]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
stacktrace: introduce snprint_stack_trace for buffer output
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
268bb0ce 56#include <linux/prefetch.h>
6e543d57 57#include <linux/mm_inline.h>
041d3a8c 58#include <linux/migrate.h>
e30825f1 59#include <linux/page_ext.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
1da177e4 62
7ee3d4e8 63#include <asm/sections.h>
1da177e4 64#include <asm/tlbflush.h>
ac924c60 65#include <asm/div64.h>
1da177e4
LT
66#include "internal.h"
67
c8e251fa
CS
68/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 70#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 71
72812019
LS
72#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73DEFINE_PER_CPU(int, numa_node);
74EXPORT_PER_CPU_SYMBOL(numa_node);
75#endif
76
7aac7898
LS
77#ifdef CONFIG_HAVE_MEMORYLESS_NODES
78/*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 86int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
42aa83cb 208int user_min_free_kbytes = -1;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2 263 if (ret)
613813e8
DH
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
b5e6a5a2 267
bdc8cb98 268 return ret;
c6a57e19
DH
269}
270
271static int page_is_consistent(struct zone *zone, struct page *page)
272{
14e07298 273 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 274 return 0;
1da177e4 275 if (zone != page_zone(page))
c6a57e19
DH
276 return 0;
277
278 return 1;
279}
280/*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283static int bad_range(struct zone *zone, struct page *page)
284{
285 if (page_outside_zone_boundaries(zone, page))
1da177e4 286 return 1;
c6a57e19
DH
287 if (!page_is_consistent(zone, page))
288 return 1;
289
1da177e4
LT
290 return 0;
291}
13e7444b
NP
292#else
293static inline int bad_range(struct zone *zone, struct page *page)
294{
295 return 0;
296}
297#endif
298
d230dec1
KS
299static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
1da177e4 301{
d936cf9b
HD
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
2a7684a2
WF
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
22b751c3 308 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
309 return;
310 }
311
d936cf9b
HD
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
1e9e6365
HD
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
1e9e6365 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 333 current->comm, page_to_pfn(page));
f0b791a3 334 dump_page_badflags(page, reason, bad_flags);
3dc14741 335
4f31888c 336 print_modules();
1da177e4 337 dump_stack();
d936cf9b 338out:
8cc3b392 339 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 340 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
342}
343
1da177e4
LT
344/*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
6416b9fa
WSH
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
1da177e4 353 *
41d78ba5
HD
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
1da177e4 357 */
d98c7a09
HD
358
359static void free_compound_page(struct page *page)
360{
d85f3385 361 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
362}
363
01ad1c08 364void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
365{
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
58a84aa9 374 set_page_count(p, 0);
18229df5 375 p->first_page = page;
668f9abb
DR
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
18229df5
AW
379 }
380}
381
59ff4216 382/* update __split_huge_page_refcount if you change this function */
8cc3b392 383static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
384{
385 int i;
386 int nr_pages = 1 << order;
8cc3b392 387 int bad = 0;
1da177e4 388
0bb2c763 389 if (unlikely(compound_order(page) != order)) {
f0b791a3 390 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
391 bad++;
392 }
1da177e4 393
6d777953 394 __ClearPageHead(page);
8cc3b392 395
18229df5
AW
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
1da177e4 398
f0b791a3
DH
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
404 bad++;
405 }
d85f3385 406 __ClearPageTail(p);
1da177e4 407 }
8cc3b392
HD
408
409 return bad;
1da177e4 410}
1da177e4 411
7aeb09f9
MG
412static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
17cf4406
NP
414{
415 int i;
416
6626c5d5
AM
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
725d704e 421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424}
425
c0a32fc5
SG
426#ifdef CONFIG_DEBUG_PAGEALLOC
427unsigned int _debug_guardpage_minorder;
031bc574 428bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
429bool _debug_guardpage_enabled __read_mostly;
430
031bc574
JK
431static int __init early_debug_pagealloc(char *buf)
432{
433 if (!buf)
434 return -EINVAL;
435
436 if (strcmp(buf, "on") == 0)
437 _debug_pagealloc_enabled = true;
438
439 return 0;
440}
441early_param("debug_pagealloc", early_debug_pagealloc);
442
e30825f1
JK
443static bool need_debug_guardpage(void)
444{
031bc574
JK
445 /* If we don't use debug_pagealloc, we don't need guard page */
446 if (!debug_pagealloc_enabled())
447 return false;
448
e30825f1
JK
449 return true;
450}
451
452static void init_debug_guardpage(void)
453{
031bc574
JK
454 if (!debug_pagealloc_enabled())
455 return;
456
e30825f1
JK
457 _debug_guardpage_enabled = true;
458}
459
460struct page_ext_operations debug_guardpage_ops = {
461 .need = need_debug_guardpage,
462 .init = init_debug_guardpage,
463};
c0a32fc5
SG
464
465static int __init debug_guardpage_minorder_setup(char *buf)
466{
467 unsigned long res;
468
469 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
470 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
471 return 0;
472 }
473 _debug_guardpage_minorder = res;
474 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
475 return 0;
476}
477__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
478
2847cf95
JK
479static inline void set_page_guard(struct zone *zone, struct page *page,
480 unsigned int order, int migratetype)
c0a32fc5 481{
e30825f1
JK
482 struct page_ext *page_ext;
483
484 if (!debug_guardpage_enabled())
485 return;
486
487 page_ext = lookup_page_ext(page);
488 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
489
2847cf95
JK
490 INIT_LIST_HEAD(&page->lru);
491 set_page_private(page, order);
492 /* Guard pages are not available for any usage */
493 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
494}
495
2847cf95
JK
496static inline void clear_page_guard(struct zone *zone, struct page *page,
497 unsigned int order, int migratetype)
c0a32fc5 498{
e30825f1
JK
499 struct page_ext *page_ext;
500
501 if (!debug_guardpage_enabled())
502 return;
503
504 page_ext = lookup_page_ext(page);
505 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
506
2847cf95
JK
507 set_page_private(page, 0);
508 if (!is_migrate_isolate(migratetype))
509 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
510}
511#else
e30825f1 512struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
513static inline void set_page_guard(struct zone *zone, struct page *page,
514 unsigned int order, int migratetype) {}
515static inline void clear_page_guard(struct zone *zone, struct page *page,
516 unsigned int order, int migratetype) {}
c0a32fc5
SG
517#endif
518
7aeb09f9 519static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 520{
4c21e2f2 521 set_page_private(page, order);
676165a8 522 __SetPageBuddy(page);
1da177e4
LT
523}
524
525static inline void rmv_page_order(struct page *page)
526{
676165a8 527 __ClearPageBuddy(page);
4c21e2f2 528 set_page_private(page, 0);
1da177e4
LT
529}
530
1da177e4
LT
531/*
532 * This function checks whether a page is free && is the buddy
533 * we can do coalesce a page and its buddy if
13e7444b 534 * (a) the buddy is not in a hole &&
676165a8 535 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
536 * (c) a page and its buddy have the same order &&
537 * (d) a page and its buddy are in the same zone.
676165a8 538 *
cf6fe945
WSH
539 * For recording whether a page is in the buddy system, we set ->_mapcount
540 * PAGE_BUDDY_MAPCOUNT_VALUE.
541 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
542 * serialized by zone->lock.
1da177e4 543 *
676165a8 544 * For recording page's order, we use page_private(page).
1da177e4 545 */
cb2b95e1 546static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 547 unsigned int order)
1da177e4 548{
14e07298 549 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 550 return 0;
13e7444b 551
c0a32fc5 552 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 553 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
554
555 if (page_zone_id(page) != page_zone_id(buddy))
556 return 0;
557
c0a32fc5
SG
558 return 1;
559 }
560
cb2b95e1 561 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 562 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
563
564 /*
565 * zone check is done late to avoid uselessly
566 * calculating zone/node ids for pages that could
567 * never merge.
568 */
569 if (page_zone_id(page) != page_zone_id(buddy))
570 return 0;
571
6aa3001b 572 return 1;
676165a8 573 }
6aa3001b 574 return 0;
1da177e4
LT
575}
576
577/*
578 * Freeing function for a buddy system allocator.
579 *
580 * The concept of a buddy system is to maintain direct-mapped table
581 * (containing bit values) for memory blocks of various "orders".
582 * The bottom level table contains the map for the smallest allocatable
583 * units of memory (here, pages), and each level above it describes
584 * pairs of units from the levels below, hence, "buddies".
585 * At a high level, all that happens here is marking the table entry
586 * at the bottom level available, and propagating the changes upward
587 * as necessary, plus some accounting needed to play nicely with other
588 * parts of the VM system.
589 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
590 * free pages of length of (1 << order) and marked with _mapcount
591 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
592 * field.
1da177e4 593 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
594 * other. That is, if we allocate a small block, and both were
595 * free, the remainder of the region must be split into blocks.
1da177e4 596 * If a block is freed, and its buddy is also free, then this
5f63b720 597 * triggers coalescing into a block of larger size.
1da177e4 598 *
6d49e352 599 * -- nyc
1da177e4
LT
600 */
601
48db57f8 602static inline void __free_one_page(struct page *page,
dc4b0caf 603 unsigned long pfn,
ed0ae21d
MG
604 struct zone *zone, unsigned int order,
605 int migratetype)
1da177e4
LT
606{
607 unsigned long page_idx;
6dda9d55 608 unsigned long combined_idx;
43506fad 609 unsigned long uninitialized_var(buddy_idx);
6dda9d55 610 struct page *buddy;
3c605096 611 int max_order = MAX_ORDER;
1da177e4 612
d29bb978
CS
613 VM_BUG_ON(!zone_is_initialized(zone));
614
224abf92 615 if (unlikely(PageCompound(page)))
8cc3b392
HD
616 if (unlikely(destroy_compound_page(page, order)))
617 return;
1da177e4 618
ed0ae21d 619 VM_BUG_ON(migratetype == -1);
3c605096
JK
620 if (is_migrate_isolate(migratetype)) {
621 /*
622 * We restrict max order of merging to prevent merge
623 * between freepages on isolate pageblock and normal
624 * pageblock. Without this, pageblock isolation
625 * could cause incorrect freepage accounting.
626 */
627 max_order = min(MAX_ORDER, pageblock_order + 1);
628 } else {
8f82b55d 629 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 630 }
ed0ae21d 631
3c605096 632 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 633
309381fe
SL
634 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
635 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 636
3c605096 637 while (order < max_order - 1) {
43506fad
KC
638 buddy_idx = __find_buddy_index(page_idx, order);
639 buddy = page + (buddy_idx - page_idx);
cb2b95e1 640 if (!page_is_buddy(page, buddy, order))
3c82d0ce 641 break;
c0a32fc5
SG
642 /*
643 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
644 * merge with it and move up one order.
645 */
646 if (page_is_guard(buddy)) {
2847cf95 647 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
648 } else {
649 list_del(&buddy->lru);
650 zone->free_area[order].nr_free--;
651 rmv_page_order(buddy);
652 }
43506fad 653 combined_idx = buddy_idx & page_idx;
1da177e4
LT
654 page = page + (combined_idx - page_idx);
655 page_idx = combined_idx;
656 order++;
657 }
658 set_page_order(page, order);
6dda9d55
CZ
659
660 /*
661 * If this is not the largest possible page, check if the buddy
662 * of the next-highest order is free. If it is, it's possible
663 * that pages are being freed that will coalesce soon. In case,
664 * that is happening, add the free page to the tail of the list
665 * so it's less likely to be used soon and more likely to be merged
666 * as a higher order page
667 */
b7f50cfa 668 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 669 struct page *higher_page, *higher_buddy;
43506fad
KC
670 combined_idx = buddy_idx & page_idx;
671 higher_page = page + (combined_idx - page_idx);
672 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 673 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
674 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
675 list_add_tail(&page->lru,
676 &zone->free_area[order].free_list[migratetype]);
677 goto out;
678 }
679 }
680
681 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
682out:
1da177e4
LT
683 zone->free_area[order].nr_free++;
684}
685
224abf92 686static inline int free_pages_check(struct page *page)
1da177e4 687{
d230dec1 688 const char *bad_reason = NULL;
f0b791a3
DH
689 unsigned long bad_flags = 0;
690
691 if (unlikely(page_mapcount(page)))
692 bad_reason = "nonzero mapcount";
693 if (unlikely(page->mapping != NULL))
694 bad_reason = "non-NULL mapping";
695 if (unlikely(atomic_read(&page->_count) != 0))
696 bad_reason = "nonzero _count";
697 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
698 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
699 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
700 }
9edad6ea
JW
701#ifdef CONFIG_MEMCG
702 if (unlikely(page->mem_cgroup))
703 bad_reason = "page still charged to cgroup";
704#endif
f0b791a3
DH
705 if (unlikely(bad_reason)) {
706 bad_page(page, bad_reason, bad_flags);
79f4b7bf 707 return 1;
8cc3b392 708 }
90572890 709 page_cpupid_reset_last(page);
79f4b7bf
HD
710 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
711 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
712 return 0;
1da177e4
LT
713}
714
715/*
5f8dcc21 716 * Frees a number of pages from the PCP lists
1da177e4 717 * Assumes all pages on list are in same zone, and of same order.
207f36ee 718 * count is the number of pages to free.
1da177e4
LT
719 *
720 * If the zone was previously in an "all pages pinned" state then look to
721 * see if this freeing clears that state.
722 *
723 * And clear the zone's pages_scanned counter, to hold off the "all pages are
724 * pinned" detection logic.
725 */
5f8dcc21
MG
726static void free_pcppages_bulk(struct zone *zone, int count,
727 struct per_cpu_pages *pcp)
1da177e4 728{
5f8dcc21 729 int migratetype = 0;
a6f9edd6 730 int batch_free = 0;
72853e29 731 int to_free = count;
0d5d823a 732 unsigned long nr_scanned;
5f8dcc21 733
c54ad30c 734 spin_lock(&zone->lock);
0d5d823a
MG
735 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
736 if (nr_scanned)
737 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 738
72853e29 739 while (to_free) {
48db57f8 740 struct page *page;
5f8dcc21
MG
741 struct list_head *list;
742
743 /*
a6f9edd6
MG
744 * Remove pages from lists in a round-robin fashion. A
745 * batch_free count is maintained that is incremented when an
746 * empty list is encountered. This is so more pages are freed
747 * off fuller lists instead of spinning excessively around empty
748 * lists
5f8dcc21
MG
749 */
750 do {
a6f9edd6 751 batch_free++;
5f8dcc21
MG
752 if (++migratetype == MIGRATE_PCPTYPES)
753 migratetype = 0;
754 list = &pcp->lists[migratetype];
755 } while (list_empty(list));
48db57f8 756
1d16871d
NK
757 /* This is the only non-empty list. Free them all. */
758 if (batch_free == MIGRATE_PCPTYPES)
759 batch_free = to_free;
760
a6f9edd6 761 do {
770c8aaa
BZ
762 int mt; /* migratetype of the to-be-freed page */
763
a6f9edd6
MG
764 page = list_entry(list->prev, struct page, lru);
765 /* must delete as __free_one_page list manipulates */
766 list_del(&page->lru);
b12c4ad1 767 mt = get_freepage_migratetype(page);
8f82b55d 768 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 769 mt = get_pageblock_migratetype(page);
51bb1a40 770
a7016235 771 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 772 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 773 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 774 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 775 }
c54ad30c 776 spin_unlock(&zone->lock);
1da177e4
LT
777}
778
dc4b0caf
MG
779static void free_one_page(struct zone *zone,
780 struct page *page, unsigned long pfn,
7aeb09f9 781 unsigned int order,
ed0ae21d 782 int migratetype)
1da177e4 783{
0d5d823a 784 unsigned long nr_scanned;
006d22d9 785 spin_lock(&zone->lock);
0d5d823a
MG
786 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
787 if (nr_scanned)
788 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 789
ad53f92e
JK
790 if (unlikely(has_isolate_pageblock(zone) ||
791 is_migrate_isolate(migratetype))) {
792 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 793 }
dc4b0caf 794 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 795 spin_unlock(&zone->lock);
48db57f8
NP
796}
797
ec95f53a 798static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 799{
1da177e4 800 int i;
8cc3b392 801 int bad = 0;
1da177e4 802
ab1f306f
YZ
803 VM_BUG_ON_PAGE(PageTail(page), page);
804 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
805
b413d48a 806 trace_mm_page_free(page, order);
b1eeab67
VN
807 kmemcheck_free_shadow(page, order);
808
8dd60a3a
AA
809 if (PageAnon(page))
810 page->mapping = NULL;
811 for (i = 0; i < (1 << order); i++)
812 bad += free_pages_check(page + i);
8cc3b392 813 if (bad)
ec95f53a 814 return false;
689bcebf 815
3ac7fe5a 816 if (!PageHighMem(page)) {
b8af2941
PK
817 debug_check_no_locks_freed(page_address(page),
818 PAGE_SIZE << order);
3ac7fe5a
TG
819 debug_check_no_obj_freed(page_address(page),
820 PAGE_SIZE << order);
821 }
dafb1367 822 arch_free_page(page, order);
48db57f8 823 kernel_map_pages(page, 1 << order, 0);
dafb1367 824
ec95f53a
KM
825 return true;
826}
827
828static void __free_pages_ok(struct page *page, unsigned int order)
829{
830 unsigned long flags;
95e34412 831 int migratetype;
dc4b0caf 832 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
833
834 if (!free_pages_prepare(page, order))
835 return;
836
cfc47a28 837 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 838 local_irq_save(flags);
f8891e5e 839 __count_vm_events(PGFREE, 1 << order);
95e34412 840 set_freepage_migratetype(page, migratetype);
dc4b0caf 841 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 842 local_irq_restore(flags);
1da177e4
LT
843}
844
170a5a7e 845void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 846{
c3993076 847 unsigned int nr_pages = 1 << order;
e2d0bd2b 848 struct page *p = page;
c3993076 849 unsigned int loop;
a226f6c8 850
e2d0bd2b
YL
851 prefetchw(p);
852 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
853 prefetchw(p + 1);
c3993076
JW
854 __ClearPageReserved(p);
855 set_page_count(p, 0);
a226f6c8 856 }
e2d0bd2b
YL
857 __ClearPageReserved(p);
858 set_page_count(p, 0);
c3993076 859
e2d0bd2b 860 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
861 set_page_refcounted(page);
862 __free_pages(page, order);
a226f6c8
DH
863}
864
47118af0 865#ifdef CONFIG_CMA
9cf510a5 866/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
867void __init init_cma_reserved_pageblock(struct page *page)
868{
869 unsigned i = pageblock_nr_pages;
870 struct page *p = page;
871
872 do {
873 __ClearPageReserved(p);
874 set_page_count(p, 0);
875 } while (++p, --i);
876
47118af0 877 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
878
879 if (pageblock_order >= MAX_ORDER) {
880 i = pageblock_nr_pages;
881 p = page;
882 do {
883 set_page_refcounted(p);
884 __free_pages(p, MAX_ORDER - 1);
885 p += MAX_ORDER_NR_PAGES;
886 } while (i -= MAX_ORDER_NR_PAGES);
887 } else {
888 set_page_refcounted(page);
889 __free_pages(page, pageblock_order);
890 }
891
3dcc0571 892 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
893}
894#endif
1da177e4
LT
895
896/*
897 * The order of subdivision here is critical for the IO subsystem.
898 * Please do not alter this order without good reasons and regression
899 * testing. Specifically, as large blocks of memory are subdivided,
900 * the order in which smaller blocks are delivered depends on the order
901 * they're subdivided in this function. This is the primary factor
902 * influencing the order in which pages are delivered to the IO
903 * subsystem according to empirical testing, and this is also justified
904 * by considering the behavior of a buddy system containing a single
905 * large block of memory acted on by a series of small allocations.
906 * This behavior is a critical factor in sglist merging's success.
907 *
6d49e352 908 * -- nyc
1da177e4 909 */
085cc7d5 910static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
911 int low, int high, struct free_area *area,
912 int migratetype)
1da177e4
LT
913{
914 unsigned long size = 1 << high;
915
916 while (high > low) {
917 area--;
918 high--;
919 size >>= 1;
309381fe 920 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 921
2847cf95 922 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 923 debug_guardpage_enabled() &&
2847cf95 924 high < debug_guardpage_minorder()) {
c0a32fc5
SG
925 /*
926 * Mark as guard pages (or page), that will allow to
927 * merge back to allocator when buddy will be freed.
928 * Corresponding page table entries will not be touched,
929 * pages will stay not present in virtual address space
930 */
2847cf95 931 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
932 continue;
933 }
b2a0ac88 934 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
935 area->nr_free++;
936 set_page_order(&page[size], high);
937 }
1da177e4
LT
938}
939
1da177e4
LT
940/*
941 * This page is about to be returned from the page allocator
942 */
2a7684a2 943static inline int check_new_page(struct page *page)
1da177e4 944{
d230dec1 945 const char *bad_reason = NULL;
f0b791a3
DH
946 unsigned long bad_flags = 0;
947
948 if (unlikely(page_mapcount(page)))
949 bad_reason = "nonzero mapcount";
950 if (unlikely(page->mapping != NULL))
951 bad_reason = "non-NULL mapping";
952 if (unlikely(atomic_read(&page->_count) != 0))
953 bad_reason = "nonzero _count";
954 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
955 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
956 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
957 }
9edad6ea
JW
958#ifdef CONFIG_MEMCG
959 if (unlikely(page->mem_cgroup))
960 bad_reason = "page still charged to cgroup";
961#endif
f0b791a3
DH
962 if (unlikely(bad_reason)) {
963 bad_page(page, bad_reason, bad_flags);
689bcebf 964 return 1;
8cc3b392 965 }
2a7684a2
WF
966 return 0;
967}
968
7aeb09f9 969static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
2a7684a2
WF
970{
971 int i;
972
973 for (i = 0; i < (1 << order); i++) {
974 struct page *p = page + i;
975 if (unlikely(check_new_page(p)))
976 return 1;
977 }
689bcebf 978
4c21e2f2 979 set_page_private(page, 0);
7835e98b 980 set_page_refcounted(page);
cc102509
NP
981
982 arch_alloc_page(page, order);
1da177e4 983 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
984
985 if (gfp_flags & __GFP_ZERO)
986 prep_zero_page(page, order, gfp_flags);
987
988 if (order && (gfp_flags & __GFP_COMP))
989 prep_compound_page(page, order);
990
689bcebf 991 return 0;
1da177e4
LT
992}
993
56fd56b8
MG
994/*
995 * Go through the free lists for the given migratetype and remove
996 * the smallest available page from the freelists
997 */
728ec980
MG
998static inline
999struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1000 int migratetype)
1001{
1002 unsigned int current_order;
b8af2941 1003 struct free_area *area;
56fd56b8
MG
1004 struct page *page;
1005
1006 /* Find a page of the appropriate size in the preferred list */
1007 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1008 area = &(zone->free_area[current_order]);
1009 if (list_empty(&area->free_list[migratetype]))
1010 continue;
1011
1012 page = list_entry(area->free_list[migratetype].next,
1013 struct page, lru);
1014 list_del(&page->lru);
1015 rmv_page_order(page);
1016 area->nr_free--;
56fd56b8 1017 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1018 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1019 return page;
1020 }
1021
1022 return NULL;
1023}
1024
1025
b2a0ac88
MG
1026/*
1027 * This array describes the order lists are fallen back to when
1028 * the free lists for the desirable migrate type are depleted
1029 */
47118af0
MN
1030static int fallbacks[MIGRATE_TYPES][4] = {
1031 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1032 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1033#ifdef CONFIG_CMA
1034 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1035 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1036#else
1037 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1038#endif
6d4a4916 1039 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1040#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1041 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1042#endif
b2a0ac88
MG
1043};
1044
c361be55
MG
1045/*
1046 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1047 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1048 * boundary. If alignment is required, use move_freepages_block()
1049 */
435b405c 1050int move_freepages(struct zone *zone,
b69a7288
AB
1051 struct page *start_page, struct page *end_page,
1052 int migratetype)
c361be55
MG
1053{
1054 struct page *page;
1055 unsigned long order;
d100313f 1056 int pages_moved = 0;
c361be55
MG
1057
1058#ifndef CONFIG_HOLES_IN_ZONE
1059 /*
1060 * page_zone is not safe to call in this context when
1061 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1062 * anyway as we check zone boundaries in move_freepages_block().
1063 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1064 * grouping pages by mobility
c361be55 1065 */
97ee4ba7 1066 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1067#endif
1068
1069 for (page = start_page; page <= end_page;) {
344c790e 1070 /* Make sure we are not inadvertently changing nodes */
309381fe 1071 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1072
c361be55
MG
1073 if (!pfn_valid_within(page_to_pfn(page))) {
1074 page++;
1075 continue;
1076 }
1077
1078 if (!PageBuddy(page)) {
1079 page++;
1080 continue;
1081 }
1082
1083 order = page_order(page);
84be48d8
KS
1084 list_move(&page->lru,
1085 &zone->free_area[order].free_list[migratetype]);
95e34412 1086 set_freepage_migratetype(page, migratetype);
c361be55 1087 page += 1 << order;
d100313f 1088 pages_moved += 1 << order;
c361be55
MG
1089 }
1090
d100313f 1091 return pages_moved;
c361be55
MG
1092}
1093
ee6f509c 1094int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1095 int migratetype)
c361be55
MG
1096{
1097 unsigned long start_pfn, end_pfn;
1098 struct page *start_page, *end_page;
1099
1100 start_pfn = page_to_pfn(page);
d9c23400 1101 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1102 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1103 end_page = start_page + pageblock_nr_pages - 1;
1104 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1105
1106 /* Do not cross zone boundaries */
108bcc96 1107 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1108 start_page = page;
108bcc96 1109 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1110 return 0;
1111
1112 return move_freepages(zone, start_page, end_page, migratetype);
1113}
1114
2f66a68f
MG
1115static void change_pageblock_range(struct page *pageblock_page,
1116 int start_order, int migratetype)
1117{
1118 int nr_pageblocks = 1 << (start_order - pageblock_order);
1119
1120 while (nr_pageblocks--) {
1121 set_pageblock_migratetype(pageblock_page, migratetype);
1122 pageblock_page += pageblock_nr_pages;
1123 }
1124}
1125
fef903ef
SB
1126/*
1127 * If breaking a large block of pages, move all free pages to the preferred
1128 * allocation list. If falling back for a reclaimable kernel allocation, be
1129 * more aggressive about taking ownership of free pages.
1130 *
1131 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1132 * nor move CMA pages to different free lists. We don't want unmovable pages
1133 * to be allocated from MIGRATE_CMA areas.
1134 *
1135 * Returns the new migratetype of the pageblock (or the same old migratetype
1136 * if it was unchanged).
1137 */
1138static int try_to_steal_freepages(struct zone *zone, struct page *page,
1139 int start_type, int fallback_type)
1140{
1141 int current_order = page_order(page);
1142
0cbef29a
KM
1143 /*
1144 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1145 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1146 * is set to CMA so it is returned to the correct freelist in case
1147 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1148 */
fef903ef
SB
1149 if (is_migrate_cma(fallback_type))
1150 return fallback_type;
1151
1152 /* Take ownership for orders >= pageblock_order */
1153 if (current_order >= pageblock_order) {
1154 change_pageblock_range(page, current_order, start_type);
1155 return start_type;
1156 }
1157
1158 if (current_order >= pageblock_order / 2 ||
1159 start_type == MIGRATE_RECLAIMABLE ||
1160 page_group_by_mobility_disabled) {
1161 int pages;
1162
1163 pages = move_freepages_block(zone, page, start_type);
1164
1165 /* Claim the whole block if over half of it is free */
1166 if (pages >= (1 << (pageblock_order-1)) ||
1167 page_group_by_mobility_disabled) {
1168
1169 set_pageblock_migratetype(page, start_type);
1170 return start_type;
1171 }
1172
1173 }
1174
1175 return fallback_type;
1176}
1177
b2a0ac88 1178/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1179static inline struct page *
7aeb09f9 1180__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1181{
b8af2941 1182 struct free_area *area;
7aeb09f9 1183 unsigned int current_order;
b2a0ac88 1184 struct page *page;
fef903ef 1185 int migratetype, new_type, i;
b2a0ac88
MG
1186
1187 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1188 for (current_order = MAX_ORDER-1;
1189 current_order >= order && current_order <= MAX_ORDER-1;
1190 --current_order) {
6d4a4916 1191 for (i = 0;; i++) {
b2a0ac88
MG
1192 migratetype = fallbacks[start_migratetype][i];
1193
56fd56b8
MG
1194 /* MIGRATE_RESERVE handled later if necessary */
1195 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1196 break;
e010487d 1197
b2a0ac88
MG
1198 area = &(zone->free_area[current_order]);
1199 if (list_empty(&area->free_list[migratetype]))
1200 continue;
1201
1202 page = list_entry(area->free_list[migratetype].next,
1203 struct page, lru);
1204 area->nr_free--;
1205
fef903ef
SB
1206 new_type = try_to_steal_freepages(zone, page,
1207 start_migratetype,
1208 migratetype);
b2a0ac88
MG
1209
1210 /* Remove the page from the freelists */
1211 list_del(&page->lru);
1212 rmv_page_order(page);
b2a0ac88 1213
47118af0 1214 expand(zone, page, order, current_order, area,
0cbef29a 1215 new_type);
5bcc9f86
VB
1216 /* The freepage_migratetype may differ from pageblock's
1217 * migratetype depending on the decisions in
1218 * try_to_steal_freepages. This is OK as long as it does
1219 * not differ for MIGRATE_CMA type.
1220 */
1221 set_freepage_migratetype(page, new_type);
e0fff1bd 1222
52c8f6a5
KM
1223 trace_mm_page_alloc_extfrag(page, order, current_order,
1224 start_migratetype, migratetype, new_type);
e0fff1bd 1225
b2a0ac88
MG
1226 return page;
1227 }
1228 }
1229
728ec980 1230 return NULL;
b2a0ac88
MG
1231}
1232
56fd56b8 1233/*
1da177e4
LT
1234 * Do the hard work of removing an element from the buddy allocator.
1235 * Call me with the zone->lock already held.
1236 */
b2a0ac88
MG
1237static struct page *__rmqueue(struct zone *zone, unsigned int order,
1238 int migratetype)
1da177e4 1239{
1da177e4
LT
1240 struct page *page;
1241
728ec980 1242retry_reserve:
56fd56b8 1243 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1244
728ec980 1245 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1246 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1247
728ec980
MG
1248 /*
1249 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1250 * is used because __rmqueue_smallest is an inline function
1251 * and we want just one call site
1252 */
1253 if (!page) {
1254 migratetype = MIGRATE_RESERVE;
1255 goto retry_reserve;
1256 }
1257 }
1258
0d3d062a 1259 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1260 return page;
1da177e4
LT
1261}
1262
5f63b720 1263/*
1da177e4
LT
1264 * Obtain a specified number of elements from the buddy allocator, all under
1265 * a single hold of the lock, for efficiency. Add them to the supplied list.
1266 * Returns the number of new pages which were placed at *list.
1267 */
5f63b720 1268static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1269 unsigned long count, struct list_head *list,
b745bc85 1270 int migratetype, bool cold)
1da177e4 1271{
5bcc9f86 1272 int i;
5f63b720 1273
c54ad30c 1274 spin_lock(&zone->lock);
1da177e4 1275 for (i = 0; i < count; ++i) {
b2a0ac88 1276 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1277 if (unlikely(page == NULL))
1da177e4 1278 break;
81eabcbe
MG
1279
1280 /*
1281 * Split buddy pages returned by expand() are received here
1282 * in physical page order. The page is added to the callers and
1283 * list and the list head then moves forward. From the callers
1284 * perspective, the linked list is ordered by page number in
1285 * some conditions. This is useful for IO devices that can
1286 * merge IO requests if the physical pages are ordered
1287 * properly.
1288 */
b745bc85 1289 if (likely(!cold))
e084b2d9
MG
1290 list_add(&page->lru, list);
1291 else
1292 list_add_tail(&page->lru, list);
81eabcbe 1293 list = &page->lru;
5bcc9f86 1294 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1295 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1296 -(1 << order));
1da177e4 1297 }
f2260e6b 1298 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1299 spin_unlock(&zone->lock);
085cc7d5 1300 return i;
1da177e4
LT
1301}
1302
4ae7c039 1303#ifdef CONFIG_NUMA
8fce4d8e 1304/*
4037d452
CL
1305 * Called from the vmstat counter updater to drain pagesets of this
1306 * currently executing processor on remote nodes after they have
1307 * expired.
1308 *
879336c3
CL
1309 * Note that this function must be called with the thread pinned to
1310 * a single processor.
8fce4d8e 1311 */
4037d452 1312void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1313{
4ae7c039 1314 unsigned long flags;
7be12fc9 1315 int to_drain, batch;
4ae7c039 1316
4037d452 1317 local_irq_save(flags);
998d39cb 1318 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1319 to_drain = min(pcp->count, batch);
2a13515c
KM
1320 if (to_drain > 0) {
1321 free_pcppages_bulk(zone, to_drain, pcp);
1322 pcp->count -= to_drain;
1323 }
4037d452 1324 local_irq_restore(flags);
4ae7c039
CL
1325}
1326#endif
1327
9f8f2172 1328/*
93481ff0 1329 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1330 *
1331 * The processor must either be the current processor and the
1332 * thread pinned to the current processor or a processor that
1333 * is not online.
1334 */
93481ff0 1335static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1336{
c54ad30c 1337 unsigned long flags;
93481ff0
VB
1338 struct per_cpu_pageset *pset;
1339 struct per_cpu_pages *pcp;
1da177e4 1340
93481ff0
VB
1341 local_irq_save(flags);
1342 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1343
93481ff0
VB
1344 pcp = &pset->pcp;
1345 if (pcp->count) {
1346 free_pcppages_bulk(zone, pcp->count, pcp);
1347 pcp->count = 0;
1348 }
1349 local_irq_restore(flags);
1350}
3dfa5721 1351
93481ff0
VB
1352/*
1353 * Drain pcplists of all zones on the indicated processor.
1354 *
1355 * The processor must either be the current processor and the
1356 * thread pinned to the current processor or a processor that
1357 * is not online.
1358 */
1359static void drain_pages(unsigned int cpu)
1360{
1361 struct zone *zone;
1362
1363 for_each_populated_zone(zone) {
1364 drain_pages_zone(cpu, zone);
1da177e4
LT
1365 }
1366}
1da177e4 1367
9f8f2172
CL
1368/*
1369 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1370 *
1371 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1372 * the single zone's pages.
9f8f2172 1373 */
93481ff0 1374void drain_local_pages(struct zone *zone)
9f8f2172 1375{
93481ff0
VB
1376 int cpu = smp_processor_id();
1377
1378 if (zone)
1379 drain_pages_zone(cpu, zone);
1380 else
1381 drain_pages(cpu);
9f8f2172
CL
1382}
1383
1384/*
74046494
GBY
1385 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1386 *
93481ff0
VB
1387 * When zone parameter is non-NULL, spill just the single zone's pages.
1388 *
74046494
GBY
1389 * Note that this code is protected against sending an IPI to an offline
1390 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1391 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1392 * nothing keeps CPUs from showing up after we populated the cpumask and
1393 * before the call to on_each_cpu_mask().
9f8f2172 1394 */
93481ff0 1395void drain_all_pages(struct zone *zone)
9f8f2172 1396{
74046494 1397 int cpu;
74046494
GBY
1398
1399 /*
1400 * Allocate in the BSS so we wont require allocation in
1401 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1402 */
1403 static cpumask_t cpus_with_pcps;
1404
1405 /*
1406 * We don't care about racing with CPU hotplug event
1407 * as offline notification will cause the notified
1408 * cpu to drain that CPU pcps and on_each_cpu_mask
1409 * disables preemption as part of its processing
1410 */
1411 for_each_online_cpu(cpu) {
93481ff0
VB
1412 struct per_cpu_pageset *pcp;
1413 struct zone *z;
74046494 1414 bool has_pcps = false;
93481ff0
VB
1415
1416 if (zone) {
74046494 1417 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1418 if (pcp->pcp.count)
74046494 1419 has_pcps = true;
93481ff0
VB
1420 } else {
1421 for_each_populated_zone(z) {
1422 pcp = per_cpu_ptr(z->pageset, cpu);
1423 if (pcp->pcp.count) {
1424 has_pcps = true;
1425 break;
1426 }
74046494
GBY
1427 }
1428 }
93481ff0 1429
74046494
GBY
1430 if (has_pcps)
1431 cpumask_set_cpu(cpu, &cpus_with_pcps);
1432 else
1433 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1434 }
93481ff0
VB
1435 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1436 zone, 1);
9f8f2172
CL
1437}
1438
296699de 1439#ifdef CONFIG_HIBERNATION
1da177e4
LT
1440
1441void mark_free_pages(struct zone *zone)
1442{
f623f0db
RW
1443 unsigned long pfn, max_zone_pfn;
1444 unsigned long flags;
7aeb09f9 1445 unsigned int order, t;
1da177e4
LT
1446 struct list_head *curr;
1447
8080fc03 1448 if (zone_is_empty(zone))
1da177e4
LT
1449 return;
1450
1451 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1452
108bcc96 1453 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1454 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1455 if (pfn_valid(pfn)) {
1456 struct page *page = pfn_to_page(pfn);
1457
7be98234
RW
1458 if (!swsusp_page_is_forbidden(page))
1459 swsusp_unset_page_free(page);
f623f0db 1460 }
1da177e4 1461
b2a0ac88
MG
1462 for_each_migratetype_order(order, t) {
1463 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1464 unsigned long i;
1da177e4 1465
f623f0db
RW
1466 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1467 for (i = 0; i < (1UL << order); i++)
7be98234 1468 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1469 }
b2a0ac88 1470 }
1da177e4
LT
1471 spin_unlock_irqrestore(&zone->lock, flags);
1472}
e2c55dc8 1473#endif /* CONFIG_PM */
1da177e4 1474
1da177e4
LT
1475/*
1476 * Free a 0-order page
b745bc85 1477 * cold == true ? free a cold page : free a hot page
1da177e4 1478 */
b745bc85 1479void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1480{
1481 struct zone *zone = page_zone(page);
1482 struct per_cpu_pages *pcp;
1483 unsigned long flags;
dc4b0caf 1484 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1485 int migratetype;
1da177e4 1486
ec95f53a 1487 if (!free_pages_prepare(page, 0))
689bcebf
HD
1488 return;
1489
dc4b0caf 1490 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1491 set_freepage_migratetype(page, migratetype);
1da177e4 1492 local_irq_save(flags);
f8891e5e 1493 __count_vm_event(PGFREE);
da456f14 1494
5f8dcc21
MG
1495 /*
1496 * We only track unmovable, reclaimable and movable on pcp lists.
1497 * Free ISOLATE pages back to the allocator because they are being
1498 * offlined but treat RESERVE as movable pages so we can get those
1499 * areas back if necessary. Otherwise, we may have to free
1500 * excessively into the page allocator
1501 */
1502 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1503 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1504 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1505 goto out;
1506 }
1507 migratetype = MIGRATE_MOVABLE;
1508 }
1509
99dcc3e5 1510 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1511 if (!cold)
5f8dcc21 1512 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1513 else
1514 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1515 pcp->count++;
48db57f8 1516 if (pcp->count >= pcp->high) {
998d39cb
CS
1517 unsigned long batch = ACCESS_ONCE(pcp->batch);
1518 free_pcppages_bulk(zone, batch, pcp);
1519 pcp->count -= batch;
48db57f8 1520 }
5f8dcc21
MG
1521
1522out:
1da177e4 1523 local_irq_restore(flags);
1da177e4
LT
1524}
1525
cc59850e
KK
1526/*
1527 * Free a list of 0-order pages
1528 */
b745bc85 1529void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1530{
1531 struct page *page, *next;
1532
1533 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1534 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1535 free_hot_cold_page(page, cold);
1536 }
1537}
1538
8dfcc9ba
NP
1539/*
1540 * split_page takes a non-compound higher-order page, and splits it into
1541 * n (1<<order) sub-pages: page[0..n]
1542 * Each sub-page must be freed individually.
1543 *
1544 * Note: this is probably too low level an operation for use in drivers.
1545 * Please consult with lkml before using this in your driver.
1546 */
1547void split_page(struct page *page, unsigned int order)
1548{
1549 int i;
1550
309381fe
SL
1551 VM_BUG_ON_PAGE(PageCompound(page), page);
1552 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1553
1554#ifdef CONFIG_KMEMCHECK
1555 /*
1556 * Split shadow pages too, because free(page[0]) would
1557 * otherwise free the whole shadow.
1558 */
1559 if (kmemcheck_page_is_tracked(page))
1560 split_page(virt_to_page(page[0].shadow), order);
1561#endif
1562
7835e98b
NP
1563 for (i = 1; i < (1 << order); i++)
1564 set_page_refcounted(page + i);
8dfcc9ba 1565}
5853ff23 1566EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1567
3c605096 1568int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1569{
748446bb
MG
1570 unsigned long watermark;
1571 struct zone *zone;
2139cbe6 1572 int mt;
748446bb
MG
1573
1574 BUG_ON(!PageBuddy(page));
1575
1576 zone = page_zone(page);
2e30abd1 1577 mt = get_pageblock_migratetype(page);
748446bb 1578
194159fb 1579 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1580 /* Obey watermarks as if the page was being allocated */
1581 watermark = low_wmark_pages(zone) + (1 << order);
1582 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1583 return 0;
1584
8fb74b9f 1585 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1586 }
748446bb
MG
1587
1588 /* Remove page from free list */
1589 list_del(&page->lru);
1590 zone->free_area[order].nr_free--;
1591 rmv_page_order(page);
2139cbe6 1592
8fb74b9f 1593 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1594 if (order >= pageblock_order - 1) {
1595 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1596 for (; page < endpage; page += pageblock_nr_pages) {
1597 int mt = get_pageblock_migratetype(page);
194159fb 1598 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1599 set_pageblock_migratetype(page,
1600 MIGRATE_MOVABLE);
1601 }
748446bb
MG
1602 }
1603
8fb74b9f 1604 return 1UL << order;
1fb3f8ca
MG
1605}
1606
1607/*
1608 * Similar to split_page except the page is already free. As this is only
1609 * being used for migration, the migratetype of the block also changes.
1610 * As this is called with interrupts disabled, the caller is responsible
1611 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1612 * are enabled.
1613 *
1614 * Note: this is probably too low level an operation for use in drivers.
1615 * Please consult with lkml before using this in your driver.
1616 */
1617int split_free_page(struct page *page)
1618{
1619 unsigned int order;
1620 int nr_pages;
1621
1fb3f8ca
MG
1622 order = page_order(page);
1623
8fb74b9f 1624 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1625 if (!nr_pages)
1626 return 0;
1627
1628 /* Split into individual pages */
1629 set_page_refcounted(page);
1630 split_page(page, order);
1631 return nr_pages;
748446bb
MG
1632}
1633
1da177e4
LT
1634/*
1635 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1636 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1637 * or two.
1638 */
0a15c3e9
MG
1639static inline
1640struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1641 struct zone *zone, unsigned int order,
1642 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1643{
1644 unsigned long flags;
689bcebf 1645 struct page *page;
b745bc85 1646 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1647
689bcebf 1648again:
48db57f8 1649 if (likely(order == 0)) {
1da177e4 1650 struct per_cpu_pages *pcp;
5f8dcc21 1651 struct list_head *list;
1da177e4 1652
1da177e4 1653 local_irq_save(flags);
99dcc3e5
CL
1654 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1655 list = &pcp->lists[migratetype];
5f8dcc21 1656 if (list_empty(list)) {
535131e6 1657 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1658 pcp->batch, list,
e084b2d9 1659 migratetype, cold);
5f8dcc21 1660 if (unlikely(list_empty(list)))
6fb332fa 1661 goto failed;
535131e6 1662 }
b92a6edd 1663
5f8dcc21
MG
1664 if (cold)
1665 page = list_entry(list->prev, struct page, lru);
1666 else
1667 page = list_entry(list->next, struct page, lru);
1668
b92a6edd
MG
1669 list_del(&page->lru);
1670 pcp->count--;
7fb1d9fc 1671 } else {
dab48dab
AM
1672 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1673 /*
1674 * __GFP_NOFAIL is not to be used in new code.
1675 *
1676 * All __GFP_NOFAIL callers should be fixed so that they
1677 * properly detect and handle allocation failures.
1678 *
1679 * We most definitely don't want callers attempting to
4923abf9 1680 * allocate greater than order-1 page units with
dab48dab
AM
1681 * __GFP_NOFAIL.
1682 */
4923abf9 1683 WARN_ON_ONCE(order > 1);
dab48dab 1684 }
1da177e4 1685 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1686 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1687 spin_unlock(&zone->lock);
1688 if (!page)
1689 goto failed;
d1ce749a 1690 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1691 get_freepage_migratetype(page));
1da177e4
LT
1692 }
1693
3a025760 1694 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1695 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1696 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1697 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1698
f8891e5e 1699 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1700 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1701 local_irq_restore(flags);
1da177e4 1702
309381fe 1703 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1704 if (prep_new_page(page, order, gfp_flags))
a74609fa 1705 goto again;
1da177e4 1706 return page;
a74609fa
NP
1707
1708failed:
1709 local_irq_restore(flags);
a74609fa 1710 return NULL;
1da177e4
LT
1711}
1712
933e312e
AM
1713#ifdef CONFIG_FAIL_PAGE_ALLOC
1714
b2588c4b 1715static struct {
933e312e
AM
1716 struct fault_attr attr;
1717
1718 u32 ignore_gfp_highmem;
1719 u32 ignore_gfp_wait;
54114994 1720 u32 min_order;
933e312e
AM
1721} fail_page_alloc = {
1722 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1723 .ignore_gfp_wait = 1,
1724 .ignore_gfp_highmem = 1,
54114994 1725 .min_order = 1,
933e312e
AM
1726};
1727
1728static int __init setup_fail_page_alloc(char *str)
1729{
1730 return setup_fault_attr(&fail_page_alloc.attr, str);
1731}
1732__setup("fail_page_alloc=", setup_fail_page_alloc);
1733
deaf386e 1734static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1735{
54114994 1736 if (order < fail_page_alloc.min_order)
deaf386e 1737 return false;
933e312e 1738 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1739 return false;
933e312e 1740 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1741 return false;
933e312e 1742 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1743 return false;
933e312e
AM
1744
1745 return should_fail(&fail_page_alloc.attr, 1 << order);
1746}
1747
1748#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1749
1750static int __init fail_page_alloc_debugfs(void)
1751{
f4ae40a6 1752 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1753 struct dentry *dir;
933e312e 1754
dd48c085
AM
1755 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1756 &fail_page_alloc.attr);
1757 if (IS_ERR(dir))
1758 return PTR_ERR(dir);
933e312e 1759
b2588c4b
AM
1760 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1761 &fail_page_alloc.ignore_gfp_wait))
1762 goto fail;
1763 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1764 &fail_page_alloc.ignore_gfp_highmem))
1765 goto fail;
1766 if (!debugfs_create_u32("min-order", mode, dir,
1767 &fail_page_alloc.min_order))
1768 goto fail;
1769
1770 return 0;
1771fail:
dd48c085 1772 debugfs_remove_recursive(dir);
933e312e 1773
b2588c4b 1774 return -ENOMEM;
933e312e
AM
1775}
1776
1777late_initcall(fail_page_alloc_debugfs);
1778
1779#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1780
1781#else /* CONFIG_FAIL_PAGE_ALLOC */
1782
deaf386e 1783static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1784{
deaf386e 1785 return false;
933e312e
AM
1786}
1787
1788#endif /* CONFIG_FAIL_PAGE_ALLOC */
1789
1da177e4 1790/*
88f5acf8 1791 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1792 * of the allocation.
1793 */
7aeb09f9
MG
1794static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1795 unsigned long mark, int classzone_idx, int alloc_flags,
1796 long free_pages)
1da177e4 1797{
26086de3 1798 /* free_pages may go negative - that's OK */
d23ad423 1799 long min = mark;
1da177e4 1800 int o;
026b0814 1801 long free_cma = 0;
1da177e4 1802
df0a6daa 1803 free_pages -= (1 << order) - 1;
7fb1d9fc 1804 if (alloc_flags & ALLOC_HIGH)
1da177e4 1805 min -= min / 2;
7fb1d9fc 1806 if (alloc_flags & ALLOC_HARDER)
1da177e4 1807 min -= min / 4;
d95ea5d1
BZ
1808#ifdef CONFIG_CMA
1809 /* If allocation can't use CMA areas don't use free CMA pages */
1810 if (!(alloc_flags & ALLOC_CMA))
026b0814 1811 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1812#endif
026b0814 1813
3484b2de 1814 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1815 return false;
1da177e4
LT
1816 for (o = 0; o < order; o++) {
1817 /* At the next order, this order's pages become unavailable */
1818 free_pages -= z->free_area[o].nr_free << o;
1819
1820 /* Require fewer higher order pages to be free */
1821 min >>= 1;
1822
1823 if (free_pages <= min)
88f5acf8 1824 return false;
1da177e4 1825 }
88f5acf8
MG
1826 return true;
1827}
1828
7aeb09f9 1829bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1830 int classzone_idx, int alloc_flags)
1831{
1832 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1833 zone_page_state(z, NR_FREE_PAGES));
1834}
1835
7aeb09f9
MG
1836bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1837 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1838{
1839 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1840
1841 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1842 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1843
1844 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1845 free_pages);
1da177e4
LT
1846}
1847
9276b1bc
PJ
1848#ifdef CONFIG_NUMA
1849/*
1850 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1851 * skip over zones that are not allowed by the cpuset, or that have
1852 * been recently (in last second) found to be nearly full. See further
1853 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1854 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1855 *
a1aeb65a 1856 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1857 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1858 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1859 *
1860 * If the zonelist cache is not available for this zonelist, does
1861 * nothing and returns NULL.
1862 *
1863 * If the fullzones BITMAP in the zonelist cache is stale (more than
1864 * a second since last zap'd) then we zap it out (clear its bits.)
1865 *
1866 * We hold off even calling zlc_setup, until after we've checked the
1867 * first zone in the zonelist, on the theory that most allocations will
1868 * be satisfied from that first zone, so best to examine that zone as
1869 * quickly as we can.
1870 */
1871static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1872{
1873 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1874 nodemask_t *allowednodes; /* zonelist_cache approximation */
1875
1876 zlc = zonelist->zlcache_ptr;
1877 if (!zlc)
1878 return NULL;
1879
f05111f5 1880 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1881 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1882 zlc->last_full_zap = jiffies;
1883 }
1884
1885 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1886 &cpuset_current_mems_allowed :
4b0ef1fe 1887 &node_states[N_MEMORY];
9276b1bc
PJ
1888 return allowednodes;
1889}
1890
1891/*
1892 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1893 * if it is worth looking at further for free memory:
1894 * 1) Check that the zone isn't thought to be full (doesn't have its
1895 * bit set in the zonelist_cache fullzones BITMAP).
1896 * 2) Check that the zones node (obtained from the zonelist_cache
1897 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1898 * Return true (non-zero) if zone is worth looking at further, or
1899 * else return false (zero) if it is not.
1900 *
1901 * This check -ignores- the distinction between various watermarks,
1902 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1903 * found to be full for any variation of these watermarks, it will
1904 * be considered full for up to one second by all requests, unless
1905 * we are so low on memory on all allowed nodes that we are forced
1906 * into the second scan of the zonelist.
1907 *
1908 * In the second scan we ignore this zonelist cache and exactly
1909 * apply the watermarks to all zones, even it is slower to do so.
1910 * We are low on memory in the second scan, and should leave no stone
1911 * unturned looking for a free page.
1912 */
dd1a239f 1913static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1914 nodemask_t *allowednodes)
1915{
1916 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1917 int i; /* index of *z in zonelist zones */
1918 int n; /* node that zone *z is on */
1919
1920 zlc = zonelist->zlcache_ptr;
1921 if (!zlc)
1922 return 1;
1923
dd1a239f 1924 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1925 n = zlc->z_to_n[i];
1926
1927 /* This zone is worth trying if it is allowed but not full */
1928 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1929}
1930
1931/*
1932 * Given 'z' scanning a zonelist, set the corresponding bit in
1933 * zlc->fullzones, so that subsequent attempts to allocate a page
1934 * from that zone don't waste time re-examining it.
1935 */
dd1a239f 1936static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1937{
1938 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1939 int i; /* index of *z in zonelist zones */
1940
1941 zlc = zonelist->zlcache_ptr;
1942 if (!zlc)
1943 return;
1944
dd1a239f 1945 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1946
1947 set_bit(i, zlc->fullzones);
1948}
1949
76d3fbf8
MG
1950/*
1951 * clear all zones full, called after direct reclaim makes progress so that
1952 * a zone that was recently full is not skipped over for up to a second
1953 */
1954static void zlc_clear_zones_full(struct zonelist *zonelist)
1955{
1956 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1957
1958 zlc = zonelist->zlcache_ptr;
1959 if (!zlc)
1960 return;
1961
1962 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1963}
1964
81c0a2bb
JW
1965static bool zone_local(struct zone *local_zone, struct zone *zone)
1966{
fff4068c 1967 return local_zone->node == zone->node;
81c0a2bb
JW
1968}
1969
957f822a
DR
1970static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1971{
5f7a75ac
MG
1972 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1973 RECLAIM_DISTANCE;
957f822a
DR
1974}
1975
9276b1bc
PJ
1976#else /* CONFIG_NUMA */
1977
1978static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1979{
1980 return NULL;
1981}
1982
dd1a239f 1983static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1984 nodemask_t *allowednodes)
1985{
1986 return 1;
1987}
1988
dd1a239f 1989static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1990{
1991}
76d3fbf8
MG
1992
1993static void zlc_clear_zones_full(struct zonelist *zonelist)
1994{
1995}
957f822a 1996
81c0a2bb
JW
1997static bool zone_local(struct zone *local_zone, struct zone *zone)
1998{
1999 return true;
2000}
2001
957f822a
DR
2002static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2003{
2004 return true;
2005}
2006
9276b1bc
PJ
2007#endif /* CONFIG_NUMA */
2008
4ffeaf35
MG
2009static void reset_alloc_batches(struct zone *preferred_zone)
2010{
2011 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2012
2013 do {
2014 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2015 high_wmark_pages(zone) - low_wmark_pages(zone) -
2016 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2017 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2018 } while (zone++ != preferred_zone);
2019}
2020
7fb1d9fc 2021/*
0798e519 2022 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2023 * a page.
2024 */
2025static struct page *
19770b32 2026get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 2027 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
d8846374 2028 struct zone *preferred_zone, int classzone_idx, int migratetype)
753ee728 2029{
dd1a239f 2030 struct zoneref *z;
7fb1d9fc 2031 struct page *page = NULL;
5117f45d 2032 struct zone *zone;
9276b1bc
PJ
2033 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2034 int zlc_active = 0; /* set if using zonelist_cache */
2035 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2036 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2037 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2038 int nr_fair_skipped = 0;
2039 bool zonelist_rescan;
54a6eb5c 2040
9276b1bc 2041zonelist_scan:
4ffeaf35
MG
2042 zonelist_rescan = false;
2043
7fb1d9fc 2044 /*
9276b1bc 2045 * Scan zonelist, looking for a zone with enough free.
344736f2 2046 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2047 */
19770b32
MG
2048 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2049 high_zoneidx, nodemask) {
e085dbc5
JW
2050 unsigned long mark;
2051
e5adfffc 2052 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2053 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2054 continue;
664eedde
MG
2055 if (cpusets_enabled() &&
2056 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2057 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2058 continue;
81c0a2bb
JW
2059 /*
2060 * Distribute pages in proportion to the individual
2061 * zone size to ensure fair page aging. The zone a
2062 * page was allocated in should have no effect on the
2063 * time the page has in memory before being reclaimed.
81c0a2bb 2064 */
3a025760 2065 if (alloc_flags & ALLOC_FAIR) {
fff4068c 2066 if (!zone_local(preferred_zone, zone))
f7b5d647 2067 break;
57054651 2068 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2069 nr_fair_skipped++;
3a025760 2070 continue;
4ffeaf35 2071 }
81c0a2bb 2072 }
a756cf59
JW
2073 /*
2074 * When allocating a page cache page for writing, we
2075 * want to get it from a zone that is within its dirty
2076 * limit, such that no single zone holds more than its
2077 * proportional share of globally allowed dirty pages.
2078 * The dirty limits take into account the zone's
2079 * lowmem reserves and high watermark so that kswapd
2080 * should be able to balance it without having to
2081 * write pages from its LRU list.
2082 *
2083 * This may look like it could increase pressure on
2084 * lower zones by failing allocations in higher zones
2085 * before they are full. But the pages that do spill
2086 * over are limited as the lower zones are protected
2087 * by this very same mechanism. It should not become
2088 * a practical burden to them.
2089 *
2090 * XXX: For now, allow allocations to potentially
2091 * exceed the per-zone dirty limit in the slowpath
2092 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2093 * which is important when on a NUMA setup the allowed
2094 * zones are together not big enough to reach the
2095 * global limit. The proper fix for these situations
2096 * will require awareness of zones in the
2097 * dirty-throttling and the flusher threads.
2098 */
a6e21b14 2099 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2100 continue;
7fb1d9fc 2101
e085dbc5
JW
2102 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2103 if (!zone_watermark_ok(zone, order, mark,
2104 classzone_idx, alloc_flags)) {
fa5e084e
MG
2105 int ret;
2106
5dab2911
MG
2107 /* Checked here to keep the fast path fast */
2108 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2109 if (alloc_flags & ALLOC_NO_WATERMARKS)
2110 goto try_this_zone;
2111
e5adfffc
KS
2112 if (IS_ENABLED(CONFIG_NUMA) &&
2113 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2114 /*
2115 * we do zlc_setup if there are multiple nodes
2116 * and before considering the first zone allowed
2117 * by the cpuset.
2118 */
2119 allowednodes = zlc_setup(zonelist, alloc_flags);
2120 zlc_active = 1;
2121 did_zlc_setup = 1;
2122 }
2123
957f822a
DR
2124 if (zone_reclaim_mode == 0 ||
2125 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2126 goto this_zone_full;
2127
cd38b115
MG
2128 /*
2129 * As we may have just activated ZLC, check if the first
2130 * eligible zone has failed zone_reclaim recently.
2131 */
e5adfffc 2132 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2133 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2134 continue;
2135
fa5e084e
MG
2136 ret = zone_reclaim(zone, gfp_mask, order);
2137 switch (ret) {
2138 case ZONE_RECLAIM_NOSCAN:
2139 /* did not scan */
cd38b115 2140 continue;
fa5e084e
MG
2141 case ZONE_RECLAIM_FULL:
2142 /* scanned but unreclaimable */
cd38b115 2143 continue;
fa5e084e
MG
2144 default:
2145 /* did we reclaim enough */
fed2719e 2146 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2147 classzone_idx, alloc_flags))
fed2719e
MG
2148 goto try_this_zone;
2149
2150 /*
2151 * Failed to reclaim enough to meet watermark.
2152 * Only mark the zone full if checking the min
2153 * watermark or if we failed to reclaim just
2154 * 1<<order pages or else the page allocator
2155 * fastpath will prematurely mark zones full
2156 * when the watermark is between the low and
2157 * min watermarks.
2158 */
2159 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2160 ret == ZONE_RECLAIM_SOME)
9276b1bc 2161 goto this_zone_full;
fed2719e
MG
2162
2163 continue;
0798e519 2164 }
7fb1d9fc
RS
2165 }
2166
fa5e084e 2167try_this_zone:
3dd28266
MG
2168 page = buffered_rmqueue(preferred_zone, zone, order,
2169 gfp_mask, migratetype);
0798e519 2170 if (page)
7fb1d9fc 2171 break;
9276b1bc 2172this_zone_full:
65bb3719 2173 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2174 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2175 }
9276b1bc 2176
4ffeaf35 2177 if (page) {
b121186a
AS
2178 /*
2179 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2180 * necessary to allocate the page. The expectation is
2181 * that the caller is taking steps that will free more
2182 * memory. The caller should avoid the page being used
2183 * for !PFMEMALLOC purposes.
2184 */
2185 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
4ffeaf35
MG
2186 return page;
2187 }
b121186a 2188
4ffeaf35
MG
2189 /*
2190 * The first pass makes sure allocations are spread fairly within the
2191 * local node. However, the local node might have free pages left
2192 * after the fairness batches are exhausted, and remote zones haven't
2193 * even been considered yet. Try once more without fairness, and
2194 * include remote zones now, before entering the slowpath and waking
2195 * kswapd: prefer spilling to a remote zone over swapping locally.
2196 */
2197 if (alloc_flags & ALLOC_FAIR) {
2198 alloc_flags &= ~ALLOC_FAIR;
2199 if (nr_fair_skipped) {
2200 zonelist_rescan = true;
2201 reset_alloc_batches(preferred_zone);
2202 }
2203 if (nr_online_nodes > 1)
2204 zonelist_rescan = true;
2205 }
2206
2207 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2208 /* Disable zlc cache for second zonelist scan */
2209 zlc_active = 0;
2210 zonelist_rescan = true;
2211 }
2212
2213 if (zonelist_rescan)
2214 goto zonelist_scan;
2215
2216 return NULL;
753ee728
MH
2217}
2218
29423e77
DR
2219/*
2220 * Large machines with many possible nodes should not always dump per-node
2221 * meminfo in irq context.
2222 */
2223static inline bool should_suppress_show_mem(void)
2224{
2225 bool ret = false;
2226
2227#if NODES_SHIFT > 8
2228 ret = in_interrupt();
2229#endif
2230 return ret;
2231}
2232
a238ab5b
DH
2233static DEFINE_RATELIMIT_STATE(nopage_rs,
2234 DEFAULT_RATELIMIT_INTERVAL,
2235 DEFAULT_RATELIMIT_BURST);
2236
2237void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2238{
a238ab5b
DH
2239 unsigned int filter = SHOW_MEM_FILTER_NODES;
2240
c0a32fc5
SG
2241 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2242 debug_guardpage_minorder() > 0)
a238ab5b
DH
2243 return;
2244
2245 /*
2246 * This documents exceptions given to allocations in certain
2247 * contexts that are allowed to allocate outside current's set
2248 * of allowed nodes.
2249 */
2250 if (!(gfp_mask & __GFP_NOMEMALLOC))
2251 if (test_thread_flag(TIF_MEMDIE) ||
2252 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2253 filter &= ~SHOW_MEM_FILTER_NODES;
2254 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2255 filter &= ~SHOW_MEM_FILTER_NODES;
2256
2257 if (fmt) {
3ee9a4f0
JP
2258 struct va_format vaf;
2259 va_list args;
2260
a238ab5b 2261 va_start(args, fmt);
3ee9a4f0
JP
2262
2263 vaf.fmt = fmt;
2264 vaf.va = &args;
2265
2266 pr_warn("%pV", &vaf);
2267
a238ab5b
DH
2268 va_end(args);
2269 }
2270
3ee9a4f0
JP
2271 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2272 current->comm, order, gfp_mask);
a238ab5b
DH
2273
2274 dump_stack();
2275 if (!should_suppress_show_mem())
2276 show_mem(filter);
2277}
2278
11e33f6a
MG
2279static inline int
2280should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2281 unsigned long did_some_progress,
11e33f6a 2282 unsigned long pages_reclaimed)
1da177e4 2283{
11e33f6a
MG
2284 /* Do not loop if specifically requested */
2285 if (gfp_mask & __GFP_NORETRY)
2286 return 0;
1da177e4 2287
f90ac398
MG
2288 /* Always retry if specifically requested */
2289 if (gfp_mask & __GFP_NOFAIL)
2290 return 1;
2291
2292 /*
2293 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2294 * making forward progress without invoking OOM. Suspend also disables
2295 * storage devices so kswapd will not help. Bail if we are suspending.
2296 */
2297 if (!did_some_progress && pm_suspended_storage())
2298 return 0;
2299
11e33f6a
MG
2300 /*
2301 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2302 * means __GFP_NOFAIL, but that may not be true in other
2303 * implementations.
2304 */
2305 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2306 return 1;
2307
2308 /*
2309 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2310 * specified, then we retry until we no longer reclaim any pages
2311 * (above), or we've reclaimed an order of pages at least as
2312 * large as the allocation's order. In both cases, if the
2313 * allocation still fails, we stop retrying.
2314 */
2315 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2316 return 1;
cf40bd16 2317
11e33f6a
MG
2318 return 0;
2319}
933e312e 2320
11e33f6a
MG
2321static inline struct page *
2322__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2323 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2324 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2325 int classzone_idx, int migratetype)
11e33f6a
MG
2326{
2327 struct page *page;
2328
e972a070
DR
2329 /* Acquire the per-zone oom lock for each zone */
2330 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
11e33f6a 2331 schedule_timeout_uninterruptible(1);
1da177e4
LT
2332 return NULL;
2333 }
6b1de916 2334
5695be14
MH
2335 /*
2336 * PM-freezer should be notified that there might be an OOM killer on
2337 * its way to kill and wake somebody up. This is too early and we might
2338 * end up not killing anything but false positives are acceptable.
2339 * See freeze_processes.
2340 */
2341 note_oom_kill();
2342
11e33f6a
MG
2343 /*
2344 * Go through the zonelist yet one more time, keep very high watermark
2345 * here, this is only to catch a parallel oom killing, we must fail if
2346 * we're still under heavy pressure.
2347 */
2348 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2349 order, zonelist, high_zoneidx,
5117f45d 2350 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
d8846374 2351 preferred_zone, classzone_idx, migratetype);
7fb1d9fc 2352 if (page)
11e33f6a
MG
2353 goto out;
2354
4365a567
KH
2355 if (!(gfp_mask & __GFP_NOFAIL)) {
2356 /* The OOM killer will not help higher order allocs */
2357 if (order > PAGE_ALLOC_COSTLY_ORDER)
2358 goto out;
03668b3c
DR
2359 /* The OOM killer does not needlessly kill tasks for lowmem */
2360 if (high_zoneidx < ZONE_NORMAL)
2361 goto out;
4365a567
KH
2362 /*
2363 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2364 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2365 * The caller should handle page allocation failure by itself if
2366 * it specifies __GFP_THISNODE.
2367 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2368 */
2369 if (gfp_mask & __GFP_THISNODE)
2370 goto out;
2371 }
11e33f6a 2372 /* Exhausted what can be done so it's blamo time */
08ab9b10 2373 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2374
2375out:
e972a070 2376 oom_zonelist_unlock(zonelist, gfp_mask);
11e33f6a
MG
2377 return page;
2378}
2379
56de7263
MG
2380#ifdef CONFIG_COMPACTION
2381/* Try memory compaction for high-order allocations before reclaim */
2382static struct page *
2383__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2384 struct zonelist *zonelist, enum zone_type high_zoneidx,
2385 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2386 int classzone_idx, int migratetype, enum migrate_mode mode,
1f9efdef 2387 int *contended_compaction, bool *deferred_compaction)
56de7263 2388{
53853e2d 2389 unsigned long compact_result;
98dd3b48 2390 struct page *page;
53853e2d
VB
2391
2392 if (!order)
66199712 2393 return NULL;
66199712 2394
c06b1fca 2395 current->flags |= PF_MEMALLOC;
53853e2d 2396 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
e0b9daeb 2397 nodemask, mode,
53853e2d 2398 contended_compaction,
97d47a65 2399 alloc_flags, classzone_idx);
c06b1fca 2400 current->flags &= ~PF_MEMALLOC;
56de7263 2401
98dd3b48
VB
2402 switch (compact_result) {
2403 case COMPACT_DEFERRED:
53853e2d 2404 *deferred_compaction = true;
98dd3b48
VB
2405 /* fall-through */
2406 case COMPACT_SKIPPED:
2407 return NULL;
2408 default:
2409 break;
2410 }
53853e2d 2411
98dd3b48
VB
2412 /*
2413 * At least in one zone compaction wasn't deferred or skipped, so let's
2414 * count a compaction stall
2415 */
2416 count_vm_event(COMPACTSTALL);
8fb74b9f 2417
98dd3b48
VB
2418 page = get_page_from_freelist(gfp_mask, nodemask,
2419 order, zonelist, high_zoneidx,
2420 alloc_flags & ~ALLOC_NO_WATERMARKS,
2421 preferred_zone, classzone_idx, migratetype);
53853e2d 2422
98dd3b48
VB
2423 if (page) {
2424 struct zone *zone = page_zone(page);
53853e2d 2425
98dd3b48
VB
2426 zone->compact_blockskip_flush = false;
2427 compaction_defer_reset(zone, order, true);
2428 count_vm_event(COMPACTSUCCESS);
2429 return page;
2430 }
56de7263 2431
98dd3b48
VB
2432 /*
2433 * It's bad if compaction run occurs and fails. The most likely reason
2434 * is that pages exist, but not enough to satisfy watermarks.
2435 */
2436 count_vm_event(COMPACTFAIL);
66199712 2437
98dd3b48 2438 cond_resched();
56de7263
MG
2439
2440 return NULL;
2441}
2442#else
2443static inline struct page *
2444__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2445 struct zonelist *zonelist, enum zone_type high_zoneidx,
2446 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
53853e2d 2447 int classzone_idx, int migratetype, enum migrate_mode mode,
1f9efdef 2448 int *contended_compaction, bool *deferred_compaction)
56de7263
MG
2449{
2450 return NULL;
2451}
2452#endif /* CONFIG_COMPACTION */
2453
bba90710
MS
2454/* Perform direct synchronous page reclaim */
2455static int
2456__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2457 nodemask_t *nodemask)
11e33f6a 2458{
11e33f6a 2459 struct reclaim_state reclaim_state;
bba90710 2460 int progress;
11e33f6a
MG
2461
2462 cond_resched();
2463
2464 /* We now go into synchronous reclaim */
2465 cpuset_memory_pressure_bump();
c06b1fca 2466 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2467 lockdep_set_current_reclaim_state(gfp_mask);
2468 reclaim_state.reclaimed_slab = 0;
c06b1fca 2469 current->reclaim_state = &reclaim_state;
11e33f6a 2470
bba90710 2471 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2472
c06b1fca 2473 current->reclaim_state = NULL;
11e33f6a 2474 lockdep_clear_current_reclaim_state();
c06b1fca 2475 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2476
2477 cond_resched();
2478
bba90710
MS
2479 return progress;
2480}
2481
2482/* The really slow allocator path where we enter direct reclaim */
2483static inline struct page *
2484__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2485 struct zonelist *zonelist, enum zone_type high_zoneidx,
2486 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2487 int classzone_idx, int migratetype, unsigned long *did_some_progress)
bba90710
MS
2488{
2489 struct page *page = NULL;
2490 bool drained = false;
2491
2492 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2493 nodemask);
9ee493ce
MG
2494 if (unlikely(!(*did_some_progress)))
2495 return NULL;
11e33f6a 2496
76d3fbf8 2497 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2498 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2499 zlc_clear_zones_full(zonelist);
2500
9ee493ce
MG
2501retry:
2502 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2503 zonelist, high_zoneidx,
cfd19c5a 2504 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374
MG
2505 preferred_zone, classzone_idx,
2506 migratetype);
9ee493ce
MG
2507
2508 /*
2509 * If an allocation failed after direct reclaim, it could be because
2510 * pages are pinned on the per-cpu lists. Drain them and try again
2511 */
2512 if (!page && !drained) {
93481ff0 2513 drain_all_pages(NULL);
9ee493ce
MG
2514 drained = true;
2515 goto retry;
2516 }
2517
11e33f6a
MG
2518 return page;
2519}
2520
1da177e4 2521/*
11e33f6a
MG
2522 * This is called in the allocator slow-path if the allocation request is of
2523 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2524 */
11e33f6a
MG
2525static inline struct page *
2526__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2527 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2528 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2529 int classzone_idx, int migratetype)
11e33f6a
MG
2530{
2531 struct page *page;
2532
2533 do {
2534 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2535 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
d8846374 2536 preferred_zone, classzone_idx, migratetype);
11e33f6a
MG
2537
2538 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2539 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2540 } while (!page && (gfp_mask & __GFP_NOFAIL));
2541
2542 return page;
2543}
2544
3a025760
JW
2545static void wake_all_kswapds(unsigned int order,
2546 struct zonelist *zonelist,
2547 enum zone_type high_zoneidx,
7ade3c99
WY
2548 struct zone *preferred_zone,
2549 nodemask_t *nodemask)
3a025760
JW
2550{
2551 struct zoneref *z;
2552 struct zone *zone;
2553
7ade3c99
WY
2554 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2555 high_zoneidx, nodemask)
3a025760
JW
2556 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2557}
2558
341ce06f
PZ
2559static inline int
2560gfp_to_alloc_flags(gfp_t gfp_mask)
2561{
341ce06f 2562 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2563 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2564
a56f57ff 2565 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2566 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2567
341ce06f
PZ
2568 /*
2569 * The caller may dip into page reserves a bit more if the caller
2570 * cannot run direct reclaim, or if the caller has realtime scheduling
2571 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2572 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2573 */
e6223a3b 2574 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2575
b104a35d 2576 if (atomic) {
5c3240d9 2577 /*
b104a35d
DR
2578 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2579 * if it can't schedule.
5c3240d9 2580 */
b104a35d 2581 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2582 alloc_flags |= ALLOC_HARDER;
523b9458 2583 /*
b104a35d 2584 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2585 * comment for __cpuset_node_allowed().
523b9458 2586 */
341ce06f 2587 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2588 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2589 alloc_flags |= ALLOC_HARDER;
2590
b37f1dd0
MG
2591 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2592 if (gfp_mask & __GFP_MEMALLOC)
2593 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2594 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2595 alloc_flags |= ALLOC_NO_WATERMARKS;
2596 else if (!in_interrupt() &&
2597 ((current->flags & PF_MEMALLOC) ||
2598 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2599 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2600 }
d95ea5d1 2601#ifdef CONFIG_CMA
43e7a34d 2602 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2603 alloc_flags |= ALLOC_CMA;
2604#endif
341ce06f
PZ
2605 return alloc_flags;
2606}
2607
072bb0aa
MG
2608bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2609{
b37f1dd0 2610 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2611}
2612
11e33f6a
MG
2613static inline struct page *
2614__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2615 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2616 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2617 int classzone_idx, int migratetype)
11e33f6a
MG
2618{
2619 const gfp_t wait = gfp_mask & __GFP_WAIT;
2620 struct page *page = NULL;
2621 int alloc_flags;
2622 unsigned long pages_reclaimed = 0;
2623 unsigned long did_some_progress;
e0b9daeb 2624 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2625 bool deferred_compaction = false;
1f9efdef 2626 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2627
72807a74
MG
2628 /*
2629 * In the slowpath, we sanity check order to avoid ever trying to
2630 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2631 * be using allocators in order of preference for an area that is
2632 * too large.
2633 */
1fc28b70
MG
2634 if (order >= MAX_ORDER) {
2635 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2636 return NULL;
1fc28b70 2637 }
1da177e4 2638
952f3b51
CL
2639 /*
2640 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2641 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2642 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2643 * using a larger set of nodes after it has established that the
2644 * allowed per node queues are empty and that nodes are
2645 * over allocated.
2646 */
3a025760
JW
2647 if (IS_ENABLED(CONFIG_NUMA) &&
2648 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2649 goto nopage;
2650
cc4a6851 2651restart:
3a025760 2652 if (!(gfp_mask & __GFP_NO_KSWAPD))
7ade3c99
WY
2653 wake_all_kswapds(order, zonelist, high_zoneidx,
2654 preferred_zone, nodemask);
1da177e4 2655
9bf2229f 2656 /*
7fb1d9fc
RS
2657 * OK, we're below the kswapd watermark and have kicked background
2658 * reclaim. Now things get more complex, so set up alloc_flags according
2659 * to how we want to proceed.
9bf2229f 2660 */
341ce06f 2661 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2662
f33261d7
DR
2663 /*
2664 * Find the true preferred zone if the allocation is unconstrained by
2665 * cpusets.
2666 */
d8846374
MG
2667 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2668 struct zoneref *preferred_zoneref;
2669 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2670 NULL, &preferred_zone);
2671 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2672 }
f33261d7 2673
cfa54a0f 2674rebalance:
341ce06f 2675 /* This is the last chance, in general, before the goto nopage. */
19770b32 2676 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f 2677 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2678 preferred_zone, classzone_idx, migratetype);
7fb1d9fc
RS
2679 if (page)
2680 goto got_pg;
1da177e4 2681
11e33f6a 2682 /* Allocate without watermarks if the context allows */
341ce06f 2683 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2684 /*
2685 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2686 * the allocation is high priority and these type of
2687 * allocations are system rather than user orientated
2688 */
2689 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2690
341ce06f
PZ
2691 page = __alloc_pages_high_priority(gfp_mask, order,
2692 zonelist, high_zoneidx, nodemask,
d8846374 2693 preferred_zone, classzone_idx, migratetype);
cfd19c5a 2694 if (page) {
341ce06f 2695 goto got_pg;
cfd19c5a 2696 }
1da177e4
LT
2697 }
2698
2699 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2700 if (!wait) {
2701 /*
2702 * All existing users of the deprecated __GFP_NOFAIL are
2703 * blockable, so warn of any new users that actually allow this
2704 * type of allocation to fail.
2705 */
2706 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2707 goto nopage;
aed0a0e3 2708 }
1da177e4 2709
341ce06f 2710 /* Avoid recursion of direct reclaim */
c06b1fca 2711 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2712 goto nopage;
2713
6583bb64
DR
2714 /* Avoid allocations with no watermarks from looping endlessly */
2715 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2716 goto nopage;
2717
77f1fe6b
MG
2718 /*
2719 * Try direct compaction. The first pass is asynchronous. Subsequent
2720 * attempts after direct reclaim are synchronous
2721 */
e0b9daeb
DR
2722 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2723 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2724 preferred_zone,
2725 classzone_idx, migratetype,
e0b9daeb 2726 migration_mode, &contended_compaction,
53853e2d 2727 &deferred_compaction);
56de7263
MG
2728 if (page)
2729 goto got_pg;
75f30861 2730
1f9efdef
VB
2731 /* Checks for THP-specific high-order allocations */
2732 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2733 /*
2734 * If compaction is deferred for high-order allocations, it is
2735 * because sync compaction recently failed. If this is the case
2736 * and the caller requested a THP allocation, we do not want
2737 * to heavily disrupt the system, so we fail the allocation
2738 * instead of entering direct reclaim.
2739 */
2740 if (deferred_compaction)
2741 goto nopage;
2742
2743 /*
2744 * In all zones where compaction was attempted (and not
2745 * deferred or skipped), lock contention has been detected.
2746 * For THP allocation we do not want to disrupt the others
2747 * so we fallback to base pages instead.
2748 */
2749 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2750 goto nopage;
2751
2752 /*
2753 * If compaction was aborted due to need_resched(), we do not
2754 * want to further increase allocation latency, unless it is
2755 * khugepaged trying to collapse.
2756 */
2757 if (contended_compaction == COMPACT_CONTENDED_SCHED
2758 && !(current->flags & PF_KTHREAD))
2759 goto nopage;
2760 }
66199712 2761
8fe78048
DR
2762 /*
2763 * It can become very expensive to allocate transparent hugepages at
2764 * fault, so use asynchronous memory compaction for THP unless it is
2765 * khugepaged trying to collapse.
2766 */
2767 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2768 (current->flags & PF_KTHREAD))
2769 migration_mode = MIGRATE_SYNC_LIGHT;
2770
11e33f6a
MG
2771 /* Try direct reclaim and then allocating */
2772 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2773 zonelist, high_zoneidx,
2774 nodemask,
5117f45d 2775 alloc_flags, preferred_zone,
d8846374
MG
2776 classzone_idx, migratetype,
2777 &did_some_progress);
11e33f6a
MG
2778 if (page)
2779 goto got_pg;
1da177e4 2780
e33c3b5e 2781 /*
11e33f6a
MG
2782 * If we failed to make any progress reclaiming, then we are
2783 * running out of options and have to consider going OOM
e33c3b5e 2784 */
11e33f6a 2785 if (!did_some_progress) {
b9921ecd 2786 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2787 if (oom_killer_disabled)
2788 goto nopage;
29fd66d2
DR
2789 /* Coredumps can quickly deplete all memory reserves */
2790 if ((current->flags & PF_DUMPCORE) &&
2791 !(gfp_mask & __GFP_NOFAIL))
2792 goto nopage;
11e33f6a
MG
2793 page = __alloc_pages_may_oom(gfp_mask, order,
2794 zonelist, high_zoneidx,
3dd28266 2795 nodemask, preferred_zone,
d8846374 2796 classzone_idx, migratetype);
11e33f6a
MG
2797 if (page)
2798 goto got_pg;
1da177e4 2799
03668b3c
DR
2800 if (!(gfp_mask & __GFP_NOFAIL)) {
2801 /*
2802 * The oom killer is not called for high-order
2803 * allocations that may fail, so if no progress
2804 * is being made, there are no other options and
2805 * retrying is unlikely to help.
2806 */
2807 if (order > PAGE_ALLOC_COSTLY_ORDER)
2808 goto nopage;
2809 /*
2810 * The oom killer is not called for lowmem
2811 * allocations to prevent needlessly killing
2812 * innocent tasks.
2813 */
2814 if (high_zoneidx < ZONE_NORMAL)
2815 goto nopage;
2816 }
e2c55dc8 2817
ff0ceb9d
DR
2818 goto restart;
2819 }
1da177e4
LT
2820 }
2821
11e33f6a 2822 /* Check if we should retry the allocation */
a41f24ea 2823 pages_reclaimed += did_some_progress;
f90ac398
MG
2824 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2825 pages_reclaimed)) {
11e33f6a 2826 /* Wait for some write requests to complete then retry */
0e093d99 2827 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2828 goto rebalance;
3e7d3449
MG
2829 } else {
2830 /*
2831 * High-order allocations do not necessarily loop after
2832 * direct reclaim and reclaim/compaction depends on compaction
2833 * being called after reclaim so call directly if necessary
2834 */
e0b9daeb
DR
2835 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2836 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2837 preferred_zone,
2838 classzone_idx, migratetype,
e0b9daeb 2839 migration_mode, &contended_compaction,
53853e2d 2840 &deferred_compaction);
3e7d3449
MG
2841 if (page)
2842 goto got_pg;
1da177e4
LT
2843 }
2844
2845nopage:
a238ab5b 2846 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2847 return page;
1da177e4 2848got_pg:
b1eeab67
VN
2849 if (kmemcheck_enabled)
2850 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2851
072bb0aa 2852 return page;
1da177e4 2853}
11e33f6a
MG
2854
2855/*
2856 * This is the 'heart' of the zoned buddy allocator.
2857 */
2858struct page *
2859__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2860 struct zonelist *zonelist, nodemask_t *nodemask)
2861{
2862 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2863 struct zone *preferred_zone;
d8846374 2864 struct zoneref *preferred_zoneref;
cc9a6c87 2865 struct page *page = NULL;
43e7a34d 2866 int migratetype = gfpflags_to_migratetype(gfp_mask);
cc9a6c87 2867 unsigned int cpuset_mems_cookie;
3a025760 2868 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
d8846374 2869 int classzone_idx;
11e33f6a 2870
dcce284a
BH
2871 gfp_mask &= gfp_allowed_mask;
2872
11e33f6a
MG
2873 lockdep_trace_alloc(gfp_mask);
2874
2875 might_sleep_if(gfp_mask & __GFP_WAIT);
2876
2877 if (should_fail_alloc_page(gfp_mask, order))
2878 return NULL;
2879
2880 /*
2881 * Check the zones suitable for the gfp_mask contain at least one
2882 * valid zone. It's possible to have an empty zonelist as a result
2883 * of GFP_THISNODE and a memoryless node
2884 */
2885 if (unlikely(!zonelist->_zonerefs->zone))
2886 return NULL;
2887
21bb9bd1
VB
2888 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2889 alloc_flags |= ALLOC_CMA;
2890
cc9a6c87 2891retry_cpuset:
d26914d1 2892 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2893
5117f45d 2894 /* The preferred zone is used for statistics later */
d8846374 2895 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
f33261d7
DR
2896 nodemask ? : &cpuset_current_mems_allowed,
2897 &preferred_zone);
cc9a6c87
MG
2898 if (!preferred_zone)
2899 goto out;
d8846374 2900 classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2901
2902 /* First allocation attempt */
11e33f6a 2903 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2904 zonelist, high_zoneidx, alloc_flags,
d8846374 2905 preferred_zone, classzone_idx, migratetype);
21caf2fc
ML
2906 if (unlikely(!page)) {
2907 /*
2908 * Runtime PM, block IO and its error handling path
2909 * can deadlock because I/O on the device might not
2910 * complete.
2911 */
2912 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2913 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2914 zonelist, high_zoneidx, nodemask,
d8846374 2915 preferred_zone, classzone_idx, migratetype);
21caf2fc 2916 }
11e33f6a 2917
4b4f278c 2918 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2919
2920out:
2921 /*
2922 * When updating a task's mems_allowed, it is possible to race with
2923 * parallel threads in such a way that an allocation can fail while
2924 * the mask is being updated. If a page allocation is about to fail,
2925 * check if the cpuset changed during allocation and if so, retry.
2926 */
d26914d1 2927 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2928 goto retry_cpuset;
2929
11e33f6a 2930 return page;
1da177e4 2931}
d239171e 2932EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2933
2934/*
2935 * Common helper functions.
2936 */
920c7a5d 2937unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2938{
945a1113
AM
2939 struct page *page;
2940
2941 /*
2942 * __get_free_pages() returns a 32-bit address, which cannot represent
2943 * a highmem page
2944 */
2945 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2946
1da177e4
LT
2947 page = alloc_pages(gfp_mask, order);
2948 if (!page)
2949 return 0;
2950 return (unsigned long) page_address(page);
2951}
1da177e4
LT
2952EXPORT_SYMBOL(__get_free_pages);
2953
920c7a5d 2954unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2955{
945a1113 2956 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2957}
1da177e4
LT
2958EXPORT_SYMBOL(get_zeroed_page);
2959
920c7a5d 2960void __free_pages(struct page *page, unsigned int order)
1da177e4 2961{
b5810039 2962 if (put_page_testzero(page)) {
1da177e4 2963 if (order == 0)
b745bc85 2964 free_hot_cold_page(page, false);
1da177e4
LT
2965 else
2966 __free_pages_ok(page, order);
2967 }
2968}
2969
2970EXPORT_SYMBOL(__free_pages);
2971
920c7a5d 2972void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2973{
2974 if (addr != 0) {
725d704e 2975 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2976 __free_pages(virt_to_page((void *)addr), order);
2977 }
2978}
2979
2980EXPORT_SYMBOL(free_pages);
2981
6a1a0d3b 2982/*
52383431
VD
2983 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2984 * of the current memory cgroup.
6a1a0d3b 2985 *
52383431
VD
2986 * It should be used when the caller would like to use kmalloc, but since the
2987 * allocation is large, it has to fall back to the page allocator.
2988 */
2989struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2990{
2991 struct page *page;
2992 struct mem_cgroup *memcg = NULL;
2993
2994 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2995 return NULL;
2996 page = alloc_pages(gfp_mask, order);
2997 memcg_kmem_commit_charge(page, memcg, order);
2998 return page;
2999}
3000
3001struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3002{
3003 struct page *page;
3004 struct mem_cgroup *memcg = NULL;
3005
3006 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3007 return NULL;
3008 page = alloc_pages_node(nid, gfp_mask, order);
3009 memcg_kmem_commit_charge(page, memcg, order);
3010 return page;
3011}
3012
3013/*
3014 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3015 * alloc_kmem_pages.
6a1a0d3b 3016 */
52383431 3017void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
3018{
3019 memcg_kmem_uncharge_pages(page, order);
3020 __free_pages(page, order);
3021}
3022
52383431 3023void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3024{
3025 if (addr != 0) {
3026 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3027 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3028 }
3029}
3030
ee85c2e1
AK
3031static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3032{
3033 if (addr) {
3034 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3035 unsigned long used = addr + PAGE_ALIGN(size);
3036
3037 split_page(virt_to_page((void *)addr), order);
3038 while (used < alloc_end) {
3039 free_page(used);
3040 used += PAGE_SIZE;
3041 }
3042 }
3043 return (void *)addr;
3044}
3045
2be0ffe2
TT
3046/**
3047 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3048 * @size: the number of bytes to allocate
3049 * @gfp_mask: GFP flags for the allocation
3050 *
3051 * This function is similar to alloc_pages(), except that it allocates the
3052 * minimum number of pages to satisfy the request. alloc_pages() can only
3053 * allocate memory in power-of-two pages.
3054 *
3055 * This function is also limited by MAX_ORDER.
3056 *
3057 * Memory allocated by this function must be released by free_pages_exact().
3058 */
3059void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3060{
3061 unsigned int order = get_order(size);
3062 unsigned long addr;
3063
3064 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3065 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3066}
3067EXPORT_SYMBOL(alloc_pages_exact);
3068
ee85c2e1
AK
3069/**
3070 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3071 * pages on a node.
b5e6ab58 3072 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3073 * @size: the number of bytes to allocate
3074 * @gfp_mask: GFP flags for the allocation
3075 *
3076 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3077 * back.
3078 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3079 * but is not exact.
3080 */
e1931811 3081void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3082{
3083 unsigned order = get_order(size);
3084 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3085 if (!p)
3086 return NULL;
3087 return make_alloc_exact((unsigned long)page_address(p), order, size);
3088}
ee85c2e1 3089
2be0ffe2
TT
3090/**
3091 * free_pages_exact - release memory allocated via alloc_pages_exact()
3092 * @virt: the value returned by alloc_pages_exact.
3093 * @size: size of allocation, same value as passed to alloc_pages_exact().
3094 *
3095 * Release the memory allocated by a previous call to alloc_pages_exact.
3096 */
3097void free_pages_exact(void *virt, size_t size)
3098{
3099 unsigned long addr = (unsigned long)virt;
3100 unsigned long end = addr + PAGE_ALIGN(size);
3101
3102 while (addr < end) {
3103 free_page(addr);
3104 addr += PAGE_SIZE;
3105 }
3106}
3107EXPORT_SYMBOL(free_pages_exact);
3108
e0fb5815
ZY
3109/**
3110 * nr_free_zone_pages - count number of pages beyond high watermark
3111 * @offset: The zone index of the highest zone
3112 *
3113 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3114 * high watermark within all zones at or below a given zone index. For each
3115 * zone, the number of pages is calculated as:
834405c3 3116 * managed_pages - high_pages
e0fb5815 3117 */
ebec3862 3118static unsigned long nr_free_zone_pages(int offset)
1da177e4 3119{
dd1a239f 3120 struct zoneref *z;
54a6eb5c
MG
3121 struct zone *zone;
3122
e310fd43 3123 /* Just pick one node, since fallback list is circular */
ebec3862 3124 unsigned long sum = 0;
1da177e4 3125
0e88460d 3126 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3127
54a6eb5c 3128 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3129 unsigned long size = zone->managed_pages;
41858966 3130 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3131 if (size > high)
3132 sum += size - high;
1da177e4
LT
3133 }
3134
3135 return sum;
3136}
3137
e0fb5815
ZY
3138/**
3139 * nr_free_buffer_pages - count number of pages beyond high watermark
3140 *
3141 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3142 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3143 */
ebec3862 3144unsigned long nr_free_buffer_pages(void)
1da177e4 3145{
af4ca457 3146 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3147}
c2f1a551 3148EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3149
e0fb5815
ZY
3150/**
3151 * nr_free_pagecache_pages - count number of pages beyond high watermark
3152 *
3153 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3154 * high watermark within all zones.
1da177e4 3155 */
ebec3862 3156unsigned long nr_free_pagecache_pages(void)
1da177e4 3157{
2a1e274a 3158 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3159}
08e0f6a9
CL
3160
3161static inline void show_node(struct zone *zone)
1da177e4 3162{
e5adfffc 3163 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3164 printk("Node %d ", zone_to_nid(zone));
1da177e4 3165}
1da177e4 3166
1da177e4
LT
3167void si_meminfo(struct sysinfo *val)
3168{
3169 val->totalram = totalram_pages;
cc7452b6 3170 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3171 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3172 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3173 val->totalhigh = totalhigh_pages;
3174 val->freehigh = nr_free_highpages();
1da177e4
LT
3175 val->mem_unit = PAGE_SIZE;
3176}
3177
3178EXPORT_SYMBOL(si_meminfo);
3179
3180#ifdef CONFIG_NUMA
3181void si_meminfo_node(struct sysinfo *val, int nid)
3182{
cdd91a77
JL
3183 int zone_type; /* needs to be signed */
3184 unsigned long managed_pages = 0;
1da177e4
LT
3185 pg_data_t *pgdat = NODE_DATA(nid);
3186
cdd91a77
JL
3187 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3188 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3189 val->totalram = managed_pages;
cc7452b6 3190 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3191 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3192#ifdef CONFIG_HIGHMEM
b40da049 3193 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3194 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3195 NR_FREE_PAGES);
98d2b0eb
CL
3196#else
3197 val->totalhigh = 0;
3198 val->freehigh = 0;
3199#endif
1da177e4
LT
3200 val->mem_unit = PAGE_SIZE;
3201}
3202#endif
3203
ddd588b5 3204/*
7bf02ea2
DR
3205 * Determine whether the node should be displayed or not, depending on whether
3206 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3207 */
7bf02ea2 3208bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3209{
3210 bool ret = false;
cc9a6c87 3211 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3212
3213 if (!(flags & SHOW_MEM_FILTER_NODES))
3214 goto out;
3215
cc9a6c87 3216 do {
d26914d1 3217 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3218 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3219 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3220out:
3221 return ret;
3222}
3223
1da177e4
LT
3224#define K(x) ((x) << (PAGE_SHIFT-10))
3225
377e4f16
RV
3226static void show_migration_types(unsigned char type)
3227{
3228 static const char types[MIGRATE_TYPES] = {
3229 [MIGRATE_UNMOVABLE] = 'U',
3230 [MIGRATE_RECLAIMABLE] = 'E',
3231 [MIGRATE_MOVABLE] = 'M',
3232 [MIGRATE_RESERVE] = 'R',
3233#ifdef CONFIG_CMA
3234 [MIGRATE_CMA] = 'C',
3235#endif
194159fb 3236#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3237 [MIGRATE_ISOLATE] = 'I',
194159fb 3238#endif
377e4f16
RV
3239 };
3240 char tmp[MIGRATE_TYPES + 1];
3241 char *p = tmp;
3242 int i;
3243
3244 for (i = 0; i < MIGRATE_TYPES; i++) {
3245 if (type & (1 << i))
3246 *p++ = types[i];
3247 }
3248
3249 *p = '\0';
3250 printk("(%s) ", tmp);
3251}
3252
1da177e4
LT
3253/*
3254 * Show free area list (used inside shift_scroll-lock stuff)
3255 * We also calculate the percentage fragmentation. We do this by counting the
3256 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3257 * Suppresses nodes that are not allowed by current's cpuset if
3258 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3259 */
7bf02ea2 3260void show_free_areas(unsigned int filter)
1da177e4 3261{
c7241913 3262 int cpu;
1da177e4
LT
3263 struct zone *zone;
3264
ee99c71c 3265 for_each_populated_zone(zone) {
7bf02ea2 3266 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3267 continue;
c7241913
JS
3268 show_node(zone);
3269 printk("%s per-cpu:\n", zone->name);
1da177e4 3270
6b482c67 3271 for_each_online_cpu(cpu) {
1da177e4
LT
3272 struct per_cpu_pageset *pageset;
3273
99dcc3e5 3274 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3275
3dfa5721
CL
3276 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3277 cpu, pageset->pcp.high,
3278 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3279 }
3280 }
3281
a731286d
KM
3282 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3283 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3284 " unevictable:%lu"
b76146ed 3285 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3286 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3287 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3288 " free_cma:%lu\n",
4f98a2fe 3289 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3290 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3291 global_page_state(NR_ISOLATED_ANON),
3292 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3293 global_page_state(NR_INACTIVE_FILE),
a731286d 3294 global_page_state(NR_ISOLATED_FILE),
7b854121 3295 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3296 global_page_state(NR_FILE_DIRTY),
ce866b34 3297 global_page_state(NR_WRITEBACK),
fd39fc85 3298 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3299 global_page_state(NR_FREE_PAGES),
3701b033
KM
3300 global_page_state(NR_SLAB_RECLAIMABLE),
3301 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3302 global_page_state(NR_FILE_MAPPED),
4b02108a 3303 global_page_state(NR_SHMEM),
a25700a5 3304 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3305 global_page_state(NR_BOUNCE),
3306 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3307
ee99c71c 3308 for_each_populated_zone(zone) {
1da177e4
LT
3309 int i;
3310
7bf02ea2 3311 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3312 continue;
1da177e4
LT
3313 show_node(zone);
3314 printk("%s"
3315 " free:%lukB"
3316 " min:%lukB"
3317 " low:%lukB"
3318 " high:%lukB"
4f98a2fe
RR
3319 " active_anon:%lukB"
3320 " inactive_anon:%lukB"
3321 " active_file:%lukB"
3322 " inactive_file:%lukB"
7b854121 3323 " unevictable:%lukB"
a731286d
KM
3324 " isolated(anon):%lukB"
3325 " isolated(file):%lukB"
1da177e4 3326 " present:%lukB"
9feedc9d 3327 " managed:%lukB"
4a0aa73f
KM
3328 " mlocked:%lukB"
3329 " dirty:%lukB"
3330 " writeback:%lukB"
3331 " mapped:%lukB"
4b02108a 3332 " shmem:%lukB"
4a0aa73f
KM
3333 " slab_reclaimable:%lukB"
3334 " slab_unreclaimable:%lukB"
c6a7f572 3335 " kernel_stack:%lukB"
4a0aa73f
KM
3336 " pagetables:%lukB"
3337 " unstable:%lukB"
3338 " bounce:%lukB"
d1ce749a 3339 " free_cma:%lukB"
4a0aa73f 3340 " writeback_tmp:%lukB"
1da177e4
LT
3341 " pages_scanned:%lu"
3342 " all_unreclaimable? %s"
3343 "\n",
3344 zone->name,
88f5acf8 3345 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3346 K(min_wmark_pages(zone)),
3347 K(low_wmark_pages(zone)),
3348 K(high_wmark_pages(zone)),
4f98a2fe
RR
3349 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3350 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3351 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3352 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3353 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3354 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3355 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3356 K(zone->present_pages),
9feedc9d 3357 K(zone->managed_pages),
4a0aa73f
KM
3358 K(zone_page_state(zone, NR_MLOCK)),
3359 K(zone_page_state(zone, NR_FILE_DIRTY)),
3360 K(zone_page_state(zone, NR_WRITEBACK)),
3361 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3362 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3363 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3364 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3365 zone_page_state(zone, NR_KERNEL_STACK) *
3366 THREAD_SIZE / 1024,
4a0aa73f
KM
3367 K(zone_page_state(zone, NR_PAGETABLE)),
3368 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3369 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3370 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3371 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3372 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3373 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3374 );
3375 printk("lowmem_reserve[]:");
3376 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3377 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3378 printk("\n");
3379 }
3380
ee99c71c 3381 for_each_populated_zone(zone) {
b8af2941 3382 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3383 unsigned char types[MAX_ORDER];
1da177e4 3384
7bf02ea2 3385 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3386 continue;
1da177e4
LT
3387 show_node(zone);
3388 printk("%s: ", zone->name);
1da177e4
LT
3389
3390 spin_lock_irqsave(&zone->lock, flags);
3391 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3392 struct free_area *area = &zone->free_area[order];
3393 int type;
3394
3395 nr[order] = area->nr_free;
8f9de51a 3396 total += nr[order] << order;
377e4f16
RV
3397
3398 types[order] = 0;
3399 for (type = 0; type < MIGRATE_TYPES; type++) {
3400 if (!list_empty(&area->free_list[type]))
3401 types[order] |= 1 << type;
3402 }
1da177e4
LT
3403 }
3404 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3405 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3406 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3407 if (nr[order])
3408 show_migration_types(types[order]);
3409 }
1da177e4
LT
3410 printk("= %lukB\n", K(total));
3411 }
3412
949f7ec5
DR
3413 hugetlb_show_meminfo();
3414
e6f3602d
LW
3415 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3416
1da177e4
LT
3417 show_swap_cache_info();
3418}
3419
19770b32
MG
3420static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3421{
3422 zoneref->zone = zone;
3423 zoneref->zone_idx = zone_idx(zone);
3424}
3425
1da177e4
LT
3426/*
3427 * Builds allocation fallback zone lists.
1a93205b
CL
3428 *
3429 * Add all populated zones of a node to the zonelist.
1da177e4 3430 */
f0c0b2b8 3431static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3432 int nr_zones)
1da177e4 3433{
1a93205b 3434 struct zone *zone;
bc732f1d 3435 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3436
3437 do {
2f6726e5 3438 zone_type--;
070f8032 3439 zone = pgdat->node_zones + zone_type;
1a93205b 3440 if (populated_zone(zone)) {
dd1a239f
MG
3441 zoneref_set_zone(zone,
3442 &zonelist->_zonerefs[nr_zones++]);
070f8032 3443 check_highest_zone(zone_type);
1da177e4 3444 }
2f6726e5 3445 } while (zone_type);
bc732f1d 3446
070f8032 3447 return nr_zones;
1da177e4
LT
3448}
3449
f0c0b2b8
KH
3450
3451/*
3452 * zonelist_order:
3453 * 0 = automatic detection of better ordering.
3454 * 1 = order by ([node] distance, -zonetype)
3455 * 2 = order by (-zonetype, [node] distance)
3456 *
3457 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3458 * the same zonelist. So only NUMA can configure this param.
3459 */
3460#define ZONELIST_ORDER_DEFAULT 0
3461#define ZONELIST_ORDER_NODE 1
3462#define ZONELIST_ORDER_ZONE 2
3463
3464/* zonelist order in the kernel.
3465 * set_zonelist_order() will set this to NODE or ZONE.
3466 */
3467static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3468static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3469
3470
1da177e4 3471#ifdef CONFIG_NUMA
f0c0b2b8
KH
3472/* The value user specified ....changed by config */
3473static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3474/* string for sysctl */
3475#define NUMA_ZONELIST_ORDER_LEN 16
3476char numa_zonelist_order[16] = "default";
3477
3478/*
3479 * interface for configure zonelist ordering.
3480 * command line option "numa_zonelist_order"
3481 * = "[dD]efault - default, automatic configuration.
3482 * = "[nN]ode - order by node locality, then by zone within node
3483 * = "[zZ]one - order by zone, then by locality within zone
3484 */
3485
3486static int __parse_numa_zonelist_order(char *s)
3487{
3488 if (*s == 'd' || *s == 'D') {
3489 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3490 } else if (*s == 'n' || *s == 'N') {
3491 user_zonelist_order = ZONELIST_ORDER_NODE;
3492 } else if (*s == 'z' || *s == 'Z') {
3493 user_zonelist_order = ZONELIST_ORDER_ZONE;
3494 } else {
3495 printk(KERN_WARNING
3496 "Ignoring invalid numa_zonelist_order value: "
3497 "%s\n", s);
3498 return -EINVAL;
3499 }
3500 return 0;
3501}
3502
3503static __init int setup_numa_zonelist_order(char *s)
3504{
ecb256f8
VL
3505 int ret;
3506
3507 if (!s)
3508 return 0;
3509
3510 ret = __parse_numa_zonelist_order(s);
3511 if (ret == 0)
3512 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3513
3514 return ret;
f0c0b2b8
KH
3515}
3516early_param("numa_zonelist_order", setup_numa_zonelist_order);
3517
3518/*
3519 * sysctl handler for numa_zonelist_order
3520 */
cccad5b9 3521int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3522 void __user *buffer, size_t *length,
f0c0b2b8
KH
3523 loff_t *ppos)
3524{
3525 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3526 int ret;
443c6f14 3527 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3528
443c6f14 3529 mutex_lock(&zl_order_mutex);
dacbde09
CG
3530 if (write) {
3531 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3532 ret = -EINVAL;
3533 goto out;
3534 }
3535 strcpy(saved_string, (char *)table->data);
3536 }
8d65af78 3537 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3538 if (ret)
443c6f14 3539 goto out;
f0c0b2b8
KH
3540 if (write) {
3541 int oldval = user_zonelist_order;
dacbde09
CG
3542
3543 ret = __parse_numa_zonelist_order((char *)table->data);
3544 if (ret) {
f0c0b2b8
KH
3545 /*
3546 * bogus value. restore saved string
3547 */
dacbde09 3548 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3549 NUMA_ZONELIST_ORDER_LEN);
3550 user_zonelist_order = oldval;
4eaf3f64
HL
3551 } else if (oldval != user_zonelist_order) {
3552 mutex_lock(&zonelists_mutex);
9adb62a5 3553 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3554 mutex_unlock(&zonelists_mutex);
3555 }
f0c0b2b8 3556 }
443c6f14
AK
3557out:
3558 mutex_unlock(&zl_order_mutex);
3559 return ret;
f0c0b2b8
KH
3560}
3561
3562
62bc62a8 3563#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3564static int node_load[MAX_NUMNODES];
3565
1da177e4 3566/**
4dc3b16b 3567 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3568 * @node: node whose fallback list we're appending
3569 * @used_node_mask: nodemask_t of already used nodes
3570 *
3571 * We use a number of factors to determine which is the next node that should
3572 * appear on a given node's fallback list. The node should not have appeared
3573 * already in @node's fallback list, and it should be the next closest node
3574 * according to the distance array (which contains arbitrary distance values
3575 * from each node to each node in the system), and should also prefer nodes
3576 * with no CPUs, since presumably they'll have very little allocation pressure
3577 * on them otherwise.
3578 * It returns -1 if no node is found.
3579 */
f0c0b2b8 3580static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3581{
4cf808eb 3582 int n, val;
1da177e4 3583 int min_val = INT_MAX;
00ef2d2f 3584 int best_node = NUMA_NO_NODE;
a70f7302 3585 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3586
4cf808eb
LT
3587 /* Use the local node if we haven't already */
3588 if (!node_isset(node, *used_node_mask)) {
3589 node_set(node, *used_node_mask);
3590 return node;
3591 }
1da177e4 3592
4b0ef1fe 3593 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3594
3595 /* Don't want a node to appear more than once */
3596 if (node_isset(n, *used_node_mask))
3597 continue;
3598
1da177e4
LT
3599 /* Use the distance array to find the distance */
3600 val = node_distance(node, n);
3601
4cf808eb
LT
3602 /* Penalize nodes under us ("prefer the next node") */
3603 val += (n < node);
3604
1da177e4 3605 /* Give preference to headless and unused nodes */
a70f7302
RR
3606 tmp = cpumask_of_node(n);
3607 if (!cpumask_empty(tmp))
1da177e4
LT
3608 val += PENALTY_FOR_NODE_WITH_CPUS;
3609
3610 /* Slight preference for less loaded node */
3611 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3612 val += node_load[n];
3613
3614 if (val < min_val) {
3615 min_val = val;
3616 best_node = n;
3617 }
3618 }
3619
3620 if (best_node >= 0)
3621 node_set(best_node, *used_node_mask);
3622
3623 return best_node;
3624}
3625
f0c0b2b8
KH
3626
3627/*
3628 * Build zonelists ordered by node and zones within node.
3629 * This results in maximum locality--normal zone overflows into local
3630 * DMA zone, if any--but risks exhausting DMA zone.
3631 */
3632static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3633{
f0c0b2b8 3634 int j;
1da177e4 3635 struct zonelist *zonelist;
f0c0b2b8 3636
54a6eb5c 3637 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3638 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3639 ;
bc732f1d 3640 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3641 zonelist->_zonerefs[j].zone = NULL;
3642 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3643}
3644
523b9458
CL
3645/*
3646 * Build gfp_thisnode zonelists
3647 */
3648static void build_thisnode_zonelists(pg_data_t *pgdat)
3649{
523b9458
CL
3650 int j;
3651 struct zonelist *zonelist;
3652
54a6eb5c 3653 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3654 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3655 zonelist->_zonerefs[j].zone = NULL;
3656 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3657}
3658
f0c0b2b8
KH
3659/*
3660 * Build zonelists ordered by zone and nodes within zones.
3661 * This results in conserving DMA zone[s] until all Normal memory is
3662 * exhausted, but results in overflowing to remote node while memory
3663 * may still exist in local DMA zone.
3664 */
3665static int node_order[MAX_NUMNODES];
3666
3667static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3668{
f0c0b2b8
KH
3669 int pos, j, node;
3670 int zone_type; /* needs to be signed */
3671 struct zone *z;
3672 struct zonelist *zonelist;
3673
54a6eb5c
MG
3674 zonelist = &pgdat->node_zonelists[0];
3675 pos = 0;
3676 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3677 for (j = 0; j < nr_nodes; j++) {
3678 node = node_order[j];
3679 z = &NODE_DATA(node)->node_zones[zone_type];
3680 if (populated_zone(z)) {
dd1a239f
MG
3681 zoneref_set_zone(z,
3682 &zonelist->_zonerefs[pos++]);
54a6eb5c 3683 check_highest_zone(zone_type);
f0c0b2b8
KH
3684 }
3685 }
f0c0b2b8 3686 }
dd1a239f
MG
3687 zonelist->_zonerefs[pos].zone = NULL;
3688 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3689}
3690
3193913c
MG
3691#if defined(CONFIG_64BIT)
3692/*
3693 * Devices that require DMA32/DMA are relatively rare and do not justify a
3694 * penalty to every machine in case the specialised case applies. Default
3695 * to Node-ordering on 64-bit NUMA machines
3696 */
3697static int default_zonelist_order(void)
3698{
3699 return ZONELIST_ORDER_NODE;
3700}
3701#else
3702/*
3703 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3704 * by the kernel. If processes running on node 0 deplete the low memory zone
3705 * then reclaim will occur more frequency increasing stalls and potentially
3706 * be easier to OOM if a large percentage of the zone is under writeback or
3707 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3708 * Hence, default to zone ordering on 32-bit.
3709 */
f0c0b2b8
KH
3710static int default_zonelist_order(void)
3711{
f0c0b2b8
KH
3712 return ZONELIST_ORDER_ZONE;
3713}
3193913c 3714#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3715
3716static void set_zonelist_order(void)
3717{
3718 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3719 current_zonelist_order = default_zonelist_order();
3720 else
3721 current_zonelist_order = user_zonelist_order;
3722}
3723
3724static void build_zonelists(pg_data_t *pgdat)
3725{
3726 int j, node, load;
3727 enum zone_type i;
1da177e4 3728 nodemask_t used_mask;
f0c0b2b8
KH
3729 int local_node, prev_node;
3730 struct zonelist *zonelist;
3731 int order = current_zonelist_order;
1da177e4
LT
3732
3733 /* initialize zonelists */
523b9458 3734 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3735 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3736 zonelist->_zonerefs[0].zone = NULL;
3737 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3738 }
3739
3740 /* NUMA-aware ordering of nodes */
3741 local_node = pgdat->node_id;
62bc62a8 3742 load = nr_online_nodes;
1da177e4
LT
3743 prev_node = local_node;
3744 nodes_clear(used_mask);
f0c0b2b8 3745
f0c0b2b8
KH
3746 memset(node_order, 0, sizeof(node_order));
3747 j = 0;
3748
1da177e4
LT
3749 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3750 /*
3751 * We don't want to pressure a particular node.
3752 * So adding penalty to the first node in same
3753 * distance group to make it round-robin.
3754 */
957f822a
DR
3755 if (node_distance(local_node, node) !=
3756 node_distance(local_node, prev_node))
f0c0b2b8
KH
3757 node_load[node] = load;
3758
1da177e4
LT
3759 prev_node = node;
3760 load--;
f0c0b2b8
KH
3761 if (order == ZONELIST_ORDER_NODE)
3762 build_zonelists_in_node_order(pgdat, node);
3763 else
3764 node_order[j++] = node; /* remember order */
3765 }
1da177e4 3766
f0c0b2b8
KH
3767 if (order == ZONELIST_ORDER_ZONE) {
3768 /* calculate node order -- i.e., DMA last! */
3769 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3770 }
523b9458
CL
3771
3772 build_thisnode_zonelists(pgdat);
1da177e4
LT
3773}
3774
9276b1bc 3775/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3776static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3777{
54a6eb5c
MG
3778 struct zonelist *zonelist;
3779 struct zonelist_cache *zlc;
dd1a239f 3780 struct zoneref *z;
9276b1bc 3781
54a6eb5c
MG
3782 zonelist = &pgdat->node_zonelists[0];
3783 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3784 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3785 for (z = zonelist->_zonerefs; z->zone; z++)
3786 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3787}
3788
7aac7898
LS
3789#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3790/*
3791 * Return node id of node used for "local" allocations.
3792 * I.e., first node id of first zone in arg node's generic zonelist.
3793 * Used for initializing percpu 'numa_mem', which is used primarily
3794 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3795 */
3796int local_memory_node(int node)
3797{
3798 struct zone *zone;
3799
3800 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3801 gfp_zone(GFP_KERNEL),
3802 NULL,
3803 &zone);
3804 return zone->node;
3805}
3806#endif
f0c0b2b8 3807
1da177e4
LT
3808#else /* CONFIG_NUMA */
3809
f0c0b2b8
KH
3810static void set_zonelist_order(void)
3811{
3812 current_zonelist_order = ZONELIST_ORDER_ZONE;
3813}
3814
3815static void build_zonelists(pg_data_t *pgdat)
1da177e4 3816{
19655d34 3817 int node, local_node;
54a6eb5c
MG
3818 enum zone_type j;
3819 struct zonelist *zonelist;
1da177e4
LT
3820
3821 local_node = pgdat->node_id;
1da177e4 3822
54a6eb5c 3823 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3824 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3825
54a6eb5c
MG
3826 /*
3827 * Now we build the zonelist so that it contains the zones
3828 * of all the other nodes.
3829 * We don't want to pressure a particular node, so when
3830 * building the zones for node N, we make sure that the
3831 * zones coming right after the local ones are those from
3832 * node N+1 (modulo N)
3833 */
3834 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3835 if (!node_online(node))
3836 continue;
bc732f1d 3837 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3838 }
54a6eb5c
MG
3839 for (node = 0; node < local_node; node++) {
3840 if (!node_online(node))
3841 continue;
bc732f1d 3842 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3843 }
3844
dd1a239f
MG
3845 zonelist->_zonerefs[j].zone = NULL;
3846 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3847}
3848
9276b1bc 3849/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3850static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3851{
54a6eb5c 3852 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3853}
3854
1da177e4
LT
3855#endif /* CONFIG_NUMA */
3856
99dcc3e5
CL
3857/*
3858 * Boot pageset table. One per cpu which is going to be used for all
3859 * zones and all nodes. The parameters will be set in such a way
3860 * that an item put on a list will immediately be handed over to
3861 * the buddy list. This is safe since pageset manipulation is done
3862 * with interrupts disabled.
3863 *
3864 * The boot_pagesets must be kept even after bootup is complete for
3865 * unused processors and/or zones. They do play a role for bootstrapping
3866 * hotplugged processors.
3867 *
3868 * zoneinfo_show() and maybe other functions do
3869 * not check if the processor is online before following the pageset pointer.
3870 * Other parts of the kernel may not check if the zone is available.
3871 */
3872static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3873static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3874static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3875
4eaf3f64
HL
3876/*
3877 * Global mutex to protect against size modification of zonelists
3878 * as well as to serialize pageset setup for the new populated zone.
3879 */
3880DEFINE_MUTEX(zonelists_mutex);
3881
9b1a4d38 3882/* return values int ....just for stop_machine() */
4ed7e022 3883static int __build_all_zonelists(void *data)
1da177e4 3884{
6811378e 3885 int nid;
99dcc3e5 3886 int cpu;
9adb62a5 3887 pg_data_t *self = data;
9276b1bc 3888
7f9cfb31
BL
3889#ifdef CONFIG_NUMA
3890 memset(node_load, 0, sizeof(node_load));
3891#endif
9adb62a5
JL
3892
3893 if (self && !node_online(self->node_id)) {
3894 build_zonelists(self);
3895 build_zonelist_cache(self);
3896 }
3897
9276b1bc 3898 for_each_online_node(nid) {
7ea1530a
CL
3899 pg_data_t *pgdat = NODE_DATA(nid);
3900
3901 build_zonelists(pgdat);
3902 build_zonelist_cache(pgdat);
9276b1bc 3903 }
99dcc3e5
CL
3904
3905 /*
3906 * Initialize the boot_pagesets that are going to be used
3907 * for bootstrapping processors. The real pagesets for
3908 * each zone will be allocated later when the per cpu
3909 * allocator is available.
3910 *
3911 * boot_pagesets are used also for bootstrapping offline
3912 * cpus if the system is already booted because the pagesets
3913 * are needed to initialize allocators on a specific cpu too.
3914 * F.e. the percpu allocator needs the page allocator which
3915 * needs the percpu allocator in order to allocate its pagesets
3916 * (a chicken-egg dilemma).
3917 */
7aac7898 3918 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3919 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3920
7aac7898
LS
3921#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3922 /*
3923 * We now know the "local memory node" for each node--
3924 * i.e., the node of the first zone in the generic zonelist.
3925 * Set up numa_mem percpu variable for on-line cpus. During
3926 * boot, only the boot cpu should be on-line; we'll init the
3927 * secondary cpus' numa_mem as they come on-line. During
3928 * node/memory hotplug, we'll fixup all on-line cpus.
3929 */
3930 if (cpu_online(cpu))
3931 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3932#endif
3933 }
3934
6811378e
YG
3935 return 0;
3936}
3937
4eaf3f64
HL
3938/*
3939 * Called with zonelists_mutex held always
3940 * unless system_state == SYSTEM_BOOTING.
3941 */
9adb62a5 3942void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3943{
f0c0b2b8
KH
3944 set_zonelist_order();
3945
6811378e 3946 if (system_state == SYSTEM_BOOTING) {
423b41d7 3947 __build_all_zonelists(NULL);
68ad8df4 3948 mminit_verify_zonelist();
6811378e
YG
3949 cpuset_init_current_mems_allowed();
3950 } else {
e9959f0f 3951#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3952 if (zone)
3953 setup_zone_pageset(zone);
e9959f0f 3954#endif
dd1895e2
CS
3955 /* we have to stop all cpus to guarantee there is no user
3956 of zonelist */
9adb62a5 3957 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3958 /* cpuset refresh routine should be here */
3959 }
bd1e22b8 3960 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3961 /*
3962 * Disable grouping by mobility if the number of pages in the
3963 * system is too low to allow the mechanism to work. It would be
3964 * more accurate, but expensive to check per-zone. This check is
3965 * made on memory-hotadd so a system can start with mobility
3966 * disabled and enable it later
3967 */
d9c23400 3968 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3969 page_group_by_mobility_disabled = 1;
3970 else
3971 page_group_by_mobility_disabled = 0;
3972
f88dfff5 3973 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 3974 "Total pages: %ld\n",
62bc62a8 3975 nr_online_nodes,
f0c0b2b8 3976 zonelist_order_name[current_zonelist_order],
9ef9acb0 3977 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3978 vm_total_pages);
3979#ifdef CONFIG_NUMA
f88dfff5 3980 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 3981#endif
1da177e4
LT
3982}
3983
3984/*
3985 * Helper functions to size the waitqueue hash table.
3986 * Essentially these want to choose hash table sizes sufficiently
3987 * large so that collisions trying to wait on pages are rare.
3988 * But in fact, the number of active page waitqueues on typical
3989 * systems is ridiculously low, less than 200. So this is even
3990 * conservative, even though it seems large.
3991 *
3992 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3993 * waitqueues, i.e. the size of the waitq table given the number of pages.
3994 */
3995#define PAGES_PER_WAITQUEUE 256
3996
cca448fe 3997#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3998static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3999{
4000 unsigned long size = 1;
4001
4002 pages /= PAGES_PER_WAITQUEUE;
4003
4004 while (size < pages)
4005 size <<= 1;
4006
4007 /*
4008 * Once we have dozens or even hundreds of threads sleeping
4009 * on IO we've got bigger problems than wait queue collision.
4010 * Limit the size of the wait table to a reasonable size.
4011 */
4012 size = min(size, 4096UL);
4013
4014 return max(size, 4UL);
4015}
cca448fe
YG
4016#else
4017/*
4018 * A zone's size might be changed by hot-add, so it is not possible to determine
4019 * a suitable size for its wait_table. So we use the maximum size now.
4020 *
4021 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4022 *
4023 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4024 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4025 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4026 *
4027 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4028 * or more by the traditional way. (See above). It equals:
4029 *
4030 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4031 * ia64(16K page size) : = ( 8G + 4M)byte.
4032 * powerpc (64K page size) : = (32G +16M)byte.
4033 */
4034static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4035{
4036 return 4096UL;
4037}
4038#endif
1da177e4
LT
4039
4040/*
4041 * This is an integer logarithm so that shifts can be used later
4042 * to extract the more random high bits from the multiplicative
4043 * hash function before the remainder is taken.
4044 */
4045static inline unsigned long wait_table_bits(unsigned long size)
4046{
4047 return ffz(~size);
4048}
4049
6d3163ce
AH
4050/*
4051 * Check if a pageblock contains reserved pages
4052 */
4053static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4054{
4055 unsigned long pfn;
4056
4057 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4058 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4059 return 1;
4060 }
4061 return 0;
4062}
4063
56fd56b8 4064/*
d9c23400 4065 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4066 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4067 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4068 * higher will lead to a bigger reserve which will get freed as contiguous
4069 * blocks as reclaim kicks in
4070 */
4071static void setup_zone_migrate_reserve(struct zone *zone)
4072{
6d3163ce 4073 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4074 struct page *page;
78986a67
MG
4075 unsigned long block_migratetype;
4076 int reserve;
943dca1a 4077 int old_reserve;
56fd56b8 4078
d0215638
MH
4079 /*
4080 * Get the start pfn, end pfn and the number of blocks to reserve
4081 * We have to be careful to be aligned to pageblock_nr_pages to
4082 * make sure that we always check pfn_valid for the first page in
4083 * the block.
4084 */
56fd56b8 4085 start_pfn = zone->zone_start_pfn;
108bcc96 4086 end_pfn = zone_end_pfn(zone);
d0215638 4087 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4088 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4089 pageblock_order;
56fd56b8 4090
78986a67
MG
4091 /*
4092 * Reserve blocks are generally in place to help high-order atomic
4093 * allocations that are short-lived. A min_free_kbytes value that
4094 * would result in more than 2 reserve blocks for atomic allocations
4095 * is assumed to be in place to help anti-fragmentation for the
4096 * future allocation of hugepages at runtime.
4097 */
4098 reserve = min(2, reserve);
943dca1a
YI
4099 old_reserve = zone->nr_migrate_reserve_block;
4100
4101 /* When memory hot-add, we almost always need to do nothing */
4102 if (reserve == old_reserve)
4103 return;
4104 zone->nr_migrate_reserve_block = reserve;
78986a67 4105
d9c23400 4106 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4107 if (!pfn_valid(pfn))
4108 continue;
4109 page = pfn_to_page(pfn);
4110
344c790e
AL
4111 /* Watch out for overlapping nodes */
4112 if (page_to_nid(page) != zone_to_nid(zone))
4113 continue;
4114
56fd56b8
MG
4115 block_migratetype = get_pageblock_migratetype(page);
4116
938929f1
MG
4117 /* Only test what is necessary when the reserves are not met */
4118 if (reserve > 0) {
4119 /*
4120 * Blocks with reserved pages will never free, skip
4121 * them.
4122 */
4123 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4124 if (pageblock_is_reserved(pfn, block_end_pfn))
4125 continue;
56fd56b8 4126
938929f1
MG
4127 /* If this block is reserved, account for it */
4128 if (block_migratetype == MIGRATE_RESERVE) {
4129 reserve--;
4130 continue;
4131 }
4132
4133 /* Suitable for reserving if this block is movable */
4134 if (block_migratetype == MIGRATE_MOVABLE) {
4135 set_pageblock_migratetype(page,
4136 MIGRATE_RESERVE);
4137 move_freepages_block(zone, page,
4138 MIGRATE_RESERVE);
4139 reserve--;
4140 continue;
4141 }
943dca1a
YI
4142 } else if (!old_reserve) {
4143 /*
4144 * At boot time we don't need to scan the whole zone
4145 * for turning off MIGRATE_RESERVE.
4146 */
4147 break;
56fd56b8
MG
4148 }
4149
4150 /*
4151 * If the reserve is met and this is a previous reserved block,
4152 * take it back
4153 */
4154 if (block_migratetype == MIGRATE_RESERVE) {
4155 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4156 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4157 }
4158 }
4159}
ac0e5b7a 4160
1da177e4
LT
4161/*
4162 * Initially all pages are reserved - free ones are freed
4163 * up by free_all_bootmem() once the early boot process is
4164 * done. Non-atomic initialization, single-pass.
4165 */
c09b4240 4166void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4167 unsigned long start_pfn, enum memmap_context context)
1da177e4 4168{
1da177e4 4169 struct page *page;
29751f69
AW
4170 unsigned long end_pfn = start_pfn + size;
4171 unsigned long pfn;
86051ca5 4172 struct zone *z;
1da177e4 4173
22b31eec
HD
4174 if (highest_memmap_pfn < end_pfn - 1)
4175 highest_memmap_pfn = end_pfn - 1;
4176
86051ca5 4177 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4178 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4179 /*
4180 * There can be holes in boot-time mem_map[]s
4181 * handed to this function. They do not
4182 * exist on hotplugged memory.
4183 */
4184 if (context == MEMMAP_EARLY) {
4185 if (!early_pfn_valid(pfn))
4186 continue;
4187 if (!early_pfn_in_nid(pfn, nid))
4188 continue;
4189 }
d41dee36
AW
4190 page = pfn_to_page(pfn);
4191 set_page_links(page, zone, nid, pfn);
708614e6 4192 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4193 init_page_count(page);
22b751c3 4194 page_mapcount_reset(page);
90572890 4195 page_cpupid_reset_last(page);
1da177e4 4196 SetPageReserved(page);
b2a0ac88
MG
4197 /*
4198 * Mark the block movable so that blocks are reserved for
4199 * movable at startup. This will force kernel allocations
4200 * to reserve their blocks rather than leaking throughout
4201 * the address space during boot when many long-lived
56fd56b8
MG
4202 * kernel allocations are made. Later some blocks near
4203 * the start are marked MIGRATE_RESERVE by
4204 * setup_zone_migrate_reserve()
86051ca5
KH
4205 *
4206 * bitmap is created for zone's valid pfn range. but memmap
4207 * can be created for invalid pages (for alignment)
4208 * check here not to call set_pageblock_migratetype() against
4209 * pfn out of zone.
b2a0ac88 4210 */
86051ca5 4211 if ((z->zone_start_pfn <= pfn)
108bcc96 4212 && (pfn < zone_end_pfn(z))
86051ca5 4213 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4214 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4215
1da177e4
LT
4216 INIT_LIST_HEAD(&page->lru);
4217#ifdef WANT_PAGE_VIRTUAL
4218 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4219 if (!is_highmem_idx(zone))
3212c6be 4220 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4221#endif
1da177e4
LT
4222 }
4223}
4224
1e548deb 4225static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4226{
7aeb09f9 4227 unsigned int order, t;
b2a0ac88
MG
4228 for_each_migratetype_order(order, t) {
4229 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4230 zone->free_area[order].nr_free = 0;
4231 }
4232}
4233
4234#ifndef __HAVE_ARCH_MEMMAP_INIT
4235#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4236 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4237#endif
4238
7cd2b0a3 4239static int zone_batchsize(struct zone *zone)
e7c8d5c9 4240{
3a6be87f 4241#ifdef CONFIG_MMU
e7c8d5c9
CL
4242 int batch;
4243
4244 /*
4245 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4246 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4247 *
4248 * OK, so we don't know how big the cache is. So guess.
4249 */
b40da049 4250 batch = zone->managed_pages / 1024;
ba56e91c
SR
4251 if (batch * PAGE_SIZE > 512 * 1024)
4252 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4253 batch /= 4; /* We effectively *= 4 below */
4254 if (batch < 1)
4255 batch = 1;
4256
4257 /*
0ceaacc9
NP
4258 * Clamp the batch to a 2^n - 1 value. Having a power
4259 * of 2 value was found to be more likely to have
4260 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4261 *
0ceaacc9
NP
4262 * For example if 2 tasks are alternately allocating
4263 * batches of pages, one task can end up with a lot
4264 * of pages of one half of the possible page colors
4265 * and the other with pages of the other colors.
e7c8d5c9 4266 */
9155203a 4267 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4268
e7c8d5c9 4269 return batch;
3a6be87f
DH
4270
4271#else
4272 /* The deferral and batching of frees should be suppressed under NOMMU
4273 * conditions.
4274 *
4275 * The problem is that NOMMU needs to be able to allocate large chunks
4276 * of contiguous memory as there's no hardware page translation to
4277 * assemble apparent contiguous memory from discontiguous pages.
4278 *
4279 * Queueing large contiguous runs of pages for batching, however,
4280 * causes the pages to actually be freed in smaller chunks. As there
4281 * can be a significant delay between the individual batches being
4282 * recycled, this leads to the once large chunks of space being
4283 * fragmented and becoming unavailable for high-order allocations.
4284 */
4285 return 0;
4286#endif
e7c8d5c9
CL
4287}
4288
8d7a8fa9
CS
4289/*
4290 * pcp->high and pcp->batch values are related and dependent on one another:
4291 * ->batch must never be higher then ->high.
4292 * The following function updates them in a safe manner without read side
4293 * locking.
4294 *
4295 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4296 * those fields changing asynchronously (acording the the above rule).
4297 *
4298 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4299 * outside of boot time (or some other assurance that no concurrent updaters
4300 * exist).
4301 */
4302static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4303 unsigned long batch)
4304{
4305 /* start with a fail safe value for batch */
4306 pcp->batch = 1;
4307 smp_wmb();
4308
4309 /* Update high, then batch, in order */
4310 pcp->high = high;
4311 smp_wmb();
4312
4313 pcp->batch = batch;
4314}
4315
3664033c 4316/* a companion to pageset_set_high() */
4008bab7
CS
4317static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4318{
8d7a8fa9 4319 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4320}
4321
88c90dbc 4322static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4323{
4324 struct per_cpu_pages *pcp;
5f8dcc21 4325 int migratetype;
2caaad41 4326
1c6fe946
MD
4327 memset(p, 0, sizeof(*p));
4328
3dfa5721 4329 pcp = &p->pcp;
2caaad41 4330 pcp->count = 0;
5f8dcc21
MG
4331 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4332 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4333}
4334
88c90dbc
CS
4335static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4336{
4337 pageset_init(p);
4338 pageset_set_batch(p, batch);
4339}
4340
8ad4b1fb 4341/*
3664033c 4342 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4343 * to the value high for the pageset p.
4344 */
3664033c 4345static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4346 unsigned long high)
4347{
8d7a8fa9
CS
4348 unsigned long batch = max(1UL, high / 4);
4349 if ((high / 4) > (PAGE_SHIFT * 8))
4350 batch = PAGE_SHIFT * 8;
8ad4b1fb 4351
8d7a8fa9 4352 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4353}
4354
7cd2b0a3
DR
4355static void pageset_set_high_and_batch(struct zone *zone,
4356 struct per_cpu_pageset *pcp)
56cef2b8 4357{
56cef2b8 4358 if (percpu_pagelist_fraction)
3664033c 4359 pageset_set_high(pcp,
56cef2b8
CS
4360 (zone->managed_pages /
4361 percpu_pagelist_fraction));
4362 else
4363 pageset_set_batch(pcp, zone_batchsize(zone));
4364}
4365
169f6c19
CS
4366static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4367{
4368 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4369
4370 pageset_init(pcp);
4371 pageset_set_high_and_batch(zone, pcp);
4372}
4373
4ed7e022 4374static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4375{
4376 int cpu;
319774e2 4377 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4378 for_each_possible_cpu(cpu)
4379 zone_pageset_init(zone, cpu);
319774e2
WF
4380}
4381
2caaad41 4382/*
99dcc3e5
CL
4383 * Allocate per cpu pagesets and initialize them.
4384 * Before this call only boot pagesets were available.
e7c8d5c9 4385 */
99dcc3e5 4386void __init setup_per_cpu_pageset(void)
e7c8d5c9 4387{
99dcc3e5 4388 struct zone *zone;
e7c8d5c9 4389
319774e2
WF
4390 for_each_populated_zone(zone)
4391 setup_zone_pageset(zone);
e7c8d5c9
CL
4392}
4393
577a32f6 4394static noinline __init_refok
cca448fe 4395int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4396{
4397 int i;
cca448fe 4398 size_t alloc_size;
ed8ece2e
DH
4399
4400 /*
4401 * The per-page waitqueue mechanism uses hashed waitqueues
4402 * per zone.
4403 */
02b694de
YG
4404 zone->wait_table_hash_nr_entries =
4405 wait_table_hash_nr_entries(zone_size_pages);
4406 zone->wait_table_bits =
4407 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4408 alloc_size = zone->wait_table_hash_nr_entries
4409 * sizeof(wait_queue_head_t);
4410
cd94b9db 4411 if (!slab_is_available()) {
cca448fe 4412 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4413 memblock_virt_alloc_node_nopanic(
4414 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4415 } else {
4416 /*
4417 * This case means that a zone whose size was 0 gets new memory
4418 * via memory hot-add.
4419 * But it may be the case that a new node was hot-added. In
4420 * this case vmalloc() will not be able to use this new node's
4421 * memory - this wait_table must be initialized to use this new
4422 * node itself as well.
4423 * To use this new node's memory, further consideration will be
4424 * necessary.
4425 */
8691f3a7 4426 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4427 }
4428 if (!zone->wait_table)
4429 return -ENOMEM;
ed8ece2e 4430
b8af2941 4431 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4432 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4433
4434 return 0;
ed8ece2e
DH
4435}
4436
c09b4240 4437static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4438{
99dcc3e5
CL
4439 /*
4440 * per cpu subsystem is not up at this point. The following code
4441 * relies on the ability of the linker to provide the
4442 * offset of a (static) per cpu variable into the per cpu area.
4443 */
4444 zone->pageset = &boot_pageset;
ed8ece2e 4445
b38a8725 4446 if (populated_zone(zone))
99dcc3e5
CL
4447 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4448 zone->name, zone->present_pages,
4449 zone_batchsize(zone));
ed8ece2e
DH
4450}
4451
4ed7e022 4452int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4453 unsigned long zone_start_pfn,
a2f3aa02
DH
4454 unsigned long size,
4455 enum memmap_context context)
ed8ece2e
DH
4456{
4457 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4458 int ret;
4459 ret = zone_wait_table_init(zone, size);
4460 if (ret)
4461 return ret;
ed8ece2e
DH
4462 pgdat->nr_zones = zone_idx(zone) + 1;
4463
ed8ece2e
DH
4464 zone->zone_start_pfn = zone_start_pfn;
4465
708614e6
MG
4466 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4467 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4468 pgdat->node_id,
4469 (unsigned long)zone_idx(zone),
4470 zone_start_pfn, (zone_start_pfn + size));
4471
1e548deb 4472 zone_init_free_lists(zone);
718127cc
YG
4473
4474 return 0;
ed8ece2e
DH
4475}
4476
0ee332c1 4477#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4478#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4479/*
4480 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4481 */
f2dbcfa7 4482int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4483{
c13291a5 4484 unsigned long start_pfn, end_pfn;
e76b63f8 4485 int nid;
7c243c71
RA
4486 /*
4487 * NOTE: The following SMP-unsafe globals are only used early in boot
4488 * when the kernel is running single-threaded.
4489 */
4490 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4491 static int __meminitdata last_nid;
4492
4493 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4494 return last_nid;
c713216d 4495
e76b63f8
YL
4496 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4497 if (nid != -1) {
4498 last_start_pfn = start_pfn;
4499 last_end_pfn = end_pfn;
4500 last_nid = nid;
4501 }
4502
4503 return nid;
c713216d
MG
4504}
4505#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4506
f2dbcfa7
KH
4507int __meminit early_pfn_to_nid(unsigned long pfn)
4508{
cc2559bc
KH
4509 int nid;
4510
4511 nid = __early_pfn_to_nid(pfn);
4512 if (nid >= 0)
4513 return nid;
4514 /* just returns 0 */
4515 return 0;
f2dbcfa7
KH
4516}
4517
cc2559bc
KH
4518#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4519bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4520{
4521 int nid;
4522
4523 nid = __early_pfn_to_nid(pfn);
4524 if (nid >= 0 && nid != node)
4525 return false;
4526 return true;
4527}
4528#endif
f2dbcfa7 4529
c713216d 4530/**
6782832e 4531 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4532 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4533 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4534 *
7d018176
ZZ
4535 * If an architecture guarantees that all ranges registered contain no holes
4536 * and may be freed, this this function may be used instead of calling
4537 * memblock_free_early_nid() manually.
c713216d 4538 */
c13291a5 4539void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4540{
c13291a5
TH
4541 unsigned long start_pfn, end_pfn;
4542 int i, this_nid;
edbe7d23 4543
c13291a5
TH
4544 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4545 start_pfn = min(start_pfn, max_low_pfn);
4546 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4547
c13291a5 4548 if (start_pfn < end_pfn)
6782832e
SS
4549 memblock_free_early_nid(PFN_PHYS(start_pfn),
4550 (end_pfn - start_pfn) << PAGE_SHIFT,
4551 this_nid);
edbe7d23 4552 }
edbe7d23 4553}
edbe7d23 4554
c713216d
MG
4555/**
4556 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4557 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4558 *
7d018176
ZZ
4559 * If an architecture guarantees that all ranges registered contain no holes and may
4560 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4561 */
4562void __init sparse_memory_present_with_active_regions(int nid)
4563{
c13291a5
TH
4564 unsigned long start_pfn, end_pfn;
4565 int i, this_nid;
c713216d 4566
c13291a5
TH
4567 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4568 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4569}
4570
4571/**
4572 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4573 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4574 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4575 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4576 *
4577 * It returns the start and end page frame of a node based on information
7d018176 4578 * provided by memblock_set_node(). If called for a node
c713216d 4579 * with no available memory, a warning is printed and the start and end
88ca3b94 4580 * PFNs will be 0.
c713216d 4581 */
a3142c8e 4582void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4583 unsigned long *start_pfn, unsigned long *end_pfn)
4584{
c13291a5 4585 unsigned long this_start_pfn, this_end_pfn;
c713216d 4586 int i;
c13291a5 4587
c713216d
MG
4588 *start_pfn = -1UL;
4589 *end_pfn = 0;
4590
c13291a5
TH
4591 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4592 *start_pfn = min(*start_pfn, this_start_pfn);
4593 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4594 }
4595
633c0666 4596 if (*start_pfn == -1UL)
c713216d 4597 *start_pfn = 0;
c713216d
MG
4598}
4599
2a1e274a
MG
4600/*
4601 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4602 * assumption is made that zones within a node are ordered in monotonic
4603 * increasing memory addresses so that the "highest" populated zone is used
4604 */
b69a7288 4605static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4606{
4607 int zone_index;
4608 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4609 if (zone_index == ZONE_MOVABLE)
4610 continue;
4611
4612 if (arch_zone_highest_possible_pfn[zone_index] >
4613 arch_zone_lowest_possible_pfn[zone_index])
4614 break;
4615 }
4616
4617 VM_BUG_ON(zone_index == -1);
4618 movable_zone = zone_index;
4619}
4620
4621/*
4622 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4623 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4624 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4625 * in each node depending on the size of each node and how evenly kernelcore
4626 * is distributed. This helper function adjusts the zone ranges
4627 * provided by the architecture for a given node by using the end of the
4628 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4629 * zones within a node are in order of monotonic increases memory addresses
4630 */
b69a7288 4631static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4632 unsigned long zone_type,
4633 unsigned long node_start_pfn,
4634 unsigned long node_end_pfn,
4635 unsigned long *zone_start_pfn,
4636 unsigned long *zone_end_pfn)
4637{
4638 /* Only adjust if ZONE_MOVABLE is on this node */
4639 if (zone_movable_pfn[nid]) {
4640 /* Size ZONE_MOVABLE */
4641 if (zone_type == ZONE_MOVABLE) {
4642 *zone_start_pfn = zone_movable_pfn[nid];
4643 *zone_end_pfn = min(node_end_pfn,
4644 arch_zone_highest_possible_pfn[movable_zone]);
4645
4646 /* Adjust for ZONE_MOVABLE starting within this range */
4647 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4648 *zone_end_pfn > zone_movable_pfn[nid]) {
4649 *zone_end_pfn = zone_movable_pfn[nid];
4650
4651 /* Check if this whole range is within ZONE_MOVABLE */
4652 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4653 *zone_start_pfn = *zone_end_pfn;
4654 }
4655}
4656
c713216d
MG
4657/*
4658 * Return the number of pages a zone spans in a node, including holes
4659 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4660 */
6ea6e688 4661static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4662 unsigned long zone_type,
7960aedd
ZY
4663 unsigned long node_start_pfn,
4664 unsigned long node_end_pfn,
c713216d
MG
4665 unsigned long *ignored)
4666{
c713216d
MG
4667 unsigned long zone_start_pfn, zone_end_pfn;
4668
7960aedd 4669 /* Get the start and end of the zone */
c713216d
MG
4670 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4671 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4672 adjust_zone_range_for_zone_movable(nid, zone_type,
4673 node_start_pfn, node_end_pfn,
4674 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4675
4676 /* Check that this node has pages within the zone's required range */
4677 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4678 return 0;
4679
4680 /* Move the zone boundaries inside the node if necessary */
4681 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4682 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4683
4684 /* Return the spanned pages */
4685 return zone_end_pfn - zone_start_pfn;
4686}
4687
4688/*
4689 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4690 * then all holes in the requested range will be accounted for.
c713216d 4691 */
32996250 4692unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4693 unsigned long range_start_pfn,
4694 unsigned long range_end_pfn)
4695{
96e907d1
TH
4696 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4697 unsigned long start_pfn, end_pfn;
4698 int i;
c713216d 4699
96e907d1
TH
4700 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4701 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4702 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4703 nr_absent -= end_pfn - start_pfn;
c713216d 4704 }
96e907d1 4705 return nr_absent;
c713216d
MG
4706}
4707
4708/**
4709 * absent_pages_in_range - Return number of page frames in holes within a range
4710 * @start_pfn: The start PFN to start searching for holes
4711 * @end_pfn: The end PFN to stop searching for holes
4712 *
88ca3b94 4713 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4714 */
4715unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4716 unsigned long end_pfn)
4717{
4718 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4719}
4720
4721/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4722static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4723 unsigned long zone_type,
7960aedd
ZY
4724 unsigned long node_start_pfn,
4725 unsigned long node_end_pfn,
c713216d
MG
4726 unsigned long *ignored)
4727{
96e907d1
TH
4728 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4729 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4730 unsigned long zone_start_pfn, zone_end_pfn;
4731
96e907d1
TH
4732 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4733 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4734
2a1e274a
MG
4735 adjust_zone_range_for_zone_movable(nid, zone_type,
4736 node_start_pfn, node_end_pfn,
4737 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4738 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4739}
0e0b864e 4740
0ee332c1 4741#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4742static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4743 unsigned long zone_type,
7960aedd
ZY
4744 unsigned long node_start_pfn,
4745 unsigned long node_end_pfn,
c713216d
MG
4746 unsigned long *zones_size)
4747{
4748 return zones_size[zone_type];
4749}
4750
6ea6e688 4751static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4752 unsigned long zone_type,
7960aedd
ZY
4753 unsigned long node_start_pfn,
4754 unsigned long node_end_pfn,
c713216d
MG
4755 unsigned long *zholes_size)
4756{
4757 if (!zholes_size)
4758 return 0;
4759
4760 return zholes_size[zone_type];
4761}
20e6926d 4762
0ee332c1 4763#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4764
a3142c8e 4765static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4766 unsigned long node_start_pfn,
4767 unsigned long node_end_pfn,
4768 unsigned long *zones_size,
4769 unsigned long *zholes_size)
c713216d
MG
4770{
4771 unsigned long realtotalpages, totalpages = 0;
4772 enum zone_type i;
4773
4774 for (i = 0; i < MAX_NR_ZONES; i++)
4775 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4776 node_start_pfn,
4777 node_end_pfn,
4778 zones_size);
c713216d
MG
4779 pgdat->node_spanned_pages = totalpages;
4780
4781 realtotalpages = totalpages;
4782 for (i = 0; i < MAX_NR_ZONES; i++)
4783 realtotalpages -=
4784 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4785 node_start_pfn, node_end_pfn,
4786 zholes_size);
c713216d
MG
4787 pgdat->node_present_pages = realtotalpages;
4788 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4789 realtotalpages);
4790}
4791
835c134e
MG
4792#ifndef CONFIG_SPARSEMEM
4793/*
4794 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4795 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4796 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4797 * round what is now in bits to nearest long in bits, then return it in
4798 * bytes.
4799 */
7c45512d 4800static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4801{
4802 unsigned long usemapsize;
4803
7c45512d 4804 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4805 usemapsize = roundup(zonesize, pageblock_nr_pages);
4806 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4807 usemapsize *= NR_PAGEBLOCK_BITS;
4808 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4809
4810 return usemapsize / 8;
4811}
4812
4813static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4814 struct zone *zone,
4815 unsigned long zone_start_pfn,
4816 unsigned long zonesize)
835c134e 4817{
7c45512d 4818 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4819 zone->pageblock_flags = NULL;
58a01a45 4820 if (usemapsize)
6782832e
SS
4821 zone->pageblock_flags =
4822 memblock_virt_alloc_node_nopanic(usemapsize,
4823 pgdat->node_id);
835c134e
MG
4824}
4825#else
7c45512d
LT
4826static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4827 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4828#endif /* CONFIG_SPARSEMEM */
4829
d9c23400 4830#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4831
d9c23400 4832/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4833void __paginginit set_pageblock_order(void)
d9c23400 4834{
955c1cd7
AM
4835 unsigned int order;
4836
d9c23400
MG
4837 /* Check that pageblock_nr_pages has not already been setup */
4838 if (pageblock_order)
4839 return;
4840
955c1cd7
AM
4841 if (HPAGE_SHIFT > PAGE_SHIFT)
4842 order = HUGETLB_PAGE_ORDER;
4843 else
4844 order = MAX_ORDER - 1;
4845
d9c23400
MG
4846 /*
4847 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4848 * This value may be variable depending on boot parameters on IA64 and
4849 * powerpc.
d9c23400
MG
4850 */
4851 pageblock_order = order;
4852}
4853#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4854
ba72cb8c
MG
4855/*
4856 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4857 * is unused as pageblock_order is set at compile-time. See
4858 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4859 * the kernel config
ba72cb8c 4860 */
15ca220e 4861void __paginginit set_pageblock_order(void)
ba72cb8c 4862{
ba72cb8c 4863}
d9c23400
MG
4864
4865#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4866
01cefaef
JL
4867static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4868 unsigned long present_pages)
4869{
4870 unsigned long pages = spanned_pages;
4871
4872 /*
4873 * Provide a more accurate estimation if there are holes within
4874 * the zone and SPARSEMEM is in use. If there are holes within the
4875 * zone, each populated memory region may cost us one or two extra
4876 * memmap pages due to alignment because memmap pages for each
4877 * populated regions may not naturally algined on page boundary.
4878 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4879 */
4880 if (spanned_pages > present_pages + (present_pages >> 4) &&
4881 IS_ENABLED(CONFIG_SPARSEMEM))
4882 pages = present_pages;
4883
4884 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4885}
4886
1da177e4
LT
4887/*
4888 * Set up the zone data structures:
4889 * - mark all pages reserved
4890 * - mark all memory queues empty
4891 * - clear the memory bitmaps
6527af5d
MK
4892 *
4893 * NOTE: pgdat should get zeroed by caller.
1da177e4 4894 */
b5a0e011 4895static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4896 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4897 unsigned long *zones_size, unsigned long *zholes_size)
4898{
2f1b6248 4899 enum zone_type j;
ed8ece2e 4900 int nid = pgdat->node_id;
1da177e4 4901 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4902 int ret;
1da177e4 4903
208d54e5 4904 pgdat_resize_init(pgdat);
8177a420
AA
4905#ifdef CONFIG_NUMA_BALANCING
4906 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4907 pgdat->numabalancing_migrate_nr_pages = 0;
4908 pgdat->numabalancing_migrate_next_window = jiffies;
4909#endif
1da177e4 4910 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4911 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 4912 pgdat_page_ext_init(pgdat);
5f63b720 4913
1da177e4
LT
4914 for (j = 0; j < MAX_NR_ZONES; j++) {
4915 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4916 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4917
7960aedd
ZY
4918 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4919 node_end_pfn, zones_size);
9feedc9d 4920 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4921 node_start_pfn,
4922 node_end_pfn,
c713216d 4923 zholes_size);
1da177e4 4924
0e0b864e 4925 /*
9feedc9d 4926 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4927 * is used by this zone for memmap. This affects the watermark
4928 * and per-cpu initialisations
4929 */
01cefaef 4930 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4931 if (freesize >= memmap_pages) {
4932 freesize -= memmap_pages;
5594c8c8
YL
4933 if (memmap_pages)
4934 printk(KERN_DEBUG
4935 " %s zone: %lu pages used for memmap\n",
4936 zone_names[j], memmap_pages);
0e0b864e
MG
4937 } else
4938 printk(KERN_WARNING
9feedc9d
JL
4939 " %s zone: %lu pages exceeds freesize %lu\n",
4940 zone_names[j], memmap_pages, freesize);
0e0b864e 4941
6267276f 4942 /* Account for reserved pages */
9feedc9d
JL
4943 if (j == 0 && freesize > dma_reserve) {
4944 freesize -= dma_reserve;
d903ef9f 4945 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4946 zone_names[0], dma_reserve);
0e0b864e
MG
4947 }
4948
98d2b0eb 4949 if (!is_highmem_idx(j))
9feedc9d 4950 nr_kernel_pages += freesize;
01cefaef
JL
4951 /* Charge for highmem memmap if there are enough kernel pages */
4952 else if (nr_kernel_pages > memmap_pages * 2)
4953 nr_kernel_pages -= memmap_pages;
9feedc9d 4954 nr_all_pages += freesize;
1da177e4
LT
4955
4956 zone->spanned_pages = size;
306f2e9e 4957 zone->present_pages = realsize;
9feedc9d
JL
4958 /*
4959 * Set an approximate value for lowmem here, it will be adjusted
4960 * when the bootmem allocator frees pages into the buddy system.
4961 * And all highmem pages will be managed by the buddy system.
4962 */
4963 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4964#ifdef CONFIG_NUMA
d5f541ed 4965 zone->node = nid;
9feedc9d 4966 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4967 / 100;
9feedc9d 4968 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4969#endif
1da177e4
LT
4970 zone->name = zone_names[j];
4971 spin_lock_init(&zone->lock);
4972 spin_lock_init(&zone->lru_lock);
bdc8cb98 4973 zone_seqlock_init(zone);
1da177e4 4974 zone->zone_pgdat = pgdat;
ed8ece2e 4975 zone_pcp_init(zone);
81c0a2bb
JW
4976
4977 /* For bootup, initialized properly in watermark setup */
4978 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4979
bea8c150 4980 lruvec_init(&zone->lruvec);
1da177e4
LT
4981 if (!size)
4982 continue;
4983
955c1cd7 4984 set_pageblock_order();
7c45512d 4985 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4986 ret = init_currently_empty_zone(zone, zone_start_pfn,
4987 size, MEMMAP_EARLY);
718127cc 4988 BUG_ON(ret);
76cdd58e 4989 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4990 zone_start_pfn += size;
1da177e4
LT
4991 }
4992}
4993
577a32f6 4994static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4995{
1da177e4
LT
4996 /* Skip empty nodes */
4997 if (!pgdat->node_spanned_pages)
4998 return;
4999
d41dee36 5000#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
5001 /* ia64 gets its own node_mem_map, before this, without bootmem */
5002 if (!pgdat->node_mem_map) {
e984bb43 5003 unsigned long size, start, end;
d41dee36
AW
5004 struct page *map;
5005
e984bb43
BP
5006 /*
5007 * The zone's endpoints aren't required to be MAX_ORDER
5008 * aligned but the node_mem_map endpoints must be in order
5009 * for the buddy allocator to function correctly.
5010 */
5011 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 5012 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5013 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5014 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5015 map = alloc_remap(pgdat->node_id, size);
5016 if (!map)
6782832e
SS
5017 map = memblock_virt_alloc_node_nopanic(size,
5018 pgdat->node_id);
e984bb43 5019 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5020 }
12d810c1 5021#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5022 /*
5023 * With no DISCONTIG, the global mem_map is just set as node 0's
5024 */
c713216d 5025 if (pgdat == NODE_DATA(0)) {
1da177e4 5026 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5027#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5028 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5029 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5030#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5031 }
1da177e4 5032#endif
d41dee36 5033#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5034}
5035
9109fb7b
JW
5036void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5037 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5038{
9109fb7b 5039 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5040 unsigned long start_pfn = 0;
5041 unsigned long end_pfn = 0;
9109fb7b 5042
88fdf75d 5043 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5044 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5045
1da177e4
LT
5046 pgdat->node_id = nid;
5047 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5048#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5049 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8b375f64
LC
5050 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
5051 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5052#endif
5053 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5054 zones_size, zholes_size);
1da177e4
LT
5055
5056 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5057#ifdef CONFIG_FLAT_NODE_MEM_MAP
5058 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5059 nid, (unsigned long)pgdat,
5060 (unsigned long)pgdat->node_mem_map);
5061#endif
1da177e4 5062
7960aedd
ZY
5063 free_area_init_core(pgdat, start_pfn, end_pfn,
5064 zones_size, zholes_size);
1da177e4
LT
5065}
5066
0ee332c1 5067#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5068
5069#if MAX_NUMNODES > 1
5070/*
5071 * Figure out the number of possible node ids.
5072 */
f9872caf 5073void __init setup_nr_node_ids(void)
418508c1
MS
5074{
5075 unsigned int node;
5076 unsigned int highest = 0;
5077
5078 for_each_node_mask(node, node_possible_map)
5079 highest = node;
5080 nr_node_ids = highest + 1;
5081}
418508c1
MS
5082#endif
5083
1e01979c
TH
5084/**
5085 * node_map_pfn_alignment - determine the maximum internode alignment
5086 *
5087 * This function should be called after node map is populated and sorted.
5088 * It calculates the maximum power of two alignment which can distinguish
5089 * all the nodes.
5090 *
5091 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5092 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5093 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5094 * shifted, 1GiB is enough and this function will indicate so.
5095 *
5096 * This is used to test whether pfn -> nid mapping of the chosen memory
5097 * model has fine enough granularity to avoid incorrect mapping for the
5098 * populated node map.
5099 *
5100 * Returns the determined alignment in pfn's. 0 if there is no alignment
5101 * requirement (single node).
5102 */
5103unsigned long __init node_map_pfn_alignment(void)
5104{
5105 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5106 unsigned long start, end, mask;
1e01979c 5107 int last_nid = -1;
c13291a5 5108 int i, nid;
1e01979c 5109
c13291a5 5110 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5111 if (!start || last_nid < 0 || last_nid == nid) {
5112 last_nid = nid;
5113 last_end = end;
5114 continue;
5115 }
5116
5117 /*
5118 * Start with a mask granular enough to pin-point to the
5119 * start pfn and tick off bits one-by-one until it becomes
5120 * too coarse to separate the current node from the last.
5121 */
5122 mask = ~((1 << __ffs(start)) - 1);
5123 while (mask && last_end <= (start & (mask << 1)))
5124 mask <<= 1;
5125
5126 /* accumulate all internode masks */
5127 accl_mask |= mask;
5128 }
5129
5130 /* convert mask to number of pages */
5131 return ~accl_mask + 1;
5132}
5133
a6af2bc3 5134/* Find the lowest pfn for a node */
b69a7288 5135static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5136{
a6af2bc3 5137 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5138 unsigned long start_pfn;
5139 int i;
1abbfb41 5140
c13291a5
TH
5141 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5142 min_pfn = min(min_pfn, start_pfn);
c713216d 5143
a6af2bc3
MG
5144 if (min_pfn == ULONG_MAX) {
5145 printk(KERN_WARNING
2bc0d261 5146 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5147 return 0;
5148 }
5149
5150 return min_pfn;
c713216d
MG
5151}
5152
5153/**
5154 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5155 *
5156 * It returns the minimum PFN based on information provided via
7d018176 5157 * memblock_set_node().
c713216d
MG
5158 */
5159unsigned long __init find_min_pfn_with_active_regions(void)
5160{
5161 return find_min_pfn_for_node(MAX_NUMNODES);
5162}
5163
37b07e41
LS
5164/*
5165 * early_calculate_totalpages()
5166 * Sum pages in active regions for movable zone.
4b0ef1fe 5167 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5168 */
484f51f8 5169static unsigned long __init early_calculate_totalpages(void)
7e63efef 5170{
7e63efef 5171 unsigned long totalpages = 0;
c13291a5
TH
5172 unsigned long start_pfn, end_pfn;
5173 int i, nid;
5174
5175 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5176 unsigned long pages = end_pfn - start_pfn;
7e63efef 5177
37b07e41
LS
5178 totalpages += pages;
5179 if (pages)
4b0ef1fe 5180 node_set_state(nid, N_MEMORY);
37b07e41 5181 }
b8af2941 5182 return totalpages;
7e63efef
MG
5183}
5184
2a1e274a
MG
5185/*
5186 * Find the PFN the Movable zone begins in each node. Kernel memory
5187 * is spread evenly between nodes as long as the nodes have enough
5188 * memory. When they don't, some nodes will have more kernelcore than
5189 * others
5190 */
b224ef85 5191static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5192{
5193 int i, nid;
5194 unsigned long usable_startpfn;
5195 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5196 /* save the state before borrow the nodemask */
4b0ef1fe 5197 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5198 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5199 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5200 struct memblock_region *r;
b2f3eebe
TC
5201
5202 /* Need to find movable_zone earlier when movable_node is specified. */
5203 find_usable_zone_for_movable();
5204
5205 /*
5206 * If movable_node is specified, ignore kernelcore and movablecore
5207 * options.
5208 */
5209 if (movable_node_is_enabled()) {
136199f0
EM
5210 for_each_memblock(memory, r) {
5211 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5212 continue;
5213
136199f0 5214 nid = r->nid;
b2f3eebe 5215
136199f0 5216 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5217 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5218 min(usable_startpfn, zone_movable_pfn[nid]) :
5219 usable_startpfn;
5220 }
5221
5222 goto out2;
5223 }
2a1e274a 5224
7e63efef 5225 /*
b2f3eebe 5226 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5227 * kernelcore that corresponds so that memory usable for
5228 * any allocation type is evenly spread. If both kernelcore
5229 * and movablecore are specified, then the value of kernelcore
5230 * will be used for required_kernelcore if it's greater than
5231 * what movablecore would have allowed.
5232 */
5233 if (required_movablecore) {
7e63efef
MG
5234 unsigned long corepages;
5235
5236 /*
5237 * Round-up so that ZONE_MOVABLE is at least as large as what
5238 * was requested by the user
5239 */
5240 required_movablecore =
5241 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5242 corepages = totalpages - required_movablecore;
5243
5244 required_kernelcore = max(required_kernelcore, corepages);
5245 }
5246
20e6926d
YL
5247 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5248 if (!required_kernelcore)
66918dcd 5249 goto out;
2a1e274a
MG
5250
5251 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5252 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5253
5254restart:
5255 /* Spread kernelcore memory as evenly as possible throughout nodes */
5256 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5257 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5258 unsigned long start_pfn, end_pfn;
5259
2a1e274a
MG
5260 /*
5261 * Recalculate kernelcore_node if the division per node
5262 * now exceeds what is necessary to satisfy the requested
5263 * amount of memory for the kernel
5264 */
5265 if (required_kernelcore < kernelcore_node)
5266 kernelcore_node = required_kernelcore / usable_nodes;
5267
5268 /*
5269 * As the map is walked, we track how much memory is usable
5270 * by the kernel using kernelcore_remaining. When it is
5271 * 0, the rest of the node is usable by ZONE_MOVABLE
5272 */
5273 kernelcore_remaining = kernelcore_node;
5274
5275 /* Go through each range of PFNs within this node */
c13291a5 5276 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5277 unsigned long size_pages;
5278
c13291a5 5279 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5280 if (start_pfn >= end_pfn)
5281 continue;
5282
5283 /* Account for what is only usable for kernelcore */
5284 if (start_pfn < usable_startpfn) {
5285 unsigned long kernel_pages;
5286 kernel_pages = min(end_pfn, usable_startpfn)
5287 - start_pfn;
5288
5289 kernelcore_remaining -= min(kernel_pages,
5290 kernelcore_remaining);
5291 required_kernelcore -= min(kernel_pages,
5292 required_kernelcore);
5293
5294 /* Continue if range is now fully accounted */
5295 if (end_pfn <= usable_startpfn) {
5296
5297 /*
5298 * Push zone_movable_pfn to the end so
5299 * that if we have to rebalance
5300 * kernelcore across nodes, we will
5301 * not double account here
5302 */
5303 zone_movable_pfn[nid] = end_pfn;
5304 continue;
5305 }
5306 start_pfn = usable_startpfn;
5307 }
5308
5309 /*
5310 * The usable PFN range for ZONE_MOVABLE is from
5311 * start_pfn->end_pfn. Calculate size_pages as the
5312 * number of pages used as kernelcore
5313 */
5314 size_pages = end_pfn - start_pfn;
5315 if (size_pages > kernelcore_remaining)
5316 size_pages = kernelcore_remaining;
5317 zone_movable_pfn[nid] = start_pfn + size_pages;
5318
5319 /*
5320 * Some kernelcore has been met, update counts and
5321 * break if the kernelcore for this node has been
b8af2941 5322 * satisfied
2a1e274a
MG
5323 */
5324 required_kernelcore -= min(required_kernelcore,
5325 size_pages);
5326 kernelcore_remaining -= size_pages;
5327 if (!kernelcore_remaining)
5328 break;
5329 }
5330 }
5331
5332 /*
5333 * If there is still required_kernelcore, we do another pass with one
5334 * less node in the count. This will push zone_movable_pfn[nid] further
5335 * along on the nodes that still have memory until kernelcore is
b8af2941 5336 * satisfied
2a1e274a
MG
5337 */
5338 usable_nodes--;
5339 if (usable_nodes && required_kernelcore > usable_nodes)
5340 goto restart;
5341
b2f3eebe 5342out2:
2a1e274a
MG
5343 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5344 for (nid = 0; nid < MAX_NUMNODES; nid++)
5345 zone_movable_pfn[nid] =
5346 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5347
20e6926d 5348out:
66918dcd 5349 /* restore the node_state */
4b0ef1fe 5350 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5351}
5352
4b0ef1fe
LJ
5353/* Any regular or high memory on that node ? */
5354static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5355{
37b07e41
LS
5356 enum zone_type zone_type;
5357
4b0ef1fe
LJ
5358 if (N_MEMORY == N_NORMAL_MEMORY)
5359 return;
5360
5361 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5362 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5363 if (populated_zone(zone)) {
4b0ef1fe
LJ
5364 node_set_state(nid, N_HIGH_MEMORY);
5365 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5366 zone_type <= ZONE_NORMAL)
5367 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5368 break;
5369 }
37b07e41 5370 }
37b07e41
LS
5371}
5372
c713216d
MG
5373/**
5374 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5375 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5376 *
5377 * This will call free_area_init_node() for each active node in the system.
7d018176 5378 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5379 * zone in each node and their holes is calculated. If the maximum PFN
5380 * between two adjacent zones match, it is assumed that the zone is empty.
5381 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5382 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5383 * starts where the previous one ended. For example, ZONE_DMA32 starts
5384 * at arch_max_dma_pfn.
5385 */
5386void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5387{
c13291a5
TH
5388 unsigned long start_pfn, end_pfn;
5389 int i, nid;
a6af2bc3 5390
c713216d
MG
5391 /* Record where the zone boundaries are */
5392 memset(arch_zone_lowest_possible_pfn, 0,
5393 sizeof(arch_zone_lowest_possible_pfn));
5394 memset(arch_zone_highest_possible_pfn, 0,
5395 sizeof(arch_zone_highest_possible_pfn));
5396 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5397 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5398 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5399 if (i == ZONE_MOVABLE)
5400 continue;
c713216d
MG
5401 arch_zone_lowest_possible_pfn[i] =
5402 arch_zone_highest_possible_pfn[i-1];
5403 arch_zone_highest_possible_pfn[i] =
5404 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5405 }
2a1e274a
MG
5406 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5407 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5408
5409 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5410 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5411 find_zone_movable_pfns_for_nodes();
c713216d 5412
c713216d 5413 /* Print out the zone ranges */
f88dfff5 5414 pr_info("Zone ranges:\n");
2a1e274a
MG
5415 for (i = 0; i < MAX_NR_ZONES; i++) {
5416 if (i == ZONE_MOVABLE)
5417 continue;
f88dfff5 5418 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5419 if (arch_zone_lowest_possible_pfn[i] ==
5420 arch_zone_highest_possible_pfn[i])
f88dfff5 5421 pr_cont("empty\n");
72f0ba02 5422 else
f88dfff5 5423 pr_cont("[mem %0#10lx-%0#10lx]\n",
a62e2f4f
BH
5424 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5425 (arch_zone_highest_possible_pfn[i]
5426 << PAGE_SHIFT) - 1);
2a1e274a
MG
5427 }
5428
5429 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5430 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5431 for (i = 0; i < MAX_NUMNODES; i++) {
5432 if (zone_movable_pfn[i])
f88dfff5 5433 pr_info(" Node %d: %#010lx\n", i,
a62e2f4f 5434 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5435 }
c713216d 5436
f2d52fe5 5437 /* Print out the early node map */
f88dfff5 5438 pr_info("Early memory node ranges\n");
c13291a5 5439 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
f88dfff5 5440 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
a62e2f4f 5441 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5442
5443 /* Initialise every node */
708614e6 5444 mminit_verify_pageflags_layout();
8ef82866 5445 setup_nr_node_ids();
c713216d
MG
5446 for_each_online_node(nid) {
5447 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5448 free_area_init_node(nid, NULL,
c713216d 5449 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5450
5451 /* Any memory on that node */
5452 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5453 node_set_state(nid, N_MEMORY);
5454 check_for_memory(pgdat, nid);
c713216d
MG
5455 }
5456}
2a1e274a 5457
7e63efef 5458static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5459{
5460 unsigned long long coremem;
5461 if (!p)
5462 return -EINVAL;
5463
5464 coremem = memparse(p, &p);
7e63efef 5465 *core = coremem >> PAGE_SHIFT;
2a1e274a 5466
7e63efef 5467 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5468 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5469
5470 return 0;
5471}
ed7ed365 5472
7e63efef
MG
5473/*
5474 * kernelcore=size sets the amount of memory for use for allocations that
5475 * cannot be reclaimed or migrated.
5476 */
5477static int __init cmdline_parse_kernelcore(char *p)
5478{
5479 return cmdline_parse_core(p, &required_kernelcore);
5480}
5481
5482/*
5483 * movablecore=size sets the amount of memory for use for allocations that
5484 * can be reclaimed or migrated.
5485 */
5486static int __init cmdline_parse_movablecore(char *p)
5487{
5488 return cmdline_parse_core(p, &required_movablecore);
5489}
5490
ed7ed365 5491early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5492early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5493
0ee332c1 5494#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5495
c3d5f5f0
JL
5496void adjust_managed_page_count(struct page *page, long count)
5497{
5498 spin_lock(&managed_page_count_lock);
5499 page_zone(page)->managed_pages += count;
5500 totalram_pages += count;
3dcc0571
JL
5501#ifdef CONFIG_HIGHMEM
5502 if (PageHighMem(page))
5503 totalhigh_pages += count;
5504#endif
c3d5f5f0
JL
5505 spin_unlock(&managed_page_count_lock);
5506}
3dcc0571 5507EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5508
11199692 5509unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5510{
11199692
JL
5511 void *pos;
5512 unsigned long pages = 0;
69afade7 5513
11199692
JL
5514 start = (void *)PAGE_ALIGN((unsigned long)start);
5515 end = (void *)((unsigned long)end & PAGE_MASK);
5516 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5517 if ((unsigned int)poison <= 0xFF)
11199692
JL
5518 memset(pos, poison, PAGE_SIZE);
5519 free_reserved_page(virt_to_page(pos));
69afade7
JL
5520 }
5521
5522 if (pages && s)
11199692 5523 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5524 s, pages << (PAGE_SHIFT - 10), start, end);
5525
5526 return pages;
5527}
11199692 5528EXPORT_SYMBOL(free_reserved_area);
69afade7 5529
cfa11e08
JL
5530#ifdef CONFIG_HIGHMEM
5531void free_highmem_page(struct page *page)
5532{
5533 __free_reserved_page(page);
5534 totalram_pages++;
7b4b2a0d 5535 page_zone(page)->managed_pages++;
cfa11e08
JL
5536 totalhigh_pages++;
5537}
5538#endif
5539
7ee3d4e8
JL
5540
5541void __init mem_init_print_info(const char *str)
5542{
5543 unsigned long physpages, codesize, datasize, rosize, bss_size;
5544 unsigned long init_code_size, init_data_size;
5545
5546 physpages = get_num_physpages();
5547 codesize = _etext - _stext;
5548 datasize = _edata - _sdata;
5549 rosize = __end_rodata - __start_rodata;
5550 bss_size = __bss_stop - __bss_start;
5551 init_data_size = __init_end - __init_begin;
5552 init_code_size = _einittext - _sinittext;
5553
5554 /*
5555 * Detect special cases and adjust section sizes accordingly:
5556 * 1) .init.* may be embedded into .data sections
5557 * 2) .init.text.* may be out of [__init_begin, __init_end],
5558 * please refer to arch/tile/kernel/vmlinux.lds.S.
5559 * 3) .rodata.* may be embedded into .text or .data sections.
5560 */
5561#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5562 do { \
5563 if (start <= pos && pos < end && size > adj) \
5564 size -= adj; \
5565 } while (0)
7ee3d4e8
JL
5566
5567 adj_init_size(__init_begin, __init_end, init_data_size,
5568 _sinittext, init_code_size);
5569 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5570 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5571 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5572 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5573
5574#undef adj_init_size
5575
f88dfff5 5576 pr_info("Memory: %luK/%luK available "
7ee3d4e8
JL
5577 "(%luK kernel code, %luK rwdata, %luK rodata, "
5578 "%luK init, %luK bss, %luK reserved"
5579#ifdef CONFIG_HIGHMEM
5580 ", %luK highmem"
5581#endif
5582 "%s%s)\n",
5583 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5584 codesize >> 10, datasize >> 10, rosize >> 10,
5585 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5586 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5587#ifdef CONFIG_HIGHMEM
5588 totalhigh_pages << (PAGE_SHIFT-10),
5589#endif
5590 str ? ", " : "", str ? str : "");
5591}
5592
0e0b864e 5593/**
88ca3b94
RD
5594 * set_dma_reserve - set the specified number of pages reserved in the first zone
5595 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5596 *
5597 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5598 * In the DMA zone, a significant percentage may be consumed by kernel image
5599 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5600 * function may optionally be used to account for unfreeable pages in the
5601 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5602 * smaller per-cpu batchsize.
0e0b864e
MG
5603 */
5604void __init set_dma_reserve(unsigned long new_dma_reserve)
5605{
5606 dma_reserve = new_dma_reserve;
5607}
5608
1da177e4
LT
5609void __init free_area_init(unsigned long *zones_size)
5610{
9109fb7b 5611 free_area_init_node(0, zones_size,
1da177e4
LT
5612 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5613}
1da177e4 5614
1da177e4
LT
5615static int page_alloc_cpu_notify(struct notifier_block *self,
5616 unsigned long action, void *hcpu)
5617{
5618 int cpu = (unsigned long)hcpu;
1da177e4 5619
8bb78442 5620 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5621 lru_add_drain_cpu(cpu);
9f8f2172
CL
5622 drain_pages(cpu);
5623
5624 /*
5625 * Spill the event counters of the dead processor
5626 * into the current processors event counters.
5627 * This artificially elevates the count of the current
5628 * processor.
5629 */
f8891e5e 5630 vm_events_fold_cpu(cpu);
9f8f2172
CL
5631
5632 /*
5633 * Zero the differential counters of the dead processor
5634 * so that the vm statistics are consistent.
5635 *
5636 * This is only okay since the processor is dead and cannot
5637 * race with what we are doing.
5638 */
2bb921e5 5639 cpu_vm_stats_fold(cpu);
1da177e4
LT
5640 }
5641 return NOTIFY_OK;
5642}
1da177e4
LT
5643
5644void __init page_alloc_init(void)
5645{
5646 hotcpu_notifier(page_alloc_cpu_notify, 0);
5647}
5648
cb45b0e9
HA
5649/*
5650 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5651 * or min_free_kbytes changes.
5652 */
5653static void calculate_totalreserve_pages(void)
5654{
5655 struct pglist_data *pgdat;
5656 unsigned long reserve_pages = 0;
2f6726e5 5657 enum zone_type i, j;
cb45b0e9
HA
5658
5659 for_each_online_pgdat(pgdat) {
5660 for (i = 0; i < MAX_NR_ZONES; i++) {
5661 struct zone *zone = pgdat->node_zones + i;
3484b2de 5662 long max = 0;
cb45b0e9
HA
5663
5664 /* Find valid and maximum lowmem_reserve in the zone */
5665 for (j = i; j < MAX_NR_ZONES; j++) {
5666 if (zone->lowmem_reserve[j] > max)
5667 max = zone->lowmem_reserve[j];
5668 }
5669
41858966
MG
5670 /* we treat the high watermark as reserved pages. */
5671 max += high_wmark_pages(zone);
cb45b0e9 5672
b40da049
JL
5673 if (max > zone->managed_pages)
5674 max = zone->managed_pages;
cb45b0e9 5675 reserve_pages += max;
ab8fabd4
JW
5676 /*
5677 * Lowmem reserves are not available to
5678 * GFP_HIGHUSER page cache allocations and
5679 * kswapd tries to balance zones to their high
5680 * watermark. As a result, neither should be
5681 * regarded as dirtyable memory, to prevent a
5682 * situation where reclaim has to clean pages
5683 * in order to balance the zones.
5684 */
5685 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5686 }
5687 }
ab8fabd4 5688 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5689 totalreserve_pages = reserve_pages;
5690}
5691
1da177e4
LT
5692/*
5693 * setup_per_zone_lowmem_reserve - called whenever
5694 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5695 * has a correct pages reserved value, so an adequate number of
5696 * pages are left in the zone after a successful __alloc_pages().
5697 */
5698static void setup_per_zone_lowmem_reserve(void)
5699{
5700 struct pglist_data *pgdat;
2f6726e5 5701 enum zone_type j, idx;
1da177e4 5702
ec936fc5 5703 for_each_online_pgdat(pgdat) {
1da177e4
LT
5704 for (j = 0; j < MAX_NR_ZONES; j++) {
5705 struct zone *zone = pgdat->node_zones + j;
b40da049 5706 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5707
5708 zone->lowmem_reserve[j] = 0;
5709
2f6726e5
CL
5710 idx = j;
5711 while (idx) {
1da177e4
LT
5712 struct zone *lower_zone;
5713
2f6726e5
CL
5714 idx--;
5715
1da177e4
LT
5716 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5717 sysctl_lowmem_reserve_ratio[idx] = 1;
5718
5719 lower_zone = pgdat->node_zones + idx;
b40da049 5720 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5721 sysctl_lowmem_reserve_ratio[idx];
b40da049 5722 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5723 }
5724 }
5725 }
cb45b0e9
HA
5726
5727 /* update totalreserve_pages */
5728 calculate_totalreserve_pages();
1da177e4
LT
5729}
5730
cfd3da1e 5731static void __setup_per_zone_wmarks(void)
1da177e4
LT
5732{
5733 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5734 unsigned long lowmem_pages = 0;
5735 struct zone *zone;
5736 unsigned long flags;
5737
5738 /* Calculate total number of !ZONE_HIGHMEM pages */
5739 for_each_zone(zone) {
5740 if (!is_highmem(zone))
b40da049 5741 lowmem_pages += zone->managed_pages;
1da177e4
LT
5742 }
5743
5744 for_each_zone(zone) {
ac924c60
AM
5745 u64 tmp;
5746
1125b4e3 5747 spin_lock_irqsave(&zone->lock, flags);
b40da049 5748 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5749 do_div(tmp, lowmem_pages);
1da177e4
LT
5750 if (is_highmem(zone)) {
5751 /*
669ed175
NP
5752 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5753 * need highmem pages, so cap pages_min to a small
5754 * value here.
5755 *
41858966 5756 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5757 * deltas controls asynch page reclaim, and so should
5758 * not be capped for highmem.
1da177e4 5759 */
90ae8d67 5760 unsigned long min_pages;
1da177e4 5761
b40da049 5762 min_pages = zone->managed_pages / 1024;
90ae8d67 5763 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5764 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5765 } else {
669ed175
NP
5766 /*
5767 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5768 * proportionate to the zone's size.
5769 */
41858966 5770 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5771 }
5772
41858966
MG
5773 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5774 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5775
81c0a2bb 5776 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5777 high_wmark_pages(zone) - low_wmark_pages(zone) -
5778 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5779
56fd56b8 5780 setup_zone_migrate_reserve(zone);
1125b4e3 5781 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5782 }
cb45b0e9
HA
5783
5784 /* update totalreserve_pages */
5785 calculate_totalreserve_pages();
1da177e4
LT
5786}
5787
cfd3da1e
MG
5788/**
5789 * setup_per_zone_wmarks - called when min_free_kbytes changes
5790 * or when memory is hot-{added|removed}
5791 *
5792 * Ensures that the watermark[min,low,high] values for each zone are set
5793 * correctly with respect to min_free_kbytes.
5794 */
5795void setup_per_zone_wmarks(void)
5796{
5797 mutex_lock(&zonelists_mutex);
5798 __setup_per_zone_wmarks();
5799 mutex_unlock(&zonelists_mutex);
5800}
5801
55a4462a 5802/*
556adecb
RR
5803 * The inactive anon list should be small enough that the VM never has to
5804 * do too much work, but large enough that each inactive page has a chance
5805 * to be referenced again before it is swapped out.
5806 *
5807 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5808 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5809 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5810 * the anonymous pages are kept on the inactive list.
5811 *
5812 * total target max
5813 * memory ratio inactive anon
5814 * -------------------------------------
5815 * 10MB 1 5MB
5816 * 100MB 1 50MB
5817 * 1GB 3 250MB
5818 * 10GB 10 0.9GB
5819 * 100GB 31 3GB
5820 * 1TB 101 10GB
5821 * 10TB 320 32GB
5822 */
1b79acc9 5823static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5824{
96cb4df5 5825 unsigned int gb, ratio;
556adecb 5826
96cb4df5 5827 /* Zone size in gigabytes */
b40da049 5828 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5829 if (gb)
556adecb 5830 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5831 else
5832 ratio = 1;
556adecb 5833
96cb4df5
MK
5834 zone->inactive_ratio = ratio;
5835}
556adecb 5836
839a4fcc 5837static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5838{
5839 struct zone *zone;
5840
5841 for_each_zone(zone)
5842 calculate_zone_inactive_ratio(zone);
556adecb
RR
5843}
5844
1da177e4
LT
5845/*
5846 * Initialise min_free_kbytes.
5847 *
5848 * For small machines we want it small (128k min). For large machines
5849 * we want it large (64MB max). But it is not linear, because network
5850 * bandwidth does not increase linearly with machine size. We use
5851 *
b8af2941 5852 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5853 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5854 *
5855 * which yields
5856 *
5857 * 16MB: 512k
5858 * 32MB: 724k
5859 * 64MB: 1024k
5860 * 128MB: 1448k
5861 * 256MB: 2048k
5862 * 512MB: 2896k
5863 * 1024MB: 4096k
5864 * 2048MB: 5792k
5865 * 4096MB: 8192k
5866 * 8192MB: 11584k
5867 * 16384MB: 16384k
5868 */
1b79acc9 5869int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5870{
5871 unsigned long lowmem_kbytes;
5f12733e 5872 int new_min_free_kbytes;
1da177e4
LT
5873
5874 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5875 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5876
5877 if (new_min_free_kbytes > user_min_free_kbytes) {
5878 min_free_kbytes = new_min_free_kbytes;
5879 if (min_free_kbytes < 128)
5880 min_free_kbytes = 128;
5881 if (min_free_kbytes > 65536)
5882 min_free_kbytes = 65536;
5883 } else {
5884 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5885 new_min_free_kbytes, user_min_free_kbytes);
5886 }
bc75d33f 5887 setup_per_zone_wmarks();
a6cccdc3 5888 refresh_zone_stat_thresholds();
1da177e4 5889 setup_per_zone_lowmem_reserve();
556adecb 5890 setup_per_zone_inactive_ratio();
1da177e4
LT
5891 return 0;
5892}
bc75d33f 5893module_init(init_per_zone_wmark_min)
1da177e4
LT
5894
5895/*
b8af2941 5896 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5897 * that we can call two helper functions whenever min_free_kbytes
5898 * changes.
5899 */
cccad5b9 5900int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5901 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5902{
da8c757b
HP
5903 int rc;
5904
5905 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5906 if (rc)
5907 return rc;
5908
5f12733e
MH
5909 if (write) {
5910 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5911 setup_per_zone_wmarks();
5f12733e 5912 }
1da177e4
LT
5913 return 0;
5914}
5915
9614634f 5916#ifdef CONFIG_NUMA
cccad5b9 5917int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5918 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5919{
5920 struct zone *zone;
5921 int rc;
5922
8d65af78 5923 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5924 if (rc)
5925 return rc;
5926
5927 for_each_zone(zone)
b40da049 5928 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5929 sysctl_min_unmapped_ratio) / 100;
5930 return 0;
5931}
0ff38490 5932
cccad5b9 5933int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5934 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5935{
5936 struct zone *zone;
5937 int rc;
5938
8d65af78 5939 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5940 if (rc)
5941 return rc;
5942
5943 for_each_zone(zone)
b40da049 5944 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5945 sysctl_min_slab_ratio) / 100;
5946 return 0;
5947}
9614634f
CL
5948#endif
5949
1da177e4
LT
5950/*
5951 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5952 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5953 * whenever sysctl_lowmem_reserve_ratio changes.
5954 *
5955 * The reserve ratio obviously has absolutely no relation with the
41858966 5956 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5957 * if in function of the boot time zone sizes.
5958 */
cccad5b9 5959int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5960 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5961{
8d65af78 5962 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5963 setup_per_zone_lowmem_reserve();
5964 return 0;
5965}
5966
8ad4b1fb
RS
5967/*
5968 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5969 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5970 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5971 */
cccad5b9 5972int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5973 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5974{
5975 struct zone *zone;
7cd2b0a3 5976 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5977 int ret;
5978
7cd2b0a3
DR
5979 mutex_lock(&pcp_batch_high_lock);
5980 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5981
8d65af78 5982 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5983 if (!write || ret < 0)
5984 goto out;
5985
5986 /* Sanity checking to avoid pcp imbalance */
5987 if (percpu_pagelist_fraction &&
5988 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5989 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5990 ret = -EINVAL;
5991 goto out;
5992 }
5993
5994 /* No change? */
5995 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5996 goto out;
c8e251fa 5997
364df0eb 5998 for_each_populated_zone(zone) {
7cd2b0a3
DR
5999 unsigned int cpu;
6000
22a7f12b 6001 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6002 pageset_set_high_and_batch(zone,
6003 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6004 }
7cd2b0a3 6005out:
c8e251fa 6006 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6007 return ret;
8ad4b1fb
RS
6008}
6009
f034b5d4 6010int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
6011
6012#ifdef CONFIG_NUMA
6013static int __init set_hashdist(char *str)
6014{
6015 if (!str)
6016 return 0;
6017 hashdist = simple_strtoul(str, &str, 0);
6018 return 1;
6019}
6020__setup("hashdist=", set_hashdist);
6021#endif
6022
6023/*
6024 * allocate a large system hash table from bootmem
6025 * - it is assumed that the hash table must contain an exact power-of-2
6026 * quantity of entries
6027 * - limit is the number of hash buckets, not the total allocation size
6028 */
6029void *__init alloc_large_system_hash(const char *tablename,
6030 unsigned long bucketsize,
6031 unsigned long numentries,
6032 int scale,
6033 int flags,
6034 unsigned int *_hash_shift,
6035 unsigned int *_hash_mask,
31fe62b9
TB
6036 unsigned long low_limit,
6037 unsigned long high_limit)
1da177e4 6038{
31fe62b9 6039 unsigned long long max = high_limit;
1da177e4
LT
6040 unsigned long log2qty, size;
6041 void *table = NULL;
6042
6043 /* allow the kernel cmdline to have a say */
6044 if (!numentries) {
6045 /* round applicable memory size up to nearest megabyte */
04903664 6046 numentries = nr_kernel_pages;
a7e83318
JZ
6047
6048 /* It isn't necessary when PAGE_SIZE >= 1MB */
6049 if (PAGE_SHIFT < 20)
6050 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6051
6052 /* limit to 1 bucket per 2^scale bytes of low memory */
6053 if (scale > PAGE_SHIFT)
6054 numentries >>= (scale - PAGE_SHIFT);
6055 else
6056 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6057
6058 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6059 if (unlikely(flags & HASH_SMALL)) {
6060 /* Makes no sense without HASH_EARLY */
6061 WARN_ON(!(flags & HASH_EARLY));
6062 if (!(numentries >> *_hash_shift)) {
6063 numentries = 1UL << *_hash_shift;
6064 BUG_ON(!numentries);
6065 }
6066 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6067 numentries = PAGE_SIZE / bucketsize;
1da177e4 6068 }
6e692ed3 6069 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6070
6071 /* limit allocation size to 1/16 total memory by default */
6072 if (max == 0) {
6073 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6074 do_div(max, bucketsize);
6075 }
074b8517 6076 max = min(max, 0x80000000ULL);
1da177e4 6077
31fe62b9
TB
6078 if (numentries < low_limit)
6079 numentries = low_limit;
1da177e4
LT
6080 if (numentries > max)
6081 numentries = max;
6082
f0d1b0b3 6083 log2qty = ilog2(numentries);
1da177e4
LT
6084
6085 do {
6086 size = bucketsize << log2qty;
6087 if (flags & HASH_EARLY)
6782832e 6088 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6089 else if (hashdist)
6090 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6091 else {
1037b83b
ED
6092 /*
6093 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6094 * some pages at the end of hash table which
6095 * alloc_pages_exact() automatically does
1037b83b 6096 */
264ef8a9 6097 if (get_order(size) < MAX_ORDER) {
a1dd268c 6098 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6099 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6100 }
1da177e4
LT
6101 }
6102 } while (!table && size > PAGE_SIZE && --log2qty);
6103
6104 if (!table)
6105 panic("Failed to allocate %s hash table\n", tablename);
6106
f241e660 6107 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6108 tablename,
f241e660 6109 (1UL << log2qty),
f0d1b0b3 6110 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6111 size);
6112
6113 if (_hash_shift)
6114 *_hash_shift = log2qty;
6115 if (_hash_mask)
6116 *_hash_mask = (1 << log2qty) - 1;
6117
6118 return table;
6119}
a117e66e 6120
835c134e
MG
6121/* Return a pointer to the bitmap storing bits affecting a block of pages */
6122static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6123 unsigned long pfn)
6124{
6125#ifdef CONFIG_SPARSEMEM
6126 return __pfn_to_section(pfn)->pageblock_flags;
6127#else
6128 return zone->pageblock_flags;
6129#endif /* CONFIG_SPARSEMEM */
6130}
6131
6132static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6133{
6134#ifdef CONFIG_SPARSEMEM
6135 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6136 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6137#else
c060f943 6138 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6139 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6140#endif /* CONFIG_SPARSEMEM */
6141}
6142
6143/**
1aab4d77 6144 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6145 * @page: The page within the block of interest
1aab4d77
RD
6146 * @pfn: The target page frame number
6147 * @end_bitidx: The last bit of interest to retrieve
6148 * @mask: mask of bits that the caller is interested in
6149 *
6150 * Return: pageblock_bits flags
835c134e 6151 */
dc4b0caf 6152unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6153 unsigned long end_bitidx,
6154 unsigned long mask)
835c134e
MG
6155{
6156 struct zone *zone;
6157 unsigned long *bitmap;
dc4b0caf 6158 unsigned long bitidx, word_bitidx;
e58469ba 6159 unsigned long word;
835c134e
MG
6160
6161 zone = page_zone(page);
835c134e
MG
6162 bitmap = get_pageblock_bitmap(zone, pfn);
6163 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6164 word_bitidx = bitidx / BITS_PER_LONG;
6165 bitidx &= (BITS_PER_LONG-1);
835c134e 6166
e58469ba
MG
6167 word = bitmap[word_bitidx];
6168 bitidx += end_bitidx;
6169 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6170}
6171
6172/**
dc4b0caf 6173 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6174 * @page: The page within the block of interest
835c134e 6175 * @flags: The flags to set
1aab4d77
RD
6176 * @pfn: The target page frame number
6177 * @end_bitidx: The last bit of interest
6178 * @mask: mask of bits that the caller is interested in
835c134e 6179 */
dc4b0caf
MG
6180void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6181 unsigned long pfn,
e58469ba
MG
6182 unsigned long end_bitidx,
6183 unsigned long mask)
835c134e
MG
6184{
6185 struct zone *zone;
6186 unsigned long *bitmap;
dc4b0caf 6187 unsigned long bitidx, word_bitidx;
e58469ba
MG
6188 unsigned long old_word, word;
6189
6190 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6191
6192 zone = page_zone(page);
835c134e
MG
6193 bitmap = get_pageblock_bitmap(zone, pfn);
6194 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6195 word_bitidx = bitidx / BITS_PER_LONG;
6196 bitidx &= (BITS_PER_LONG-1);
6197
309381fe 6198 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6199
e58469ba
MG
6200 bitidx += end_bitidx;
6201 mask <<= (BITS_PER_LONG - bitidx - 1);
6202 flags <<= (BITS_PER_LONG - bitidx - 1);
6203
6204 word = ACCESS_ONCE(bitmap[word_bitidx]);
6205 for (;;) {
6206 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6207 if (word == old_word)
6208 break;
6209 word = old_word;
6210 }
835c134e 6211}
a5d76b54
KH
6212
6213/*
80934513
MK
6214 * This function checks whether pageblock includes unmovable pages or not.
6215 * If @count is not zero, it is okay to include less @count unmovable pages
6216 *
b8af2941 6217 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6218 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6219 * expect this function should be exact.
a5d76b54 6220 */
b023f468
WC
6221bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6222 bool skip_hwpoisoned_pages)
49ac8255
KH
6223{
6224 unsigned long pfn, iter, found;
47118af0
MN
6225 int mt;
6226
49ac8255
KH
6227 /*
6228 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6229 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6230 */
6231 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6232 return false;
47118af0
MN
6233 mt = get_pageblock_migratetype(page);
6234 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6235 return false;
49ac8255
KH
6236
6237 pfn = page_to_pfn(page);
6238 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6239 unsigned long check = pfn + iter;
6240
29723fcc 6241 if (!pfn_valid_within(check))
49ac8255 6242 continue;
29723fcc 6243
49ac8255 6244 page = pfn_to_page(check);
c8721bbb
NH
6245
6246 /*
6247 * Hugepages are not in LRU lists, but they're movable.
6248 * We need not scan over tail pages bacause we don't
6249 * handle each tail page individually in migration.
6250 */
6251 if (PageHuge(page)) {
6252 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6253 continue;
6254 }
6255
97d255c8
MK
6256 /*
6257 * We can't use page_count without pin a page
6258 * because another CPU can free compound page.
6259 * This check already skips compound tails of THP
6260 * because their page->_count is zero at all time.
6261 */
6262 if (!atomic_read(&page->_count)) {
49ac8255
KH
6263 if (PageBuddy(page))
6264 iter += (1 << page_order(page)) - 1;
6265 continue;
6266 }
97d255c8 6267
b023f468
WC
6268 /*
6269 * The HWPoisoned page may be not in buddy system, and
6270 * page_count() is not 0.
6271 */
6272 if (skip_hwpoisoned_pages && PageHWPoison(page))
6273 continue;
6274
49ac8255
KH
6275 if (!PageLRU(page))
6276 found++;
6277 /*
6278 * If there are RECLAIMABLE pages, we need to check it.
6279 * But now, memory offline itself doesn't call shrink_slab()
6280 * and it still to be fixed.
6281 */
6282 /*
6283 * If the page is not RAM, page_count()should be 0.
6284 * we don't need more check. This is an _used_ not-movable page.
6285 *
6286 * The problematic thing here is PG_reserved pages. PG_reserved
6287 * is set to both of a memory hole page and a _used_ kernel
6288 * page at boot.
6289 */
6290 if (found > count)
80934513 6291 return true;
49ac8255 6292 }
80934513 6293 return false;
49ac8255
KH
6294}
6295
6296bool is_pageblock_removable_nolock(struct page *page)
6297{
656a0706
MH
6298 struct zone *zone;
6299 unsigned long pfn;
687875fb
MH
6300
6301 /*
6302 * We have to be careful here because we are iterating over memory
6303 * sections which are not zone aware so we might end up outside of
6304 * the zone but still within the section.
656a0706
MH
6305 * We have to take care about the node as well. If the node is offline
6306 * its NODE_DATA will be NULL - see page_zone.
687875fb 6307 */
656a0706
MH
6308 if (!node_online(page_to_nid(page)))
6309 return false;
6310
6311 zone = page_zone(page);
6312 pfn = page_to_pfn(page);
108bcc96 6313 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6314 return false;
6315
b023f468 6316 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6317}
0c0e6195 6318
041d3a8c
MN
6319#ifdef CONFIG_CMA
6320
6321static unsigned long pfn_max_align_down(unsigned long pfn)
6322{
6323 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6324 pageblock_nr_pages) - 1);
6325}
6326
6327static unsigned long pfn_max_align_up(unsigned long pfn)
6328{
6329 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6330 pageblock_nr_pages));
6331}
6332
041d3a8c 6333/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6334static int __alloc_contig_migrate_range(struct compact_control *cc,
6335 unsigned long start, unsigned long end)
041d3a8c
MN
6336{
6337 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6338 unsigned long nr_reclaimed;
041d3a8c
MN
6339 unsigned long pfn = start;
6340 unsigned int tries = 0;
6341 int ret = 0;
6342
be49a6e1 6343 migrate_prep();
041d3a8c 6344
bb13ffeb 6345 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6346 if (fatal_signal_pending(current)) {
6347 ret = -EINTR;
6348 break;
6349 }
6350
bb13ffeb
MG
6351 if (list_empty(&cc->migratepages)) {
6352 cc->nr_migratepages = 0;
edc2ca61 6353 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6354 if (!pfn) {
6355 ret = -EINTR;
6356 break;
6357 }
6358 tries = 0;
6359 } else if (++tries == 5) {
6360 ret = ret < 0 ? ret : -EBUSY;
6361 break;
6362 }
6363
beb51eaa
MK
6364 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6365 &cc->migratepages);
6366 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6367
9c620e2b 6368 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6369 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6370 }
2a6f5124
SP
6371 if (ret < 0) {
6372 putback_movable_pages(&cc->migratepages);
6373 return ret;
6374 }
6375 return 0;
041d3a8c
MN
6376}
6377
6378/**
6379 * alloc_contig_range() -- tries to allocate given range of pages
6380 * @start: start PFN to allocate
6381 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6382 * @migratetype: migratetype of the underlaying pageblocks (either
6383 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6384 * in range must have the same migratetype and it must
6385 * be either of the two.
041d3a8c
MN
6386 *
6387 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6388 * aligned, however it's the caller's responsibility to guarantee that
6389 * we are the only thread that changes migrate type of pageblocks the
6390 * pages fall in.
6391 *
6392 * The PFN range must belong to a single zone.
6393 *
6394 * Returns zero on success or negative error code. On success all
6395 * pages which PFN is in [start, end) are allocated for the caller and
6396 * need to be freed with free_contig_range().
6397 */
0815f3d8
MN
6398int alloc_contig_range(unsigned long start, unsigned long end,
6399 unsigned migratetype)
041d3a8c 6400{
041d3a8c
MN
6401 unsigned long outer_start, outer_end;
6402 int ret = 0, order;
6403
bb13ffeb
MG
6404 struct compact_control cc = {
6405 .nr_migratepages = 0,
6406 .order = -1,
6407 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6408 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6409 .ignore_skip_hint = true,
6410 };
6411 INIT_LIST_HEAD(&cc.migratepages);
6412
041d3a8c
MN
6413 /*
6414 * What we do here is we mark all pageblocks in range as
6415 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6416 * have different sizes, and due to the way page allocator
6417 * work, we align the range to biggest of the two pages so
6418 * that page allocator won't try to merge buddies from
6419 * different pageblocks and change MIGRATE_ISOLATE to some
6420 * other migration type.
6421 *
6422 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6423 * migrate the pages from an unaligned range (ie. pages that
6424 * we are interested in). This will put all the pages in
6425 * range back to page allocator as MIGRATE_ISOLATE.
6426 *
6427 * When this is done, we take the pages in range from page
6428 * allocator removing them from the buddy system. This way
6429 * page allocator will never consider using them.
6430 *
6431 * This lets us mark the pageblocks back as
6432 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6433 * aligned range but not in the unaligned, original range are
6434 * put back to page allocator so that buddy can use them.
6435 */
6436
6437 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6438 pfn_max_align_up(end), migratetype,
6439 false);
041d3a8c 6440 if (ret)
86a595f9 6441 return ret;
041d3a8c 6442
bb13ffeb 6443 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6444 if (ret)
6445 goto done;
6446
6447 /*
6448 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6449 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6450 * more, all pages in [start, end) are free in page allocator.
6451 * What we are going to do is to allocate all pages from
6452 * [start, end) (that is remove them from page allocator).
6453 *
6454 * The only problem is that pages at the beginning and at the
6455 * end of interesting range may be not aligned with pages that
6456 * page allocator holds, ie. they can be part of higher order
6457 * pages. Because of this, we reserve the bigger range and
6458 * once this is done free the pages we are not interested in.
6459 *
6460 * We don't have to hold zone->lock here because the pages are
6461 * isolated thus they won't get removed from buddy.
6462 */
6463
6464 lru_add_drain_all();
510f5507 6465 drain_all_pages(cc.zone);
041d3a8c
MN
6466
6467 order = 0;
6468 outer_start = start;
6469 while (!PageBuddy(pfn_to_page(outer_start))) {
6470 if (++order >= MAX_ORDER) {
6471 ret = -EBUSY;
6472 goto done;
6473 }
6474 outer_start &= ~0UL << order;
6475 }
6476
6477 /* Make sure the range is really isolated. */
b023f468 6478 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6479 pr_info("%s: [%lx, %lx) PFNs busy\n",
6480 __func__, outer_start, end);
041d3a8c
MN
6481 ret = -EBUSY;
6482 goto done;
6483 }
6484
49f223a9 6485 /* Grab isolated pages from freelists. */
bb13ffeb 6486 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6487 if (!outer_end) {
6488 ret = -EBUSY;
6489 goto done;
6490 }
6491
6492 /* Free head and tail (if any) */
6493 if (start != outer_start)
6494 free_contig_range(outer_start, start - outer_start);
6495 if (end != outer_end)
6496 free_contig_range(end, outer_end - end);
6497
6498done:
6499 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6500 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6501 return ret;
6502}
6503
6504void free_contig_range(unsigned long pfn, unsigned nr_pages)
6505{
bcc2b02f
MS
6506 unsigned int count = 0;
6507
6508 for (; nr_pages--; pfn++) {
6509 struct page *page = pfn_to_page(pfn);
6510
6511 count += page_count(page) != 1;
6512 __free_page(page);
6513 }
6514 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6515}
6516#endif
6517
4ed7e022 6518#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6519/*
6520 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6521 * page high values need to be recalulated.
6522 */
4ed7e022
JL
6523void __meminit zone_pcp_update(struct zone *zone)
6524{
0a647f38 6525 unsigned cpu;
c8e251fa 6526 mutex_lock(&pcp_batch_high_lock);
0a647f38 6527 for_each_possible_cpu(cpu)
169f6c19
CS
6528 pageset_set_high_and_batch(zone,
6529 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6530 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6531}
6532#endif
6533
340175b7
JL
6534void zone_pcp_reset(struct zone *zone)
6535{
6536 unsigned long flags;
5a883813
MK
6537 int cpu;
6538 struct per_cpu_pageset *pset;
340175b7
JL
6539
6540 /* avoid races with drain_pages() */
6541 local_irq_save(flags);
6542 if (zone->pageset != &boot_pageset) {
5a883813
MK
6543 for_each_online_cpu(cpu) {
6544 pset = per_cpu_ptr(zone->pageset, cpu);
6545 drain_zonestat(zone, pset);
6546 }
340175b7
JL
6547 free_percpu(zone->pageset);
6548 zone->pageset = &boot_pageset;
6549 }
6550 local_irq_restore(flags);
6551}
6552
6dcd73d7 6553#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6554/*
6555 * All pages in the range must be isolated before calling this.
6556 */
6557void
6558__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6559{
6560 struct page *page;
6561 struct zone *zone;
7aeb09f9 6562 unsigned int order, i;
0c0e6195
KH
6563 unsigned long pfn;
6564 unsigned long flags;
6565 /* find the first valid pfn */
6566 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6567 if (pfn_valid(pfn))
6568 break;
6569 if (pfn == end_pfn)
6570 return;
6571 zone = page_zone(pfn_to_page(pfn));
6572 spin_lock_irqsave(&zone->lock, flags);
6573 pfn = start_pfn;
6574 while (pfn < end_pfn) {
6575 if (!pfn_valid(pfn)) {
6576 pfn++;
6577 continue;
6578 }
6579 page = pfn_to_page(pfn);
b023f468
WC
6580 /*
6581 * The HWPoisoned page may be not in buddy system, and
6582 * page_count() is not 0.
6583 */
6584 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6585 pfn++;
6586 SetPageReserved(page);
6587 continue;
6588 }
6589
0c0e6195
KH
6590 BUG_ON(page_count(page));
6591 BUG_ON(!PageBuddy(page));
6592 order = page_order(page);
6593#ifdef CONFIG_DEBUG_VM
6594 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6595 pfn, 1 << order, end_pfn);
6596#endif
6597 list_del(&page->lru);
6598 rmv_page_order(page);
6599 zone->free_area[order].nr_free--;
0c0e6195
KH
6600 for (i = 0; i < (1 << order); i++)
6601 SetPageReserved((page+i));
6602 pfn += (1 << order);
6603 }
6604 spin_unlock_irqrestore(&zone->lock, flags);
6605}
6606#endif
8d22ba1b
WF
6607
6608#ifdef CONFIG_MEMORY_FAILURE
6609bool is_free_buddy_page(struct page *page)
6610{
6611 struct zone *zone = page_zone(page);
6612 unsigned long pfn = page_to_pfn(page);
6613 unsigned long flags;
7aeb09f9 6614 unsigned int order;
8d22ba1b
WF
6615
6616 spin_lock_irqsave(&zone->lock, flags);
6617 for (order = 0; order < MAX_ORDER; order++) {
6618 struct page *page_head = page - (pfn & ((1 << order) - 1));
6619
6620 if (PageBuddy(page_head) && page_order(page_head) >= order)
6621 break;
6622 }
6623 spin_unlock_irqrestore(&zone->lock, flags);
6624
6625 return order < MAX_ORDER;
6626}
6627#endif