]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
mm, oom: ensure memoryless node zonelist always includes zones
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 72#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 73
72812019
LS
74#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75DEFINE_PER_CPU(int, numa_node);
76EXPORT_PER_CPU_SYMBOL(numa_node);
77#endif
78
7aac7898
LS
79#ifdef CONFIG_HAVE_MEMORYLESS_NODES
80/*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88#endif
89
1da177e4 90/*
13808910 91 * Array of node states.
1da177e4 92 */
13808910
CL
93nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 [N_POSSIBLE] = NODE_MASK_ALL,
95 [N_ONLINE] = { { [0] = 1UL } },
96#ifndef CONFIG_NUMA
97 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
98#ifdef CONFIG_HIGHMEM
99 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
100#endif
101#ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
103#endif
104 [N_CPU] = { { [0] = 1UL } },
105#endif /* NUMA */
106};
107EXPORT_SYMBOL(node_states);
108
c3d5f5f0
JL
109/* Protect totalram_pages and zone->managed_pages */
110static DEFINE_SPINLOCK(managed_page_count_lock);
111
6c231b7b 112unsigned long totalram_pages __read_mostly;
cb45b0e9 113unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
114/*
115 * When calculating the number of globally allowed dirty pages, there
116 * is a certain number of per-zone reserves that should not be
117 * considered dirtyable memory. This is the sum of those reserves
118 * over all existing zones that contribute dirtyable memory.
119 */
120unsigned long dirty_balance_reserve __read_mostly;
121
1b76b02f 122int percpu_pagelist_fraction;
dcce284a 123gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 124
452aa699
RW
125#ifdef CONFIG_PM_SLEEP
126/*
127 * The following functions are used by the suspend/hibernate code to temporarily
128 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
129 * while devices are suspended. To avoid races with the suspend/hibernate code,
130 * they should always be called with pm_mutex held (gfp_allowed_mask also should
131 * only be modified with pm_mutex held, unless the suspend/hibernate code is
132 * guaranteed not to run in parallel with that modification).
133 */
c9e664f1
RW
134
135static gfp_t saved_gfp_mask;
136
137void pm_restore_gfp_mask(void)
452aa699
RW
138{
139 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
140 if (saved_gfp_mask) {
141 gfp_allowed_mask = saved_gfp_mask;
142 saved_gfp_mask = 0;
143 }
452aa699
RW
144}
145
c9e664f1 146void pm_restrict_gfp_mask(void)
452aa699 147{
452aa699 148 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
149 WARN_ON(saved_gfp_mask);
150 saved_gfp_mask = gfp_allowed_mask;
151 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 152}
f90ac398
MG
153
154bool pm_suspended_storage(void)
155{
156 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
157 return false;
158 return true;
159}
452aa699
RW
160#endif /* CONFIG_PM_SLEEP */
161
d9c23400
MG
162#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
163int pageblock_order __read_mostly;
164#endif
165
d98c7a09 166static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 167
1da177e4
LT
168/*
169 * results with 256, 32 in the lowmem_reserve sysctl:
170 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
171 * 1G machine -> (16M dma, 784M normal, 224M high)
172 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
173 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
174 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
175 *
176 * TBD: should special case ZONE_DMA32 machines here - in those we normally
177 * don't need any ZONE_NORMAL reservation
1da177e4 178 */
2f1b6248 179int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 180#ifdef CONFIG_ZONE_DMA
2f1b6248 181 256,
4b51d669 182#endif
fb0e7942 183#ifdef CONFIG_ZONE_DMA32
2f1b6248 184 256,
fb0e7942 185#endif
e53ef38d 186#ifdef CONFIG_HIGHMEM
2a1e274a 187 32,
e53ef38d 188#endif
2a1e274a 189 32,
2f1b6248 190};
1da177e4
LT
191
192EXPORT_SYMBOL(totalram_pages);
1da177e4 193
15ad7cdc 194static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 "DMA",
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 "DMA32",
fb0e7942 200#endif
2f1b6248 201 "Normal",
e53ef38d 202#ifdef CONFIG_HIGHMEM
2a1e274a 203 "HighMem",
e53ef38d 204#endif
2a1e274a 205 "Movable",
2f1b6248
CL
206};
207
1da177e4 208int min_free_kbytes = 1024;
42aa83cb 209int user_min_free_kbytes = -1;
1da177e4 210
2c85f51d
JB
211static unsigned long __meminitdata nr_kernel_pages;
212static unsigned long __meminitdata nr_all_pages;
a3142c8e 213static unsigned long __meminitdata dma_reserve;
1da177e4 214
0ee332c1
TH
215#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
216static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
218static unsigned long __initdata required_kernelcore;
219static unsigned long __initdata required_movablecore;
220static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
221
222/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223int movable_zone;
224EXPORT_SYMBOL(movable_zone);
225#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 226
418508c1
MS
227#if MAX_NUMNODES > 1
228int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 229int nr_online_nodes __read_mostly = 1;
418508c1 230EXPORT_SYMBOL(nr_node_ids);
62bc62a8 231EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
232#endif
233
9ef9acb0
MG
234int page_group_by_mobility_disabled __read_mostly;
235
ee6f509c 236void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 237{
5d0f3f72
KM
238 if (unlikely(page_group_by_mobility_disabled &&
239 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
240 migratetype = MIGRATE_UNMOVABLE;
241
b2a0ac88
MG
242 set_pageblock_flags_group(page, (unsigned long)migratetype,
243 PB_migrate, PB_migrate_end);
244}
245
7f33d49a
RW
246bool oom_killer_disabled __read_mostly;
247
13e7444b 248#ifdef CONFIG_DEBUG_VM
c6a57e19 249static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 250{
bdc8cb98
DH
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 254 unsigned long sp, start_pfn;
c6a57e19 255
bdc8cb98
DH
256 do {
257 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
108bcc96 260 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
b5e6a5a2 264 if (ret)
613813e8
DH
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
b5e6a5a2 268
bdc8cb98 269 return ret;
c6a57e19
DH
270}
271
272static int page_is_consistent(struct zone *zone, struct page *page)
273{
14e07298 274 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 275 return 0;
1da177e4 276 if (zone != page_zone(page))
c6a57e19
DH
277 return 0;
278
279 return 1;
280}
281/*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284static int bad_range(struct zone *zone, struct page *page)
285{
286 if (page_outside_zone_boundaries(zone, page))
1da177e4 287 return 1;
c6a57e19
DH
288 if (!page_is_consistent(zone, page))
289 return 1;
290
1da177e4
LT
291 return 0;
292}
13e7444b
NP
293#else
294static inline int bad_range(struct zone *zone, struct page *page)
295{
296 return 0;
297}
298#endif
299
d230dec1
KS
300static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
1da177e4 302{
d936cf9b
HD
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
2a7684a2
WF
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
22b751c3 309 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
310 return;
311 }
312
d936cf9b
HD
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
1e9e6365
HD
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
1e9e6365 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 334 current->comm, page_to_pfn(page));
f0b791a3 335 dump_page_badflags(page, reason, bad_flags);
3dc14741 336
4f31888c 337 print_modules();
1da177e4 338 dump_stack();
d936cf9b 339out:
8cc3b392 340 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 341 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
343}
344
1da177e4
LT
345/*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
6416b9fa
WSH
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
1da177e4 354 *
41d78ba5
HD
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
1da177e4 358 */
d98c7a09
HD
359
360static void free_compound_page(struct page *page)
361{
d85f3385 362 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
363}
364
01ad1c08 365void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
366{
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
58a84aa9 375 set_page_count(p, 0);
18229df5 376 p->first_page = page;
668f9abb
DR
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
18229df5
AW
380 }
381}
382
59ff4216 383/* update __split_huge_page_refcount if you change this function */
8cc3b392 384static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
385{
386 int i;
387 int nr_pages = 1 << order;
8cc3b392 388 int bad = 0;
1da177e4 389
0bb2c763 390 if (unlikely(compound_order(page) != order)) {
f0b791a3 391 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
392 bad++;
393 }
1da177e4 394
6d777953 395 __ClearPageHead(page);
8cc3b392 396
18229df5
AW
397 for (i = 1; i < nr_pages; i++) {
398 struct page *p = page + i;
1da177e4 399
f0b791a3
DH
400 if (unlikely(!PageTail(p))) {
401 bad_page(page, "PageTail not set", 0);
402 bad++;
403 } else if (unlikely(p->first_page != page)) {
404 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
405 bad++;
406 }
d85f3385 407 __ClearPageTail(p);
1da177e4 408 }
8cc3b392
HD
409
410 return bad;
1da177e4 411}
1da177e4 412
7aeb09f9
MG
413static inline void prep_zero_page(struct page *page, unsigned int order,
414 gfp_t gfp_flags)
17cf4406
NP
415{
416 int i;
417
6626c5d5
AM
418 /*
419 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
420 * and __GFP_HIGHMEM from hard or soft interrupt context.
421 */
725d704e 422 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
423 for (i = 0; i < (1 << order); i++)
424 clear_highpage(page + i);
425}
426
c0a32fc5
SG
427#ifdef CONFIG_DEBUG_PAGEALLOC
428unsigned int _debug_guardpage_minorder;
429
430static int __init debug_guardpage_minorder_setup(char *buf)
431{
432 unsigned long res;
433
434 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
435 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
436 return 0;
437 }
438 _debug_guardpage_minorder = res;
439 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
440 return 0;
441}
442__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
443
444static inline void set_page_guard_flag(struct page *page)
445{
446 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
447}
448
449static inline void clear_page_guard_flag(struct page *page)
450{
451 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
452}
453#else
454static inline void set_page_guard_flag(struct page *page) { }
455static inline void clear_page_guard_flag(struct page *page) { }
456#endif
457
7aeb09f9 458static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 459{
4c21e2f2 460 set_page_private(page, order);
676165a8 461 __SetPageBuddy(page);
1da177e4
LT
462}
463
464static inline void rmv_page_order(struct page *page)
465{
676165a8 466 __ClearPageBuddy(page);
4c21e2f2 467 set_page_private(page, 0);
1da177e4
LT
468}
469
470/*
471 * Locate the struct page for both the matching buddy in our
472 * pair (buddy1) and the combined O(n+1) page they form (page).
473 *
474 * 1) Any buddy B1 will have an order O twin B2 which satisfies
475 * the following equation:
476 * B2 = B1 ^ (1 << O)
477 * For example, if the starting buddy (buddy2) is #8 its order
478 * 1 buddy is #10:
479 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
480 *
481 * 2) Any buddy B will have an order O+1 parent P which
482 * satisfies the following equation:
483 * P = B & ~(1 << O)
484 *
d6e05edc 485 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 486 */
1da177e4 487static inline unsigned long
43506fad 488__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 489{
43506fad 490 return page_idx ^ (1 << order);
1da177e4
LT
491}
492
493/*
494 * This function checks whether a page is free && is the buddy
495 * we can do coalesce a page and its buddy if
13e7444b 496 * (a) the buddy is not in a hole &&
676165a8 497 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
498 * (c) a page and its buddy have the same order &&
499 * (d) a page and its buddy are in the same zone.
676165a8 500 *
cf6fe945
WSH
501 * For recording whether a page is in the buddy system, we set ->_mapcount
502 * PAGE_BUDDY_MAPCOUNT_VALUE.
503 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
504 * serialized by zone->lock.
1da177e4 505 *
676165a8 506 * For recording page's order, we use page_private(page).
1da177e4 507 */
cb2b95e1 508static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 509 unsigned int order)
1da177e4 510{
14e07298 511 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 512 return 0;
13e7444b 513
c0a32fc5 514 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 515 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
516
517 if (page_zone_id(page) != page_zone_id(buddy))
518 return 0;
519
c0a32fc5
SG
520 return 1;
521 }
522
cb2b95e1 523 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 524 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
525
526 /*
527 * zone check is done late to avoid uselessly
528 * calculating zone/node ids for pages that could
529 * never merge.
530 */
531 if (page_zone_id(page) != page_zone_id(buddy))
532 return 0;
533
6aa3001b 534 return 1;
676165a8 535 }
6aa3001b 536 return 0;
1da177e4
LT
537}
538
539/*
540 * Freeing function for a buddy system allocator.
541 *
542 * The concept of a buddy system is to maintain direct-mapped table
543 * (containing bit values) for memory blocks of various "orders".
544 * The bottom level table contains the map for the smallest allocatable
545 * units of memory (here, pages), and each level above it describes
546 * pairs of units from the levels below, hence, "buddies".
547 * At a high level, all that happens here is marking the table entry
548 * at the bottom level available, and propagating the changes upward
549 * as necessary, plus some accounting needed to play nicely with other
550 * parts of the VM system.
551 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
552 * free pages of length of (1 << order) and marked with _mapcount
553 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
554 * field.
1da177e4 555 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
556 * other. That is, if we allocate a small block, and both were
557 * free, the remainder of the region must be split into blocks.
1da177e4 558 * If a block is freed, and its buddy is also free, then this
5f63b720 559 * triggers coalescing into a block of larger size.
1da177e4 560 *
6d49e352 561 * -- nyc
1da177e4
LT
562 */
563
48db57f8 564static inline void __free_one_page(struct page *page,
dc4b0caf 565 unsigned long pfn,
ed0ae21d
MG
566 struct zone *zone, unsigned int order,
567 int migratetype)
1da177e4
LT
568{
569 unsigned long page_idx;
6dda9d55 570 unsigned long combined_idx;
43506fad 571 unsigned long uninitialized_var(buddy_idx);
6dda9d55 572 struct page *buddy;
1da177e4 573
d29bb978
CS
574 VM_BUG_ON(!zone_is_initialized(zone));
575
224abf92 576 if (unlikely(PageCompound(page)))
8cc3b392
HD
577 if (unlikely(destroy_compound_page(page, order)))
578 return;
1da177e4 579
ed0ae21d
MG
580 VM_BUG_ON(migratetype == -1);
581
dc4b0caf 582 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 583
309381fe
SL
584 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
585 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 586
1da177e4 587 while (order < MAX_ORDER-1) {
43506fad
KC
588 buddy_idx = __find_buddy_index(page_idx, order);
589 buddy = page + (buddy_idx - page_idx);
cb2b95e1 590 if (!page_is_buddy(page, buddy, order))
3c82d0ce 591 break;
c0a32fc5
SG
592 /*
593 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
594 * merge with it and move up one order.
595 */
596 if (page_is_guard(buddy)) {
597 clear_page_guard_flag(buddy);
598 set_page_private(page, 0);
d1ce749a
BZ
599 __mod_zone_freepage_state(zone, 1 << order,
600 migratetype);
c0a32fc5
SG
601 } else {
602 list_del(&buddy->lru);
603 zone->free_area[order].nr_free--;
604 rmv_page_order(buddy);
605 }
43506fad 606 combined_idx = buddy_idx & page_idx;
1da177e4
LT
607 page = page + (combined_idx - page_idx);
608 page_idx = combined_idx;
609 order++;
610 }
611 set_page_order(page, order);
6dda9d55
CZ
612
613 /*
614 * If this is not the largest possible page, check if the buddy
615 * of the next-highest order is free. If it is, it's possible
616 * that pages are being freed that will coalesce soon. In case,
617 * that is happening, add the free page to the tail of the list
618 * so it's less likely to be used soon and more likely to be merged
619 * as a higher order page
620 */
b7f50cfa 621 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 622 struct page *higher_page, *higher_buddy;
43506fad
KC
623 combined_idx = buddy_idx & page_idx;
624 higher_page = page + (combined_idx - page_idx);
625 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 626 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
627 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
628 list_add_tail(&page->lru,
629 &zone->free_area[order].free_list[migratetype]);
630 goto out;
631 }
632 }
633
634 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
635out:
1da177e4
LT
636 zone->free_area[order].nr_free++;
637}
638
224abf92 639static inline int free_pages_check(struct page *page)
1da177e4 640{
d230dec1 641 const char *bad_reason = NULL;
f0b791a3
DH
642 unsigned long bad_flags = 0;
643
644 if (unlikely(page_mapcount(page)))
645 bad_reason = "nonzero mapcount";
646 if (unlikely(page->mapping != NULL))
647 bad_reason = "non-NULL mapping";
648 if (unlikely(atomic_read(&page->_count) != 0))
649 bad_reason = "nonzero _count";
650 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
651 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
652 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
653 }
654 if (unlikely(mem_cgroup_bad_page_check(page)))
655 bad_reason = "cgroup check failed";
656 if (unlikely(bad_reason)) {
657 bad_page(page, bad_reason, bad_flags);
79f4b7bf 658 return 1;
8cc3b392 659 }
90572890 660 page_cpupid_reset_last(page);
79f4b7bf
HD
661 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
662 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
663 return 0;
1da177e4
LT
664}
665
666/*
5f8dcc21 667 * Frees a number of pages from the PCP lists
1da177e4 668 * Assumes all pages on list are in same zone, and of same order.
207f36ee 669 * count is the number of pages to free.
1da177e4
LT
670 *
671 * If the zone was previously in an "all pages pinned" state then look to
672 * see if this freeing clears that state.
673 *
674 * And clear the zone's pages_scanned counter, to hold off the "all pages are
675 * pinned" detection logic.
676 */
5f8dcc21
MG
677static void free_pcppages_bulk(struct zone *zone, int count,
678 struct per_cpu_pages *pcp)
1da177e4 679{
5f8dcc21 680 int migratetype = 0;
a6f9edd6 681 int batch_free = 0;
72853e29 682 int to_free = count;
0d5d823a 683 unsigned long nr_scanned;
5f8dcc21 684
c54ad30c 685 spin_lock(&zone->lock);
0d5d823a
MG
686 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
687 if (nr_scanned)
688 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 689
72853e29 690 while (to_free) {
48db57f8 691 struct page *page;
5f8dcc21
MG
692 struct list_head *list;
693
694 /*
a6f9edd6
MG
695 * Remove pages from lists in a round-robin fashion. A
696 * batch_free count is maintained that is incremented when an
697 * empty list is encountered. This is so more pages are freed
698 * off fuller lists instead of spinning excessively around empty
699 * lists
5f8dcc21
MG
700 */
701 do {
a6f9edd6 702 batch_free++;
5f8dcc21
MG
703 if (++migratetype == MIGRATE_PCPTYPES)
704 migratetype = 0;
705 list = &pcp->lists[migratetype];
706 } while (list_empty(list));
48db57f8 707
1d16871d
NK
708 /* This is the only non-empty list. Free them all. */
709 if (batch_free == MIGRATE_PCPTYPES)
710 batch_free = to_free;
711
a6f9edd6 712 do {
770c8aaa
BZ
713 int mt; /* migratetype of the to-be-freed page */
714
a6f9edd6
MG
715 page = list_entry(list->prev, struct page, lru);
716 /* must delete as __free_one_page list manipulates */
717 list_del(&page->lru);
b12c4ad1 718 mt = get_freepage_migratetype(page);
a7016235 719 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 720 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 721 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 722 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
723 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
724 if (is_migrate_cma(mt))
725 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
726 }
72853e29 727 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 728 }
c54ad30c 729 spin_unlock(&zone->lock);
1da177e4
LT
730}
731
dc4b0caf
MG
732static void free_one_page(struct zone *zone,
733 struct page *page, unsigned long pfn,
7aeb09f9 734 unsigned int order,
ed0ae21d 735 int migratetype)
1da177e4 736{
0d5d823a 737 unsigned long nr_scanned;
006d22d9 738 spin_lock(&zone->lock);
0d5d823a
MG
739 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
740 if (nr_scanned)
741 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 742
dc4b0caf 743 __free_one_page(page, pfn, zone, order, migratetype);
194159fb 744 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 745 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 746 spin_unlock(&zone->lock);
48db57f8
NP
747}
748
ec95f53a 749static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 750{
1da177e4 751 int i;
8cc3b392 752 int bad = 0;
1da177e4 753
b413d48a 754 trace_mm_page_free(page, order);
b1eeab67
VN
755 kmemcheck_free_shadow(page, order);
756
8dd60a3a
AA
757 if (PageAnon(page))
758 page->mapping = NULL;
759 for (i = 0; i < (1 << order); i++)
760 bad += free_pages_check(page + i);
8cc3b392 761 if (bad)
ec95f53a 762 return false;
689bcebf 763
3ac7fe5a 764 if (!PageHighMem(page)) {
b8af2941
PK
765 debug_check_no_locks_freed(page_address(page),
766 PAGE_SIZE << order);
3ac7fe5a
TG
767 debug_check_no_obj_freed(page_address(page),
768 PAGE_SIZE << order);
769 }
dafb1367 770 arch_free_page(page, order);
48db57f8 771 kernel_map_pages(page, 1 << order, 0);
dafb1367 772
ec95f53a
KM
773 return true;
774}
775
776static void __free_pages_ok(struct page *page, unsigned int order)
777{
778 unsigned long flags;
95e34412 779 int migratetype;
dc4b0caf 780 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
781
782 if (!free_pages_prepare(page, order))
783 return;
784
cfc47a28 785 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 786 local_irq_save(flags);
f8891e5e 787 __count_vm_events(PGFREE, 1 << order);
95e34412 788 set_freepage_migratetype(page, migratetype);
dc4b0caf 789 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 790 local_irq_restore(flags);
1da177e4
LT
791}
792
170a5a7e 793void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 794{
c3993076 795 unsigned int nr_pages = 1 << order;
e2d0bd2b 796 struct page *p = page;
c3993076 797 unsigned int loop;
a226f6c8 798
e2d0bd2b
YL
799 prefetchw(p);
800 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
801 prefetchw(p + 1);
c3993076
JW
802 __ClearPageReserved(p);
803 set_page_count(p, 0);
a226f6c8 804 }
e2d0bd2b
YL
805 __ClearPageReserved(p);
806 set_page_count(p, 0);
c3993076 807
e2d0bd2b 808 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
809 set_page_refcounted(page);
810 __free_pages(page, order);
a226f6c8
DH
811}
812
47118af0 813#ifdef CONFIG_CMA
9cf510a5 814/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
815void __init init_cma_reserved_pageblock(struct page *page)
816{
817 unsigned i = pageblock_nr_pages;
818 struct page *p = page;
819
820 do {
821 __ClearPageReserved(p);
822 set_page_count(p, 0);
823 } while (++p, --i);
824
47118af0 825 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
826
827 if (pageblock_order >= MAX_ORDER) {
828 i = pageblock_nr_pages;
829 p = page;
830 do {
831 set_page_refcounted(p);
832 __free_pages(p, MAX_ORDER - 1);
833 p += MAX_ORDER_NR_PAGES;
834 } while (i -= MAX_ORDER_NR_PAGES);
835 } else {
836 set_page_refcounted(page);
837 __free_pages(page, pageblock_order);
838 }
839
3dcc0571 840 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
841}
842#endif
1da177e4
LT
843
844/*
845 * The order of subdivision here is critical for the IO subsystem.
846 * Please do not alter this order without good reasons and regression
847 * testing. Specifically, as large blocks of memory are subdivided,
848 * the order in which smaller blocks are delivered depends on the order
849 * they're subdivided in this function. This is the primary factor
850 * influencing the order in which pages are delivered to the IO
851 * subsystem according to empirical testing, and this is also justified
852 * by considering the behavior of a buddy system containing a single
853 * large block of memory acted on by a series of small allocations.
854 * This behavior is a critical factor in sglist merging's success.
855 *
6d49e352 856 * -- nyc
1da177e4 857 */
085cc7d5 858static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
859 int low, int high, struct free_area *area,
860 int migratetype)
1da177e4
LT
861{
862 unsigned long size = 1 << high;
863
864 while (high > low) {
865 area--;
866 high--;
867 size >>= 1;
309381fe 868 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
869
870#ifdef CONFIG_DEBUG_PAGEALLOC
871 if (high < debug_guardpage_minorder()) {
872 /*
873 * Mark as guard pages (or page), that will allow to
874 * merge back to allocator when buddy will be freed.
875 * Corresponding page table entries will not be touched,
876 * pages will stay not present in virtual address space
877 */
878 INIT_LIST_HEAD(&page[size].lru);
879 set_page_guard_flag(&page[size]);
880 set_page_private(&page[size], high);
881 /* Guard pages are not available for any usage */
d1ce749a
BZ
882 __mod_zone_freepage_state(zone, -(1 << high),
883 migratetype);
c0a32fc5
SG
884 continue;
885 }
886#endif
b2a0ac88 887 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
888 area->nr_free++;
889 set_page_order(&page[size], high);
890 }
1da177e4
LT
891}
892
1da177e4
LT
893/*
894 * This page is about to be returned from the page allocator
895 */
2a7684a2 896static inline int check_new_page(struct page *page)
1da177e4 897{
d230dec1 898 const char *bad_reason = NULL;
f0b791a3
DH
899 unsigned long bad_flags = 0;
900
901 if (unlikely(page_mapcount(page)))
902 bad_reason = "nonzero mapcount";
903 if (unlikely(page->mapping != NULL))
904 bad_reason = "non-NULL mapping";
905 if (unlikely(atomic_read(&page->_count) != 0))
906 bad_reason = "nonzero _count";
907 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
908 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
909 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
910 }
911 if (unlikely(mem_cgroup_bad_page_check(page)))
912 bad_reason = "cgroup check failed";
913 if (unlikely(bad_reason)) {
914 bad_page(page, bad_reason, bad_flags);
689bcebf 915 return 1;
8cc3b392 916 }
2a7684a2
WF
917 return 0;
918}
919
7aeb09f9 920static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
2a7684a2
WF
921{
922 int i;
923
924 for (i = 0; i < (1 << order); i++) {
925 struct page *p = page + i;
926 if (unlikely(check_new_page(p)))
927 return 1;
928 }
689bcebf 929
4c21e2f2 930 set_page_private(page, 0);
7835e98b 931 set_page_refcounted(page);
cc102509
NP
932
933 arch_alloc_page(page, order);
1da177e4 934 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
935
936 if (gfp_flags & __GFP_ZERO)
937 prep_zero_page(page, order, gfp_flags);
938
939 if (order && (gfp_flags & __GFP_COMP))
940 prep_compound_page(page, order);
941
689bcebf 942 return 0;
1da177e4
LT
943}
944
56fd56b8
MG
945/*
946 * Go through the free lists for the given migratetype and remove
947 * the smallest available page from the freelists
948 */
728ec980
MG
949static inline
950struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
951 int migratetype)
952{
953 unsigned int current_order;
b8af2941 954 struct free_area *area;
56fd56b8
MG
955 struct page *page;
956
957 /* Find a page of the appropriate size in the preferred list */
958 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
959 area = &(zone->free_area[current_order]);
960 if (list_empty(&area->free_list[migratetype]))
961 continue;
962
963 page = list_entry(area->free_list[migratetype].next,
964 struct page, lru);
965 list_del(&page->lru);
966 rmv_page_order(page);
967 area->nr_free--;
56fd56b8 968 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 969 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
970 return page;
971 }
972
973 return NULL;
974}
975
976
b2a0ac88
MG
977/*
978 * This array describes the order lists are fallen back to when
979 * the free lists for the desirable migrate type are depleted
980 */
47118af0
MN
981static int fallbacks[MIGRATE_TYPES][4] = {
982 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
983 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
984#ifdef CONFIG_CMA
985 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
986 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
987#else
988 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
989#endif
6d4a4916 990 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 991#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 992 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 993#endif
b2a0ac88
MG
994};
995
c361be55
MG
996/*
997 * Move the free pages in a range to the free lists of the requested type.
d9c23400 998 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
999 * boundary. If alignment is required, use move_freepages_block()
1000 */
435b405c 1001int move_freepages(struct zone *zone,
b69a7288
AB
1002 struct page *start_page, struct page *end_page,
1003 int migratetype)
c361be55
MG
1004{
1005 struct page *page;
1006 unsigned long order;
d100313f 1007 int pages_moved = 0;
c361be55
MG
1008
1009#ifndef CONFIG_HOLES_IN_ZONE
1010 /*
1011 * page_zone is not safe to call in this context when
1012 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1013 * anyway as we check zone boundaries in move_freepages_block().
1014 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1015 * grouping pages by mobility
c361be55
MG
1016 */
1017 BUG_ON(page_zone(start_page) != page_zone(end_page));
1018#endif
1019
1020 for (page = start_page; page <= end_page;) {
344c790e 1021 /* Make sure we are not inadvertently changing nodes */
309381fe 1022 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1023
c361be55
MG
1024 if (!pfn_valid_within(page_to_pfn(page))) {
1025 page++;
1026 continue;
1027 }
1028
1029 if (!PageBuddy(page)) {
1030 page++;
1031 continue;
1032 }
1033
1034 order = page_order(page);
84be48d8
KS
1035 list_move(&page->lru,
1036 &zone->free_area[order].free_list[migratetype]);
95e34412 1037 set_freepage_migratetype(page, migratetype);
c361be55 1038 page += 1 << order;
d100313f 1039 pages_moved += 1 << order;
c361be55
MG
1040 }
1041
d100313f 1042 return pages_moved;
c361be55
MG
1043}
1044
ee6f509c 1045int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1046 int migratetype)
c361be55
MG
1047{
1048 unsigned long start_pfn, end_pfn;
1049 struct page *start_page, *end_page;
1050
1051 start_pfn = page_to_pfn(page);
d9c23400 1052 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1053 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1054 end_page = start_page + pageblock_nr_pages - 1;
1055 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1056
1057 /* Do not cross zone boundaries */
108bcc96 1058 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1059 start_page = page;
108bcc96 1060 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1061 return 0;
1062
1063 return move_freepages(zone, start_page, end_page, migratetype);
1064}
1065
2f66a68f
MG
1066static void change_pageblock_range(struct page *pageblock_page,
1067 int start_order, int migratetype)
1068{
1069 int nr_pageblocks = 1 << (start_order - pageblock_order);
1070
1071 while (nr_pageblocks--) {
1072 set_pageblock_migratetype(pageblock_page, migratetype);
1073 pageblock_page += pageblock_nr_pages;
1074 }
1075}
1076
fef903ef
SB
1077/*
1078 * If breaking a large block of pages, move all free pages to the preferred
1079 * allocation list. If falling back for a reclaimable kernel allocation, be
1080 * more aggressive about taking ownership of free pages.
1081 *
1082 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1083 * nor move CMA pages to different free lists. We don't want unmovable pages
1084 * to be allocated from MIGRATE_CMA areas.
1085 *
1086 * Returns the new migratetype of the pageblock (or the same old migratetype
1087 * if it was unchanged).
1088 */
1089static int try_to_steal_freepages(struct zone *zone, struct page *page,
1090 int start_type, int fallback_type)
1091{
1092 int current_order = page_order(page);
1093
0cbef29a
KM
1094 /*
1095 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1096 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1097 * is set to CMA so it is returned to the correct freelist in case
1098 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1099 */
fef903ef
SB
1100 if (is_migrate_cma(fallback_type))
1101 return fallback_type;
1102
1103 /* Take ownership for orders >= pageblock_order */
1104 if (current_order >= pageblock_order) {
1105 change_pageblock_range(page, current_order, start_type);
1106 return start_type;
1107 }
1108
1109 if (current_order >= pageblock_order / 2 ||
1110 start_type == MIGRATE_RECLAIMABLE ||
1111 page_group_by_mobility_disabled) {
1112 int pages;
1113
1114 pages = move_freepages_block(zone, page, start_type);
1115
1116 /* Claim the whole block if over half of it is free */
1117 if (pages >= (1 << (pageblock_order-1)) ||
1118 page_group_by_mobility_disabled) {
1119
1120 set_pageblock_migratetype(page, start_type);
1121 return start_type;
1122 }
1123
1124 }
1125
1126 return fallback_type;
1127}
1128
b2a0ac88 1129/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1130static inline struct page *
7aeb09f9 1131__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1132{
b8af2941 1133 struct free_area *area;
7aeb09f9 1134 unsigned int current_order;
b2a0ac88 1135 struct page *page;
fef903ef 1136 int migratetype, new_type, i;
b2a0ac88
MG
1137
1138 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1139 for (current_order = MAX_ORDER-1;
1140 current_order >= order && current_order <= MAX_ORDER-1;
1141 --current_order) {
6d4a4916 1142 for (i = 0;; i++) {
b2a0ac88
MG
1143 migratetype = fallbacks[start_migratetype][i];
1144
56fd56b8
MG
1145 /* MIGRATE_RESERVE handled later if necessary */
1146 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1147 break;
e010487d 1148
b2a0ac88
MG
1149 area = &(zone->free_area[current_order]);
1150 if (list_empty(&area->free_list[migratetype]))
1151 continue;
1152
1153 page = list_entry(area->free_list[migratetype].next,
1154 struct page, lru);
1155 area->nr_free--;
1156
fef903ef
SB
1157 new_type = try_to_steal_freepages(zone, page,
1158 start_migratetype,
1159 migratetype);
b2a0ac88
MG
1160
1161 /* Remove the page from the freelists */
1162 list_del(&page->lru);
1163 rmv_page_order(page);
b2a0ac88 1164
47118af0 1165 expand(zone, page, order, current_order, area,
0cbef29a 1166 new_type);
5bcc9f86
VB
1167 /* The freepage_migratetype may differ from pageblock's
1168 * migratetype depending on the decisions in
1169 * try_to_steal_freepages. This is OK as long as it does
1170 * not differ for MIGRATE_CMA type.
1171 */
1172 set_freepage_migratetype(page, new_type);
e0fff1bd 1173
52c8f6a5
KM
1174 trace_mm_page_alloc_extfrag(page, order, current_order,
1175 start_migratetype, migratetype, new_type);
e0fff1bd 1176
b2a0ac88
MG
1177 return page;
1178 }
1179 }
1180
728ec980 1181 return NULL;
b2a0ac88
MG
1182}
1183
56fd56b8 1184/*
1da177e4
LT
1185 * Do the hard work of removing an element from the buddy allocator.
1186 * Call me with the zone->lock already held.
1187 */
b2a0ac88
MG
1188static struct page *__rmqueue(struct zone *zone, unsigned int order,
1189 int migratetype)
1da177e4 1190{
1da177e4
LT
1191 struct page *page;
1192
728ec980 1193retry_reserve:
56fd56b8 1194 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1195
728ec980 1196 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1197 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1198
728ec980
MG
1199 /*
1200 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1201 * is used because __rmqueue_smallest is an inline function
1202 * and we want just one call site
1203 */
1204 if (!page) {
1205 migratetype = MIGRATE_RESERVE;
1206 goto retry_reserve;
1207 }
1208 }
1209
0d3d062a 1210 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1211 return page;
1da177e4
LT
1212}
1213
5f63b720 1214/*
1da177e4
LT
1215 * Obtain a specified number of elements from the buddy allocator, all under
1216 * a single hold of the lock, for efficiency. Add them to the supplied list.
1217 * Returns the number of new pages which were placed at *list.
1218 */
5f63b720 1219static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1220 unsigned long count, struct list_head *list,
b745bc85 1221 int migratetype, bool cold)
1da177e4 1222{
5bcc9f86 1223 int i;
5f63b720 1224
c54ad30c 1225 spin_lock(&zone->lock);
1da177e4 1226 for (i = 0; i < count; ++i) {
b2a0ac88 1227 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1228 if (unlikely(page == NULL))
1da177e4 1229 break;
81eabcbe
MG
1230
1231 /*
1232 * Split buddy pages returned by expand() are received here
1233 * in physical page order. The page is added to the callers and
1234 * list and the list head then moves forward. From the callers
1235 * perspective, the linked list is ordered by page number in
1236 * some conditions. This is useful for IO devices that can
1237 * merge IO requests if the physical pages are ordered
1238 * properly.
1239 */
b745bc85 1240 if (likely(!cold))
e084b2d9
MG
1241 list_add(&page->lru, list);
1242 else
1243 list_add_tail(&page->lru, list);
81eabcbe 1244 list = &page->lru;
5bcc9f86 1245 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1246 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1247 -(1 << order));
1da177e4 1248 }
f2260e6b 1249 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1250 spin_unlock(&zone->lock);
085cc7d5 1251 return i;
1da177e4
LT
1252}
1253
4ae7c039 1254#ifdef CONFIG_NUMA
8fce4d8e 1255/*
4037d452
CL
1256 * Called from the vmstat counter updater to drain pagesets of this
1257 * currently executing processor on remote nodes after they have
1258 * expired.
1259 *
879336c3
CL
1260 * Note that this function must be called with the thread pinned to
1261 * a single processor.
8fce4d8e 1262 */
4037d452 1263void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1264{
4ae7c039 1265 unsigned long flags;
7be12fc9 1266 int to_drain, batch;
4ae7c039 1267
4037d452 1268 local_irq_save(flags);
998d39cb 1269 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1270 to_drain = min(pcp->count, batch);
2a13515c
KM
1271 if (to_drain > 0) {
1272 free_pcppages_bulk(zone, to_drain, pcp);
1273 pcp->count -= to_drain;
1274 }
4037d452 1275 local_irq_restore(flags);
4ae7c039
CL
1276}
1277#endif
1278
9f8f2172
CL
1279/*
1280 * Drain pages of the indicated processor.
1281 *
1282 * The processor must either be the current processor and the
1283 * thread pinned to the current processor or a processor that
1284 * is not online.
1285 */
1286static void drain_pages(unsigned int cpu)
1da177e4 1287{
c54ad30c 1288 unsigned long flags;
1da177e4 1289 struct zone *zone;
1da177e4 1290
ee99c71c 1291 for_each_populated_zone(zone) {
1da177e4 1292 struct per_cpu_pageset *pset;
3dfa5721 1293 struct per_cpu_pages *pcp;
1da177e4 1294
99dcc3e5
CL
1295 local_irq_save(flags);
1296 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1297
1298 pcp = &pset->pcp;
2ff754fa
DR
1299 if (pcp->count) {
1300 free_pcppages_bulk(zone, pcp->count, pcp);
1301 pcp->count = 0;
1302 }
3dfa5721 1303 local_irq_restore(flags);
1da177e4
LT
1304 }
1305}
1da177e4 1306
9f8f2172
CL
1307/*
1308 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1309 */
1310void drain_local_pages(void *arg)
1311{
1312 drain_pages(smp_processor_id());
1313}
1314
1315/*
74046494
GBY
1316 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1317 *
1318 * Note that this code is protected against sending an IPI to an offline
1319 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1320 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1321 * nothing keeps CPUs from showing up after we populated the cpumask and
1322 * before the call to on_each_cpu_mask().
9f8f2172
CL
1323 */
1324void drain_all_pages(void)
1325{
74046494
GBY
1326 int cpu;
1327 struct per_cpu_pageset *pcp;
1328 struct zone *zone;
1329
1330 /*
1331 * Allocate in the BSS so we wont require allocation in
1332 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1333 */
1334 static cpumask_t cpus_with_pcps;
1335
1336 /*
1337 * We don't care about racing with CPU hotplug event
1338 * as offline notification will cause the notified
1339 * cpu to drain that CPU pcps and on_each_cpu_mask
1340 * disables preemption as part of its processing
1341 */
1342 for_each_online_cpu(cpu) {
1343 bool has_pcps = false;
1344 for_each_populated_zone(zone) {
1345 pcp = per_cpu_ptr(zone->pageset, cpu);
1346 if (pcp->pcp.count) {
1347 has_pcps = true;
1348 break;
1349 }
1350 }
1351 if (has_pcps)
1352 cpumask_set_cpu(cpu, &cpus_with_pcps);
1353 else
1354 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1355 }
1356 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1357}
1358
296699de 1359#ifdef CONFIG_HIBERNATION
1da177e4
LT
1360
1361void mark_free_pages(struct zone *zone)
1362{
f623f0db
RW
1363 unsigned long pfn, max_zone_pfn;
1364 unsigned long flags;
7aeb09f9 1365 unsigned int order, t;
1da177e4
LT
1366 struct list_head *curr;
1367
8080fc03 1368 if (zone_is_empty(zone))
1da177e4
LT
1369 return;
1370
1371 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1372
108bcc96 1373 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1374 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1375 if (pfn_valid(pfn)) {
1376 struct page *page = pfn_to_page(pfn);
1377
7be98234
RW
1378 if (!swsusp_page_is_forbidden(page))
1379 swsusp_unset_page_free(page);
f623f0db 1380 }
1da177e4 1381
b2a0ac88
MG
1382 for_each_migratetype_order(order, t) {
1383 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1384 unsigned long i;
1da177e4 1385
f623f0db
RW
1386 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1387 for (i = 0; i < (1UL << order); i++)
7be98234 1388 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1389 }
b2a0ac88 1390 }
1da177e4
LT
1391 spin_unlock_irqrestore(&zone->lock, flags);
1392}
e2c55dc8 1393#endif /* CONFIG_PM */
1da177e4 1394
1da177e4
LT
1395/*
1396 * Free a 0-order page
b745bc85 1397 * cold == true ? free a cold page : free a hot page
1da177e4 1398 */
b745bc85 1399void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1400{
1401 struct zone *zone = page_zone(page);
1402 struct per_cpu_pages *pcp;
1403 unsigned long flags;
dc4b0caf 1404 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1405 int migratetype;
1da177e4 1406
ec95f53a 1407 if (!free_pages_prepare(page, 0))
689bcebf
HD
1408 return;
1409
dc4b0caf 1410 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1411 set_freepage_migratetype(page, migratetype);
1da177e4 1412 local_irq_save(flags);
f8891e5e 1413 __count_vm_event(PGFREE);
da456f14 1414
5f8dcc21
MG
1415 /*
1416 * We only track unmovable, reclaimable and movable on pcp lists.
1417 * Free ISOLATE pages back to the allocator because they are being
1418 * offlined but treat RESERVE as movable pages so we can get those
1419 * areas back if necessary. Otherwise, we may have to free
1420 * excessively into the page allocator
1421 */
1422 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1423 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1424 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1425 goto out;
1426 }
1427 migratetype = MIGRATE_MOVABLE;
1428 }
1429
99dcc3e5 1430 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1431 if (!cold)
5f8dcc21 1432 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1433 else
1434 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1435 pcp->count++;
48db57f8 1436 if (pcp->count >= pcp->high) {
998d39cb
CS
1437 unsigned long batch = ACCESS_ONCE(pcp->batch);
1438 free_pcppages_bulk(zone, batch, pcp);
1439 pcp->count -= batch;
48db57f8 1440 }
5f8dcc21
MG
1441
1442out:
1da177e4 1443 local_irq_restore(flags);
1da177e4
LT
1444}
1445
cc59850e
KK
1446/*
1447 * Free a list of 0-order pages
1448 */
b745bc85 1449void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1450{
1451 struct page *page, *next;
1452
1453 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1454 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1455 free_hot_cold_page(page, cold);
1456 }
1457}
1458
8dfcc9ba
NP
1459/*
1460 * split_page takes a non-compound higher-order page, and splits it into
1461 * n (1<<order) sub-pages: page[0..n]
1462 * Each sub-page must be freed individually.
1463 *
1464 * Note: this is probably too low level an operation for use in drivers.
1465 * Please consult with lkml before using this in your driver.
1466 */
1467void split_page(struct page *page, unsigned int order)
1468{
1469 int i;
1470
309381fe
SL
1471 VM_BUG_ON_PAGE(PageCompound(page), page);
1472 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1473
1474#ifdef CONFIG_KMEMCHECK
1475 /*
1476 * Split shadow pages too, because free(page[0]) would
1477 * otherwise free the whole shadow.
1478 */
1479 if (kmemcheck_page_is_tracked(page))
1480 split_page(virt_to_page(page[0].shadow), order);
1481#endif
1482
7835e98b
NP
1483 for (i = 1; i < (1 << order); i++)
1484 set_page_refcounted(page + i);
8dfcc9ba 1485}
5853ff23 1486EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1487
8fb74b9f 1488static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1489{
748446bb
MG
1490 unsigned long watermark;
1491 struct zone *zone;
2139cbe6 1492 int mt;
748446bb
MG
1493
1494 BUG_ON(!PageBuddy(page));
1495
1496 zone = page_zone(page);
2e30abd1 1497 mt = get_pageblock_migratetype(page);
748446bb 1498
194159fb 1499 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1500 /* Obey watermarks as if the page was being allocated */
1501 watermark = low_wmark_pages(zone) + (1 << order);
1502 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1503 return 0;
1504
8fb74b9f 1505 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1506 }
748446bb
MG
1507
1508 /* Remove page from free list */
1509 list_del(&page->lru);
1510 zone->free_area[order].nr_free--;
1511 rmv_page_order(page);
2139cbe6 1512
8fb74b9f 1513 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1514 if (order >= pageblock_order - 1) {
1515 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1516 for (; page < endpage; page += pageblock_nr_pages) {
1517 int mt = get_pageblock_migratetype(page);
194159fb 1518 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1519 set_pageblock_migratetype(page,
1520 MIGRATE_MOVABLE);
1521 }
748446bb
MG
1522 }
1523
8fb74b9f 1524 return 1UL << order;
1fb3f8ca
MG
1525}
1526
1527/*
1528 * Similar to split_page except the page is already free. As this is only
1529 * being used for migration, the migratetype of the block also changes.
1530 * As this is called with interrupts disabled, the caller is responsible
1531 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1532 * are enabled.
1533 *
1534 * Note: this is probably too low level an operation for use in drivers.
1535 * Please consult with lkml before using this in your driver.
1536 */
1537int split_free_page(struct page *page)
1538{
1539 unsigned int order;
1540 int nr_pages;
1541
1fb3f8ca
MG
1542 order = page_order(page);
1543
8fb74b9f 1544 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1545 if (!nr_pages)
1546 return 0;
1547
1548 /* Split into individual pages */
1549 set_page_refcounted(page);
1550 split_page(page, order);
1551 return nr_pages;
748446bb
MG
1552}
1553
1da177e4
LT
1554/*
1555 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1556 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1557 * or two.
1558 */
0a15c3e9
MG
1559static inline
1560struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1561 struct zone *zone, unsigned int order,
1562 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1563{
1564 unsigned long flags;
689bcebf 1565 struct page *page;
b745bc85 1566 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1567
689bcebf 1568again:
48db57f8 1569 if (likely(order == 0)) {
1da177e4 1570 struct per_cpu_pages *pcp;
5f8dcc21 1571 struct list_head *list;
1da177e4 1572
1da177e4 1573 local_irq_save(flags);
99dcc3e5
CL
1574 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1575 list = &pcp->lists[migratetype];
5f8dcc21 1576 if (list_empty(list)) {
535131e6 1577 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1578 pcp->batch, list,
e084b2d9 1579 migratetype, cold);
5f8dcc21 1580 if (unlikely(list_empty(list)))
6fb332fa 1581 goto failed;
535131e6 1582 }
b92a6edd 1583
5f8dcc21
MG
1584 if (cold)
1585 page = list_entry(list->prev, struct page, lru);
1586 else
1587 page = list_entry(list->next, struct page, lru);
1588
b92a6edd
MG
1589 list_del(&page->lru);
1590 pcp->count--;
7fb1d9fc 1591 } else {
dab48dab
AM
1592 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1593 /*
1594 * __GFP_NOFAIL is not to be used in new code.
1595 *
1596 * All __GFP_NOFAIL callers should be fixed so that they
1597 * properly detect and handle allocation failures.
1598 *
1599 * We most definitely don't want callers attempting to
4923abf9 1600 * allocate greater than order-1 page units with
dab48dab
AM
1601 * __GFP_NOFAIL.
1602 */
4923abf9 1603 WARN_ON_ONCE(order > 1);
dab48dab 1604 }
1da177e4 1605 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1606 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1607 spin_unlock(&zone->lock);
1608 if (!page)
1609 goto failed;
d1ce749a 1610 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1611 get_freepage_migratetype(page));
1da177e4
LT
1612 }
1613
3a025760 1614 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
4ffeaf35
MG
1615 if (zone_page_state(zone, NR_ALLOC_BATCH) == 0 &&
1616 !zone_is_fair_depleted(zone))
1617 zone_set_flag(zone, ZONE_FAIR_DEPLETED);
27329369 1618
f8891e5e 1619 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1620 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1621 local_irq_restore(flags);
1da177e4 1622
309381fe 1623 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1624 if (prep_new_page(page, order, gfp_flags))
a74609fa 1625 goto again;
1da177e4 1626 return page;
a74609fa
NP
1627
1628failed:
1629 local_irq_restore(flags);
a74609fa 1630 return NULL;
1da177e4
LT
1631}
1632
933e312e
AM
1633#ifdef CONFIG_FAIL_PAGE_ALLOC
1634
b2588c4b 1635static struct {
933e312e
AM
1636 struct fault_attr attr;
1637
1638 u32 ignore_gfp_highmem;
1639 u32 ignore_gfp_wait;
54114994 1640 u32 min_order;
933e312e
AM
1641} fail_page_alloc = {
1642 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1643 .ignore_gfp_wait = 1,
1644 .ignore_gfp_highmem = 1,
54114994 1645 .min_order = 1,
933e312e
AM
1646};
1647
1648static int __init setup_fail_page_alloc(char *str)
1649{
1650 return setup_fault_attr(&fail_page_alloc.attr, str);
1651}
1652__setup("fail_page_alloc=", setup_fail_page_alloc);
1653
deaf386e 1654static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1655{
54114994 1656 if (order < fail_page_alloc.min_order)
deaf386e 1657 return false;
933e312e 1658 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1659 return false;
933e312e 1660 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1661 return false;
933e312e 1662 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1663 return false;
933e312e
AM
1664
1665 return should_fail(&fail_page_alloc.attr, 1 << order);
1666}
1667
1668#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1669
1670static int __init fail_page_alloc_debugfs(void)
1671{
f4ae40a6 1672 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1673 struct dentry *dir;
933e312e 1674
dd48c085
AM
1675 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1676 &fail_page_alloc.attr);
1677 if (IS_ERR(dir))
1678 return PTR_ERR(dir);
933e312e 1679
b2588c4b
AM
1680 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1681 &fail_page_alloc.ignore_gfp_wait))
1682 goto fail;
1683 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1684 &fail_page_alloc.ignore_gfp_highmem))
1685 goto fail;
1686 if (!debugfs_create_u32("min-order", mode, dir,
1687 &fail_page_alloc.min_order))
1688 goto fail;
1689
1690 return 0;
1691fail:
dd48c085 1692 debugfs_remove_recursive(dir);
933e312e 1693
b2588c4b 1694 return -ENOMEM;
933e312e
AM
1695}
1696
1697late_initcall(fail_page_alloc_debugfs);
1698
1699#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1700
1701#else /* CONFIG_FAIL_PAGE_ALLOC */
1702
deaf386e 1703static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1704{
deaf386e 1705 return false;
933e312e
AM
1706}
1707
1708#endif /* CONFIG_FAIL_PAGE_ALLOC */
1709
1da177e4 1710/*
88f5acf8 1711 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1712 * of the allocation.
1713 */
7aeb09f9
MG
1714static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1715 unsigned long mark, int classzone_idx, int alloc_flags,
1716 long free_pages)
1da177e4
LT
1717{
1718 /* free_pages my go negative - that's OK */
d23ad423 1719 long min = mark;
1da177e4 1720 int o;
026b0814 1721 long free_cma = 0;
1da177e4 1722
df0a6daa 1723 free_pages -= (1 << order) - 1;
7fb1d9fc 1724 if (alloc_flags & ALLOC_HIGH)
1da177e4 1725 min -= min / 2;
7fb1d9fc 1726 if (alloc_flags & ALLOC_HARDER)
1da177e4 1727 min -= min / 4;
d95ea5d1
BZ
1728#ifdef CONFIG_CMA
1729 /* If allocation can't use CMA areas don't use free CMA pages */
1730 if (!(alloc_flags & ALLOC_CMA))
026b0814 1731 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1732#endif
026b0814 1733
3484b2de 1734 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1735 return false;
1da177e4
LT
1736 for (o = 0; o < order; o++) {
1737 /* At the next order, this order's pages become unavailable */
1738 free_pages -= z->free_area[o].nr_free << o;
1739
1740 /* Require fewer higher order pages to be free */
1741 min >>= 1;
1742
1743 if (free_pages <= min)
88f5acf8 1744 return false;
1da177e4 1745 }
88f5acf8
MG
1746 return true;
1747}
1748
7aeb09f9 1749bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1750 int classzone_idx, int alloc_flags)
1751{
1752 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1753 zone_page_state(z, NR_FREE_PAGES));
1754}
1755
7aeb09f9
MG
1756bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1757 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1758{
1759 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1760
1761 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1762 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1763
1764 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1765 free_pages);
1da177e4
LT
1766}
1767
9276b1bc
PJ
1768#ifdef CONFIG_NUMA
1769/*
1770 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1771 * skip over zones that are not allowed by the cpuset, or that have
1772 * been recently (in last second) found to be nearly full. See further
1773 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1774 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1775 *
a1aeb65a 1776 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1777 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1778 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1779 *
1780 * If the zonelist cache is not available for this zonelist, does
1781 * nothing and returns NULL.
1782 *
1783 * If the fullzones BITMAP in the zonelist cache is stale (more than
1784 * a second since last zap'd) then we zap it out (clear its bits.)
1785 *
1786 * We hold off even calling zlc_setup, until after we've checked the
1787 * first zone in the zonelist, on the theory that most allocations will
1788 * be satisfied from that first zone, so best to examine that zone as
1789 * quickly as we can.
1790 */
1791static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1792{
1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1794 nodemask_t *allowednodes; /* zonelist_cache approximation */
1795
1796 zlc = zonelist->zlcache_ptr;
1797 if (!zlc)
1798 return NULL;
1799
f05111f5 1800 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1801 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1802 zlc->last_full_zap = jiffies;
1803 }
1804
1805 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1806 &cpuset_current_mems_allowed :
4b0ef1fe 1807 &node_states[N_MEMORY];
9276b1bc
PJ
1808 return allowednodes;
1809}
1810
1811/*
1812 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1813 * if it is worth looking at further for free memory:
1814 * 1) Check that the zone isn't thought to be full (doesn't have its
1815 * bit set in the zonelist_cache fullzones BITMAP).
1816 * 2) Check that the zones node (obtained from the zonelist_cache
1817 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1818 * Return true (non-zero) if zone is worth looking at further, or
1819 * else return false (zero) if it is not.
1820 *
1821 * This check -ignores- the distinction between various watermarks,
1822 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1823 * found to be full for any variation of these watermarks, it will
1824 * be considered full for up to one second by all requests, unless
1825 * we are so low on memory on all allowed nodes that we are forced
1826 * into the second scan of the zonelist.
1827 *
1828 * In the second scan we ignore this zonelist cache and exactly
1829 * apply the watermarks to all zones, even it is slower to do so.
1830 * We are low on memory in the second scan, and should leave no stone
1831 * unturned looking for a free page.
1832 */
dd1a239f 1833static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1834 nodemask_t *allowednodes)
1835{
1836 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1837 int i; /* index of *z in zonelist zones */
1838 int n; /* node that zone *z is on */
1839
1840 zlc = zonelist->zlcache_ptr;
1841 if (!zlc)
1842 return 1;
1843
dd1a239f 1844 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1845 n = zlc->z_to_n[i];
1846
1847 /* This zone is worth trying if it is allowed but not full */
1848 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1849}
1850
1851/*
1852 * Given 'z' scanning a zonelist, set the corresponding bit in
1853 * zlc->fullzones, so that subsequent attempts to allocate a page
1854 * from that zone don't waste time re-examining it.
1855 */
dd1a239f 1856static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1857{
1858 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1859 int i; /* index of *z in zonelist zones */
1860
1861 zlc = zonelist->zlcache_ptr;
1862 if (!zlc)
1863 return;
1864
dd1a239f 1865 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1866
1867 set_bit(i, zlc->fullzones);
1868}
1869
76d3fbf8
MG
1870/*
1871 * clear all zones full, called after direct reclaim makes progress so that
1872 * a zone that was recently full is not skipped over for up to a second
1873 */
1874static void zlc_clear_zones_full(struct zonelist *zonelist)
1875{
1876 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1877
1878 zlc = zonelist->zlcache_ptr;
1879 if (!zlc)
1880 return;
1881
1882 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1883}
1884
81c0a2bb
JW
1885static bool zone_local(struct zone *local_zone, struct zone *zone)
1886{
fff4068c 1887 return local_zone->node == zone->node;
81c0a2bb
JW
1888}
1889
957f822a
DR
1890static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1891{
5f7a75ac
MG
1892 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1893 RECLAIM_DISTANCE;
957f822a
DR
1894}
1895
9276b1bc
PJ
1896#else /* CONFIG_NUMA */
1897
1898static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1899{
1900 return NULL;
1901}
1902
dd1a239f 1903static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1904 nodemask_t *allowednodes)
1905{
1906 return 1;
1907}
1908
dd1a239f 1909static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1910{
1911}
76d3fbf8
MG
1912
1913static void zlc_clear_zones_full(struct zonelist *zonelist)
1914{
1915}
957f822a 1916
81c0a2bb
JW
1917static bool zone_local(struct zone *local_zone, struct zone *zone)
1918{
1919 return true;
1920}
1921
957f822a
DR
1922static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1923{
1924 return true;
1925}
1926
9276b1bc
PJ
1927#endif /* CONFIG_NUMA */
1928
4ffeaf35
MG
1929static void reset_alloc_batches(struct zone *preferred_zone)
1930{
1931 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1932
1933 do {
1934 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1935 high_wmark_pages(zone) - low_wmark_pages(zone) -
1936 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1937 zone_clear_flag(zone, ZONE_FAIR_DEPLETED);
1938 } while (zone++ != preferred_zone);
1939}
1940
7fb1d9fc 1941/*
0798e519 1942 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1943 * a page.
1944 */
1945static struct page *
19770b32 1946get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1947 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
d8846374 1948 struct zone *preferred_zone, int classzone_idx, int migratetype)
753ee728 1949{
dd1a239f 1950 struct zoneref *z;
7fb1d9fc 1951 struct page *page = NULL;
5117f45d 1952 struct zone *zone;
9276b1bc
PJ
1953 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1954 int zlc_active = 0; /* set if using zonelist_cache */
1955 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
1956 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1957 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
1958 int nr_fair_skipped = 0;
1959 bool zonelist_rescan;
54a6eb5c 1960
9276b1bc 1961zonelist_scan:
4ffeaf35
MG
1962 zonelist_rescan = false;
1963
7fb1d9fc 1964 /*
9276b1bc 1965 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1966 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1967 */
19770b32
MG
1968 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1969 high_zoneidx, nodemask) {
e085dbc5
JW
1970 unsigned long mark;
1971
e5adfffc 1972 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1973 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1974 continue;
664eedde
MG
1975 if (cpusets_enabled() &&
1976 (alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1977 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1978 continue;
81c0a2bb
JW
1979 /*
1980 * Distribute pages in proportion to the individual
1981 * zone size to ensure fair page aging. The zone a
1982 * page was allocated in should have no effect on the
1983 * time the page has in memory before being reclaimed.
81c0a2bb 1984 */
3a025760 1985 if (alloc_flags & ALLOC_FAIR) {
fff4068c 1986 if (!zone_local(preferred_zone, zone))
f7b5d647 1987 break;
4ffeaf35
MG
1988 if (zone_is_fair_depleted(zone)) {
1989 nr_fair_skipped++;
3a025760 1990 continue;
4ffeaf35 1991 }
81c0a2bb 1992 }
a756cf59
JW
1993 /*
1994 * When allocating a page cache page for writing, we
1995 * want to get it from a zone that is within its dirty
1996 * limit, such that no single zone holds more than its
1997 * proportional share of globally allowed dirty pages.
1998 * The dirty limits take into account the zone's
1999 * lowmem reserves and high watermark so that kswapd
2000 * should be able to balance it without having to
2001 * write pages from its LRU list.
2002 *
2003 * This may look like it could increase pressure on
2004 * lower zones by failing allocations in higher zones
2005 * before they are full. But the pages that do spill
2006 * over are limited as the lower zones are protected
2007 * by this very same mechanism. It should not become
2008 * a practical burden to them.
2009 *
2010 * XXX: For now, allow allocations to potentially
2011 * exceed the per-zone dirty limit in the slowpath
2012 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2013 * which is important when on a NUMA setup the allowed
2014 * zones are together not big enough to reach the
2015 * global limit. The proper fix for these situations
2016 * will require awareness of zones in the
2017 * dirty-throttling and the flusher threads.
2018 */
a6e21b14 2019 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2020 continue;
7fb1d9fc 2021
e085dbc5
JW
2022 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2023 if (!zone_watermark_ok(zone, order, mark,
2024 classzone_idx, alloc_flags)) {
fa5e084e
MG
2025 int ret;
2026
5dab2911
MG
2027 /* Checked here to keep the fast path fast */
2028 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2029 if (alloc_flags & ALLOC_NO_WATERMARKS)
2030 goto try_this_zone;
2031
e5adfffc
KS
2032 if (IS_ENABLED(CONFIG_NUMA) &&
2033 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2034 /*
2035 * we do zlc_setup if there are multiple nodes
2036 * and before considering the first zone allowed
2037 * by the cpuset.
2038 */
2039 allowednodes = zlc_setup(zonelist, alloc_flags);
2040 zlc_active = 1;
2041 did_zlc_setup = 1;
2042 }
2043
957f822a
DR
2044 if (zone_reclaim_mode == 0 ||
2045 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2046 goto this_zone_full;
2047
cd38b115
MG
2048 /*
2049 * As we may have just activated ZLC, check if the first
2050 * eligible zone has failed zone_reclaim recently.
2051 */
e5adfffc 2052 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2053 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2054 continue;
2055
fa5e084e
MG
2056 ret = zone_reclaim(zone, gfp_mask, order);
2057 switch (ret) {
2058 case ZONE_RECLAIM_NOSCAN:
2059 /* did not scan */
cd38b115 2060 continue;
fa5e084e
MG
2061 case ZONE_RECLAIM_FULL:
2062 /* scanned but unreclaimable */
cd38b115 2063 continue;
fa5e084e
MG
2064 default:
2065 /* did we reclaim enough */
fed2719e 2066 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2067 classzone_idx, alloc_flags))
fed2719e
MG
2068 goto try_this_zone;
2069
2070 /*
2071 * Failed to reclaim enough to meet watermark.
2072 * Only mark the zone full if checking the min
2073 * watermark or if we failed to reclaim just
2074 * 1<<order pages or else the page allocator
2075 * fastpath will prematurely mark zones full
2076 * when the watermark is between the low and
2077 * min watermarks.
2078 */
2079 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2080 ret == ZONE_RECLAIM_SOME)
9276b1bc 2081 goto this_zone_full;
fed2719e
MG
2082
2083 continue;
0798e519 2084 }
7fb1d9fc
RS
2085 }
2086
fa5e084e 2087try_this_zone:
3dd28266
MG
2088 page = buffered_rmqueue(preferred_zone, zone, order,
2089 gfp_mask, migratetype);
0798e519 2090 if (page)
7fb1d9fc 2091 break;
9276b1bc 2092this_zone_full:
65bb3719 2093 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2094 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2095 }
9276b1bc 2096
4ffeaf35 2097 if (page) {
b121186a
AS
2098 /*
2099 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2100 * necessary to allocate the page. The expectation is
2101 * that the caller is taking steps that will free more
2102 * memory. The caller should avoid the page being used
2103 * for !PFMEMALLOC purposes.
2104 */
2105 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
4ffeaf35
MG
2106 return page;
2107 }
b121186a 2108
4ffeaf35
MG
2109 /*
2110 * The first pass makes sure allocations are spread fairly within the
2111 * local node. However, the local node might have free pages left
2112 * after the fairness batches are exhausted, and remote zones haven't
2113 * even been considered yet. Try once more without fairness, and
2114 * include remote zones now, before entering the slowpath and waking
2115 * kswapd: prefer spilling to a remote zone over swapping locally.
2116 */
2117 if (alloc_flags & ALLOC_FAIR) {
2118 alloc_flags &= ~ALLOC_FAIR;
2119 if (nr_fair_skipped) {
2120 zonelist_rescan = true;
2121 reset_alloc_batches(preferred_zone);
2122 }
2123 if (nr_online_nodes > 1)
2124 zonelist_rescan = true;
2125 }
2126
2127 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2128 /* Disable zlc cache for second zonelist scan */
2129 zlc_active = 0;
2130 zonelist_rescan = true;
2131 }
2132
2133 if (zonelist_rescan)
2134 goto zonelist_scan;
2135
2136 return NULL;
753ee728
MH
2137}
2138
29423e77
DR
2139/*
2140 * Large machines with many possible nodes should not always dump per-node
2141 * meminfo in irq context.
2142 */
2143static inline bool should_suppress_show_mem(void)
2144{
2145 bool ret = false;
2146
2147#if NODES_SHIFT > 8
2148 ret = in_interrupt();
2149#endif
2150 return ret;
2151}
2152
a238ab5b
DH
2153static DEFINE_RATELIMIT_STATE(nopage_rs,
2154 DEFAULT_RATELIMIT_INTERVAL,
2155 DEFAULT_RATELIMIT_BURST);
2156
2157void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2158{
a238ab5b
DH
2159 unsigned int filter = SHOW_MEM_FILTER_NODES;
2160
c0a32fc5
SG
2161 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2162 debug_guardpage_minorder() > 0)
a238ab5b
DH
2163 return;
2164
2165 /*
2166 * This documents exceptions given to allocations in certain
2167 * contexts that are allowed to allocate outside current's set
2168 * of allowed nodes.
2169 */
2170 if (!(gfp_mask & __GFP_NOMEMALLOC))
2171 if (test_thread_flag(TIF_MEMDIE) ||
2172 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2173 filter &= ~SHOW_MEM_FILTER_NODES;
2174 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2175 filter &= ~SHOW_MEM_FILTER_NODES;
2176
2177 if (fmt) {
3ee9a4f0
JP
2178 struct va_format vaf;
2179 va_list args;
2180
a238ab5b 2181 va_start(args, fmt);
3ee9a4f0
JP
2182
2183 vaf.fmt = fmt;
2184 vaf.va = &args;
2185
2186 pr_warn("%pV", &vaf);
2187
a238ab5b
DH
2188 va_end(args);
2189 }
2190
3ee9a4f0
JP
2191 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2192 current->comm, order, gfp_mask);
a238ab5b
DH
2193
2194 dump_stack();
2195 if (!should_suppress_show_mem())
2196 show_mem(filter);
2197}
2198
11e33f6a
MG
2199static inline int
2200should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2201 unsigned long did_some_progress,
11e33f6a 2202 unsigned long pages_reclaimed)
1da177e4 2203{
11e33f6a
MG
2204 /* Do not loop if specifically requested */
2205 if (gfp_mask & __GFP_NORETRY)
2206 return 0;
1da177e4 2207
f90ac398
MG
2208 /* Always retry if specifically requested */
2209 if (gfp_mask & __GFP_NOFAIL)
2210 return 1;
2211
2212 /*
2213 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2214 * making forward progress without invoking OOM. Suspend also disables
2215 * storage devices so kswapd will not help. Bail if we are suspending.
2216 */
2217 if (!did_some_progress && pm_suspended_storage())
2218 return 0;
2219
11e33f6a
MG
2220 /*
2221 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2222 * means __GFP_NOFAIL, but that may not be true in other
2223 * implementations.
2224 */
2225 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2226 return 1;
2227
2228 /*
2229 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2230 * specified, then we retry until we no longer reclaim any pages
2231 * (above), or we've reclaimed an order of pages at least as
2232 * large as the allocation's order. In both cases, if the
2233 * allocation still fails, we stop retrying.
2234 */
2235 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2236 return 1;
cf40bd16 2237
11e33f6a
MG
2238 return 0;
2239}
933e312e 2240
11e33f6a
MG
2241static inline struct page *
2242__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2243 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2244 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2245 int classzone_idx, int migratetype)
11e33f6a
MG
2246{
2247 struct page *page;
2248
2249 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2250 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2251 schedule_timeout_uninterruptible(1);
1da177e4
LT
2252 return NULL;
2253 }
6b1de916 2254
11e33f6a
MG
2255 /*
2256 * Go through the zonelist yet one more time, keep very high watermark
2257 * here, this is only to catch a parallel oom killing, we must fail if
2258 * we're still under heavy pressure.
2259 */
2260 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2261 order, zonelist, high_zoneidx,
5117f45d 2262 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
d8846374 2263 preferred_zone, classzone_idx, migratetype);
7fb1d9fc 2264 if (page)
11e33f6a
MG
2265 goto out;
2266
4365a567
KH
2267 if (!(gfp_mask & __GFP_NOFAIL)) {
2268 /* The OOM killer will not help higher order allocs */
2269 if (order > PAGE_ALLOC_COSTLY_ORDER)
2270 goto out;
03668b3c
DR
2271 /* The OOM killer does not needlessly kill tasks for lowmem */
2272 if (high_zoneidx < ZONE_NORMAL)
2273 goto out;
4365a567
KH
2274 /*
2275 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2276 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2277 * The caller should handle page allocation failure by itself if
2278 * it specifies __GFP_THISNODE.
2279 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2280 */
2281 if (gfp_mask & __GFP_THISNODE)
2282 goto out;
2283 }
11e33f6a 2284 /* Exhausted what can be done so it's blamo time */
08ab9b10 2285 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2286
2287out:
2288 clear_zonelist_oom(zonelist, gfp_mask);
2289 return page;
2290}
2291
56de7263
MG
2292#ifdef CONFIG_COMPACTION
2293/* Try memory compaction for high-order allocations before reclaim */
2294static struct page *
2295__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2296 struct zonelist *zonelist, enum zone_type high_zoneidx,
2297 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2298 int classzone_idx, int migratetype, enum migrate_mode mode,
c67fe375 2299 bool *contended_compaction, bool *deferred_compaction,
66199712 2300 unsigned long *did_some_progress)
56de7263 2301{
66199712 2302 if (!order)
56de7263
MG
2303 return NULL;
2304
aff62249 2305 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2306 *deferred_compaction = true;
2307 return NULL;
2308 }
2309
c06b1fca 2310 current->flags |= PF_MEMALLOC;
56de7263 2311 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
e0b9daeb 2312 nodemask, mode,
8fb74b9f 2313 contended_compaction);
c06b1fca 2314 current->flags &= ~PF_MEMALLOC;
56de7263 2315
1fb3f8ca 2316 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2317 struct page *page;
2318
56de7263
MG
2319 /* Page migration frees to the PCP lists but we want merging */
2320 drain_pages(get_cpu());
2321 put_cpu();
2322
2323 page = get_page_from_freelist(gfp_mask, nodemask,
2324 order, zonelist, high_zoneidx,
cfd19c5a 2325 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2326 preferred_zone, classzone_idx, migratetype);
56de7263 2327 if (page) {
62997027 2328 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2329 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2330 count_vm_event(COMPACTSUCCESS);
2331 return page;
2332 }
2333
2334 /*
2335 * It's bad if compaction run occurs and fails.
2336 * The most likely reason is that pages exist,
2337 * but not enough to satisfy watermarks.
2338 */
2339 count_vm_event(COMPACTFAIL);
66199712
MG
2340
2341 /*
2342 * As async compaction considers a subset of pageblocks, only
2343 * defer if the failure was a sync compaction failure.
2344 */
e0b9daeb 2345 if (mode != MIGRATE_ASYNC)
aff62249 2346 defer_compaction(preferred_zone, order);
56de7263
MG
2347
2348 cond_resched();
2349 }
2350
2351 return NULL;
2352}
2353#else
2354static inline struct page *
2355__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2356 struct zonelist *zonelist, enum zone_type high_zoneidx,
2357 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374
MG
2358 int classzone_idx, int migratetype,
2359 enum migrate_mode mode, bool *contended_compaction,
e0b9daeb 2360 bool *deferred_compaction, unsigned long *did_some_progress)
56de7263
MG
2361{
2362 return NULL;
2363}
2364#endif /* CONFIG_COMPACTION */
2365
bba90710
MS
2366/* Perform direct synchronous page reclaim */
2367static int
2368__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2369 nodemask_t *nodemask)
11e33f6a 2370{
11e33f6a 2371 struct reclaim_state reclaim_state;
bba90710 2372 int progress;
11e33f6a
MG
2373
2374 cond_resched();
2375
2376 /* We now go into synchronous reclaim */
2377 cpuset_memory_pressure_bump();
c06b1fca 2378 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2379 lockdep_set_current_reclaim_state(gfp_mask);
2380 reclaim_state.reclaimed_slab = 0;
c06b1fca 2381 current->reclaim_state = &reclaim_state;
11e33f6a 2382
bba90710 2383 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2384
c06b1fca 2385 current->reclaim_state = NULL;
11e33f6a 2386 lockdep_clear_current_reclaim_state();
c06b1fca 2387 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2388
2389 cond_resched();
2390
bba90710
MS
2391 return progress;
2392}
2393
2394/* The really slow allocator path where we enter direct reclaim */
2395static inline struct page *
2396__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2397 struct zonelist *zonelist, enum zone_type high_zoneidx,
2398 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2399 int classzone_idx, int migratetype, unsigned long *did_some_progress)
bba90710
MS
2400{
2401 struct page *page = NULL;
2402 bool drained = false;
2403
2404 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2405 nodemask);
9ee493ce
MG
2406 if (unlikely(!(*did_some_progress)))
2407 return NULL;
11e33f6a 2408
76d3fbf8 2409 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2410 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2411 zlc_clear_zones_full(zonelist);
2412
9ee493ce
MG
2413retry:
2414 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2415 zonelist, high_zoneidx,
cfd19c5a 2416 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374
MG
2417 preferred_zone, classzone_idx,
2418 migratetype);
9ee493ce
MG
2419
2420 /*
2421 * If an allocation failed after direct reclaim, it could be because
2422 * pages are pinned on the per-cpu lists. Drain them and try again
2423 */
2424 if (!page && !drained) {
2425 drain_all_pages();
2426 drained = true;
2427 goto retry;
2428 }
2429
11e33f6a
MG
2430 return page;
2431}
2432
1da177e4 2433/*
11e33f6a
MG
2434 * This is called in the allocator slow-path if the allocation request is of
2435 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2436 */
11e33f6a
MG
2437static inline struct page *
2438__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2439 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2440 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2441 int classzone_idx, int migratetype)
11e33f6a
MG
2442{
2443 struct page *page;
2444
2445 do {
2446 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2447 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
d8846374 2448 preferred_zone, classzone_idx, migratetype);
11e33f6a
MG
2449
2450 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2451 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2452 } while (!page && (gfp_mask & __GFP_NOFAIL));
2453
2454 return page;
2455}
2456
3a025760
JW
2457static void wake_all_kswapds(unsigned int order,
2458 struct zonelist *zonelist,
2459 enum zone_type high_zoneidx,
2460 struct zone *preferred_zone)
2461{
2462 struct zoneref *z;
2463 struct zone *zone;
2464
2465 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2466 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2467}
2468
341ce06f
PZ
2469static inline int
2470gfp_to_alloc_flags(gfp_t gfp_mask)
2471{
341ce06f 2472 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2473 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2474
a56f57ff 2475 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2476 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2477
341ce06f
PZ
2478 /*
2479 * The caller may dip into page reserves a bit more if the caller
2480 * cannot run direct reclaim, or if the caller has realtime scheduling
2481 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2482 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2483 */
e6223a3b 2484 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2485
b104a35d 2486 if (atomic) {
5c3240d9 2487 /*
b104a35d
DR
2488 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2489 * if it can't schedule.
5c3240d9 2490 */
b104a35d 2491 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2492 alloc_flags |= ALLOC_HARDER;
523b9458 2493 /*
b104a35d
DR
2494 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2495 * comment for __cpuset_node_allowed_softwall().
523b9458 2496 */
341ce06f 2497 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2498 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2499 alloc_flags |= ALLOC_HARDER;
2500
b37f1dd0
MG
2501 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2502 if (gfp_mask & __GFP_MEMALLOC)
2503 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2504 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2505 alloc_flags |= ALLOC_NO_WATERMARKS;
2506 else if (!in_interrupt() &&
2507 ((current->flags & PF_MEMALLOC) ||
2508 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2509 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2510 }
d95ea5d1
BZ
2511#ifdef CONFIG_CMA
2512 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2513 alloc_flags |= ALLOC_CMA;
2514#endif
341ce06f
PZ
2515 return alloc_flags;
2516}
2517
072bb0aa
MG
2518bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2519{
b37f1dd0 2520 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2521}
2522
11e33f6a
MG
2523static inline struct page *
2524__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2525 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2526 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2527 int classzone_idx, int migratetype)
11e33f6a
MG
2528{
2529 const gfp_t wait = gfp_mask & __GFP_WAIT;
2530 struct page *page = NULL;
2531 int alloc_flags;
2532 unsigned long pages_reclaimed = 0;
2533 unsigned long did_some_progress;
e0b9daeb 2534 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2535 bool deferred_compaction = false;
c67fe375 2536 bool contended_compaction = false;
1da177e4 2537
72807a74
MG
2538 /*
2539 * In the slowpath, we sanity check order to avoid ever trying to
2540 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2541 * be using allocators in order of preference for an area that is
2542 * too large.
2543 */
1fc28b70
MG
2544 if (order >= MAX_ORDER) {
2545 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2546 return NULL;
1fc28b70 2547 }
1da177e4 2548
952f3b51
CL
2549 /*
2550 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2551 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2552 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2553 * using a larger set of nodes after it has established that the
2554 * allowed per node queues are empty and that nodes are
2555 * over allocated.
2556 */
3a025760
JW
2557 if (IS_ENABLED(CONFIG_NUMA) &&
2558 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2559 goto nopage;
2560
cc4a6851 2561restart:
3a025760
JW
2562 if (!(gfp_mask & __GFP_NO_KSWAPD))
2563 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
1da177e4 2564
9bf2229f 2565 /*
7fb1d9fc
RS
2566 * OK, we're below the kswapd watermark and have kicked background
2567 * reclaim. Now things get more complex, so set up alloc_flags according
2568 * to how we want to proceed.
9bf2229f 2569 */
341ce06f 2570 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2571
f33261d7
DR
2572 /*
2573 * Find the true preferred zone if the allocation is unconstrained by
2574 * cpusets.
2575 */
d8846374
MG
2576 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2577 struct zoneref *preferred_zoneref;
2578 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2579 NULL, &preferred_zone);
2580 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2581 }
f33261d7 2582
cfa54a0f 2583rebalance:
341ce06f 2584 /* This is the last chance, in general, before the goto nopage. */
19770b32 2585 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f 2586 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2587 preferred_zone, classzone_idx, migratetype);
7fb1d9fc
RS
2588 if (page)
2589 goto got_pg;
1da177e4 2590
11e33f6a 2591 /* Allocate without watermarks if the context allows */
341ce06f 2592 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2593 /*
2594 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2595 * the allocation is high priority and these type of
2596 * allocations are system rather than user orientated
2597 */
2598 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2599
341ce06f
PZ
2600 page = __alloc_pages_high_priority(gfp_mask, order,
2601 zonelist, high_zoneidx, nodemask,
d8846374 2602 preferred_zone, classzone_idx, migratetype);
cfd19c5a 2603 if (page) {
341ce06f 2604 goto got_pg;
cfd19c5a 2605 }
1da177e4
LT
2606 }
2607
2608 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2609 if (!wait) {
2610 /*
2611 * All existing users of the deprecated __GFP_NOFAIL are
2612 * blockable, so warn of any new users that actually allow this
2613 * type of allocation to fail.
2614 */
2615 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2616 goto nopage;
aed0a0e3 2617 }
1da177e4 2618
341ce06f 2619 /* Avoid recursion of direct reclaim */
c06b1fca 2620 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2621 goto nopage;
2622
6583bb64
DR
2623 /* Avoid allocations with no watermarks from looping endlessly */
2624 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2625 goto nopage;
2626
77f1fe6b
MG
2627 /*
2628 * Try direct compaction. The first pass is asynchronous. Subsequent
2629 * attempts after direct reclaim are synchronous
2630 */
e0b9daeb
DR
2631 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2632 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2633 preferred_zone,
2634 classzone_idx, migratetype,
e0b9daeb 2635 migration_mode, &contended_compaction,
66199712
MG
2636 &deferred_compaction,
2637 &did_some_progress);
56de7263
MG
2638 if (page)
2639 goto got_pg;
75f30861
DR
2640
2641 /*
2642 * It can become very expensive to allocate transparent hugepages at
2643 * fault, so use asynchronous memory compaction for THP unless it is
2644 * khugepaged trying to collapse.
2645 */
2646 if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD))
2647 migration_mode = MIGRATE_SYNC_LIGHT;
56de7263 2648
31f8d42d
LT
2649 /*
2650 * If compaction is deferred for high-order allocations, it is because
2651 * sync compaction recently failed. In this is the case and the caller
2652 * requested a movable allocation that does not heavily disrupt the
2653 * system then fail the allocation instead of entering direct reclaim.
2654 */
2655 if ((deferred_compaction || contended_compaction) &&
caf49191 2656 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2657 goto nopage;
66199712 2658
11e33f6a
MG
2659 /* Try direct reclaim and then allocating */
2660 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2661 zonelist, high_zoneidx,
2662 nodemask,
5117f45d 2663 alloc_flags, preferred_zone,
d8846374
MG
2664 classzone_idx, migratetype,
2665 &did_some_progress);
11e33f6a
MG
2666 if (page)
2667 goto got_pg;
1da177e4 2668
e33c3b5e 2669 /*
11e33f6a
MG
2670 * If we failed to make any progress reclaiming, then we are
2671 * running out of options and have to consider going OOM
e33c3b5e 2672 */
11e33f6a 2673 if (!did_some_progress) {
b9921ecd 2674 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2675 if (oom_killer_disabled)
2676 goto nopage;
29fd66d2
DR
2677 /* Coredumps can quickly deplete all memory reserves */
2678 if ((current->flags & PF_DUMPCORE) &&
2679 !(gfp_mask & __GFP_NOFAIL))
2680 goto nopage;
11e33f6a
MG
2681 page = __alloc_pages_may_oom(gfp_mask, order,
2682 zonelist, high_zoneidx,
3dd28266 2683 nodemask, preferred_zone,
d8846374 2684 classzone_idx, migratetype);
11e33f6a
MG
2685 if (page)
2686 goto got_pg;
1da177e4 2687
03668b3c
DR
2688 if (!(gfp_mask & __GFP_NOFAIL)) {
2689 /*
2690 * The oom killer is not called for high-order
2691 * allocations that may fail, so if no progress
2692 * is being made, there are no other options and
2693 * retrying is unlikely to help.
2694 */
2695 if (order > PAGE_ALLOC_COSTLY_ORDER)
2696 goto nopage;
2697 /*
2698 * The oom killer is not called for lowmem
2699 * allocations to prevent needlessly killing
2700 * innocent tasks.
2701 */
2702 if (high_zoneidx < ZONE_NORMAL)
2703 goto nopage;
2704 }
e2c55dc8 2705
ff0ceb9d
DR
2706 goto restart;
2707 }
1da177e4
LT
2708 }
2709
11e33f6a 2710 /* Check if we should retry the allocation */
a41f24ea 2711 pages_reclaimed += did_some_progress;
f90ac398
MG
2712 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2713 pages_reclaimed)) {
11e33f6a 2714 /* Wait for some write requests to complete then retry */
0e093d99 2715 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2716 goto rebalance;
3e7d3449
MG
2717 } else {
2718 /*
2719 * High-order allocations do not necessarily loop after
2720 * direct reclaim and reclaim/compaction depends on compaction
2721 * being called after reclaim so call directly if necessary
2722 */
e0b9daeb
DR
2723 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2724 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2725 preferred_zone,
2726 classzone_idx, migratetype,
e0b9daeb 2727 migration_mode, &contended_compaction,
66199712
MG
2728 &deferred_compaction,
2729 &did_some_progress);
3e7d3449
MG
2730 if (page)
2731 goto got_pg;
1da177e4
LT
2732 }
2733
2734nopage:
a238ab5b 2735 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2736 return page;
1da177e4 2737got_pg:
b1eeab67
VN
2738 if (kmemcheck_enabled)
2739 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2740
072bb0aa 2741 return page;
1da177e4 2742}
11e33f6a
MG
2743
2744/*
2745 * This is the 'heart' of the zoned buddy allocator.
2746 */
2747struct page *
2748__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2749 struct zonelist *zonelist, nodemask_t *nodemask)
2750{
2751 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2752 struct zone *preferred_zone;
d8846374 2753 struct zoneref *preferred_zoneref;
cc9a6c87 2754 struct page *page = NULL;
3dd28266 2755 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2756 unsigned int cpuset_mems_cookie;
3a025760 2757 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
d8846374 2758 int classzone_idx;
11e33f6a 2759
dcce284a
BH
2760 gfp_mask &= gfp_allowed_mask;
2761
11e33f6a
MG
2762 lockdep_trace_alloc(gfp_mask);
2763
2764 might_sleep_if(gfp_mask & __GFP_WAIT);
2765
2766 if (should_fail_alloc_page(gfp_mask, order))
2767 return NULL;
2768
2769 /*
2770 * Check the zones suitable for the gfp_mask contain at least one
2771 * valid zone. It's possible to have an empty zonelist as a result
2772 * of GFP_THISNODE and a memoryless node
2773 */
2774 if (unlikely(!zonelist->_zonerefs->zone))
2775 return NULL;
2776
cc9a6c87 2777retry_cpuset:
d26914d1 2778 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2779
5117f45d 2780 /* The preferred zone is used for statistics later */
d8846374 2781 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
f33261d7
DR
2782 nodemask ? : &cpuset_current_mems_allowed,
2783 &preferred_zone);
cc9a6c87
MG
2784 if (!preferred_zone)
2785 goto out;
d8846374 2786 classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d 2787
d95ea5d1
BZ
2788#ifdef CONFIG_CMA
2789 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2790 alloc_flags |= ALLOC_CMA;
2791#endif
5117f45d 2792 /* First allocation attempt */
11e33f6a 2793 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2794 zonelist, high_zoneidx, alloc_flags,
d8846374 2795 preferred_zone, classzone_idx, migratetype);
21caf2fc
ML
2796 if (unlikely(!page)) {
2797 /*
2798 * Runtime PM, block IO and its error handling path
2799 * can deadlock because I/O on the device might not
2800 * complete.
2801 */
2802 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2803 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2804 zonelist, high_zoneidx, nodemask,
d8846374 2805 preferred_zone, classzone_idx, migratetype);
21caf2fc 2806 }
11e33f6a 2807
4b4f278c 2808 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2809
2810out:
2811 /*
2812 * When updating a task's mems_allowed, it is possible to race with
2813 * parallel threads in such a way that an allocation can fail while
2814 * the mask is being updated. If a page allocation is about to fail,
2815 * check if the cpuset changed during allocation and if so, retry.
2816 */
d26914d1 2817 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2818 goto retry_cpuset;
2819
11e33f6a 2820 return page;
1da177e4 2821}
d239171e 2822EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2823
2824/*
2825 * Common helper functions.
2826 */
920c7a5d 2827unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2828{
945a1113
AM
2829 struct page *page;
2830
2831 /*
2832 * __get_free_pages() returns a 32-bit address, which cannot represent
2833 * a highmem page
2834 */
2835 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2836
1da177e4
LT
2837 page = alloc_pages(gfp_mask, order);
2838 if (!page)
2839 return 0;
2840 return (unsigned long) page_address(page);
2841}
1da177e4
LT
2842EXPORT_SYMBOL(__get_free_pages);
2843
920c7a5d 2844unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2845{
945a1113 2846 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2847}
1da177e4
LT
2848EXPORT_SYMBOL(get_zeroed_page);
2849
920c7a5d 2850void __free_pages(struct page *page, unsigned int order)
1da177e4 2851{
b5810039 2852 if (put_page_testzero(page)) {
1da177e4 2853 if (order == 0)
b745bc85 2854 free_hot_cold_page(page, false);
1da177e4
LT
2855 else
2856 __free_pages_ok(page, order);
2857 }
2858}
2859
2860EXPORT_SYMBOL(__free_pages);
2861
920c7a5d 2862void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2863{
2864 if (addr != 0) {
725d704e 2865 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2866 __free_pages(virt_to_page((void *)addr), order);
2867 }
2868}
2869
2870EXPORT_SYMBOL(free_pages);
2871
6a1a0d3b 2872/*
52383431
VD
2873 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2874 * of the current memory cgroup.
6a1a0d3b 2875 *
52383431
VD
2876 * It should be used when the caller would like to use kmalloc, but since the
2877 * allocation is large, it has to fall back to the page allocator.
2878 */
2879struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2880{
2881 struct page *page;
2882 struct mem_cgroup *memcg = NULL;
2883
2884 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2885 return NULL;
2886 page = alloc_pages(gfp_mask, order);
2887 memcg_kmem_commit_charge(page, memcg, order);
2888 return page;
2889}
2890
2891struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2892{
2893 struct page *page;
2894 struct mem_cgroup *memcg = NULL;
2895
2896 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2897 return NULL;
2898 page = alloc_pages_node(nid, gfp_mask, order);
2899 memcg_kmem_commit_charge(page, memcg, order);
2900 return page;
2901}
2902
2903/*
2904 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2905 * alloc_kmem_pages.
6a1a0d3b 2906 */
52383431 2907void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2908{
2909 memcg_kmem_uncharge_pages(page, order);
2910 __free_pages(page, order);
2911}
2912
52383431 2913void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2914{
2915 if (addr != 0) {
2916 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2917 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2918 }
2919}
2920
ee85c2e1
AK
2921static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2922{
2923 if (addr) {
2924 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2925 unsigned long used = addr + PAGE_ALIGN(size);
2926
2927 split_page(virt_to_page((void *)addr), order);
2928 while (used < alloc_end) {
2929 free_page(used);
2930 used += PAGE_SIZE;
2931 }
2932 }
2933 return (void *)addr;
2934}
2935
2be0ffe2
TT
2936/**
2937 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2938 * @size: the number of bytes to allocate
2939 * @gfp_mask: GFP flags for the allocation
2940 *
2941 * This function is similar to alloc_pages(), except that it allocates the
2942 * minimum number of pages to satisfy the request. alloc_pages() can only
2943 * allocate memory in power-of-two pages.
2944 *
2945 * This function is also limited by MAX_ORDER.
2946 *
2947 * Memory allocated by this function must be released by free_pages_exact().
2948 */
2949void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2950{
2951 unsigned int order = get_order(size);
2952 unsigned long addr;
2953
2954 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2955 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2956}
2957EXPORT_SYMBOL(alloc_pages_exact);
2958
ee85c2e1
AK
2959/**
2960 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2961 * pages on a node.
b5e6ab58 2962 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2963 * @size: the number of bytes to allocate
2964 * @gfp_mask: GFP flags for the allocation
2965 *
2966 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2967 * back.
2968 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2969 * but is not exact.
2970 */
e1931811 2971void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
2972{
2973 unsigned order = get_order(size);
2974 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2975 if (!p)
2976 return NULL;
2977 return make_alloc_exact((unsigned long)page_address(p), order, size);
2978}
ee85c2e1 2979
2be0ffe2
TT
2980/**
2981 * free_pages_exact - release memory allocated via alloc_pages_exact()
2982 * @virt: the value returned by alloc_pages_exact.
2983 * @size: size of allocation, same value as passed to alloc_pages_exact().
2984 *
2985 * Release the memory allocated by a previous call to alloc_pages_exact.
2986 */
2987void free_pages_exact(void *virt, size_t size)
2988{
2989 unsigned long addr = (unsigned long)virt;
2990 unsigned long end = addr + PAGE_ALIGN(size);
2991
2992 while (addr < end) {
2993 free_page(addr);
2994 addr += PAGE_SIZE;
2995 }
2996}
2997EXPORT_SYMBOL(free_pages_exact);
2998
e0fb5815
ZY
2999/**
3000 * nr_free_zone_pages - count number of pages beyond high watermark
3001 * @offset: The zone index of the highest zone
3002 *
3003 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3004 * high watermark within all zones at or below a given zone index. For each
3005 * zone, the number of pages is calculated as:
834405c3 3006 * managed_pages - high_pages
e0fb5815 3007 */
ebec3862 3008static unsigned long nr_free_zone_pages(int offset)
1da177e4 3009{
dd1a239f 3010 struct zoneref *z;
54a6eb5c
MG
3011 struct zone *zone;
3012
e310fd43 3013 /* Just pick one node, since fallback list is circular */
ebec3862 3014 unsigned long sum = 0;
1da177e4 3015
0e88460d 3016 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3017
54a6eb5c 3018 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3019 unsigned long size = zone->managed_pages;
41858966 3020 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3021 if (size > high)
3022 sum += size - high;
1da177e4
LT
3023 }
3024
3025 return sum;
3026}
3027
e0fb5815
ZY
3028/**
3029 * nr_free_buffer_pages - count number of pages beyond high watermark
3030 *
3031 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3032 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3033 */
ebec3862 3034unsigned long nr_free_buffer_pages(void)
1da177e4 3035{
af4ca457 3036 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3037}
c2f1a551 3038EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3039
e0fb5815
ZY
3040/**
3041 * nr_free_pagecache_pages - count number of pages beyond high watermark
3042 *
3043 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3044 * high watermark within all zones.
1da177e4 3045 */
ebec3862 3046unsigned long nr_free_pagecache_pages(void)
1da177e4 3047{
2a1e274a 3048 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3049}
08e0f6a9
CL
3050
3051static inline void show_node(struct zone *zone)
1da177e4 3052{
e5adfffc 3053 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3054 printk("Node %d ", zone_to_nid(zone));
1da177e4 3055}
1da177e4 3056
1da177e4
LT
3057void si_meminfo(struct sysinfo *val)
3058{
3059 val->totalram = totalram_pages;
cc7452b6 3060 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3061 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3062 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3063 val->totalhigh = totalhigh_pages;
3064 val->freehigh = nr_free_highpages();
1da177e4
LT
3065 val->mem_unit = PAGE_SIZE;
3066}
3067
3068EXPORT_SYMBOL(si_meminfo);
3069
3070#ifdef CONFIG_NUMA
3071void si_meminfo_node(struct sysinfo *val, int nid)
3072{
cdd91a77
JL
3073 int zone_type; /* needs to be signed */
3074 unsigned long managed_pages = 0;
1da177e4
LT
3075 pg_data_t *pgdat = NODE_DATA(nid);
3076
cdd91a77
JL
3077 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3078 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3079 val->totalram = managed_pages;
cc7452b6 3080 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3081 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3082#ifdef CONFIG_HIGHMEM
b40da049 3083 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3084 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3085 NR_FREE_PAGES);
98d2b0eb
CL
3086#else
3087 val->totalhigh = 0;
3088 val->freehigh = 0;
3089#endif
1da177e4
LT
3090 val->mem_unit = PAGE_SIZE;
3091}
3092#endif
3093
ddd588b5 3094/*
7bf02ea2
DR
3095 * Determine whether the node should be displayed or not, depending on whether
3096 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3097 */
7bf02ea2 3098bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3099{
3100 bool ret = false;
cc9a6c87 3101 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3102
3103 if (!(flags & SHOW_MEM_FILTER_NODES))
3104 goto out;
3105
cc9a6c87 3106 do {
d26914d1 3107 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3108 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3109 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3110out:
3111 return ret;
3112}
3113
1da177e4
LT
3114#define K(x) ((x) << (PAGE_SHIFT-10))
3115
377e4f16
RV
3116static void show_migration_types(unsigned char type)
3117{
3118 static const char types[MIGRATE_TYPES] = {
3119 [MIGRATE_UNMOVABLE] = 'U',
3120 [MIGRATE_RECLAIMABLE] = 'E',
3121 [MIGRATE_MOVABLE] = 'M',
3122 [MIGRATE_RESERVE] = 'R',
3123#ifdef CONFIG_CMA
3124 [MIGRATE_CMA] = 'C',
3125#endif
194159fb 3126#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3127 [MIGRATE_ISOLATE] = 'I',
194159fb 3128#endif
377e4f16
RV
3129 };
3130 char tmp[MIGRATE_TYPES + 1];
3131 char *p = tmp;
3132 int i;
3133
3134 for (i = 0; i < MIGRATE_TYPES; i++) {
3135 if (type & (1 << i))
3136 *p++ = types[i];
3137 }
3138
3139 *p = '\0';
3140 printk("(%s) ", tmp);
3141}
3142
1da177e4
LT
3143/*
3144 * Show free area list (used inside shift_scroll-lock stuff)
3145 * We also calculate the percentage fragmentation. We do this by counting the
3146 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3147 * Suppresses nodes that are not allowed by current's cpuset if
3148 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3149 */
7bf02ea2 3150void show_free_areas(unsigned int filter)
1da177e4 3151{
c7241913 3152 int cpu;
1da177e4
LT
3153 struct zone *zone;
3154
ee99c71c 3155 for_each_populated_zone(zone) {
7bf02ea2 3156 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3157 continue;
c7241913
JS
3158 show_node(zone);
3159 printk("%s per-cpu:\n", zone->name);
1da177e4 3160
6b482c67 3161 for_each_online_cpu(cpu) {
1da177e4
LT
3162 struct per_cpu_pageset *pageset;
3163
99dcc3e5 3164 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3165
3dfa5721
CL
3166 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3167 cpu, pageset->pcp.high,
3168 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3169 }
3170 }
3171
a731286d
KM
3172 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3173 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3174 " unevictable:%lu"
b76146ed 3175 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3176 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3177 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3178 " free_cma:%lu\n",
4f98a2fe 3179 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3180 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3181 global_page_state(NR_ISOLATED_ANON),
3182 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3183 global_page_state(NR_INACTIVE_FILE),
a731286d 3184 global_page_state(NR_ISOLATED_FILE),
7b854121 3185 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3186 global_page_state(NR_FILE_DIRTY),
ce866b34 3187 global_page_state(NR_WRITEBACK),
fd39fc85 3188 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3189 global_page_state(NR_FREE_PAGES),
3701b033
KM
3190 global_page_state(NR_SLAB_RECLAIMABLE),
3191 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3192 global_page_state(NR_FILE_MAPPED),
4b02108a 3193 global_page_state(NR_SHMEM),
a25700a5 3194 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3195 global_page_state(NR_BOUNCE),
3196 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3197
ee99c71c 3198 for_each_populated_zone(zone) {
1da177e4
LT
3199 int i;
3200
7bf02ea2 3201 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3202 continue;
1da177e4
LT
3203 show_node(zone);
3204 printk("%s"
3205 " free:%lukB"
3206 " min:%lukB"
3207 " low:%lukB"
3208 " high:%lukB"
4f98a2fe
RR
3209 " active_anon:%lukB"
3210 " inactive_anon:%lukB"
3211 " active_file:%lukB"
3212 " inactive_file:%lukB"
7b854121 3213 " unevictable:%lukB"
a731286d
KM
3214 " isolated(anon):%lukB"
3215 " isolated(file):%lukB"
1da177e4 3216 " present:%lukB"
9feedc9d 3217 " managed:%lukB"
4a0aa73f
KM
3218 " mlocked:%lukB"
3219 " dirty:%lukB"
3220 " writeback:%lukB"
3221 " mapped:%lukB"
4b02108a 3222 " shmem:%lukB"
4a0aa73f
KM
3223 " slab_reclaimable:%lukB"
3224 " slab_unreclaimable:%lukB"
c6a7f572 3225 " kernel_stack:%lukB"
4a0aa73f
KM
3226 " pagetables:%lukB"
3227 " unstable:%lukB"
3228 " bounce:%lukB"
d1ce749a 3229 " free_cma:%lukB"
4a0aa73f 3230 " writeback_tmp:%lukB"
1da177e4
LT
3231 " pages_scanned:%lu"
3232 " all_unreclaimable? %s"
3233 "\n",
3234 zone->name,
88f5acf8 3235 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3236 K(min_wmark_pages(zone)),
3237 K(low_wmark_pages(zone)),
3238 K(high_wmark_pages(zone)),
4f98a2fe
RR
3239 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3240 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3241 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3242 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3243 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3244 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3245 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3246 K(zone->present_pages),
9feedc9d 3247 K(zone->managed_pages),
4a0aa73f
KM
3248 K(zone_page_state(zone, NR_MLOCK)),
3249 K(zone_page_state(zone, NR_FILE_DIRTY)),
3250 K(zone_page_state(zone, NR_WRITEBACK)),
3251 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3252 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3253 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3254 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3255 zone_page_state(zone, NR_KERNEL_STACK) *
3256 THREAD_SIZE / 1024,
4a0aa73f
KM
3257 K(zone_page_state(zone, NR_PAGETABLE)),
3258 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3259 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3260 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3261 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3262 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3263 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3264 );
3265 printk("lowmem_reserve[]:");
3266 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3267 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3268 printk("\n");
3269 }
3270
ee99c71c 3271 for_each_populated_zone(zone) {
b8af2941 3272 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3273 unsigned char types[MAX_ORDER];
1da177e4 3274
7bf02ea2 3275 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3276 continue;
1da177e4
LT
3277 show_node(zone);
3278 printk("%s: ", zone->name);
1da177e4
LT
3279
3280 spin_lock_irqsave(&zone->lock, flags);
3281 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3282 struct free_area *area = &zone->free_area[order];
3283 int type;
3284
3285 nr[order] = area->nr_free;
8f9de51a 3286 total += nr[order] << order;
377e4f16
RV
3287
3288 types[order] = 0;
3289 for (type = 0; type < MIGRATE_TYPES; type++) {
3290 if (!list_empty(&area->free_list[type]))
3291 types[order] |= 1 << type;
3292 }
1da177e4
LT
3293 }
3294 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3295 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3296 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3297 if (nr[order])
3298 show_migration_types(types[order]);
3299 }
1da177e4
LT
3300 printk("= %lukB\n", K(total));
3301 }
3302
949f7ec5
DR
3303 hugetlb_show_meminfo();
3304
e6f3602d
LW
3305 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3306
1da177e4
LT
3307 show_swap_cache_info();
3308}
3309
19770b32
MG
3310static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3311{
3312 zoneref->zone = zone;
3313 zoneref->zone_idx = zone_idx(zone);
3314}
3315
1da177e4
LT
3316/*
3317 * Builds allocation fallback zone lists.
1a93205b
CL
3318 *
3319 * Add all populated zones of a node to the zonelist.
1da177e4 3320 */
f0c0b2b8 3321static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3322 int nr_zones)
1da177e4 3323{
1a93205b 3324 struct zone *zone;
bc732f1d 3325 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3326
3327 do {
2f6726e5 3328 zone_type--;
070f8032 3329 zone = pgdat->node_zones + zone_type;
1a93205b 3330 if (populated_zone(zone)) {
dd1a239f
MG
3331 zoneref_set_zone(zone,
3332 &zonelist->_zonerefs[nr_zones++]);
070f8032 3333 check_highest_zone(zone_type);
1da177e4 3334 }
2f6726e5 3335 } while (zone_type);
bc732f1d 3336
070f8032 3337 return nr_zones;
1da177e4
LT
3338}
3339
f0c0b2b8
KH
3340
3341/*
3342 * zonelist_order:
3343 * 0 = automatic detection of better ordering.
3344 * 1 = order by ([node] distance, -zonetype)
3345 * 2 = order by (-zonetype, [node] distance)
3346 *
3347 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3348 * the same zonelist. So only NUMA can configure this param.
3349 */
3350#define ZONELIST_ORDER_DEFAULT 0
3351#define ZONELIST_ORDER_NODE 1
3352#define ZONELIST_ORDER_ZONE 2
3353
3354/* zonelist order in the kernel.
3355 * set_zonelist_order() will set this to NODE or ZONE.
3356 */
3357static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3358static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3359
3360
1da177e4 3361#ifdef CONFIG_NUMA
f0c0b2b8
KH
3362/* The value user specified ....changed by config */
3363static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3364/* string for sysctl */
3365#define NUMA_ZONELIST_ORDER_LEN 16
3366char numa_zonelist_order[16] = "default";
3367
3368/*
3369 * interface for configure zonelist ordering.
3370 * command line option "numa_zonelist_order"
3371 * = "[dD]efault - default, automatic configuration.
3372 * = "[nN]ode - order by node locality, then by zone within node
3373 * = "[zZ]one - order by zone, then by locality within zone
3374 */
3375
3376static int __parse_numa_zonelist_order(char *s)
3377{
3378 if (*s == 'd' || *s == 'D') {
3379 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3380 } else if (*s == 'n' || *s == 'N') {
3381 user_zonelist_order = ZONELIST_ORDER_NODE;
3382 } else if (*s == 'z' || *s == 'Z') {
3383 user_zonelist_order = ZONELIST_ORDER_ZONE;
3384 } else {
3385 printk(KERN_WARNING
3386 "Ignoring invalid numa_zonelist_order value: "
3387 "%s\n", s);
3388 return -EINVAL;
3389 }
3390 return 0;
3391}
3392
3393static __init int setup_numa_zonelist_order(char *s)
3394{
ecb256f8
VL
3395 int ret;
3396
3397 if (!s)
3398 return 0;
3399
3400 ret = __parse_numa_zonelist_order(s);
3401 if (ret == 0)
3402 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3403
3404 return ret;
f0c0b2b8
KH
3405}
3406early_param("numa_zonelist_order", setup_numa_zonelist_order);
3407
3408/*
3409 * sysctl handler for numa_zonelist_order
3410 */
cccad5b9 3411int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3412 void __user *buffer, size_t *length,
f0c0b2b8
KH
3413 loff_t *ppos)
3414{
3415 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3416 int ret;
443c6f14 3417 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3418
443c6f14 3419 mutex_lock(&zl_order_mutex);
dacbde09
CG
3420 if (write) {
3421 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3422 ret = -EINVAL;
3423 goto out;
3424 }
3425 strcpy(saved_string, (char *)table->data);
3426 }
8d65af78 3427 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3428 if (ret)
443c6f14 3429 goto out;
f0c0b2b8
KH
3430 if (write) {
3431 int oldval = user_zonelist_order;
dacbde09
CG
3432
3433 ret = __parse_numa_zonelist_order((char *)table->data);
3434 if (ret) {
f0c0b2b8
KH
3435 /*
3436 * bogus value. restore saved string
3437 */
dacbde09 3438 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3439 NUMA_ZONELIST_ORDER_LEN);
3440 user_zonelist_order = oldval;
4eaf3f64
HL
3441 } else if (oldval != user_zonelist_order) {
3442 mutex_lock(&zonelists_mutex);
9adb62a5 3443 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3444 mutex_unlock(&zonelists_mutex);
3445 }
f0c0b2b8 3446 }
443c6f14
AK
3447out:
3448 mutex_unlock(&zl_order_mutex);
3449 return ret;
f0c0b2b8
KH
3450}
3451
3452
62bc62a8 3453#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3454static int node_load[MAX_NUMNODES];
3455
1da177e4 3456/**
4dc3b16b 3457 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3458 * @node: node whose fallback list we're appending
3459 * @used_node_mask: nodemask_t of already used nodes
3460 *
3461 * We use a number of factors to determine which is the next node that should
3462 * appear on a given node's fallback list. The node should not have appeared
3463 * already in @node's fallback list, and it should be the next closest node
3464 * according to the distance array (which contains arbitrary distance values
3465 * from each node to each node in the system), and should also prefer nodes
3466 * with no CPUs, since presumably they'll have very little allocation pressure
3467 * on them otherwise.
3468 * It returns -1 if no node is found.
3469 */
f0c0b2b8 3470static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3471{
4cf808eb 3472 int n, val;
1da177e4 3473 int min_val = INT_MAX;
00ef2d2f 3474 int best_node = NUMA_NO_NODE;
a70f7302 3475 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3476
4cf808eb
LT
3477 /* Use the local node if we haven't already */
3478 if (!node_isset(node, *used_node_mask)) {
3479 node_set(node, *used_node_mask);
3480 return node;
3481 }
1da177e4 3482
4b0ef1fe 3483 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3484
3485 /* Don't want a node to appear more than once */
3486 if (node_isset(n, *used_node_mask))
3487 continue;
3488
1da177e4
LT
3489 /* Use the distance array to find the distance */
3490 val = node_distance(node, n);
3491
4cf808eb
LT
3492 /* Penalize nodes under us ("prefer the next node") */
3493 val += (n < node);
3494
1da177e4 3495 /* Give preference to headless and unused nodes */
a70f7302
RR
3496 tmp = cpumask_of_node(n);
3497 if (!cpumask_empty(tmp))
1da177e4
LT
3498 val += PENALTY_FOR_NODE_WITH_CPUS;
3499
3500 /* Slight preference for less loaded node */
3501 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3502 val += node_load[n];
3503
3504 if (val < min_val) {
3505 min_val = val;
3506 best_node = n;
3507 }
3508 }
3509
3510 if (best_node >= 0)
3511 node_set(best_node, *used_node_mask);
3512
3513 return best_node;
3514}
3515
f0c0b2b8
KH
3516
3517/*
3518 * Build zonelists ordered by node and zones within node.
3519 * This results in maximum locality--normal zone overflows into local
3520 * DMA zone, if any--but risks exhausting DMA zone.
3521 */
3522static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3523{
f0c0b2b8 3524 int j;
1da177e4 3525 struct zonelist *zonelist;
f0c0b2b8 3526
54a6eb5c 3527 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3528 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3529 ;
bc732f1d 3530 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3531 zonelist->_zonerefs[j].zone = NULL;
3532 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3533}
3534
523b9458
CL
3535/*
3536 * Build gfp_thisnode zonelists
3537 */
3538static void build_thisnode_zonelists(pg_data_t *pgdat)
3539{
523b9458
CL
3540 int j;
3541 struct zonelist *zonelist;
3542
54a6eb5c 3543 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3544 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3545 zonelist->_zonerefs[j].zone = NULL;
3546 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3547}
3548
f0c0b2b8
KH
3549/*
3550 * Build zonelists ordered by zone and nodes within zones.
3551 * This results in conserving DMA zone[s] until all Normal memory is
3552 * exhausted, but results in overflowing to remote node while memory
3553 * may still exist in local DMA zone.
3554 */
3555static int node_order[MAX_NUMNODES];
3556
3557static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3558{
f0c0b2b8
KH
3559 int pos, j, node;
3560 int zone_type; /* needs to be signed */
3561 struct zone *z;
3562 struct zonelist *zonelist;
3563
54a6eb5c
MG
3564 zonelist = &pgdat->node_zonelists[0];
3565 pos = 0;
3566 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3567 for (j = 0; j < nr_nodes; j++) {
3568 node = node_order[j];
3569 z = &NODE_DATA(node)->node_zones[zone_type];
3570 if (populated_zone(z)) {
dd1a239f
MG
3571 zoneref_set_zone(z,
3572 &zonelist->_zonerefs[pos++]);
54a6eb5c 3573 check_highest_zone(zone_type);
f0c0b2b8
KH
3574 }
3575 }
f0c0b2b8 3576 }
dd1a239f
MG
3577 zonelist->_zonerefs[pos].zone = NULL;
3578 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3579}
3580
3581static int default_zonelist_order(void)
3582{
3583 int nid, zone_type;
b8af2941 3584 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3585 struct zone *z;
3586 int average_size;
3587 /*
b8af2941 3588 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3589 * If they are really small and used heavily, the system can fall
3590 * into OOM very easily.
e325c90f 3591 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3592 */
3593 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3594 low_kmem_size = 0;
3595 total_size = 0;
3596 for_each_online_node(nid) {
3597 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3598 z = &NODE_DATA(nid)->node_zones[zone_type];
3599 if (populated_zone(z)) {
3600 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3601 low_kmem_size += z->managed_pages;
3602 total_size += z->managed_pages;
e325c90f
DR
3603 } else if (zone_type == ZONE_NORMAL) {
3604 /*
3605 * If any node has only lowmem, then node order
3606 * is preferred to allow kernel allocations
3607 * locally; otherwise, they can easily infringe
3608 * on other nodes when there is an abundance of
3609 * lowmem available to allocate from.
3610 */
3611 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3612 }
3613 }
3614 }
3615 if (!low_kmem_size || /* there are no DMA area. */
3616 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3617 return ZONELIST_ORDER_NODE;
3618 /*
3619 * look into each node's config.
b8af2941
PK
3620 * If there is a node whose DMA/DMA32 memory is very big area on
3621 * local memory, NODE_ORDER may be suitable.
3622 */
37b07e41 3623 average_size = total_size /
4b0ef1fe 3624 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3625 for_each_online_node(nid) {
3626 low_kmem_size = 0;
3627 total_size = 0;
3628 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3629 z = &NODE_DATA(nid)->node_zones[zone_type];
3630 if (populated_zone(z)) {
3631 if (zone_type < ZONE_NORMAL)
3632 low_kmem_size += z->present_pages;
3633 total_size += z->present_pages;
3634 }
3635 }
3636 if (low_kmem_size &&
3637 total_size > average_size && /* ignore small node */
3638 low_kmem_size > total_size * 70/100)
3639 return ZONELIST_ORDER_NODE;
3640 }
3641 return ZONELIST_ORDER_ZONE;
3642}
3643
3644static void set_zonelist_order(void)
3645{
3646 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3647 current_zonelist_order = default_zonelist_order();
3648 else
3649 current_zonelist_order = user_zonelist_order;
3650}
3651
3652static void build_zonelists(pg_data_t *pgdat)
3653{
3654 int j, node, load;
3655 enum zone_type i;
1da177e4 3656 nodemask_t used_mask;
f0c0b2b8
KH
3657 int local_node, prev_node;
3658 struct zonelist *zonelist;
3659 int order = current_zonelist_order;
1da177e4
LT
3660
3661 /* initialize zonelists */
523b9458 3662 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3663 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3664 zonelist->_zonerefs[0].zone = NULL;
3665 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3666 }
3667
3668 /* NUMA-aware ordering of nodes */
3669 local_node = pgdat->node_id;
62bc62a8 3670 load = nr_online_nodes;
1da177e4
LT
3671 prev_node = local_node;
3672 nodes_clear(used_mask);
f0c0b2b8 3673
f0c0b2b8
KH
3674 memset(node_order, 0, sizeof(node_order));
3675 j = 0;
3676
1da177e4
LT
3677 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3678 /*
3679 * We don't want to pressure a particular node.
3680 * So adding penalty to the first node in same
3681 * distance group to make it round-robin.
3682 */
957f822a
DR
3683 if (node_distance(local_node, node) !=
3684 node_distance(local_node, prev_node))
f0c0b2b8
KH
3685 node_load[node] = load;
3686
1da177e4
LT
3687 prev_node = node;
3688 load--;
f0c0b2b8
KH
3689 if (order == ZONELIST_ORDER_NODE)
3690 build_zonelists_in_node_order(pgdat, node);
3691 else
3692 node_order[j++] = node; /* remember order */
3693 }
1da177e4 3694
f0c0b2b8
KH
3695 if (order == ZONELIST_ORDER_ZONE) {
3696 /* calculate node order -- i.e., DMA last! */
3697 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3698 }
523b9458
CL
3699
3700 build_thisnode_zonelists(pgdat);
1da177e4
LT
3701}
3702
9276b1bc 3703/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3704static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3705{
54a6eb5c
MG
3706 struct zonelist *zonelist;
3707 struct zonelist_cache *zlc;
dd1a239f 3708 struct zoneref *z;
9276b1bc 3709
54a6eb5c
MG
3710 zonelist = &pgdat->node_zonelists[0];
3711 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3712 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3713 for (z = zonelist->_zonerefs; z->zone; z++)
3714 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3715}
3716
7aac7898
LS
3717#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3718/*
3719 * Return node id of node used for "local" allocations.
3720 * I.e., first node id of first zone in arg node's generic zonelist.
3721 * Used for initializing percpu 'numa_mem', which is used primarily
3722 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3723 */
3724int local_memory_node(int node)
3725{
3726 struct zone *zone;
3727
3728 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3729 gfp_zone(GFP_KERNEL),
3730 NULL,
3731 &zone);
3732 return zone->node;
3733}
3734#endif
f0c0b2b8 3735
1da177e4
LT
3736#else /* CONFIG_NUMA */
3737
f0c0b2b8
KH
3738static void set_zonelist_order(void)
3739{
3740 current_zonelist_order = ZONELIST_ORDER_ZONE;
3741}
3742
3743static void build_zonelists(pg_data_t *pgdat)
1da177e4 3744{
19655d34 3745 int node, local_node;
54a6eb5c
MG
3746 enum zone_type j;
3747 struct zonelist *zonelist;
1da177e4
LT
3748
3749 local_node = pgdat->node_id;
1da177e4 3750
54a6eb5c 3751 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3752 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3753
54a6eb5c
MG
3754 /*
3755 * Now we build the zonelist so that it contains the zones
3756 * of all the other nodes.
3757 * We don't want to pressure a particular node, so when
3758 * building the zones for node N, we make sure that the
3759 * zones coming right after the local ones are those from
3760 * node N+1 (modulo N)
3761 */
3762 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3763 if (!node_online(node))
3764 continue;
bc732f1d 3765 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3766 }
54a6eb5c
MG
3767 for (node = 0; node < local_node; node++) {
3768 if (!node_online(node))
3769 continue;
bc732f1d 3770 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3771 }
3772
dd1a239f
MG
3773 zonelist->_zonerefs[j].zone = NULL;
3774 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3775}
3776
9276b1bc 3777/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3778static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3779{
54a6eb5c 3780 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3781}
3782
1da177e4
LT
3783#endif /* CONFIG_NUMA */
3784
99dcc3e5
CL
3785/*
3786 * Boot pageset table. One per cpu which is going to be used for all
3787 * zones and all nodes. The parameters will be set in such a way
3788 * that an item put on a list will immediately be handed over to
3789 * the buddy list. This is safe since pageset manipulation is done
3790 * with interrupts disabled.
3791 *
3792 * The boot_pagesets must be kept even after bootup is complete for
3793 * unused processors and/or zones. They do play a role for bootstrapping
3794 * hotplugged processors.
3795 *
3796 * zoneinfo_show() and maybe other functions do
3797 * not check if the processor is online before following the pageset pointer.
3798 * Other parts of the kernel may not check if the zone is available.
3799 */
3800static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3801static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3802static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3803
4eaf3f64
HL
3804/*
3805 * Global mutex to protect against size modification of zonelists
3806 * as well as to serialize pageset setup for the new populated zone.
3807 */
3808DEFINE_MUTEX(zonelists_mutex);
3809
9b1a4d38 3810/* return values int ....just for stop_machine() */
4ed7e022 3811static int __build_all_zonelists(void *data)
1da177e4 3812{
6811378e 3813 int nid;
99dcc3e5 3814 int cpu;
9adb62a5 3815 pg_data_t *self = data;
9276b1bc 3816
7f9cfb31
BL
3817#ifdef CONFIG_NUMA
3818 memset(node_load, 0, sizeof(node_load));
3819#endif
9adb62a5
JL
3820
3821 if (self && !node_online(self->node_id)) {
3822 build_zonelists(self);
3823 build_zonelist_cache(self);
3824 }
3825
9276b1bc 3826 for_each_online_node(nid) {
7ea1530a
CL
3827 pg_data_t *pgdat = NODE_DATA(nid);
3828
3829 build_zonelists(pgdat);
3830 build_zonelist_cache(pgdat);
9276b1bc 3831 }
99dcc3e5
CL
3832
3833 /*
3834 * Initialize the boot_pagesets that are going to be used
3835 * for bootstrapping processors. The real pagesets for
3836 * each zone will be allocated later when the per cpu
3837 * allocator is available.
3838 *
3839 * boot_pagesets are used also for bootstrapping offline
3840 * cpus if the system is already booted because the pagesets
3841 * are needed to initialize allocators on a specific cpu too.
3842 * F.e. the percpu allocator needs the page allocator which
3843 * needs the percpu allocator in order to allocate its pagesets
3844 * (a chicken-egg dilemma).
3845 */
7aac7898 3846 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3847 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3848
7aac7898
LS
3849#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3850 /*
3851 * We now know the "local memory node" for each node--
3852 * i.e., the node of the first zone in the generic zonelist.
3853 * Set up numa_mem percpu variable for on-line cpus. During
3854 * boot, only the boot cpu should be on-line; we'll init the
3855 * secondary cpus' numa_mem as they come on-line. During
3856 * node/memory hotplug, we'll fixup all on-line cpus.
3857 */
3858 if (cpu_online(cpu))
3859 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3860#endif
3861 }
3862
6811378e
YG
3863 return 0;
3864}
3865
4eaf3f64
HL
3866/*
3867 * Called with zonelists_mutex held always
3868 * unless system_state == SYSTEM_BOOTING.
3869 */
9adb62a5 3870void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3871{
f0c0b2b8
KH
3872 set_zonelist_order();
3873
6811378e 3874 if (system_state == SYSTEM_BOOTING) {
423b41d7 3875 __build_all_zonelists(NULL);
68ad8df4 3876 mminit_verify_zonelist();
6811378e
YG
3877 cpuset_init_current_mems_allowed();
3878 } else {
e9959f0f 3879#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3880 if (zone)
3881 setup_zone_pageset(zone);
e9959f0f 3882#endif
dd1895e2
CS
3883 /* we have to stop all cpus to guarantee there is no user
3884 of zonelist */
9adb62a5 3885 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3886 /* cpuset refresh routine should be here */
3887 }
bd1e22b8 3888 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3889 /*
3890 * Disable grouping by mobility if the number of pages in the
3891 * system is too low to allow the mechanism to work. It would be
3892 * more accurate, but expensive to check per-zone. This check is
3893 * made on memory-hotadd so a system can start with mobility
3894 * disabled and enable it later
3895 */
d9c23400 3896 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3897 page_group_by_mobility_disabled = 1;
3898 else
3899 page_group_by_mobility_disabled = 0;
3900
3901 printk("Built %i zonelists in %s order, mobility grouping %s. "
3902 "Total pages: %ld\n",
62bc62a8 3903 nr_online_nodes,
f0c0b2b8 3904 zonelist_order_name[current_zonelist_order],
9ef9acb0 3905 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3906 vm_total_pages);
3907#ifdef CONFIG_NUMA
3908 printk("Policy zone: %s\n", zone_names[policy_zone]);
3909#endif
1da177e4
LT
3910}
3911
3912/*
3913 * Helper functions to size the waitqueue hash table.
3914 * Essentially these want to choose hash table sizes sufficiently
3915 * large so that collisions trying to wait on pages are rare.
3916 * But in fact, the number of active page waitqueues on typical
3917 * systems is ridiculously low, less than 200. So this is even
3918 * conservative, even though it seems large.
3919 *
3920 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3921 * waitqueues, i.e. the size of the waitq table given the number of pages.
3922 */
3923#define PAGES_PER_WAITQUEUE 256
3924
cca448fe 3925#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3926static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3927{
3928 unsigned long size = 1;
3929
3930 pages /= PAGES_PER_WAITQUEUE;
3931
3932 while (size < pages)
3933 size <<= 1;
3934
3935 /*
3936 * Once we have dozens or even hundreds of threads sleeping
3937 * on IO we've got bigger problems than wait queue collision.
3938 * Limit the size of the wait table to a reasonable size.
3939 */
3940 size = min(size, 4096UL);
3941
3942 return max(size, 4UL);
3943}
cca448fe
YG
3944#else
3945/*
3946 * A zone's size might be changed by hot-add, so it is not possible to determine
3947 * a suitable size for its wait_table. So we use the maximum size now.
3948 *
3949 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3950 *
3951 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3952 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3953 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3954 *
3955 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3956 * or more by the traditional way. (See above). It equals:
3957 *
3958 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3959 * ia64(16K page size) : = ( 8G + 4M)byte.
3960 * powerpc (64K page size) : = (32G +16M)byte.
3961 */
3962static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3963{
3964 return 4096UL;
3965}
3966#endif
1da177e4
LT
3967
3968/*
3969 * This is an integer logarithm so that shifts can be used later
3970 * to extract the more random high bits from the multiplicative
3971 * hash function before the remainder is taken.
3972 */
3973static inline unsigned long wait_table_bits(unsigned long size)
3974{
3975 return ffz(~size);
3976}
3977
6d3163ce
AH
3978/*
3979 * Check if a pageblock contains reserved pages
3980 */
3981static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3982{
3983 unsigned long pfn;
3984
3985 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3986 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3987 return 1;
3988 }
3989 return 0;
3990}
3991
56fd56b8 3992/*
d9c23400 3993 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3994 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3995 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3996 * higher will lead to a bigger reserve which will get freed as contiguous
3997 * blocks as reclaim kicks in
3998 */
3999static void setup_zone_migrate_reserve(struct zone *zone)
4000{
6d3163ce 4001 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4002 struct page *page;
78986a67
MG
4003 unsigned long block_migratetype;
4004 int reserve;
943dca1a 4005 int old_reserve;
56fd56b8 4006
d0215638
MH
4007 /*
4008 * Get the start pfn, end pfn and the number of blocks to reserve
4009 * We have to be careful to be aligned to pageblock_nr_pages to
4010 * make sure that we always check pfn_valid for the first page in
4011 * the block.
4012 */
56fd56b8 4013 start_pfn = zone->zone_start_pfn;
108bcc96 4014 end_pfn = zone_end_pfn(zone);
d0215638 4015 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4016 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4017 pageblock_order;
56fd56b8 4018
78986a67
MG
4019 /*
4020 * Reserve blocks are generally in place to help high-order atomic
4021 * allocations that are short-lived. A min_free_kbytes value that
4022 * would result in more than 2 reserve blocks for atomic allocations
4023 * is assumed to be in place to help anti-fragmentation for the
4024 * future allocation of hugepages at runtime.
4025 */
4026 reserve = min(2, reserve);
943dca1a
YI
4027 old_reserve = zone->nr_migrate_reserve_block;
4028
4029 /* When memory hot-add, we almost always need to do nothing */
4030 if (reserve == old_reserve)
4031 return;
4032 zone->nr_migrate_reserve_block = reserve;
78986a67 4033
d9c23400 4034 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4035 if (!pfn_valid(pfn))
4036 continue;
4037 page = pfn_to_page(pfn);
4038
344c790e
AL
4039 /* Watch out for overlapping nodes */
4040 if (page_to_nid(page) != zone_to_nid(zone))
4041 continue;
4042
56fd56b8
MG
4043 block_migratetype = get_pageblock_migratetype(page);
4044
938929f1
MG
4045 /* Only test what is necessary when the reserves are not met */
4046 if (reserve > 0) {
4047 /*
4048 * Blocks with reserved pages will never free, skip
4049 * them.
4050 */
4051 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4052 if (pageblock_is_reserved(pfn, block_end_pfn))
4053 continue;
56fd56b8 4054
938929f1
MG
4055 /* If this block is reserved, account for it */
4056 if (block_migratetype == MIGRATE_RESERVE) {
4057 reserve--;
4058 continue;
4059 }
4060
4061 /* Suitable for reserving if this block is movable */
4062 if (block_migratetype == MIGRATE_MOVABLE) {
4063 set_pageblock_migratetype(page,
4064 MIGRATE_RESERVE);
4065 move_freepages_block(zone, page,
4066 MIGRATE_RESERVE);
4067 reserve--;
4068 continue;
4069 }
943dca1a
YI
4070 } else if (!old_reserve) {
4071 /*
4072 * At boot time we don't need to scan the whole zone
4073 * for turning off MIGRATE_RESERVE.
4074 */
4075 break;
56fd56b8
MG
4076 }
4077
4078 /*
4079 * If the reserve is met and this is a previous reserved block,
4080 * take it back
4081 */
4082 if (block_migratetype == MIGRATE_RESERVE) {
4083 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4084 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4085 }
4086 }
4087}
ac0e5b7a 4088
1da177e4
LT
4089/*
4090 * Initially all pages are reserved - free ones are freed
4091 * up by free_all_bootmem() once the early boot process is
4092 * done. Non-atomic initialization, single-pass.
4093 */
c09b4240 4094void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4095 unsigned long start_pfn, enum memmap_context context)
1da177e4 4096{
1da177e4 4097 struct page *page;
29751f69
AW
4098 unsigned long end_pfn = start_pfn + size;
4099 unsigned long pfn;
86051ca5 4100 struct zone *z;
1da177e4 4101
22b31eec
HD
4102 if (highest_memmap_pfn < end_pfn - 1)
4103 highest_memmap_pfn = end_pfn - 1;
4104
86051ca5 4105 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4106 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4107 /*
4108 * There can be holes in boot-time mem_map[]s
4109 * handed to this function. They do not
4110 * exist on hotplugged memory.
4111 */
4112 if (context == MEMMAP_EARLY) {
4113 if (!early_pfn_valid(pfn))
4114 continue;
4115 if (!early_pfn_in_nid(pfn, nid))
4116 continue;
4117 }
d41dee36
AW
4118 page = pfn_to_page(pfn);
4119 set_page_links(page, zone, nid, pfn);
708614e6 4120 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4121 init_page_count(page);
22b751c3 4122 page_mapcount_reset(page);
90572890 4123 page_cpupid_reset_last(page);
1da177e4 4124 SetPageReserved(page);
b2a0ac88
MG
4125 /*
4126 * Mark the block movable so that blocks are reserved for
4127 * movable at startup. This will force kernel allocations
4128 * to reserve their blocks rather than leaking throughout
4129 * the address space during boot when many long-lived
56fd56b8
MG
4130 * kernel allocations are made. Later some blocks near
4131 * the start are marked MIGRATE_RESERVE by
4132 * setup_zone_migrate_reserve()
86051ca5
KH
4133 *
4134 * bitmap is created for zone's valid pfn range. but memmap
4135 * can be created for invalid pages (for alignment)
4136 * check here not to call set_pageblock_migratetype() against
4137 * pfn out of zone.
b2a0ac88 4138 */
86051ca5 4139 if ((z->zone_start_pfn <= pfn)
108bcc96 4140 && (pfn < zone_end_pfn(z))
86051ca5 4141 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4142 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4143
1da177e4
LT
4144 INIT_LIST_HEAD(&page->lru);
4145#ifdef WANT_PAGE_VIRTUAL
4146 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4147 if (!is_highmem_idx(zone))
3212c6be 4148 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4149#endif
1da177e4
LT
4150 }
4151}
4152
1e548deb 4153static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4154{
7aeb09f9 4155 unsigned int order, t;
b2a0ac88
MG
4156 for_each_migratetype_order(order, t) {
4157 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4158 zone->free_area[order].nr_free = 0;
4159 }
4160}
4161
4162#ifndef __HAVE_ARCH_MEMMAP_INIT
4163#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4164 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4165#endif
4166
7cd2b0a3 4167static int zone_batchsize(struct zone *zone)
e7c8d5c9 4168{
3a6be87f 4169#ifdef CONFIG_MMU
e7c8d5c9
CL
4170 int batch;
4171
4172 /*
4173 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4174 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4175 *
4176 * OK, so we don't know how big the cache is. So guess.
4177 */
b40da049 4178 batch = zone->managed_pages / 1024;
ba56e91c
SR
4179 if (batch * PAGE_SIZE > 512 * 1024)
4180 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4181 batch /= 4; /* We effectively *= 4 below */
4182 if (batch < 1)
4183 batch = 1;
4184
4185 /*
0ceaacc9
NP
4186 * Clamp the batch to a 2^n - 1 value. Having a power
4187 * of 2 value was found to be more likely to have
4188 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4189 *
0ceaacc9
NP
4190 * For example if 2 tasks are alternately allocating
4191 * batches of pages, one task can end up with a lot
4192 * of pages of one half of the possible page colors
4193 * and the other with pages of the other colors.
e7c8d5c9 4194 */
9155203a 4195 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4196
e7c8d5c9 4197 return batch;
3a6be87f
DH
4198
4199#else
4200 /* The deferral and batching of frees should be suppressed under NOMMU
4201 * conditions.
4202 *
4203 * The problem is that NOMMU needs to be able to allocate large chunks
4204 * of contiguous memory as there's no hardware page translation to
4205 * assemble apparent contiguous memory from discontiguous pages.
4206 *
4207 * Queueing large contiguous runs of pages for batching, however,
4208 * causes the pages to actually be freed in smaller chunks. As there
4209 * can be a significant delay between the individual batches being
4210 * recycled, this leads to the once large chunks of space being
4211 * fragmented and becoming unavailable for high-order allocations.
4212 */
4213 return 0;
4214#endif
e7c8d5c9
CL
4215}
4216
8d7a8fa9
CS
4217/*
4218 * pcp->high and pcp->batch values are related and dependent on one another:
4219 * ->batch must never be higher then ->high.
4220 * The following function updates them in a safe manner without read side
4221 * locking.
4222 *
4223 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4224 * those fields changing asynchronously (acording the the above rule).
4225 *
4226 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4227 * outside of boot time (or some other assurance that no concurrent updaters
4228 * exist).
4229 */
4230static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4231 unsigned long batch)
4232{
4233 /* start with a fail safe value for batch */
4234 pcp->batch = 1;
4235 smp_wmb();
4236
4237 /* Update high, then batch, in order */
4238 pcp->high = high;
4239 smp_wmb();
4240
4241 pcp->batch = batch;
4242}
4243
3664033c 4244/* a companion to pageset_set_high() */
4008bab7
CS
4245static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4246{
8d7a8fa9 4247 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4248}
4249
88c90dbc 4250static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4251{
4252 struct per_cpu_pages *pcp;
5f8dcc21 4253 int migratetype;
2caaad41 4254
1c6fe946
MD
4255 memset(p, 0, sizeof(*p));
4256
3dfa5721 4257 pcp = &p->pcp;
2caaad41 4258 pcp->count = 0;
5f8dcc21
MG
4259 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4260 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4261}
4262
88c90dbc
CS
4263static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4264{
4265 pageset_init(p);
4266 pageset_set_batch(p, batch);
4267}
4268
8ad4b1fb 4269/*
3664033c 4270 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4271 * to the value high for the pageset p.
4272 */
3664033c 4273static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4274 unsigned long high)
4275{
8d7a8fa9
CS
4276 unsigned long batch = max(1UL, high / 4);
4277 if ((high / 4) > (PAGE_SHIFT * 8))
4278 batch = PAGE_SHIFT * 8;
8ad4b1fb 4279
8d7a8fa9 4280 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4281}
4282
7cd2b0a3
DR
4283static void pageset_set_high_and_batch(struct zone *zone,
4284 struct per_cpu_pageset *pcp)
56cef2b8 4285{
56cef2b8 4286 if (percpu_pagelist_fraction)
3664033c 4287 pageset_set_high(pcp,
56cef2b8
CS
4288 (zone->managed_pages /
4289 percpu_pagelist_fraction));
4290 else
4291 pageset_set_batch(pcp, zone_batchsize(zone));
4292}
4293
169f6c19
CS
4294static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4295{
4296 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4297
4298 pageset_init(pcp);
4299 pageset_set_high_and_batch(zone, pcp);
4300}
4301
4ed7e022 4302static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4303{
4304 int cpu;
319774e2 4305 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4306 for_each_possible_cpu(cpu)
4307 zone_pageset_init(zone, cpu);
319774e2
WF
4308}
4309
2caaad41 4310/*
99dcc3e5
CL
4311 * Allocate per cpu pagesets and initialize them.
4312 * Before this call only boot pagesets were available.
e7c8d5c9 4313 */
99dcc3e5 4314void __init setup_per_cpu_pageset(void)
e7c8d5c9 4315{
99dcc3e5 4316 struct zone *zone;
e7c8d5c9 4317
319774e2
WF
4318 for_each_populated_zone(zone)
4319 setup_zone_pageset(zone);
e7c8d5c9
CL
4320}
4321
577a32f6 4322static noinline __init_refok
cca448fe 4323int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4324{
4325 int i;
cca448fe 4326 size_t alloc_size;
ed8ece2e
DH
4327
4328 /*
4329 * The per-page waitqueue mechanism uses hashed waitqueues
4330 * per zone.
4331 */
02b694de
YG
4332 zone->wait_table_hash_nr_entries =
4333 wait_table_hash_nr_entries(zone_size_pages);
4334 zone->wait_table_bits =
4335 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4336 alloc_size = zone->wait_table_hash_nr_entries
4337 * sizeof(wait_queue_head_t);
4338
cd94b9db 4339 if (!slab_is_available()) {
cca448fe 4340 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4341 memblock_virt_alloc_node_nopanic(
4342 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4343 } else {
4344 /*
4345 * This case means that a zone whose size was 0 gets new memory
4346 * via memory hot-add.
4347 * But it may be the case that a new node was hot-added. In
4348 * this case vmalloc() will not be able to use this new node's
4349 * memory - this wait_table must be initialized to use this new
4350 * node itself as well.
4351 * To use this new node's memory, further consideration will be
4352 * necessary.
4353 */
8691f3a7 4354 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4355 }
4356 if (!zone->wait_table)
4357 return -ENOMEM;
ed8ece2e 4358
b8af2941 4359 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4360 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4361
4362 return 0;
ed8ece2e
DH
4363}
4364
c09b4240 4365static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4366{
99dcc3e5
CL
4367 /*
4368 * per cpu subsystem is not up at this point. The following code
4369 * relies on the ability of the linker to provide the
4370 * offset of a (static) per cpu variable into the per cpu area.
4371 */
4372 zone->pageset = &boot_pageset;
ed8ece2e 4373
b38a8725 4374 if (populated_zone(zone))
99dcc3e5
CL
4375 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4376 zone->name, zone->present_pages,
4377 zone_batchsize(zone));
ed8ece2e
DH
4378}
4379
4ed7e022 4380int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4381 unsigned long zone_start_pfn,
a2f3aa02
DH
4382 unsigned long size,
4383 enum memmap_context context)
ed8ece2e
DH
4384{
4385 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4386 int ret;
4387 ret = zone_wait_table_init(zone, size);
4388 if (ret)
4389 return ret;
ed8ece2e
DH
4390 pgdat->nr_zones = zone_idx(zone) + 1;
4391
ed8ece2e
DH
4392 zone->zone_start_pfn = zone_start_pfn;
4393
708614e6
MG
4394 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4395 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4396 pgdat->node_id,
4397 (unsigned long)zone_idx(zone),
4398 zone_start_pfn, (zone_start_pfn + size));
4399
1e548deb 4400 zone_init_free_lists(zone);
718127cc
YG
4401
4402 return 0;
ed8ece2e
DH
4403}
4404
0ee332c1 4405#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4406#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4407/*
4408 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4409 */
f2dbcfa7 4410int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4411{
c13291a5 4412 unsigned long start_pfn, end_pfn;
e76b63f8 4413 int nid;
7c243c71
RA
4414 /*
4415 * NOTE: The following SMP-unsafe globals are only used early in boot
4416 * when the kernel is running single-threaded.
4417 */
4418 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4419 static int __meminitdata last_nid;
4420
4421 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4422 return last_nid;
c713216d 4423
e76b63f8
YL
4424 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4425 if (nid != -1) {
4426 last_start_pfn = start_pfn;
4427 last_end_pfn = end_pfn;
4428 last_nid = nid;
4429 }
4430
4431 return nid;
c713216d
MG
4432}
4433#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4434
f2dbcfa7
KH
4435int __meminit early_pfn_to_nid(unsigned long pfn)
4436{
cc2559bc
KH
4437 int nid;
4438
4439 nid = __early_pfn_to_nid(pfn);
4440 if (nid >= 0)
4441 return nid;
4442 /* just returns 0 */
4443 return 0;
f2dbcfa7
KH
4444}
4445
cc2559bc
KH
4446#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4447bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4448{
4449 int nid;
4450
4451 nid = __early_pfn_to_nid(pfn);
4452 if (nid >= 0 && nid != node)
4453 return false;
4454 return true;
4455}
4456#endif
f2dbcfa7 4457
c713216d 4458/**
6782832e 4459 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4460 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4461 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4462 *
7d018176
ZZ
4463 * If an architecture guarantees that all ranges registered contain no holes
4464 * and may be freed, this this function may be used instead of calling
4465 * memblock_free_early_nid() manually.
c713216d 4466 */
c13291a5 4467void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4468{
c13291a5
TH
4469 unsigned long start_pfn, end_pfn;
4470 int i, this_nid;
edbe7d23 4471
c13291a5
TH
4472 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4473 start_pfn = min(start_pfn, max_low_pfn);
4474 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4475
c13291a5 4476 if (start_pfn < end_pfn)
6782832e
SS
4477 memblock_free_early_nid(PFN_PHYS(start_pfn),
4478 (end_pfn - start_pfn) << PAGE_SHIFT,
4479 this_nid);
edbe7d23 4480 }
edbe7d23 4481}
edbe7d23 4482
c713216d
MG
4483/**
4484 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4485 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4486 *
7d018176
ZZ
4487 * If an architecture guarantees that all ranges registered contain no holes and may
4488 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4489 */
4490void __init sparse_memory_present_with_active_regions(int nid)
4491{
c13291a5
TH
4492 unsigned long start_pfn, end_pfn;
4493 int i, this_nid;
c713216d 4494
c13291a5
TH
4495 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4496 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4497}
4498
4499/**
4500 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4501 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4502 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4503 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4504 *
4505 * It returns the start and end page frame of a node based on information
7d018176 4506 * provided by memblock_set_node(). If called for a node
c713216d 4507 * with no available memory, a warning is printed and the start and end
88ca3b94 4508 * PFNs will be 0.
c713216d 4509 */
a3142c8e 4510void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4511 unsigned long *start_pfn, unsigned long *end_pfn)
4512{
c13291a5 4513 unsigned long this_start_pfn, this_end_pfn;
c713216d 4514 int i;
c13291a5 4515
c713216d
MG
4516 *start_pfn = -1UL;
4517 *end_pfn = 0;
4518
c13291a5
TH
4519 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4520 *start_pfn = min(*start_pfn, this_start_pfn);
4521 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4522 }
4523
633c0666 4524 if (*start_pfn == -1UL)
c713216d 4525 *start_pfn = 0;
c713216d
MG
4526}
4527
2a1e274a
MG
4528/*
4529 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4530 * assumption is made that zones within a node are ordered in monotonic
4531 * increasing memory addresses so that the "highest" populated zone is used
4532 */
b69a7288 4533static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4534{
4535 int zone_index;
4536 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4537 if (zone_index == ZONE_MOVABLE)
4538 continue;
4539
4540 if (arch_zone_highest_possible_pfn[zone_index] >
4541 arch_zone_lowest_possible_pfn[zone_index])
4542 break;
4543 }
4544
4545 VM_BUG_ON(zone_index == -1);
4546 movable_zone = zone_index;
4547}
4548
4549/*
4550 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4551 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4552 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4553 * in each node depending on the size of each node and how evenly kernelcore
4554 * is distributed. This helper function adjusts the zone ranges
4555 * provided by the architecture for a given node by using the end of the
4556 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4557 * zones within a node are in order of monotonic increases memory addresses
4558 */
b69a7288 4559static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4560 unsigned long zone_type,
4561 unsigned long node_start_pfn,
4562 unsigned long node_end_pfn,
4563 unsigned long *zone_start_pfn,
4564 unsigned long *zone_end_pfn)
4565{
4566 /* Only adjust if ZONE_MOVABLE is on this node */
4567 if (zone_movable_pfn[nid]) {
4568 /* Size ZONE_MOVABLE */
4569 if (zone_type == ZONE_MOVABLE) {
4570 *zone_start_pfn = zone_movable_pfn[nid];
4571 *zone_end_pfn = min(node_end_pfn,
4572 arch_zone_highest_possible_pfn[movable_zone]);
4573
4574 /* Adjust for ZONE_MOVABLE starting within this range */
4575 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4576 *zone_end_pfn > zone_movable_pfn[nid]) {
4577 *zone_end_pfn = zone_movable_pfn[nid];
4578
4579 /* Check if this whole range is within ZONE_MOVABLE */
4580 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4581 *zone_start_pfn = *zone_end_pfn;
4582 }
4583}
4584
c713216d
MG
4585/*
4586 * Return the number of pages a zone spans in a node, including holes
4587 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4588 */
6ea6e688 4589static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4590 unsigned long zone_type,
7960aedd
ZY
4591 unsigned long node_start_pfn,
4592 unsigned long node_end_pfn,
c713216d
MG
4593 unsigned long *ignored)
4594{
c713216d
MG
4595 unsigned long zone_start_pfn, zone_end_pfn;
4596
7960aedd 4597 /* Get the start and end of the zone */
c713216d
MG
4598 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4599 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4600 adjust_zone_range_for_zone_movable(nid, zone_type,
4601 node_start_pfn, node_end_pfn,
4602 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4603
4604 /* Check that this node has pages within the zone's required range */
4605 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4606 return 0;
4607
4608 /* Move the zone boundaries inside the node if necessary */
4609 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4610 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4611
4612 /* Return the spanned pages */
4613 return zone_end_pfn - zone_start_pfn;
4614}
4615
4616/*
4617 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4618 * then all holes in the requested range will be accounted for.
c713216d 4619 */
32996250 4620unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4621 unsigned long range_start_pfn,
4622 unsigned long range_end_pfn)
4623{
96e907d1
TH
4624 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4625 unsigned long start_pfn, end_pfn;
4626 int i;
c713216d 4627
96e907d1
TH
4628 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4629 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4630 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4631 nr_absent -= end_pfn - start_pfn;
c713216d 4632 }
96e907d1 4633 return nr_absent;
c713216d
MG
4634}
4635
4636/**
4637 * absent_pages_in_range - Return number of page frames in holes within a range
4638 * @start_pfn: The start PFN to start searching for holes
4639 * @end_pfn: The end PFN to stop searching for holes
4640 *
88ca3b94 4641 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4642 */
4643unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4644 unsigned long end_pfn)
4645{
4646 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4647}
4648
4649/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4650static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4651 unsigned long zone_type,
7960aedd
ZY
4652 unsigned long node_start_pfn,
4653 unsigned long node_end_pfn,
c713216d
MG
4654 unsigned long *ignored)
4655{
96e907d1
TH
4656 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4657 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4658 unsigned long zone_start_pfn, zone_end_pfn;
4659
96e907d1
TH
4660 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4661 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4662
2a1e274a
MG
4663 adjust_zone_range_for_zone_movable(nid, zone_type,
4664 node_start_pfn, node_end_pfn,
4665 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4666 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4667}
0e0b864e 4668
0ee332c1 4669#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4670static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4671 unsigned long zone_type,
7960aedd
ZY
4672 unsigned long node_start_pfn,
4673 unsigned long node_end_pfn,
c713216d
MG
4674 unsigned long *zones_size)
4675{
4676 return zones_size[zone_type];
4677}
4678
6ea6e688 4679static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4680 unsigned long zone_type,
7960aedd
ZY
4681 unsigned long node_start_pfn,
4682 unsigned long node_end_pfn,
c713216d
MG
4683 unsigned long *zholes_size)
4684{
4685 if (!zholes_size)
4686 return 0;
4687
4688 return zholes_size[zone_type];
4689}
20e6926d 4690
0ee332c1 4691#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4692
a3142c8e 4693static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4694 unsigned long node_start_pfn,
4695 unsigned long node_end_pfn,
4696 unsigned long *zones_size,
4697 unsigned long *zholes_size)
c713216d
MG
4698{
4699 unsigned long realtotalpages, totalpages = 0;
4700 enum zone_type i;
4701
4702 for (i = 0; i < MAX_NR_ZONES; i++)
4703 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4704 node_start_pfn,
4705 node_end_pfn,
4706 zones_size);
c713216d
MG
4707 pgdat->node_spanned_pages = totalpages;
4708
4709 realtotalpages = totalpages;
4710 for (i = 0; i < MAX_NR_ZONES; i++)
4711 realtotalpages -=
4712 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4713 node_start_pfn, node_end_pfn,
4714 zholes_size);
c713216d
MG
4715 pgdat->node_present_pages = realtotalpages;
4716 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4717 realtotalpages);
4718}
4719
835c134e
MG
4720#ifndef CONFIG_SPARSEMEM
4721/*
4722 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4723 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4724 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4725 * round what is now in bits to nearest long in bits, then return it in
4726 * bytes.
4727 */
7c45512d 4728static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4729{
4730 unsigned long usemapsize;
4731
7c45512d 4732 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4733 usemapsize = roundup(zonesize, pageblock_nr_pages);
4734 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4735 usemapsize *= NR_PAGEBLOCK_BITS;
4736 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4737
4738 return usemapsize / 8;
4739}
4740
4741static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4742 struct zone *zone,
4743 unsigned long zone_start_pfn,
4744 unsigned long zonesize)
835c134e 4745{
7c45512d 4746 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4747 zone->pageblock_flags = NULL;
58a01a45 4748 if (usemapsize)
6782832e
SS
4749 zone->pageblock_flags =
4750 memblock_virt_alloc_node_nopanic(usemapsize,
4751 pgdat->node_id);
835c134e
MG
4752}
4753#else
7c45512d
LT
4754static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4755 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4756#endif /* CONFIG_SPARSEMEM */
4757
d9c23400 4758#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4759
d9c23400 4760/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4761void __paginginit set_pageblock_order(void)
d9c23400 4762{
955c1cd7
AM
4763 unsigned int order;
4764
d9c23400
MG
4765 /* Check that pageblock_nr_pages has not already been setup */
4766 if (pageblock_order)
4767 return;
4768
955c1cd7
AM
4769 if (HPAGE_SHIFT > PAGE_SHIFT)
4770 order = HUGETLB_PAGE_ORDER;
4771 else
4772 order = MAX_ORDER - 1;
4773
d9c23400
MG
4774 /*
4775 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4776 * This value may be variable depending on boot parameters on IA64 and
4777 * powerpc.
d9c23400
MG
4778 */
4779 pageblock_order = order;
4780}
4781#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4782
ba72cb8c
MG
4783/*
4784 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4785 * is unused as pageblock_order is set at compile-time. See
4786 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4787 * the kernel config
ba72cb8c 4788 */
15ca220e 4789void __paginginit set_pageblock_order(void)
ba72cb8c 4790{
ba72cb8c 4791}
d9c23400
MG
4792
4793#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4794
01cefaef
JL
4795static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4796 unsigned long present_pages)
4797{
4798 unsigned long pages = spanned_pages;
4799
4800 /*
4801 * Provide a more accurate estimation if there are holes within
4802 * the zone and SPARSEMEM is in use. If there are holes within the
4803 * zone, each populated memory region may cost us one or two extra
4804 * memmap pages due to alignment because memmap pages for each
4805 * populated regions may not naturally algined on page boundary.
4806 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4807 */
4808 if (spanned_pages > present_pages + (present_pages >> 4) &&
4809 IS_ENABLED(CONFIG_SPARSEMEM))
4810 pages = present_pages;
4811
4812 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4813}
4814
1da177e4
LT
4815/*
4816 * Set up the zone data structures:
4817 * - mark all pages reserved
4818 * - mark all memory queues empty
4819 * - clear the memory bitmaps
6527af5d
MK
4820 *
4821 * NOTE: pgdat should get zeroed by caller.
1da177e4 4822 */
b5a0e011 4823static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4824 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4825 unsigned long *zones_size, unsigned long *zholes_size)
4826{
2f1b6248 4827 enum zone_type j;
ed8ece2e 4828 int nid = pgdat->node_id;
1da177e4 4829 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4830 int ret;
1da177e4 4831
208d54e5 4832 pgdat_resize_init(pgdat);
8177a420
AA
4833#ifdef CONFIG_NUMA_BALANCING
4834 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4835 pgdat->numabalancing_migrate_nr_pages = 0;
4836 pgdat->numabalancing_migrate_next_window = jiffies;
4837#endif
1da177e4 4838 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4839 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4840 pgdat_page_cgroup_init(pgdat);
5f63b720 4841
1da177e4
LT
4842 for (j = 0; j < MAX_NR_ZONES; j++) {
4843 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4844 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4845
7960aedd
ZY
4846 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4847 node_end_pfn, zones_size);
9feedc9d 4848 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4849 node_start_pfn,
4850 node_end_pfn,
c713216d 4851 zholes_size);
1da177e4 4852
0e0b864e 4853 /*
9feedc9d 4854 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4855 * is used by this zone for memmap. This affects the watermark
4856 * and per-cpu initialisations
4857 */
01cefaef 4858 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4859 if (freesize >= memmap_pages) {
4860 freesize -= memmap_pages;
5594c8c8
YL
4861 if (memmap_pages)
4862 printk(KERN_DEBUG
4863 " %s zone: %lu pages used for memmap\n",
4864 zone_names[j], memmap_pages);
0e0b864e
MG
4865 } else
4866 printk(KERN_WARNING
9feedc9d
JL
4867 " %s zone: %lu pages exceeds freesize %lu\n",
4868 zone_names[j], memmap_pages, freesize);
0e0b864e 4869
6267276f 4870 /* Account for reserved pages */
9feedc9d
JL
4871 if (j == 0 && freesize > dma_reserve) {
4872 freesize -= dma_reserve;
d903ef9f 4873 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4874 zone_names[0], dma_reserve);
0e0b864e
MG
4875 }
4876
98d2b0eb 4877 if (!is_highmem_idx(j))
9feedc9d 4878 nr_kernel_pages += freesize;
01cefaef
JL
4879 /* Charge for highmem memmap if there are enough kernel pages */
4880 else if (nr_kernel_pages > memmap_pages * 2)
4881 nr_kernel_pages -= memmap_pages;
9feedc9d 4882 nr_all_pages += freesize;
1da177e4
LT
4883
4884 zone->spanned_pages = size;
306f2e9e 4885 zone->present_pages = realsize;
9feedc9d
JL
4886 /*
4887 * Set an approximate value for lowmem here, it will be adjusted
4888 * when the bootmem allocator frees pages into the buddy system.
4889 * And all highmem pages will be managed by the buddy system.
4890 */
4891 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4892#ifdef CONFIG_NUMA
d5f541ed 4893 zone->node = nid;
9feedc9d 4894 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4895 / 100;
9feedc9d 4896 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4897#endif
1da177e4
LT
4898 zone->name = zone_names[j];
4899 spin_lock_init(&zone->lock);
4900 spin_lock_init(&zone->lru_lock);
bdc8cb98 4901 zone_seqlock_init(zone);
1da177e4 4902 zone->zone_pgdat = pgdat;
ed8ece2e 4903 zone_pcp_init(zone);
81c0a2bb
JW
4904
4905 /* For bootup, initialized properly in watermark setup */
4906 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4907
bea8c150 4908 lruvec_init(&zone->lruvec);
1da177e4
LT
4909 if (!size)
4910 continue;
4911
955c1cd7 4912 set_pageblock_order();
7c45512d 4913 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4914 ret = init_currently_empty_zone(zone, zone_start_pfn,
4915 size, MEMMAP_EARLY);
718127cc 4916 BUG_ON(ret);
76cdd58e 4917 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4918 zone_start_pfn += size;
1da177e4
LT
4919 }
4920}
4921
577a32f6 4922static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4923{
1da177e4
LT
4924 /* Skip empty nodes */
4925 if (!pgdat->node_spanned_pages)
4926 return;
4927
d41dee36 4928#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4929 /* ia64 gets its own node_mem_map, before this, without bootmem */
4930 if (!pgdat->node_mem_map) {
e984bb43 4931 unsigned long size, start, end;
d41dee36
AW
4932 struct page *map;
4933
e984bb43
BP
4934 /*
4935 * The zone's endpoints aren't required to be MAX_ORDER
4936 * aligned but the node_mem_map endpoints must be in order
4937 * for the buddy allocator to function correctly.
4938 */
4939 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4940 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4941 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4942 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4943 map = alloc_remap(pgdat->node_id, size);
4944 if (!map)
6782832e
SS
4945 map = memblock_virt_alloc_node_nopanic(size,
4946 pgdat->node_id);
e984bb43 4947 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4948 }
12d810c1 4949#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4950 /*
4951 * With no DISCONTIG, the global mem_map is just set as node 0's
4952 */
c713216d 4953 if (pgdat == NODE_DATA(0)) {
1da177e4 4954 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4955#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4956 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4957 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4958#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4959 }
1da177e4 4960#endif
d41dee36 4961#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4962}
4963
9109fb7b
JW
4964void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4965 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4966{
9109fb7b 4967 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4968 unsigned long start_pfn = 0;
4969 unsigned long end_pfn = 0;
9109fb7b 4970
88fdf75d 4971 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4972 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4973
1da177e4
LT
4974 pgdat->node_id = nid;
4975 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
4976#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4977 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4978#endif
4979 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4980 zones_size, zholes_size);
1da177e4
LT
4981
4982 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4983#ifdef CONFIG_FLAT_NODE_MEM_MAP
4984 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4985 nid, (unsigned long)pgdat,
4986 (unsigned long)pgdat->node_mem_map);
4987#endif
1da177e4 4988
7960aedd
ZY
4989 free_area_init_core(pgdat, start_pfn, end_pfn,
4990 zones_size, zholes_size);
1da177e4
LT
4991}
4992
0ee332c1 4993#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4994
4995#if MAX_NUMNODES > 1
4996/*
4997 * Figure out the number of possible node ids.
4998 */
f9872caf 4999void __init setup_nr_node_ids(void)
418508c1
MS
5000{
5001 unsigned int node;
5002 unsigned int highest = 0;
5003
5004 for_each_node_mask(node, node_possible_map)
5005 highest = node;
5006 nr_node_ids = highest + 1;
5007}
418508c1
MS
5008#endif
5009
1e01979c
TH
5010/**
5011 * node_map_pfn_alignment - determine the maximum internode alignment
5012 *
5013 * This function should be called after node map is populated and sorted.
5014 * It calculates the maximum power of two alignment which can distinguish
5015 * all the nodes.
5016 *
5017 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5018 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5019 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5020 * shifted, 1GiB is enough and this function will indicate so.
5021 *
5022 * This is used to test whether pfn -> nid mapping of the chosen memory
5023 * model has fine enough granularity to avoid incorrect mapping for the
5024 * populated node map.
5025 *
5026 * Returns the determined alignment in pfn's. 0 if there is no alignment
5027 * requirement (single node).
5028 */
5029unsigned long __init node_map_pfn_alignment(void)
5030{
5031 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5032 unsigned long start, end, mask;
1e01979c 5033 int last_nid = -1;
c13291a5 5034 int i, nid;
1e01979c 5035
c13291a5 5036 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5037 if (!start || last_nid < 0 || last_nid == nid) {
5038 last_nid = nid;
5039 last_end = end;
5040 continue;
5041 }
5042
5043 /*
5044 * Start with a mask granular enough to pin-point to the
5045 * start pfn and tick off bits one-by-one until it becomes
5046 * too coarse to separate the current node from the last.
5047 */
5048 mask = ~((1 << __ffs(start)) - 1);
5049 while (mask && last_end <= (start & (mask << 1)))
5050 mask <<= 1;
5051
5052 /* accumulate all internode masks */
5053 accl_mask |= mask;
5054 }
5055
5056 /* convert mask to number of pages */
5057 return ~accl_mask + 1;
5058}
5059
a6af2bc3 5060/* Find the lowest pfn for a node */
b69a7288 5061static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5062{
a6af2bc3 5063 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5064 unsigned long start_pfn;
5065 int i;
1abbfb41 5066
c13291a5
TH
5067 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5068 min_pfn = min(min_pfn, start_pfn);
c713216d 5069
a6af2bc3
MG
5070 if (min_pfn == ULONG_MAX) {
5071 printk(KERN_WARNING
2bc0d261 5072 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5073 return 0;
5074 }
5075
5076 return min_pfn;
c713216d
MG
5077}
5078
5079/**
5080 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5081 *
5082 * It returns the minimum PFN based on information provided via
7d018176 5083 * memblock_set_node().
c713216d
MG
5084 */
5085unsigned long __init find_min_pfn_with_active_regions(void)
5086{
5087 return find_min_pfn_for_node(MAX_NUMNODES);
5088}
5089
37b07e41
LS
5090/*
5091 * early_calculate_totalpages()
5092 * Sum pages in active regions for movable zone.
4b0ef1fe 5093 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5094 */
484f51f8 5095static unsigned long __init early_calculate_totalpages(void)
7e63efef 5096{
7e63efef 5097 unsigned long totalpages = 0;
c13291a5
TH
5098 unsigned long start_pfn, end_pfn;
5099 int i, nid;
5100
5101 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5102 unsigned long pages = end_pfn - start_pfn;
7e63efef 5103
37b07e41
LS
5104 totalpages += pages;
5105 if (pages)
4b0ef1fe 5106 node_set_state(nid, N_MEMORY);
37b07e41 5107 }
b8af2941 5108 return totalpages;
7e63efef
MG
5109}
5110
2a1e274a
MG
5111/*
5112 * Find the PFN the Movable zone begins in each node. Kernel memory
5113 * is spread evenly between nodes as long as the nodes have enough
5114 * memory. When they don't, some nodes will have more kernelcore than
5115 * others
5116 */
b224ef85 5117static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5118{
5119 int i, nid;
5120 unsigned long usable_startpfn;
5121 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5122 /* save the state before borrow the nodemask */
4b0ef1fe 5123 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5124 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5125 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5126 struct memblock_region *r;
b2f3eebe
TC
5127
5128 /* Need to find movable_zone earlier when movable_node is specified. */
5129 find_usable_zone_for_movable();
5130
5131 /*
5132 * If movable_node is specified, ignore kernelcore and movablecore
5133 * options.
5134 */
5135 if (movable_node_is_enabled()) {
136199f0
EM
5136 for_each_memblock(memory, r) {
5137 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5138 continue;
5139
136199f0 5140 nid = r->nid;
b2f3eebe 5141
136199f0 5142 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5143 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5144 min(usable_startpfn, zone_movable_pfn[nid]) :
5145 usable_startpfn;
5146 }
5147
5148 goto out2;
5149 }
2a1e274a 5150
7e63efef 5151 /*
b2f3eebe 5152 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5153 * kernelcore that corresponds so that memory usable for
5154 * any allocation type is evenly spread. If both kernelcore
5155 * and movablecore are specified, then the value of kernelcore
5156 * will be used for required_kernelcore if it's greater than
5157 * what movablecore would have allowed.
5158 */
5159 if (required_movablecore) {
7e63efef
MG
5160 unsigned long corepages;
5161
5162 /*
5163 * Round-up so that ZONE_MOVABLE is at least as large as what
5164 * was requested by the user
5165 */
5166 required_movablecore =
5167 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5168 corepages = totalpages - required_movablecore;
5169
5170 required_kernelcore = max(required_kernelcore, corepages);
5171 }
5172
20e6926d
YL
5173 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5174 if (!required_kernelcore)
66918dcd 5175 goto out;
2a1e274a
MG
5176
5177 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5178 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5179
5180restart:
5181 /* Spread kernelcore memory as evenly as possible throughout nodes */
5182 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5183 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5184 unsigned long start_pfn, end_pfn;
5185
2a1e274a
MG
5186 /*
5187 * Recalculate kernelcore_node if the division per node
5188 * now exceeds what is necessary to satisfy the requested
5189 * amount of memory for the kernel
5190 */
5191 if (required_kernelcore < kernelcore_node)
5192 kernelcore_node = required_kernelcore / usable_nodes;
5193
5194 /*
5195 * As the map is walked, we track how much memory is usable
5196 * by the kernel using kernelcore_remaining. When it is
5197 * 0, the rest of the node is usable by ZONE_MOVABLE
5198 */
5199 kernelcore_remaining = kernelcore_node;
5200
5201 /* Go through each range of PFNs within this node */
c13291a5 5202 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5203 unsigned long size_pages;
5204
c13291a5 5205 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5206 if (start_pfn >= end_pfn)
5207 continue;
5208
5209 /* Account for what is only usable for kernelcore */
5210 if (start_pfn < usable_startpfn) {
5211 unsigned long kernel_pages;
5212 kernel_pages = min(end_pfn, usable_startpfn)
5213 - start_pfn;
5214
5215 kernelcore_remaining -= min(kernel_pages,
5216 kernelcore_remaining);
5217 required_kernelcore -= min(kernel_pages,
5218 required_kernelcore);
5219
5220 /* Continue if range is now fully accounted */
5221 if (end_pfn <= usable_startpfn) {
5222
5223 /*
5224 * Push zone_movable_pfn to the end so
5225 * that if we have to rebalance
5226 * kernelcore across nodes, we will
5227 * not double account here
5228 */
5229 zone_movable_pfn[nid] = end_pfn;
5230 continue;
5231 }
5232 start_pfn = usable_startpfn;
5233 }
5234
5235 /*
5236 * The usable PFN range for ZONE_MOVABLE is from
5237 * start_pfn->end_pfn. Calculate size_pages as the
5238 * number of pages used as kernelcore
5239 */
5240 size_pages = end_pfn - start_pfn;
5241 if (size_pages > kernelcore_remaining)
5242 size_pages = kernelcore_remaining;
5243 zone_movable_pfn[nid] = start_pfn + size_pages;
5244
5245 /*
5246 * Some kernelcore has been met, update counts and
5247 * break if the kernelcore for this node has been
b8af2941 5248 * satisfied
2a1e274a
MG
5249 */
5250 required_kernelcore -= min(required_kernelcore,
5251 size_pages);
5252 kernelcore_remaining -= size_pages;
5253 if (!kernelcore_remaining)
5254 break;
5255 }
5256 }
5257
5258 /*
5259 * If there is still required_kernelcore, we do another pass with one
5260 * less node in the count. This will push zone_movable_pfn[nid] further
5261 * along on the nodes that still have memory until kernelcore is
b8af2941 5262 * satisfied
2a1e274a
MG
5263 */
5264 usable_nodes--;
5265 if (usable_nodes && required_kernelcore > usable_nodes)
5266 goto restart;
5267
b2f3eebe 5268out2:
2a1e274a
MG
5269 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5270 for (nid = 0; nid < MAX_NUMNODES; nid++)
5271 zone_movable_pfn[nid] =
5272 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5273
20e6926d 5274out:
66918dcd 5275 /* restore the node_state */
4b0ef1fe 5276 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5277}
5278
4b0ef1fe
LJ
5279/* Any regular or high memory on that node ? */
5280static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5281{
37b07e41
LS
5282 enum zone_type zone_type;
5283
4b0ef1fe
LJ
5284 if (N_MEMORY == N_NORMAL_MEMORY)
5285 return;
5286
5287 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5288 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5289 if (populated_zone(zone)) {
4b0ef1fe
LJ
5290 node_set_state(nid, N_HIGH_MEMORY);
5291 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5292 zone_type <= ZONE_NORMAL)
5293 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5294 break;
5295 }
37b07e41 5296 }
37b07e41
LS
5297}
5298
c713216d
MG
5299/**
5300 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5301 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5302 *
5303 * This will call free_area_init_node() for each active node in the system.
7d018176 5304 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5305 * zone in each node and their holes is calculated. If the maximum PFN
5306 * between two adjacent zones match, it is assumed that the zone is empty.
5307 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5308 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5309 * starts where the previous one ended. For example, ZONE_DMA32 starts
5310 * at arch_max_dma_pfn.
5311 */
5312void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5313{
c13291a5
TH
5314 unsigned long start_pfn, end_pfn;
5315 int i, nid;
a6af2bc3 5316
c713216d
MG
5317 /* Record where the zone boundaries are */
5318 memset(arch_zone_lowest_possible_pfn, 0,
5319 sizeof(arch_zone_lowest_possible_pfn));
5320 memset(arch_zone_highest_possible_pfn, 0,
5321 sizeof(arch_zone_highest_possible_pfn));
5322 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5323 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5324 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5325 if (i == ZONE_MOVABLE)
5326 continue;
c713216d
MG
5327 arch_zone_lowest_possible_pfn[i] =
5328 arch_zone_highest_possible_pfn[i-1];
5329 arch_zone_highest_possible_pfn[i] =
5330 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5331 }
2a1e274a
MG
5332 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5333 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5334
5335 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5336 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5337 find_zone_movable_pfns_for_nodes();
c713216d 5338
c713216d 5339 /* Print out the zone ranges */
a62e2f4f 5340 printk("Zone ranges:\n");
2a1e274a
MG
5341 for (i = 0; i < MAX_NR_ZONES; i++) {
5342 if (i == ZONE_MOVABLE)
5343 continue;
155cbfc8 5344 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5345 if (arch_zone_lowest_possible_pfn[i] ==
5346 arch_zone_highest_possible_pfn[i])
155cbfc8 5347 printk(KERN_CONT "empty\n");
72f0ba02 5348 else
a62e2f4f
BH
5349 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5350 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5351 (arch_zone_highest_possible_pfn[i]
5352 << PAGE_SHIFT) - 1);
2a1e274a
MG
5353 }
5354
5355 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5356 printk("Movable zone start for each node\n");
2a1e274a
MG
5357 for (i = 0; i < MAX_NUMNODES; i++) {
5358 if (zone_movable_pfn[i])
a62e2f4f
BH
5359 printk(" Node %d: %#010lx\n", i,
5360 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5361 }
c713216d 5362
f2d52fe5 5363 /* Print out the early node map */
a62e2f4f 5364 printk("Early memory node ranges\n");
c13291a5 5365 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5366 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5367 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5368
5369 /* Initialise every node */
708614e6 5370 mminit_verify_pageflags_layout();
8ef82866 5371 setup_nr_node_ids();
c713216d
MG
5372 for_each_online_node(nid) {
5373 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5374 free_area_init_node(nid, NULL,
c713216d 5375 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5376
5377 /* Any memory on that node */
5378 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5379 node_set_state(nid, N_MEMORY);
5380 check_for_memory(pgdat, nid);
c713216d
MG
5381 }
5382}
2a1e274a 5383
7e63efef 5384static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5385{
5386 unsigned long long coremem;
5387 if (!p)
5388 return -EINVAL;
5389
5390 coremem = memparse(p, &p);
7e63efef 5391 *core = coremem >> PAGE_SHIFT;
2a1e274a 5392
7e63efef 5393 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5394 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5395
5396 return 0;
5397}
ed7ed365 5398
7e63efef
MG
5399/*
5400 * kernelcore=size sets the amount of memory for use for allocations that
5401 * cannot be reclaimed or migrated.
5402 */
5403static int __init cmdline_parse_kernelcore(char *p)
5404{
5405 return cmdline_parse_core(p, &required_kernelcore);
5406}
5407
5408/*
5409 * movablecore=size sets the amount of memory for use for allocations that
5410 * can be reclaimed or migrated.
5411 */
5412static int __init cmdline_parse_movablecore(char *p)
5413{
5414 return cmdline_parse_core(p, &required_movablecore);
5415}
5416
ed7ed365 5417early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5418early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5419
0ee332c1 5420#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5421
c3d5f5f0
JL
5422void adjust_managed_page_count(struct page *page, long count)
5423{
5424 spin_lock(&managed_page_count_lock);
5425 page_zone(page)->managed_pages += count;
5426 totalram_pages += count;
3dcc0571
JL
5427#ifdef CONFIG_HIGHMEM
5428 if (PageHighMem(page))
5429 totalhigh_pages += count;
5430#endif
c3d5f5f0
JL
5431 spin_unlock(&managed_page_count_lock);
5432}
3dcc0571 5433EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5434
11199692 5435unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5436{
11199692
JL
5437 void *pos;
5438 unsigned long pages = 0;
69afade7 5439
11199692
JL
5440 start = (void *)PAGE_ALIGN((unsigned long)start);
5441 end = (void *)((unsigned long)end & PAGE_MASK);
5442 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5443 if ((unsigned int)poison <= 0xFF)
11199692
JL
5444 memset(pos, poison, PAGE_SIZE);
5445 free_reserved_page(virt_to_page(pos));
69afade7
JL
5446 }
5447
5448 if (pages && s)
11199692 5449 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5450 s, pages << (PAGE_SHIFT - 10), start, end);
5451
5452 return pages;
5453}
11199692 5454EXPORT_SYMBOL(free_reserved_area);
69afade7 5455
cfa11e08
JL
5456#ifdef CONFIG_HIGHMEM
5457void free_highmem_page(struct page *page)
5458{
5459 __free_reserved_page(page);
5460 totalram_pages++;
7b4b2a0d 5461 page_zone(page)->managed_pages++;
cfa11e08
JL
5462 totalhigh_pages++;
5463}
5464#endif
5465
7ee3d4e8
JL
5466
5467void __init mem_init_print_info(const char *str)
5468{
5469 unsigned long physpages, codesize, datasize, rosize, bss_size;
5470 unsigned long init_code_size, init_data_size;
5471
5472 physpages = get_num_physpages();
5473 codesize = _etext - _stext;
5474 datasize = _edata - _sdata;
5475 rosize = __end_rodata - __start_rodata;
5476 bss_size = __bss_stop - __bss_start;
5477 init_data_size = __init_end - __init_begin;
5478 init_code_size = _einittext - _sinittext;
5479
5480 /*
5481 * Detect special cases and adjust section sizes accordingly:
5482 * 1) .init.* may be embedded into .data sections
5483 * 2) .init.text.* may be out of [__init_begin, __init_end],
5484 * please refer to arch/tile/kernel/vmlinux.lds.S.
5485 * 3) .rodata.* may be embedded into .text or .data sections.
5486 */
5487#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5488 do { \
5489 if (start <= pos && pos < end && size > adj) \
5490 size -= adj; \
5491 } while (0)
7ee3d4e8
JL
5492
5493 adj_init_size(__init_begin, __init_end, init_data_size,
5494 _sinittext, init_code_size);
5495 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5496 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5497 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5498 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5499
5500#undef adj_init_size
5501
5502 printk("Memory: %luK/%luK available "
5503 "(%luK kernel code, %luK rwdata, %luK rodata, "
5504 "%luK init, %luK bss, %luK reserved"
5505#ifdef CONFIG_HIGHMEM
5506 ", %luK highmem"
5507#endif
5508 "%s%s)\n",
5509 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5510 codesize >> 10, datasize >> 10, rosize >> 10,
5511 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5512 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5513#ifdef CONFIG_HIGHMEM
5514 totalhigh_pages << (PAGE_SHIFT-10),
5515#endif
5516 str ? ", " : "", str ? str : "");
5517}
5518
0e0b864e 5519/**
88ca3b94
RD
5520 * set_dma_reserve - set the specified number of pages reserved in the first zone
5521 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5522 *
5523 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5524 * In the DMA zone, a significant percentage may be consumed by kernel image
5525 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5526 * function may optionally be used to account for unfreeable pages in the
5527 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5528 * smaller per-cpu batchsize.
0e0b864e
MG
5529 */
5530void __init set_dma_reserve(unsigned long new_dma_reserve)
5531{
5532 dma_reserve = new_dma_reserve;
5533}
5534
1da177e4
LT
5535void __init free_area_init(unsigned long *zones_size)
5536{
9109fb7b 5537 free_area_init_node(0, zones_size,
1da177e4
LT
5538 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5539}
1da177e4 5540
1da177e4
LT
5541static int page_alloc_cpu_notify(struct notifier_block *self,
5542 unsigned long action, void *hcpu)
5543{
5544 int cpu = (unsigned long)hcpu;
1da177e4 5545
8bb78442 5546 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5547 lru_add_drain_cpu(cpu);
9f8f2172
CL
5548 drain_pages(cpu);
5549
5550 /*
5551 * Spill the event counters of the dead processor
5552 * into the current processors event counters.
5553 * This artificially elevates the count of the current
5554 * processor.
5555 */
f8891e5e 5556 vm_events_fold_cpu(cpu);
9f8f2172
CL
5557
5558 /*
5559 * Zero the differential counters of the dead processor
5560 * so that the vm statistics are consistent.
5561 *
5562 * This is only okay since the processor is dead and cannot
5563 * race with what we are doing.
5564 */
2bb921e5 5565 cpu_vm_stats_fold(cpu);
1da177e4
LT
5566 }
5567 return NOTIFY_OK;
5568}
1da177e4
LT
5569
5570void __init page_alloc_init(void)
5571{
5572 hotcpu_notifier(page_alloc_cpu_notify, 0);
5573}
5574
cb45b0e9
HA
5575/*
5576 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5577 * or min_free_kbytes changes.
5578 */
5579static void calculate_totalreserve_pages(void)
5580{
5581 struct pglist_data *pgdat;
5582 unsigned long reserve_pages = 0;
2f6726e5 5583 enum zone_type i, j;
cb45b0e9
HA
5584
5585 for_each_online_pgdat(pgdat) {
5586 for (i = 0; i < MAX_NR_ZONES; i++) {
5587 struct zone *zone = pgdat->node_zones + i;
3484b2de 5588 long max = 0;
cb45b0e9
HA
5589
5590 /* Find valid and maximum lowmem_reserve in the zone */
5591 for (j = i; j < MAX_NR_ZONES; j++) {
5592 if (zone->lowmem_reserve[j] > max)
5593 max = zone->lowmem_reserve[j];
5594 }
5595
41858966
MG
5596 /* we treat the high watermark as reserved pages. */
5597 max += high_wmark_pages(zone);
cb45b0e9 5598
b40da049
JL
5599 if (max > zone->managed_pages)
5600 max = zone->managed_pages;
cb45b0e9 5601 reserve_pages += max;
ab8fabd4
JW
5602 /*
5603 * Lowmem reserves are not available to
5604 * GFP_HIGHUSER page cache allocations and
5605 * kswapd tries to balance zones to their high
5606 * watermark. As a result, neither should be
5607 * regarded as dirtyable memory, to prevent a
5608 * situation where reclaim has to clean pages
5609 * in order to balance the zones.
5610 */
5611 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5612 }
5613 }
ab8fabd4 5614 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5615 totalreserve_pages = reserve_pages;
5616}
5617
1da177e4
LT
5618/*
5619 * setup_per_zone_lowmem_reserve - called whenever
5620 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5621 * has a correct pages reserved value, so an adequate number of
5622 * pages are left in the zone after a successful __alloc_pages().
5623 */
5624static void setup_per_zone_lowmem_reserve(void)
5625{
5626 struct pglist_data *pgdat;
2f6726e5 5627 enum zone_type j, idx;
1da177e4 5628
ec936fc5 5629 for_each_online_pgdat(pgdat) {
1da177e4
LT
5630 for (j = 0; j < MAX_NR_ZONES; j++) {
5631 struct zone *zone = pgdat->node_zones + j;
b40da049 5632 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5633
5634 zone->lowmem_reserve[j] = 0;
5635
2f6726e5
CL
5636 idx = j;
5637 while (idx) {
1da177e4
LT
5638 struct zone *lower_zone;
5639
2f6726e5
CL
5640 idx--;
5641
1da177e4
LT
5642 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5643 sysctl_lowmem_reserve_ratio[idx] = 1;
5644
5645 lower_zone = pgdat->node_zones + idx;
b40da049 5646 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5647 sysctl_lowmem_reserve_ratio[idx];
b40da049 5648 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5649 }
5650 }
5651 }
cb45b0e9
HA
5652
5653 /* update totalreserve_pages */
5654 calculate_totalreserve_pages();
1da177e4
LT
5655}
5656
cfd3da1e 5657static void __setup_per_zone_wmarks(void)
1da177e4
LT
5658{
5659 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5660 unsigned long lowmem_pages = 0;
5661 struct zone *zone;
5662 unsigned long flags;
5663
5664 /* Calculate total number of !ZONE_HIGHMEM pages */
5665 for_each_zone(zone) {
5666 if (!is_highmem(zone))
b40da049 5667 lowmem_pages += zone->managed_pages;
1da177e4
LT
5668 }
5669
5670 for_each_zone(zone) {
ac924c60
AM
5671 u64 tmp;
5672
1125b4e3 5673 spin_lock_irqsave(&zone->lock, flags);
b40da049 5674 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5675 do_div(tmp, lowmem_pages);
1da177e4
LT
5676 if (is_highmem(zone)) {
5677 /*
669ed175
NP
5678 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5679 * need highmem pages, so cap pages_min to a small
5680 * value here.
5681 *
41858966 5682 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5683 * deltas controls asynch page reclaim, and so should
5684 * not be capped for highmem.
1da177e4 5685 */
90ae8d67 5686 unsigned long min_pages;
1da177e4 5687
b40da049 5688 min_pages = zone->managed_pages / 1024;
90ae8d67 5689 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5690 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5691 } else {
669ed175
NP
5692 /*
5693 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5694 * proportionate to the zone's size.
5695 */
41858966 5696 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5697 }
5698
41858966
MG
5699 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5700 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5701
81c0a2bb
JW
5702 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5703 high_wmark_pages(zone) -
5704 low_wmark_pages(zone) -
5705 zone_page_state(zone, NR_ALLOC_BATCH));
5706
56fd56b8 5707 setup_zone_migrate_reserve(zone);
1125b4e3 5708 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5709 }
cb45b0e9
HA
5710
5711 /* update totalreserve_pages */
5712 calculate_totalreserve_pages();
1da177e4
LT
5713}
5714
cfd3da1e
MG
5715/**
5716 * setup_per_zone_wmarks - called when min_free_kbytes changes
5717 * or when memory is hot-{added|removed}
5718 *
5719 * Ensures that the watermark[min,low,high] values for each zone are set
5720 * correctly with respect to min_free_kbytes.
5721 */
5722void setup_per_zone_wmarks(void)
5723{
5724 mutex_lock(&zonelists_mutex);
5725 __setup_per_zone_wmarks();
5726 mutex_unlock(&zonelists_mutex);
5727}
5728
55a4462a 5729/*
556adecb
RR
5730 * The inactive anon list should be small enough that the VM never has to
5731 * do too much work, but large enough that each inactive page has a chance
5732 * to be referenced again before it is swapped out.
5733 *
5734 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5735 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5736 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5737 * the anonymous pages are kept on the inactive list.
5738 *
5739 * total target max
5740 * memory ratio inactive anon
5741 * -------------------------------------
5742 * 10MB 1 5MB
5743 * 100MB 1 50MB
5744 * 1GB 3 250MB
5745 * 10GB 10 0.9GB
5746 * 100GB 31 3GB
5747 * 1TB 101 10GB
5748 * 10TB 320 32GB
5749 */
1b79acc9 5750static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5751{
96cb4df5 5752 unsigned int gb, ratio;
556adecb 5753
96cb4df5 5754 /* Zone size in gigabytes */
b40da049 5755 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5756 if (gb)
556adecb 5757 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5758 else
5759 ratio = 1;
556adecb 5760
96cb4df5
MK
5761 zone->inactive_ratio = ratio;
5762}
556adecb 5763
839a4fcc 5764static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5765{
5766 struct zone *zone;
5767
5768 for_each_zone(zone)
5769 calculate_zone_inactive_ratio(zone);
556adecb
RR
5770}
5771
1da177e4
LT
5772/*
5773 * Initialise min_free_kbytes.
5774 *
5775 * For small machines we want it small (128k min). For large machines
5776 * we want it large (64MB max). But it is not linear, because network
5777 * bandwidth does not increase linearly with machine size. We use
5778 *
b8af2941 5779 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5780 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5781 *
5782 * which yields
5783 *
5784 * 16MB: 512k
5785 * 32MB: 724k
5786 * 64MB: 1024k
5787 * 128MB: 1448k
5788 * 256MB: 2048k
5789 * 512MB: 2896k
5790 * 1024MB: 4096k
5791 * 2048MB: 5792k
5792 * 4096MB: 8192k
5793 * 8192MB: 11584k
5794 * 16384MB: 16384k
5795 */
1b79acc9 5796int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5797{
5798 unsigned long lowmem_kbytes;
5f12733e 5799 int new_min_free_kbytes;
1da177e4
LT
5800
5801 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5802 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5803
5804 if (new_min_free_kbytes > user_min_free_kbytes) {
5805 min_free_kbytes = new_min_free_kbytes;
5806 if (min_free_kbytes < 128)
5807 min_free_kbytes = 128;
5808 if (min_free_kbytes > 65536)
5809 min_free_kbytes = 65536;
5810 } else {
5811 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5812 new_min_free_kbytes, user_min_free_kbytes);
5813 }
bc75d33f 5814 setup_per_zone_wmarks();
a6cccdc3 5815 refresh_zone_stat_thresholds();
1da177e4 5816 setup_per_zone_lowmem_reserve();
556adecb 5817 setup_per_zone_inactive_ratio();
1da177e4
LT
5818 return 0;
5819}
bc75d33f 5820module_init(init_per_zone_wmark_min)
1da177e4
LT
5821
5822/*
b8af2941 5823 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5824 * that we can call two helper functions whenever min_free_kbytes
5825 * changes.
5826 */
cccad5b9 5827int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5828 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5829{
da8c757b
HP
5830 int rc;
5831
5832 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5833 if (rc)
5834 return rc;
5835
5f12733e
MH
5836 if (write) {
5837 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5838 setup_per_zone_wmarks();
5f12733e 5839 }
1da177e4
LT
5840 return 0;
5841}
5842
9614634f 5843#ifdef CONFIG_NUMA
cccad5b9 5844int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5845 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5846{
5847 struct zone *zone;
5848 int rc;
5849
8d65af78 5850 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5851 if (rc)
5852 return rc;
5853
5854 for_each_zone(zone)
b40da049 5855 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5856 sysctl_min_unmapped_ratio) / 100;
5857 return 0;
5858}
0ff38490 5859
cccad5b9 5860int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5861 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5862{
5863 struct zone *zone;
5864 int rc;
5865
8d65af78 5866 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5867 if (rc)
5868 return rc;
5869
5870 for_each_zone(zone)
b40da049 5871 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5872 sysctl_min_slab_ratio) / 100;
5873 return 0;
5874}
9614634f
CL
5875#endif
5876
1da177e4
LT
5877/*
5878 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5879 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5880 * whenever sysctl_lowmem_reserve_ratio changes.
5881 *
5882 * The reserve ratio obviously has absolutely no relation with the
41858966 5883 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5884 * if in function of the boot time zone sizes.
5885 */
cccad5b9 5886int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5887 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5888{
8d65af78 5889 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5890 setup_per_zone_lowmem_reserve();
5891 return 0;
5892}
5893
8ad4b1fb
RS
5894/*
5895 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5896 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5897 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5898 */
cccad5b9 5899int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5900 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5901{
5902 struct zone *zone;
7cd2b0a3 5903 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5904 int ret;
5905
7cd2b0a3
DR
5906 mutex_lock(&pcp_batch_high_lock);
5907 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5908
8d65af78 5909 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5910 if (!write || ret < 0)
5911 goto out;
5912
5913 /* Sanity checking to avoid pcp imbalance */
5914 if (percpu_pagelist_fraction &&
5915 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5916 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5917 ret = -EINVAL;
5918 goto out;
5919 }
5920
5921 /* No change? */
5922 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5923 goto out;
c8e251fa 5924
364df0eb 5925 for_each_populated_zone(zone) {
7cd2b0a3
DR
5926 unsigned int cpu;
5927
22a7f12b 5928 for_each_possible_cpu(cpu)
7cd2b0a3
DR
5929 pageset_set_high_and_batch(zone,
5930 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 5931 }
7cd2b0a3 5932out:
c8e251fa 5933 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5934 return ret;
8ad4b1fb
RS
5935}
5936
f034b5d4 5937int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5938
5939#ifdef CONFIG_NUMA
5940static int __init set_hashdist(char *str)
5941{
5942 if (!str)
5943 return 0;
5944 hashdist = simple_strtoul(str, &str, 0);
5945 return 1;
5946}
5947__setup("hashdist=", set_hashdist);
5948#endif
5949
5950/*
5951 * allocate a large system hash table from bootmem
5952 * - it is assumed that the hash table must contain an exact power-of-2
5953 * quantity of entries
5954 * - limit is the number of hash buckets, not the total allocation size
5955 */
5956void *__init alloc_large_system_hash(const char *tablename,
5957 unsigned long bucketsize,
5958 unsigned long numentries,
5959 int scale,
5960 int flags,
5961 unsigned int *_hash_shift,
5962 unsigned int *_hash_mask,
31fe62b9
TB
5963 unsigned long low_limit,
5964 unsigned long high_limit)
1da177e4 5965{
31fe62b9 5966 unsigned long long max = high_limit;
1da177e4
LT
5967 unsigned long log2qty, size;
5968 void *table = NULL;
5969
5970 /* allow the kernel cmdline to have a say */
5971 if (!numentries) {
5972 /* round applicable memory size up to nearest megabyte */
04903664 5973 numentries = nr_kernel_pages;
a7e83318
JZ
5974
5975 /* It isn't necessary when PAGE_SIZE >= 1MB */
5976 if (PAGE_SHIFT < 20)
5977 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5978
5979 /* limit to 1 bucket per 2^scale bytes of low memory */
5980 if (scale > PAGE_SHIFT)
5981 numentries >>= (scale - PAGE_SHIFT);
5982 else
5983 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5984
5985 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5986 if (unlikely(flags & HASH_SMALL)) {
5987 /* Makes no sense without HASH_EARLY */
5988 WARN_ON(!(flags & HASH_EARLY));
5989 if (!(numentries >> *_hash_shift)) {
5990 numentries = 1UL << *_hash_shift;
5991 BUG_ON(!numentries);
5992 }
5993 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5994 numentries = PAGE_SIZE / bucketsize;
1da177e4 5995 }
6e692ed3 5996 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5997
5998 /* limit allocation size to 1/16 total memory by default */
5999 if (max == 0) {
6000 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6001 do_div(max, bucketsize);
6002 }
074b8517 6003 max = min(max, 0x80000000ULL);
1da177e4 6004
31fe62b9
TB
6005 if (numentries < low_limit)
6006 numentries = low_limit;
1da177e4
LT
6007 if (numentries > max)
6008 numentries = max;
6009
f0d1b0b3 6010 log2qty = ilog2(numentries);
1da177e4
LT
6011
6012 do {
6013 size = bucketsize << log2qty;
6014 if (flags & HASH_EARLY)
6782832e 6015 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6016 else if (hashdist)
6017 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6018 else {
1037b83b
ED
6019 /*
6020 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6021 * some pages at the end of hash table which
6022 * alloc_pages_exact() automatically does
1037b83b 6023 */
264ef8a9 6024 if (get_order(size) < MAX_ORDER) {
a1dd268c 6025 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6026 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6027 }
1da177e4
LT
6028 }
6029 } while (!table && size > PAGE_SIZE && --log2qty);
6030
6031 if (!table)
6032 panic("Failed to allocate %s hash table\n", tablename);
6033
f241e660 6034 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6035 tablename,
f241e660 6036 (1UL << log2qty),
f0d1b0b3 6037 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6038 size);
6039
6040 if (_hash_shift)
6041 *_hash_shift = log2qty;
6042 if (_hash_mask)
6043 *_hash_mask = (1 << log2qty) - 1;
6044
6045 return table;
6046}
a117e66e 6047
835c134e
MG
6048/* Return a pointer to the bitmap storing bits affecting a block of pages */
6049static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6050 unsigned long pfn)
6051{
6052#ifdef CONFIG_SPARSEMEM
6053 return __pfn_to_section(pfn)->pageblock_flags;
6054#else
6055 return zone->pageblock_flags;
6056#endif /* CONFIG_SPARSEMEM */
6057}
6058
6059static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6060{
6061#ifdef CONFIG_SPARSEMEM
6062 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6063 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6064#else
c060f943 6065 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6066 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6067#endif /* CONFIG_SPARSEMEM */
6068}
6069
6070/**
1aab4d77 6071 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6072 * @page: The page within the block of interest
1aab4d77
RD
6073 * @pfn: The target page frame number
6074 * @end_bitidx: The last bit of interest to retrieve
6075 * @mask: mask of bits that the caller is interested in
6076 *
6077 * Return: pageblock_bits flags
835c134e 6078 */
dc4b0caf 6079unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6080 unsigned long end_bitidx,
6081 unsigned long mask)
835c134e
MG
6082{
6083 struct zone *zone;
6084 unsigned long *bitmap;
dc4b0caf 6085 unsigned long bitidx, word_bitidx;
e58469ba 6086 unsigned long word;
835c134e
MG
6087
6088 zone = page_zone(page);
835c134e
MG
6089 bitmap = get_pageblock_bitmap(zone, pfn);
6090 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6091 word_bitidx = bitidx / BITS_PER_LONG;
6092 bitidx &= (BITS_PER_LONG-1);
835c134e 6093
e58469ba
MG
6094 word = bitmap[word_bitidx];
6095 bitidx += end_bitidx;
6096 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6097}
6098
6099/**
dc4b0caf 6100 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6101 * @page: The page within the block of interest
835c134e 6102 * @flags: The flags to set
1aab4d77
RD
6103 * @pfn: The target page frame number
6104 * @end_bitidx: The last bit of interest
6105 * @mask: mask of bits that the caller is interested in
835c134e 6106 */
dc4b0caf
MG
6107void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6108 unsigned long pfn,
e58469ba
MG
6109 unsigned long end_bitidx,
6110 unsigned long mask)
835c134e
MG
6111{
6112 struct zone *zone;
6113 unsigned long *bitmap;
dc4b0caf 6114 unsigned long bitidx, word_bitidx;
e58469ba
MG
6115 unsigned long old_word, word;
6116
6117 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6118
6119 zone = page_zone(page);
835c134e
MG
6120 bitmap = get_pageblock_bitmap(zone, pfn);
6121 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6122 word_bitidx = bitidx / BITS_PER_LONG;
6123 bitidx &= (BITS_PER_LONG-1);
6124
309381fe 6125 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6126
e58469ba
MG
6127 bitidx += end_bitidx;
6128 mask <<= (BITS_PER_LONG - bitidx - 1);
6129 flags <<= (BITS_PER_LONG - bitidx - 1);
6130
6131 word = ACCESS_ONCE(bitmap[word_bitidx]);
6132 for (;;) {
6133 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6134 if (word == old_word)
6135 break;
6136 word = old_word;
6137 }
835c134e 6138}
a5d76b54
KH
6139
6140/*
80934513
MK
6141 * This function checks whether pageblock includes unmovable pages or not.
6142 * If @count is not zero, it is okay to include less @count unmovable pages
6143 *
b8af2941 6144 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6145 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6146 * expect this function should be exact.
a5d76b54 6147 */
b023f468
WC
6148bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6149 bool skip_hwpoisoned_pages)
49ac8255
KH
6150{
6151 unsigned long pfn, iter, found;
47118af0
MN
6152 int mt;
6153
49ac8255
KH
6154 /*
6155 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6156 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6157 */
6158 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6159 return false;
47118af0
MN
6160 mt = get_pageblock_migratetype(page);
6161 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6162 return false;
49ac8255
KH
6163
6164 pfn = page_to_pfn(page);
6165 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6166 unsigned long check = pfn + iter;
6167
29723fcc 6168 if (!pfn_valid_within(check))
49ac8255 6169 continue;
29723fcc 6170
49ac8255 6171 page = pfn_to_page(check);
c8721bbb
NH
6172
6173 /*
6174 * Hugepages are not in LRU lists, but they're movable.
6175 * We need not scan over tail pages bacause we don't
6176 * handle each tail page individually in migration.
6177 */
6178 if (PageHuge(page)) {
6179 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6180 continue;
6181 }
6182
97d255c8
MK
6183 /*
6184 * We can't use page_count without pin a page
6185 * because another CPU can free compound page.
6186 * This check already skips compound tails of THP
6187 * because their page->_count is zero at all time.
6188 */
6189 if (!atomic_read(&page->_count)) {
49ac8255
KH
6190 if (PageBuddy(page))
6191 iter += (1 << page_order(page)) - 1;
6192 continue;
6193 }
97d255c8 6194
b023f468
WC
6195 /*
6196 * The HWPoisoned page may be not in buddy system, and
6197 * page_count() is not 0.
6198 */
6199 if (skip_hwpoisoned_pages && PageHWPoison(page))
6200 continue;
6201
49ac8255
KH
6202 if (!PageLRU(page))
6203 found++;
6204 /*
6205 * If there are RECLAIMABLE pages, we need to check it.
6206 * But now, memory offline itself doesn't call shrink_slab()
6207 * and it still to be fixed.
6208 */
6209 /*
6210 * If the page is not RAM, page_count()should be 0.
6211 * we don't need more check. This is an _used_ not-movable page.
6212 *
6213 * The problematic thing here is PG_reserved pages. PG_reserved
6214 * is set to both of a memory hole page and a _used_ kernel
6215 * page at boot.
6216 */
6217 if (found > count)
80934513 6218 return true;
49ac8255 6219 }
80934513 6220 return false;
49ac8255
KH
6221}
6222
6223bool is_pageblock_removable_nolock(struct page *page)
6224{
656a0706
MH
6225 struct zone *zone;
6226 unsigned long pfn;
687875fb
MH
6227
6228 /*
6229 * We have to be careful here because we are iterating over memory
6230 * sections which are not zone aware so we might end up outside of
6231 * the zone but still within the section.
656a0706
MH
6232 * We have to take care about the node as well. If the node is offline
6233 * its NODE_DATA will be NULL - see page_zone.
687875fb 6234 */
656a0706
MH
6235 if (!node_online(page_to_nid(page)))
6236 return false;
6237
6238 zone = page_zone(page);
6239 pfn = page_to_pfn(page);
108bcc96 6240 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6241 return false;
6242
b023f468 6243 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6244}
0c0e6195 6245
041d3a8c
MN
6246#ifdef CONFIG_CMA
6247
6248static unsigned long pfn_max_align_down(unsigned long pfn)
6249{
6250 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6251 pageblock_nr_pages) - 1);
6252}
6253
6254static unsigned long pfn_max_align_up(unsigned long pfn)
6255{
6256 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6257 pageblock_nr_pages));
6258}
6259
041d3a8c 6260/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6261static int __alloc_contig_migrate_range(struct compact_control *cc,
6262 unsigned long start, unsigned long end)
041d3a8c
MN
6263{
6264 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6265 unsigned long nr_reclaimed;
041d3a8c
MN
6266 unsigned long pfn = start;
6267 unsigned int tries = 0;
6268 int ret = 0;
6269
be49a6e1 6270 migrate_prep();
041d3a8c 6271
bb13ffeb 6272 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6273 if (fatal_signal_pending(current)) {
6274 ret = -EINTR;
6275 break;
6276 }
6277
bb13ffeb
MG
6278 if (list_empty(&cc->migratepages)) {
6279 cc->nr_migratepages = 0;
6280 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6281 pfn, end, true);
041d3a8c
MN
6282 if (!pfn) {
6283 ret = -EINTR;
6284 break;
6285 }
6286 tries = 0;
6287 } else if (++tries == 5) {
6288 ret = ret < 0 ? ret : -EBUSY;
6289 break;
6290 }
6291
beb51eaa
MK
6292 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6293 &cc->migratepages);
6294 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6295
9c620e2b 6296 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6297 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6298 }
2a6f5124
SP
6299 if (ret < 0) {
6300 putback_movable_pages(&cc->migratepages);
6301 return ret;
6302 }
6303 return 0;
041d3a8c
MN
6304}
6305
6306/**
6307 * alloc_contig_range() -- tries to allocate given range of pages
6308 * @start: start PFN to allocate
6309 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6310 * @migratetype: migratetype of the underlaying pageblocks (either
6311 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6312 * in range must have the same migratetype and it must
6313 * be either of the two.
041d3a8c
MN
6314 *
6315 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6316 * aligned, however it's the caller's responsibility to guarantee that
6317 * we are the only thread that changes migrate type of pageblocks the
6318 * pages fall in.
6319 *
6320 * The PFN range must belong to a single zone.
6321 *
6322 * Returns zero on success or negative error code. On success all
6323 * pages which PFN is in [start, end) are allocated for the caller and
6324 * need to be freed with free_contig_range().
6325 */
0815f3d8
MN
6326int alloc_contig_range(unsigned long start, unsigned long end,
6327 unsigned migratetype)
041d3a8c 6328{
041d3a8c
MN
6329 unsigned long outer_start, outer_end;
6330 int ret = 0, order;
6331
bb13ffeb
MG
6332 struct compact_control cc = {
6333 .nr_migratepages = 0,
6334 .order = -1,
6335 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6336 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6337 .ignore_skip_hint = true,
6338 };
6339 INIT_LIST_HEAD(&cc.migratepages);
6340
041d3a8c
MN
6341 /*
6342 * What we do here is we mark all pageblocks in range as
6343 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6344 * have different sizes, and due to the way page allocator
6345 * work, we align the range to biggest of the two pages so
6346 * that page allocator won't try to merge buddies from
6347 * different pageblocks and change MIGRATE_ISOLATE to some
6348 * other migration type.
6349 *
6350 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6351 * migrate the pages from an unaligned range (ie. pages that
6352 * we are interested in). This will put all the pages in
6353 * range back to page allocator as MIGRATE_ISOLATE.
6354 *
6355 * When this is done, we take the pages in range from page
6356 * allocator removing them from the buddy system. This way
6357 * page allocator will never consider using them.
6358 *
6359 * This lets us mark the pageblocks back as
6360 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6361 * aligned range but not in the unaligned, original range are
6362 * put back to page allocator so that buddy can use them.
6363 */
6364
6365 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6366 pfn_max_align_up(end), migratetype,
6367 false);
041d3a8c 6368 if (ret)
86a595f9 6369 return ret;
041d3a8c 6370
bb13ffeb 6371 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6372 if (ret)
6373 goto done;
6374
6375 /*
6376 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6377 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6378 * more, all pages in [start, end) are free in page allocator.
6379 * What we are going to do is to allocate all pages from
6380 * [start, end) (that is remove them from page allocator).
6381 *
6382 * The only problem is that pages at the beginning and at the
6383 * end of interesting range may be not aligned with pages that
6384 * page allocator holds, ie. they can be part of higher order
6385 * pages. Because of this, we reserve the bigger range and
6386 * once this is done free the pages we are not interested in.
6387 *
6388 * We don't have to hold zone->lock here because the pages are
6389 * isolated thus they won't get removed from buddy.
6390 */
6391
6392 lru_add_drain_all();
6393 drain_all_pages();
6394
6395 order = 0;
6396 outer_start = start;
6397 while (!PageBuddy(pfn_to_page(outer_start))) {
6398 if (++order >= MAX_ORDER) {
6399 ret = -EBUSY;
6400 goto done;
6401 }
6402 outer_start &= ~0UL << order;
6403 }
6404
6405 /* Make sure the range is really isolated. */
b023f468 6406 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6407 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6408 outer_start, end);
6409 ret = -EBUSY;
6410 goto done;
6411 }
6412
49f223a9
MS
6413
6414 /* Grab isolated pages from freelists. */
bb13ffeb 6415 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6416 if (!outer_end) {
6417 ret = -EBUSY;
6418 goto done;
6419 }
6420
6421 /* Free head and tail (if any) */
6422 if (start != outer_start)
6423 free_contig_range(outer_start, start - outer_start);
6424 if (end != outer_end)
6425 free_contig_range(end, outer_end - end);
6426
6427done:
6428 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6429 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6430 return ret;
6431}
6432
6433void free_contig_range(unsigned long pfn, unsigned nr_pages)
6434{
bcc2b02f
MS
6435 unsigned int count = 0;
6436
6437 for (; nr_pages--; pfn++) {
6438 struct page *page = pfn_to_page(pfn);
6439
6440 count += page_count(page) != 1;
6441 __free_page(page);
6442 }
6443 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6444}
6445#endif
6446
4ed7e022 6447#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6448/*
6449 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6450 * page high values need to be recalulated.
6451 */
4ed7e022
JL
6452void __meminit zone_pcp_update(struct zone *zone)
6453{
0a647f38 6454 unsigned cpu;
c8e251fa 6455 mutex_lock(&pcp_batch_high_lock);
0a647f38 6456 for_each_possible_cpu(cpu)
169f6c19
CS
6457 pageset_set_high_and_batch(zone,
6458 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6459 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6460}
6461#endif
6462
340175b7
JL
6463void zone_pcp_reset(struct zone *zone)
6464{
6465 unsigned long flags;
5a883813
MK
6466 int cpu;
6467 struct per_cpu_pageset *pset;
340175b7
JL
6468
6469 /* avoid races with drain_pages() */
6470 local_irq_save(flags);
6471 if (zone->pageset != &boot_pageset) {
5a883813
MK
6472 for_each_online_cpu(cpu) {
6473 pset = per_cpu_ptr(zone->pageset, cpu);
6474 drain_zonestat(zone, pset);
6475 }
340175b7
JL
6476 free_percpu(zone->pageset);
6477 zone->pageset = &boot_pageset;
6478 }
6479 local_irq_restore(flags);
6480}
6481
6dcd73d7 6482#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6483/*
6484 * All pages in the range must be isolated before calling this.
6485 */
6486void
6487__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6488{
6489 struct page *page;
6490 struct zone *zone;
7aeb09f9 6491 unsigned int order, i;
0c0e6195
KH
6492 unsigned long pfn;
6493 unsigned long flags;
6494 /* find the first valid pfn */
6495 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6496 if (pfn_valid(pfn))
6497 break;
6498 if (pfn == end_pfn)
6499 return;
6500 zone = page_zone(pfn_to_page(pfn));
6501 spin_lock_irqsave(&zone->lock, flags);
6502 pfn = start_pfn;
6503 while (pfn < end_pfn) {
6504 if (!pfn_valid(pfn)) {
6505 pfn++;
6506 continue;
6507 }
6508 page = pfn_to_page(pfn);
b023f468
WC
6509 /*
6510 * The HWPoisoned page may be not in buddy system, and
6511 * page_count() is not 0.
6512 */
6513 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6514 pfn++;
6515 SetPageReserved(page);
6516 continue;
6517 }
6518
0c0e6195
KH
6519 BUG_ON(page_count(page));
6520 BUG_ON(!PageBuddy(page));
6521 order = page_order(page);
6522#ifdef CONFIG_DEBUG_VM
6523 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6524 pfn, 1 << order, end_pfn);
6525#endif
6526 list_del(&page->lru);
6527 rmv_page_order(page);
6528 zone->free_area[order].nr_free--;
0c0e6195
KH
6529 for (i = 0; i < (1 << order); i++)
6530 SetPageReserved((page+i));
6531 pfn += (1 << order);
6532 }
6533 spin_unlock_irqrestore(&zone->lock, flags);
6534}
6535#endif
8d22ba1b
WF
6536
6537#ifdef CONFIG_MEMORY_FAILURE
6538bool is_free_buddy_page(struct page *page)
6539{
6540 struct zone *zone = page_zone(page);
6541 unsigned long pfn = page_to_pfn(page);
6542 unsigned long flags;
7aeb09f9 6543 unsigned int order;
8d22ba1b
WF
6544
6545 spin_lock_irqsave(&zone->lock, flags);
6546 for (order = 0; order < MAX_ORDER; order++) {
6547 struct page *page_head = page - (pfn & ((1 << order) - 1));
6548
6549 if (PageBuddy(page_head) && page_order(page_head) >= order)
6550 break;
6551 }
6552 spin_unlock_irqrestore(&zone->lock, flags);
6553
6554 return order < MAX_ORDER;
6555}
6556#endif
718a3821 6557
51300cef 6558static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6559 {1UL << PG_locked, "locked" },
6560 {1UL << PG_error, "error" },
6561 {1UL << PG_referenced, "referenced" },
6562 {1UL << PG_uptodate, "uptodate" },
6563 {1UL << PG_dirty, "dirty" },
6564 {1UL << PG_lru, "lru" },
6565 {1UL << PG_active, "active" },
6566 {1UL << PG_slab, "slab" },
6567 {1UL << PG_owner_priv_1, "owner_priv_1" },
6568 {1UL << PG_arch_1, "arch_1" },
6569 {1UL << PG_reserved, "reserved" },
6570 {1UL << PG_private, "private" },
6571 {1UL << PG_private_2, "private_2" },
6572 {1UL << PG_writeback, "writeback" },
6573#ifdef CONFIG_PAGEFLAGS_EXTENDED
6574 {1UL << PG_head, "head" },
6575 {1UL << PG_tail, "tail" },
6576#else
6577 {1UL << PG_compound, "compound" },
6578#endif
6579 {1UL << PG_swapcache, "swapcache" },
6580 {1UL << PG_mappedtodisk, "mappedtodisk" },
6581 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6582 {1UL << PG_swapbacked, "swapbacked" },
6583 {1UL << PG_unevictable, "unevictable" },
6584#ifdef CONFIG_MMU
6585 {1UL << PG_mlocked, "mlocked" },
6586#endif
6587#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6588 {1UL << PG_uncached, "uncached" },
6589#endif
6590#ifdef CONFIG_MEMORY_FAILURE
6591 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6592#endif
6593#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6594 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6595#endif
718a3821
WF
6596};
6597
6598static void dump_page_flags(unsigned long flags)
6599{
6600 const char *delim = "";
6601 unsigned long mask;
6602 int i;
6603
51300cef 6604 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6605
718a3821
WF
6606 printk(KERN_ALERT "page flags: %#lx(", flags);
6607
6608 /* remove zone id */
6609 flags &= (1UL << NR_PAGEFLAGS) - 1;
6610
51300cef 6611 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6612
6613 mask = pageflag_names[i].mask;
6614 if ((flags & mask) != mask)
6615 continue;
6616
6617 flags &= ~mask;
6618 printk("%s%s", delim, pageflag_names[i].name);
6619 delim = "|";
6620 }
6621
6622 /* check for left over flags */
6623 if (flags)
6624 printk("%s%#lx", delim, flags);
6625
6626 printk(")\n");
6627}
6628
d230dec1
KS
6629void dump_page_badflags(struct page *page, const char *reason,
6630 unsigned long badflags)
718a3821
WF
6631{
6632 printk(KERN_ALERT
6633 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6634 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6635 page->mapping, page->index);
6636 dump_page_flags(page->flags);
f0b791a3
DH
6637 if (reason)
6638 pr_alert("page dumped because: %s\n", reason);
6639 if (page->flags & badflags) {
6640 pr_alert("bad because of flags:\n");
6641 dump_page_flags(page->flags & badflags);
6642 }
f212ad7c 6643 mem_cgroup_print_bad_page(page);
718a3821 6644}
f0b791a3 6645
d230dec1 6646void dump_page(struct page *page, const char *reason)
f0b791a3
DH
6647{
6648 dump_page_badflags(page, reason, 0);
6649}
ed12d845 6650EXPORT_SYMBOL(dump_page);