order(order, t) {
3349 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3350 zone->free_area[order].nr_free = 0;
3351 }
3352}
3353
3354#ifndef __HAVE_ARCH_MEMMAP_INIT
3355#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3356 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3357#endif
3358
1d6f4e60 3359static int zone_batchsize(struct zone *zone)
e7c8d5c9 3360{
3a6be87f 3361#ifdef CONFIG_MMU
e7c8d5c9
CL
3362 int batch;
3363
3364 /*
3365 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3366 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3367 *
3368 * OK, so we don't know how big the cache is. So guess.
3369 */
3370 batch = zone->present_pages / 1024;
ba56e91c
SR
3371 if (batch * PAGE_SIZE > 512 * 1024)
3372 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3373 batch /= 4; /* We effectively *= 4 below */
3374 if (batch < 1)
3375 batch = 1;
3376
3377 /*
0ceaacc9
NP
3378 * Clamp the batch to a 2^n - 1 value. Having a power
3379 * of 2 value was found to be more likely to have
3380 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3381 *
0ceaacc9
NP
3382 * For example if 2 tasks are alternately allocating
3383 * batches of pages, one task can end up with a lot
3384 * of pages of one half of the possible page colors
3385 * and the other with pages of the other colors.
e7c8d5c9 3386 */
9155203a 3387 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3388
e7c8d5c9 3389 return batch;
3a6be87f
DH
3390
3391#else
3392 /* The deferral and batching of frees should be suppressed under NOMMU
3393 * conditions.
3394 *
3395 * The problem is that NOMMU needs to be able to allocate large chunks
3396 * of contiguous memory as there's no hardware page translation to
3397 * assemble apparent contiguous memory from discontiguous pages.
3398 *
3399 * Queueing large contiguous runs of pages for batching, however,
3400 * causes the pages to actually be freed in smaller chunks. As there
3401 * can be a significant delay between the individual batches being
3402 * recycled, this leads to the once large chunks of space being
3403 * fragmented and becoming unavailable for high-order allocations.
3404 */
3405 return 0;
3406#endif
e7c8d5c9
CL
3407}
3408
b69a7288 3409static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3410{
3411 struct per_cpu_pages *pcp;
5f8dcc21 3412 int migratetype;
2caaad41 3413
1c6fe946
MD
3414 memset(p, 0, sizeof(*p));
3415
3dfa5721 3416 pcp = &p->pcp;
2caaad41 3417 pcp->count = 0;
2caaad41
CL
3418 pcp->high = 6 * batch;
3419 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3420 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3421 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3422}
3423
8ad4b1fb
RS
3424/*
3425 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3426 * to the value high for the pageset p.
3427 */
3428
3429static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3430 unsigned long high)
3431{
3432 struct per_cpu_pages *pcp;
3433
3dfa5721 3434 pcp = &p->pcp;
8ad4b1fb
RS
3435 pcp->high = high;
3436 pcp->batch = max(1UL, high/4);
3437 if ((high/4) > (PAGE_SHIFT * 8))
3438 pcp->batch = PAGE_SHIFT * 8;
3439}
3440
319774e2
WF
3441static __meminit void setup_zone_pageset(struct zone *zone)
3442{
3443 int cpu;
3444
3445 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3446
3447 for_each_possible_cpu(cpu) {
3448 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3449
3450 setup_pageset(pcp, zone_batchsize(zone));
3451
3452 if (percpu_pagelist_fraction)
3453 setup_pagelist_highmark(pcp,
3454 (zone->present_pages /
3455 percpu_pagelist_fraction));
3456 }
3457}
3458
2caaad41 3459/*
99dcc3e5
CL
3460 * Allocate per cpu pagesets and initialize them.
3461 * Before this call only boot pagesets were available.
e7c8d5c9 3462 */
99dcc3e5 3463void __init setup_per_cpu_pageset(void)
e7c8d5c9 3464{
99dcc3e5 3465 struct zone *zone;
e7c8d5c9 3466
319774e2
WF
3467 for_each_populated_zone(zone)
3468 setup_zone_pageset(zone);
e7c8d5c9
CL
3469}
3470
577a32f6 3471static noinline __init_refok
cca448fe 3472int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3473{
3474 int i;
3475 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3476 size_t alloc_size;
ed8ece2e
DH
3477
3478 /*
3479 * The per-page waitqueue mechanism uses hashed waitqueues
3480 * per zone.
3481 */
02b694de
YG
3482 zone->wait_table_hash_nr_entries =
3483 wait_table_hash_nr_entries(zone_size_pages);
3484 zone->wait_table_bits =
3485 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3486 alloc_size = zone->wait_table_hash_nr_entries
3487 * sizeof(wait_queue_head_t);
3488
cd94b9db 3489 if (!slab_is_available()) {
cca448fe
YG
3490 zone->wait_table = (wait_queue_head_t *)
3491 alloc_bootmem_node(pgdat, alloc_size);
3492 } else {
3493 /*
3494 * This case means that a zone whose size was 0 gets new memory
3495 * via memory hot-add.
3496 * But it may be the case that a new node was hot-added. In
3497 * this case vmalloc() will not be able to use this new node's
3498 * memory - this wait_table must be initialized to use this new
3499 * node itself as well.
3500 * To use this new node's memory, further consideration will be
3501 * necessary.
3502 */
8691f3a7 3503 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3504 }
3505 if (!zone->wait_table)
3506 return -ENOMEM;
ed8ece2e 3507
02b694de 3508 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3509 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3510
3511 return 0;
ed8ece2e
DH
3512}
3513
112067f0
SL
3514static int __zone_pcp_update(void *data)
3515{
3516 struct zone *zone = data;
3517 int cpu;
3518 unsigned long batch = zone_batchsize(zone), flags;
3519
2d30a1f6 3520 for_each_possible_cpu(cpu) {
112067f0
SL
3521 struct per_cpu_pageset *pset;
3522 struct per_cpu_pages *pcp;
3523
99dcc3e5 3524 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3525 pcp = &pset->pcp;
3526
3527 local_irq_save(flags);
5f8dcc21 3528 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3529 setup_pageset(pset, batch);
3530 local_irq_restore(flags);
3531 }
3532 return 0;
3533}
3534
3535void zone_pcp_update(struct zone *zone)
3536{
3537 stop_machine(__zone_pcp_update, zone, NULL);
3538}
3539
c09b4240 3540static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3541{
99dcc3e5
CL
3542 /*
3543 * per cpu subsystem is not up at this point. The following code
3544 * relies on the ability of the linker to provide the
3545 * offset of a (static) per cpu variable into the per cpu area.
3546 */
3547 zone->pageset = &boot_pageset;
ed8ece2e 3548
f5335c0f 3549 if (zone->present_pages)
99dcc3e5
CL
3550 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3551 zone->name, zone->present_pages,
3552 zone_batchsize(zone));
ed8ece2e
DH
3553}
3554
718127cc
YG
3555__meminit int init_currently_empty_zone(struct zone *zone,
3556 unsigned long zone_start_pfn,
a2f3aa02
DH
3557 unsigned long size,
3558 enum memmap_context context)
ed8ece2e
DH
3559{
3560 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3561 int ret;
3562 ret = zone_wait_table_init(zone, size);
3563 if (ret)
3564 return ret;
ed8ece2e
DH
3565 pgdat->nr_zones = zone_idx(zone) + 1;
3566
ed8ece2e
DH
3567 zone->zone_start_pfn = zone_start_pfn;
3568
708614e6
MG
3569 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3570 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3571 pgdat->node_id,
3572 (unsigned long)zone_idx(zone),
3573 zone_start_pfn, (zone_start_pfn + size));
3574
1e548deb 3575 zone_init_free_lists(zone);
718127cc
YG
3576
3577 return 0;
ed8ece2e
DH
3578}
3579
c713216d
MG
3580#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3581/*
3582 * Basic iterator support. Return the first range of PFNs for a node
3583 * Note: nid == MAX_NUMNODES returns first region regardless of node
3584 */
a3142c8e 3585static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3586{
3587 int i;
3588
3589 for (i = 0; i < nr_nodemap_entries; i++)
3590 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3591 return i;
3592
3593 return -1;
3594}
3595
3596/*
3597 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3598 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3599 */
a3142c8e 3600static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3601{
3602 for (index = index + 1; index < nr_nodemap_entries; index++)
3603 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3604 return index;
3605
3606 return -1;
3607}
3608
3609#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3610/*
3611 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3612 * Architectures may implement their own version but if add_active_range()
3613 * was used and there are no special requirements, this is a convenient
3614 * alternative
3615 */
f2dbcfa7 3616int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3617{
3618 int i;
3619
3620 for (i = 0; i < nr_nodemap_entries; i++) {
3621 unsigned long start_pfn = early_node_map[i].start_pfn;
3622 unsigned long end_pfn = early_node_map[i].end_pfn;
3623
3624 if (start_pfn <= pfn && pfn < end_pfn)
3625 return early_node_map[i].nid;
3626 }
cc2559bc
KH
3627 /* This is a memory hole */
3628 return -1;
c713216d
MG
3629}
3630#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3631
f2dbcfa7
KH
3632int __meminit early_pfn_to_nid(unsigned long pfn)
3633{
cc2559bc
KH
3634 int nid;
3635
3636 nid = __early_pfn_to_nid(pfn);
3637 if (nid >= 0)
3638 return nid;
3639 /* just returns 0 */
3640 return 0;
f2dbcfa7
KH
3641}
3642
cc2559bc
KH
3643#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3644bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3645{
3646 int nid;
3647
3648 nid = __early_pfn_to_nid(pfn);
3649 if (nid >= 0 && nid != node)
3650 return false;
3651 return true;
3652}
3653#endif
f2dbcfa7 3654
c713216d
MG
3655/* Basic iterator support to walk early_node_map[] */
3656#define for_each_active_range_index_in_nid(i, nid) \
3657 for (i = first_active_region_index_in_nid(nid); i != -1; \
3658 i = next_active_region_index_in_nid(i, nid))
3659
3660/**
3661 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3662 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3663 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3664 *
3665 * If an architecture guarantees that all ranges registered with
3666 * add_active_ranges() contain no holes and may be freed, this
3667 * this function may be used instead of calling free_bootmem() manually.
3668 */
3669void __init free_bootmem_with_active_regions(int nid,
3670 unsigned long max_low_pfn)
3671{
3672 int i;
3673
3674 for_each_active_range_index_in_nid(i, nid) {
3675 unsigned long size_pages = 0;
3676 unsigned long end_pfn = early_node_map[i].end_pfn;
3677
3678 if (early_node_map[i].start_pfn >= max_low_pfn)
3679 continue;
3680
3681 if (end_pfn > max_low_pfn)
3682 end_pfn = max_low_pfn;
3683
3684 size_pages = end_pfn - early_node_map[i].start_pfn;
3685 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3686 PFN_PHYS(early_node_map[i].start_pfn),
3687 size_pages << PAGE_SHIFT);
3688 }
3689}
3690
edbe7d23
YL
3691#ifdef CONFIG_HAVE_MEMBLOCK
3692u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3693 u64 goal, u64 limit)
3694{
3695 int i;
3696
3697 /* Need to go over early_node_map to find out good range for node */
3698 for_each_active_range_index_in_nid(i, nid) {
3699 u64 addr;
3700 u64 ei_start, ei_last;
3701 u64 final_start, final_end;
3702
3703 ei_last = early_node_map[i].end_pfn;
3704 ei_last <<= PAGE_SHIFT;
3705 ei_start = early_node_map[i].start_pfn;
3706 ei_start <<= PAGE_SHIFT;
3707
3708 final_start = max(ei_start, goal);
3709 final_end = min(ei_last, limit);
3710
3711 if (final_start >= final_end)
3712 continue;
3713
3714 addr = memblock_find_in_range(final_start, final_end, size, align);
3715
3716 if (addr == MEMBLOCK_ERROR)
3717 continue;
3718
3719 return addr;
3720 }
3721
3722 return MEMBLOCK_ERROR;
3723}
3724#endif
3725
08677214
YL
3726int __init add_from_early_node_map(struct range *range, int az,
3727 int nr_range, int nid)
3728{
3729 int i;
3730 u64 start, end;
3731
3732 /* need to go over early_node_map to find out good range for node */
3733 for_each_active_range_index_in_nid(i, nid) {
3734 start = early_node_map[i].start_pfn;
3735 end = early_node_map[i].end_pfn;
3736 nr_range = add_range(range, az, nr_range, start, end);
3737 }
3738 return nr_range;
3739}
3740
2ee78f7b 3741#ifdef CONFIG_NO_BOOTMEM
08677214
YL
3742void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3743 u64 goal, u64 limit)
3744{
08677214 3745 void *ptr;
72d7c3b3 3746 u64 addr;
08677214 3747
72d7c3b3
YL
3748 if (limit > memblock.current_limit)
3749 limit = memblock.current_limit;
b8ab9f82 3750
72d7c3b3 3751 addr = find_memory_core_early(nid, size, align, goal, limit);
08677214 3752
72d7c3b3
YL
3753 if (addr == MEMBLOCK_ERROR)
3754 return NULL;
08677214 3755
72d7c3b3
YL
3756 ptr = phys_to_virt(addr);
3757 memset(ptr, 0, size);
3758 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3759 /*
3760 * The min_count is set to 0 so that bootmem allocated blocks
3761 * are never reported as leaks.
3762 */
3763 kmemleak_alloc(ptr, size, 0, 0);
3764 return ptr;
08677214 3765}
2ee78f7b 3766#endif
08677214
YL
3767
3768
b5bc6c0e
YL
3769void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3770{
3771 int i;
d52d53b8 3772 int ret;
b5bc6c0e 3773
d52d53b8
YL
3774 for_each_active_range_index_in_nid(i, nid) {
3775 ret = work_fn(early_node_map[i].start_pfn,
3776 early_node_map[i].end_pfn, data);
3777 if (ret)
3778 break;
3779 }
b5bc6c0e 3780}
c713216d
MG
3781/**
3782 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3783 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3784 *
3785 * If an architecture guarantees that all ranges registered with
3786 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3787 * function may be used instead of calling memory_present() manually.
c713216d
MG
3788 */
3789void __init sparse_memory_present_with_active_regions(int nid)
3790{
3791 int i;
3792
3793 for_each_active_range_index_in_nid(i, nid)
3794 memory_present(early_node_map[i].nid,
3795 early_node_map[i].start_pfn,
3796 early_node_map[i].end_pfn);
3797}
3798
3799/**
3800 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3801 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3802 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3803 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3804 *
3805 * It returns the start and end page frame of a node based on information
3806 * provided by an arch calling add_active_range(). If called for a node
3807 * with no available memory, a warning is printed and the start and end
88ca3b94 3808 * PFNs will be 0.
c713216d 3809 */
a3142c8e 3810void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3811 unsigned long *start_pfn, unsigned long *end_pfn)
3812{
3813 int i;
3814 *start_pfn = -1UL;
3815 *end_pfn = 0;
3816
3817 for_each_active_range_index_in_nid(i, nid) {
3818 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3819 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3820 }
3821
633c0666 3822 if (*start_pfn == -1UL)
c713216d 3823 *start_pfn = 0;
c713216d
MG
3824}
3825
2a1e274a
MG
3826/*
3827 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3828 * assumption is made that zones within a node are ordered in monotonic
3829 * increasing memory addresses so that the "highest" populated zone is used
3830 */
b69a7288 3831static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3832{
3833 int zone_index;
3834 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3835 if (zone_index == ZONE_MOVABLE)
3836 continue;
3837
3838 if (arch_zone_highest_possible_pfn[zone_index] >
3839 arch_zone_lowest_possible_pfn[zone_index])
3840 break;
3841 }
3842
3843 VM_BUG_ON(zone_index == -1);
3844 movable_zone = zone_index;
3845}
3846
3847/*
3848 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3849 * because it is sized independant of architecture. Unlike the other zones,
3850 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3851 * in each node depending on the size of each node and how evenly kernelcore
3852 * is distributed. This helper function adjusts the zone ranges
3853 * provided by the architecture for a given node by using the end of the
3854 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3855 * zones within a node are in order of monotonic increases memory addresses
3856 */
b69a7288 3857static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3858 unsigned long zone_type,
3859 unsigned long node_start_pfn,
3860 unsigned long node_end_pfn,
3861 unsigned long *zone_start_pfn,
3862 unsigned long *zone_end_pfn)
3863{
3864 /* Only adjust if ZONE_MOVABLE is on this node */
3865 if (zone_movable_pfn[nid]) {
3866 /* Size ZONE_MOVABLE */
3867 if (zone_type == ZONE_MOVABLE) {
3868 *zone_start_pfn = zone_movable_pfn[nid];
3869 *zone_end_pfn = min(node_end_pfn,
3870 arch_zone_highest_possible_pfn[movable_zone]);
3871
3872 /* Adjust for ZONE_MOVABLE starting within this range */
3873 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3874 *zone_end_pfn > zone_movable_pfn[nid]) {
3875 *zone_end_pfn = zone_movable_pfn[nid];
3876
3877 /* Check if this whole range is within ZONE_MOVABLE */
3878 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3879 *zone_start_pfn = *zone_end_pfn;
3880 }
3881}
3882
c713216d
MG
3883/*
3884 * Return the number of pages a zone spans in a node, including holes
3885 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3886 */
6ea6e688 3887static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3888 unsigned long zone_type,
3889 unsigned long *ignored)
3890{
3891 unsigned long node_start_pfn, node_end_pfn;
3892 unsigned long zone_start_pfn, zone_end_pfn;
3893
3894 /* Get the start and end of the node and zone */
3895 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3896 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3897 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3898 adjust_zone_range_for_zone_movable(nid, zone_type,
3899 node_start_pfn, node_end_pfn,
3900 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3901
3902 /* Check that this node has pages within the zone's required range */
3903 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3904 return 0;
3905
3906 /* Move the zone boundaries inside the node if necessary */
3907 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3908 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3909
3910 /* Return the spanned pages */
3911 return zone_end_pfn - zone_start_pfn;
3912}
3913
3914/*
3915 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3916 * then all holes in the requested range will be accounted for.
c713216d 3917 */
32996250 3918unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3919 unsigned long range_start_pfn,
3920 unsigned long range_end_pfn)
3921{
3922 int i = 0;
3923 unsigned long prev_end_pfn = 0, hole_pages = 0;
3924 unsigned long start_pfn;
3925
3926 /* Find the end_pfn of the first active range of pfns in the node */
3927 i = first_active_region_index_in_nid(nid);
3928 if (i == -1)
3929 return 0;
3930
b5445f95
MG
3931 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3932
9c7cd687
MG
3933 /* Account for ranges before physical memory on this node */
3934 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3935 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3936
3937 /* Find all holes for the zone within the node */
3938 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3939
3940 /* No need to continue if prev_end_pfn is outside the zone */
3941 if (prev_end_pfn >= range_end_pfn)
3942 break;
3943
3944 /* Make sure the end of the zone is not within the hole */
3945 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3946 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3947
3948 /* Update the hole size cound and move on */
3949 if (start_pfn > range_start_pfn) {
3950 BUG_ON(prev_end_pfn > start_pfn);
3951 hole_pages += start_pfn - prev_end_pfn;
3952 }
3953 prev_end_pfn = early_node_map[i].end_pfn;
3954 }
3955
9c7cd687
MG
3956 /* Account for ranges past physical memory on this node */
3957 if (range_end_pfn > prev_end_pfn)
0c6cb974 3958 hole_pages += range_end_pfn -
9c7cd687
MG
3959 max(range_start_pfn, prev_end_pfn);
3960
c713216d
MG
3961 return hole_pages;
3962}
3963
3964/**
3965 * absent_pages_in_range - Return number of page frames in holes within a range
3966 * @start_pfn: The start PFN to start searching for holes
3967 * @end_pfn: The end PFN to stop searching for holes
3968 *
88ca3b94 3969 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3970 */
3971unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3972 unsigned long end_pfn)
3973{
3974 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3975}
3976
3977/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3978static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3979 unsigned long zone_type,
3980 unsigned long *ignored)
3981{
9c7cd687
MG
3982 unsigned long node_start_pfn, node_end_pfn;
3983 unsigned long zone_start_pfn, zone_end_pfn;
3984
3985 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3986 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3987 node_start_pfn);
3988 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3989 node_end_pfn);
3990
2a1e274a
MG
3991 adjust_zone_range_for_zone_movable(nid, zone_type,
3992 node_start_pfn, node_end_pfn,
3993 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3994 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3995}
0e0b864e 3996
c713216d 3997#else
6ea6e688 3998static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3999 unsigned long zone_type,
4000 unsigned long *zones_size)
4001{
4002 return zones_size[zone_type];
4003}
4004
6ea6e688 4005static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4006 unsigned long zone_type,
4007 unsigned long *zholes_size)
4008{
4009 if (!zholes_size)
4010 return 0;
4011
4012 return zholes_size[zone_type];
4013}
0e0b864e 4014
c713216d
MG
4015#endif
4016
a3142c8e 4017static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4018 unsigned long *zones_size, unsigned long *zholes_size)
4019{
4020 unsigned long realtotalpages, totalpages = 0;
4021 enum zone_type i;
4022
4023 for (i = 0; i < MAX_NR_ZONES; i++)
4024 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4025 zones_size);
4026 pgdat->node_spanned_pages = totalpages;
4027
4028 realtotalpages = totalpages;
4029 for (i = 0; i < MAX_NR_ZONES; i++)
4030 realtotalpages -=
4031 zone_absent_pages_in_node(pgdat->node_id, i,
4032 zholes_size);
4033 pgdat->node_present_pages = realtotalpages;
4034 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4035 realtotalpages);
4036}
4037
835c134e
MG
4038#ifndef CONFIG_SPARSEMEM
4039/*
4040 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4041 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4042 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4043 * round what is now in bits to nearest long in bits, then return it in
4044 * bytes.
4045 */
4046static unsigned long __init usemap_size(unsigned long zonesize)
4047{
4048 unsigned long usemapsize;
4049
d9c23400
MG
4050 usemapsize = roundup(zonesize, pageblock_nr_pages);
4051 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4052 usemapsize *= NR_PAGEBLOCK_BITS;
4053 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4054
4055 return usemapsize / 8;
4056}
4057
4058static void __init setup_usemap(struct pglist_data *pgdat,
4059 struct zone *zone, unsigned long zonesize)
4060{
4061 unsigned long usemapsize = usemap_size(zonesize);
4062 zone->pageblock_flags = NULL;
58a01a45 4063 if (usemapsize)
835c134e 4064 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
4065}
4066#else
fa9f90be 4067static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4068 struct zone *zone, unsigned long zonesize) {}
4069#endif /* CONFIG_SPARSEMEM */
4070
d9c23400 4071#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4072
4073/* Return a sensible default order for the pageblock size. */
4074static inline int pageblock_default_order(void)
4075{
4076 if (HPAGE_SHIFT > PAGE_SHIFT)
4077 return HUGETLB_PAGE_ORDER;
4078
4079 return MAX_ORDER-1;
4080}
4081
d9c23400
MG
4082/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4083static inline void __init set_pageblock_order(unsigned int order)
4084{
4085 /* Check that pageblock_nr_pages has not already been setup */
4086 if (pageblock_order)
4087 return;
4088
4089 /*
4090 * Assume the largest contiguous order of interest is a huge page.
4091 * This value may be variable depending on boot parameters on IA64
4092 */
4093 pageblock_order = order;
4094}
4095#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4096
ba72cb8c
MG
4097/*
4098 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4099 * and pageblock_default_order() are unused as pageblock_order is set
4100 * at compile-time. See include/linux/pageblock-flags.h for the values of
4101 * pageblock_order based on the kernel config
4102 */
4103static inline int pageblock_default_order(unsigned int order)
4104{
4105 return MAX_ORDER-1;
4106}
d9c23400
MG
4107#define set_pageblock_order(x) do {} while (0)
4108
4109#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4110
1da177e4
LT
4111/*
4112 * Set up the zone data structures:
4113 * - mark all pages reserved
4114 * - mark all memory queues empty
4115 * - clear the memory bitmaps
4116 */
b5a0e011 4117static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4118 unsigned long *zones_size, unsigned long *zholes_size)
4119{
2f1b6248 4120 enum zone_type j;
ed8ece2e 4121 int nid = pgdat->node_id;
1da177e4 4122 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4123 int ret;
1da177e4 4124
208d54e5 4125 pgdat_resize_init(pgdat);
1da177e4
LT
4126 pgdat->nr_zones = 0;
4127 init_waitqueue_head(&pgdat->kswapd_wait);
4128 pgdat->kswapd_max_order = 0;
52d4b9ac 4129 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4130
4131 for (j = 0; j < MAX_NR_ZONES; j++) {
4132 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4133 unsigned long size, realsize, memmap_pages;
b69408e8 4134 enum lru_list l;
1da177e4 4135
c713216d
MG
4136 size = zone_spanned_pages_in_node(nid, j, zones_size);
4137 realsize = size - zone_absent_pages_in_node(nid, j,
4138 zholes_size);
1da177e4 4139
0e0b864e
MG
4140 /*
4141 * Adjust realsize so that it accounts for how much memory
4142 * is used by this zone for memmap. This affects the watermark
4143 * and per-cpu initialisations
4144 */
f7232154
JW
4145 memmap_pages =
4146 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4147 if (realsize >= memmap_pages) {
4148 realsize -= memmap_pages;
5594c8c8
YL
4149 if (memmap_pages)
4150 printk(KERN_DEBUG
4151 " %s zone: %lu pages used for memmap\n",
4152 zone_names[j], memmap_pages);
0e0b864e
MG
4153 } else
4154 printk(KERN_WARNING
4155 " %s zone: %lu pages exceeds realsize %lu\n",
4156 zone_names[j], memmap_pages, realsize);
4157
6267276f
CL
4158 /* Account for reserved pages */
4159 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4160 realsize -= dma_reserve;
d903ef9f 4161 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4162 zone_names[0], dma_reserve);
0e0b864e
MG
4163 }
4164
98d2b0eb 4165 if (!is_highmem_idx(j))
1da177e4
LT
4166 nr_kernel_pages += realsize;
4167 nr_all_pages += realsize;
4168
4169 zone->spanned_pages = size;
4170 zone->present_pages = realsize;
9614634f 4171#ifdef CONFIG_NUMA
d5f541ed 4172 zone->node = nid;
8417bba4 4173 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4174 / 100;
0ff38490 4175 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4176#endif
1da177e4
LT
4177 zone->name = zone_names[j];
4178 spin_lock_init(&zone->lock);
4179 spin_lock_init(&zone->lru_lock);
bdc8cb98 4180 zone_seqlock_init(zone);
1da177e4 4181 zone->zone_pgdat = pgdat;
1da177e4 4182
ed8ece2e 4183 zone_pcp_init(zone);
b69408e8
CL
4184 for_each_lru(l) {
4185 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 4186 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 4187 }
6e901571
KM
4188 zone->reclaim_stat.recent_rotated[0] = 0;
4189 zone->reclaim_stat.recent_rotated[1] = 0;
4190 zone->reclaim_stat.recent_scanned[0] = 0;
4191 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4192 zap_zone_vm_stats(zone);
e815af95 4193 zone->flags = 0;
1da177e4
LT
4194 if (!size)
4195 continue;
4196
ba72cb8c 4197 set_pageblock_order(pageblock_default_order());
835c134e 4198 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4199 ret = init_currently_empty_zone(zone, zone_start_pfn,
4200 size, MEMMAP_EARLY);
718127cc 4201 BUG_ON(ret);
76cdd58e 4202 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4203 zone_start_pfn += size;
1da177e4
LT
4204 }
4205}
4206
577a32f6 4207static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4208{
1da177e4
LT
4209 /* Skip empty nodes */
4210 if (!pgdat->node_spanned_pages)
4211 return;
4212
d41dee36 4213#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4214 /* ia64 gets its own node_mem_map, before this, without bootmem */
4215 if (!pgdat->node_mem_map) {
e984bb43 4216 unsigned long size, start, end;
d41dee36
AW
4217 struct page *map;
4218
e984bb43
BP
4219 /*
4220 * The zone's endpoints aren't required to be MAX_ORDER
4221 * aligned but the node_mem_map endpoints must be in order
4222 * for the buddy allocator to function correctly.
4223 */
4224 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4225 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4226 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4227 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4228 map = alloc_remap(pgdat->node_id, size);
4229 if (!map)
4230 map = alloc_bootmem_node(pgdat, size);
e984bb43 4231 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4232 }
12d810c1 4233#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4234 /*
4235 * With no DISCONTIG, the global mem_map is just set as node 0's
4236 */
c713216d 4237 if (pgdat == NODE_DATA(0)) {
1da177e4 4238 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4239#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4240 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4241 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4242#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4243 }
1da177e4 4244#endif
d41dee36 4245#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4246}
4247
9109fb7b
JW
4248void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4249 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4250{
9109fb7b
JW
4251 pg_data_t *pgdat = NODE_DATA(nid);
4252
1da177e4
LT
4253 pgdat->node_id = nid;
4254 pgdat->node_start_pfn = node_start_pfn;
c713216d 4255 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4256
4257 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4258#ifdef CONFIG_FLAT_NODE_MEM_MAP
4259 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4260 nid, (unsigned long)pgdat,
4261 (unsigned long)pgdat->node_mem_map);
4262#endif
1da177e4
LT
4263
4264 free_area_init_core(pgdat, zones_size, zholes_size);
4265}
4266
c713216d 4267#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4268
4269#if MAX_NUMNODES > 1
4270/*
4271 * Figure out the number of possible node ids.
4272 */
4273static void __init setup_nr_node_ids(void)
4274{
4275 unsigned int node;
4276 unsigned int highest = 0;
4277
4278 for_each_node_mask(node, node_possible_map)
4279 highest = node;
4280 nr_node_ids = highest + 1;
4281}
4282#else
4283static inline void setup_nr_node_ids(void)
4284{
4285}
4286#endif
4287
c713216d
MG
4288/**
4289 * add_active_range - Register a range of PFNs backed by physical memory
4290 * @nid: The node ID the range resides on
4291 * @start_pfn: The start PFN of the available physical memory
4292 * @end_pfn: The end PFN of the available physical memory
4293 *
4294 * These ranges are stored in an early_node_map[] and later used by
4295 * free_area_init_nodes() to calculate zone sizes and holes. If the
4296 * range spans a memory hole, it is up to the architecture to ensure
4297 * the memory is not freed by the bootmem allocator. If possible
4298 * the range being registered will be merged with existing ranges.
4299 */
4300void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4301 unsigned long end_pfn)
4302{
4303 int i;
4304
6b74ab97
MG
4305 mminit_dprintk(MMINIT_TRACE, "memory_register",
4306 "Entering add_active_range(%d, %#lx, %#lx) "
4307 "%d entries of %d used\n",
4308 nid, start_pfn, end_pfn,
4309 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4310
2dbb51c4
MG
4311 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4312
c713216d
MG
4313 /* Merge with existing active regions if possible */
4314 for (i = 0; i < nr_nodemap_entries; i++) {
4315 if (early_node_map[i].nid != nid)
4316 continue;
4317
4318 /* Skip if an existing region covers this new one */
4319 if (start_pfn >= early_node_map[i].start_pfn &&
4320 end_pfn <= early_node_map[i].end_pfn)
4321 return;
4322
4323 /* Merge forward if suitable */
4324 if (start_pfn <= early_node_map[i].end_pfn &&
4325 end_pfn > early_node_map[i].end_pfn) {
4326 early_node_map[i].end_pfn = end_pfn;
4327 return;
4328 }
4329
4330 /* Merge backward if suitable */
d2dbe08d 4331 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4332 end_pfn >= early_node_map[i].start_pfn) {
4333 early_node_map[i].start_pfn = start_pfn;
4334 return;
4335 }
4336 }
4337
4338 /* Check that early_node_map is large enough */
4339 if (i >= MAX_ACTIVE_REGIONS) {
4340 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4341 MAX_ACTIVE_REGIONS);
4342 return;
4343 }
4344
4345 early_node_map[i].nid = nid;
4346 early_node_map[i].start_pfn = start_pfn;
4347 early_node_map[i].end_pfn = end_pfn;
4348 nr_nodemap_entries = i + 1;
4349}
4350
4351/**
cc1050ba 4352 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4353 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4354 * @start_pfn: The new PFN of the range
4355 * @end_pfn: The new PFN of the range
c713216d
MG
4356 *
4357 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4358 * The map is kept near the end physical page range that has already been
4359 * registered. This function allows an arch to shrink an existing registered
4360 * range.
c713216d 4361 */
cc1050ba
YL
4362void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4363 unsigned long end_pfn)
c713216d 4364{
cc1a9d86
YL
4365 int i, j;
4366 int removed = 0;
c713216d 4367
cc1050ba
YL
4368 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4369 nid, start_pfn, end_pfn);
4370
c713216d 4371 /* Find the old active region end and shrink */
cc1a9d86 4372 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4373 if (early_node_map[i].start_pfn >= start_pfn &&
4374 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4375 /* clear it */
cc1050ba 4376 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4377 early_node_map[i].end_pfn = 0;
4378 removed = 1;
4379 continue;
4380 }
cc1050ba
YL
4381 if (early_node_map[i].start_pfn < start_pfn &&
4382 early_node_map[i].end_pfn > start_pfn) {
4383 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4384 early_node_map[i].end_pfn = start_pfn;
4385 if (temp_end_pfn > end_pfn)
4386 add_active_range(nid, end_pfn, temp_end_pfn);
4387 continue;
4388 }
4389 if (early_node_map[i].start_pfn >= start_pfn &&
4390 early_node_map[i].end_pfn > end_pfn &&
4391 early_node_map[i].start_pfn < end_pfn) {
4392 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4393 continue;
c713216d 4394 }
cc1a9d86
YL
4395 }
4396
4397 if (!removed)
4398 return;
4399
4400 /* remove the blank ones */
4401 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4402 if (early_node_map[i].nid != nid)
4403 continue;
4404 if (early_node_map[i].end_pfn)
4405 continue;
4406 /* we found it, get rid of it */
4407 for (j = i; j < nr_nodemap_entries - 1; j++)
4408 memcpy(&early_node_map[j], &early_node_map[j+1],
4409 sizeof(early_node_map[j]));
4410 j = nr_nodemap_entries - 1;
4411 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4412 nr_nodemap_entries--;
4413 }
c713216d
MG
4414}
4415
4416/**
4417 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4418 *
c713216d
MG
4419 * During discovery, it may be found that a table like SRAT is invalid
4420 * and an alternative discovery method must be used. This function removes
4421 * all currently registered regions.
4422 */
88ca3b94 4423void __init remove_all_active_ranges(void)
c713216d
MG
4424{
4425 memset(early_node_map, 0, sizeof(early_node_map));
4426 nr_nodemap_entries = 0;
4427}
4428
4429/* Compare two active node_active_regions */
4430static int __init cmp_node_active_region(const void *a, const void *b)
4431{
4432 struct node_active_region *arange = (struct node_active_region *)a;
4433 struct node_active_region *brange = (struct node_active_region *)b;
4434
4435 /* Done this way to avoid overflows */
4436 if (arange->start_pfn > brange->start_pfn)
4437 return 1;
4438 if (arange->start_pfn < brange->start_pfn)
4439 return -1;
4440
4441 return 0;
4442}
4443
4444/* sort the node_map by start_pfn */
32996250 4445void __init sort_node_map(void)
c713216d
MG
4446{
4447 sort(early_node_map, (size_t)nr_nodemap_entries,
4448 sizeof(struct node_active_region),
4449 cmp_node_active_region, NULL);
4450}
4451
a6af2bc3 4452/* Find the lowest pfn for a node */
b69a7288 4453static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4454{
4455 int i;
a6af2bc3 4456 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4457
c713216d
MG
4458 /* Assuming a sorted map, the first range found has the starting pfn */
4459 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4460 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4461
a6af2bc3
MG
4462 if (min_pfn == ULONG_MAX) {
4463 printk(KERN_WARNING
2bc0d261 4464 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4465 return 0;
4466 }
4467
4468 return min_pfn;
c713216d
MG
4469}
4470
4471/**
4472 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4473 *
4474 * It returns the minimum PFN based on information provided via
88ca3b94 4475 * add_active_range().
c713216d
MG
4476 */
4477unsigned long __init find_min_pfn_with_active_regions(void)
4478{
4479 return find_min_pfn_for_node(MAX_NUMNODES);
4480}
4481
37b07e41
LS
4482/*
4483 * early_calculate_totalpages()
4484 * Sum pages in active regions for movable zone.
4485 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4486 */
484f51f8 4487static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4488{
4489 int i;
4490 unsigned long totalpages = 0;
4491
37b07e41
LS
4492 for (i = 0; i < nr_nodemap_entries; i++) {
4493 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4494 early_node_map[i].start_pfn;
37b07e41
LS
4495 totalpages += pages;
4496 if (pages)
4497 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4498 }
4499 return totalpages;
7e63efef
MG
4500}
4501
2a1e274a
MG
4502/*
4503 * Find the PFN the Movable zone begins in each node. Kernel memory
4504 * is spread evenly between nodes as long as the nodes have enough
4505 * memory. When they don't, some nodes will have more kernelcore than
4506 * others
4507 */
b69a7288 4508static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4509{
4510 int i, nid;
4511 unsigned long usable_startpfn;
4512 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4513 /* save the state before borrow the nodemask */
4514 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4515 unsigned long totalpages = early_calculate_totalpages();
4516 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4517
7e63efef
MG
4518 /*
4519 * If movablecore was specified, calculate what size of
4520 * kernelcore that corresponds so that memory usable for
4521 * any allocation type is evenly spread. If both kernelcore
4522 * and movablecore are specified, then the value of kernelcore
4523 * will be used for required_kernelcore if it's greater than
4524 * what movablecore would have allowed.
4525 */
4526 if (required_movablecore) {
7e63efef
MG
4527 unsigned long corepages;
4528
4529 /*
4530 * Round-up so that ZONE_MOVABLE is at least as large as what
4531 * was requested by the user
4532 */
4533 required_movablecore =
4534 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4535 corepages = totalpages - required_movablecore;
4536
4537 required_kernelcore = max(required_kernelcore, corepages);
4538 }
4539
2a1e274a
MG
4540 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4541 if (!required_kernelcore)
66918dcd 4542 goto out;
2a1e274a
MG
4543
4544 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4545 find_usable_zone_for_movable();
4546 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4547
4548restart:
4549 /* Spread kernelcore memory as evenly as possible throughout nodes */
4550 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4551 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4552 /*
4553 * Recalculate kernelcore_node if the division per node
4554 * now exceeds what is necessary to satisfy the requested
4555 * amount of memory for the kernel
4556 */
4557 if (required_kernelcore < kernelcore_node)
4558 kernelcore_node = required_kernelcore / usable_nodes;
4559
4560 /*
4561 * As the map is walked, we track how much memory is usable
4562 * by the kernel using kernelcore_remaining. When it is
4563 * 0, the rest of the node is usable by ZONE_MOVABLE
4564 */
4565 kernelcore_remaining = kernelcore_node;
4566
4567 /* Go through each range of PFNs within this node */
4568 for_each_active_range_index_in_nid(i, nid) {
4569 unsigned long start_pfn, end_pfn;
4570 unsigned long size_pages;
4571
4572 start_pfn = max(early_node_map[i].start_pfn,
4573 zone_movable_pfn[nid]);
4574 end_pfn = early_node_map[i].end_pfn;
4575 if (start_pfn >= end_pfn)
4576 continue;
4577
4578 /* Account for what is only usable for kernelcore */
4579 if (start_pfn < usable_startpfn) {
4580 unsigned long kernel_pages;
4581 kernel_pages = min(end_pfn, usable_startpfn)
4582 - start_pfn;
4583
4584 kernelcore_remaining -= min(kernel_pages,
4585 kernelcore_remaining);
4586 required_kernelcore -= min(kernel_pages,
4587 required_kernelcore);
4588
4589 /* Continue if range is now fully accounted */
4590 if (end_pfn <= usable_startpfn) {
4591
4592 /*
4593 * Push zone_movable_pfn to the end so
4594 * that if we have to rebalance
4595 * kernelcore across nodes, we will
4596 * not double account here
4597 */
4598 zone_movable_pfn[nid] = end_pfn;
4599 continue;
4600 }
4601 start_pfn = usable_startpfn;
4602 }
4603
4604 /*
4605 * The usable PFN range for ZONE_MOVABLE is from
4606 * start_pfn->end_pfn. Calculate size_pages as the
4607 * number of pages used as kernelcore
4608 */
4609 size_pages = end_pfn - start_pfn;
4610 if (size_pages > kernelcore_remaining)
4611 size_pages = kernelcore_remaining;
4612 zone_movable_pfn[nid] = start_pfn + size_pages;
4613
4614 /*
4615 * Some kernelcore has been met, update counts and
4616 * break if the kernelcore for this node has been
4617 * satisified
4618 */
4619 required_kernelcore -= min(required_kernelcore,
4620 size_pages);
4621 kernelcore_remaining -= size_pages;
4622 if (!kernelcore_remaining)
4623 break;
4624 }
4625 }
4626
4627 /*
4628 * If there is still required_kernelcore, we do another pass with one
4629 * less node in the count. This will push zone_movable_pfn[nid] further
4630 * along on the nodes that still have memory until kernelcore is
4631 * satisified
4632 */
4633 usable_nodes--;
4634 if (usable_nodes && required_kernelcore > usable_nodes)
4635 goto restart;
4636
4637 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4638 for (nid = 0; nid < MAX_NUMNODES; nid++)
4639 zone_movable_pfn[nid] =
4640 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4641
4642out:
4643 /* restore the node_state */
4644 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4645}
4646
37b07e41
LS
4647/* Any regular memory on that node ? */
4648static void check_for_regular_memory(pg_data_t *pgdat)
4649{
4650#ifdef CONFIG_HIGHMEM
4651 enum zone_type zone_type;
4652
4653 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4654 struct zone *zone = &pgdat->node_zones[zone_type];
4655 if (zone->present_pages)
4656 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4657 }
4658#endif
4659}
4660
c713216d
MG
4661/**
4662 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4663 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4664 *
4665 * This will call free_area_init_node() for each active node in the system.
4666 * Using the page ranges provided by add_active_range(), the size of each
4667 * zone in each node and their holes is calculated. If the maximum PFN
4668 * between two adjacent zones match, it is assumed that the zone is empty.
4669 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4670 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4671 * starts where the previous one ended. For example, ZONE_DMA32 starts
4672 * at arch_max_dma_pfn.
4673 */
4674void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4675{
4676 unsigned long nid;
db99100d 4677 int i;
c713216d 4678
a6af2bc3
MG
4679 /* Sort early_node_map as initialisation assumes it is sorted */
4680 sort_node_map();
4681
c713216d
MG
4682 /* Record where the zone boundaries are */
4683 memset(arch_zone_lowest_possible_pfn, 0,
4684 sizeof(arch_zone_lowest_possible_pfn));
4685 memset(arch_zone_highest_possible_pfn, 0,
4686 sizeof(arch_zone_highest_possible_pfn));
4687 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4688 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4689 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4690 if (i == ZONE_MOVABLE)
4691 continue;
c713216d
MG
4692 arch_zone_lowest_possible_pfn[i] =
4693 arch_zone_highest_possible_pfn[i-1];
4694 arch_zone_highest_possible_pfn[i] =
4695 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4696 }
2a1e274a
MG
4697 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4698 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4699
4700 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4701 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4702 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4703
c713216d
MG
4704 /* Print out the zone ranges */
4705 printk("Zone PFN ranges:\n");
2a1e274a
MG
4706 for (i = 0; i < MAX_NR_ZONES; i++) {
4707 if (i == ZONE_MOVABLE)
4708 continue;
72f0ba02
DR
4709 printk(" %-8s ", zone_names[i]);
4710 if (arch_zone_lowest_possible_pfn[i] ==
4711 arch_zone_highest_possible_pfn[i])
4712 printk("empty\n");
4713 else
4714 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4715 arch_zone_lowest_possible_pfn[i],
4716 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4717 }
4718
4719 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4720 printk("Movable zone start PFN for each node\n");
4721 for (i = 0; i < MAX_NUMNODES; i++) {
4722 if (zone_movable_pfn[i])
4723 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4724 }
c713216d
MG
4725
4726 /* Print out the early_node_map[] */
4727 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4728 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4729 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4730 early_node_map[i].start_pfn,
4731 early_node_map[i].end_pfn);
4732
4733 /* Initialise every node */
708614e6 4734 mminit_verify_pageflags_layout();
8ef82866 4735 setup_nr_node_ids();
c713216d
MG
4736 for_each_online_node(nid) {
4737 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4738 free_area_init_node(nid, NULL,
c713216d 4739 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4740
4741 /* Any memory on that node */
4742 if (pgdat->node_present_pages)
4743 node_set_state(nid, N_HIGH_MEMORY);
4744 check_for_regular_memory(pgdat);
c713216d
MG
4745 }
4746}
2a1e274a 4747
7e63efef 4748static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4749{
4750 unsigned long long coremem;
4751 if (!p)
4752 return -EINVAL;
4753
4754 coremem = memparse(p, &p);
7e63efef 4755 *core = coremem >> PAGE_SHIFT;
2a1e274a 4756
7e63efef 4757 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4758 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4759
4760 return 0;
4761}
ed7ed365 4762
7e63efef
MG
4763/*
4764 * kernelcore=size sets the amount of memory for use for allocations that
4765 * cannot be reclaimed or migrated.
4766 */
4767static int __init cmdline_parse_kernelcore(char *p)
4768{
4769 return cmdline_parse_core(p, &required_kernelcore);
4770}
4771
4772/*
4773 * movablecore=size sets the amount of memory for use for allocations that
4774 * can be reclaimed or migrated.
4775 */
4776static int __init cmdline_parse_movablecore(char *p)
4777{
4778 return cmdline_parse_core(p, &required_movablecore);
4779}
4780
ed7ed365 4781early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4782early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4783
c713216d
MG
4784#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4785
0e0b864e 4786/**
88ca3b94
RD
4787 * set_dma_reserve - set the specified number of pages reserved in the first zone
4788 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4789 *
4790 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4791 * In the DMA zone, a significant percentage may be consumed by kernel image
4792 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4793 * function may optionally be used to account for unfreeable pages in the
4794 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4795 * smaller per-cpu batchsize.
0e0b864e
MG
4796 */
4797void __init set_dma_reserve(unsigned long new_dma_reserve)
4798{
4799 dma_reserve = new_dma_reserve;
4800}
4801
93b7504e 4802#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4803struct pglist_data __refdata contig_page_data = {
4804#ifndef CONFIG_NO_BOOTMEM
4805 .bdata = &bootmem_node_data[0]
4806#endif
4807 };
1da177e4 4808EXPORT_SYMBOL(contig_page_data);
93b7504e 4809#endif
1da177e4
LT
4810
4811void __init free_area_init(unsigned long *zones_size)
4812{
9109fb7b 4813 free_area_init_node(0, zones_size,
1da177e4
LT
4814 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4815}
1da177e4 4816
1da177e4
LT
4817static int page_alloc_cpu_notify(struct notifier_block *self,
4818 unsigned long action, void *hcpu)
4819{
4820 int cpu = (unsigned long)hcpu;
1da177e4 4821
8bb78442 4822 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4823 drain_pages(cpu);
4824
4825 /*
4826 * Spill the event counters of the dead processor
4827 * into the current processors event counters.
4828 * This artificially elevates the count of the current
4829 * processor.
4830 */
f8891e5e 4831 vm_events_fold_cpu(cpu);
9f8f2172
CL
4832
4833 /*
4834 * Zero the differential counters of the dead processor
4835 * so that the vm statistics are consistent.
4836 *
4837 * This is only okay since the processor is dead and cannot
4838 * race with what we are doing.
4839 */
2244b95a 4840 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4841 }
4842 return NOTIFY_OK;
4843}
1da177e4
LT
4844
4845void __init page_alloc_init(void)
4846{
4847 hotcpu_notifier(page_alloc_cpu_notify, 0);
4848}
4849
cb45b0e9
HA
4850/*
4851 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4852 * or min_free_kbytes changes.
4853 */
4854static void calculate_totalreserve_pages(void)
4855{
4856 struct pglist_data *pgdat;
4857 unsigned long reserve_pages = 0;
2f6726e5 4858 enum zone_type i, j;
cb45b0e9
HA
4859
4860 for_each_online_pgdat(pgdat) {
4861 for (i = 0; i < MAX_NR_ZONES; i++) {
4862 struct zone *zone = pgdat->node_zones + i;
4863 unsigned long max = 0;
4864
4865 /* Find valid and maximum lowmem_reserve in the zone */
4866 for (j = i; j < MAX_NR_ZONES; j++) {
4867 if (zone->lowmem_reserve[j] > max)
4868 max = zone->lowmem_reserve[j];
4869 }
4870
41858966
MG
4871 /* we treat the high watermark as reserved pages. */
4872 max += high_wmark_pages(zone);
cb45b0e9
HA
4873
4874 if (max > zone->present_pages)
4875 max = zone->present_pages;
4876 reserve_pages += max;
4877 }
4878 }
4879 totalreserve_pages = reserve_pages;
4880}
4881
1da177e4
LT
4882/*
4883 * setup_per_zone_lowmem_reserve - called whenever
4884 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4885 * has a correct pages reserved value, so an adequate number of
4886 * pages are left in the zone after a successful __alloc_pages().
4887 */
4888static void setup_per_zone_lowmem_reserve(void)
4889{
4890 struct pglist_data *pgdat;
2f6726e5 4891 enum zone_type j, idx;
1da177e4 4892
ec936fc5 4893 for_each_online_pgdat(pgdat) {
1da177e4
LT
4894 for (j = 0; j < MAX_NR_ZONES; j++) {
4895 struct zone *zone = pgdat->node_zones + j;
4896 unsigned long present_pages = zone->present_pages;
4897
4898 zone->lowmem_reserve[j] = 0;
4899
2f6726e5
CL
4900 idx = j;
4901 while (idx) {
1da177e4
LT
4902 struct zone *lower_zone;
4903
2f6726e5
CL
4904 idx--;
4905
1da177e4
LT
4906 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4907 sysctl_lowmem_reserve_ratio[idx] = 1;
4908
4909 lower_zone = pgdat->node_zones + idx;
4910 lower_zone->lowmem_reserve[j] = present_pages /
4911 sysctl_lowmem_reserve_ratio[idx];
4912 present_pages += lower_zone->present_pages;
4913 }
4914 }
4915 }
cb45b0e9
HA
4916
4917 /* update totalreserve_pages */
4918 calculate_totalreserve_pages();
1da177e4
LT
4919}
4920
88ca3b94 4921/**
bc75d33f 4922 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4923 * or when memory is hot-{added|removed}
88ca3b94 4924 *
bc75d33f
MK
4925 * Ensures that the watermark[min,low,high] values for each zone are set
4926 * correctly with respect to min_free_kbytes.
1da177e4 4927 */
bc75d33f 4928void setup_per_zone_wmarks(void)
1da177e4
LT
4929{
4930 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4931 unsigned long lowmem_pages = 0;
4932 struct zone *zone;
4933 unsigned long flags;
4934
4935 /* Calculate total number of !ZONE_HIGHMEM pages */
4936 for_each_zone(zone) {
4937 if (!is_highmem(zone))
4938 lowmem_pages += zone->present_pages;
4939 }
4940
4941 for_each_zone(zone) {
ac924c60
AM
4942 u64 tmp;
4943
1125b4e3 4944 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4945 tmp = (u64)pages_min * zone->present_pages;
4946 do_div(tmp, lowmem_pages);
1da177e4
LT
4947 if (is_highmem(zone)) {
4948 /*
669ed175
NP
4949 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4950 * need highmem pages, so cap pages_min to a small
4951 * value here.
4952 *
41858966 4953 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4954 * deltas controls asynch page reclaim, and so should
4955 * not be capped for highmem.
1da177e4
LT
4956 */
4957 int min_pages;
4958
4959 min_pages = zone->present_pages / 1024;
4960 if (min_pages < SWAP_CLUSTER_MAX)
4961 min_pages = SWAP_CLUSTER_MAX;
4962 if (min_pages > 128)
4963 min_pages = 128;
41858966 4964 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4965 } else {
669ed175
NP
4966 /*
4967 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4968 * proportionate to the zone's size.
4969 */
41858966 4970 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4971 }
4972
41858966
MG
4973 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4974 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4975 setup_zone_migrate_reserve(zone);
1125b4e3 4976 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4977 }
cb45b0e9
HA
4978
4979 /* update totalreserve_pages */
4980 calculate_totalreserve_pages();
1da177e4
LT
4981}
4982
55a4462a 4983/*
556adecb
RR
4984 * The inactive anon list should be small enough that the VM never has to
4985 * do too much work, but large enough that each inactive page has a chance
4986 * to be referenced again before it is swapped out.
4987 *
4988 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4989 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4990 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4991 * the anonymous pages are kept on the inactive list.
4992 *
4993 * total target max
4994 * memory ratio inactive anon
4995 * -------------------------------------
4996 * 10MB 1 5MB
4997 * 100MB 1 50MB
4998 * 1GB 3 250MB
4999 * 10GB 10 0.9GB
5000 * 100GB 31 3GB
5001 * 1TB 101 10GB
5002 * 10TB 320 32GB
5003 */
96cb4df5 5004void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5005{
96cb4df5 5006 unsigned int gb, ratio;
556adecb 5007
96cb4df5
MK
5008 /* Zone size in gigabytes */
5009 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5010 if (gb)
556adecb 5011 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5012 else
5013 ratio = 1;
556adecb 5014
96cb4df5
MK
5015 zone->inactive_ratio = ratio;
5016}
556adecb 5017
96cb4df5
MK
5018static void __init setup_per_zone_inactive_ratio(void)
5019{
5020 struct zone *zone;
5021
5022 for_each_zone(zone)
5023 calculate_zone_inactive_ratio(zone);
556adecb
RR
5024}
5025
1da177e4
LT
5026/*
5027 * Initialise min_free_kbytes.
5028 *
5029 * For small machines we want it small (128k min). For large machines
5030 * we want it large (64MB max). But it is not linear, because network
5031 * bandwidth does not increase linearly with machine size. We use
5032 *
5033 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5034 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5035 *
5036 * which yields
5037 *
5038 * 16MB: 512k
5039 * 32MB: 724k
5040 * 64MB: 1024k
5041 * 128MB: 1448k
5042 * 256MB: 2048k
5043 * 512MB: 2896k
5044 * 1024MB: 4096k
5045 * 2048MB: 5792k
5046 * 4096MB: 8192k
5047 * 8192MB: 11584k
5048 * 16384MB: 16384k
5049 */
bc75d33f 5050static int __init init_per_zone_wmark_min(void)
1da177e4
LT
5051{
5052 unsigned long lowmem_kbytes;
5053
5054 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5055
5056 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5057 if (min_free_kbytes < 128)
5058 min_free_kbytes = 128;
5059 if (min_free_kbytes > 65536)
5060 min_free_kbytes = 65536;
bc75d33f 5061 setup_per_zone_wmarks();
1da177e4 5062 setup_per_zone_lowmem_reserve();
556adecb 5063 setup_per_zone_inactive_ratio();
1da177e4
LT
5064 return 0;
5065}
bc75d33f 5066module_init(init_per_zone_wmark_min)
1da177e4
LT
5067
5068/*
5069 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5070 * that we can call two helper functions whenever min_free_kbytes
5071 * changes.
5072 */
5073int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5074 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5075{
8d65af78 5076 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5077 if (write)
bc75d33f 5078 setup_per_zone_wmarks();
1da177e4
LT
5079 return 0;
5080}
5081
9614634f
CL
5082#ifdef CONFIG_NUMA
5083int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5084 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5085{
5086 struct zone *zone;
5087 int rc;
5088
8d65af78 5089 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5090 if (rc)
5091 return rc;
5092
5093 for_each_zone(zone)
8417bba4 5094 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5095 sysctl_min_unmapped_ratio) / 100;
5096 return 0;
5097}
0ff38490
CL
5098
5099int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5100 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5101{
5102 struct zone *zone;
5103 int rc;
5104
8d65af78 5105 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5106 if (rc)
5107 return rc;
5108
5109 for_each_zone(zone)
5110 zone->min_slab_pages = (zone->present_pages *
5111 sysctl_min_slab_ratio) / 100;
5112 return 0;
5113}
9614634f
CL
5114#endif
5115
1da177e4
LT
5116/*
5117 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5118 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5119 * whenever sysctl_lowmem_reserve_ratio changes.
5120 *
5121 * The reserve ratio obviously has absolutely no relation with the
41858966 5122 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5123 * if in function of the boot time zone sizes.
5124 */
5125int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5126 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5127{
8d65af78 5128 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5129 setup_per_zone_lowmem_reserve();
5130 return 0;
5131}
5132
8ad4b1fb
RS
5133/*
5134 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5135 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5136 * can have before it gets flushed back to buddy allocator.
5137 */
5138
5139int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5140 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5141{
5142 struct zone *zone;
5143 unsigned int cpu;
5144 int ret;
5145
8d65af78 5146 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5147 if (!write || (ret == -EINVAL))
5148 return ret;
364df0eb 5149 for_each_populated_zone(zone) {
99dcc3e5 5150 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5151 unsigned long high;
5152 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5153 setup_pagelist_highmark(
5154 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5155 }
5156 }
5157 return 0;
5158}
5159
f034b5d4 5160int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5161
5162#ifdef CONFIG_NUMA
5163static int __init set_hashdist(char *str)
5164{
5165 if (!str)
5166 return 0;
5167 hashdist = simple_strtoul(str, &str, 0);
5168 return 1;
5169}
5170__setup("hashdist=", set_hashdist);
5171#endif
5172
5173/*
5174 * allocate a large system hash table from bootmem
5175 * - it is assumed that the hash table must contain an exact power-of-2
5176 * quantity of entries
5177 * - limit is the number of hash buckets, not the total allocation size
5178 */
5179void *__init alloc_large_system_hash(const char *tablename,
5180 unsigned long bucketsize,
5181 unsigned long numentries,
5182 int scale,
5183 int flags,
5184 unsigned int *_hash_shift,
5185 unsigned int *_hash_mask,
5186 unsigned long limit)
5187{
5188 unsigned long long max = limit;
5189 unsigned long log2qty, size;
5190 void *table = NULL;
5191
5192 /* allow the kernel cmdline to have a say */
5193 if (!numentries) {
5194 /* round applicable memory size up to nearest megabyte */
04903664 5195 numentries = nr_kernel_pages;
1da177e4
LT
5196 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5197 numentries >>= 20 - PAGE_SHIFT;
5198 numentries <<= 20 - PAGE_SHIFT;
5199
5200 /* limit to 1 bucket per 2^scale bytes of low memory */
5201 if (scale > PAGE_SHIFT)
5202 numentries >>= (scale - PAGE_SHIFT);
5203 else
5204 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5205
5206 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5207 if (unlikely(flags & HASH_SMALL)) {
5208 /* Makes no sense without HASH_EARLY */
5209 WARN_ON(!(flags & HASH_EARLY));
5210 if (!(numentries >> *_hash_shift)) {
5211 numentries = 1UL << *_hash_shift;
5212 BUG_ON(!numentries);
5213 }
5214 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5215 numentries = PAGE_SIZE / bucketsize;
1da177e4 5216 }
6e692ed3 5217 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5218
5219 /* limit allocation size to 1/16 total memory by default */
5220 if (max == 0) {
5221 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5222 do_div(max, bucketsize);
5223 }
5224
5225 if (numentries > max)
5226 numentries = max;
5227
f0d1b0b3 5228 log2qty = ilog2(numentries);
1da177e4
LT
5229
5230 do {
5231 size = bucketsize << log2qty;
5232 if (flags & HASH_EARLY)
74768ed8 5233 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5234 else if (hashdist)
5235 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5236 else {
1037b83b
ED
5237 /*
5238 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5239 * some pages at the end of hash table which
5240 * alloc_pages_exact() automatically does
1037b83b 5241 */
264ef8a9 5242 if (get_order(size) < MAX_ORDER) {
a1dd268c 5243 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5244 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5245 }
1da177e4
LT
5246 }
5247 } while (!table && size > PAGE_SIZE && --log2qty);
5248
5249 if (!table)
5250 panic("Failed to allocate %s hash table\n", tablename);
5251
f241e660 5252 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5253 tablename,
f241e660 5254 (1UL << log2qty),
f0d1b0b3 5255 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5256 size);
5257
5258 if (_hash_shift)
5259 *_hash_shift = log2qty;
5260 if (_hash_mask)
5261 *_hash_mask = (1 << log2qty) - 1;
5262
5263 return table;
5264}
a117e66e 5265
835c134e
MG
5266/* Return a pointer to the bitmap storing bits affecting a block of pages */
5267static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5268 unsigned long pfn)
5269{
5270#ifdef CONFIG_SPARSEMEM
5271 return __pfn_to_section(pfn)->pageblock_flags;
5272#else
5273 return zone->pageblock_flags;
5274#endif /* CONFIG_SPARSEMEM */
5275}
5276
5277static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5278{
5279#ifdef CONFIG_SPARSEMEM
5280 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5281 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5282#else
5283 pfn = pfn - zone->zone_start_pfn;
d9c23400 5284 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5285#endif /* CONFIG_SPARSEMEM */
5286}
5287
5288/**
d9c23400 5289 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5290 * @page: The page within the block of interest
5291 * @start_bitidx: The first bit of interest to retrieve
5292 * @end_bitidx: The last bit of interest
5293 * returns pageblock_bits flags
5294 */
5295unsigned long get_pageblock_flags_group(struct page *page,
5296 int start_bitidx, int end_bitidx)
5297{
5298 struct zone *zone;
5299 unsigned long *bitmap;
5300 unsigned long pfn, bitidx;
5301 unsigned long flags = 0;
5302 unsigned long value = 1;
5303
5304 zone = page_zone(page);
5305 pfn = page_to_pfn(page);
5306 bitmap = get_pageblock_bitmap(zone, pfn);
5307 bitidx = pfn_to_bitidx(zone, pfn);
5308
5309 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5310 if (test_bit(bitidx + start_bitidx, bitmap))
5311 flags |= value;
6220ec78 5312
835c134e
MG
5313 return flags;
5314}
5315
5316/**
d9c23400 5317 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5318 * @page: The page within the block of interest
5319 * @start_bitidx: The first bit of interest
5320 * @end_bitidx: The last bit of interest
5321 * @flags: The flags to set
5322 */
5323void set_pageblock_flags_group(struct page *page, unsigned long flags,
5324 int start_bitidx, int end_bitidx)
5325{
5326 struct zone *zone;
5327 unsigned long *bitmap;
5328 unsigned long pfn, bitidx;
5329 unsigned long value = 1;
5330
5331 zone = page_zone(page);
5332 pfn = page_to_pfn(page);
5333 bitmap = get_pageblock_bitmap(zone, pfn);
5334 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5335 VM_BUG_ON(pfn < zone->zone_start_pfn);
5336 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5337
5338 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5339 if (flags & value)
5340 __set_bit(bitidx + start_bitidx, bitmap);
5341 else
5342 __clear_bit(bitidx + start_bitidx, bitmap);
5343}
a5d76b54
KH
5344
5345/*
5346 * This is designed as sub function...plz see page_isolation.c also.
5347 * set/clear page block's type to be ISOLATE.
5348 * page allocater never alloc memory from ISOLATE block.
5349 */
5350
49ac8255
KH
5351static int
5352__count_immobile_pages(struct zone *zone, struct page *page, int count)
5353{
5354 unsigned long pfn, iter, found;
5355 /*
5356 * For avoiding noise data, lru_add_drain_all() should be called
5357 * If ZONE_MOVABLE, the zone never contains immobile pages
5358 */
5359 if (zone_idx(zone) == ZONE_MOVABLE)
5360 return true;
5361
5362 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5363 return true;
5364
5365 pfn = page_to_pfn(page);
5366 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5367 unsigned long check = pfn + iter;
5368
5369 if (!pfn_valid_within(check)) {
5370 iter++;
5371 continue;
5372 }
5373 page = pfn_to_page(check);
5374 if (!page_count(page)) {
5375 if (PageBuddy(page))
5376 iter += (1 << page_order(page)) - 1;
5377 continue;
5378 }
5379 if (!PageLRU(page))
5380 found++;
5381 /*
5382 * If there are RECLAIMABLE pages, we need to check it.
5383 * But now, memory offline itself doesn't call shrink_slab()
5384 * and it still to be fixed.
5385 */
5386 /*
5387 * If the page is not RAM, page_count()should be 0.
5388 * we don't need more check. This is an _used_ not-movable page.
5389 *
5390 * The problematic thing here is PG_reserved pages. PG_reserved
5391 * is set to both of a memory hole page and a _used_ kernel
5392 * page at boot.
5393 */
5394 if (found > count)
5395 return false;
5396 }
5397 return true;
5398}
5399
5400bool is_pageblock_removable_nolock(struct page *page)
5401{
5402 struct zone *zone = page_zone(page);
5403 return __count_immobile_pages(zone, page, 0);
5404}
5405
a5d76b54
KH
5406int set_migratetype_isolate(struct page *page)
5407{
5408 struct zone *zone;
49ac8255 5409 unsigned long flags, pfn;
925cc71e
RJ
5410 struct memory_isolate_notify arg;
5411 int notifier_ret;
a5d76b54 5412 int ret = -EBUSY;
8e7e40d9 5413 int zone_idx;
a5d76b54
KH
5414
5415 zone = page_zone(page);
8e7e40d9 5416 zone_idx = zone_idx(zone);
925cc71e 5417
a5d76b54 5418 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5419
5420 pfn = page_to_pfn(page);
5421 arg.start_pfn = pfn;
5422 arg.nr_pages = pageblock_nr_pages;
5423 arg.pages_found = 0;
5424
a5d76b54 5425 /*
925cc71e
RJ
5426 * It may be possible to isolate a pageblock even if the
5427 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5428 * notifier chain is used by balloon drivers to return the
5429 * number of pages in a range that are held by the balloon
5430 * driver to shrink memory. If all the pages are accounted for
5431 * by balloons, are free, or on the LRU, isolation can continue.
5432 * Later, for example, when memory hotplug notifier runs, these
5433 * pages reported as "can be isolated" should be isolated(freed)
5434 * by the balloon driver through the memory notifier chain.
a5d76b54 5435 */
925cc71e
RJ
5436 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5437 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5438 if (notifier_ret)
a5d76b54 5439 goto out;
49ac8255
KH
5440 /*
5441 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5442 * We just check MOVABLE pages.
5443 */
5444 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5445 ret = 0;
5446
49ac8255
KH
5447 /*
5448 * immobile means "not-on-lru" paes. If immobile is larger than
5449 * removable-by-driver pages reported by notifier, we'll fail.
5450 */
5451
a5d76b54 5452out:
925cc71e
RJ
5453 if (!ret) {
5454 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5455 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5456 }
5457
a5d76b54
KH
5458 spin_unlock_irqrestore(&zone->lock, flags);
5459 if (!ret)
9f8f2172 5460 drain_all_pages();
a5d76b54
KH
5461 return ret;
5462}
5463
5464void unset_migratetype_isolate(struct page *page)
5465{
5466 struct zone *zone;
5467 unsigned long flags;
5468 zone = page_zone(page);
5469 spin_lock_irqsave(&zone->lock, flags);
5470 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5471 goto out;
5472 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5473 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5474out:
5475 spin_unlock_irqrestore(&zone->lock, flags);
5476}
0c0e6195
KH
5477
5478#ifdef CONFIG_MEMORY_HOTREMOVE
5479/*
5480 * All pages in the range must be isolated before calling this.
5481 */
5482void
5483__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5484{
5485 struct page *page;
5486 struct zone *zone;
5487 int order, i;
5488 unsigned long pfn;
5489 unsigned long flags;
5490 /* find the first valid pfn */
5491 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5492 if (pfn_valid(pfn))
5493 break;
5494 if (pfn == end_pfn)
5495 return;
5496 zone = page_zone(pfn_to_page(pfn));
5497 spin_lock_irqsave(&zone->lock, flags);
5498 pfn = start_pfn;
5499 while (pfn < end_pfn) {
5500 if (!pfn_valid(pfn)) {
5501 pfn++;
5502 continue;
5503 }
5504 page = pfn_to_page(pfn);
5505 BUG_ON(page_count(page));
5506 BUG_ON(!PageBuddy(page));
5507 order = page_order(page);
5508#ifdef CONFIG_DEBUG_VM
5509 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5510 pfn, 1 << order, end_pfn);
5511#endif
5512 list_del(&page->lru);
5513 rmv_page_order(page);
5514 zone->free_area[order].nr_free--;
5515 __mod_zone_page_state(zone, NR_FREE_PAGES,
5516 - (1UL << order));
5517 for (i = 0; i < (1 << order); i++)
5518 SetPageReserved((page+i));
5519 pfn += (1 << order);
5520 }
5521 spin_unlock_irqrestore(&zone->lock, flags);
5522}
5523#endif
8d22ba1b
WF
5524
5525#ifdef CONFIG_MEMORY_FAILURE
5526bool is_free_buddy_page(struct page *page)
5527{
5528 struct zone *zone = page_zone(page);
5529 unsigned long pfn = page_to_pfn(page);
5530 unsigned long flags;
5531 int order;
5532
5533 spin_lock_irqsave(&zone->lock, flags);
5534 for (order = 0; order < MAX_ORDER; order++) {
5535 struct page *page_head = page - (pfn & ((1 << order) - 1));
5536
5537 if (PageBuddy(page_head) && page_order(page_head) >= order)
5538 break;
5539 }
5540 spin_unlock_irqrestore(&zone->lock, flags);
5541
5542 return order < MAX_ORDER;
5543}
5544#endif
718a3821
WF
5545
5546static struct trace_print_flags pageflag_names[] = {
5547 {1UL << PG_locked, "locked" },
5548 {1UL << PG_error, "error" },
5549 {1UL << PG_referenced, "referenced" },
5550 {1UL << PG_uptodate, "uptodate" },
5551 {1UL << PG_dirty, "dirty" },
5552 {1UL << PG_lru, "lru" },
5553 {1UL << PG_active, "active" },
5554 {1UL << PG_slab, "slab" },
5555 {1UL << PG_owner_priv_1, "owner_priv_1" },
5556 {1UL << PG_arch_1, "arch_1" },
5557 {1UL << PG_reserved, "reserved" },
5558 {1UL << PG_private, "private" },
5559 {1UL << PG_private_2, "private_2" },
5560 {1UL << PG_writeback, "writeback" },
5561#ifdef CONFIG_PAGEFLAGS_EXTENDED
5562 {1UL << PG_head, "head" },
5563 {1UL << PG_tail, "tail" },
5564#else
5565 {1UL << PG_compound, "compound" },
5566#endif
5567 {1UL << PG_swapcache, "swapcache" },
5568 {1UL << PG_mappedtodisk, "mappedtodisk" },
5569 {1UL << PG_reclaim, "reclaim" },
5570 {1UL << PG_buddy, "buddy" },
5571 {1UL << PG_swapbacked, "swapbacked" },
5572 {1UL << PG_unevictable, "unevictable" },
5573#ifdef CONFIG_MMU
5574 {1UL << PG_mlocked, "mlocked" },
5575#endif
5576#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5577 {1UL << PG_uncached, "uncached" },
5578#endif
5579#ifdef CONFIG_MEMORY_FAILURE
5580 {1UL << PG_hwpoison, "hwpoison" },
5581#endif
5582 {-1UL, NULL },
5583};
5584
5585static void dump_page_flags(unsigned long flags)
5586{
5587 const char *delim = "";
5588 unsigned long mask;
5589 int i;
5590
5591 printk(KERN_ALERT "page flags: %#lx(", flags);
5592
5593 /* remove zone id */
5594 flags &= (1UL << NR_PAGEFLAGS) - 1;
5595
5596 for (i = 0; pageflag_names[i].name && flags; i++) {
5597
5598 mask = pageflag_names[i].mask;
5599 if ((flags & mask) != mask)
5600 continue;
5601
5602 flags &= ~mask;
5603 printk("%s%s", delim, pageflag_names[i].name);
5604 delim = "|";
5605 }
5606
5607 /* check for left over flags */
5608 if (flags)
5609 printk("%s%#lx", delim, flags);
5610
5611 printk(")\n");
5612}
5613
5614void dump_page(struct page *page)
5615{
5616 printk(KERN_ALERT
5617 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5618 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5619 page->mapping, page->index);
5620 dump_page_flags(page->flags);
5621}