]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
memory-hotplug: auto offline page_cgroup when onlining memory block failed
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
702d1a6e
MK
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
ee6f509c 226void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 227{
49255c61
MG
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
b2a0ac88
MG
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
7f33d49a
RW
236bool oom_killer_disabled __read_mostly;
237
13e7444b 238#ifdef CONFIG_DEBUG_VM
c6a57e19 239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 240{
bdc8cb98
DH
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
c6a57e19 244
bdc8cb98
DH
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
c6a57e19
DH
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
14e07298 258 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 259 return 0;
1da177e4 260 if (zone != page_zone(page))
c6a57e19
DH
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
1da177e4 271 return 1;
c6a57e19
DH
272 if (!page_is_consistent(zone, page))
273 return 1;
274
1da177e4
LT
275 return 0;
276}
13e7444b
NP
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
224abf92 284static void bad_page(struct page *page)
1da177e4 285{
d936cf9b
HD
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
2a7684a2
WF
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
ef2b4b95 292 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
293 return;
294 }
295
d936cf9b
HD
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
1e9e6365
HD
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
1e9e6365 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 317 current->comm, page_to_pfn(page));
718a3821 318 dump_page(page);
3dc14741 319
4f31888c 320 print_modules();
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
6416b9fa
WSH
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
1da177e4 337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
18229df5 358 __SetPageTail(p);
58a84aa9 359 set_page_count(p, 0);
18229df5
AW
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
c0a32fc5
SG
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
6aa3001b
AM
436static inline void set_page_order(struct page *page, int order)
437{
4c21e2f2 438 set_page_private(page, order);
676165a8 439 __SetPageBuddy(page);
1da177e4
LT
440}
441
442static inline void rmv_page_order(struct page *page)
443{
676165a8 444 __ClearPageBuddy(page);
4c21e2f2 445 set_page_private(page, 0);
1da177e4
LT
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
d6e05edc 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 464 */
1da177e4 465static inline unsigned long
43506fad 466__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 467{
43506fad 468 return page_idx ^ (1 << order);
1da177e4
LT
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
13e7444b 474 * (a) the buddy is not in a hole &&
676165a8 475 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
676165a8 478 *
5f24ce5f
AA
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1
AW
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
cb2b95e1
AW
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
c0a32fc5
SG
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
cb2b95e1 498 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 499 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 500 return 1;
676165a8 501 }
6aa3001b 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 519 * order is recorded in page_private(page) field.
1da177e4 520 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
1da177e4 523 * If a block is freed, and its buddy is also free, then this
5f63b720 524 * triggers coalescing into a block of larger size.
1da177e4
LT
525 *
526 * -- wli
527 */
528
48db57f8 529static inline void __free_one_page(struct page *page,
ed0ae21d
MG
530 struct zone *zone, unsigned int order,
531 int migratetype)
1da177e4
LT
532{
533 unsigned long page_idx;
6dda9d55 534 unsigned long combined_idx;
43506fad 535 unsigned long uninitialized_var(buddy_idx);
6dda9d55 536 struct page *buddy;
1da177e4 537
224abf92 538 if (unlikely(PageCompound(page)))
8cc3b392
HD
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
1da177e4 541
ed0ae21d
MG
542 VM_BUG_ON(migratetype == -1);
543
1da177e4
LT
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
f2260e6b 546 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 547 VM_BUG_ON(bad_range(zone, page));
1da177e4 548
1da177e4 549 while (order < MAX_ORDER-1) {
43506fad
KC
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
cb2b95e1 552 if (!page_is_buddy(page, buddy, order))
3c82d0ce 553 break;
c0a32fc5
SG
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
d1ce749a
BZ
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
c0a32fc5
SG
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
43506fad 568 combined_idx = buddy_idx & page_idx;
1da177e4
LT
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
6dda9d55
CZ
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
b7f50cfa 583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 584 struct page *higher_page, *higher_buddy;
43506fad
KC
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 588 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597out:
1da177e4
LT
598 zone->free_area[order].nr_free++;
599}
600
224abf92 601static inline int free_pages_check(struct page *page)
1da177e4 602{
92be2e33
NP
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
a3af9c38 605 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
606 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
607 (mem_cgroup_bad_page_check(page)))) {
224abf92 608 bad_page(page);
79f4b7bf 609 return 1;
8cc3b392 610 }
79f4b7bf
HD
611 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
612 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
613 return 0;
1da177e4
LT
614}
615
616/*
5f8dcc21 617 * Frees a number of pages from the PCP lists
1da177e4 618 * Assumes all pages on list are in same zone, and of same order.
207f36ee 619 * count is the number of pages to free.
1da177e4
LT
620 *
621 * If the zone was previously in an "all pages pinned" state then look to
622 * see if this freeing clears that state.
623 *
624 * And clear the zone's pages_scanned counter, to hold off the "all pages are
625 * pinned" detection logic.
626 */
5f8dcc21
MG
627static void free_pcppages_bulk(struct zone *zone, int count,
628 struct per_cpu_pages *pcp)
1da177e4 629{
5f8dcc21 630 int migratetype = 0;
a6f9edd6 631 int batch_free = 0;
72853e29 632 int to_free = count;
5f8dcc21 633
c54ad30c 634 spin_lock(&zone->lock);
93e4a89a 635 zone->all_unreclaimable = 0;
1da177e4 636 zone->pages_scanned = 0;
f2260e6b 637
72853e29 638 while (to_free) {
48db57f8 639 struct page *page;
5f8dcc21
MG
640 struct list_head *list;
641
642 /*
a6f9edd6
MG
643 * Remove pages from lists in a round-robin fashion. A
644 * batch_free count is maintained that is incremented when an
645 * empty list is encountered. This is so more pages are freed
646 * off fuller lists instead of spinning excessively around empty
647 * lists
5f8dcc21
MG
648 */
649 do {
a6f9edd6 650 batch_free++;
5f8dcc21
MG
651 if (++migratetype == MIGRATE_PCPTYPES)
652 migratetype = 0;
653 list = &pcp->lists[migratetype];
654 } while (list_empty(list));
48db57f8 655
1d16871d
NK
656 /* This is the only non-empty list. Free them all. */
657 if (batch_free == MIGRATE_PCPTYPES)
658 batch_free = to_free;
659
a6f9edd6 660 do {
770c8aaa
BZ
661 int mt; /* migratetype of the to-be-freed page */
662
a6f9edd6
MG
663 page = list_entry(list->prev, struct page, lru);
664 /* must delete as __free_one_page list manipulates */
665 list_del(&page->lru);
b12c4ad1 666 mt = get_freepage_migratetype(page);
a7016235 667 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
668 __free_one_page(page, zone, 0, mt);
669 trace_mm_page_pcpu_drain(page, 0, mt);
d1ce749a
BZ
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
72853e29 672 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 673 }
72853e29 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 675 spin_unlock(&zone->lock);
1da177e4
LT
676}
677
ed0ae21d
MG
678static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
1da177e4 680{
006d22d9 681 spin_lock(&zone->lock);
93e4a89a 682 zone->all_unreclaimable = 0;
006d22d9 683 zone->pages_scanned = 0;
f2260e6b 684
ed0ae21d 685 __free_one_page(page, zone, order, migratetype);
2139cbe6 686 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 688 spin_unlock(&zone->lock);
48db57f8
NP
689}
690
ec95f53a 691static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 692{
1da177e4 693 int i;
8cc3b392 694 int bad = 0;
1da177e4 695
b413d48a 696 trace_mm_page_free(page, order);
b1eeab67
VN
697 kmemcheck_free_shadow(page, order);
698
8dd60a3a
AA
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
8cc3b392 703 if (bad)
ec95f53a 704 return false;
689bcebf 705
3ac7fe5a 706 if (!PageHighMem(page)) {
9858db50 707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
dafb1367 711 arch_free_page(page, order);
48db57f8 712 kernel_map_pages(page, 1 << order, 0);
dafb1367 713
ec95f53a
KM
714 return true;
715}
716
717static void __free_pages_ok(struct page *page, unsigned int order)
718{
719 unsigned long flags;
95e34412 720 int migratetype;
ec95f53a
KM
721
722 if (!free_pages_prepare(page, order))
723 return;
724
c54ad30c 725 local_irq_save(flags);
f8891e5e 726 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 730 local_irq_restore(flags);
1da177e4
LT
731}
732
af370fb8 733void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 734{
c3993076
JW
735 unsigned int nr_pages = 1 << order;
736 unsigned int loop;
a226f6c8 737
c3993076
JW
738 prefetchw(page);
739 for (loop = 0; loop < nr_pages; loop++) {
740 struct page *p = &page[loop];
741
742 if (loop + 1 < nr_pages)
743 prefetchw(p + 1);
744 __ClearPageReserved(p);
745 set_page_count(p, 0);
a226f6c8 746 }
c3993076
JW
747
748 set_page_refcounted(page);
749 __free_pages(page, order);
a226f6c8
DH
750}
751
47118af0
MN
752#ifdef CONFIG_CMA
753/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
754void __init init_cma_reserved_pageblock(struct page *page)
755{
756 unsigned i = pageblock_nr_pages;
757 struct page *p = page;
758
759 do {
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
762 } while (++p, --i);
763
764 set_page_refcounted(page);
765 set_pageblock_migratetype(page, MIGRATE_CMA);
766 __free_pages(page, pageblock_order);
767 totalram_pages += pageblock_nr_pages;
768}
769#endif
1da177e4
LT
770
771/*
772 * The order of subdivision here is critical for the IO subsystem.
773 * Please do not alter this order without good reasons and regression
774 * testing. Specifically, as large blocks of memory are subdivided,
775 * the order in which smaller blocks are delivered depends on the order
776 * they're subdivided in this function. This is the primary factor
777 * influencing the order in which pages are delivered to the IO
778 * subsystem according to empirical testing, and this is also justified
779 * by considering the behavior of a buddy system containing a single
780 * large block of memory acted on by a series of small allocations.
781 * This behavior is a critical factor in sglist merging's success.
782 *
783 * -- wli
784 */
085cc7d5 785static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
786 int low, int high, struct free_area *area,
787 int migratetype)
1da177e4
LT
788{
789 unsigned long size = 1 << high;
790
791 while (high > low) {
792 area--;
793 high--;
794 size >>= 1;
725d704e 795 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
796
797#ifdef CONFIG_DEBUG_PAGEALLOC
798 if (high < debug_guardpage_minorder()) {
799 /*
800 * Mark as guard pages (or page), that will allow to
801 * merge back to allocator when buddy will be freed.
802 * Corresponding page table entries will not be touched,
803 * pages will stay not present in virtual address space
804 */
805 INIT_LIST_HEAD(&page[size].lru);
806 set_page_guard_flag(&page[size]);
807 set_page_private(&page[size], high);
808 /* Guard pages are not available for any usage */
d1ce749a
BZ
809 __mod_zone_freepage_state(zone, -(1 << high),
810 migratetype);
c0a32fc5
SG
811 continue;
812 }
813#endif
b2a0ac88 814 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
815 area->nr_free++;
816 set_page_order(&page[size], high);
817 }
1da177e4
LT
818}
819
1da177e4
LT
820/*
821 * This page is about to be returned from the page allocator
822 */
2a7684a2 823static inline int check_new_page(struct page *page)
1da177e4 824{
92be2e33
NP
825 if (unlikely(page_mapcount(page) |
826 (page->mapping != NULL) |
a3af9c38 827 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 (mem_cgroup_bad_page_check(page)))) {
224abf92 830 bad_page(page);
689bcebf 831 return 1;
8cc3b392 832 }
2a7684a2
WF
833 return 0;
834}
835
836static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
837{
838 int i;
839
840 for (i = 0; i < (1 << order); i++) {
841 struct page *p = page + i;
842 if (unlikely(check_new_page(p)))
843 return 1;
844 }
689bcebf 845
4c21e2f2 846 set_page_private(page, 0);
7835e98b 847 set_page_refcounted(page);
cc102509
NP
848
849 arch_alloc_page(page, order);
1da177e4 850 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
851
852 if (gfp_flags & __GFP_ZERO)
853 prep_zero_page(page, order, gfp_flags);
854
855 if (order && (gfp_flags & __GFP_COMP))
856 prep_compound_page(page, order);
857
689bcebf 858 return 0;
1da177e4
LT
859}
860
56fd56b8
MG
861/*
862 * Go through the free lists for the given migratetype and remove
863 * the smallest available page from the freelists
864 */
728ec980
MG
865static inline
866struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
867 int migratetype)
868{
869 unsigned int current_order;
870 struct free_area * area;
871 struct page *page;
872
873 /* Find a page of the appropriate size in the preferred list */
874 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 area = &(zone->free_area[current_order]);
876 if (list_empty(&area->free_list[migratetype]))
877 continue;
878
879 page = list_entry(area->free_list[migratetype].next,
880 struct page, lru);
881 list_del(&page->lru);
882 rmv_page_order(page);
883 area->nr_free--;
56fd56b8
MG
884 expand(zone, page, order, current_order, area, migratetype);
885 return page;
886 }
887
888 return NULL;
889}
890
891
b2a0ac88
MG
892/*
893 * This array describes the order lists are fallen back to when
894 * the free lists for the desirable migrate type are depleted
895 */
47118af0
MN
896static int fallbacks[MIGRATE_TYPES][4] = {
897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
899#ifdef CONFIG_CMA
900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
902#else
903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
904#endif
6d4a4916
MN
905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
907};
908
c361be55
MG
909/*
910 * Move the free pages in a range to the free lists of the requested type.
d9c23400 911 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
912 * boundary. If alignment is required, use move_freepages_block()
913 */
435b405c 914int move_freepages(struct zone *zone,
b69a7288
AB
915 struct page *start_page, struct page *end_page,
916 int migratetype)
c361be55
MG
917{
918 struct page *page;
919 unsigned long order;
d100313f 920 int pages_moved = 0;
c361be55
MG
921
922#ifndef CONFIG_HOLES_IN_ZONE
923 /*
924 * page_zone is not safe to call in this context when
925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 * anyway as we check zone boundaries in move_freepages_block().
927 * Remove at a later date when no bug reports exist related to
ac0e5b7a 928 * grouping pages by mobility
c361be55
MG
929 */
930 BUG_ON(page_zone(start_page) != page_zone(end_page));
931#endif
932
933 for (page = start_page; page <= end_page;) {
344c790e
AL
934 /* Make sure we are not inadvertently changing nodes */
935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
936
c361be55
MG
937 if (!pfn_valid_within(page_to_pfn(page))) {
938 page++;
939 continue;
940 }
941
942 if (!PageBuddy(page)) {
943 page++;
944 continue;
945 }
946
947 order = page_order(page);
84be48d8
KS
948 list_move(&page->lru,
949 &zone->free_area[order].free_list[migratetype]);
95e34412 950 set_freepage_migratetype(page, migratetype);
c361be55 951 page += 1 << order;
d100313f 952 pages_moved += 1 << order;
c361be55
MG
953 }
954
d100313f 955 return pages_moved;
c361be55
MG
956}
957
ee6f509c 958int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 959 int migratetype)
c361be55
MG
960{
961 unsigned long start_pfn, end_pfn;
962 struct page *start_page, *end_page;
963
964 start_pfn = page_to_pfn(page);
d9c23400 965 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 966 start_page = pfn_to_page(start_pfn);
d9c23400
MG
967 end_page = start_page + pageblock_nr_pages - 1;
968 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
969
970 /* Do not cross zone boundaries */
971 if (start_pfn < zone->zone_start_pfn)
972 start_page = page;
973 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
974 return 0;
975
976 return move_freepages(zone, start_page, end_page, migratetype);
977}
978
2f66a68f
MG
979static void change_pageblock_range(struct page *pageblock_page,
980 int start_order, int migratetype)
981{
982 int nr_pageblocks = 1 << (start_order - pageblock_order);
983
984 while (nr_pageblocks--) {
985 set_pageblock_migratetype(pageblock_page, migratetype);
986 pageblock_page += pageblock_nr_pages;
987 }
988}
989
b2a0ac88 990/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
991static inline struct page *
992__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
993{
994 struct free_area * area;
995 int current_order;
996 struct page *page;
997 int migratetype, i;
998
999 /* Find the largest possible block of pages in the other list */
1000 for (current_order = MAX_ORDER-1; current_order >= order;
1001 --current_order) {
6d4a4916 1002 for (i = 0;; i++) {
b2a0ac88
MG
1003 migratetype = fallbacks[start_migratetype][i];
1004
56fd56b8
MG
1005 /* MIGRATE_RESERVE handled later if necessary */
1006 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1007 break;
e010487d 1008
b2a0ac88
MG
1009 area = &(zone->free_area[current_order]);
1010 if (list_empty(&area->free_list[migratetype]))
1011 continue;
1012
1013 page = list_entry(area->free_list[migratetype].next,
1014 struct page, lru);
1015 area->nr_free--;
1016
1017 /*
c361be55 1018 * If breaking a large block of pages, move all free
46dafbca
MG
1019 * pages to the preferred allocation list. If falling
1020 * back for a reclaimable kernel allocation, be more
25985edc 1021 * aggressive about taking ownership of free pages
47118af0
MN
1022 *
1023 * On the other hand, never change migration
1024 * type of MIGRATE_CMA pageblocks nor move CMA
1025 * pages on different free lists. We don't
1026 * want unmovable pages to be allocated from
1027 * MIGRATE_CMA areas.
b2a0ac88 1028 */
47118af0
MN
1029 if (!is_migrate_cma(migratetype) &&
1030 (unlikely(current_order >= pageblock_order / 2) ||
1031 start_migratetype == MIGRATE_RECLAIMABLE ||
1032 page_group_by_mobility_disabled)) {
1033 int pages;
46dafbca
MG
1034 pages = move_freepages_block(zone, page,
1035 start_migratetype);
1036
1037 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1038 if (pages >= (1 << (pageblock_order-1)) ||
1039 page_group_by_mobility_disabled)
46dafbca
MG
1040 set_pageblock_migratetype(page,
1041 start_migratetype);
1042
b2a0ac88 1043 migratetype = start_migratetype;
c361be55 1044 }
b2a0ac88
MG
1045
1046 /* Remove the page from the freelists */
1047 list_del(&page->lru);
1048 rmv_page_order(page);
b2a0ac88 1049
2f66a68f 1050 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1051 if (current_order >= pageblock_order &&
1052 !is_migrate_cma(migratetype))
2f66a68f 1053 change_pageblock_range(page, current_order,
b2a0ac88
MG
1054 start_migratetype);
1055
47118af0
MN
1056 expand(zone, page, order, current_order, area,
1057 is_migrate_cma(migratetype)
1058 ? migratetype : start_migratetype);
e0fff1bd
MG
1059
1060 trace_mm_page_alloc_extfrag(page, order, current_order,
1061 start_migratetype, migratetype);
1062
b2a0ac88
MG
1063 return page;
1064 }
1065 }
1066
728ec980 1067 return NULL;
b2a0ac88
MG
1068}
1069
56fd56b8 1070/*
1da177e4
LT
1071 * Do the hard work of removing an element from the buddy allocator.
1072 * Call me with the zone->lock already held.
1073 */
b2a0ac88
MG
1074static struct page *__rmqueue(struct zone *zone, unsigned int order,
1075 int migratetype)
1da177e4 1076{
1da177e4
LT
1077 struct page *page;
1078
728ec980 1079retry_reserve:
56fd56b8 1080 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1081
728ec980 1082 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1083 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1084
728ec980
MG
1085 /*
1086 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1087 * is used because __rmqueue_smallest is an inline function
1088 * and we want just one call site
1089 */
1090 if (!page) {
1091 migratetype = MIGRATE_RESERVE;
1092 goto retry_reserve;
1093 }
1094 }
1095
0d3d062a 1096 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1097 return page;
1da177e4
LT
1098}
1099
5f63b720 1100/*
1da177e4
LT
1101 * Obtain a specified number of elements from the buddy allocator, all under
1102 * a single hold of the lock, for efficiency. Add them to the supplied list.
1103 * Returns the number of new pages which were placed at *list.
1104 */
5f63b720 1105static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1106 unsigned long count, struct list_head *list,
e084b2d9 1107 int migratetype, int cold)
1da177e4 1108{
47118af0 1109 int mt = migratetype, i;
5f63b720 1110
c54ad30c 1111 spin_lock(&zone->lock);
1da177e4 1112 for (i = 0; i < count; ++i) {
b2a0ac88 1113 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1114 if (unlikely(page == NULL))
1da177e4 1115 break;
81eabcbe
MG
1116
1117 /*
1118 * Split buddy pages returned by expand() are received here
1119 * in physical page order. The page is added to the callers and
1120 * list and the list head then moves forward. From the callers
1121 * perspective, the linked list is ordered by page number in
1122 * some conditions. This is useful for IO devices that can
1123 * merge IO requests if the physical pages are ordered
1124 * properly.
1125 */
e084b2d9
MG
1126 if (likely(cold == 0))
1127 list_add(&page->lru, list);
1128 else
1129 list_add_tail(&page->lru, list);
47118af0
MN
1130 if (IS_ENABLED(CONFIG_CMA)) {
1131 mt = get_pageblock_migratetype(page);
1132 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1133 mt = migratetype;
1134 }
b12c4ad1 1135 set_freepage_migratetype(page, mt);
81eabcbe 1136 list = &page->lru;
d1ce749a
BZ
1137 if (is_migrate_cma(mt))
1138 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1139 -(1 << order));
1da177e4 1140 }
f2260e6b 1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1142 spin_unlock(&zone->lock);
085cc7d5 1143 return i;
1da177e4
LT
1144}
1145
4ae7c039 1146#ifdef CONFIG_NUMA
8fce4d8e 1147/*
4037d452
CL
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
879336c3
CL
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
8fce4d8e 1154 */
4037d452 1155void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1156{
4ae7c039 1157 unsigned long flags;
4037d452 1158 int to_drain;
4ae7c039 1159
4037d452
CL
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
2a13515c
KM
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
4037d452 1169 local_irq_restore(flags);
4ae7c039
CL
1170}
1171#endif
1172
9f8f2172
CL
1173/*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180static void drain_pages(unsigned int cpu)
1da177e4 1181{
c54ad30c 1182 unsigned long flags;
1da177e4 1183 struct zone *zone;
1da177e4 1184
ee99c71c 1185 for_each_populated_zone(zone) {
1da177e4 1186 struct per_cpu_pageset *pset;
3dfa5721 1187 struct per_cpu_pages *pcp;
1da177e4 1188
99dcc3e5
CL
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1191
1192 pcp = &pset->pcp;
2ff754fa
DR
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
3dfa5721 1197 local_irq_restore(flags);
1da177e4
LT
1198 }
1199}
1da177e4 1200
9f8f2172
CL
1201/*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204void drain_local_pages(void *arg)
1205{
1206 drain_pages(smp_processor_id());
1207}
1208
1209/*
74046494
GBY
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
9f8f2172
CL
1217 */
1218void drain_all_pages(void)
1219{
74046494
GBY
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1251}
1252
296699de 1253#ifdef CONFIG_HIBERNATION
1da177e4
LT
1254
1255void mark_free_pages(struct zone *zone)
1256{
f623f0db
RW
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
b2a0ac88 1259 int order, t;
1da177e4
LT
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
7be98234
RW
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
f623f0db 1274 }
1da177e4 1275
b2a0ac88
MG
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1278 unsigned long i;
1da177e4 1279
f623f0db
RW
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
7be98234 1282 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1283 }
b2a0ac88 1284 }
1da177e4
LT
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286}
e2c55dc8 1287#endif /* CONFIG_PM */
1da177e4 1288
1da177e4
LT
1289/*
1290 * Free a 0-order page
fc91668e 1291 * cold == 1 ? free a cold page : free a hot page
1da177e4 1292 */
fc91668e 1293void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1294{
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
5f8dcc21 1298 int migratetype;
1da177e4 1299
ec95f53a 1300 if (!free_pages_prepare(page, 0))
689bcebf
HD
1301 return;
1302
5f8dcc21 1303 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1304 set_freepage_migratetype(page, migratetype);
1da177e4 1305 local_irq_save(flags);
f8891e5e 1306 __count_vm_event(PGFREE);
da456f14 1307
5f8dcc21
MG
1308 /*
1309 * We only track unmovable, reclaimable and movable on pcp lists.
1310 * Free ISOLATE pages back to the allocator because they are being
1311 * offlined but treat RESERVE as movable pages so we can get those
1312 * areas back if necessary. Otherwise, we may have to free
1313 * excessively into the page allocator
1314 */
1315 if (migratetype >= MIGRATE_PCPTYPES) {
1316 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1317 free_one_page(zone, page, 0, migratetype);
1318 goto out;
1319 }
1320 migratetype = MIGRATE_MOVABLE;
1321 }
1322
99dcc3e5 1323 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1324 if (cold)
5f8dcc21 1325 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1326 else
5f8dcc21 1327 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1328 pcp->count++;
48db57f8 1329 if (pcp->count >= pcp->high) {
5f8dcc21 1330 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1331 pcp->count -= pcp->batch;
1332 }
5f8dcc21
MG
1333
1334out:
1da177e4 1335 local_irq_restore(flags);
1da177e4
LT
1336}
1337
cc59850e
KK
1338/*
1339 * Free a list of 0-order pages
1340 */
1341void free_hot_cold_page_list(struct list_head *list, int cold)
1342{
1343 struct page *page, *next;
1344
1345 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1346 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1347 free_hot_cold_page(page, cold);
1348 }
1349}
1350
8dfcc9ba
NP
1351/*
1352 * split_page takes a non-compound higher-order page, and splits it into
1353 * n (1<<order) sub-pages: page[0..n]
1354 * Each sub-page must be freed individually.
1355 *
1356 * Note: this is probably too low level an operation for use in drivers.
1357 * Please consult with lkml before using this in your driver.
1358 */
1359void split_page(struct page *page, unsigned int order)
1360{
1361 int i;
1362
725d704e
NP
1363 VM_BUG_ON(PageCompound(page));
1364 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1365
1366#ifdef CONFIG_KMEMCHECK
1367 /*
1368 * Split shadow pages too, because free(page[0]) would
1369 * otherwise free the whole shadow.
1370 */
1371 if (kmemcheck_page_is_tracked(page))
1372 split_page(virt_to_page(page[0].shadow), order);
1373#endif
1374
7835e98b
NP
1375 for (i = 1; i < (1 << order); i++)
1376 set_page_refcounted(page + i);
8dfcc9ba 1377}
8dfcc9ba 1378
748446bb 1379/*
1fb3f8ca
MG
1380 * Similar to the split_page family of functions except that the page
1381 * required at the given order and being isolated now to prevent races
1382 * with parallel allocators
748446bb 1383 */
1fb3f8ca 1384int capture_free_page(struct page *page, int alloc_order, int migratetype)
748446bb
MG
1385{
1386 unsigned int order;
1387 unsigned long watermark;
1388 struct zone *zone;
2139cbe6 1389 int mt;
748446bb
MG
1390
1391 BUG_ON(!PageBuddy(page));
1392
1393 zone = page_zone(page);
1394 order = page_order(page);
1395
1396 /* Obey watermarks as if the page was being allocated */
1397 watermark = low_wmark_pages(zone) + (1 << order);
1398 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1399 return 0;
1400
1401 /* Remove page from free list */
1402 list_del(&page->lru);
1403 zone->free_area[order].nr_free--;
1404 rmv_page_order(page);
2139cbe6
BZ
1405
1406 mt = get_pageblock_migratetype(page);
1407 if (unlikely(mt != MIGRATE_ISOLATE))
ef6c5be6 1408 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
748446bb 1409
1fb3f8ca
MG
1410 if (alloc_order != order)
1411 expand(zone, page, alloc_order, order,
1412 &zone->free_area[order], migratetype);
748446bb 1413
1fb3f8ca 1414 /* Set the pageblock if the captured page is at least a pageblock */
748446bb
MG
1415 if (order >= pageblock_order - 1) {
1416 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1417 for (; page < endpage; page += pageblock_nr_pages) {
1418 int mt = get_pageblock_migratetype(page);
1419 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1420 set_pageblock_migratetype(page,
1421 MIGRATE_MOVABLE);
1422 }
748446bb
MG
1423 }
1424
58d00209 1425 return 1UL << alloc_order;
1fb3f8ca
MG
1426}
1427
1428/*
1429 * Similar to split_page except the page is already free. As this is only
1430 * being used for migration, the migratetype of the block also changes.
1431 * As this is called with interrupts disabled, the caller is responsible
1432 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1433 * are enabled.
1434 *
1435 * Note: this is probably too low level an operation for use in drivers.
1436 * Please consult with lkml before using this in your driver.
1437 */
1438int split_free_page(struct page *page)
1439{
1440 unsigned int order;
1441 int nr_pages;
1442
1443 BUG_ON(!PageBuddy(page));
1444 order = page_order(page);
1445
1446 nr_pages = capture_free_page(page, order, 0);
1447 if (!nr_pages)
1448 return 0;
1449
1450 /* Split into individual pages */
1451 set_page_refcounted(page);
1452 split_page(page, order);
1453 return nr_pages;
748446bb
MG
1454}
1455
1da177e4
LT
1456/*
1457 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1458 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1459 * or two.
1460 */
0a15c3e9
MG
1461static inline
1462struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1463 struct zone *zone, int order, gfp_t gfp_flags,
1464 int migratetype)
1da177e4
LT
1465{
1466 unsigned long flags;
689bcebf 1467 struct page *page;
1da177e4
LT
1468 int cold = !!(gfp_flags & __GFP_COLD);
1469
689bcebf 1470again:
48db57f8 1471 if (likely(order == 0)) {
1da177e4 1472 struct per_cpu_pages *pcp;
5f8dcc21 1473 struct list_head *list;
1da177e4 1474
1da177e4 1475 local_irq_save(flags);
99dcc3e5
CL
1476 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1477 list = &pcp->lists[migratetype];
5f8dcc21 1478 if (list_empty(list)) {
535131e6 1479 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1480 pcp->batch, list,
e084b2d9 1481 migratetype, cold);
5f8dcc21 1482 if (unlikely(list_empty(list)))
6fb332fa 1483 goto failed;
535131e6 1484 }
b92a6edd 1485
5f8dcc21
MG
1486 if (cold)
1487 page = list_entry(list->prev, struct page, lru);
1488 else
1489 page = list_entry(list->next, struct page, lru);
1490
b92a6edd
MG
1491 list_del(&page->lru);
1492 pcp->count--;
7fb1d9fc 1493 } else {
dab48dab
AM
1494 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1495 /*
1496 * __GFP_NOFAIL is not to be used in new code.
1497 *
1498 * All __GFP_NOFAIL callers should be fixed so that they
1499 * properly detect and handle allocation failures.
1500 *
1501 * We most definitely don't want callers attempting to
4923abf9 1502 * allocate greater than order-1 page units with
dab48dab
AM
1503 * __GFP_NOFAIL.
1504 */
4923abf9 1505 WARN_ON_ONCE(order > 1);
dab48dab 1506 }
1da177e4 1507 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1508 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1509 spin_unlock(&zone->lock);
1510 if (!page)
1511 goto failed;
d1ce749a
BZ
1512 __mod_zone_freepage_state(zone, -(1 << order),
1513 get_pageblock_migratetype(page));
1da177e4
LT
1514 }
1515
f8891e5e 1516 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1517 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1518 local_irq_restore(flags);
1da177e4 1519
725d704e 1520 VM_BUG_ON(bad_range(zone, page));
17cf4406 1521 if (prep_new_page(page, order, gfp_flags))
a74609fa 1522 goto again;
1da177e4 1523 return page;
a74609fa
NP
1524
1525failed:
1526 local_irq_restore(flags);
a74609fa 1527 return NULL;
1da177e4
LT
1528}
1529
933e312e
AM
1530#ifdef CONFIG_FAIL_PAGE_ALLOC
1531
b2588c4b 1532static struct {
933e312e
AM
1533 struct fault_attr attr;
1534
1535 u32 ignore_gfp_highmem;
1536 u32 ignore_gfp_wait;
54114994 1537 u32 min_order;
933e312e
AM
1538} fail_page_alloc = {
1539 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1540 .ignore_gfp_wait = 1,
1541 .ignore_gfp_highmem = 1,
54114994 1542 .min_order = 1,
933e312e
AM
1543};
1544
1545static int __init setup_fail_page_alloc(char *str)
1546{
1547 return setup_fault_attr(&fail_page_alloc.attr, str);
1548}
1549__setup("fail_page_alloc=", setup_fail_page_alloc);
1550
deaf386e 1551static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1552{
54114994 1553 if (order < fail_page_alloc.min_order)
deaf386e 1554 return false;
933e312e 1555 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1556 return false;
933e312e 1557 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1558 return false;
933e312e 1559 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1560 return false;
933e312e
AM
1561
1562 return should_fail(&fail_page_alloc.attr, 1 << order);
1563}
1564
1565#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1566
1567static int __init fail_page_alloc_debugfs(void)
1568{
f4ae40a6 1569 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1570 struct dentry *dir;
933e312e 1571
dd48c085
AM
1572 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1573 &fail_page_alloc.attr);
1574 if (IS_ERR(dir))
1575 return PTR_ERR(dir);
933e312e 1576
b2588c4b
AM
1577 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1578 &fail_page_alloc.ignore_gfp_wait))
1579 goto fail;
1580 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1581 &fail_page_alloc.ignore_gfp_highmem))
1582 goto fail;
1583 if (!debugfs_create_u32("min-order", mode, dir,
1584 &fail_page_alloc.min_order))
1585 goto fail;
1586
1587 return 0;
1588fail:
dd48c085 1589 debugfs_remove_recursive(dir);
933e312e 1590
b2588c4b 1591 return -ENOMEM;
933e312e
AM
1592}
1593
1594late_initcall(fail_page_alloc_debugfs);
1595
1596#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1597
1598#else /* CONFIG_FAIL_PAGE_ALLOC */
1599
deaf386e 1600static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1601{
deaf386e 1602 return false;
933e312e
AM
1603}
1604
1605#endif /* CONFIG_FAIL_PAGE_ALLOC */
1606
1da177e4 1607/*
88f5acf8 1608 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1609 * of the allocation.
1610 */
88f5acf8
MG
1611static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1612 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1613{
1614 /* free_pages my go negative - that's OK */
d23ad423 1615 long min = mark;
2cfed075 1616 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1617 int o;
1618
df0a6daa 1619 free_pages -= (1 << order) - 1;
7fb1d9fc 1620 if (alloc_flags & ALLOC_HIGH)
1da177e4 1621 min -= min / 2;
7fb1d9fc 1622 if (alloc_flags & ALLOC_HARDER)
1da177e4 1623 min -= min / 4;
d95ea5d1
BZ
1624#ifdef CONFIG_CMA
1625 /* If allocation can't use CMA areas don't use free CMA pages */
1626 if (!(alloc_flags & ALLOC_CMA))
1627 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1628#endif
2cfed075 1629 if (free_pages <= min + lowmem_reserve)
88f5acf8 1630 return false;
1da177e4
LT
1631 for (o = 0; o < order; o++) {
1632 /* At the next order, this order's pages become unavailable */
1633 free_pages -= z->free_area[o].nr_free << o;
1634
1635 /* Require fewer higher order pages to be free */
1636 min >>= 1;
1637
1638 if (free_pages <= min)
88f5acf8 1639 return false;
1da177e4 1640 }
88f5acf8
MG
1641 return true;
1642}
1643
702d1a6e
MK
1644#ifdef CONFIG_MEMORY_ISOLATION
1645static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1646{
1647 if (unlikely(zone->nr_pageblock_isolate))
1648 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1649 return 0;
1650}
1651#else
1652static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1653{
1654 return 0;
1655}
1656#endif
1657
88f5acf8
MG
1658bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1659 int classzone_idx, int alloc_flags)
1660{
1661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1662 zone_page_state(z, NR_FREE_PAGES));
1663}
1664
1665bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1666 int classzone_idx, int alloc_flags)
1667{
1668 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1669
1670 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1671 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1672
702d1a6e
MK
1673 /*
1674 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1675 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1676 * sleep although it could do so. But this is more desirable for memory
1677 * hotplug than sleeping which can cause a livelock in the direct
1678 * reclaim path.
1679 */
1680 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1681 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1682 free_pages);
1da177e4
LT
1683}
1684
9276b1bc
PJ
1685#ifdef CONFIG_NUMA
1686/*
1687 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1688 * skip over zones that are not allowed by the cpuset, or that have
1689 * been recently (in last second) found to be nearly full. See further
1690 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1691 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1692 *
1693 * If the zonelist cache is present in the passed in zonelist, then
1694 * returns a pointer to the allowed node mask (either the current
37b07e41 1695 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1696 *
1697 * If the zonelist cache is not available for this zonelist, does
1698 * nothing and returns NULL.
1699 *
1700 * If the fullzones BITMAP in the zonelist cache is stale (more than
1701 * a second since last zap'd) then we zap it out (clear its bits.)
1702 *
1703 * We hold off even calling zlc_setup, until after we've checked the
1704 * first zone in the zonelist, on the theory that most allocations will
1705 * be satisfied from that first zone, so best to examine that zone as
1706 * quickly as we can.
1707 */
1708static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1709{
1710 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1711 nodemask_t *allowednodes; /* zonelist_cache approximation */
1712
1713 zlc = zonelist->zlcache_ptr;
1714 if (!zlc)
1715 return NULL;
1716
f05111f5 1717 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1718 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1719 zlc->last_full_zap = jiffies;
1720 }
1721
1722 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1723 &cpuset_current_mems_allowed :
37b07e41 1724 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1725 return allowednodes;
1726}
1727
1728/*
1729 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1730 * if it is worth looking at further for free memory:
1731 * 1) Check that the zone isn't thought to be full (doesn't have its
1732 * bit set in the zonelist_cache fullzones BITMAP).
1733 * 2) Check that the zones node (obtained from the zonelist_cache
1734 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1735 * Return true (non-zero) if zone is worth looking at further, or
1736 * else return false (zero) if it is not.
1737 *
1738 * This check -ignores- the distinction between various watermarks,
1739 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1740 * found to be full for any variation of these watermarks, it will
1741 * be considered full for up to one second by all requests, unless
1742 * we are so low on memory on all allowed nodes that we are forced
1743 * into the second scan of the zonelist.
1744 *
1745 * In the second scan we ignore this zonelist cache and exactly
1746 * apply the watermarks to all zones, even it is slower to do so.
1747 * We are low on memory in the second scan, and should leave no stone
1748 * unturned looking for a free page.
1749 */
dd1a239f 1750static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1751 nodemask_t *allowednodes)
1752{
1753 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1754 int i; /* index of *z in zonelist zones */
1755 int n; /* node that zone *z is on */
1756
1757 zlc = zonelist->zlcache_ptr;
1758 if (!zlc)
1759 return 1;
1760
dd1a239f 1761 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1762 n = zlc->z_to_n[i];
1763
1764 /* This zone is worth trying if it is allowed but not full */
1765 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1766}
1767
1768/*
1769 * Given 'z' scanning a zonelist, set the corresponding bit in
1770 * zlc->fullzones, so that subsequent attempts to allocate a page
1771 * from that zone don't waste time re-examining it.
1772 */
dd1a239f 1773static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1774{
1775 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1776 int i; /* index of *z in zonelist zones */
1777
1778 zlc = zonelist->zlcache_ptr;
1779 if (!zlc)
1780 return;
1781
dd1a239f 1782 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1783
1784 set_bit(i, zlc->fullzones);
1785}
1786
76d3fbf8
MG
1787/*
1788 * clear all zones full, called after direct reclaim makes progress so that
1789 * a zone that was recently full is not skipped over for up to a second
1790 */
1791static void zlc_clear_zones_full(struct zonelist *zonelist)
1792{
1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1794
1795 zlc = zonelist->zlcache_ptr;
1796 if (!zlc)
1797 return;
1798
1799 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1800}
1801
957f822a
DR
1802static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1803{
1804 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1805}
1806
1807static void __paginginit init_zone_allows_reclaim(int nid)
1808{
1809 int i;
1810
1811 for_each_online_node(i)
6b187d02 1812 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1813 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1814 else
957f822a 1815 zone_reclaim_mode = 1;
957f822a
DR
1816}
1817
9276b1bc
PJ
1818#else /* CONFIG_NUMA */
1819
1820static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1821{
1822 return NULL;
1823}
1824
dd1a239f 1825static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1826 nodemask_t *allowednodes)
1827{
1828 return 1;
1829}
1830
dd1a239f 1831static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1832{
1833}
76d3fbf8
MG
1834
1835static void zlc_clear_zones_full(struct zonelist *zonelist)
1836{
1837}
957f822a
DR
1838
1839static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1840{
1841 return true;
1842}
1843
1844static inline void init_zone_allows_reclaim(int nid)
1845{
1846}
9276b1bc
PJ
1847#endif /* CONFIG_NUMA */
1848
7fb1d9fc 1849/*
0798e519 1850 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1851 * a page.
1852 */
1853static struct page *
19770b32 1854get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1855 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1856 struct zone *preferred_zone, int migratetype)
753ee728 1857{
dd1a239f 1858 struct zoneref *z;
7fb1d9fc 1859 struct page *page = NULL;
54a6eb5c 1860 int classzone_idx;
5117f45d 1861 struct zone *zone;
9276b1bc
PJ
1862 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1863 int zlc_active = 0; /* set if using zonelist_cache */
1864 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1865
19770b32 1866 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1867zonelist_scan:
7fb1d9fc 1868 /*
9276b1bc 1869 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1870 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1871 */
19770b32
MG
1872 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1873 high_zoneidx, nodemask) {
e5adfffc 1874 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1875 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1876 continue;
7fb1d9fc 1877 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1878 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1879 continue;
a756cf59
JW
1880 /*
1881 * When allocating a page cache page for writing, we
1882 * want to get it from a zone that is within its dirty
1883 * limit, such that no single zone holds more than its
1884 * proportional share of globally allowed dirty pages.
1885 * The dirty limits take into account the zone's
1886 * lowmem reserves and high watermark so that kswapd
1887 * should be able to balance it without having to
1888 * write pages from its LRU list.
1889 *
1890 * This may look like it could increase pressure on
1891 * lower zones by failing allocations in higher zones
1892 * before they are full. But the pages that do spill
1893 * over are limited as the lower zones are protected
1894 * by this very same mechanism. It should not become
1895 * a practical burden to them.
1896 *
1897 * XXX: For now, allow allocations to potentially
1898 * exceed the per-zone dirty limit in the slowpath
1899 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1900 * which is important when on a NUMA setup the allowed
1901 * zones are together not big enough to reach the
1902 * global limit. The proper fix for these situations
1903 * will require awareness of zones in the
1904 * dirty-throttling and the flusher threads.
1905 */
1906 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1907 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1908 goto this_zone_full;
7fb1d9fc 1909
41858966 1910 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1911 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1912 unsigned long mark;
fa5e084e
MG
1913 int ret;
1914
41858966 1915 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1916 if (zone_watermark_ok(zone, order, mark,
1917 classzone_idx, alloc_flags))
1918 goto try_this_zone;
1919
e5adfffc
KS
1920 if (IS_ENABLED(CONFIG_NUMA) &&
1921 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1922 /*
1923 * we do zlc_setup if there are multiple nodes
1924 * and before considering the first zone allowed
1925 * by the cpuset.
1926 */
1927 allowednodes = zlc_setup(zonelist, alloc_flags);
1928 zlc_active = 1;
1929 did_zlc_setup = 1;
1930 }
1931
957f822a
DR
1932 if (zone_reclaim_mode == 0 ||
1933 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1934 goto this_zone_full;
1935
cd38b115
MG
1936 /*
1937 * As we may have just activated ZLC, check if the first
1938 * eligible zone has failed zone_reclaim recently.
1939 */
e5adfffc 1940 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1941 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1942 continue;
1943
fa5e084e
MG
1944 ret = zone_reclaim(zone, gfp_mask, order);
1945 switch (ret) {
1946 case ZONE_RECLAIM_NOSCAN:
1947 /* did not scan */
cd38b115 1948 continue;
fa5e084e
MG
1949 case ZONE_RECLAIM_FULL:
1950 /* scanned but unreclaimable */
cd38b115 1951 continue;
fa5e084e
MG
1952 default:
1953 /* did we reclaim enough */
1954 if (!zone_watermark_ok(zone, order, mark,
1955 classzone_idx, alloc_flags))
9276b1bc 1956 goto this_zone_full;
0798e519 1957 }
7fb1d9fc
RS
1958 }
1959
fa5e084e 1960try_this_zone:
3dd28266
MG
1961 page = buffered_rmqueue(preferred_zone, zone, order,
1962 gfp_mask, migratetype);
0798e519 1963 if (page)
7fb1d9fc 1964 break;
9276b1bc 1965this_zone_full:
e5adfffc 1966 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1967 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1968 }
9276b1bc 1969
e5adfffc 1970 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1971 /* Disable zlc cache for second zonelist scan */
1972 zlc_active = 0;
1973 goto zonelist_scan;
1974 }
b121186a
AS
1975
1976 if (page)
1977 /*
1978 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1979 * necessary to allocate the page. The expectation is
1980 * that the caller is taking steps that will free more
1981 * memory. The caller should avoid the page being used
1982 * for !PFMEMALLOC purposes.
1983 */
1984 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1985
7fb1d9fc 1986 return page;
753ee728
MH
1987}
1988
29423e77
DR
1989/*
1990 * Large machines with many possible nodes should not always dump per-node
1991 * meminfo in irq context.
1992 */
1993static inline bool should_suppress_show_mem(void)
1994{
1995 bool ret = false;
1996
1997#if NODES_SHIFT > 8
1998 ret = in_interrupt();
1999#endif
2000 return ret;
2001}
2002
a238ab5b
DH
2003static DEFINE_RATELIMIT_STATE(nopage_rs,
2004 DEFAULT_RATELIMIT_INTERVAL,
2005 DEFAULT_RATELIMIT_BURST);
2006
2007void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2008{
a238ab5b
DH
2009 unsigned int filter = SHOW_MEM_FILTER_NODES;
2010
c0a32fc5
SG
2011 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2012 debug_guardpage_minorder() > 0)
a238ab5b
DH
2013 return;
2014
2015 /*
2016 * This documents exceptions given to allocations in certain
2017 * contexts that are allowed to allocate outside current's set
2018 * of allowed nodes.
2019 */
2020 if (!(gfp_mask & __GFP_NOMEMALLOC))
2021 if (test_thread_flag(TIF_MEMDIE) ||
2022 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2023 filter &= ~SHOW_MEM_FILTER_NODES;
2024 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2025 filter &= ~SHOW_MEM_FILTER_NODES;
2026
2027 if (fmt) {
3ee9a4f0
JP
2028 struct va_format vaf;
2029 va_list args;
2030
a238ab5b 2031 va_start(args, fmt);
3ee9a4f0
JP
2032
2033 vaf.fmt = fmt;
2034 vaf.va = &args;
2035
2036 pr_warn("%pV", &vaf);
2037
a238ab5b
DH
2038 va_end(args);
2039 }
2040
3ee9a4f0
JP
2041 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2042 current->comm, order, gfp_mask);
a238ab5b
DH
2043
2044 dump_stack();
2045 if (!should_suppress_show_mem())
2046 show_mem(filter);
2047}
2048
11e33f6a
MG
2049static inline int
2050should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2051 unsigned long did_some_progress,
11e33f6a 2052 unsigned long pages_reclaimed)
1da177e4 2053{
11e33f6a
MG
2054 /* Do not loop if specifically requested */
2055 if (gfp_mask & __GFP_NORETRY)
2056 return 0;
1da177e4 2057
f90ac398
MG
2058 /* Always retry if specifically requested */
2059 if (gfp_mask & __GFP_NOFAIL)
2060 return 1;
2061
2062 /*
2063 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2064 * making forward progress without invoking OOM. Suspend also disables
2065 * storage devices so kswapd will not help. Bail if we are suspending.
2066 */
2067 if (!did_some_progress && pm_suspended_storage())
2068 return 0;
2069
11e33f6a
MG
2070 /*
2071 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2072 * means __GFP_NOFAIL, but that may not be true in other
2073 * implementations.
2074 */
2075 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2076 return 1;
2077
2078 /*
2079 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2080 * specified, then we retry until we no longer reclaim any pages
2081 * (above), or we've reclaimed an order of pages at least as
2082 * large as the allocation's order. In both cases, if the
2083 * allocation still fails, we stop retrying.
2084 */
2085 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2086 return 1;
cf40bd16 2087
11e33f6a
MG
2088 return 0;
2089}
933e312e 2090
11e33f6a
MG
2091static inline struct page *
2092__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2093 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2094 nodemask_t *nodemask, struct zone *preferred_zone,
2095 int migratetype)
11e33f6a
MG
2096{
2097 struct page *page;
2098
2099 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2100 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2101 schedule_timeout_uninterruptible(1);
1da177e4
LT
2102 return NULL;
2103 }
6b1de916 2104
11e33f6a
MG
2105 /*
2106 * Go through the zonelist yet one more time, keep very high watermark
2107 * here, this is only to catch a parallel oom killing, we must fail if
2108 * we're still under heavy pressure.
2109 */
2110 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2111 order, zonelist, high_zoneidx,
5117f45d 2112 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2113 preferred_zone, migratetype);
7fb1d9fc 2114 if (page)
11e33f6a
MG
2115 goto out;
2116
4365a567
KH
2117 if (!(gfp_mask & __GFP_NOFAIL)) {
2118 /* The OOM killer will not help higher order allocs */
2119 if (order > PAGE_ALLOC_COSTLY_ORDER)
2120 goto out;
03668b3c
DR
2121 /* The OOM killer does not needlessly kill tasks for lowmem */
2122 if (high_zoneidx < ZONE_NORMAL)
2123 goto out;
4365a567
KH
2124 /*
2125 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2126 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2127 * The caller should handle page allocation failure by itself if
2128 * it specifies __GFP_THISNODE.
2129 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2130 */
2131 if (gfp_mask & __GFP_THISNODE)
2132 goto out;
2133 }
11e33f6a 2134 /* Exhausted what can be done so it's blamo time */
08ab9b10 2135 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2136
2137out:
2138 clear_zonelist_oom(zonelist, gfp_mask);
2139 return page;
2140}
2141
56de7263
MG
2142#ifdef CONFIG_COMPACTION
2143/* Try memory compaction for high-order allocations before reclaim */
2144static struct page *
2145__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2146 struct zonelist *zonelist, enum zone_type high_zoneidx,
2147 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2148 int migratetype, bool sync_migration,
c67fe375 2149 bool *contended_compaction, bool *deferred_compaction,
66199712 2150 unsigned long *did_some_progress)
56de7263 2151{
1fb3f8ca 2152 struct page *page = NULL;
56de7263 2153
66199712 2154 if (!order)
56de7263
MG
2155 return NULL;
2156
aff62249 2157 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2158 *deferred_compaction = true;
2159 return NULL;
2160 }
2161
c06b1fca 2162 current->flags |= PF_MEMALLOC;
56de7263 2163 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2164 nodemask, sync_migration,
1fb3f8ca 2165 contended_compaction, &page);
c06b1fca 2166 current->flags &= ~PF_MEMALLOC;
56de7263 2167
1fb3f8ca
MG
2168 /* If compaction captured a page, prep and use it */
2169 if (page) {
2170 prep_new_page(page, order, gfp_mask);
2171 goto got_page;
2172 }
2173
2174 if (*did_some_progress != COMPACT_SKIPPED) {
56de7263
MG
2175 /* Page migration frees to the PCP lists but we want merging */
2176 drain_pages(get_cpu());
2177 put_cpu();
2178
2179 page = get_page_from_freelist(gfp_mask, nodemask,
2180 order, zonelist, high_zoneidx,
cfd19c5a
MG
2181 alloc_flags & ~ALLOC_NO_WATERMARKS,
2182 preferred_zone, migratetype);
56de7263 2183 if (page) {
1fb3f8ca 2184got_page:
62997027 2185 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2186 preferred_zone->compact_considered = 0;
2187 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2188 if (order >= preferred_zone->compact_order_failed)
2189 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2190 count_vm_event(COMPACTSUCCESS);
2191 return page;
2192 }
2193
2194 /*
2195 * It's bad if compaction run occurs and fails.
2196 * The most likely reason is that pages exist,
2197 * but not enough to satisfy watermarks.
2198 */
2199 count_vm_event(COMPACTFAIL);
66199712
MG
2200
2201 /*
2202 * As async compaction considers a subset of pageblocks, only
2203 * defer if the failure was a sync compaction failure.
2204 */
2205 if (sync_migration)
aff62249 2206 defer_compaction(preferred_zone, order);
56de7263
MG
2207
2208 cond_resched();
2209 }
2210
2211 return NULL;
2212}
2213#else
2214static inline struct page *
2215__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2216 struct zonelist *zonelist, enum zone_type high_zoneidx,
2217 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2218 int migratetype, bool sync_migration,
c67fe375 2219 bool *contended_compaction, bool *deferred_compaction,
66199712 2220 unsigned long *did_some_progress)
56de7263
MG
2221{
2222 return NULL;
2223}
2224#endif /* CONFIG_COMPACTION */
2225
bba90710
MS
2226/* Perform direct synchronous page reclaim */
2227static int
2228__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2229 nodemask_t *nodemask)
11e33f6a 2230{
11e33f6a 2231 struct reclaim_state reclaim_state;
bba90710 2232 int progress;
11e33f6a
MG
2233
2234 cond_resched();
2235
2236 /* We now go into synchronous reclaim */
2237 cpuset_memory_pressure_bump();
c06b1fca 2238 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2239 lockdep_set_current_reclaim_state(gfp_mask);
2240 reclaim_state.reclaimed_slab = 0;
c06b1fca 2241 current->reclaim_state = &reclaim_state;
11e33f6a 2242
bba90710 2243 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2244
c06b1fca 2245 current->reclaim_state = NULL;
11e33f6a 2246 lockdep_clear_current_reclaim_state();
c06b1fca 2247 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2248
2249 cond_resched();
2250
bba90710
MS
2251 return progress;
2252}
2253
2254/* The really slow allocator path where we enter direct reclaim */
2255static inline struct page *
2256__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2257 struct zonelist *zonelist, enum zone_type high_zoneidx,
2258 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2259 int migratetype, unsigned long *did_some_progress)
2260{
2261 struct page *page = NULL;
2262 bool drained = false;
2263
2264 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2265 nodemask);
9ee493ce
MG
2266 if (unlikely(!(*did_some_progress)))
2267 return NULL;
11e33f6a 2268
76d3fbf8 2269 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2270 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2271 zlc_clear_zones_full(zonelist);
2272
9ee493ce
MG
2273retry:
2274 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2275 zonelist, high_zoneidx,
cfd19c5a
MG
2276 alloc_flags & ~ALLOC_NO_WATERMARKS,
2277 preferred_zone, migratetype);
9ee493ce
MG
2278
2279 /*
2280 * If an allocation failed after direct reclaim, it could be because
2281 * pages are pinned on the per-cpu lists. Drain them and try again
2282 */
2283 if (!page && !drained) {
2284 drain_all_pages();
2285 drained = true;
2286 goto retry;
2287 }
2288
11e33f6a
MG
2289 return page;
2290}
2291
1da177e4 2292/*
11e33f6a
MG
2293 * This is called in the allocator slow-path if the allocation request is of
2294 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2295 */
11e33f6a
MG
2296static inline struct page *
2297__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2298 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2299 nodemask_t *nodemask, struct zone *preferred_zone,
2300 int migratetype)
11e33f6a
MG
2301{
2302 struct page *page;
2303
2304 do {
2305 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2306 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2307 preferred_zone, migratetype);
11e33f6a
MG
2308
2309 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2310 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2311 } while (!page && (gfp_mask & __GFP_NOFAIL));
2312
2313 return page;
2314}
2315
2316static inline
2317void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2318 enum zone_type high_zoneidx,
2319 enum zone_type classzone_idx)
1da177e4 2320{
dd1a239f
MG
2321 struct zoneref *z;
2322 struct zone *zone;
1da177e4 2323
11e33f6a 2324 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2325 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2326}
cf40bd16 2327
341ce06f
PZ
2328static inline int
2329gfp_to_alloc_flags(gfp_t gfp_mask)
2330{
341ce06f
PZ
2331 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2332 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2333
a56f57ff 2334 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2335 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2336
341ce06f
PZ
2337 /*
2338 * The caller may dip into page reserves a bit more if the caller
2339 * cannot run direct reclaim, or if the caller has realtime scheduling
2340 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2341 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2342 */
e6223a3b 2343 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2344
341ce06f 2345 if (!wait) {
5c3240d9
AA
2346 /*
2347 * Not worth trying to allocate harder for
2348 * __GFP_NOMEMALLOC even if it can't schedule.
2349 */
2350 if (!(gfp_mask & __GFP_NOMEMALLOC))
2351 alloc_flags |= ALLOC_HARDER;
523b9458 2352 /*
341ce06f
PZ
2353 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2354 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2355 */
341ce06f 2356 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2357 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2358 alloc_flags |= ALLOC_HARDER;
2359
b37f1dd0
MG
2360 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2361 if (gfp_mask & __GFP_MEMALLOC)
2362 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2363 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2364 alloc_flags |= ALLOC_NO_WATERMARKS;
2365 else if (!in_interrupt() &&
2366 ((current->flags & PF_MEMALLOC) ||
2367 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2368 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2369 }
d95ea5d1
BZ
2370#ifdef CONFIG_CMA
2371 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2372 alloc_flags |= ALLOC_CMA;
2373#endif
341ce06f
PZ
2374 return alloc_flags;
2375}
2376
072bb0aa
MG
2377bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2378{
b37f1dd0 2379 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2380}
2381
11e33f6a
MG
2382static inline struct page *
2383__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2384 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2385 nodemask_t *nodemask, struct zone *preferred_zone,
2386 int migratetype)
11e33f6a
MG
2387{
2388 const gfp_t wait = gfp_mask & __GFP_WAIT;
2389 struct page *page = NULL;
2390 int alloc_flags;
2391 unsigned long pages_reclaimed = 0;
2392 unsigned long did_some_progress;
77f1fe6b 2393 bool sync_migration = false;
66199712 2394 bool deferred_compaction = false;
c67fe375 2395 bool contended_compaction = false;
1da177e4 2396
72807a74
MG
2397 /*
2398 * In the slowpath, we sanity check order to avoid ever trying to
2399 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2400 * be using allocators in order of preference for an area that is
2401 * too large.
2402 */
1fc28b70
MG
2403 if (order >= MAX_ORDER) {
2404 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2405 return NULL;
1fc28b70 2406 }
1da177e4 2407
952f3b51
CL
2408 /*
2409 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2410 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2411 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2412 * using a larger set of nodes after it has established that the
2413 * allowed per node queues are empty and that nodes are
2414 * over allocated.
2415 */
e5adfffc
KS
2416 if (IS_ENABLED(CONFIG_NUMA) &&
2417 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2418 goto nopage;
2419
cc4a6851 2420restart:
caf49191
LT
2421 if (!(gfp_mask & __GFP_NO_KSWAPD))
2422 wake_all_kswapd(order, zonelist, high_zoneidx,
2423 zone_idx(preferred_zone));
1da177e4 2424
9bf2229f 2425 /*
7fb1d9fc
RS
2426 * OK, we're below the kswapd watermark and have kicked background
2427 * reclaim. Now things get more complex, so set up alloc_flags according
2428 * to how we want to proceed.
9bf2229f 2429 */
341ce06f 2430 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2431
f33261d7
DR
2432 /*
2433 * Find the true preferred zone if the allocation is unconstrained by
2434 * cpusets.
2435 */
2436 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2437 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2438 &preferred_zone);
2439
cfa54a0f 2440rebalance:
341ce06f 2441 /* This is the last chance, in general, before the goto nopage. */
19770b32 2442 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2443 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2444 preferred_zone, migratetype);
7fb1d9fc
RS
2445 if (page)
2446 goto got_pg;
1da177e4 2447
11e33f6a 2448 /* Allocate without watermarks if the context allows */
341ce06f 2449 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2450 /*
2451 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2452 * the allocation is high priority and these type of
2453 * allocations are system rather than user orientated
2454 */
2455 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2456
341ce06f
PZ
2457 page = __alloc_pages_high_priority(gfp_mask, order,
2458 zonelist, high_zoneidx, nodemask,
2459 preferred_zone, migratetype);
cfd19c5a 2460 if (page) {
341ce06f 2461 goto got_pg;
cfd19c5a 2462 }
1da177e4
LT
2463 }
2464
2465 /* Atomic allocations - we can't balance anything */
2466 if (!wait)
2467 goto nopage;
2468
341ce06f 2469 /* Avoid recursion of direct reclaim */
c06b1fca 2470 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2471 goto nopage;
2472
6583bb64
DR
2473 /* Avoid allocations with no watermarks from looping endlessly */
2474 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2475 goto nopage;
2476
77f1fe6b
MG
2477 /*
2478 * Try direct compaction. The first pass is asynchronous. Subsequent
2479 * attempts after direct reclaim are synchronous
2480 */
56de7263
MG
2481 page = __alloc_pages_direct_compact(gfp_mask, order,
2482 zonelist, high_zoneidx,
2483 nodemask,
2484 alloc_flags, preferred_zone,
66199712 2485 migratetype, sync_migration,
c67fe375 2486 &contended_compaction,
66199712
MG
2487 &deferred_compaction,
2488 &did_some_progress);
56de7263
MG
2489 if (page)
2490 goto got_pg;
c6a140bf 2491 sync_migration = true;
56de7263 2492
31f8d42d
LT
2493 /*
2494 * If compaction is deferred for high-order allocations, it is because
2495 * sync compaction recently failed. In this is the case and the caller
2496 * requested a movable allocation that does not heavily disrupt the
2497 * system then fail the allocation instead of entering direct reclaim.
2498 */
2499 if ((deferred_compaction || contended_compaction) &&
caf49191 2500 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2501 goto nopage;
66199712 2502
11e33f6a
MG
2503 /* Try direct reclaim and then allocating */
2504 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2505 zonelist, high_zoneidx,
2506 nodemask,
5117f45d 2507 alloc_flags, preferred_zone,
3dd28266 2508 migratetype, &did_some_progress);
11e33f6a
MG
2509 if (page)
2510 goto got_pg;
1da177e4 2511
e33c3b5e 2512 /*
11e33f6a
MG
2513 * If we failed to make any progress reclaiming, then we are
2514 * running out of options and have to consider going OOM
e33c3b5e 2515 */
11e33f6a
MG
2516 if (!did_some_progress) {
2517 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2518 if (oom_killer_disabled)
2519 goto nopage;
29fd66d2
DR
2520 /* Coredumps can quickly deplete all memory reserves */
2521 if ((current->flags & PF_DUMPCORE) &&
2522 !(gfp_mask & __GFP_NOFAIL))
2523 goto nopage;
11e33f6a
MG
2524 page = __alloc_pages_may_oom(gfp_mask, order,
2525 zonelist, high_zoneidx,
3dd28266
MG
2526 nodemask, preferred_zone,
2527 migratetype);
11e33f6a
MG
2528 if (page)
2529 goto got_pg;
1da177e4 2530
03668b3c
DR
2531 if (!(gfp_mask & __GFP_NOFAIL)) {
2532 /*
2533 * The oom killer is not called for high-order
2534 * allocations that may fail, so if no progress
2535 * is being made, there are no other options and
2536 * retrying is unlikely to help.
2537 */
2538 if (order > PAGE_ALLOC_COSTLY_ORDER)
2539 goto nopage;
2540 /*
2541 * The oom killer is not called for lowmem
2542 * allocations to prevent needlessly killing
2543 * innocent tasks.
2544 */
2545 if (high_zoneidx < ZONE_NORMAL)
2546 goto nopage;
2547 }
e2c55dc8 2548
ff0ceb9d
DR
2549 goto restart;
2550 }
1da177e4
LT
2551 }
2552
11e33f6a 2553 /* Check if we should retry the allocation */
a41f24ea 2554 pages_reclaimed += did_some_progress;
f90ac398
MG
2555 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2556 pages_reclaimed)) {
11e33f6a 2557 /* Wait for some write requests to complete then retry */
0e093d99 2558 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2559 goto rebalance;
3e7d3449
MG
2560 } else {
2561 /*
2562 * High-order allocations do not necessarily loop after
2563 * direct reclaim and reclaim/compaction depends on compaction
2564 * being called after reclaim so call directly if necessary
2565 */
2566 page = __alloc_pages_direct_compact(gfp_mask, order,
2567 zonelist, high_zoneidx,
2568 nodemask,
2569 alloc_flags, preferred_zone,
66199712 2570 migratetype, sync_migration,
c67fe375 2571 &contended_compaction,
66199712
MG
2572 &deferred_compaction,
2573 &did_some_progress);
3e7d3449
MG
2574 if (page)
2575 goto got_pg;
1da177e4
LT
2576 }
2577
2578nopage:
a238ab5b 2579 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2580 return page;
1da177e4 2581got_pg:
b1eeab67
VN
2582 if (kmemcheck_enabled)
2583 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2584
072bb0aa 2585 return page;
1da177e4 2586}
11e33f6a
MG
2587
2588/*
2589 * This is the 'heart' of the zoned buddy allocator.
2590 */
2591struct page *
2592__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2593 struct zonelist *zonelist, nodemask_t *nodemask)
2594{
2595 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2596 struct zone *preferred_zone;
cc9a6c87 2597 struct page *page = NULL;
3dd28266 2598 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2599 unsigned int cpuset_mems_cookie;
d95ea5d1 2600 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
11e33f6a 2601
dcce284a
BH
2602 gfp_mask &= gfp_allowed_mask;
2603
11e33f6a
MG
2604 lockdep_trace_alloc(gfp_mask);
2605
2606 might_sleep_if(gfp_mask & __GFP_WAIT);
2607
2608 if (should_fail_alloc_page(gfp_mask, order))
2609 return NULL;
2610
2611 /*
2612 * Check the zones suitable for the gfp_mask contain at least one
2613 * valid zone. It's possible to have an empty zonelist as a result
2614 * of GFP_THISNODE and a memoryless node
2615 */
2616 if (unlikely(!zonelist->_zonerefs->zone))
2617 return NULL;
2618
cc9a6c87
MG
2619retry_cpuset:
2620 cpuset_mems_cookie = get_mems_allowed();
2621
5117f45d 2622 /* The preferred zone is used for statistics later */
f33261d7
DR
2623 first_zones_zonelist(zonelist, high_zoneidx,
2624 nodemask ? : &cpuset_current_mems_allowed,
2625 &preferred_zone);
cc9a6c87
MG
2626 if (!preferred_zone)
2627 goto out;
5117f45d 2628
d95ea5d1
BZ
2629#ifdef CONFIG_CMA
2630 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2631 alloc_flags |= ALLOC_CMA;
2632#endif
5117f45d 2633 /* First allocation attempt */
11e33f6a 2634 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2635 zonelist, high_zoneidx, alloc_flags,
3dd28266 2636 preferred_zone, migratetype);
11e33f6a
MG
2637 if (unlikely(!page))
2638 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2639 zonelist, high_zoneidx, nodemask,
3dd28266 2640 preferred_zone, migratetype);
11e33f6a 2641
4b4f278c 2642 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2643
2644out:
2645 /*
2646 * When updating a task's mems_allowed, it is possible to race with
2647 * parallel threads in such a way that an allocation can fail while
2648 * the mask is being updated. If a page allocation is about to fail,
2649 * check if the cpuset changed during allocation and if so, retry.
2650 */
2651 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2652 goto retry_cpuset;
2653
11e33f6a 2654 return page;
1da177e4 2655}
d239171e 2656EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2657
2658/*
2659 * Common helper functions.
2660 */
920c7a5d 2661unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2662{
945a1113
AM
2663 struct page *page;
2664
2665 /*
2666 * __get_free_pages() returns a 32-bit address, which cannot represent
2667 * a highmem page
2668 */
2669 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2670
1da177e4
LT
2671 page = alloc_pages(gfp_mask, order);
2672 if (!page)
2673 return 0;
2674 return (unsigned long) page_address(page);
2675}
1da177e4
LT
2676EXPORT_SYMBOL(__get_free_pages);
2677
920c7a5d 2678unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2679{
945a1113 2680 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2681}
1da177e4
LT
2682EXPORT_SYMBOL(get_zeroed_page);
2683
920c7a5d 2684void __free_pages(struct page *page, unsigned int order)
1da177e4 2685{
b5810039 2686 if (put_page_testzero(page)) {
1da177e4 2687 if (order == 0)
fc91668e 2688 free_hot_cold_page(page, 0);
1da177e4
LT
2689 else
2690 __free_pages_ok(page, order);
2691 }
2692}
2693
2694EXPORT_SYMBOL(__free_pages);
2695
920c7a5d 2696void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2697{
2698 if (addr != 0) {
725d704e 2699 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2700 __free_pages(virt_to_page((void *)addr), order);
2701 }
2702}
2703
2704EXPORT_SYMBOL(free_pages);
2705
ee85c2e1
AK
2706static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2707{
2708 if (addr) {
2709 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2710 unsigned long used = addr + PAGE_ALIGN(size);
2711
2712 split_page(virt_to_page((void *)addr), order);
2713 while (used < alloc_end) {
2714 free_page(used);
2715 used += PAGE_SIZE;
2716 }
2717 }
2718 return (void *)addr;
2719}
2720
2be0ffe2
TT
2721/**
2722 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2723 * @size: the number of bytes to allocate
2724 * @gfp_mask: GFP flags for the allocation
2725 *
2726 * This function is similar to alloc_pages(), except that it allocates the
2727 * minimum number of pages to satisfy the request. alloc_pages() can only
2728 * allocate memory in power-of-two pages.
2729 *
2730 * This function is also limited by MAX_ORDER.
2731 *
2732 * Memory allocated by this function must be released by free_pages_exact().
2733 */
2734void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2735{
2736 unsigned int order = get_order(size);
2737 unsigned long addr;
2738
2739 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2740 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2741}
2742EXPORT_SYMBOL(alloc_pages_exact);
2743
ee85c2e1
AK
2744/**
2745 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2746 * pages on a node.
b5e6ab58 2747 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2748 * @size: the number of bytes to allocate
2749 * @gfp_mask: GFP flags for the allocation
2750 *
2751 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2752 * back.
2753 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2754 * but is not exact.
2755 */
2756void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2757{
2758 unsigned order = get_order(size);
2759 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2760 if (!p)
2761 return NULL;
2762 return make_alloc_exact((unsigned long)page_address(p), order, size);
2763}
2764EXPORT_SYMBOL(alloc_pages_exact_nid);
2765
2be0ffe2
TT
2766/**
2767 * free_pages_exact - release memory allocated via alloc_pages_exact()
2768 * @virt: the value returned by alloc_pages_exact.
2769 * @size: size of allocation, same value as passed to alloc_pages_exact().
2770 *
2771 * Release the memory allocated by a previous call to alloc_pages_exact.
2772 */
2773void free_pages_exact(void *virt, size_t size)
2774{
2775 unsigned long addr = (unsigned long)virt;
2776 unsigned long end = addr + PAGE_ALIGN(size);
2777
2778 while (addr < end) {
2779 free_page(addr);
2780 addr += PAGE_SIZE;
2781 }
2782}
2783EXPORT_SYMBOL(free_pages_exact);
2784
1da177e4
LT
2785static unsigned int nr_free_zone_pages(int offset)
2786{
dd1a239f 2787 struct zoneref *z;
54a6eb5c
MG
2788 struct zone *zone;
2789
e310fd43 2790 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2791 unsigned int sum = 0;
2792
0e88460d 2793 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2794
54a6eb5c 2795 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2796 unsigned long size = zone->present_pages;
41858966 2797 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2798 if (size > high)
2799 sum += size - high;
1da177e4
LT
2800 }
2801
2802 return sum;
2803}
2804
2805/*
2806 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2807 */
2808unsigned int nr_free_buffer_pages(void)
2809{
af4ca457 2810 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2811}
c2f1a551 2812EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2813
2814/*
2815 * Amount of free RAM allocatable within all zones
2816 */
2817unsigned int nr_free_pagecache_pages(void)
2818{
2a1e274a 2819 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2820}
08e0f6a9
CL
2821
2822static inline void show_node(struct zone *zone)
1da177e4 2823{
e5adfffc 2824 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2825 printk("Node %d ", zone_to_nid(zone));
1da177e4 2826}
1da177e4 2827
1da177e4
LT
2828void si_meminfo(struct sysinfo *val)
2829{
2830 val->totalram = totalram_pages;
2831 val->sharedram = 0;
d23ad423 2832 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2833 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2834 val->totalhigh = totalhigh_pages;
2835 val->freehigh = nr_free_highpages();
1da177e4
LT
2836 val->mem_unit = PAGE_SIZE;
2837}
2838
2839EXPORT_SYMBOL(si_meminfo);
2840
2841#ifdef CONFIG_NUMA
2842void si_meminfo_node(struct sysinfo *val, int nid)
2843{
2844 pg_data_t *pgdat = NODE_DATA(nid);
2845
2846 val->totalram = pgdat->node_present_pages;
d23ad423 2847 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2848#ifdef CONFIG_HIGHMEM
1da177e4 2849 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2850 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2851 NR_FREE_PAGES);
98d2b0eb
CL
2852#else
2853 val->totalhigh = 0;
2854 val->freehigh = 0;
2855#endif
1da177e4
LT
2856 val->mem_unit = PAGE_SIZE;
2857}
2858#endif
2859
ddd588b5 2860/*
7bf02ea2
DR
2861 * Determine whether the node should be displayed or not, depending on whether
2862 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2863 */
7bf02ea2 2864bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2865{
2866 bool ret = false;
cc9a6c87 2867 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2868
2869 if (!(flags & SHOW_MEM_FILTER_NODES))
2870 goto out;
2871
cc9a6c87
MG
2872 do {
2873 cpuset_mems_cookie = get_mems_allowed();
2874 ret = !node_isset(nid, cpuset_current_mems_allowed);
2875 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2876out:
2877 return ret;
2878}
2879
1da177e4
LT
2880#define K(x) ((x) << (PAGE_SHIFT-10))
2881
377e4f16
RV
2882static void show_migration_types(unsigned char type)
2883{
2884 static const char types[MIGRATE_TYPES] = {
2885 [MIGRATE_UNMOVABLE] = 'U',
2886 [MIGRATE_RECLAIMABLE] = 'E',
2887 [MIGRATE_MOVABLE] = 'M',
2888 [MIGRATE_RESERVE] = 'R',
2889#ifdef CONFIG_CMA
2890 [MIGRATE_CMA] = 'C',
2891#endif
2892 [MIGRATE_ISOLATE] = 'I',
2893 };
2894 char tmp[MIGRATE_TYPES + 1];
2895 char *p = tmp;
2896 int i;
2897
2898 for (i = 0; i < MIGRATE_TYPES; i++) {
2899 if (type & (1 << i))
2900 *p++ = types[i];
2901 }
2902
2903 *p = '\0';
2904 printk("(%s) ", tmp);
2905}
2906
1da177e4
LT
2907/*
2908 * Show free area list (used inside shift_scroll-lock stuff)
2909 * We also calculate the percentage fragmentation. We do this by counting the
2910 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2911 * Suppresses nodes that are not allowed by current's cpuset if
2912 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2913 */
7bf02ea2 2914void show_free_areas(unsigned int filter)
1da177e4 2915{
c7241913 2916 int cpu;
1da177e4
LT
2917 struct zone *zone;
2918
ee99c71c 2919 for_each_populated_zone(zone) {
7bf02ea2 2920 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2921 continue;
c7241913
JS
2922 show_node(zone);
2923 printk("%s per-cpu:\n", zone->name);
1da177e4 2924
6b482c67 2925 for_each_online_cpu(cpu) {
1da177e4
LT
2926 struct per_cpu_pageset *pageset;
2927
99dcc3e5 2928 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2929
3dfa5721
CL
2930 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2931 cpu, pageset->pcp.high,
2932 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2933 }
2934 }
2935
a731286d
KM
2936 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2937 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2938 " unevictable:%lu"
b76146ed 2939 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2940 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2941 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2942 " free_cma:%lu\n",
4f98a2fe 2943 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2944 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2945 global_page_state(NR_ISOLATED_ANON),
2946 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2947 global_page_state(NR_INACTIVE_FILE),
a731286d 2948 global_page_state(NR_ISOLATED_FILE),
7b854121 2949 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2950 global_page_state(NR_FILE_DIRTY),
ce866b34 2951 global_page_state(NR_WRITEBACK),
fd39fc85 2952 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2953 global_page_state(NR_FREE_PAGES),
3701b033
KM
2954 global_page_state(NR_SLAB_RECLAIMABLE),
2955 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2956 global_page_state(NR_FILE_MAPPED),
4b02108a 2957 global_page_state(NR_SHMEM),
a25700a5 2958 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2959 global_page_state(NR_BOUNCE),
2960 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2961
ee99c71c 2962 for_each_populated_zone(zone) {
1da177e4
LT
2963 int i;
2964
7bf02ea2 2965 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2966 continue;
1da177e4
LT
2967 show_node(zone);
2968 printk("%s"
2969 " free:%lukB"
2970 " min:%lukB"
2971 " low:%lukB"
2972 " high:%lukB"
4f98a2fe
RR
2973 " active_anon:%lukB"
2974 " inactive_anon:%lukB"
2975 " active_file:%lukB"
2976 " inactive_file:%lukB"
7b854121 2977 " unevictable:%lukB"
a731286d
KM
2978 " isolated(anon):%lukB"
2979 " isolated(file):%lukB"
1da177e4 2980 " present:%lukB"
4a0aa73f
KM
2981 " mlocked:%lukB"
2982 " dirty:%lukB"
2983 " writeback:%lukB"
2984 " mapped:%lukB"
4b02108a 2985 " shmem:%lukB"
4a0aa73f
KM
2986 " slab_reclaimable:%lukB"
2987 " slab_unreclaimable:%lukB"
c6a7f572 2988 " kernel_stack:%lukB"
4a0aa73f
KM
2989 " pagetables:%lukB"
2990 " unstable:%lukB"
2991 " bounce:%lukB"
d1ce749a 2992 " free_cma:%lukB"
4a0aa73f 2993 " writeback_tmp:%lukB"
1da177e4
LT
2994 " pages_scanned:%lu"
2995 " all_unreclaimable? %s"
2996 "\n",
2997 zone->name,
88f5acf8 2998 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2999 K(min_wmark_pages(zone)),
3000 K(low_wmark_pages(zone)),
3001 K(high_wmark_pages(zone)),
4f98a2fe
RR
3002 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3003 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3004 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3005 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3006 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3007 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3008 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3009 K(zone->present_pages),
4a0aa73f
KM
3010 K(zone_page_state(zone, NR_MLOCK)),
3011 K(zone_page_state(zone, NR_FILE_DIRTY)),
3012 K(zone_page_state(zone, NR_WRITEBACK)),
3013 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3014 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3015 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3016 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3017 zone_page_state(zone, NR_KERNEL_STACK) *
3018 THREAD_SIZE / 1024,
4a0aa73f
KM
3019 K(zone_page_state(zone, NR_PAGETABLE)),
3020 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3021 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3022 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3023 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3024 zone->pages_scanned,
93e4a89a 3025 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3026 );
3027 printk("lowmem_reserve[]:");
3028 for (i = 0; i < MAX_NR_ZONES; i++)
3029 printk(" %lu", zone->lowmem_reserve[i]);
3030 printk("\n");
3031 }
3032
ee99c71c 3033 for_each_populated_zone(zone) {
8f9de51a 3034 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3035 unsigned char types[MAX_ORDER];
1da177e4 3036
7bf02ea2 3037 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3038 continue;
1da177e4
LT
3039 show_node(zone);
3040 printk("%s: ", zone->name);
1da177e4
LT
3041
3042 spin_lock_irqsave(&zone->lock, flags);
3043 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3044 struct free_area *area = &zone->free_area[order];
3045 int type;
3046
3047 nr[order] = area->nr_free;
8f9de51a 3048 total += nr[order] << order;
377e4f16
RV
3049
3050 types[order] = 0;
3051 for (type = 0; type < MIGRATE_TYPES; type++) {
3052 if (!list_empty(&area->free_list[type]))
3053 types[order] |= 1 << type;
3054 }
1da177e4
LT
3055 }
3056 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3057 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3058 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3059 if (nr[order])
3060 show_migration_types(types[order]);
3061 }
1da177e4
LT
3062 printk("= %lukB\n", K(total));
3063 }
3064
e6f3602d
LW
3065 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3066
1da177e4
LT
3067 show_swap_cache_info();
3068}
3069
19770b32
MG
3070static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3071{
3072 zoneref->zone = zone;
3073 zoneref->zone_idx = zone_idx(zone);
3074}
3075
1da177e4
LT
3076/*
3077 * Builds allocation fallback zone lists.
1a93205b
CL
3078 *
3079 * Add all populated zones of a node to the zonelist.
1da177e4 3080 */
f0c0b2b8
KH
3081static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3082 int nr_zones, enum zone_type zone_type)
1da177e4 3083{
1a93205b
CL
3084 struct zone *zone;
3085
98d2b0eb 3086 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3087 zone_type++;
02a68a5e
CL
3088
3089 do {
2f6726e5 3090 zone_type--;
070f8032 3091 zone = pgdat->node_zones + zone_type;
1a93205b 3092 if (populated_zone(zone)) {
dd1a239f
MG
3093 zoneref_set_zone(zone,
3094 &zonelist->_zonerefs[nr_zones++]);
070f8032 3095 check_highest_zone(zone_type);
1da177e4 3096 }
02a68a5e 3097
2f6726e5 3098 } while (zone_type);
070f8032 3099 return nr_zones;
1da177e4
LT
3100}
3101
f0c0b2b8
KH
3102
3103/*
3104 * zonelist_order:
3105 * 0 = automatic detection of better ordering.
3106 * 1 = order by ([node] distance, -zonetype)
3107 * 2 = order by (-zonetype, [node] distance)
3108 *
3109 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3110 * the same zonelist. So only NUMA can configure this param.
3111 */
3112#define ZONELIST_ORDER_DEFAULT 0
3113#define ZONELIST_ORDER_NODE 1
3114#define ZONELIST_ORDER_ZONE 2
3115
3116/* zonelist order in the kernel.
3117 * set_zonelist_order() will set this to NODE or ZONE.
3118 */
3119static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3120static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3121
3122
1da177e4 3123#ifdef CONFIG_NUMA
f0c0b2b8
KH
3124/* The value user specified ....changed by config */
3125static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3126/* string for sysctl */
3127#define NUMA_ZONELIST_ORDER_LEN 16
3128char numa_zonelist_order[16] = "default";
3129
3130/*
3131 * interface for configure zonelist ordering.
3132 * command line option "numa_zonelist_order"
3133 * = "[dD]efault - default, automatic configuration.
3134 * = "[nN]ode - order by node locality, then by zone within node
3135 * = "[zZ]one - order by zone, then by locality within zone
3136 */
3137
3138static int __parse_numa_zonelist_order(char *s)
3139{
3140 if (*s == 'd' || *s == 'D') {
3141 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3142 } else if (*s == 'n' || *s == 'N') {
3143 user_zonelist_order = ZONELIST_ORDER_NODE;
3144 } else if (*s == 'z' || *s == 'Z') {
3145 user_zonelist_order = ZONELIST_ORDER_ZONE;
3146 } else {
3147 printk(KERN_WARNING
3148 "Ignoring invalid numa_zonelist_order value: "
3149 "%s\n", s);
3150 return -EINVAL;
3151 }
3152 return 0;
3153}
3154
3155static __init int setup_numa_zonelist_order(char *s)
3156{
ecb256f8
VL
3157 int ret;
3158
3159 if (!s)
3160 return 0;
3161
3162 ret = __parse_numa_zonelist_order(s);
3163 if (ret == 0)
3164 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3165
3166 return ret;
f0c0b2b8
KH
3167}
3168early_param("numa_zonelist_order", setup_numa_zonelist_order);
3169
3170/*
3171 * sysctl handler for numa_zonelist_order
3172 */
3173int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3174 void __user *buffer, size_t *length,
f0c0b2b8
KH
3175 loff_t *ppos)
3176{
3177 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3178 int ret;
443c6f14 3179 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3180
443c6f14 3181 mutex_lock(&zl_order_mutex);
f0c0b2b8 3182 if (write)
443c6f14 3183 strcpy(saved_string, (char*)table->data);
8d65af78 3184 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3185 if (ret)
443c6f14 3186 goto out;
f0c0b2b8
KH
3187 if (write) {
3188 int oldval = user_zonelist_order;
3189 if (__parse_numa_zonelist_order((char*)table->data)) {
3190 /*
3191 * bogus value. restore saved string
3192 */
3193 strncpy((char*)table->data, saved_string,
3194 NUMA_ZONELIST_ORDER_LEN);
3195 user_zonelist_order = oldval;
4eaf3f64
HL
3196 } else if (oldval != user_zonelist_order) {
3197 mutex_lock(&zonelists_mutex);
9adb62a5 3198 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3199 mutex_unlock(&zonelists_mutex);
3200 }
f0c0b2b8 3201 }
443c6f14
AK
3202out:
3203 mutex_unlock(&zl_order_mutex);
3204 return ret;
f0c0b2b8
KH
3205}
3206
3207
62bc62a8 3208#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3209static int node_load[MAX_NUMNODES];
3210
1da177e4 3211/**
4dc3b16b 3212 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3213 * @node: node whose fallback list we're appending
3214 * @used_node_mask: nodemask_t of already used nodes
3215 *
3216 * We use a number of factors to determine which is the next node that should
3217 * appear on a given node's fallback list. The node should not have appeared
3218 * already in @node's fallback list, and it should be the next closest node
3219 * according to the distance array (which contains arbitrary distance values
3220 * from each node to each node in the system), and should also prefer nodes
3221 * with no CPUs, since presumably they'll have very little allocation pressure
3222 * on them otherwise.
3223 * It returns -1 if no node is found.
3224 */
f0c0b2b8 3225static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3226{
4cf808eb 3227 int n, val;
1da177e4
LT
3228 int min_val = INT_MAX;
3229 int best_node = -1;
a70f7302 3230 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3231
4cf808eb
LT
3232 /* Use the local node if we haven't already */
3233 if (!node_isset(node, *used_node_mask)) {
3234 node_set(node, *used_node_mask);
3235 return node;
3236 }
1da177e4 3237
37b07e41 3238 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3239
3240 /* Don't want a node to appear more than once */
3241 if (node_isset(n, *used_node_mask))
3242 continue;
3243
1da177e4
LT
3244 /* Use the distance array to find the distance */
3245 val = node_distance(node, n);
3246
4cf808eb
LT
3247 /* Penalize nodes under us ("prefer the next node") */
3248 val += (n < node);
3249
1da177e4 3250 /* Give preference to headless and unused nodes */
a70f7302
RR
3251 tmp = cpumask_of_node(n);
3252 if (!cpumask_empty(tmp))
1da177e4
LT
3253 val += PENALTY_FOR_NODE_WITH_CPUS;
3254
3255 /* Slight preference for less loaded node */
3256 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3257 val += node_load[n];
3258
3259 if (val < min_val) {
3260 min_val = val;
3261 best_node = n;
3262 }
3263 }
3264
3265 if (best_node >= 0)
3266 node_set(best_node, *used_node_mask);
3267
3268 return best_node;
3269}
3270
f0c0b2b8
KH
3271
3272/*
3273 * Build zonelists ordered by node and zones within node.
3274 * This results in maximum locality--normal zone overflows into local
3275 * DMA zone, if any--but risks exhausting DMA zone.
3276 */
3277static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3278{
f0c0b2b8 3279 int j;
1da177e4 3280 struct zonelist *zonelist;
f0c0b2b8 3281
54a6eb5c 3282 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3283 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3284 ;
3285 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3286 MAX_NR_ZONES - 1);
dd1a239f
MG
3287 zonelist->_zonerefs[j].zone = NULL;
3288 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3289}
3290
523b9458
CL
3291/*
3292 * Build gfp_thisnode zonelists
3293 */
3294static void build_thisnode_zonelists(pg_data_t *pgdat)
3295{
523b9458
CL
3296 int j;
3297 struct zonelist *zonelist;
3298
54a6eb5c
MG
3299 zonelist = &pgdat->node_zonelists[1];
3300 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3301 zonelist->_zonerefs[j].zone = NULL;
3302 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3303}
3304
f0c0b2b8
KH
3305/*
3306 * Build zonelists ordered by zone and nodes within zones.
3307 * This results in conserving DMA zone[s] until all Normal memory is
3308 * exhausted, but results in overflowing to remote node while memory
3309 * may still exist in local DMA zone.
3310 */
3311static int node_order[MAX_NUMNODES];
3312
3313static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3314{
f0c0b2b8
KH
3315 int pos, j, node;
3316 int zone_type; /* needs to be signed */
3317 struct zone *z;
3318 struct zonelist *zonelist;
3319
54a6eb5c
MG
3320 zonelist = &pgdat->node_zonelists[0];
3321 pos = 0;
3322 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3323 for (j = 0; j < nr_nodes; j++) {
3324 node = node_order[j];
3325 z = &NODE_DATA(node)->node_zones[zone_type];
3326 if (populated_zone(z)) {
dd1a239f
MG
3327 zoneref_set_zone(z,
3328 &zonelist->_zonerefs[pos++]);
54a6eb5c 3329 check_highest_zone(zone_type);
f0c0b2b8
KH
3330 }
3331 }
f0c0b2b8 3332 }
dd1a239f
MG
3333 zonelist->_zonerefs[pos].zone = NULL;
3334 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3335}
3336
3337static int default_zonelist_order(void)
3338{
3339 int nid, zone_type;
3340 unsigned long low_kmem_size,total_size;
3341 struct zone *z;
3342 int average_size;
3343 /*
88393161 3344 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3345 * If they are really small and used heavily, the system can fall
3346 * into OOM very easily.
e325c90f 3347 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3348 */
3349 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3350 low_kmem_size = 0;
3351 total_size = 0;
3352 for_each_online_node(nid) {
3353 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3354 z = &NODE_DATA(nid)->node_zones[zone_type];
3355 if (populated_zone(z)) {
3356 if (zone_type < ZONE_NORMAL)
3357 low_kmem_size += z->present_pages;
3358 total_size += z->present_pages;
e325c90f
DR
3359 } else if (zone_type == ZONE_NORMAL) {
3360 /*
3361 * If any node has only lowmem, then node order
3362 * is preferred to allow kernel allocations
3363 * locally; otherwise, they can easily infringe
3364 * on other nodes when there is an abundance of
3365 * lowmem available to allocate from.
3366 */
3367 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3368 }
3369 }
3370 }
3371 if (!low_kmem_size || /* there are no DMA area. */
3372 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3373 return ZONELIST_ORDER_NODE;
3374 /*
3375 * look into each node's config.
3376 * If there is a node whose DMA/DMA32 memory is very big area on
3377 * local memory, NODE_ORDER may be suitable.
3378 */
37b07e41
LS
3379 average_size = total_size /
3380 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3381 for_each_online_node(nid) {
3382 low_kmem_size = 0;
3383 total_size = 0;
3384 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3385 z = &NODE_DATA(nid)->node_zones[zone_type];
3386 if (populated_zone(z)) {
3387 if (zone_type < ZONE_NORMAL)
3388 low_kmem_size += z->present_pages;
3389 total_size += z->present_pages;
3390 }
3391 }
3392 if (low_kmem_size &&
3393 total_size > average_size && /* ignore small node */
3394 low_kmem_size > total_size * 70/100)
3395 return ZONELIST_ORDER_NODE;
3396 }
3397 return ZONELIST_ORDER_ZONE;
3398}
3399
3400static void set_zonelist_order(void)
3401{
3402 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3403 current_zonelist_order = default_zonelist_order();
3404 else
3405 current_zonelist_order = user_zonelist_order;
3406}
3407
3408static void build_zonelists(pg_data_t *pgdat)
3409{
3410 int j, node, load;
3411 enum zone_type i;
1da177e4 3412 nodemask_t used_mask;
f0c0b2b8
KH
3413 int local_node, prev_node;
3414 struct zonelist *zonelist;
3415 int order = current_zonelist_order;
1da177e4
LT
3416
3417 /* initialize zonelists */
523b9458 3418 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3419 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3420 zonelist->_zonerefs[0].zone = NULL;
3421 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3422 }
3423
3424 /* NUMA-aware ordering of nodes */
3425 local_node = pgdat->node_id;
62bc62a8 3426 load = nr_online_nodes;
1da177e4
LT
3427 prev_node = local_node;
3428 nodes_clear(used_mask);
f0c0b2b8 3429
f0c0b2b8
KH
3430 memset(node_order, 0, sizeof(node_order));
3431 j = 0;
3432
1da177e4
LT
3433 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3434 /*
3435 * We don't want to pressure a particular node.
3436 * So adding penalty to the first node in same
3437 * distance group to make it round-robin.
3438 */
957f822a
DR
3439 if (node_distance(local_node, node) !=
3440 node_distance(local_node, prev_node))
f0c0b2b8
KH
3441 node_load[node] = load;
3442
1da177e4
LT
3443 prev_node = node;
3444 load--;
f0c0b2b8
KH
3445 if (order == ZONELIST_ORDER_NODE)
3446 build_zonelists_in_node_order(pgdat, node);
3447 else
3448 node_order[j++] = node; /* remember order */
3449 }
1da177e4 3450
f0c0b2b8
KH
3451 if (order == ZONELIST_ORDER_ZONE) {
3452 /* calculate node order -- i.e., DMA last! */
3453 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3454 }
523b9458
CL
3455
3456 build_thisnode_zonelists(pgdat);
1da177e4
LT
3457}
3458
9276b1bc 3459/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3460static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3461{
54a6eb5c
MG
3462 struct zonelist *zonelist;
3463 struct zonelist_cache *zlc;
dd1a239f 3464 struct zoneref *z;
9276b1bc 3465
54a6eb5c
MG
3466 zonelist = &pgdat->node_zonelists[0];
3467 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3468 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3469 for (z = zonelist->_zonerefs; z->zone; z++)
3470 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3471}
3472
7aac7898
LS
3473#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3474/*
3475 * Return node id of node used for "local" allocations.
3476 * I.e., first node id of first zone in arg node's generic zonelist.
3477 * Used for initializing percpu 'numa_mem', which is used primarily
3478 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3479 */
3480int local_memory_node(int node)
3481{
3482 struct zone *zone;
3483
3484 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3485 gfp_zone(GFP_KERNEL),
3486 NULL,
3487 &zone);
3488 return zone->node;
3489}
3490#endif
f0c0b2b8 3491
1da177e4
LT
3492#else /* CONFIG_NUMA */
3493
f0c0b2b8
KH
3494static void set_zonelist_order(void)
3495{
3496 current_zonelist_order = ZONELIST_ORDER_ZONE;
3497}
3498
3499static void build_zonelists(pg_data_t *pgdat)
1da177e4 3500{
19655d34 3501 int node, local_node;
54a6eb5c
MG
3502 enum zone_type j;
3503 struct zonelist *zonelist;
1da177e4
LT
3504
3505 local_node = pgdat->node_id;
1da177e4 3506
54a6eb5c
MG
3507 zonelist = &pgdat->node_zonelists[0];
3508 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3509
54a6eb5c
MG
3510 /*
3511 * Now we build the zonelist so that it contains the zones
3512 * of all the other nodes.
3513 * We don't want to pressure a particular node, so when
3514 * building the zones for node N, we make sure that the
3515 * zones coming right after the local ones are those from
3516 * node N+1 (modulo N)
3517 */
3518 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3519 if (!node_online(node))
3520 continue;
3521 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3522 MAX_NR_ZONES - 1);
1da177e4 3523 }
54a6eb5c
MG
3524 for (node = 0; node < local_node; node++) {
3525 if (!node_online(node))
3526 continue;
3527 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3528 MAX_NR_ZONES - 1);
3529 }
3530
dd1a239f
MG
3531 zonelist->_zonerefs[j].zone = NULL;
3532 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3533}
3534
9276b1bc 3535/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3536static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3537{
54a6eb5c 3538 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3539}
3540
1da177e4
LT
3541#endif /* CONFIG_NUMA */
3542
99dcc3e5
CL
3543/*
3544 * Boot pageset table. One per cpu which is going to be used for all
3545 * zones and all nodes. The parameters will be set in such a way
3546 * that an item put on a list will immediately be handed over to
3547 * the buddy list. This is safe since pageset manipulation is done
3548 * with interrupts disabled.
3549 *
3550 * The boot_pagesets must be kept even after bootup is complete for
3551 * unused processors and/or zones. They do play a role for bootstrapping
3552 * hotplugged processors.
3553 *
3554 * zoneinfo_show() and maybe other functions do
3555 * not check if the processor is online before following the pageset pointer.
3556 * Other parts of the kernel may not check if the zone is available.
3557 */
3558static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3559static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3560static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3561
4eaf3f64
HL
3562/*
3563 * Global mutex to protect against size modification of zonelists
3564 * as well as to serialize pageset setup for the new populated zone.
3565 */
3566DEFINE_MUTEX(zonelists_mutex);
3567
9b1a4d38 3568/* return values int ....just for stop_machine() */
4ed7e022 3569static int __build_all_zonelists(void *data)
1da177e4 3570{
6811378e 3571 int nid;
99dcc3e5 3572 int cpu;
9adb62a5 3573 pg_data_t *self = data;
9276b1bc 3574
7f9cfb31
BL
3575#ifdef CONFIG_NUMA
3576 memset(node_load, 0, sizeof(node_load));
3577#endif
9adb62a5
JL
3578
3579 if (self && !node_online(self->node_id)) {
3580 build_zonelists(self);
3581 build_zonelist_cache(self);
3582 }
3583
9276b1bc 3584 for_each_online_node(nid) {
7ea1530a
CL
3585 pg_data_t *pgdat = NODE_DATA(nid);
3586
3587 build_zonelists(pgdat);
3588 build_zonelist_cache(pgdat);
9276b1bc 3589 }
99dcc3e5
CL
3590
3591 /*
3592 * Initialize the boot_pagesets that are going to be used
3593 * for bootstrapping processors. The real pagesets for
3594 * each zone will be allocated later when the per cpu
3595 * allocator is available.
3596 *
3597 * boot_pagesets are used also for bootstrapping offline
3598 * cpus if the system is already booted because the pagesets
3599 * are needed to initialize allocators on a specific cpu too.
3600 * F.e. the percpu allocator needs the page allocator which
3601 * needs the percpu allocator in order to allocate its pagesets
3602 * (a chicken-egg dilemma).
3603 */
7aac7898 3604 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3605 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3606
7aac7898
LS
3607#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3608 /*
3609 * We now know the "local memory node" for each node--
3610 * i.e., the node of the first zone in the generic zonelist.
3611 * Set up numa_mem percpu variable for on-line cpus. During
3612 * boot, only the boot cpu should be on-line; we'll init the
3613 * secondary cpus' numa_mem as they come on-line. During
3614 * node/memory hotplug, we'll fixup all on-line cpus.
3615 */
3616 if (cpu_online(cpu))
3617 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3618#endif
3619 }
3620
6811378e
YG
3621 return 0;
3622}
3623
4eaf3f64
HL
3624/*
3625 * Called with zonelists_mutex held always
3626 * unless system_state == SYSTEM_BOOTING.
3627 */
9adb62a5 3628void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3629{
f0c0b2b8
KH
3630 set_zonelist_order();
3631
6811378e 3632 if (system_state == SYSTEM_BOOTING) {
423b41d7 3633 __build_all_zonelists(NULL);
68ad8df4 3634 mminit_verify_zonelist();
6811378e
YG
3635 cpuset_init_current_mems_allowed();
3636 } else {
183ff22b 3637 /* we have to stop all cpus to guarantee there is no user
6811378e 3638 of zonelist */
e9959f0f 3639#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3640 if (zone)
3641 setup_zone_pageset(zone);
e9959f0f 3642#endif
9adb62a5 3643 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3644 /* cpuset refresh routine should be here */
3645 }
bd1e22b8 3646 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3647 /*
3648 * Disable grouping by mobility if the number of pages in the
3649 * system is too low to allow the mechanism to work. It would be
3650 * more accurate, but expensive to check per-zone. This check is
3651 * made on memory-hotadd so a system can start with mobility
3652 * disabled and enable it later
3653 */
d9c23400 3654 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3655 page_group_by_mobility_disabled = 1;
3656 else
3657 page_group_by_mobility_disabled = 0;
3658
3659 printk("Built %i zonelists in %s order, mobility grouping %s. "
3660 "Total pages: %ld\n",
62bc62a8 3661 nr_online_nodes,
f0c0b2b8 3662 zonelist_order_name[current_zonelist_order],
9ef9acb0 3663 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3664 vm_total_pages);
3665#ifdef CONFIG_NUMA
3666 printk("Policy zone: %s\n", zone_names[policy_zone]);
3667#endif
1da177e4
LT
3668}
3669
3670/*
3671 * Helper functions to size the waitqueue hash table.
3672 * Essentially these want to choose hash table sizes sufficiently
3673 * large so that collisions trying to wait on pages are rare.
3674 * But in fact, the number of active page waitqueues on typical
3675 * systems is ridiculously low, less than 200. So this is even
3676 * conservative, even though it seems large.
3677 *
3678 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3679 * waitqueues, i.e. the size of the waitq table given the number of pages.
3680 */
3681#define PAGES_PER_WAITQUEUE 256
3682
cca448fe 3683#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3684static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3685{
3686 unsigned long size = 1;
3687
3688 pages /= PAGES_PER_WAITQUEUE;
3689
3690 while (size < pages)
3691 size <<= 1;
3692
3693 /*
3694 * Once we have dozens or even hundreds of threads sleeping
3695 * on IO we've got bigger problems than wait queue collision.
3696 * Limit the size of the wait table to a reasonable size.
3697 */
3698 size = min(size, 4096UL);
3699
3700 return max(size, 4UL);
3701}
cca448fe
YG
3702#else
3703/*
3704 * A zone's size might be changed by hot-add, so it is not possible to determine
3705 * a suitable size for its wait_table. So we use the maximum size now.
3706 *
3707 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3708 *
3709 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3710 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3711 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3712 *
3713 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3714 * or more by the traditional way. (See above). It equals:
3715 *
3716 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3717 * ia64(16K page size) : = ( 8G + 4M)byte.
3718 * powerpc (64K page size) : = (32G +16M)byte.
3719 */
3720static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3721{
3722 return 4096UL;
3723}
3724#endif
1da177e4
LT
3725
3726/*
3727 * This is an integer logarithm so that shifts can be used later
3728 * to extract the more random high bits from the multiplicative
3729 * hash function before the remainder is taken.
3730 */
3731static inline unsigned long wait_table_bits(unsigned long size)
3732{
3733 return ffz(~size);
3734}
3735
3736#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3737
6d3163ce
AH
3738/*
3739 * Check if a pageblock contains reserved pages
3740 */
3741static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3742{
3743 unsigned long pfn;
3744
3745 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3746 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3747 return 1;
3748 }
3749 return 0;
3750}
3751
56fd56b8 3752/*
d9c23400 3753 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3754 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3755 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3756 * higher will lead to a bigger reserve which will get freed as contiguous
3757 * blocks as reclaim kicks in
3758 */
3759static void setup_zone_migrate_reserve(struct zone *zone)
3760{
6d3163ce 3761 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3762 struct page *page;
78986a67
MG
3763 unsigned long block_migratetype;
3764 int reserve;
56fd56b8 3765
d0215638
MH
3766 /*
3767 * Get the start pfn, end pfn and the number of blocks to reserve
3768 * We have to be careful to be aligned to pageblock_nr_pages to
3769 * make sure that we always check pfn_valid for the first page in
3770 * the block.
3771 */
56fd56b8
MG
3772 start_pfn = zone->zone_start_pfn;
3773 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3774 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3775 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3776 pageblock_order;
56fd56b8 3777
78986a67
MG
3778 /*
3779 * Reserve blocks are generally in place to help high-order atomic
3780 * allocations that are short-lived. A min_free_kbytes value that
3781 * would result in more than 2 reserve blocks for atomic allocations
3782 * is assumed to be in place to help anti-fragmentation for the
3783 * future allocation of hugepages at runtime.
3784 */
3785 reserve = min(2, reserve);
3786
d9c23400 3787 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3788 if (!pfn_valid(pfn))
3789 continue;
3790 page = pfn_to_page(pfn);
3791
344c790e
AL
3792 /* Watch out for overlapping nodes */
3793 if (page_to_nid(page) != zone_to_nid(zone))
3794 continue;
3795
56fd56b8
MG
3796 block_migratetype = get_pageblock_migratetype(page);
3797
938929f1
MG
3798 /* Only test what is necessary when the reserves are not met */
3799 if (reserve > 0) {
3800 /*
3801 * Blocks with reserved pages will never free, skip
3802 * them.
3803 */
3804 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3805 if (pageblock_is_reserved(pfn, block_end_pfn))
3806 continue;
56fd56b8 3807
938929f1
MG
3808 /* If this block is reserved, account for it */
3809 if (block_migratetype == MIGRATE_RESERVE) {
3810 reserve--;
3811 continue;
3812 }
3813
3814 /* Suitable for reserving if this block is movable */
3815 if (block_migratetype == MIGRATE_MOVABLE) {
3816 set_pageblock_migratetype(page,
3817 MIGRATE_RESERVE);
3818 move_freepages_block(zone, page,
3819 MIGRATE_RESERVE);
3820 reserve--;
3821 continue;
3822 }
56fd56b8
MG
3823 }
3824
3825 /*
3826 * If the reserve is met and this is a previous reserved block,
3827 * take it back
3828 */
3829 if (block_migratetype == MIGRATE_RESERVE) {
3830 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3831 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3832 }
3833 }
3834}
ac0e5b7a 3835
1da177e4
LT
3836/*
3837 * Initially all pages are reserved - free ones are freed
3838 * up by free_all_bootmem() once the early boot process is
3839 * done. Non-atomic initialization, single-pass.
3840 */
c09b4240 3841void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3842 unsigned long start_pfn, enum memmap_context context)
1da177e4 3843{
1da177e4 3844 struct page *page;
29751f69
AW
3845 unsigned long end_pfn = start_pfn + size;
3846 unsigned long pfn;
86051ca5 3847 struct zone *z;
1da177e4 3848
22b31eec
HD
3849 if (highest_memmap_pfn < end_pfn - 1)
3850 highest_memmap_pfn = end_pfn - 1;
3851
86051ca5 3852 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3853 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3854 /*
3855 * There can be holes in boot-time mem_map[]s
3856 * handed to this function. They do not
3857 * exist on hotplugged memory.
3858 */
3859 if (context == MEMMAP_EARLY) {
3860 if (!early_pfn_valid(pfn))
3861 continue;
3862 if (!early_pfn_in_nid(pfn, nid))
3863 continue;
3864 }
d41dee36
AW
3865 page = pfn_to_page(pfn);
3866 set_page_links(page, zone, nid, pfn);
708614e6 3867 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3868 init_page_count(page);
1da177e4
LT
3869 reset_page_mapcount(page);
3870 SetPageReserved(page);
b2a0ac88
MG
3871 /*
3872 * Mark the block movable so that blocks are reserved for
3873 * movable at startup. This will force kernel allocations
3874 * to reserve their blocks rather than leaking throughout
3875 * the address space during boot when many long-lived
56fd56b8
MG
3876 * kernel allocations are made. Later some blocks near
3877 * the start are marked MIGRATE_RESERVE by
3878 * setup_zone_migrate_reserve()
86051ca5
KH
3879 *
3880 * bitmap is created for zone's valid pfn range. but memmap
3881 * can be created for invalid pages (for alignment)
3882 * check here not to call set_pageblock_migratetype() against
3883 * pfn out of zone.
b2a0ac88 3884 */
86051ca5
KH
3885 if ((z->zone_start_pfn <= pfn)
3886 && (pfn < z->zone_start_pfn + z->spanned_pages)
3887 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3888 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3889
1da177e4
LT
3890 INIT_LIST_HEAD(&page->lru);
3891#ifdef WANT_PAGE_VIRTUAL
3892 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3893 if (!is_highmem_idx(zone))
3212c6be 3894 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3895#endif
1da177e4
LT
3896 }
3897}
3898
1e548deb 3899static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3900{
b2a0ac88
MG
3901 int order, t;
3902 for_each_migratetype_order(order, t) {
3903 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3904 zone->free_area[order].nr_free = 0;
3905 }
3906}
3907
3908#ifndef __HAVE_ARCH_MEMMAP_INIT
3909#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3910 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3911#endif
3912
4ed7e022 3913static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3914{
3a6be87f 3915#ifdef CONFIG_MMU
e7c8d5c9
CL
3916 int batch;
3917
3918 /*
3919 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3920 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3921 *
3922 * OK, so we don't know how big the cache is. So guess.
3923 */
3924 batch = zone->present_pages / 1024;
ba56e91c
SR
3925 if (batch * PAGE_SIZE > 512 * 1024)
3926 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3927 batch /= 4; /* We effectively *= 4 below */
3928 if (batch < 1)
3929 batch = 1;
3930
3931 /*
0ceaacc9
NP
3932 * Clamp the batch to a 2^n - 1 value. Having a power
3933 * of 2 value was found to be more likely to have
3934 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3935 *
0ceaacc9
NP
3936 * For example if 2 tasks are alternately allocating
3937 * batches of pages, one task can end up with a lot
3938 * of pages of one half of the possible page colors
3939 * and the other with pages of the other colors.
e7c8d5c9 3940 */
9155203a 3941 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3942
e7c8d5c9 3943 return batch;
3a6be87f
DH
3944
3945#else
3946 /* The deferral and batching of frees should be suppressed under NOMMU
3947 * conditions.
3948 *
3949 * The problem is that NOMMU needs to be able to allocate large chunks
3950 * of contiguous memory as there's no hardware page translation to
3951 * assemble apparent contiguous memory from discontiguous pages.
3952 *
3953 * Queueing large contiguous runs of pages for batching, however,
3954 * causes the pages to actually be freed in smaller chunks. As there
3955 * can be a significant delay between the individual batches being
3956 * recycled, this leads to the once large chunks of space being
3957 * fragmented and becoming unavailable for high-order allocations.
3958 */
3959 return 0;
3960#endif
e7c8d5c9
CL
3961}
3962
b69a7288 3963static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3964{
3965 struct per_cpu_pages *pcp;
5f8dcc21 3966 int migratetype;
2caaad41 3967
1c6fe946
MD
3968 memset(p, 0, sizeof(*p));
3969
3dfa5721 3970 pcp = &p->pcp;
2caaad41 3971 pcp->count = 0;
2caaad41
CL
3972 pcp->high = 6 * batch;
3973 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3974 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3975 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3976}
3977
8ad4b1fb
RS
3978/*
3979 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3980 * to the value high for the pageset p.
3981 */
3982
3983static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3984 unsigned long high)
3985{
3986 struct per_cpu_pages *pcp;
3987
3dfa5721 3988 pcp = &p->pcp;
8ad4b1fb
RS
3989 pcp->high = high;
3990 pcp->batch = max(1UL, high/4);
3991 if ((high/4) > (PAGE_SHIFT * 8))
3992 pcp->batch = PAGE_SHIFT * 8;
3993}
3994
4ed7e022 3995static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3996{
3997 int cpu;
3998
3999 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4000
4001 for_each_possible_cpu(cpu) {
4002 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4003
4004 setup_pageset(pcp, zone_batchsize(zone));
4005
4006 if (percpu_pagelist_fraction)
4007 setup_pagelist_highmark(pcp,
4008 (zone->present_pages /
4009 percpu_pagelist_fraction));
4010 }
4011}
4012
2caaad41 4013/*
99dcc3e5
CL
4014 * Allocate per cpu pagesets and initialize them.
4015 * Before this call only boot pagesets were available.
e7c8d5c9 4016 */
99dcc3e5 4017void __init setup_per_cpu_pageset(void)
e7c8d5c9 4018{
99dcc3e5 4019 struct zone *zone;
e7c8d5c9 4020
319774e2
WF
4021 for_each_populated_zone(zone)
4022 setup_zone_pageset(zone);
e7c8d5c9
CL
4023}
4024
577a32f6 4025static noinline __init_refok
cca448fe 4026int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4027{
4028 int i;
4029 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4030 size_t alloc_size;
ed8ece2e
DH
4031
4032 /*
4033 * The per-page waitqueue mechanism uses hashed waitqueues
4034 * per zone.
4035 */
02b694de
YG
4036 zone->wait_table_hash_nr_entries =
4037 wait_table_hash_nr_entries(zone_size_pages);
4038 zone->wait_table_bits =
4039 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4040 alloc_size = zone->wait_table_hash_nr_entries
4041 * sizeof(wait_queue_head_t);
4042
cd94b9db 4043 if (!slab_is_available()) {
cca448fe 4044 zone->wait_table = (wait_queue_head_t *)
8f389a99 4045 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4046 } else {
4047 /*
4048 * This case means that a zone whose size was 0 gets new memory
4049 * via memory hot-add.
4050 * But it may be the case that a new node was hot-added. In
4051 * this case vmalloc() will not be able to use this new node's
4052 * memory - this wait_table must be initialized to use this new
4053 * node itself as well.
4054 * To use this new node's memory, further consideration will be
4055 * necessary.
4056 */
8691f3a7 4057 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4058 }
4059 if (!zone->wait_table)
4060 return -ENOMEM;
ed8ece2e 4061
02b694de 4062 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4063 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4064
4065 return 0;
ed8ece2e
DH
4066}
4067
c09b4240 4068static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4069{
99dcc3e5
CL
4070 /*
4071 * per cpu subsystem is not up at this point. The following code
4072 * relies on the ability of the linker to provide the
4073 * offset of a (static) per cpu variable into the per cpu area.
4074 */
4075 zone->pageset = &boot_pageset;
ed8ece2e 4076
f5335c0f 4077 if (zone->present_pages)
99dcc3e5
CL
4078 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4079 zone->name, zone->present_pages,
4080 zone_batchsize(zone));
ed8ece2e
DH
4081}
4082
4ed7e022 4083int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4084 unsigned long zone_start_pfn,
a2f3aa02
DH
4085 unsigned long size,
4086 enum memmap_context context)
ed8ece2e
DH
4087{
4088 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4089 int ret;
4090 ret = zone_wait_table_init(zone, size);
4091 if (ret)
4092 return ret;
ed8ece2e
DH
4093 pgdat->nr_zones = zone_idx(zone) + 1;
4094
ed8ece2e
DH
4095 zone->zone_start_pfn = zone_start_pfn;
4096
708614e6
MG
4097 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4098 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4099 pgdat->node_id,
4100 (unsigned long)zone_idx(zone),
4101 zone_start_pfn, (zone_start_pfn + size));
4102
1e548deb 4103 zone_init_free_lists(zone);
718127cc
YG
4104
4105 return 0;
ed8ece2e
DH
4106}
4107
0ee332c1 4108#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4109#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4110/*
4111 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4112 * Architectures may implement their own version but if add_active_range()
4113 * was used and there are no special requirements, this is a convenient
4114 * alternative
4115 */
f2dbcfa7 4116int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4117{
c13291a5
TH
4118 unsigned long start_pfn, end_pfn;
4119 int i, nid;
c713216d 4120
c13291a5 4121 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4122 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4123 return nid;
cc2559bc
KH
4124 /* This is a memory hole */
4125 return -1;
c713216d
MG
4126}
4127#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4128
f2dbcfa7
KH
4129int __meminit early_pfn_to_nid(unsigned long pfn)
4130{
cc2559bc
KH
4131 int nid;
4132
4133 nid = __early_pfn_to_nid(pfn);
4134 if (nid >= 0)
4135 return nid;
4136 /* just returns 0 */
4137 return 0;
f2dbcfa7
KH
4138}
4139
cc2559bc
KH
4140#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4141bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4142{
4143 int nid;
4144
4145 nid = __early_pfn_to_nid(pfn);
4146 if (nid >= 0 && nid != node)
4147 return false;
4148 return true;
4149}
4150#endif
f2dbcfa7 4151
c713216d
MG
4152/**
4153 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4154 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4155 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4156 *
4157 * If an architecture guarantees that all ranges registered with
4158 * add_active_ranges() contain no holes and may be freed, this
4159 * this function may be used instead of calling free_bootmem() manually.
4160 */
c13291a5 4161void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4162{
c13291a5
TH
4163 unsigned long start_pfn, end_pfn;
4164 int i, this_nid;
edbe7d23 4165
c13291a5
TH
4166 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4167 start_pfn = min(start_pfn, max_low_pfn);
4168 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4169
c13291a5
TH
4170 if (start_pfn < end_pfn)
4171 free_bootmem_node(NODE_DATA(this_nid),
4172 PFN_PHYS(start_pfn),
4173 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4174 }
edbe7d23 4175}
edbe7d23 4176
c713216d
MG
4177/**
4178 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4179 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4180 *
4181 * If an architecture guarantees that all ranges registered with
4182 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4183 * function may be used instead of calling memory_present() manually.
c713216d
MG
4184 */
4185void __init sparse_memory_present_with_active_regions(int nid)
4186{
c13291a5
TH
4187 unsigned long start_pfn, end_pfn;
4188 int i, this_nid;
c713216d 4189
c13291a5
TH
4190 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4191 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4192}
4193
4194/**
4195 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4196 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4197 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4198 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4199 *
4200 * It returns the start and end page frame of a node based on information
4201 * provided by an arch calling add_active_range(). If called for a node
4202 * with no available memory, a warning is printed and the start and end
88ca3b94 4203 * PFNs will be 0.
c713216d 4204 */
a3142c8e 4205void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4206 unsigned long *start_pfn, unsigned long *end_pfn)
4207{
c13291a5 4208 unsigned long this_start_pfn, this_end_pfn;
c713216d 4209 int i;
c13291a5 4210
c713216d
MG
4211 *start_pfn = -1UL;
4212 *end_pfn = 0;
4213
c13291a5
TH
4214 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4215 *start_pfn = min(*start_pfn, this_start_pfn);
4216 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4217 }
4218
633c0666 4219 if (*start_pfn == -1UL)
c713216d 4220 *start_pfn = 0;
c713216d
MG
4221}
4222
2a1e274a
MG
4223/*
4224 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4225 * assumption is made that zones within a node are ordered in monotonic
4226 * increasing memory addresses so that the "highest" populated zone is used
4227 */
b69a7288 4228static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4229{
4230 int zone_index;
4231 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4232 if (zone_index == ZONE_MOVABLE)
4233 continue;
4234
4235 if (arch_zone_highest_possible_pfn[zone_index] >
4236 arch_zone_lowest_possible_pfn[zone_index])
4237 break;
4238 }
4239
4240 VM_BUG_ON(zone_index == -1);
4241 movable_zone = zone_index;
4242}
4243
4244/*
4245 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4246 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4247 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4248 * in each node depending on the size of each node and how evenly kernelcore
4249 * is distributed. This helper function adjusts the zone ranges
4250 * provided by the architecture for a given node by using the end of the
4251 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4252 * zones within a node are in order of monotonic increases memory addresses
4253 */
b69a7288 4254static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4255 unsigned long zone_type,
4256 unsigned long node_start_pfn,
4257 unsigned long node_end_pfn,
4258 unsigned long *zone_start_pfn,
4259 unsigned long *zone_end_pfn)
4260{
4261 /* Only adjust if ZONE_MOVABLE is on this node */
4262 if (zone_movable_pfn[nid]) {
4263 /* Size ZONE_MOVABLE */
4264 if (zone_type == ZONE_MOVABLE) {
4265 *zone_start_pfn = zone_movable_pfn[nid];
4266 *zone_end_pfn = min(node_end_pfn,
4267 arch_zone_highest_possible_pfn[movable_zone]);
4268
4269 /* Adjust for ZONE_MOVABLE starting within this range */
4270 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4271 *zone_end_pfn > zone_movable_pfn[nid]) {
4272 *zone_end_pfn = zone_movable_pfn[nid];
4273
4274 /* Check if this whole range is within ZONE_MOVABLE */
4275 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4276 *zone_start_pfn = *zone_end_pfn;
4277 }
4278}
4279
c713216d
MG
4280/*
4281 * Return the number of pages a zone spans in a node, including holes
4282 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4283 */
6ea6e688 4284static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4285 unsigned long zone_type,
4286 unsigned long *ignored)
4287{
4288 unsigned long node_start_pfn, node_end_pfn;
4289 unsigned long zone_start_pfn, zone_end_pfn;
4290
4291 /* Get the start and end of the node and zone */
4292 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4293 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4294 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4295 adjust_zone_range_for_zone_movable(nid, zone_type,
4296 node_start_pfn, node_end_pfn,
4297 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4298
4299 /* Check that this node has pages within the zone's required range */
4300 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4301 return 0;
4302
4303 /* Move the zone boundaries inside the node if necessary */
4304 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4305 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4306
4307 /* Return the spanned pages */
4308 return zone_end_pfn - zone_start_pfn;
4309}
4310
4311/*
4312 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4313 * then all holes in the requested range will be accounted for.
c713216d 4314 */
32996250 4315unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4316 unsigned long range_start_pfn,
4317 unsigned long range_end_pfn)
4318{
96e907d1
TH
4319 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4320 unsigned long start_pfn, end_pfn;
4321 int i;
c713216d 4322
96e907d1
TH
4323 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4324 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4325 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4326 nr_absent -= end_pfn - start_pfn;
c713216d 4327 }
96e907d1 4328 return nr_absent;
c713216d
MG
4329}
4330
4331/**
4332 * absent_pages_in_range - Return number of page frames in holes within a range
4333 * @start_pfn: The start PFN to start searching for holes
4334 * @end_pfn: The end PFN to stop searching for holes
4335 *
88ca3b94 4336 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4337 */
4338unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4339 unsigned long end_pfn)
4340{
4341 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4342}
4343
4344/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4345static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4346 unsigned long zone_type,
4347 unsigned long *ignored)
4348{
96e907d1
TH
4349 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4350 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4351 unsigned long node_start_pfn, node_end_pfn;
4352 unsigned long zone_start_pfn, zone_end_pfn;
4353
4354 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4355 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4356 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4357
2a1e274a
MG
4358 adjust_zone_range_for_zone_movable(nid, zone_type,
4359 node_start_pfn, node_end_pfn,
4360 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4361 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4362}
0e0b864e 4363
0ee332c1 4364#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4365static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4366 unsigned long zone_type,
4367 unsigned long *zones_size)
4368{
4369 return zones_size[zone_type];
4370}
4371
6ea6e688 4372static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4373 unsigned long zone_type,
4374 unsigned long *zholes_size)
4375{
4376 if (!zholes_size)
4377 return 0;
4378
4379 return zholes_size[zone_type];
4380}
0e0b864e 4381
0ee332c1 4382#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4383
a3142c8e 4384static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4385 unsigned long *zones_size, unsigned long *zholes_size)
4386{
4387 unsigned long realtotalpages, totalpages = 0;
4388 enum zone_type i;
4389
4390 for (i = 0; i < MAX_NR_ZONES; i++)
4391 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4392 zones_size);
4393 pgdat->node_spanned_pages = totalpages;
4394
4395 realtotalpages = totalpages;
4396 for (i = 0; i < MAX_NR_ZONES; i++)
4397 realtotalpages -=
4398 zone_absent_pages_in_node(pgdat->node_id, i,
4399 zholes_size);
4400 pgdat->node_present_pages = realtotalpages;
4401 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4402 realtotalpages);
4403}
4404
835c134e
MG
4405#ifndef CONFIG_SPARSEMEM
4406/*
4407 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4408 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4409 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4410 * round what is now in bits to nearest long in bits, then return it in
4411 * bytes.
4412 */
4413static unsigned long __init usemap_size(unsigned long zonesize)
4414{
4415 unsigned long usemapsize;
4416
d9c23400
MG
4417 usemapsize = roundup(zonesize, pageblock_nr_pages);
4418 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4419 usemapsize *= NR_PAGEBLOCK_BITS;
4420 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4421
4422 return usemapsize / 8;
4423}
4424
4425static void __init setup_usemap(struct pglist_data *pgdat,
4426 struct zone *zone, unsigned long zonesize)
4427{
4428 unsigned long usemapsize = usemap_size(zonesize);
4429 zone->pageblock_flags = NULL;
58a01a45 4430 if (usemapsize)
8f389a99
YL
4431 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4432 usemapsize);
835c134e
MG
4433}
4434#else
fa9f90be 4435static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4436 struct zone *zone, unsigned long zonesize) {}
4437#endif /* CONFIG_SPARSEMEM */
4438
d9c23400 4439#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4440
d9c23400 4441/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4442void __init set_pageblock_order(void)
d9c23400 4443{
955c1cd7
AM
4444 unsigned int order;
4445
d9c23400
MG
4446 /* Check that pageblock_nr_pages has not already been setup */
4447 if (pageblock_order)
4448 return;
4449
955c1cd7
AM
4450 if (HPAGE_SHIFT > PAGE_SHIFT)
4451 order = HUGETLB_PAGE_ORDER;
4452 else
4453 order = MAX_ORDER - 1;
4454
d9c23400
MG
4455 /*
4456 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4457 * This value may be variable depending on boot parameters on IA64 and
4458 * powerpc.
d9c23400
MG
4459 */
4460 pageblock_order = order;
4461}
4462#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4463
ba72cb8c
MG
4464/*
4465 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4466 * is unused as pageblock_order is set at compile-time. See
4467 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4468 * the kernel config
ba72cb8c 4469 */
ca57df79 4470void __init set_pageblock_order(void)
ba72cb8c 4471{
ba72cb8c 4472}
d9c23400
MG
4473
4474#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4475
1da177e4
LT
4476/*
4477 * Set up the zone data structures:
4478 * - mark all pages reserved
4479 * - mark all memory queues empty
4480 * - clear the memory bitmaps
6527af5d
MK
4481 *
4482 * NOTE: pgdat should get zeroed by caller.
1da177e4 4483 */
b5a0e011 4484static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4485 unsigned long *zones_size, unsigned long *zholes_size)
4486{
2f1b6248 4487 enum zone_type j;
ed8ece2e 4488 int nid = pgdat->node_id;
1da177e4 4489 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4490 int ret;
1da177e4 4491
208d54e5 4492 pgdat_resize_init(pgdat);
1da177e4 4493 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4494 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4495 pgdat_page_cgroup_init(pgdat);
5f63b720 4496
1da177e4
LT
4497 for (j = 0; j < MAX_NR_ZONES; j++) {
4498 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4499 unsigned long size, realsize, memmap_pages;
1da177e4 4500
c713216d
MG
4501 size = zone_spanned_pages_in_node(nid, j, zones_size);
4502 realsize = size - zone_absent_pages_in_node(nid, j,
4503 zholes_size);
1da177e4 4504
0e0b864e
MG
4505 /*
4506 * Adjust realsize so that it accounts for how much memory
4507 * is used by this zone for memmap. This affects the watermark
4508 * and per-cpu initialisations
4509 */
f7232154
JW
4510 memmap_pages =
4511 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4512 if (realsize >= memmap_pages) {
4513 realsize -= memmap_pages;
5594c8c8
YL
4514 if (memmap_pages)
4515 printk(KERN_DEBUG
4516 " %s zone: %lu pages used for memmap\n",
4517 zone_names[j], memmap_pages);
0e0b864e
MG
4518 } else
4519 printk(KERN_WARNING
4520 " %s zone: %lu pages exceeds realsize %lu\n",
4521 zone_names[j], memmap_pages, realsize);
4522
6267276f
CL
4523 /* Account for reserved pages */
4524 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4525 realsize -= dma_reserve;
d903ef9f 4526 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4527 zone_names[0], dma_reserve);
0e0b864e
MG
4528 }
4529
98d2b0eb 4530 if (!is_highmem_idx(j))
1da177e4
LT
4531 nr_kernel_pages += realsize;
4532 nr_all_pages += realsize;
4533
4534 zone->spanned_pages = size;
4535 zone->present_pages = realsize;
9614634f 4536#ifdef CONFIG_NUMA
d5f541ed 4537 zone->node = nid;
8417bba4 4538 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4539 / 100;
0ff38490 4540 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4541#endif
1da177e4
LT
4542 zone->name = zone_names[j];
4543 spin_lock_init(&zone->lock);
4544 spin_lock_init(&zone->lru_lock);
bdc8cb98 4545 zone_seqlock_init(zone);
1da177e4 4546 zone->zone_pgdat = pgdat;
1da177e4 4547
ed8ece2e 4548 zone_pcp_init(zone);
bea8c150 4549 lruvec_init(&zone->lruvec);
1da177e4
LT
4550 if (!size)
4551 continue;
4552
955c1cd7 4553 set_pageblock_order();
835c134e 4554 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4555 ret = init_currently_empty_zone(zone, zone_start_pfn,
4556 size, MEMMAP_EARLY);
718127cc 4557 BUG_ON(ret);
76cdd58e 4558 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4559 zone_start_pfn += size;
1da177e4
LT
4560 }
4561}
4562
577a32f6 4563static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4564{
1da177e4
LT
4565 /* Skip empty nodes */
4566 if (!pgdat->node_spanned_pages)
4567 return;
4568
d41dee36 4569#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4570 /* ia64 gets its own node_mem_map, before this, without bootmem */
4571 if (!pgdat->node_mem_map) {
e984bb43 4572 unsigned long size, start, end;
d41dee36
AW
4573 struct page *map;
4574
e984bb43
BP
4575 /*
4576 * The zone's endpoints aren't required to be MAX_ORDER
4577 * aligned but the node_mem_map endpoints must be in order
4578 * for the buddy allocator to function correctly.
4579 */
4580 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4581 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4582 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4583 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4584 map = alloc_remap(pgdat->node_id, size);
4585 if (!map)
8f389a99 4586 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4587 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4588 }
12d810c1 4589#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4590 /*
4591 * With no DISCONTIG, the global mem_map is just set as node 0's
4592 */
c713216d 4593 if (pgdat == NODE_DATA(0)) {
1da177e4 4594 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4595#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4596 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4597 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4598#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4599 }
1da177e4 4600#endif
d41dee36 4601#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4602}
4603
9109fb7b
JW
4604void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4605 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4606{
9109fb7b
JW
4607 pg_data_t *pgdat = NODE_DATA(nid);
4608
88fdf75d 4609 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4610 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4611
1da177e4
LT
4612 pgdat->node_id = nid;
4613 pgdat->node_start_pfn = node_start_pfn;
957f822a 4614 init_zone_allows_reclaim(nid);
c713216d 4615 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4616
4617 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4618#ifdef CONFIG_FLAT_NODE_MEM_MAP
4619 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4620 nid, (unsigned long)pgdat,
4621 (unsigned long)pgdat->node_mem_map);
4622#endif
1da177e4
LT
4623
4624 free_area_init_core(pgdat, zones_size, zholes_size);
4625}
4626
0ee332c1 4627#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4628
4629#if MAX_NUMNODES > 1
4630/*
4631 * Figure out the number of possible node ids.
4632 */
4633static void __init setup_nr_node_ids(void)
4634{
4635 unsigned int node;
4636 unsigned int highest = 0;
4637
4638 for_each_node_mask(node, node_possible_map)
4639 highest = node;
4640 nr_node_ids = highest + 1;
4641}
4642#else
4643static inline void setup_nr_node_ids(void)
4644{
4645}
4646#endif
4647
1e01979c
TH
4648/**
4649 * node_map_pfn_alignment - determine the maximum internode alignment
4650 *
4651 * This function should be called after node map is populated and sorted.
4652 * It calculates the maximum power of two alignment which can distinguish
4653 * all the nodes.
4654 *
4655 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4656 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4657 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4658 * shifted, 1GiB is enough and this function will indicate so.
4659 *
4660 * This is used to test whether pfn -> nid mapping of the chosen memory
4661 * model has fine enough granularity to avoid incorrect mapping for the
4662 * populated node map.
4663 *
4664 * Returns the determined alignment in pfn's. 0 if there is no alignment
4665 * requirement (single node).
4666 */
4667unsigned long __init node_map_pfn_alignment(void)
4668{
4669 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4670 unsigned long start, end, mask;
1e01979c 4671 int last_nid = -1;
c13291a5 4672 int i, nid;
1e01979c 4673
c13291a5 4674 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4675 if (!start || last_nid < 0 || last_nid == nid) {
4676 last_nid = nid;
4677 last_end = end;
4678 continue;
4679 }
4680
4681 /*
4682 * Start with a mask granular enough to pin-point to the
4683 * start pfn and tick off bits one-by-one until it becomes
4684 * too coarse to separate the current node from the last.
4685 */
4686 mask = ~((1 << __ffs(start)) - 1);
4687 while (mask && last_end <= (start & (mask << 1)))
4688 mask <<= 1;
4689
4690 /* accumulate all internode masks */
4691 accl_mask |= mask;
4692 }
4693
4694 /* convert mask to number of pages */
4695 return ~accl_mask + 1;
4696}
4697
a6af2bc3 4698/* Find the lowest pfn for a node */
b69a7288 4699static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4700{
a6af2bc3 4701 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4702 unsigned long start_pfn;
4703 int i;
1abbfb41 4704
c13291a5
TH
4705 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4706 min_pfn = min(min_pfn, start_pfn);
c713216d 4707
a6af2bc3
MG
4708 if (min_pfn == ULONG_MAX) {
4709 printk(KERN_WARNING
2bc0d261 4710 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4711 return 0;
4712 }
4713
4714 return min_pfn;
c713216d
MG
4715}
4716
4717/**
4718 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4719 *
4720 * It returns the minimum PFN based on information provided via
88ca3b94 4721 * add_active_range().
c713216d
MG
4722 */
4723unsigned long __init find_min_pfn_with_active_regions(void)
4724{
4725 return find_min_pfn_for_node(MAX_NUMNODES);
4726}
4727
37b07e41
LS
4728/*
4729 * early_calculate_totalpages()
4730 * Sum pages in active regions for movable zone.
4731 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4732 */
484f51f8 4733static unsigned long __init early_calculate_totalpages(void)
7e63efef 4734{
7e63efef 4735 unsigned long totalpages = 0;
c13291a5
TH
4736 unsigned long start_pfn, end_pfn;
4737 int i, nid;
4738
4739 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4740 unsigned long pages = end_pfn - start_pfn;
7e63efef 4741
37b07e41
LS
4742 totalpages += pages;
4743 if (pages)
c13291a5 4744 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4745 }
4746 return totalpages;
7e63efef
MG
4747}
4748
2a1e274a
MG
4749/*
4750 * Find the PFN the Movable zone begins in each node. Kernel memory
4751 * is spread evenly between nodes as long as the nodes have enough
4752 * memory. When they don't, some nodes will have more kernelcore than
4753 * others
4754 */
b224ef85 4755static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4756{
4757 int i, nid;
4758 unsigned long usable_startpfn;
4759 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4760 /* save the state before borrow the nodemask */
4761 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4762 unsigned long totalpages = early_calculate_totalpages();
4763 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4764
7e63efef
MG
4765 /*
4766 * If movablecore was specified, calculate what size of
4767 * kernelcore that corresponds so that memory usable for
4768 * any allocation type is evenly spread. If both kernelcore
4769 * and movablecore are specified, then the value of kernelcore
4770 * will be used for required_kernelcore if it's greater than
4771 * what movablecore would have allowed.
4772 */
4773 if (required_movablecore) {
7e63efef
MG
4774 unsigned long corepages;
4775
4776 /*
4777 * Round-up so that ZONE_MOVABLE is at least as large as what
4778 * was requested by the user
4779 */
4780 required_movablecore =
4781 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4782 corepages = totalpages - required_movablecore;
4783
4784 required_kernelcore = max(required_kernelcore, corepages);
4785 }
4786
2a1e274a
MG
4787 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4788 if (!required_kernelcore)
66918dcd 4789 goto out;
2a1e274a
MG
4790
4791 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4792 find_usable_zone_for_movable();
4793 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4794
4795restart:
4796 /* Spread kernelcore memory as evenly as possible throughout nodes */
4797 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4798 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4799 unsigned long start_pfn, end_pfn;
4800
2a1e274a
MG
4801 /*
4802 * Recalculate kernelcore_node if the division per node
4803 * now exceeds what is necessary to satisfy the requested
4804 * amount of memory for the kernel
4805 */
4806 if (required_kernelcore < kernelcore_node)
4807 kernelcore_node = required_kernelcore / usable_nodes;
4808
4809 /*
4810 * As the map is walked, we track how much memory is usable
4811 * by the kernel using kernelcore_remaining. When it is
4812 * 0, the rest of the node is usable by ZONE_MOVABLE
4813 */
4814 kernelcore_remaining = kernelcore_node;
4815
4816 /* Go through each range of PFNs within this node */
c13291a5 4817 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4818 unsigned long size_pages;
4819
c13291a5 4820 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4821 if (start_pfn >= end_pfn)
4822 continue;
4823
4824 /* Account for what is only usable for kernelcore */
4825 if (start_pfn < usable_startpfn) {
4826 unsigned long kernel_pages;
4827 kernel_pages = min(end_pfn, usable_startpfn)
4828 - start_pfn;
4829
4830 kernelcore_remaining -= min(kernel_pages,
4831 kernelcore_remaining);
4832 required_kernelcore -= min(kernel_pages,
4833 required_kernelcore);
4834
4835 /* Continue if range is now fully accounted */
4836 if (end_pfn <= usable_startpfn) {
4837
4838 /*
4839 * Push zone_movable_pfn to the end so
4840 * that if we have to rebalance
4841 * kernelcore across nodes, we will
4842 * not double account here
4843 */
4844 zone_movable_pfn[nid] = end_pfn;
4845 continue;
4846 }
4847 start_pfn = usable_startpfn;
4848 }
4849
4850 /*
4851 * The usable PFN range for ZONE_MOVABLE is from
4852 * start_pfn->end_pfn. Calculate size_pages as the
4853 * number of pages used as kernelcore
4854 */
4855 size_pages = end_pfn - start_pfn;
4856 if (size_pages > kernelcore_remaining)
4857 size_pages = kernelcore_remaining;
4858 zone_movable_pfn[nid] = start_pfn + size_pages;
4859
4860 /*
4861 * Some kernelcore has been met, update counts and
4862 * break if the kernelcore for this node has been
4863 * satisified
4864 */
4865 required_kernelcore -= min(required_kernelcore,
4866 size_pages);
4867 kernelcore_remaining -= size_pages;
4868 if (!kernelcore_remaining)
4869 break;
4870 }
4871 }
4872
4873 /*
4874 * If there is still required_kernelcore, we do another pass with one
4875 * less node in the count. This will push zone_movable_pfn[nid] further
4876 * along on the nodes that still have memory until kernelcore is
4877 * satisified
4878 */
4879 usable_nodes--;
4880 if (usable_nodes && required_kernelcore > usable_nodes)
4881 goto restart;
4882
4883 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4884 for (nid = 0; nid < MAX_NUMNODES; nid++)
4885 zone_movable_pfn[nid] =
4886 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4887
4888out:
4889 /* restore the node_state */
4890 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4891}
4892
37b07e41 4893/* Any regular memory on that node ? */
4ed7e022 4894static void __init check_for_regular_memory(pg_data_t *pgdat)
37b07e41
LS
4895{
4896#ifdef CONFIG_HIGHMEM
4897 enum zone_type zone_type;
4898
4899 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4900 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4901 if (zone->present_pages) {
37b07e41 4902 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4903 break;
4904 }
37b07e41
LS
4905 }
4906#endif
4907}
4908
c713216d
MG
4909/**
4910 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4911 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4912 *
4913 * This will call free_area_init_node() for each active node in the system.
4914 * Using the page ranges provided by add_active_range(), the size of each
4915 * zone in each node and their holes is calculated. If the maximum PFN
4916 * between two adjacent zones match, it is assumed that the zone is empty.
4917 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4918 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4919 * starts where the previous one ended. For example, ZONE_DMA32 starts
4920 * at arch_max_dma_pfn.
4921 */
4922void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4923{
c13291a5
TH
4924 unsigned long start_pfn, end_pfn;
4925 int i, nid;
a6af2bc3 4926
c713216d
MG
4927 /* Record where the zone boundaries are */
4928 memset(arch_zone_lowest_possible_pfn, 0,
4929 sizeof(arch_zone_lowest_possible_pfn));
4930 memset(arch_zone_highest_possible_pfn, 0,
4931 sizeof(arch_zone_highest_possible_pfn));
4932 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4933 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4934 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4935 if (i == ZONE_MOVABLE)
4936 continue;
c713216d
MG
4937 arch_zone_lowest_possible_pfn[i] =
4938 arch_zone_highest_possible_pfn[i-1];
4939 arch_zone_highest_possible_pfn[i] =
4940 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4941 }
2a1e274a
MG
4942 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4943 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4944
4945 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4946 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4947 find_zone_movable_pfns_for_nodes();
c713216d 4948
c713216d 4949 /* Print out the zone ranges */
a62e2f4f 4950 printk("Zone ranges:\n");
2a1e274a
MG
4951 for (i = 0; i < MAX_NR_ZONES; i++) {
4952 if (i == ZONE_MOVABLE)
4953 continue;
155cbfc8 4954 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4955 if (arch_zone_lowest_possible_pfn[i] ==
4956 arch_zone_highest_possible_pfn[i])
155cbfc8 4957 printk(KERN_CONT "empty\n");
72f0ba02 4958 else
a62e2f4f
BH
4959 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4960 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4961 (arch_zone_highest_possible_pfn[i]
4962 << PAGE_SHIFT) - 1);
2a1e274a
MG
4963 }
4964
4965 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4966 printk("Movable zone start for each node\n");
2a1e274a
MG
4967 for (i = 0; i < MAX_NUMNODES; i++) {
4968 if (zone_movable_pfn[i])
a62e2f4f
BH
4969 printk(" Node %d: %#010lx\n", i,
4970 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4971 }
c713216d 4972
f2d52fe5 4973 /* Print out the early node map */
a62e2f4f 4974 printk("Early memory node ranges\n");
c13291a5 4975 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4976 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4977 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4978
4979 /* Initialise every node */
708614e6 4980 mminit_verify_pageflags_layout();
8ef82866 4981 setup_nr_node_ids();
c713216d
MG
4982 for_each_online_node(nid) {
4983 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4984 free_area_init_node(nid, NULL,
c713216d 4985 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4986
4987 /* Any memory on that node */
4988 if (pgdat->node_present_pages)
4989 node_set_state(nid, N_HIGH_MEMORY);
4990 check_for_regular_memory(pgdat);
c713216d
MG
4991 }
4992}
2a1e274a 4993
7e63efef 4994static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4995{
4996 unsigned long long coremem;
4997 if (!p)
4998 return -EINVAL;
4999
5000 coremem = memparse(p, &p);
7e63efef 5001 *core = coremem >> PAGE_SHIFT;
2a1e274a 5002
7e63efef 5003 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5004 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5005
5006 return 0;
5007}
ed7ed365 5008
7e63efef
MG
5009/*
5010 * kernelcore=size sets the amount of memory for use for allocations that
5011 * cannot be reclaimed or migrated.
5012 */
5013static int __init cmdline_parse_kernelcore(char *p)
5014{
5015 return cmdline_parse_core(p, &required_kernelcore);
5016}
5017
5018/*
5019 * movablecore=size sets the amount of memory for use for allocations that
5020 * can be reclaimed or migrated.
5021 */
5022static int __init cmdline_parse_movablecore(char *p)
5023{
5024 return cmdline_parse_core(p, &required_movablecore);
5025}
5026
ed7ed365 5027early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5028early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5029
0ee332c1 5030#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5031
0e0b864e 5032/**
88ca3b94
RD
5033 * set_dma_reserve - set the specified number of pages reserved in the first zone
5034 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5035 *
5036 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5037 * In the DMA zone, a significant percentage may be consumed by kernel image
5038 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5039 * function may optionally be used to account for unfreeable pages in the
5040 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5041 * smaller per-cpu batchsize.
0e0b864e
MG
5042 */
5043void __init set_dma_reserve(unsigned long new_dma_reserve)
5044{
5045 dma_reserve = new_dma_reserve;
5046}
5047
1da177e4
LT
5048void __init free_area_init(unsigned long *zones_size)
5049{
9109fb7b 5050 free_area_init_node(0, zones_size,
1da177e4
LT
5051 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5052}
1da177e4 5053
1da177e4
LT
5054static int page_alloc_cpu_notify(struct notifier_block *self,
5055 unsigned long action, void *hcpu)
5056{
5057 int cpu = (unsigned long)hcpu;
1da177e4 5058
8bb78442 5059 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5060 lru_add_drain_cpu(cpu);
9f8f2172
CL
5061 drain_pages(cpu);
5062
5063 /*
5064 * Spill the event counters of the dead processor
5065 * into the current processors event counters.
5066 * This artificially elevates the count of the current
5067 * processor.
5068 */
f8891e5e 5069 vm_events_fold_cpu(cpu);
9f8f2172
CL
5070
5071 /*
5072 * Zero the differential counters of the dead processor
5073 * so that the vm statistics are consistent.
5074 *
5075 * This is only okay since the processor is dead and cannot
5076 * race with what we are doing.
5077 */
2244b95a 5078 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5079 }
5080 return NOTIFY_OK;
5081}
1da177e4
LT
5082
5083void __init page_alloc_init(void)
5084{
5085 hotcpu_notifier(page_alloc_cpu_notify, 0);
5086}
5087
cb45b0e9
HA
5088/*
5089 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5090 * or min_free_kbytes changes.
5091 */
5092static void calculate_totalreserve_pages(void)
5093{
5094 struct pglist_data *pgdat;
5095 unsigned long reserve_pages = 0;
2f6726e5 5096 enum zone_type i, j;
cb45b0e9
HA
5097
5098 for_each_online_pgdat(pgdat) {
5099 for (i = 0; i < MAX_NR_ZONES; i++) {
5100 struct zone *zone = pgdat->node_zones + i;
5101 unsigned long max = 0;
5102
5103 /* Find valid and maximum lowmem_reserve in the zone */
5104 for (j = i; j < MAX_NR_ZONES; j++) {
5105 if (zone->lowmem_reserve[j] > max)
5106 max = zone->lowmem_reserve[j];
5107 }
5108
41858966
MG
5109 /* we treat the high watermark as reserved pages. */
5110 max += high_wmark_pages(zone);
cb45b0e9
HA
5111
5112 if (max > zone->present_pages)
5113 max = zone->present_pages;
5114 reserve_pages += max;
ab8fabd4
JW
5115 /*
5116 * Lowmem reserves are not available to
5117 * GFP_HIGHUSER page cache allocations and
5118 * kswapd tries to balance zones to their high
5119 * watermark. As a result, neither should be
5120 * regarded as dirtyable memory, to prevent a
5121 * situation where reclaim has to clean pages
5122 * in order to balance the zones.
5123 */
5124 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5125 }
5126 }
ab8fabd4 5127 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5128 totalreserve_pages = reserve_pages;
5129}
5130
1da177e4
LT
5131/*
5132 * setup_per_zone_lowmem_reserve - called whenever
5133 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5134 * has a correct pages reserved value, so an adequate number of
5135 * pages are left in the zone after a successful __alloc_pages().
5136 */
5137static void setup_per_zone_lowmem_reserve(void)
5138{
5139 struct pglist_data *pgdat;
2f6726e5 5140 enum zone_type j, idx;
1da177e4 5141
ec936fc5 5142 for_each_online_pgdat(pgdat) {
1da177e4
LT
5143 for (j = 0; j < MAX_NR_ZONES; j++) {
5144 struct zone *zone = pgdat->node_zones + j;
5145 unsigned long present_pages = zone->present_pages;
5146
5147 zone->lowmem_reserve[j] = 0;
5148
2f6726e5
CL
5149 idx = j;
5150 while (idx) {
1da177e4
LT
5151 struct zone *lower_zone;
5152
2f6726e5
CL
5153 idx--;
5154
1da177e4
LT
5155 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5156 sysctl_lowmem_reserve_ratio[idx] = 1;
5157
5158 lower_zone = pgdat->node_zones + idx;
5159 lower_zone->lowmem_reserve[j] = present_pages /
5160 sysctl_lowmem_reserve_ratio[idx];
5161 present_pages += lower_zone->present_pages;
5162 }
5163 }
5164 }
cb45b0e9
HA
5165
5166 /* update totalreserve_pages */
5167 calculate_totalreserve_pages();
1da177e4
LT
5168}
5169
cfd3da1e 5170static void __setup_per_zone_wmarks(void)
1da177e4
LT
5171{
5172 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5173 unsigned long lowmem_pages = 0;
5174 struct zone *zone;
5175 unsigned long flags;
5176
5177 /* Calculate total number of !ZONE_HIGHMEM pages */
5178 for_each_zone(zone) {
5179 if (!is_highmem(zone))
5180 lowmem_pages += zone->present_pages;
5181 }
5182
5183 for_each_zone(zone) {
ac924c60
AM
5184 u64 tmp;
5185
1125b4e3 5186 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5187 tmp = (u64)pages_min * zone->present_pages;
5188 do_div(tmp, lowmem_pages);
1da177e4
LT
5189 if (is_highmem(zone)) {
5190 /*
669ed175
NP
5191 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5192 * need highmem pages, so cap pages_min to a small
5193 * value here.
5194 *
41858966 5195 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5196 * deltas controls asynch page reclaim, and so should
5197 * not be capped for highmem.
1da177e4
LT
5198 */
5199 int min_pages;
5200
5201 min_pages = zone->present_pages / 1024;
5202 if (min_pages < SWAP_CLUSTER_MAX)
5203 min_pages = SWAP_CLUSTER_MAX;
5204 if (min_pages > 128)
5205 min_pages = 128;
41858966 5206 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5207 } else {
669ed175
NP
5208 /*
5209 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5210 * proportionate to the zone's size.
5211 */
41858966 5212 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5213 }
5214
41858966
MG
5215 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5216 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5217
5218 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5219 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5220 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5221
56fd56b8 5222 setup_zone_migrate_reserve(zone);
1125b4e3 5223 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5224 }
cb45b0e9
HA
5225
5226 /* update totalreserve_pages */
5227 calculate_totalreserve_pages();
1da177e4
LT
5228}
5229
cfd3da1e
MG
5230/**
5231 * setup_per_zone_wmarks - called when min_free_kbytes changes
5232 * or when memory is hot-{added|removed}
5233 *
5234 * Ensures that the watermark[min,low,high] values for each zone are set
5235 * correctly with respect to min_free_kbytes.
5236 */
5237void setup_per_zone_wmarks(void)
5238{
5239 mutex_lock(&zonelists_mutex);
5240 __setup_per_zone_wmarks();
5241 mutex_unlock(&zonelists_mutex);
5242}
5243
55a4462a 5244/*
556adecb
RR
5245 * The inactive anon list should be small enough that the VM never has to
5246 * do too much work, but large enough that each inactive page has a chance
5247 * to be referenced again before it is swapped out.
5248 *
5249 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5250 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5251 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5252 * the anonymous pages are kept on the inactive list.
5253 *
5254 * total target max
5255 * memory ratio inactive anon
5256 * -------------------------------------
5257 * 10MB 1 5MB
5258 * 100MB 1 50MB
5259 * 1GB 3 250MB
5260 * 10GB 10 0.9GB
5261 * 100GB 31 3GB
5262 * 1TB 101 10GB
5263 * 10TB 320 32GB
5264 */
1b79acc9 5265static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5266{
96cb4df5 5267 unsigned int gb, ratio;
556adecb 5268
96cb4df5
MK
5269 /* Zone size in gigabytes */
5270 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5271 if (gb)
556adecb 5272 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5273 else
5274 ratio = 1;
556adecb 5275
96cb4df5
MK
5276 zone->inactive_ratio = ratio;
5277}
556adecb 5278
839a4fcc 5279static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5280{
5281 struct zone *zone;
5282
5283 for_each_zone(zone)
5284 calculate_zone_inactive_ratio(zone);
556adecb
RR
5285}
5286
1da177e4
LT
5287/*
5288 * Initialise min_free_kbytes.
5289 *
5290 * For small machines we want it small (128k min). For large machines
5291 * we want it large (64MB max). But it is not linear, because network
5292 * bandwidth does not increase linearly with machine size. We use
5293 *
5294 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5295 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5296 *
5297 * which yields
5298 *
5299 * 16MB: 512k
5300 * 32MB: 724k
5301 * 64MB: 1024k
5302 * 128MB: 1448k
5303 * 256MB: 2048k
5304 * 512MB: 2896k
5305 * 1024MB: 4096k
5306 * 2048MB: 5792k
5307 * 4096MB: 8192k
5308 * 8192MB: 11584k
5309 * 16384MB: 16384k
5310 */
1b79acc9 5311int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5312{
5313 unsigned long lowmem_kbytes;
5314
5315 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5316
5317 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5318 if (min_free_kbytes < 128)
5319 min_free_kbytes = 128;
5320 if (min_free_kbytes > 65536)
5321 min_free_kbytes = 65536;
bc75d33f 5322 setup_per_zone_wmarks();
a6cccdc3 5323 refresh_zone_stat_thresholds();
1da177e4 5324 setup_per_zone_lowmem_reserve();
556adecb 5325 setup_per_zone_inactive_ratio();
1da177e4
LT
5326 return 0;
5327}
bc75d33f 5328module_init(init_per_zone_wmark_min)
1da177e4
LT
5329
5330/*
5331 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5332 * that we can call two helper functions whenever min_free_kbytes
5333 * changes.
5334 */
5335int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5336 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5337{
8d65af78 5338 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5339 if (write)
bc75d33f 5340 setup_per_zone_wmarks();
1da177e4
LT
5341 return 0;
5342}
5343
9614634f
CL
5344#ifdef CONFIG_NUMA
5345int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5346 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5347{
5348 struct zone *zone;
5349 int rc;
5350
8d65af78 5351 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5352 if (rc)
5353 return rc;
5354
5355 for_each_zone(zone)
8417bba4 5356 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5357 sysctl_min_unmapped_ratio) / 100;
5358 return 0;
5359}
0ff38490
CL
5360
5361int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5362 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5363{
5364 struct zone *zone;
5365 int rc;
5366
8d65af78 5367 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5368 if (rc)
5369 return rc;
5370
5371 for_each_zone(zone)
5372 zone->min_slab_pages = (zone->present_pages *
5373 sysctl_min_slab_ratio) / 100;
5374 return 0;
5375}
9614634f
CL
5376#endif
5377
1da177e4
LT
5378/*
5379 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5380 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5381 * whenever sysctl_lowmem_reserve_ratio changes.
5382 *
5383 * The reserve ratio obviously has absolutely no relation with the
41858966 5384 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5385 * if in function of the boot time zone sizes.
5386 */
5387int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5388 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5389{
8d65af78 5390 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5391 setup_per_zone_lowmem_reserve();
5392 return 0;
5393}
5394
8ad4b1fb
RS
5395/*
5396 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5397 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5398 * can have before it gets flushed back to buddy allocator.
5399 */
5400
5401int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5402 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5403{
5404 struct zone *zone;
5405 unsigned int cpu;
5406 int ret;
5407
8d65af78 5408 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5409 if (!write || (ret < 0))
8ad4b1fb 5410 return ret;
364df0eb 5411 for_each_populated_zone(zone) {
99dcc3e5 5412 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5413 unsigned long high;
5414 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5415 setup_pagelist_highmark(
5416 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5417 }
5418 }
5419 return 0;
5420}
5421
f034b5d4 5422int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5423
5424#ifdef CONFIG_NUMA
5425static int __init set_hashdist(char *str)
5426{
5427 if (!str)
5428 return 0;
5429 hashdist = simple_strtoul(str, &str, 0);
5430 return 1;
5431}
5432__setup("hashdist=", set_hashdist);
5433#endif
5434
5435/*
5436 * allocate a large system hash table from bootmem
5437 * - it is assumed that the hash table must contain an exact power-of-2
5438 * quantity of entries
5439 * - limit is the number of hash buckets, not the total allocation size
5440 */
5441void *__init alloc_large_system_hash(const char *tablename,
5442 unsigned long bucketsize,
5443 unsigned long numentries,
5444 int scale,
5445 int flags,
5446 unsigned int *_hash_shift,
5447 unsigned int *_hash_mask,
31fe62b9
TB
5448 unsigned long low_limit,
5449 unsigned long high_limit)
1da177e4 5450{
31fe62b9 5451 unsigned long long max = high_limit;
1da177e4
LT
5452 unsigned long log2qty, size;
5453 void *table = NULL;
5454
5455 /* allow the kernel cmdline to have a say */
5456 if (!numentries) {
5457 /* round applicable memory size up to nearest megabyte */
04903664 5458 numentries = nr_kernel_pages;
1da177e4
LT
5459 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5460 numentries >>= 20 - PAGE_SHIFT;
5461 numentries <<= 20 - PAGE_SHIFT;
5462
5463 /* limit to 1 bucket per 2^scale bytes of low memory */
5464 if (scale > PAGE_SHIFT)
5465 numentries >>= (scale - PAGE_SHIFT);
5466 else
5467 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5468
5469 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5470 if (unlikely(flags & HASH_SMALL)) {
5471 /* Makes no sense without HASH_EARLY */
5472 WARN_ON(!(flags & HASH_EARLY));
5473 if (!(numentries >> *_hash_shift)) {
5474 numentries = 1UL << *_hash_shift;
5475 BUG_ON(!numentries);
5476 }
5477 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5478 numentries = PAGE_SIZE / bucketsize;
1da177e4 5479 }
6e692ed3 5480 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5481
5482 /* limit allocation size to 1/16 total memory by default */
5483 if (max == 0) {
5484 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5485 do_div(max, bucketsize);
5486 }
074b8517 5487 max = min(max, 0x80000000ULL);
1da177e4 5488
31fe62b9
TB
5489 if (numentries < low_limit)
5490 numentries = low_limit;
1da177e4
LT
5491 if (numentries > max)
5492 numentries = max;
5493
f0d1b0b3 5494 log2qty = ilog2(numentries);
1da177e4
LT
5495
5496 do {
5497 size = bucketsize << log2qty;
5498 if (flags & HASH_EARLY)
74768ed8 5499 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5500 else if (hashdist)
5501 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5502 else {
1037b83b
ED
5503 /*
5504 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5505 * some pages at the end of hash table which
5506 * alloc_pages_exact() automatically does
1037b83b 5507 */
264ef8a9 5508 if (get_order(size) < MAX_ORDER) {
a1dd268c 5509 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5510 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5511 }
1da177e4
LT
5512 }
5513 } while (!table && size > PAGE_SIZE && --log2qty);
5514
5515 if (!table)
5516 panic("Failed to allocate %s hash table\n", tablename);
5517
f241e660 5518 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5519 tablename,
f241e660 5520 (1UL << log2qty),
f0d1b0b3 5521 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5522 size);
5523
5524 if (_hash_shift)
5525 *_hash_shift = log2qty;
5526 if (_hash_mask)
5527 *_hash_mask = (1 << log2qty) - 1;
5528
5529 return table;
5530}
a117e66e 5531
835c134e
MG
5532/* Return a pointer to the bitmap storing bits affecting a block of pages */
5533static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5534 unsigned long pfn)
5535{
5536#ifdef CONFIG_SPARSEMEM
5537 return __pfn_to_section(pfn)->pageblock_flags;
5538#else
5539 return zone->pageblock_flags;
5540#endif /* CONFIG_SPARSEMEM */
5541}
5542
5543static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5544{
5545#ifdef CONFIG_SPARSEMEM
5546 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5547 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5548#else
5549 pfn = pfn - zone->zone_start_pfn;
d9c23400 5550 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5551#endif /* CONFIG_SPARSEMEM */
5552}
5553
5554/**
d9c23400 5555 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5556 * @page: The page within the block of interest
5557 * @start_bitidx: The first bit of interest to retrieve
5558 * @end_bitidx: The last bit of interest
5559 * returns pageblock_bits flags
5560 */
5561unsigned long get_pageblock_flags_group(struct page *page,
5562 int start_bitidx, int end_bitidx)
5563{
5564 struct zone *zone;
5565 unsigned long *bitmap;
5566 unsigned long pfn, bitidx;
5567 unsigned long flags = 0;
5568 unsigned long value = 1;
5569
5570 zone = page_zone(page);
5571 pfn = page_to_pfn(page);
5572 bitmap = get_pageblock_bitmap(zone, pfn);
5573 bitidx = pfn_to_bitidx(zone, pfn);
5574
5575 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5576 if (test_bit(bitidx + start_bitidx, bitmap))
5577 flags |= value;
6220ec78 5578
835c134e
MG
5579 return flags;
5580}
5581
5582/**
d9c23400 5583 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5584 * @page: The page within the block of interest
5585 * @start_bitidx: The first bit of interest
5586 * @end_bitidx: The last bit of interest
5587 * @flags: The flags to set
5588 */
5589void set_pageblock_flags_group(struct page *page, unsigned long flags,
5590 int start_bitidx, int end_bitidx)
5591{
5592 struct zone *zone;
5593 unsigned long *bitmap;
5594 unsigned long pfn, bitidx;
5595 unsigned long value = 1;
5596
5597 zone = page_zone(page);
5598 pfn = page_to_pfn(page);
5599 bitmap = get_pageblock_bitmap(zone, pfn);
5600 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5601 VM_BUG_ON(pfn < zone->zone_start_pfn);
5602 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5603
5604 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5605 if (flags & value)
5606 __set_bit(bitidx + start_bitidx, bitmap);
5607 else
5608 __clear_bit(bitidx + start_bitidx, bitmap);
5609}
a5d76b54
KH
5610
5611/*
80934513
MK
5612 * This function checks whether pageblock includes unmovable pages or not.
5613 * If @count is not zero, it is okay to include less @count unmovable pages
5614 *
5615 * PageLRU check wihtout isolation or lru_lock could race so that
5616 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5617 * expect this function should be exact.
a5d76b54 5618 */
b023f468
WC
5619bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5620 bool skip_hwpoisoned_pages)
49ac8255
KH
5621{
5622 unsigned long pfn, iter, found;
47118af0
MN
5623 int mt;
5624
49ac8255
KH
5625 /*
5626 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5627 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5628 */
5629 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5630 return false;
47118af0
MN
5631 mt = get_pageblock_migratetype(page);
5632 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5633 return false;
49ac8255
KH
5634
5635 pfn = page_to_pfn(page);
5636 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5637 unsigned long check = pfn + iter;
5638
29723fcc 5639 if (!pfn_valid_within(check))
49ac8255 5640 continue;
29723fcc 5641
49ac8255 5642 page = pfn_to_page(check);
97d255c8
MK
5643 /*
5644 * We can't use page_count without pin a page
5645 * because another CPU can free compound page.
5646 * This check already skips compound tails of THP
5647 * because their page->_count is zero at all time.
5648 */
5649 if (!atomic_read(&page->_count)) {
49ac8255
KH
5650 if (PageBuddy(page))
5651 iter += (1 << page_order(page)) - 1;
5652 continue;
5653 }
97d255c8 5654
b023f468
WC
5655 /*
5656 * The HWPoisoned page may be not in buddy system, and
5657 * page_count() is not 0.
5658 */
5659 if (skip_hwpoisoned_pages && PageHWPoison(page))
5660 continue;
5661
49ac8255
KH
5662 if (!PageLRU(page))
5663 found++;
5664 /*
5665 * If there are RECLAIMABLE pages, we need to check it.
5666 * But now, memory offline itself doesn't call shrink_slab()
5667 * and it still to be fixed.
5668 */
5669 /*
5670 * If the page is not RAM, page_count()should be 0.
5671 * we don't need more check. This is an _used_ not-movable page.
5672 *
5673 * The problematic thing here is PG_reserved pages. PG_reserved
5674 * is set to both of a memory hole page and a _used_ kernel
5675 * page at boot.
5676 */
5677 if (found > count)
80934513 5678 return true;
49ac8255 5679 }
80934513 5680 return false;
49ac8255
KH
5681}
5682
5683bool is_pageblock_removable_nolock(struct page *page)
5684{
656a0706
MH
5685 struct zone *zone;
5686 unsigned long pfn;
687875fb
MH
5687
5688 /*
5689 * We have to be careful here because we are iterating over memory
5690 * sections which are not zone aware so we might end up outside of
5691 * the zone but still within the section.
656a0706
MH
5692 * We have to take care about the node as well. If the node is offline
5693 * its NODE_DATA will be NULL - see page_zone.
687875fb 5694 */
656a0706
MH
5695 if (!node_online(page_to_nid(page)))
5696 return false;
5697
5698 zone = page_zone(page);
5699 pfn = page_to_pfn(page);
5700 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5701 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5702 return false;
5703
b023f468 5704 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 5705}
0c0e6195 5706
041d3a8c
MN
5707#ifdef CONFIG_CMA
5708
5709static unsigned long pfn_max_align_down(unsigned long pfn)
5710{
5711 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5712 pageblock_nr_pages) - 1);
5713}
5714
5715static unsigned long pfn_max_align_up(unsigned long pfn)
5716{
5717 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5718 pageblock_nr_pages));
5719}
5720
041d3a8c 5721/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5722static int __alloc_contig_migrate_range(struct compact_control *cc,
5723 unsigned long start, unsigned long end)
041d3a8c
MN
5724{
5725 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 5726 unsigned long nr_reclaimed;
041d3a8c
MN
5727 unsigned long pfn = start;
5728 unsigned int tries = 0;
5729 int ret = 0;
5730
041d3a8c
MN
5731 migrate_prep_local();
5732
bb13ffeb 5733 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5734 if (fatal_signal_pending(current)) {
5735 ret = -EINTR;
5736 break;
5737 }
5738
bb13ffeb
MG
5739 if (list_empty(&cc->migratepages)) {
5740 cc->nr_migratepages = 0;
5741 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 5742 pfn, end, true);
041d3a8c
MN
5743 if (!pfn) {
5744 ret = -EINTR;
5745 break;
5746 }
5747 tries = 0;
5748 } else if (++tries == 5) {
5749 ret = ret < 0 ? ret : -EBUSY;
5750 break;
5751 }
5752
beb51eaa
MK
5753 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5754 &cc->migratepages);
5755 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 5756
bb13ffeb 5757 ret = migrate_pages(&cc->migratepages,
723a0644 5758 alloc_migrate_target,
58f42fd5 5759 0, false, MIGRATE_SYNC);
041d3a8c
MN
5760 }
5761
bb13ffeb 5762 putback_lru_pages(&cc->migratepages);
041d3a8c
MN
5763 return ret > 0 ? 0 : ret;
5764}
5765
49f223a9
MS
5766/*
5767 * Update zone's cma pages counter used for watermark level calculation.
5768 */
5769static inline void __update_cma_watermarks(struct zone *zone, int count)
5770{
5771 unsigned long flags;
5772 spin_lock_irqsave(&zone->lock, flags);
5773 zone->min_cma_pages += count;
5774 spin_unlock_irqrestore(&zone->lock, flags);
5775 setup_per_zone_wmarks();
5776}
5777
5778/*
5779 * Trigger memory pressure bump to reclaim some pages in order to be able to
5780 * allocate 'count' pages in single page units. Does similar work as
5781 *__alloc_pages_slowpath() function.
5782 */
5783static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5784{
5785 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5786 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5787 int did_some_progress = 0;
5788 int order = 1;
5789
5790 /*
5791 * Increase level of watermarks to force kswapd do his job
5792 * to stabilise at new watermark level.
5793 */
5794 __update_cma_watermarks(zone, count);
5795
5796 /* Obey watermarks as if the page was being allocated */
5797 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5798 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5799
5800 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5801 NULL);
5802 if (!did_some_progress) {
5803 /* Exhausted what can be done so it's blamo time */
5804 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5805 }
5806 }
5807
5808 /* Restore original watermark levels. */
5809 __update_cma_watermarks(zone, -count);
5810
5811 return count;
5812}
5813
041d3a8c
MN
5814/**
5815 * alloc_contig_range() -- tries to allocate given range of pages
5816 * @start: start PFN to allocate
5817 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5818 * @migratetype: migratetype of the underlaying pageblocks (either
5819 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5820 * in range must have the same migratetype and it must
5821 * be either of the two.
041d3a8c
MN
5822 *
5823 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5824 * aligned, however it's the caller's responsibility to guarantee that
5825 * we are the only thread that changes migrate type of pageblocks the
5826 * pages fall in.
5827 *
5828 * The PFN range must belong to a single zone.
5829 *
5830 * Returns zero on success or negative error code. On success all
5831 * pages which PFN is in [start, end) are allocated for the caller and
5832 * need to be freed with free_contig_range().
5833 */
0815f3d8
MN
5834int alloc_contig_range(unsigned long start, unsigned long end,
5835 unsigned migratetype)
041d3a8c
MN
5836{
5837 struct zone *zone = page_zone(pfn_to_page(start));
5838 unsigned long outer_start, outer_end;
5839 int ret = 0, order;
5840
bb13ffeb
MG
5841 struct compact_control cc = {
5842 .nr_migratepages = 0,
5843 .order = -1,
5844 .zone = page_zone(pfn_to_page(start)),
5845 .sync = true,
5846 .ignore_skip_hint = true,
5847 };
5848 INIT_LIST_HEAD(&cc.migratepages);
5849
041d3a8c
MN
5850 /*
5851 * What we do here is we mark all pageblocks in range as
5852 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5853 * have different sizes, and due to the way page allocator
5854 * work, we align the range to biggest of the two pages so
5855 * that page allocator won't try to merge buddies from
5856 * different pageblocks and change MIGRATE_ISOLATE to some
5857 * other migration type.
5858 *
5859 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5860 * migrate the pages from an unaligned range (ie. pages that
5861 * we are interested in). This will put all the pages in
5862 * range back to page allocator as MIGRATE_ISOLATE.
5863 *
5864 * When this is done, we take the pages in range from page
5865 * allocator removing them from the buddy system. This way
5866 * page allocator will never consider using them.
5867 *
5868 * This lets us mark the pageblocks back as
5869 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5870 * aligned range but not in the unaligned, original range are
5871 * put back to page allocator so that buddy can use them.
5872 */
5873
5874 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
5875 pfn_max_align_up(end), migratetype,
5876 false);
041d3a8c 5877 if (ret)
86a595f9 5878 return ret;
041d3a8c 5879
bb13ffeb 5880 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
5881 if (ret)
5882 goto done;
5883
5884 /*
5885 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5886 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5887 * more, all pages in [start, end) are free in page allocator.
5888 * What we are going to do is to allocate all pages from
5889 * [start, end) (that is remove them from page allocator).
5890 *
5891 * The only problem is that pages at the beginning and at the
5892 * end of interesting range may be not aligned with pages that
5893 * page allocator holds, ie. they can be part of higher order
5894 * pages. Because of this, we reserve the bigger range and
5895 * once this is done free the pages we are not interested in.
5896 *
5897 * We don't have to hold zone->lock here because the pages are
5898 * isolated thus they won't get removed from buddy.
5899 */
5900
5901 lru_add_drain_all();
5902 drain_all_pages();
5903
5904 order = 0;
5905 outer_start = start;
5906 while (!PageBuddy(pfn_to_page(outer_start))) {
5907 if (++order >= MAX_ORDER) {
5908 ret = -EBUSY;
5909 goto done;
5910 }
5911 outer_start &= ~0UL << order;
5912 }
5913
5914 /* Make sure the range is really isolated. */
b023f468 5915 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
5916 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5917 outer_start, end);
5918 ret = -EBUSY;
5919 goto done;
5920 }
5921
49f223a9
MS
5922 /*
5923 * Reclaim enough pages to make sure that contiguous allocation
5924 * will not starve the system.
5925 */
5926 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5927
5928 /* Grab isolated pages from freelists. */
bb13ffeb 5929 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
5930 if (!outer_end) {
5931 ret = -EBUSY;
5932 goto done;
5933 }
5934
5935 /* Free head and tail (if any) */
5936 if (start != outer_start)
5937 free_contig_range(outer_start, start - outer_start);
5938 if (end != outer_end)
5939 free_contig_range(end, outer_end - end);
5940
5941done:
5942 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5943 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5944 return ret;
5945}
5946
5947void free_contig_range(unsigned long pfn, unsigned nr_pages)
5948{
5949 for (; nr_pages--; ++pfn)
5950 __free_page(pfn_to_page(pfn));
5951}
5952#endif
5953
4ed7e022
JL
5954#ifdef CONFIG_MEMORY_HOTPLUG
5955static int __meminit __zone_pcp_update(void *data)
5956{
5957 struct zone *zone = data;
5958 int cpu;
5959 unsigned long batch = zone_batchsize(zone), flags;
5960
5961 for_each_possible_cpu(cpu) {
5962 struct per_cpu_pageset *pset;
5963 struct per_cpu_pages *pcp;
5964
5965 pset = per_cpu_ptr(zone->pageset, cpu);
5966 pcp = &pset->pcp;
5967
5968 local_irq_save(flags);
5969 if (pcp->count > 0)
5970 free_pcppages_bulk(zone, pcp->count, pcp);
5a883813 5971 drain_zonestat(zone, pset);
4ed7e022
JL
5972 setup_pageset(pset, batch);
5973 local_irq_restore(flags);
5974 }
5975 return 0;
5976}
5977
5978void __meminit zone_pcp_update(struct zone *zone)
5979{
5980 stop_machine(__zone_pcp_update, zone, NULL);
5981}
5982#endif
5983
0c0e6195 5984#ifdef CONFIG_MEMORY_HOTREMOVE
340175b7
JL
5985void zone_pcp_reset(struct zone *zone)
5986{
5987 unsigned long flags;
5a883813
MK
5988 int cpu;
5989 struct per_cpu_pageset *pset;
340175b7
JL
5990
5991 /* avoid races with drain_pages() */
5992 local_irq_save(flags);
5993 if (zone->pageset != &boot_pageset) {
5a883813
MK
5994 for_each_online_cpu(cpu) {
5995 pset = per_cpu_ptr(zone->pageset, cpu);
5996 drain_zonestat(zone, pset);
5997 }
340175b7
JL
5998 free_percpu(zone->pageset);
5999 zone->pageset = &boot_pageset;
6000 }
6001 local_irq_restore(flags);
6002}
6003
0c0e6195
KH
6004/*
6005 * All pages in the range must be isolated before calling this.
6006 */
6007void
6008__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6009{
6010 struct page *page;
6011 struct zone *zone;
6012 int order, i;
6013 unsigned long pfn;
6014 unsigned long flags;
6015 /* find the first valid pfn */
6016 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6017 if (pfn_valid(pfn))
6018 break;
6019 if (pfn == end_pfn)
6020 return;
6021 zone = page_zone(pfn_to_page(pfn));
6022 spin_lock_irqsave(&zone->lock, flags);
6023 pfn = start_pfn;
6024 while (pfn < end_pfn) {
6025 if (!pfn_valid(pfn)) {
6026 pfn++;
6027 continue;
6028 }
6029 page = pfn_to_page(pfn);
b023f468
WC
6030 /*
6031 * The HWPoisoned page may be not in buddy system, and
6032 * page_count() is not 0.
6033 */
6034 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6035 pfn++;
6036 SetPageReserved(page);
6037 continue;
6038 }
6039
0c0e6195
KH
6040 BUG_ON(page_count(page));
6041 BUG_ON(!PageBuddy(page));
6042 order = page_order(page);
6043#ifdef CONFIG_DEBUG_VM
6044 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6045 pfn, 1 << order, end_pfn);
6046#endif
6047 list_del(&page->lru);
6048 rmv_page_order(page);
6049 zone->free_area[order].nr_free--;
6050 __mod_zone_page_state(zone, NR_FREE_PAGES,
6051 - (1UL << order));
6052 for (i = 0; i < (1 << order); i++)
6053 SetPageReserved((page+i));
6054 pfn += (1 << order);
6055 }
6056 spin_unlock_irqrestore(&zone->lock, flags);
6057}
6058#endif
8d22ba1b
WF
6059
6060#ifdef CONFIG_MEMORY_FAILURE
6061bool is_free_buddy_page(struct page *page)
6062{
6063 struct zone *zone = page_zone(page);
6064 unsigned long pfn = page_to_pfn(page);
6065 unsigned long flags;
6066 int order;
6067
6068 spin_lock_irqsave(&zone->lock, flags);
6069 for (order = 0; order < MAX_ORDER; order++) {
6070 struct page *page_head = page - (pfn & ((1 << order) - 1));
6071
6072 if (PageBuddy(page_head) && page_order(page_head) >= order)
6073 break;
6074 }
6075 spin_unlock_irqrestore(&zone->lock, flags);
6076
6077 return order < MAX_ORDER;
6078}
6079#endif
718a3821 6080
51300cef 6081static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6082 {1UL << PG_locked, "locked" },
6083 {1UL << PG_error, "error" },
6084 {1UL << PG_referenced, "referenced" },
6085 {1UL << PG_uptodate, "uptodate" },
6086 {1UL << PG_dirty, "dirty" },
6087 {1UL << PG_lru, "lru" },
6088 {1UL << PG_active, "active" },
6089 {1UL << PG_slab, "slab" },
6090 {1UL << PG_owner_priv_1, "owner_priv_1" },
6091 {1UL << PG_arch_1, "arch_1" },
6092 {1UL << PG_reserved, "reserved" },
6093 {1UL << PG_private, "private" },
6094 {1UL << PG_private_2, "private_2" },
6095 {1UL << PG_writeback, "writeback" },
6096#ifdef CONFIG_PAGEFLAGS_EXTENDED
6097 {1UL << PG_head, "head" },
6098 {1UL << PG_tail, "tail" },
6099#else
6100 {1UL << PG_compound, "compound" },
6101#endif
6102 {1UL << PG_swapcache, "swapcache" },
6103 {1UL << PG_mappedtodisk, "mappedtodisk" },
6104 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6105 {1UL << PG_swapbacked, "swapbacked" },
6106 {1UL << PG_unevictable, "unevictable" },
6107#ifdef CONFIG_MMU
6108 {1UL << PG_mlocked, "mlocked" },
6109#endif
6110#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6111 {1UL << PG_uncached, "uncached" },
6112#endif
6113#ifdef CONFIG_MEMORY_FAILURE
6114 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6115#endif
6116#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6117 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6118#endif
718a3821
WF
6119};
6120
6121static void dump_page_flags(unsigned long flags)
6122{
6123 const char *delim = "";
6124 unsigned long mask;
6125 int i;
6126
51300cef 6127 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6128
718a3821
WF
6129 printk(KERN_ALERT "page flags: %#lx(", flags);
6130
6131 /* remove zone id */
6132 flags &= (1UL << NR_PAGEFLAGS) - 1;
6133
51300cef 6134 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6135
6136 mask = pageflag_names[i].mask;
6137 if ((flags & mask) != mask)
6138 continue;
6139
6140 flags &= ~mask;
6141 printk("%s%s", delim, pageflag_names[i].name);
6142 delim = "|";
6143 }
6144
6145 /* check for left over flags */
6146 if (flags)
6147 printk("%s%#lx", delim, flags);
6148
6149 printk(")\n");
6150}
6151
6152void dump_page(struct page *page)
6153{
6154 printk(KERN_ALERT
6155 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6156 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6157 page->mapping, page->index);
6158 dump_page_flags(page->flags);
f212ad7c 6159 mem_cgroup_print_bad_page(page);
718a3821 6160}