]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
cma: fix watermark checking
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
702d1a6e
MK
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
ee6f509c 226void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 227{
49255c61
MG
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
b2a0ac88
MG
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
7f33d49a
RW
236bool oom_killer_disabled __read_mostly;
237
13e7444b 238#ifdef CONFIG_DEBUG_VM
c6a57e19 239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 240{
bdc8cb98
DH
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
c6a57e19 244
bdc8cb98
DH
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
c6a57e19
DH
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
14e07298 258 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 259 return 0;
1da177e4 260 if (zone != page_zone(page))
c6a57e19
DH
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
1da177e4 271 return 1;
c6a57e19
DH
272 if (!page_is_consistent(zone, page))
273 return 1;
274
1da177e4
LT
275 return 0;
276}
13e7444b
NP
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
224abf92 284static void bad_page(struct page *page)
1da177e4 285{
d936cf9b
HD
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
2a7684a2
WF
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
ef2b4b95 292 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
293 return;
294 }
295
d936cf9b
HD
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
1e9e6365
HD
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
1e9e6365 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 317 current->comm, page_to_pfn(page));
718a3821 318 dump_page(page);
3dc14741 319
4f31888c 320 print_modules();
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
6416b9fa
WSH
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
1da177e4 337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
18229df5 358 __SetPageTail(p);
58a84aa9 359 set_page_count(p, 0);
18229df5
AW
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
c0a32fc5
SG
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
6aa3001b
AM
436static inline void set_page_order(struct page *page, int order)
437{
4c21e2f2 438 set_page_private(page, order);
676165a8 439 __SetPageBuddy(page);
1da177e4
LT
440}
441
442static inline void rmv_page_order(struct page *page)
443{
676165a8 444 __ClearPageBuddy(page);
4c21e2f2 445 set_page_private(page, 0);
1da177e4
LT
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
d6e05edc 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 464 */
1da177e4 465static inline unsigned long
43506fad 466__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 467{
43506fad 468 return page_idx ^ (1 << order);
1da177e4
LT
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
13e7444b 474 * (a) the buddy is not in a hole &&
676165a8 475 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
676165a8 478 *
5f24ce5f
AA
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1
AW
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
cb2b95e1
AW
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
c0a32fc5
SG
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
cb2b95e1 498 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 499 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 500 return 1;
676165a8 501 }
6aa3001b 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 519 * order is recorded in page_private(page) field.
1da177e4 520 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
1da177e4 523 * If a block is freed, and its buddy is also free, then this
5f63b720 524 * triggers coalescing into a block of larger size.
1da177e4
LT
525 *
526 * -- wli
527 */
528
48db57f8 529static inline void __free_one_page(struct page *page,
ed0ae21d
MG
530 struct zone *zone, unsigned int order,
531 int migratetype)
1da177e4
LT
532{
533 unsigned long page_idx;
6dda9d55 534 unsigned long combined_idx;
43506fad 535 unsigned long uninitialized_var(buddy_idx);
6dda9d55 536 struct page *buddy;
1da177e4 537
224abf92 538 if (unlikely(PageCompound(page)))
8cc3b392
HD
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
1da177e4 541
ed0ae21d
MG
542 VM_BUG_ON(migratetype == -1);
543
1da177e4
LT
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
f2260e6b 546 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 547 VM_BUG_ON(bad_range(zone, page));
1da177e4 548
1da177e4 549 while (order < MAX_ORDER-1) {
43506fad
KC
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
cb2b95e1 552 if (!page_is_buddy(page, buddy, order))
3c82d0ce 553 break;
c0a32fc5
SG
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
d1ce749a
BZ
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
c0a32fc5
SG
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
43506fad 568 combined_idx = buddy_idx & page_idx;
1da177e4
LT
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
6dda9d55
CZ
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
b7f50cfa 583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 584 struct page *higher_page, *higher_buddy;
43506fad
KC
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 588 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597out:
1da177e4
LT
598 zone->free_area[order].nr_free++;
599}
600
092cead6
KM
601/*
602 * free_page_mlock() -- clean up attempts to free and mlocked() page.
603 * Page should not be on lru, so no need to fix that up.
604 * free_pages_check() will verify...
605 */
606static inline void free_page_mlock(struct page *page)
607{
092cead6
KM
608 __dec_zone_page_state(page, NR_MLOCK);
609 __count_vm_event(UNEVICTABLE_MLOCKFREED);
610}
092cead6 611
224abf92 612static inline int free_pages_check(struct page *page)
1da177e4 613{
92be2e33
NP
614 if (unlikely(page_mapcount(page) |
615 (page->mapping != NULL) |
a3af9c38 616 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
617 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
618 (mem_cgroup_bad_page_check(page)))) {
224abf92 619 bad_page(page);
79f4b7bf 620 return 1;
8cc3b392 621 }
79f4b7bf
HD
622 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
623 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
624 return 0;
1da177e4
LT
625}
626
627/*
5f8dcc21 628 * Frees a number of pages from the PCP lists
1da177e4 629 * Assumes all pages on list are in same zone, and of same order.
207f36ee 630 * count is the number of pages to free.
1da177e4
LT
631 *
632 * If the zone was previously in an "all pages pinned" state then look to
633 * see if this freeing clears that state.
634 *
635 * And clear the zone's pages_scanned counter, to hold off the "all pages are
636 * pinned" detection logic.
637 */
5f8dcc21
MG
638static void free_pcppages_bulk(struct zone *zone, int count,
639 struct per_cpu_pages *pcp)
1da177e4 640{
5f8dcc21 641 int migratetype = 0;
a6f9edd6 642 int batch_free = 0;
72853e29 643 int to_free = count;
5f8dcc21 644
c54ad30c 645 spin_lock(&zone->lock);
93e4a89a 646 zone->all_unreclaimable = 0;
1da177e4 647 zone->pages_scanned = 0;
f2260e6b 648
72853e29 649 while (to_free) {
48db57f8 650 struct page *page;
5f8dcc21
MG
651 struct list_head *list;
652
653 /*
a6f9edd6
MG
654 * Remove pages from lists in a round-robin fashion. A
655 * batch_free count is maintained that is incremented when an
656 * empty list is encountered. This is so more pages are freed
657 * off fuller lists instead of spinning excessively around empty
658 * lists
5f8dcc21
MG
659 */
660 do {
a6f9edd6 661 batch_free++;
5f8dcc21
MG
662 if (++migratetype == MIGRATE_PCPTYPES)
663 migratetype = 0;
664 list = &pcp->lists[migratetype];
665 } while (list_empty(list));
48db57f8 666
1d16871d
NK
667 /* This is the only non-empty list. Free them all. */
668 if (batch_free == MIGRATE_PCPTYPES)
669 batch_free = to_free;
670
a6f9edd6 671 do {
770c8aaa
BZ
672 int mt; /* migratetype of the to-be-freed page */
673
a6f9edd6
MG
674 page = list_entry(list->prev, struct page, lru);
675 /* must delete as __free_one_page list manipulates */
676 list_del(&page->lru);
770c8aaa 677 mt = page_private(page);
a7016235 678 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
679 __free_one_page(page, zone, 0, mt);
680 trace_mm_page_pcpu_drain(page, 0, mt);
d1ce749a
BZ
681 if (is_migrate_cma(mt))
682 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
72853e29 683 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 684 }
72853e29 685 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 686 spin_unlock(&zone->lock);
1da177e4
LT
687}
688
ed0ae21d
MG
689static void free_one_page(struct zone *zone, struct page *page, int order,
690 int migratetype)
1da177e4 691{
006d22d9 692 spin_lock(&zone->lock);
93e4a89a 693 zone->all_unreclaimable = 0;
006d22d9 694 zone->pages_scanned = 0;
f2260e6b 695
ed0ae21d 696 __free_one_page(page, zone, order, migratetype);
2139cbe6 697 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 698 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 699 spin_unlock(&zone->lock);
48db57f8
NP
700}
701
ec95f53a 702static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 703{
1da177e4 704 int i;
8cc3b392 705 int bad = 0;
1da177e4 706
b413d48a 707 trace_mm_page_free(page, order);
b1eeab67
VN
708 kmemcheck_free_shadow(page, order);
709
8dd60a3a
AA
710 if (PageAnon(page))
711 page->mapping = NULL;
712 for (i = 0; i < (1 << order); i++)
713 bad += free_pages_check(page + i);
8cc3b392 714 if (bad)
ec95f53a 715 return false;
689bcebf 716
3ac7fe5a 717 if (!PageHighMem(page)) {
9858db50 718 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
719 debug_check_no_obj_freed(page_address(page),
720 PAGE_SIZE << order);
721 }
dafb1367 722 arch_free_page(page, order);
48db57f8 723 kernel_map_pages(page, 1 << order, 0);
dafb1367 724
ec95f53a
KM
725 return true;
726}
727
728static void __free_pages_ok(struct page *page, unsigned int order)
729{
730 unsigned long flags;
731 int wasMlocked = __TestClearPageMlocked(page);
732
733 if (!free_pages_prepare(page, order))
734 return;
735
c54ad30c 736 local_irq_save(flags);
c277331d 737 if (unlikely(wasMlocked))
da456f14 738 free_page_mlock(page);
f8891e5e 739 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
740 free_one_page(page_zone(page), page, order,
741 get_pageblock_migratetype(page));
c54ad30c 742 local_irq_restore(flags);
1da177e4
LT
743}
744
af370fb8 745void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 746{
c3993076
JW
747 unsigned int nr_pages = 1 << order;
748 unsigned int loop;
a226f6c8 749
c3993076
JW
750 prefetchw(page);
751 for (loop = 0; loop < nr_pages; loop++) {
752 struct page *p = &page[loop];
753
754 if (loop + 1 < nr_pages)
755 prefetchw(p + 1);
756 __ClearPageReserved(p);
757 set_page_count(p, 0);
a226f6c8 758 }
c3993076
JW
759
760 set_page_refcounted(page);
761 __free_pages(page, order);
a226f6c8
DH
762}
763
47118af0
MN
764#ifdef CONFIG_CMA
765/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
766void __init init_cma_reserved_pageblock(struct page *page)
767{
768 unsigned i = pageblock_nr_pages;
769 struct page *p = page;
770
771 do {
772 __ClearPageReserved(p);
773 set_page_count(p, 0);
774 } while (++p, --i);
775
776 set_page_refcounted(page);
777 set_pageblock_migratetype(page, MIGRATE_CMA);
778 __free_pages(page, pageblock_order);
779 totalram_pages += pageblock_nr_pages;
780}
781#endif
1da177e4
LT
782
783/*
784 * The order of subdivision here is critical for the IO subsystem.
785 * Please do not alter this order without good reasons and regression
786 * testing. Specifically, as large blocks of memory are subdivided,
787 * the order in which smaller blocks are delivered depends on the order
788 * they're subdivided in this function. This is the primary factor
789 * influencing the order in which pages are delivered to the IO
790 * subsystem according to empirical testing, and this is also justified
791 * by considering the behavior of a buddy system containing a single
792 * large block of memory acted on by a series of small allocations.
793 * This behavior is a critical factor in sglist merging's success.
794 *
795 * -- wli
796 */
085cc7d5 797static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
798 int low, int high, struct free_area *area,
799 int migratetype)
1da177e4
LT
800{
801 unsigned long size = 1 << high;
802
803 while (high > low) {
804 area--;
805 high--;
806 size >>= 1;
725d704e 807 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
808
809#ifdef CONFIG_DEBUG_PAGEALLOC
810 if (high < debug_guardpage_minorder()) {
811 /*
812 * Mark as guard pages (or page), that will allow to
813 * merge back to allocator when buddy will be freed.
814 * Corresponding page table entries will not be touched,
815 * pages will stay not present in virtual address space
816 */
817 INIT_LIST_HEAD(&page[size].lru);
818 set_page_guard_flag(&page[size]);
819 set_page_private(&page[size], high);
820 /* Guard pages are not available for any usage */
d1ce749a
BZ
821 __mod_zone_freepage_state(zone, -(1 << high),
822 migratetype);
c0a32fc5
SG
823 continue;
824 }
825#endif
b2a0ac88 826 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
827 area->nr_free++;
828 set_page_order(&page[size], high);
829 }
1da177e4
LT
830}
831
1da177e4
LT
832/*
833 * This page is about to be returned from the page allocator
834 */
2a7684a2 835static inline int check_new_page(struct page *page)
1da177e4 836{
92be2e33
NP
837 if (unlikely(page_mapcount(page) |
838 (page->mapping != NULL) |
a3af9c38 839 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
840 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
841 (mem_cgroup_bad_page_check(page)))) {
224abf92 842 bad_page(page);
689bcebf 843 return 1;
8cc3b392 844 }
2a7684a2
WF
845 return 0;
846}
847
848static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
849{
850 int i;
851
852 for (i = 0; i < (1 << order); i++) {
853 struct page *p = page + i;
854 if (unlikely(check_new_page(p)))
855 return 1;
856 }
689bcebf 857
4c21e2f2 858 set_page_private(page, 0);
7835e98b 859 set_page_refcounted(page);
cc102509
NP
860
861 arch_alloc_page(page, order);
1da177e4 862 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
863
864 if (gfp_flags & __GFP_ZERO)
865 prep_zero_page(page, order, gfp_flags);
866
867 if (order && (gfp_flags & __GFP_COMP))
868 prep_compound_page(page, order);
869
689bcebf 870 return 0;
1da177e4
LT
871}
872
56fd56b8
MG
873/*
874 * Go through the free lists for the given migratetype and remove
875 * the smallest available page from the freelists
876 */
728ec980
MG
877static inline
878struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
879 int migratetype)
880{
881 unsigned int current_order;
882 struct free_area * area;
883 struct page *page;
884
885 /* Find a page of the appropriate size in the preferred list */
886 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
887 area = &(zone->free_area[current_order]);
888 if (list_empty(&area->free_list[migratetype]))
889 continue;
890
891 page = list_entry(area->free_list[migratetype].next,
892 struct page, lru);
893 list_del(&page->lru);
894 rmv_page_order(page);
895 area->nr_free--;
56fd56b8
MG
896 expand(zone, page, order, current_order, area, migratetype);
897 return page;
898 }
899
900 return NULL;
901}
902
903
b2a0ac88
MG
904/*
905 * This array describes the order lists are fallen back to when
906 * the free lists for the desirable migrate type are depleted
907 */
47118af0
MN
908static int fallbacks[MIGRATE_TYPES][4] = {
909 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
910 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
911#ifdef CONFIG_CMA
912 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
913 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
914#else
915 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
916#endif
6d4a4916
MN
917 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
918 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
919};
920
c361be55
MG
921/*
922 * Move the free pages in a range to the free lists of the requested type.
d9c23400 923 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
924 * boundary. If alignment is required, use move_freepages_block()
925 */
b69a7288
AB
926static int move_freepages(struct zone *zone,
927 struct page *start_page, struct page *end_page,
928 int migratetype)
c361be55
MG
929{
930 struct page *page;
931 unsigned long order;
d100313f 932 int pages_moved = 0;
c361be55
MG
933
934#ifndef CONFIG_HOLES_IN_ZONE
935 /*
936 * page_zone is not safe to call in this context when
937 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
938 * anyway as we check zone boundaries in move_freepages_block().
939 * Remove at a later date when no bug reports exist related to
ac0e5b7a 940 * grouping pages by mobility
c361be55
MG
941 */
942 BUG_ON(page_zone(start_page) != page_zone(end_page));
943#endif
944
945 for (page = start_page; page <= end_page;) {
344c790e
AL
946 /* Make sure we are not inadvertently changing nodes */
947 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
948
c361be55
MG
949 if (!pfn_valid_within(page_to_pfn(page))) {
950 page++;
951 continue;
952 }
953
954 if (!PageBuddy(page)) {
955 page++;
956 continue;
957 }
958
959 order = page_order(page);
84be48d8
KS
960 list_move(&page->lru,
961 &zone->free_area[order].free_list[migratetype]);
c361be55 962 page += 1 << order;
d100313f 963 pages_moved += 1 << order;
c361be55
MG
964 }
965
d100313f 966 return pages_moved;
c361be55
MG
967}
968
ee6f509c 969int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 970 int migratetype)
c361be55
MG
971{
972 unsigned long start_pfn, end_pfn;
973 struct page *start_page, *end_page;
974
975 start_pfn = page_to_pfn(page);
d9c23400 976 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 977 start_page = pfn_to_page(start_pfn);
d9c23400
MG
978 end_page = start_page + pageblock_nr_pages - 1;
979 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
980
981 /* Do not cross zone boundaries */
982 if (start_pfn < zone->zone_start_pfn)
983 start_page = page;
984 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
985 return 0;
986
987 return move_freepages(zone, start_page, end_page, migratetype);
988}
989
2f66a68f
MG
990static void change_pageblock_range(struct page *pageblock_page,
991 int start_order, int migratetype)
992{
993 int nr_pageblocks = 1 << (start_order - pageblock_order);
994
995 while (nr_pageblocks--) {
996 set_pageblock_migratetype(pageblock_page, migratetype);
997 pageblock_page += pageblock_nr_pages;
998 }
999}
1000
b2a0ac88 1001/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1002static inline struct page *
1003__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1004{
1005 struct free_area * area;
1006 int current_order;
1007 struct page *page;
1008 int migratetype, i;
1009
1010 /* Find the largest possible block of pages in the other list */
1011 for (current_order = MAX_ORDER-1; current_order >= order;
1012 --current_order) {
6d4a4916 1013 for (i = 0;; i++) {
b2a0ac88
MG
1014 migratetype = fallbacks[start_migratetype][i];
1015
56fd56b8
MG
1016 /* MIGRATE_RESERVE handled later if necessary */
1017 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1018 break;
e010487d 1019
b2a0ac88
MG
1020 area = &(zone->free_area[current_order]);
1021 if (list_empty(&area->free_list[migratetype]))
1022 continue;
1023
1024 page = list_entry(area->free_list[migratetype].next,
1025 struct page, lru);
1026 area->nr_free--;
1027
1028 /*
c361be55 1029 * If breaking a large block of pages, move all free
46dafbca
MG
1030 * pages to the preferred allocation list. If falling
1031 * back for a reclaimable kernel allocation, be more
25985edc 1032 * aggressive about taking ownership of free pages
47118af0
MN
1033 *
1034 * On the other hand, never change migration
1035 * type of MIGRATE_CMA pageblocks nor move CMA
1036 * pages on different free lists. We don't
1037 * want unmovable pages to be allocated from
1038 * MIGRATE_CMA areas.
b2a0ac88 1039 */
47118af0
MN
1040 if (!is_migrate_cma(migratetype) &&
1041 (unlikely(current_order >= pageblock_order / 2) ||
1042 start_migratetype == MIGRATE_RECLAIMABLE ||
1043 page_group_by_mobility_disabled)) {
1044 int pages;
46dafbca
MG
1045 pages = move_freepages_block(zone, page,
1046 start_migratetype);
1047
1048 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1049 if (pages >= (1 << (pageblock_order-1)) ||
1050 page_group_by_mobility_disabled)
46dafbca
MG
1051 set_pageblock_migratetype(page,
1052 start_migratetype);
1053
b2a0ac88 1054 migratetype = start_migratetype;
c361be55 1055 }
b2a0ac88
MG
1056
1057 /* Remove the page from the freelists */
1058 list_del(&page->lru);
1059 rmv_page_order(page);
b2a0ac88 1060
2f66a68f 1061 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1062 if (current_order >= pageblock_order &&
1063 !is_migrate_cma(migratetype))
2f66a68f 1064 change_pageblock_range(page, current_order,
b2a0ac88
MG
1065 start_migratetype);
1066
47118af0
MN
1067 expand(zone, page, order, current_order, area,
1068 is_migrate_cma(migratetype)
1069 ? migratetype : start_migratetype);
e0fff1bd
MG
1070
1071 trace_mm_page_alloc_extfrag(page, order, current_order,
1072 start_migratetype, migratetype);
1073
b2a0ac88
MG
1074 return page;
1075 }
1076 }
1077
728ec980 1078 return NULL;
b2a0ac88
MG
1079}
1080
56fd56b8 1081/*
1da177e4
LT
1082 * Do the hard work of removing an element from the buddy allocator.
1083 * Call me with the zone->lock already held.
1084 */
b2a0ac88
MG
1085static struct page *__rmqueue(struct zone *zone, unsigned int order,
1086 int migratetype)
1da177e4 1087{
1da177e4
LT
1088 struct page *page;
1089
728ec980 1090retry_reserve:
56fd56b8 1091 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1092
728ec980 1093 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1094 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1095
728ec980
MG
1096 /*
1097 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1098 * is used because __rmqueue_smallest is an inline function
1099 * and we want just one call site
1100 */
1101 if (!page) {
1102 migratetype = MIGRATE_RESERVE;
1103 goto retry_reserve;
1104 }
1105 }
1106
0d3d062a 1107 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1108 return page;
1da177e4
LT
1109}
1110
5f63b720 1111/*
1da177e4
LT
1112 * Obtain a specified number of elements from the buddy allocator, all under
1113 * a single hold of the lock, for efficiency. Add them to the supplied list.
1114 * Returns the number of new pages which were placed at *list.
1115 */
5f63b720 1116static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1117 unsigned long count, struct list_head *list,
e084b2d9 1118 int migratetype, int cold)
1da177e4 1119{
47118af0 1120 int mt = migratetype, i;
5f63b720 1121
c54ad30c 1122 spin_lock(&zone->lock);
1da177e4 1123 for (i = 0; i < count; ++i) {
b2a0ac88 1124 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1125 if (unlikely(page == NULL))
1da177e4 1126 break;
81eabcbe
MG
1127
1128 /*
1129 * Split buddy pages returned by expand() are received here
1130 * in physical page order. The page is added to the callers and
1131 * list and the list head then moves forward. From the callers
1132 * perspective, the linked list is ordered by page number in
1133 * some conditions. This is useful for IO devices that can
1134 * merge IO requests if the physical pages are ordered
1135 * properly.
1136 */
e084b2d9
MG
1137 if (likely(cold == 0))
1138 list_add(&page->lru, list);
1139 else
1140 list_add_tail(&page->lru, list);
47118af0
MN
1141 if (IS_ENABLED(CONFIG_CMA)) {
1142 mt = get_pageblock_migratetype(page);
1143 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1144 mt = migratetype;
1145 }
1146 set_page_private(page, mt);
81eabcbe 1147 list = &page->lru;
d1ce749a
BZ
1148 if (is_migrate_cma(mt))
1149 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1150 -(1 << order));
1da177e4 1151 }
f2260e6b 1152 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1153 spin_unlock(&zone->lock);
085cc7d5 1154 return i;
1da177e4
LT
1155}
1156
4ae7c039 1157#ifdef CONFIG_NUMA
8fce4d8e 1158/*
4037d452
CL
1159 * Called from the vmstat counter updater to drain pagesets of this
1160 * currently executing processor on remote nodes after they have
1161 * expired.
1162 *
879336c3
CL
1163 * Note that this function must be called with the thread pinned to
1164 * a single processor.
8fce4d8e 1165 */
4037d452 1166void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1167{
4ae7c039 1168 unsigned long flags;
4037d452 1169 int to_drain;
4ae7c039 1170
4037d452
CL
1171 local_irq_save(flags);
1172 if (pcp->count >= pcp->batch)
1173 to_drain = pcp->batch;
1174 else
1175 to_drain = pcp->count;
2a13515c
KM
1176 if (to_drain > 0) {
1177 free_pcppages_bulk(zone, to_drain, pcp);
1178 pcp->count -= to_drain;
1179 }
4037d452 1180 local_irq_restore(flags);
4ae7c039
CL
1181}
1182#endif
1183
9f8f2172
CL
1184/*
1185 * Drain pages of the indicated processor.
1186 *
1187 * The processor must either be the current processor and the
1188 * thread pinned to the current processor or a processor that
1189 * is not online.
1190 */
1191static void drain_pages(unsigned int cpu)
1da177e4 1192{
c54ad30c 1193 unsigned long flags;
1da177e4 1194 struct zone *zone;
1da177e4 1195
ee99c71c 1196 for_each_populated_zone(zone) {
1da177e4 1197 struct per_cpu_pageset *pset;
3dfa5721 1198 struct per_cpu_pages *pcp;
1da177e4 1199
99dcc3e5
CL
1200 local_irq_save(flags);
1201 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1202
1203 pcp = &pset->pcp;
2ff754fa
DR
1204 if (pcp->count) {
1205 free_pcppages_bulk(zone, pcp->count, pcp);
1206 pcp->count = 0;
1207 }
3dfa5721 1208 local_irq_restore(flags);
1da177e4
LT
1209 }
1210}
1da177e4 1211
9f8f2172
CL
1212/*
1213 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1214 */
1215void drain_local_pages(void *arg)
1216{
1217 drain_pages(smp_processor_id());
1218}
1219
1220/*
74046494
GBY
1221 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1222 *
1223 * Note that this code is protected against sending an IPI to an offline
1224 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1225 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1226 * nothing keeps CPUs from showing up after we populated the cpumask and
1227 * before the call to on_each_cpu_mask().
9f8f2172
CL
1228 */
1229void drain_all_pages(void)
1230{
74046494
GBY
1231 int cpu;
1232 struct per_cpu_pageset *pcp;
1233 struct zone *zone;
1234
1235 /*
1236 * Allocate in the BSS so we wont require allocation in
1237 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1238 */
1239 static cpumask_t cpus_with_pcps;
1240
1241 /*
1242 * We don't care about racing with CPU hotplug event
1243 * as offline notification will cause the notified
1244 * cpu to drain that CPU pcps and on_each_cpu_mask
1245 * disables preemption as part of its processing
1246 */
1247 for_each_online_cpu(cpu) {
1248 bool has_pcps = false;
1249 for_each_populated_zone(zone) {
1250 pcp = per_cpu_ptr(zone->pageset, cpu);
1251 if (pcp->pcp.count) {
1252 has_pcps = true;
1253 break;
1254 }
1255 }
1256 if (has_pcps)
1257 cpumask_set_cpu(cpu, &cpus_with_pcps);
1258 else
1259 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1260 }
1261 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1262}
1263
296699de 1264#ifdef CONFIG_HIBERNATION
1da177e4
LT
1265
1266void mark_free_pages(struct zone *zone)
1267{
f623f0db
RW
1268 unsigned long pfn, max_zone_pfn;
1269 unsigned long flags;
b2a0ac88 1270 int order, t;
1da177e4
LT
1271 struct list_head *curr;
1272
1273 if (!zone->spanned_pages)
1274 return;
1275
1276 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1277
1278 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1279 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1280 if (pfn_valid(pfn)) {
1281 struct page *page = pfn_to_page(pfn);
1282
7be98234
RW
1283 if (!swsusp_page_is_forbidden(page))
1284 swsusp_unset_page_free(page);
f623f0db 1285 }
1da177e4 1286
b2a0ac88
MG
1287 for_each_migratetype_order(order, t) {
1288 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1289 unsigned long i;
1da177e4 1290
f623f0db
RW
1291 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1292 for (i = 0; i < (1UL << order); i++)
7be98234 1293 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1294 }
b2a0ac88 1295 }
1da177e4
LT
1296 spin_unlock_irqrestore(&zone->lock, flags);
1297}
e2c55dc8 1298#endif /* CONFIG_PM */
1da177e4 1299
1da177e4
LT
1300/*
1301 * Free a 0-order page
fc91668e 1302 * cold == 1 ? free a cold page : free a hot page
1da177e4 1303 */
fc91668e 1304void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1305{
1306 struct zone *zone = page_zone(page);
1307 struct per_cpu_pages *pcp;
1308 unsigned long flags;
5f8dcc21 1309 int migratetype;
451ea25d 1310 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1311
ec95f53a 1312 if (!free_pages_prepare(page, 0))
689bcebf
HD
1313 return;
1314
5f8dcc21
MG
1315 migratetype = get_pageblock_migratetype(page);
1316 set_page_private(page, migratetype);
1da177e4 1317 local_irq_save(flags);
c277331d 1318 if (unlikely(wasMlocked))
da456f14 1319 free_page_mlock(page);
f8891e5e 1320 __count_vm_event(PGFREE);
da456f14 1321
5f8dcc21
MG
1322 /*
1323 * We only track unmovable, reclaimable and movable on pcp lists.
1324 * Free ISOLATE pages back to the allocator because they are being
1325 * offlined but treat RESERVE as movable pages so we can get those
1326 * areas back if necessary. Otherwise, we may have to free
1327 * excessively into the page allocator
1328 */
1329 if (migratetype >= MIGRATE_PCPTYPES) {
1330 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1331 free_one_page(zone, page, 0, migratetype);
1332 goto out;
1333 }
1334 migratetype = MIGRATE_MOVABLE;
1335 }
1336
99dcc3e5 1337 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1338 if (cold)
5f8dcc21 1339 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1340 else
5f8dcc21 1341 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1342 pcp->count++;
48db57f8 1343 if (pcp->count >= pcp->high) {
5f8dcc21 1344 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1345 pcp->count -= pcp->batch;
1346 }
5f8dcc21
MG
1347
1348out:
1da177e4 1349 local_irq_restore(flags);
1da177e4
LT
1350}
1351
cc59850e
KK
1352/*
1353 * Free a list of 0-order pages
1354 */
1355void free_hot_cold_page_list(struct list_head *list, int cold)
1356{
1357 struct page *page, *next;
1358
1359 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1360 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1361 free_hot_cold_page(page, cold);
1362 }
1363}
1364
8dfcc9ba
NP
1365/*
1366 * split_page takes a non-compound higher-order page, and splits it into
1367 * n (1<<order) sub-pages: page[0..n]
1368 * Each sub-page must be freed individually.
1369 *
1370 * Note: this is probably too low level an operation for use in drivers.
1371 * Please consult with lkml before using this in your driver.
1372 */
1373void split_page(struct page *page, unsigned int order)
1374{
1375 int i;
1376
725d704e
NP
1377 VM_BUG_ON(PageCompound(page));
1378 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1379
1380#ifdef CONFIG_KMEMCHECK
1381 /*
1382 * Split shadow pages too, because free(page[0]) would
1383 * otherwise free the whole shadow.
1384 */
1385 if (kmemcheck_page_is_tracked(page))
1386 split_page(virt_to_page(page[0].shadow), order);
1387#endif
1388
7835e98b
NP
1389 for (i = 1; i < (1 << order); i++)
1390 set_page_refcounted(page + i);
8dfcc9ba 1391}
8dfcc9ba 1392
748446bb 1393/*
1fb3f8ca
MG
1394 * Similar to the split_page family of functions except that the page
1395 * required at the given order and being isolated now to prevent races
1396 * with parallel allocators
748446bb 1397 */
1fb3f8ca 1398int capture_free_page(struct page *page, int alloc_order, int migratetype)
748446bb
MG
1399{
1400 unsigned int order;
1401 unsigned long watermark;
1402 struct zone *zone;
2139cbe6 1403 int mt;
748446bb
MG
1404
1405 BUG_ON(!PageBuddy(page));
1406
1407 zone = page_zone(page);
1408 order = page_order(page);
1409
1410 /* Obey watermarks as if the page was being allocated */
1411 watermark = low_wmark_pages(zone) + (1 << order);
1412 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1413 return 0;
1414
1415 /* Remove page from free list */
1416 list_del(&page->lru);
1417 zone->free_area[order].nr_free--;
1418 rmv_page_order(page);
2139cbe6
BZ
1419
1420 mt = get_pageblock_migratetype(page);
1421 if (unlikely(mt != MIGRATE_ISOLATE))
d1ce749a 1422 __mod_zone_freepage_state(zone, -(1UL << order), mt);
748446bb 1423
1fb3f8ca
MG
1424 if (alloc_order != order)
1425 expand(zone, page, alloc_order, order,
1426 &zone->free_area[order], migratetype);
748446bb 1427
1fb3f8ca 1428 /* Set the pageblock if the captured page is at least a pageblock */
748446bb
MG
1429 if (order >= pageblock_order - 1) {
1430 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1431 for (; page < endpage; page += pageblock_nr_pages) {
1432 int mt = get_pageblock_migratetype(page);
1433 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1434 set_pageblock_migratetype(page,
1435 MIGRATE_MOVABLE);
1436 }
748446bb
MG
1437 }
1438
1fb3f8ca
MG
1439 return 1UL << order;
1440}
1441
1442/*
1443 * Similar to split_page except the page is already free. As this is only
1444 * being used for migration, the migratetype of the block also changes.
1445 * As this is called with interrupts disabled, the caller is responsible
1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1447 * are enabled.
1448 *
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1451 */
1452int split_free_page(struct page *page)
1453{
1454 unsigned int order;
1455 int nr_pages;
1456
1457 BUG_ON(!PageBuddy(page));
1458 order = page_order(page);
1459
1460 nr_pages = capture_free_page(page, order, 0);
1461 if (!nr_pages)
1462 return 0;
1463
1464 /* Split into individual pages */
1465 set_page_refcounted(page);
1466 split_page(page, order);
1467 return nr_pages;
748446bb
MG
1468}
1469
1da177e4
LT
1470/*
1471 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1472 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1473 * or two.
1474 */
0a15c3e9
MG
1475static inline
1476struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1477 struct zone *zone, int order, gfp_t gfp_flags,
1478 int migratetype)
1da177e4
LT
1479{
1480 unsigned long flags;
689bcebf 1481 struct page *page;
1da177e4
LT
1482 int cold = !!(gfp_flags & __GFP_COLD);
1483
689bcebf 1484again:
48db57f8 1485 if (likely(order == 0)) {
1da177e4 1486 struct per_cpu_pages *pcp;
5f8dcc21 1487 struct list_head *list;
1da177e4 1488
1da177e4 1489 local_irq_save(flags);
99dcc3e5
CL
1490 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1491 list = &pcp->lists[migratetype];
5f8dcc21 1492 if (list_empty(list)) {
535131e6 1493 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1494 pcp->batch, list,
e084b2d9 1495 migratetype, cold);
5f8dcc21 1496 if (unlikely(list_empty(list)))
6fb332fa 1497 goto failed;
535131e6 1498 }
b92a6edd 1499
5f8dcc21
MG
1500 if (cold)
1501 page = list_entry(list->prev, struct page, lru);
1502 else
1503 page = list_entry(list->next, struct page, lru);
1504
b92a6edd
MG
1505 list_del(&page->lru);
1506 pcp->count--;
7fb1d9fc 1507 } else {
dab48dab
AM
1508 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1509 /*
1510 * __GFP_NOFAIL is not to be used in new code.
1511 *
1512 * All __GFP_NOFAIL callers should be fixed so that they
1513 * properly detect and handle allocation failures.
1514 *
1515 * We most definitely don't want callers attempting to
4923abf9 1516 * allocate greater than order-1 page units with
dab48dab
AM
1517 * __GFP_NOFAIL.
1518 */
4923abf9 1519 WARN_ON_ONCE(order > 1);
dab48dab 1520 }
1da177e4 1521 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1522 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1523 spin_unlock(&zone->lock);
1524 if (!page)
1525 goto failed;
d1ce749a
BZ
1526 __mod_zone_freepage_state(zone, -(1 << order),
1527 get_pageblock_migratetype(page));
1da177e4
LT
1528 }
1529
f8891e5e 1530 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1531 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1532 local_irq_restore(flags);
1da177e4 1533
725d704e 1534 VM_BUG_ON(bad_range(zone, page));
17cf4406 1535 if (prep_new_page(page, order, gfp_flags))
a74609fa 1536 goto again;
1da177e4 1537 return page;
a74609fa
NP
1538
1539failed:
1540 local_irq_restore(flags);
a74609fa 1541 return NULL;
1da177e4
LT
1542}
1543
933e312e
AM
1544#ifdef CONFIG_FAIL_PAGE_ALLOC
1545
b2588c4b 1546static struct {
933e312e
AM
1547 struct fault_attr attr;
1548
1549 u32 ignore_gfp_highmem;
1550 u32 ignore_gfp_wait;
54114994 1551 u32 min_order;
933e312e
AM
1552} fail_page_alloc = {
1553 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1554 .ignore_gfp_wait = 1,
1555 .ignore_gfp_highmem = 1,
54114994 1556 .min_order = 1,
933e312e
AM
1557};
1558
1559static int __init setup_fail_page_alloc(char *str)
1560{
1561 return setup_fault_attr(&fail_page_alloc.attr, str);
1562}
1563__setup("fail_page_alloc=", setup_fail_page_alloc);
1564
deaf386e 1565static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1566{
54114994 1567 if (order < fail_page_alloc.min_order)
deaf386e 1568 return false;
933e312e 1569 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1570 return false;
933e312e 1571 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1572 return false;
933e312e 1573 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1574 return false;
933e312e
AM
1575
1576 return should_fail(&fail_page_alloc.attr, 1 << order);
1577}
1578
1579#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1580
1581static int __init fail_page_alloc_debugfs(void)
1582{
f4ae40a6 1583 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1584 struct dentry *dir;
933e312e 1585
dd48c085
AM
1586 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1587 &fail_page_alloc.attr);
1588 if (IS_ERR(dir))
1589 return PTR_ERR(dir);
933e312e 1590
b2588c4b
AM
1591 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1592 &fail_page_alloc.ignore_gfp_wait))
1593 goto fail;
1594 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1595 &fail_page_alloc.ignore_gfp_highmem))
1596 goto fail;
1597 if (!debugfs_create_u32("min-order", mode, dir,
1598 &fail_page_alloc.min_order))
1599 goto fail;
1600
1601 return 0;
1602fail:
dd48c085 1603 debugfs_remove_recursive(dir);
933e312e 1604
b2588c4b 1605 return -ENOMEM;
933e312e
AM
1606}
1607
1608late_initcall(fail_page_alloc_debugfs);
1609
1610#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1611
1612#else /* CONFIG_FAIL_PAGE_ALLOC */
1613
deaf386e 1614static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1615{
deaf386e 1616 return false;
933e312e
AM
1617}
1618
1619#endif /* CONFIG_FAIL_PAGE_ALLOC */
1620
1da177e4 1621/*
88f5acf8 1622 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1623 * of the allocation.
1624 */
88f5acf8
MG
1625static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1626 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1627{
1628 /* free_pages my go negative - that's OK */
d23ad423 1629 long min = mark;
2cfed075 1630 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1631 int o;
1632
df0a6daa 1633 free_pages -= (1 << order) - 1;
7fb1d9fc 1634 if (alloc_flags & ALLOC_HIGH)
1da177e4 1635 min -= min / 2;
7fb1d9fc 1636 if (alloc_flags & ALLOC_HARDER)
1da177e4 1637 min -= min / 4;
d95ea5d1
BZ
1638#ifdef CONFIG_CMA
1639 /* If allocation can't use CMA areas don't use free CMA pages */
1640 if (!(alloc_flags & ALLOC_CMA))
1641 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1642#endif
2cfed075 1643 if (free_pages <= min + lowmem_reserve)
88f5acf8 1644 return false;
1da177e4
LT
1645 for (o = 0; o < order; o++) {
1646 /* At the next order, this order's pages become unavailable */
1647 free_pages -= z->free_area[o].nr_free << o;
1648
1649 /* Require fewer higher order pages to be free */
1650 min >>= 1;
1651
1652 if (free_pages <= min)
88f5acf8 1653 return false;
1da177e4 1654 }
88f5acf8
MG
1655 return true;
1656}
1657
702d1a6e
MK
1658#ifdef CONFIG_MEMORY_ISOLATION
1659static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1660{
1661 if (unlikely(zone->nr_pageblock_isolate))
1662 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1663 return 0;
1664}
1665#else
1666static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1667{
1668 return 0;
1669}
1670#endif
1671
88f5acf8
MG
1672bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1673 int classzone_idx, int alloc_flags)
1674{
1675 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1676 zone_page_state(z, NR_FREE_PAGES));
1677}
1678
1679bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1680 int classzone_idx, int alloc_flags)
1681{
1682 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1683
1684 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1685 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1686
702d1a6e
MK
1687 /*
1688 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1689 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1690 * sleep although it could do so. But this is more desirable for memory
1691 * hotplug than sleeping which can cause a livelock in the direct
1692 * reclaim path.
1693 */
1694 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1695 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1696 free_pages);
1da177e4
LT
1697}
1698
9276b1bc
PJ
1699#ifdef CONFIG_NUMA
1700/*
1701 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1702 * skip over zones that are not allowed by the cpuset, or that have
1703 * been recently (in last second) found to be nearly full. See further
1704 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1705 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1706 *
1707 * If the zonelist cache is present in the passed in zonelist, then
1708 * returns a pointer to the allowed node mask (either the current
37b07e41 1709 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1710 *
1711 * If the zonelist cache is not available for this zonelist, does
1712 * nothing and returns NULL.
1713 *
1714 * If the fullzones BITMAP in the zonelist cache is stale (more than
1715 * a second since last zap'd) then we zap it out (clear its bits.)
1716 *
1717 * We hold off even calling zlc_setup, until after we've checked the
1718 * first zone in the zonelist, on the theory that most allocations will
1719 * be satisfied from that first zone, so best to examine that zone as
1720 * quickly as we can.
1721 */
1722static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1723{
1724 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1725 nodemask_t *allowednodes; /* zonelist_cache approximation */
1726
1727 zlc = zonelist->zlcache_ptr;
1728 if (!zlc)
1729 return NULL;
1730
f05111f5 1731 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1732 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1733 zlc->last_full_zap = jiffies;
1734 }
1735
1736 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1737 &cpuset_current_mems_allowed :
37b07e41 1738 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1739 return allowednodes;
1740}
1741
1742/*
1743 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1744 * if it is worth looking at further for free memory:
1745 * 1) Check that the zone isn't thought to be full (doesn't have its
1746 * bit set in the zonelist_cache fullzones BITMAP).
1747 * 2) Check that the zones node (obtained from the zonelist_cache
1748 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1749 * Return true (non-zero) if zone is worth looking at further, or
1750 * else return false (zero) if it is not.
1751 *
1752 * This check -ignores- the distinction between various watermarks,
1753 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1754 * found to be full for any variation of these watermarks, it will
1755 * be considered full for up to one second by all requests, unless
1756 * we are so low on memory on all allowed nodes that we are forced
1757 * into the second scan of the zonelist.
1758 *
1759 * In the second scan we ignore this zonelist cache and exactly
1760 * apply the watermarks to all zones, even it is slower to do so.
1761 * We are low on memory in the second scan, and should leave no stone
1762 * unturned looking for a free page.
1763 */
dd1a239f 1764static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1765 nodemask_t *allowednodes)
1766{
1767 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1768 int i; /* index of *z in zonelist zones */
1769 int n; /* node that zone *z is on */
1770
1771 zlc = zonelist->zlcache_ptr;
1772 if (!zlc)
1773 return 1;
1774
dd1a239f 1775 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1776 n = zlc->z_to_n[i];
1777
1778 /* This zone is worth trying if it is allowed but not full */
1779 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1780}
1781
1782/*
1783 * Given 'z' scanning a zonelist, set the corresponding bit in
1784 * zlc->fullzones, so that subsequent attempts to allocate a page
1785 * from that zone don't waste time re-examining it.
1786 */
dd1a239f 1787static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1788{
1789 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1790 int i; /* index of *z in zonelist zones */
1791
1792 zlc = zonelist->zlcache_ptr;
1793 if (!zlc)
1794 return;
1795
dd1a239f 1796 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1797
1798 set_bit(i, zlc->fullzones);
1799}
1800
76d3fbf8
MG
1801/*
1802 * clear all zones full, called after direct reclaim makes progress so that
1803 * a zone that was recently full is not skipped over for up to a second
1804 */
1805static void zlc_clear_zones_full(struct zonelist *zonelist)
1806{
1807 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1808
1809 zlc = zonelist->zlcache_ptr;
1810 if (!zlc)
1811 return;
1812
1813 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1814}
1815
9276b1bc
PJ
1816#else /* CONFIG_NUMA */
1817
1818static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1819{
1820 return NULL;
1821}
1822
dd1a239f 1823static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1824 nodemask_t *allowednodes)
1825{
1826 return 1;
1827}
1828
dd1a239f 1829static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1830{
1831}
76d3fbf8
MG
1832
1833static void zlc_clear_zones_full(struct zonelist *zonelist)
1834{
1835}
9276b1bc
PJ
1836#endif /* CONFIG_NUMA */
1837
7fb1d9fc 1838/*
0798e519 1839 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1840 * a page.
1841 */
1842static struct page *
19770b32 1843get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1844 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1845 struct zone *preferred_zone, int migratetype)
753ee728 1846{
dd1a239f 1847 struct zoneref *z;
7fb1d9fc 1848 struct page *page = NULL;
54a6eb5c 1849 int classzone_idx;
5117f45d 1850 struct zone *zone;
9276b1bc
PJ
1851 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1852 int zlc_active = 0; /* set if using zonelist_cache */
1853 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1854
19770b32 1855 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1856zonelist_scan:
7fb1d9fc 1857 /*
9276b1bc 1858 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1859 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1860 */
19770b32
MG
1861 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1862 high_zoneidx, nodemask) {
9276b1bc
PJ
1863 if (NUMA_BUILD && zlc_active &&
1864 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1865 continue;
7fb1d9fc 1866 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1867 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1868 continue;
a756cf59
JW
1869 /*
1870 * When allocating a page cache page for writing, we
1871 * want to get it from a zone that is within its dirty
1872 * limit, such that no single zone holds more than its
1873 * proportional share of globally allowed dirty pages.
1874 * The dirty limits take into account the zone's
1875 * lowmem reserves and high watermark so that kswapd
1876 * should be able to balance it without having to
1877 * write pages from its LRU list.
1878 *
1879 * This may look like it could increase pressure on
1880 * lower zones by failing allocations in higher zones
1881 * before they are full. But the pages that do spill
1882 * over are limited as the lower zones are protected
1883 * by this very same mechanism. It should not become
1884 * a practical burden to them.
1885 *
1886 * XXX: For now, allow allocations to potentially
1887 * exceed the per-zone dirty limit in the slowpath
1888 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1889 * which is important when on a NUMA setup the allowed
1890 * zones are together not big enough to reach the
1891 * global limit. The proper fix for these situations
1892 * will require awareness of zones in the
1893 * dirty-throttling and the flusher threads.
1894 */
1895 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1896 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1897 goto this_zone_full;
7fb1d9fc 1898
41858966 1899 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1900 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1901 unsigned long mark;
fa5e084e
MG
1902 int ret;
1903
41858966 1904 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1905 if (zone_watermark_ok(zone, order, mark,
1906 classzone_idx, alloc_flags))
1907 goto try_this_zone;
1908
cd38b115
MG
1909 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1910 /*
1911 * we do zlc_setup if there are multiple nodes
1912 * and before considering the first zone allowed
1913 * by the cpuset.
1914 */
1915 allowednodes = zlc_setup(zonelist, alloc_flags);
1916 zlc_active = 1;
1917 did_zlc_setup = 1;
1918 }
1919
fa5e084e
MG
1920 if (zone_reclaim_mode == 0)
1921 goto this_zone_full;
1922
cd38b115
MG
1923 /*
1924 * As we may have just activated ZLC, check if the first
1925 * eligible zone has failed zone_reclaim recently.
1926 */
1927 if (NUMA_BUILD && zlc_active &&
1928 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1929 continue;
1930
fa5e084e
MG
1931 ret = zone_reclaim(zone, gfp_mask, order);
1932 switch (ret) {
1933 case ZONE_RECLAIM_NOSCAN:
1934 /* did not scan */
cd38b115 1935 continue;
fa5e084e
MG
1936 case ZONE_RECLAIM_FULL:
1937 /* scanned but unreclaimable */
cd38b115 1938 continue;
fa5e084e
MG
1939 default:
1940 /* did we reclaim enough */
1941 if (!zone_watermark_ok(zone, order, mark,
1942 classzone_idx, alloc_flags))
9276b1bc 1943 goto this_zone_full;
0798e519 1944 }
7fb1d9fc
RS
1945 }
1946
fa5e084e 1947try_this_zone:
3dd28266
MG
1948 page = buffered_rmqueue(preferred_zone, zone, order,
1949 gfp_mask, migratetype);
0798e519 1950 if (page)
7fb1d9fc 1951 break;
9276b1bc
PJ
1952this_zone_full:
1953 if (NUMA_BUILD)
1954 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1955 }
9276b1bc
PJ
1956
1957 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1958 /* Disable zlc cache for second zonelist scan */
1959 zlc_active = 0;
1960 goto zonelist_scan;
1961 }
b121186a
AS
1962
1963 if (page)
1964 /*
1965 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1966 * necessary to allocate the page. The expectation is
1967 * that the caller is taking steps that will free more
1968 * memory. The caller should avoid the page being used
1969 * for !PFMEMALLOC purposes.
1970 */
1971 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1972
7fb1d9fc 1973 return page;
753ee728
MH
1974}
1975
29423e77
DR
1976/*
1977 * Large machines with many possible nodes should not always dump per-node
1978 * meminfo in irq context.
1979 */
1980static inline bool should_suppress_show_mem(void)
1981{
1982 bool ret = false;
1983
1984#if NODES_SHIFT > 8
1985 ret = in_interrupt();
1986#endif
1987 return ret;
1988}
1989
a238ab5b
DH
1990static DEFINE_RATELIMIT_STATE(nopage_rs,
1991 DEFAULT_RATELIMIT_INTERVAL,
1992 DEFAULT_RATELIMIT_BURST);
1993
1994void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1995{
a238ab5b
DH
1996 unsigned int filter = SHOW_MEM_FILTER_NODES;
1997
c0a32fc5
SG
1998 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1999 debug_guardpage_minorder() > 0)
a238ab5b
DH
2000 return;
2001
2002 /*
2003 * This documents exceptions given to allocations in certain
2004 * contexts that are allowed to allocate outside current's set
2005 * of allowed nodes.
2006 */
2007 if (!(gfp_mask & __GFP_NOMEMALLOC))
2008 if (test_thread_flag(TIF_MEMDIE) ||
2009 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2010 filter &= ~SHOW_MEM_FILTER_NODES;
2011 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2012 filter &= ~SHOW_MEM_FILTER_NODES;
2013
2014 if (fmt) {
3ee9a4f0
JP
2015 struct va_format vaf;
2016 va_list args;
2017
a238ab5b 2018 va_start(args, fmt);
3ee9a4f0
JP
2019
2020 vaf.fmt = fmt;
2021 vaf.va = &args;
2022
2023 pr_warn("%pV", &vaf);
2024
a238ab5b
DH
2025 va_end(args);
2026 }
2027
3ee9a4f0
JP
2028 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2029 current->comm, order, gfp_mask);
a238ab5b
DH
2030
2031 dump_stack();
2032 if (!should_suppress_show_mem())
2033 show_mem(filter);
2034}
2035
11e33f6a
MG
2036static inline int
2037should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2038 unsigned long did_some_progress,
11e33f6a 2039 unsigned long pages_reclaimed)
1da177e4 2040{
11e33f6a
MG
2041 /* Do not loop if specifically requested */
2042 if (gfp_mask & __GFP_NORETRY)
2043 return 0;
1da177e4 2044
f90ac398
MG
2045 /* Always retry if specifically requested */
2046 if (gfp_mask & __GFP_NOFAIL)
2047 return 1;
2048
2049 /*
2050 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2051 * making forward progress without invoking OOM. Suspend also disables
2052 * storage devices so kswapd will not help. Bail if we are suspending.
2053 */
2054 if (!did_some_progress && pm_suspended_storage())
2055 return 0;
2056
11e33f6a
MG
2057 /*
2058 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2059 * means __GFP_NOFAIL, but that may not be true in other
2060 * implementations.
2061 */
2062 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2063 return 1;
2064
2065 /*
2066 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2067 * specified, then we retry until we no longer reclaim any pages
2068 * (above), or we've reclaimed an order of pages at least as
2069 * large as the allocation's order. In both cases, if the
2070 * allocation still fails, we stop retrying.
2071 */
2072 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2073 return 1;
cf40bd16 2074
11e33f6a
MG
2075 return 0;
2076}
933e312e 2077
11e33f6a
MG
2078static inline struct page *
2079__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2080 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2081 nodemask_t *nodemask, struct zone *preferred_zone,
2082 int migratetype)
11e33f6a
MG
2083{
2084 struct page *page;
2085
2086 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2087 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2088 schedule_timeout_uninterruptible(1);
1da177e4
LT
2089 return NULL;
2090 }
6b1de916 2091
11e33f6a
MG
2092 /*
2093 * Go through the zonelist yet one more time, keep very high watermark
2094 * here, this is only to catch a parallel oom killing, we must fail if
2095 * we're still under heavy pressure.
2096 */
2097 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2098 order, zonelist, high_zoneidx,
5117f45d 2099 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2100 preferred_zone, migratetype);
7fb1d9fc 2101 if (page)
11e33f6a
MG
2102 goto out;
2103
4365a567
KH
2104 if (!(gfp_mask & __GFP_NOFAIL)) {
2105 /* The OOM killer will not help higher order allocs */
2106 if (order > PAGE_ALLOC_COSTLY_ORDER)
2107 goto out;
03668b3c
DR
2108 /* The OOM killer does not needlessly kill tasks for lowmem */
2109 if (high_zoneidx < ZONE_NORMAL)
2110 goto out;
4365a567
KH
2111 /*
2112 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2113 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2114 * The caller should handle page allocation failure by itself if
2115 * it specifies __GFP_THISNODE.
2116 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2117 */
2118 if (gfp_mask & __GFP_THISNODE)
2119 goto out;
2120 }
11e33f6a 2121 /* Exhausted what can be done so it's blamo time */
08ab9b10 2122 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2123
2124out:
2125 clear_zonelist_oom(zonelist, gfp_mask);
2126 return page;
2127}
2128
56de7263
MG
2129#ifdef CONFIG_COMPACTION
2130/* Try memory compaction for high-order allocations before reclaim */
2131static struct page *
2132__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2133 struct zonelist *zonelist, enum zone_type high_zoneidx,
2134 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2135 int migratetype, bool sync_migration,
c67fe375 2136 bool *contended_compaction, bool *deferred_compaction,
66199712 2137 unsigned long *did_some_progress)
56de7263 2138{
1fb3f8ca 2139 struct page *page = NULL;
56de7263 2140
66199712 2141 if (!order)
56de7263
MG
2142 return NULL;
2143
aff62249 2144 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2145 *deferred_compaction = true;
2146 return NULL;
2147 }
2148
c06b1fca 2149 current->flags |= PF_MEMALLOC;
56de7263 2150 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2151 nodemask, sync_migration,
1fb3f8ca 2152 contended_compaction, &page);
c06b1fca 2153 current->flags &= ~PF_MEMALLOC;
56de7263 2154
1fb3f8ca
MG
2155 /* If compaction captured a page, prep and use it */
2156 if (page) {
2157 prep_new_page(page, order, gfp_mask);
2158 goto got_page;
2159 }
2160
2161 if (*did_some_progress != COMPACT_SKIPPED) {
56de7263
MG
2162 /* Page migration frees to the PCP lists but we want merging */
2163 drain_pages(get_cpu());
2164 put_cpu();
2165
2166 page = get_page_from_freelist(gfp_mask, nodemask,
2167 order, zonelist, high_zoneidx,
cfd19c5a
MG
2168 alloc_flags & ~ALLOC_NO_WATERMARKS,
2169 preferred_zone, migratetype);
56de7263 2170 if (page) {
1fb3f8ca 2171got_page:
4f92e258
MG
2172 preferred_zone->compact_considered = 0;
2173 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2174 if (order >= preferred_zone->compact_order_failed)
2175 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2176 count_vm_event(COMPACTSUCCESS);
2177 return page;
2178 }
2179
2180 /*
2181 * It's bad if compaction run occurs and fails.
2182 * The most likely reason is that pages exist,
2183 * but not enough to satisfy watermarks.
2184 */
2185 count_vm_event(COMPACTFAIL);
66199712
MG
2186
2187 /*
2188 * As async compaction considers a subset of pageblocks, only
2189 * defer if the failure was a sync compaction failure.
2190 */
2191 if (sync_migration)
aff62249 2192 defer_compaction(preferred_zone, order);
56de7263
MG
2193
2194 cond_resched();
2195 }
2196
2197 return NULL;
2198}
2199#else
2200static inline struct page *
2201__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2202 struct zonelist *zonelist, enum zone_type high_zoneidx,
2203 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2204 int migratetype, bool sync_migration,
c67fe375 2205 bool *contended_compaction, bool *deferred_compaction,
66199712 2206 unsigned long *did_some_progress)
56de7263
MG
2207{
2208 return NULL;
2209}
2210#endif /* CONFIG_COMPACTION */
2211
bba90710
MS
2212/* Perform direct synchronous page reclaim */
2213static int
2214__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2215 nodemask_t *nodemask)
11e33f6a 2216{
11e33f6a 2217 struct reclaim_state reclaim_state;
bba90710 2218 int progress;
11e33f6a
MG
2219
2220 cond_resched();
2221
2222 /* We now go into synchronous reclaim */
2223 cpuset_memory_pressure_bump();
c06b1fca 2224 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2225 lockdep_set_current_reclaim_state(gfp_mask);
2226 reclaim_state.reclaimed_slab = 0;
c06b1fca 2227 current->reclaim_state = &reclaim_state;
11e33f6a 2228
bba90710 2229 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2230
c06b1fca 2231 current->reclaim_state = NULL;
11e33f6a 2232 lockdep_clear_current_reclaim_state();
c06b1fca 2233 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2234
2235 cond_resched();
2236
bba90710
MS
2237 return progress;
2238}
2239
2240/* The really slow allocator path where we enter direct reclaim */
2241static inline struct page *
2242__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2243 struct zonelist *zonelist, enum zone_type high_zoneidx,
2244 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2245 int migratetype, unsigned long *did_some_progress)
2246{
2247 struct page *page = NULL;
2248 bool drained = false;
2249
2250 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2251 nodemask);
9ee493ce
MG
2252 if (unlikely(!(*did_some_progress)))
2253 return NULL;
11e33f6a 2254
76d3fbf8
MG
2255 /* After successful reclaim, reconsider all zones for allocation */
2256 if (NUMA_BUILD)
2257 zlc_clear_zones_full(zonelist);
2258
9ee493ce
MG
2259retry:
2260 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2261 zonelist, high_zoneidx,
cfd19c5a
MG
2262 alloc_flags & ~ALLOC_NO_WATERMARKS,
2263 preferred_zone, migratetype);
9ee493ce
MG
2264
2265 /*
2266 * If an allocation failed after direct reclaim, it could be because
2267 * pages are pinned on the per-cpu lists. Drain them and try again
2268 */
2269 if (!page && !drained) {
2270 drain_all_pages();
2271 drained = true;
2272 goto retry;
2273 }
2274
11e33f6a
MG
2275 return page;
2276}
2277
1da177e4 2278/*
11e33f6a
MG
2279 * This is called in the allocator slow-path if the allocation request is of
2280 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2281 */
11e33f6a
MG
2282static inline struct page *
2283__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2284 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2285 nodemask_t *nodemask, struct zone *preferred_zone,
2286 int migratetype)
11e33f6a
MG
2287{
2288 struct page *page;
2289
2290 do {
2291 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2292 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2293 preferred_zone, migratetype);
11e33f6a
MG
2294
2295 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2296 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2297 } while (!page && (gfp_mask & __GFP_NOFAIL));
2298
2299 return page;
2300}
2301
2302static inline
2303void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2304 enum zone_type high_zoneidx,
2305 enum zone_type classzone_idx)
1da177e4 2306{
dd1a239f
MG
2307 struct zoneref *z;
2308 struct zone *zone;
1da177e4 2309
11e33f6a 2310 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2311 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2312}
cf40bd16 2313
341ce06f
PZ
2314static inline int
2315gfp_to_alloc_flags(gfp_t gfp_mask)
2316{
341ce06f
PZ
2317 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2318 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2319
a56f57ff 2320 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2321 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2322
341ce06f
PZ
2323 /*
2324 * The caller may dip into page reserves a bit more if the caller
2325 * cannot run direct reclaim, or if the caller has realtime scheduling
2326 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2327 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2328 */
e6223a3b 2329 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2330
341ce06f 2331 if (!wait) {
5c3240d9
AA
2332 /*
2333 * Not worth trying to allocate harder for
2334 * __GFP_NOMEMALLOC even if it can't schedule.
2335 */
2336 if (!(gfp_mask & __GFP_NOMEMALLOC))
2337 alloc_flags |= ALLOC_HARDER;
523b9458 2338 /*
341ce06f
PZ
2339 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2340 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2341 */
341ce06f 2342 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2343 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2344 alloc_flags |= ALLOC_HARDER;
2345
b37f1dd0
MG
2346 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2347 if (gfp_mask & __GFP_MEMALLOC)
2348 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2349 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2350 alloc_flags |= ALLOC_NO_WATERMARKS;
2351 else if (!in_interrupt() &&
2352 ((current->flags & PF_MEMALLOC) ||
2353 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2354 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2355 }
d95ea5d1
BZ
2356#ifdef CONFIG_CMA
2357 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2358 alloc_flags |= ALLOC_CMA;
2359#endif
341ce06f
PZ
2360 return alloc_flags;
2361}
2362
072bb0aa
MG
2363bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2364{
b37f1dd0 2365 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2366}
2367
11e33f6a
MG
2368static inline struct page *
2369__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2370 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2371 nodemask_t *nodemask, struct zone *preferred_zone,
2372 int migratetype)
11e33f6a
MG
2373{
2374 const gfp_t wait = gfp_mask & __GFP_WAIT;
2375 struct page *page = NULL;
2376 int alloc_flags;
2377 unsigned long pages_reclaimed = 0;
2378 unsigned long did_some_progress;
77f1fe6b 2379 bool sync_migration = false;
66199712 2380 bool deferred_compaction = false;
c67fe375 2381 bool contended_compaction = false;
1da177e4 2382
72807a74
MG
2383 /*
2384 * In the slowpath, we sanity check order to avoid ever trying to
2385 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2386 * be using allocators in order of preference for an area that is
2387 * too large.
2388 */
1fc28b70
MG
2389 if (order >= MAX_ORDER) {
2390 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2391 return NULL;
1fc28b70 2392 }
1da177e4 2393
952f3b51
CL
2394 /*
2395 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2396 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2397 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2398 * using a larger set of nodes after it has established that the
2399 * allowed per node queues are empty and that nodes are
2400 * over allocated.
2401 */
2402 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2403 goto nopage;
2404
cc4a6851 2405restart:
c6543459
RR
2406 wake_all_kswapd(order, zonelist, high_zoneidx,
2407 zone_idx(preferred_zone));
1da177e4 2408
9bf2229f 2409 /*
7fb1d9fc
RS
2410 * OK, we're below the kswapd watermark and have kicked background
2411 * reclaim. Now things get more complex, so set up alloc_flags according
2412 * to how we want to proceed.
9bf2229f 2413 */
341ce06f 2414 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2415
f33261d7
DR
2416 /*
2417 * Find the true preferred zone if the allocation is unconstrained by
2418 * cpusets.
2419 */
2420 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2421 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2422 &preferred_zone);
2423
cfa54a0f 2424rebalance:
341ce06f 2425 /* This is the last chance, in general, before the goto nopage. */
19770b32 2426 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2427 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2428 preferred_zone, migratetype);
7fb1d9fc
RS
2429 if (page)
2430 goto got_pg;
1da177e4 2431
11e33f6a 2432 /* Allocate without watermarks if the context allows */
341ce06f 2433 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2434 /*
2435 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2436 * the allocation is high priority and these type of
2437 * allocations are system rather than user orientated
2438 */
2439 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2440
341ce06f
PZ
2441 page = __alloc_pages_high_priority(gfp_mask, order,
2442 zonelist, high_zoneidx, nodemask,
2443 preferred_zone, migratetype);
cfd19c5a 2444 if (page) {
341ce06f 2445 goto got_pg;
cfd19c5a 2446 }
1da177e4
LT
2447 }
2448
2449 /* Atomic allocations - we can't balance anything */
2450 if (!wait)
2451 goto nopage;
2452
341ce06f 2453 /* Avoid recursion of direct reclaim */
c06b1fca 2454 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2455 goto nopage;
2456
6583bb64
DR
2457 /* Avoid allocations with no watermarks from looping endlessly */
2458 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2459 goto nopage;
2460
77f1fe6b
MG
2461 /*
2462 * Try direct compaction. The first pass is asynchronous. Subsequent
2463 * attempts after direct reclaim are synchronous
2464 */
56de7263
MG
2465 page = __alloc_pages_direct_compact(gfp_mask, order,
2466 zonelist, high_zoneidx,
2467 nodemask,
2468 alloc_flags, preferred_zone,
66199712 2469 migratetype, sync_migration,
c67fe375 2470 &contended_compaction,
66199712
MG
2471 &deferred_compaction,
2472 &did_some_progress);
56de7263
MG
2473 if (page)
2474 goto got_pg;
c6a140bf 2475 sync_migration = true;
56de7263 2476
66199712
MG
2477 /*
2478 * If compaction is deferred for high-order allocations, it is because
2479 * sync compaction recently failed. In this is the case and the caller
c67fe375
MG
2480 * requested a movable allocation that does not heavily disrupt the
2481 * system then fail the allocation instead of entering direct reclaim.
66199712 2482 */
c67fe375 2483 if ((deferred_compaction || contended_compaction) &&
c6543459 2484 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
66199712
MG
2485 goto nopage;
2486
11e33f6a
MG
2487 /* Try direct reclaim and then allocating */
2488 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2489 zonelist, high_zoneidx,
2490 nodemask,
5117f45d 2491 alloc_flags, preferred_zone,
3dd28266 2492 migratetype, &did_some_progress);
11e33f6a
MG
2493 if (page)
2494 goto got_pg;
1da177e4 2495
e33c3b5e 2496 /*
11e33f6a
MG
2497 * If we failed to make any progress reclaiming, then we are
2498 * running out of options and have to consider going OOM
e33c3b5e 2499 */
11e33f6a
MG
2500 if (!did_some_progress) {
2501 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2502 if (oom_killer_disabled)
2503 goto nopage;
29fd66d2
DR
2504 /* Coredumps can quickly deplete all memory reserves */
2505 if ((current->flags & PF_DUMPCORE) &&
2506 !(gfp_mask & __GFP_NOFAIL))
2507 goto nopage;
11e33f6a
MG
2508 page = __alloc_pages_may_oom(gfp_mask, order,
2509 zonelist, high_zoneidx,
3dd28266
MG
2510 nodemask, preferred_zone,
2511 migratetype);
11e33f6a
MG
2512 if (page)
2513 goto got_pg;
1da177e4 2514
03668b3c
DR
2515 if (!(gfp_mask & __GFP_NOFAIL)) {
2516 /*
2517 * The oom killer is not called for high-order
2518 * allocations that may fail, so if no progress
2519 * is being made, there are no other options and
2520 * retrying is unlikely to help.
2521 */
2522 if (order > PAGE_ALLOC_COSTLY_ORDER)
2523 goto nopage;
2524 /*
2525 * The oom killer is not called for lowmem
2526 * allocations to prevent needlessly killing
2527 * innocent tasks.
2528 */
2529 if (high_zoneidx < ZONE_NORMAL)
2530 goto nopage;
2531 }
e2c55dc8 2532
ff0ceb9d
DR
2533 goto restart;
2534 }
1da177e4
LT
2535 }
2536
11e33f6a 2537 /* Check if we should retry the allocation */
a41f24ea 2538 pages_reclaimed += did_some_progress;
f90ac398
MG
2539 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2540 pages_reclaimed)) {
11e33f6a 2541 /* Wait for some write requests to complete then retry */
0e093d99 2542 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2543 goto rebalance;
3e7d3449
MG
2544 } else {
2545 /*
2546 * High-order allocations do not necessarily loop after
2547 * direct reclaim and reclaim/compaction depends on compaction
2548 * being called after reclaim so call directly if necessary
2549 */
2550 page = __alloc_pages_direct_compact(gfp_mask, order,
2551 zonelist, high_zoneidx,
2552 nodemask,
2553 alloc_flags, preferred_zone,
66199712 2554 migratetype, sync_migration,
c67fe375 2555 &contended_compaction,
66199712
MG
2556 &deferred_compaction,
2557 &did_some_progress);
3e7d3449
MG
2558 if (page)
2559 goto got_pg;
1da177e4
LT
2560 }
2561
2562nopage:
a238ab5b 2563 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2564 return page;
1da177e4 2565got_pg:
b1eeab67
VN
2566 if (kmemcheck_enabled)
2567 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2568
072bb0aa 2569 return page;
1da177e4 2570}
11e33f6a
MG
2571
2572/*
2573 * This is the 'heart' of the zoned buddy allocator.
2574 */
2575struct page *
2576__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2577 struct zonelist *zonelist, nodemask_t *nodemask)
2578{
2579 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2580 struct zone *preferred_zone;
cc9a6c87 2581 struct page *page = NULL;
3dd28266 2582 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2583 unsigned int cpuset_mems_cookie;
d95ea5d1 2584 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
11e33f6a 2585
dcce284a
BH
2586 gfp_mask &= gfp_allowed_mask;
2587
11e33f6a
MG
2588 lockdep_trace_alloc(gfp_mask);
2589
2590 might_sleep_if(gfp_mask & __GFP_WAIT);
2591
2592 if (should_fail_alloc_page(gfp_mask, order))
2593 return NULL;
2594
2595 /*
2596 * Check the zones suitable for the gfp_mask contain at least one
2597 * valid zone. It's possible to have an empty zonelist as a result
2598 * of GFP_THISNODE and a memoryless node
2599 */
2600 if (unlikely(!zonelist->_zonerefs->zone))
2601 return NULL;
2602
cc9a6c87
MG
2603retry_cpuset:
2604 cpuset_mems_cookie = get_mems_allowed();
2605
5117f45d 2606 /* The preferred zone is used for statistics later */
f33261d7
DR
2607 first_zones_zonelist(zonelist, high_zoneidx,
2608 nodemask ? : &cpuset_current_mems_allowed,
2609 &preferred_zone);
cc9a6c87
MG
2610 if (!preferred_zone)
2611 goto out;
5117f45d 2612
d95ea5d1
BZ
2613#ifdef CONFIG_CMA
2614 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2615 alloc_flags |= ALLOC_CMA;
2616#endif
5117f45d 2617 /* First allocation attempt */
11e33f6a 2618 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2619 zonelist, high_zoneidx, alloc_flags,
3dd28266 2620 preferred_zone, migratetype);
11e33f6a
MG
2621 if (unlikely(!page))
2622 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2623 zonelist, high_zoneidx, nodemask,
3dd28266 2624 preferred_zone, migratetype);
11e33f6a 2625
4b4f278c 2626 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2627
2628out:
2629 /*
2630 * When updating a task's mems_allowed, it is possible to race with
2631 * parallel threads in such a way that an allocation can fail while
2632 * the mask is being updated. If a page allocation is about to fail,
2633 * check if the cpuset changed during allocation and if so, retry.
2634 */
2635 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2636 goto retry_cpuset;
2637
11e33f6a 2638 return page;
1da177e4 2639}
d239171e 2640EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2641
2642/*
2643 * Common helper functions.
2644 */
920c7a5d 2645unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2646{
945a1113
AM
2647 struct page *page;
2648
2649 /*
2650 * __get_free_pages() returns a 32-bit address, which cannot represent
2651 * a highmem page
2652 */
2653 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2654
1da177e4
LT
2655 page = alloc_pages(gfp_mask, order);
2656 if (!page)
2657 return 0;
2658 return (unsigned long) page_address(page);
2659}
1da177e4
LT
2660EXPORT_SYMBOL(__get_free_pages);
2661
920c7a5d 2662unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2663{
945a1113 2664 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2665}
1da177e4
LT
2666EXPORT_SYMBOL(get_zeroed_page);
2667
920c7a5d 2668void __free_pages(struct page *page, unsigned int order)
1da177e4 2669{
b5810039 2670 if (put_page_testzero(page)) {
1da177e4 2671 if (order == 0)
fc91668e 2672 free_hot_cold_page(page, 0);
1da177e4
LT
2673 else
2674 __free_pages_ok(page, order);
2675 }
2676}
2677
2678EXPORT_SYMBOL(__free_pages);
2679
920c7a5d 2680void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2681{
2682 if (addr != 0) {
725d704e 2683 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2684 __free_pages(virt_to_page((void *)addr), order);
2685 }
2686}
2687
2688EXPORT_SYMBOL(free_pages);
2689
ee85c2e1
AK
2690static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2691{
2692 if (addr) {
2693 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2694 unsigned long used = addr + PAGE_ALIGN(size);
2695
2696 split_page(virt_to_page((void *)addr), order);
2697 while (used < alloc_end) {
2698 free_page(used);
2699 used += PAGE_SIZE;
2700 }
2701 }
2702 return (void *)addr;
2703}
2704
2be0ffe2
TT
2705/**
2706 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2707 * @size: the number of bytes to allocate
2708 * @gfp_mask: GFP flags for the allocation
2709 *
2710 * This function is similar to alloc_pages(), except that it allocates the
2711 * minimum number of pages to satisfy the request. alloc_pages() can only
2712 * allocate memory in power-of-two pages.
2713 *
2714 * This function is also limited by MAX_ORDER.
2715 *
2716 * Memory allocated by this function must be released by free_pages_exact().
2717 */
2718void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2719{
2720 unsigned int order = get_order(size);
2721 unsigned long addr;
2722
2723 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2724 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2725}
2726EXPORT_SYMBOL(alloc_pages_exact);
2727
ee85c2e1
AK
2728/**
2729 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2730 * pages on a node.
b5e6ab58 2731 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2732 * @size: the number of bytes to allocate
2733 * @gfp_mask: GFP flags for the allocation
2734 *
2735 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2736 * back.
2737 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2738 * but is not exact.
2739 */
2740void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2741{
2742 unsigned order = get_order(size);
2743 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2744 if (!p)
2745 return NULL;
2746 return make_alloc_exact((unsigned long)page_address(p), order, size);
2747}
2748EXPORT_SYMBOL(alloc_pages_exact_nid);
2749
2be0ffe2
TT
2750/**
2751 * free_pages_exact - release memory allocated via alloc_pages_exact()
2752 * @virt: the value returned by alloc_pages_exact.
2753 * @size: size of allocation, same value as passed to alloc_pages_exact().
2754 *
2755 * Release the memory allocated by a previous call to alloc_pages_exact.
2756 */
2757void free_pages_exact(void *virt, size_t size)
2758{
2759 unsigned long addr = (unsigned long)virt;
2760 unsigned long end = addr + PAGE_ALIGN(size);
2761
2762 while (addr < end) {
2763 free_page(addr);
2764 addr += PAGE_SIZE;
2765 }
2766}
2767EXPORT_SYMBOL(free_pages_exact);
2768
1da177e4
LT
2769static unsigned int nr_free_zone_pages(int offset)
2770{
dd1a239f 2771 struct zoneref *z;
54a6eb5c
MG
2772 struct zone *zone;
2773
e310fd43 2774 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2775 unsigned int sum = 0;
2776
0e88460d 2777 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2778
54a6eb5c 2779 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2780 unsigned long size = zone->present_pages;
41858966 2781 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2782 if (size > high)
2783 sum += size - high;
1da177e4
LT
2784 }
2785
2786 return sum;
2787}
2788
2789/*
2790 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2791 */
2792unsigned int nr_free_buffer_pages(void)
2793{
af4ca457 2794 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2795}
c2f1a551 2796EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2797
2798/*
2799 * Amount of free RAM allocatable within all zones
2800 */
2801unsigned int nr_free_pagecache_pages(void)
2802{
2a1e274a 2803 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2804}
08e0f6a9
CL
2805
2806static inline void show_node(struct zone *zone)
1da177e4 2807{
08e0f6a9 2808 if (NUMA_BUILD)
25ba77c1 2809 printk("Node %d ", zone_to_nid(zone));
1da177e4 2810}
1da177e4 2811
1da177e4
LT
2812void si_meminfo(struct sysinfo *val)
2813{
2814 val->totalram = totalram_pages;
2815 val->sharedram = 0;
d23ad423 2816 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2817 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2818 val->totalhigh = totalhigh_pages;
2819 val->freehigh = nr_free_highpages();
1da177e4
LT
2820 val->mem_unit = PAGE_SIZE;
2821}
2822
2823EXPORT_SYMBOL(si_meminfo);
2824
2825#ifdef CONFIG_NUMA
2826void si_meminfo_node(struct sysinfo *val, int nid)
2827{
2828 pg_data_t *pgdat = NODE_DATA(nid);
2829
2830 val->totalram = pgdat->node_present_pages;
d23ad423 2831 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2832#ifdef CONFIG_HIGHMEM
1da177e4 2833 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2834 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2835 NR_FREE_PAGES);
98d2b0eb
CL
2836#else
2837 val->totalhigh = 0;
2838 val->freehigh = 0;
2839#endif
1da177e4
LT
2840 val->mem_unit = PAGE_SIZE;
2841}
2842#endif
2843
ddd588b5 2844/*
7bf02ea2
DR
2845 * Determine whether the node should be displayed or not, depending on whether
2846 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2847 */
7bf02ea2 2848bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2849{
2850 bool ret = false;
cc9a6c87 2851 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2852
2853 if (!(flags & SHOW_MEM_FILTER_NODES))
2854 goto out;
2855
cc9a6c87
MG
2856 do {
2857 cpuset_mems_cookie = get_mems_allowed();
2858 ret = !node_isset(nid, cpuset_current_mems_allowed);
2859 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2860out:
2861 return ret;
2862}
2863
1da177e4
LT
2864#define K(x) ((x) << (PAGE_SHIFT-10))
2865
2866/*
2867 * Show free area list (used inside shift_scroll-lock stuff)
2868 * We also calculate the percentage fragmentation. We do this by counting the
2869 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2870 * Suppresses nodes that are not allowed by current's cpuset if
2871 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2872 */
7bf02ea2 2873void show_free_areas(unsigned int filter)
1da177e4 2874{
c7241913 2875 int cpu;
1da177e4
LT
2876 struct zone *zone;
2877
ee99c71c 2878 for_each_populated_zone(zone) {
7bf02ea2 2879 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2880 continue;
c7241913
JS
2881 show_node(zone);
2882 printk("%s per-cpu:\n", zone->name);
1da177e4 2883
6b482c67 2884 for_each_online_cpu(cpu) {
1da177e4
LT
2885 struct per_cpu_pageset *pageset;
2886
99dcc3e5 2887 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2888
3dfa5721
CL
2889 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2890 cpu, pageset->pcp.high,
2891 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2892 }
2893 }
2894
a731286d
KM
2895 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2896 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2897 " unevictable:%lu"
b76146ed 2898 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2899 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2900 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2901 " free_cma:%lu\n",
4f98a2fe 2902 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2903 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2904 global_page_state(NR_ISOLATED_ANON),
2905 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2906 global_page_state(NR_INACTIVE_FILE),
a731286d 2907 global_page_state(NR_ISOLATED_FILE),
7b854121 2908 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2909 global_page_state(NR_FILE_DIRTY),
ce866b34 2910 global_page_state(NR_WRITEBACK),
fd39fc85 2911 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2912 global_page_state(NR_FREE_PAGES),
3701b033
KM
2913 global_page_state(NR_SLAB_RECLAIMABLE),
2914 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2915 global_page_state(NR_FILE_MAPPED),
4b02108a 2916 global_page_state(NR_SHMEM),
a25700a5 2917 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2918 global_page_state(NR_BOUNCE),
2919 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2920
ee99c71c 2921 for_each_populated_zone(zone) {
1da177e4
LT
2922 int i;
2923
7bf02ea2 2924 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2925 continue;
1da177e4
LT
2926 show_node(zone);
2927 printk("%s"
2928 " free:%lukB"
2929 " min:%lukB"
2930 " low:%lukB"
2931 " high:%lukB"
4f98a2fe
RR
2932 " active_anon:%lukB"
2933 " inactive_anon:%lukB"
2934 " active_file:%lukB"
2935 " inactive_file:%lukB"
7b854121 2936 " unevictable:%lukB"
a731286d
KM
2937 " isolated(anon):%lukB"
2938 " isolated(file):%lukB"
1da177e4 2939 " present:%lukB"
4a0aa73f
KM
2940 " mlocked:%lukB"
2941 " dirty:%lukB"
2942 " writeback:%lukB"
2943 " mapped:%lukB"
4b02108a 2944 " shmem:%lukB"
4a0aa73f
KM
2945 " slab_reclaimable:%lukB"
2946 " slab_unreclaimable:%lukB"
c6a7f572 2947 " kernel_stack:%lukB"
4a0aa73f
KM
2948 " pagetables:%lukB"
2949 " unstable:%lukB"
2950 " bounce:%lukB"
d1ce749a 2951 " free_cma:%lukB"
4a0aa73f 2952 " writeback_tmp:%lukB"
1da177e4
LT
2953 " pages_scanned:%lu"
2954 " all_unreclaimable? %s"
2955 "\n",
2956 zone->name,
88f5acf8 2957 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2958 K(min_wmark_pages(zone)),
2959 K(low_wmark_pages(zone)),
2960 K(high_wmark_pages(zone)),
4f98a2fe
RR
2961 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2962 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2963 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2964 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2965 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2966 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2967 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2968 K(zone->present_pages),
4a0aa73f
KM
2969 K(zone_page_state(zone, NR_MLOCK)),
2970 K(zone_page_state(zone, NR_FILE_DIRTY)),
2971 K(zone_page_state(zone, NR_WRITEBACK)),
2972 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2973 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2974 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2975 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2976 zone_page_state(zone, NR_KERNEL_STACK) *
2977 THREAD_SIZE / 1024,
4a0aa73f
KM
2978 K(zone_page_state(zone, NR_PAGETABLE)),
2979 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2980 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 2981 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 2982 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2983 zone->pages_scanned,
93e4a89a 2984 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2985 );
2986 printk("lowmem_reserve[]:");
2987 for (i = 0; i < MAX_NR_ZONES; i++)
2988 printk(" %lu", zone->lowmem_reserve[i]);
2989 printk("\n");
2990 }
2991
ee99c71c 2992 for_each_populated_zone(zone) {
8f9de51a 2993 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2994
7bf02ea2 2995 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2996 continue;
1da177e4
LT
2997 show_node(zone);
2998 printk("%s: ", zone->name);
1da177e4
LT
2999
3000 spin_lock_irqsave(&zone->lock, flags);
3001 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
3002 nr[order] = zone->free_area[order].nr_free;
3003 total += nr[order] << order;
1da177e4
LT
3004 }
3005 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
3006 for (order = 0; order < MAX_ORDER; order++)
3007 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
3008 printk("= %lukB\n", K(total));
3009 }
3010
e6f3602d
LW
3011 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3012
1da177e4
LT
3013 show_swap_cache_info();
3014}
3015
19770b32
MG
3016static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3017{
3018 zoneref->zone = zone;
3019 zoneref->zone_idx = zone_idx(zone);
3020}
3021
1da177e4
LT
3022/*
3023 * Builds allocation fallback zone lists.
1a93205b
CL
3024 *
3025 * Add all populated zones of a node to the zonelist.
1da177e4 3026 */
f0c0b2b8
KH
3027static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3028 int nr_zones, enum zone_type zone_type)
1da177e4 3029{
1a93205b
CL
3030 struct zone *zone;
3031
98d2b0eb 3032 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3033 zone_type++;
02a68a5e
CL
3034
3035 do {
2f6726e5 3036 zone_type--;
070f8032 3037 zone = pgdat->node_zones + zone_type;
1a93205b 3038 if (populated_zone(zone)) {
dd1a239f
MG
3039 zoneref_set_zone(zone,
3040 &zonelist->_zonerefs[nr_zones++]);
070f8032 3041 check_highest_zone(zone_type);
1da177e4 3042 }
02a68a5e 3043
2f6726e5 3044 } while (zone_type);
070f8032 3045 return nr_zones;
1da177e4
LT
3046}
3047
f0c0b2b8
KH
3048
3049/*
3050 * zonelist_order:
3051 * 0 = automatic detection of better ordering.
3052 * 1 = order by ([node] distance, -zonetype)
3053 * 2 = order by (-zonetype, [node] distance)
3054 *
3055 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3056 * the same zonelist. So only NUMA can configure this param.
3057 */
3058#define ZONELIST_ORDER_DEFAULT 0
3059#define ZONELIST_ORDER_NODE 1
3060#define ZONELIST_ORDER_ZONE 2
3061
3062/* zonelist order in the kernel.
3063 * set_zonelist_order() will set this to NODE or ZONE.
3064 */
3065static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3066static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3067
3068
1da177e4 3069#ifdef CONFIG_NUMA
f0c0b2b8
KH
3070/* The value user specified ....changed by config */
3071static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3072/* string for sysctl */
3073#define NUMA_ZONELIST_ORDER_LEN 16
3074char numa_zonelist_order[16] = "default";
3075
3076/*
3077 * interface for configure zonelist ordering.
3078 * command line option "numa_zonelist_order"
3079 * = "[dD]efault - default, automatic configuration.
3080 * = "[nN]ode - order by node locality, then by zone within node
3081 * = "[zZ]one - order by zone, then by locality within zone
3082 */
3083
3084static int __parse_numa_zonelist_order(char *s)
3085{
3086 if (*s == 'd' || *s == 'D') {
3087 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3088 } else if (*s == 'n' || *s == 'N') {
3089 user_zonelist_order = ZONELIST_ORDER_NODE;
3090 } else if (*s == 'z' || *s == 'Z') {
3091 user_zonelist_order = ZONELIST_ORDER_ZONE;
3092 } else {
3093 printk(KERN_WARNING
3094 "Ignoring invalid numa_zonelist_order value: "
3095 "%s\n", s);
3096 return -EINVAL;
3097 }
3098 return 0;
3099}
3100
3101static __init int setup_numa_zonelist_order(char *s)
3102{
ecb256f8
VL
3103 int ret;
3104
3105 if (!s)
3106 return 0;
3107
3108 ret = __parse_numa_zonelist_order(s);
3109 if (ret == 0)
3110 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3111
3112 return ret;
f0c0b2b8
KH
3113}
3114early_param("numa_zonelist_order", setup_numa_zonelist_order);
3115
3116/*
3117 * sysctl handler for numa_zonelist_order
3118 */
3119int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3120 void __user *buffer, size_t *length,
f0c0b2b8
KH
3121 loff_t *ppos)
3122{
3123 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3124 int ret;
443c6f14 3125 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3126
443c6f14 3127 mutex_lock(&zl_order_mutex);
f0c0b2b8 3128 if (write)
443c6f14 3129 strcpy(saved_string, (char*)table->data);
8d65af78 3130 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3131 if (ret)
443c6f14 3132 goto out;
f0c0b2b8
KH
3133 if (write) {
3134 int oldval = user_zonelist_order;
3135 if (__parse_numa_zonelist_order((char*)table->data)) {
3136 /*
3137 * bogus value. restore saved string
3138 */
3139 strncpy((char*)table->data, saved_string,
3140 NUMA_ZONELIST_ORDER_LEN);
3141 user_zonelist_order = oldval;
4eaf3f64
HL
3142 } else if (oldval != user_zonelist_order) {
3143 mutex_lock(&zonelists_mutex);
9adb62a5 3144 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3145 mutex_unlock(&zonelists_mutex);
3146 }
f0c0b2b8 3147 }
443c6f14
AK
3148out:
3149 mutex_unlock(&zl_order_mutex);
3150 return ret;
f0c0b2b8
KH
3151}
3152
3153
62bc62a8 3154#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3155static int node_load[MAX_NUMNODES];
3156
1da177e4 3157/**
4dc3b16b 3158 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3159 * @node: node whose fallback list we're appending
3160 * @used_node_mask: nodemask_t of already used nodes
3161 *
3162 * We use a number of factors to determine which is the next node that should
3163 * appear on a given node's fallback list. The node should not have appeared
3164 * already in @node's fallback list, and it should be the next closest node
3165 * according to the distance array (which contains arbitrary distance values
3166 * from each node to each node in the system), and should also prefer nodes
3167 * with no CPUs, since presumably they'll have very little allocation pressure
3168 * on them otherwise.
3169 * It returns -1 if no node is found.
3170 */
f0c0b2b8 3171static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3172{
4cf808eb 3173 int n, val;
1da177e4
LT
3174 int min_val = INT_MAX;
3175 int best_node = -1;
a70f7302 3176 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3177
4cf808eb
LT
3178 /* Use the local node if we haven't already */
3179 if (!node_isset(node, *used_node_mask)) {
3180 node_set(node, *used_node_mask);
3181 return node;
3182 }
1da177e4 3183
37b07e41 3184 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3185
3186 /* Don't want a node to appear more than once */
3187 if (node_isset(n, *used_node_mask))
3188 continue;
3189
1da177e4
LT
3190 /* Use the distance array to find the distance */
3191 val = node_distance(node, n);
3192
4cf808eb
LT
3193 /* Penalize nodes under us ("prefer the next node") */
3194 val += (n < node);
3195
1da177e4 3196 /* Give preference to headless and unused nodes */
a70f7302
RR
3197 tmp = cpumask_of_node(n);
3198 if (!cpumask_empty(tmp))
1da177e4
LT
3199 val += PENALTY_FOR_NODE_WITH_CPUS;
3200
3201 /* Slight preference for less loaded node */
3202 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3203 val += node_load[n];
3204
3205 if (val < min_val) {
3206 min_val = val;
3207 best_node = n;
3208 }
3209 }
3210
3211 if (best_node >= 0)
3212 node_set(best_node, *used_node_mask);
3213
3214 return best_node;
3215}
3216
f0c0b2b8
KH
3217
3218/*
3219 * Build zonelists ordered by node and zones within node.
3220 * This results in maximum locality--normal zone overflows into local
3221 * DMA zone, if any--but risks exhausting DMA zone.
3222 */
3223static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3224{
f0c0b2b8 3225 int j;
1da177e4 3226 struct zonelist *zonelist;
f0c0b2b8 3227
54a6eb5c 3228 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3229 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3230 ;
3231 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3232 MAX_NR_ZONES - 1);
dd1a239f
MG
3233 zonelist->_zonerefs[j].zone = NULL;
3234 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3235}
3236
523b9458
CL
3237/*
3238 * Build gfp_thisnode zonelists
3239 */
3240static void build_thisnode_zonelists(pg_data_t *pgdat)
3241{
523b9458
CL
3242 int j;
3243 struct zonelist *zonelist;
3244
54a6eb5c
MG
3245 zonelist = &pgdat->node_zonelists[1];
3246 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3247 zonelist->_zonerefs[j].zone = NULL;
3248 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3249}
3250
f0c0b2b8
KH
3251/*
3252 * Build zonelists ordered by zone and nodes within zones.
3253 * This results in conserving DMA zone[s] until all Normal memory is
3254 * exhausted, but results in overflowing to remote node while memory
3255 * may still exist in local DMA zone.
3256 */
3257static int node_order[MAX_NUMNODES];
3258
3259static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3260{
f0c0b2b8
KH
3261 int pos, j, node;
3262 int zone_type; /* needs to be signed */
3263 struct zone *z;
3264 struct zonelist *zonelist;
3265
54a6eb5c
MG
3266 zonelist = &pgdat->node_zonelists[0];
3267 pos = 0;
3268 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3269 for (j = 0; j < nr_nodes; j++) {
3270 node = node_order[j];
3271 z = &NODE_DATA(node)->node_zones[zone_type];
3272 if (populated_zone(z)) {
dd1a239f
MG
3273 zoneref_set_zone(z,
3274 &zonelist->_zonerefs[pos++]);
54a6eb5c 3275 check_highest_zone(zone_type);
f0c0b2b8
KH
3276 }
3277 }
f0c0b2b8 3278 }
dd1a239f
MG
3279 zonelist->_zonerefs[pos].zone = NULL;
3280 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3281}
3282
3283static int default_zonelist_order(void)
3284{
3285 int nid, zone_type;
3286 unsigned long low_kmem_size,total_size;
3287 struct zone *z;
3288 int average_size;
3289 /*
88393161 3290 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3291 * If they are really small and used heavily, the system can fall
3292 * into OOM very easily.
e325c90f 3293 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3294 */
3295 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3296 low_kmem_size = 0;
3297 total_size = 0;
3298 for_each_online_node(nid) {
3299 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3300 z = &NODE_DATA(nid)->node_zones[zone_type];
3301 if (populated_zone(z)) {
3302 if (zone_type < ZONE_NORMAL)
3303 low_kmem_size += z->present_pages;
3304 total_size += z->present_pages;
e325c90f
DR
3305 } else if (zone_type == ZONE_NORMAL) {
3306 /*
3307 * If any node has only lowmem, then node order
3308 * is preferred to allow kernel allocations
3309 * locally; otherwise, they can easily infringe
3310 * on other nodes when there is an abundance of
3311 * lowmem available to allocate from.
3312 */
3313 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3314 }
3315 }
3316 }
3317 if (!low_kmem_size || /* there are no DMA area. */
3318 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3319 return ZONELIST_ORDER_NODE;
3320 /*
3321 * look into each node's config.
3322 * If there is a node whose DMA/DMA32 memory is very big area on
3323 * local memory, NODE_ORDER may be suitable.
3324 */
37b07e41
LS
3325 average_size = total_size /
3326 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3327 for_each_online_node(nid) {
3328 low_kmem_size = 0;
3329 total_size = 0;
3330 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3331 z = &NODE_DATA(nid)->node_zones[zone_type];
3332 if (populated_zone(z)) {
3333 if (zone_type < ZONE_NORMAL)
3334 low_kmem_size += z->present_pages;
3335 total_size += z->present_pages;
3336 }
3337 }
3338 if (low_kmem_size &&
3339 total_size > average_size && /* ignore small node */
3340 low_kmem_size > total_size * 70/100)
3341 return ZONELIST_ORDER_NODE;
3342 }
3343 return ZONELIST_ORDER_ZONE;
3344}
3345
3346static void set_zonelist_order(void)
3347{
3348 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3349 current_zonelist_order = default_zonelist_order();
3350 else
3351 current_zonelist_order = user_zonelist_order;
3352}
3353
3354static void build_zonelists(pg_data_t *pgdat)
3355{
3356 int j, node, load;
3357 enum zone_type i;
1da177e4 3358 nodemask_t used_mask;
f0c0b2b8
KH
3359 int local_node, prev_node;
3360 struct zonelist *zonelist;
3361 int order = current_zonelist_order;
1da177e4
LT
3362
3363 /* initialize zonelists */
523b9458 3364 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3365 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3366 zonelist->_zonerefs[0].zone = NULL;
3367 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3368 }
3369
3370 /* NUMA-aware ordering of nodes */
3371 local_node = pgdat->node_id;
62bc62a8 3372 load = nr_online_nodes;
1da177e4
LT
3373 prev_node = local_node;
3374 nodes_clear(used_mask);
f0c0b2b8 3375
f0c0b2b8
KH
3376 memset(node_order, 0, sizeof(node_order));
3377 j = 0;
3378
1da177e4 3379 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3380 int distance = node_distance(local_node, node);
3381
3382 /*
3383 * If another node is sufficiently far away then it is better
3384 * to reclaim pages in a zone before going off node.
3385 */
3386 if (distance > RECLAIM_DISTANCE)
3387 zone_reclaim_mode = 1;
3388
1da177e4
LT
3389 /*
3390 * We don't want to pressure a particular node.
3391 * So adding penalty to the first node in same
3392 * distance group to make it round-robin.
3393 */
9eeff239 3394 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3395 node_load[node] = load;
3396
1da177e4
LT
3397 prev_node = node;
3398 load--;
f0c0b2b8
KH
3399 if (order == ZONELIST_ORDER_NODE)
3400 build_zonelists_in_node_order(pgdat, node);
3401 else
3402 node_order[j++] = node; /* remember order */
3403 }
1da177e4 3404
f0c0b2b8
KH
3405 if (order == ZONELIST_ORDER_ZONE) {
3406 /* calculate node order -- i.e., DMA last! */
3407 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3408 }
523b9458
CL
3409
3410 build_thisnode_zonelists(pgdat);
1da177e4
LT
3411}
3412
9276b1bc 3413/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3414static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3415{
54a6eb5c
MG
3416 struct zonelist *zonelist;
3417 struct zonelist_cache *zlc;
dd1a239f 3418 struct zoneref *z;
9276b1bc 3419
54a6eb5c
MG
3420 zonelist = &pgdat->node_zonelists[0];
3421 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3422 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3423 for (z = zonelist->_zonerefs; z->zone; z++)
3424 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3425}
3426
7aac7898
LS
3427#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3428/*
3429 * Return node id of node used for "local" allocations.
3430 * I.e., first node id of first zone in arg node's generic zonelist.
3431 * Used for initializing percpu 'numa_mem', which is used primarily
3432 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3433 */
3434int local_memory_node(int node)
3435{
3436 struct zone *zone;
3437
3438 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3439 gfp_zone(GFP_KERNEL),
3440 NULL,
3441 &zone);
3442 return zone->node;
3443}
3444#endif
f0c0b2b8 3445
1da177e4
LT
3446#else /* CONFIG_NUMA */
3447
f0c0b2b8
KH
3448static void set_zonelist_order(void)
3449{
3450 current_zonelist_order = ZONELIST_ORDER_ZONE;
3451}
3452
3453static void build_zonelists(pg_data_t *pgdat)
1da177e4 3454{
19655d34 3455 int node, local_node;
54a6eb5c
MG
3456 enum zone_type j;
3457 struct zonelist *zonelist;
1da177e4
LT
3458
3459 local_node = pgdat->node_id;
1da177e4 3460
54a6eb5c
MG
3461 zonelist = &pgdat->node_zonelists[0];
3462 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3463
54a6eb5c
MG
3464 /*
3465 * Now we build the zonelist so that it contains the zones
3466 * of all the other nodes.
3467 * We don't want to pressure a particular node, so when
3468 * building the zones for node N, we make sure that the
3469 * zones coming right after the local ones are those from
3470 * node N+1 (modulo N)
3471 */
3472 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3473 if (!node_online(node))
3474 continue;
3475 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3476 MAX_NR_ZONES - 1);
1da177e4 3477 }
54a6eb5c
MG
3478 for (node = 0; node < local_node; node++) {
3479 if (!node_online(node))
3480 continue;
3481 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3482 MAX_NR_ZONES - 1);
3483 }
3484
dd1a239f
MG
3485 zonelist->_zonerefs[j].zone = NULL;
3486 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3487}
3488
9276b1bc 3489/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3490static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3491{
54a6eb5c 3492 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3493}
3494
1da177e4
LT
3495#endif /* CONFIG_NUMA */
3496
99dcc3e5
CL
3497/*
3498 * Boot pageset table. One per cpu which is going to be used for all
3499 * zones and all nodes. The parameters will be set in such a way
3500 * that an item put on a list will immediately be handed over to
3501 * the buddy list. This is safe since pageset manipulation is done
3502 * with interrupts disabled.
3503 *
3504 * The boot_pagesets must be kept even after bootup is complete for
3505 * unused processors and/or zones. They do play a role for bootstrapping
3506 * hotplugged processors.
3507 *
3508 * zoneinfo_show() and maybe other functions do
3509 * not check if the processor is online before following the pageset pointer.
3510 * Other parts of the kernel may not check if the zone is available.
3511 */
3512static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3513static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3514static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3515
4eaf3f64
HL
3516/*
3517 * Global mutex to protect against size modification of zonelists
3518 * as well as to serialize pageset setup for the new populated zone.
3519 */
3520DEFINE_MUTEX(zonelists_mutex);
3521
9b1a4d38 3522/* return values int ....just for stop_machine() */
4ed7e022 3523static int __build_all_zonelists(void *data)
1da177e4 3524{
6811378e 3525 int nid;
99dcc3e5 3526 int cpu;
9adb62a5 3527 pg_data_t *self = data;
9276b1bc 3528
7f9cfb31
BL
3529#ifdef CONFIG_NUMA
3530 memset(node_load, 0, sizeof(node_load));
3531#endif
9adb62a5
JL
3532
3533 if (self && !node_online(self->node_id)) {
3534 build_zonelists(self);
3535 build_zonelist_cache(self);
3536 }
3537
9276b1bc 3538 for_each_online_node(nid) {
7ea1530a
CL
3539 pg_data_t *pgdat = NODE_DATA(nid);
3540
3541 build_zonelists(pgdat);
3542 build_zonelist_cache(pgdat);
9276b1bc 3543 }
99dcc3e5
CL
3544
3545 /*
3546 * Initialize the boot_pagesets that are going to be used
3547 * for bootstrapping processors. The real pagesets for
3548 * each zone will be allocated later when the per cpu
3549 * allocator is available.
3550 *
3551 * boot_pagesets are used also for bootstrapping offline
3552 * cpus if the system is already booted because the pagesets
3553 * are needed to initialize allocators on a specific cpu too.
3554 * F.e. the percpu allocator needs the page allocator which
3555 * needs the percpu allocator in order to allocate its pagesets
3556 * (a chicken-egg dilemma).
3557 */
7aac7898 3558 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3559 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3560
7aac7898
LS
3561#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3562 /*
3563 * We now know the "local memory node" for each node--
3564 * i.e., the node of the first zone in the generic zonelist.
3565 * Set up numa_mem percpu variable for on-line cpus. During
3566 * boot, only the boot cpu should be on-line; we'll init the
3567 * secondary cpus' numa_mem as they come on-line. During
3568 * node/memory hotplug, we'll fixup all on-line cpus.
3569 */
3570 if (cpu_online(cpu))
3571 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3572#endif
3573 }
3574
6811378e
YG
3575 return 0;
3576}
3577
4eaf3f64
HL
3578/*
3579 * Called with zonelists_mutex held always
3580 * unless system_state == SYSTEM_BOOTING.
3581 */
9adb62a5 3582void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3583{
f0c0b2b8
KH
3584 set_zonelist_order();
3585
6811378e 3586 if (system_state == SYSTEM_BOOTING) {
423b41d7 3587 __build_all_zonelists(NULL);
68ad8df4 3588 mminit_verify_zonelist();
6811378e
YG
3589 cpuset_init_current_mems_allowed();
3590 } else {
183ff22b 3591 /* we have to stop all cpus to guarantee there is no user
6811378e 3592 of zonelist */
e9959f0f 3593#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3594 if (zone)
3595 setup_zone_pageset(zone);
e9959f0f 3596#endif
9adb62a5 3597 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3598 /* cpuset refresh routine should be here */
3599 }
bd1e22b8 3600 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3601 /*
3602 * Disable grouping by mobility if the number of pages in the
3603 * system is too low to allow the mechanism to work. It would be
3604 * more accurate, but expensive to check per-zone. This check is
3605 * made on memory-hotadd so a system can start with mobility
3606 * disabled and enable it later
3607 */
d9c23400 3608 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3609 page_group_by_mobility_disabled = 1;
3610 else
3611 page_group_by_mobility_disabled = 0;
3612
3613 printk("Built %i zonelists in %s order, mobility grouping %s. "
3614 "Total pages: %ld\n",
62bc62a8 3615 nr_online_nodes,
f0c0b2b8 3616 zonelist_order_name[current_zonelist_order],
9ef9acb0 3617 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3618 vm_total_pages);
3619#ifdef CONFIG_NUMA
3620 printk("Policy zone: %s\n", zone_names[policy_zone]);
3621#endif
1da177e4
LT
3622}
3623
3624/*
3625 * Helper functions to size the waitqueue hash table.
3626 * Essentially these want to choose hash table sizes sufficiently
3627 * large so that collisions trying to wait on pages are rare.
3628 * But in fact, the number of active page waitqueues on typical
3629 * systems is ridiculously low, less than 200. So this is even
3630 * conservative, even though it seems large.
3631 *
3632 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3633 * waitqueues, i.e. the size of the waitq table given the number of pages.
3634 */
3635#define PAGES_PER_WAITQUEUE 256
3636
cca448fe 3637#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3638static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3639{
3640 unsigned long size = 1;
3641
3642 pages /= PAGES_PER_WAITQUEUE;
3643
3644 while (size < pages)
3645 size <<= 1;
3646
3647 /*
3648 * Once we have dozens or even hundreds of threads sleeping
3649 * on IO we've got bigger problems than wait queue collision.
3650 * Limit the size of the wait table to a reasonable size.
3651 */
3652 size = min(size, 4096UL);
3653
3654 return max(size, 4UL);
3655}
cca448fe
YG
3656#else
3657/*
3658 * A zone's size might be changed by hot-add, so it is not possible to determine
3659 * a suitable size for its wait_table. So we use the maximum size now.
3660 *
3661 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3662 *
3663 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3664 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3665 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3666 *
3667 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3668 * or more by the traditional way. (See above). It equals:
3669 *
3670 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3671 * ia64(16K page size) : = ( 8G + 4M)byte.
3672 * powerpc (64K page size) : = (32G +16M)byte.
3673 */
3674static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3675{
3676 return 4096UL;
3677}
3678#endif
1da177e4
LT
3679
3680/*
3681 * This is an integer logarithm so that shifts can be used later
3682 * to extract the more random high bits from the multiplicative
3683 * hash function before the remainder is taken.
3684 */
3685static inline unsigned long wait_table_bits(unsigned long size)
3686{
3687 return ffz(~size);
3688}
3689
3690#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3691
6d3163ce
AH
3692/*
3693 * Check if a pageblock contains reserved pages
3694 */
3695static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3696{
3697 unsigned long pfn;
3698
3699 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3700 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3701 return 1;
3702 }
3703 return 0;
3704}
3705
56fd56b8 3706/*
d9c23400 3707 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3708 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3709 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3710 * higher will lead to a bigger reserve which will get freed as contiguous
3711 * blocks as reclaim kicks in
3712 */
3713static void setup_zone_migrate_reserve(struct zone *zone)
3714{
6d3163ce 3715 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3716 struct page *page;
78986a67
MG
3717 unsigned long block_migratetype;
3718 int reserve;
56fd56b8 3719
d0215638
MH
3720 /*
3721 * Get the start pfn, end pfn and the number of blocks to reserve
3722 * We have to be careful to be aligned to pageblock_nr_pages to
3723 * make sure that we always check pfn_valid for the first page in
3724 * the block.
3725 */
56fd56b8
MG
3726 start_pfn = zone->zone_start_pfn;
3727 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3728 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3729 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3730 pageblock_order;
56fd56b8 3731
78986a67
MG
3732 /*
3733 * Reserve blocks are generally in place to help high-order atomic
3734 * allocations that are short-lived. A min_free_kbytes value that
3735 * would result in more than 2 reserve blocks for atomic allocations
3736 * is assumed to be in place to help anti-fragmentation for the
3737 * future allocation of hugepages at runtime.
3738 */
3739 reserve = min(2, reserve);
3740
d9c23400 3741 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3742 if (!pfn_valid(pfn))
3743 continue;
3744 page = pfn_to_page(pfn);
3745
344c790e
AL
3746 /* Watch out for overlapping nodes */
3747 if (page_to_nid(page) != zone_to_nid(zone))
3748 continue;
3749
56fd56b8
MG
3750 block_migratetype = get_pageblock_migratetype(page);
3751
938929f1
MG
3752 /* Only test what is necessary when the reserves are not met */
3753 if (reserve > 0) {
3754 /*
3755 * Blocks with reserved pages will never free, skip
3756 * them.
3757 */
3758 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3759 if (pageblock_is_reserved(pfn, block_end_pfn))
3760 continue;
56fd56b8 3761
938929f1
MG
3762 /* If this block is reserved, account for it */
3763 if (block_migratetype == MIGRATE_RESERVE) {
3764 reserve--;
3765 continue;
3766 }
3767
3768 /* Suitable for reserving if this block is movable */
3769 if (block_migratetype == MIGRATE_MOVABLE) {
3770 set_pageblock_migratetype(page,
3771 MIGRATE_RESERVE);
3772 move_freepages_block(zone, page,
3773 MIGRATE_RESERVE);
3774 reserve--;
3775 continue;
3776 }
56fd56b8
MG
3777 }
3778
3779 /*
3780 * If the reserve is met and this is a previous reserved block,
3781 * take it back
3782 */
3783 if (block_migratetype == MIGRATE_RESERVE) {
3784 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3785 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3786 }
3787 }
3788}
ac0e5b7a 3789
1da177e4
LT
3790/*
3791 * Initially all pages are reserved - free ones are freed
3792 * up by free_all_bootmem() once the early boot process is
3793 * done. Non-atomic initialization, single-pass.
3794 */
c09b4240 3795void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3796 unsigned long start_pfn, enum memmap_context context)
1da177e4 3797{
1da177e4 3798 struct page *page;
29751f69
AW
3799 unsigned long end_pfn = start_pfn + size;
3800 unsigned long pfn;
86051ca5 3801 struct zone *z;
1da177e4 3802
22b31eec
HD
3803 if (highest_memmap_pfn < end_pfn - 1)
3804 highest_memmap_pfn = end_pfn - 1;
3805
86051ca5 3806 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3807 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3808 /*
3809 * There can be holes in boot-time mem_map[]s
3810 * handed to this function. They do not
3811 * exist on hotplugged memory.
3812 */
3813 if (context == MEMMAP_EARLY) {
3814 if (!early_pfn_valid(pfn))
3815 continue;
3816 if (!early_pfn_in_nid(pfn, nid))
3817 continue;
3818 }
d41dee36
AW
3819 page = pfn_to_page(pfn);
3820 set_page_links(page, zone, nid, pfn);
708614e6 3821 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3822 init_page_count(page);
1da177e4
LT
3823 reset_page_mapcount(page);
3824 SetPageReserved(page);
b2a0ac88
MG
3825 /*
3826 * Mark the block movable so that blocks are reserved for
3827 * movable at startup. This will force kernel allocations
3828 * to reserve their blocks rather than leaking throughout
3829 * the address space during boot when many long-lived
56fd56b8
MG
3830 * kernel allocations are made. Later some blocks near
3831 * the start are marked MIGRATE_RESERVE by
3832 * setup_zone_migrate_reserve()
86051ca5
KH
3833 *
3834 * bitmap is created for zone's valid pfn range. but memmap
3835 * can be created for invalid pages (for alignment)
3836 * check here not to call set_pageblock_migratetype() against
3837 * pfn out of zone.
b2a0ac88 3838 */
86051ca5
KH
3839 if ((z->zone_start_pfn <= pfn)
3840 && (pfn < z->zone_start_pfn + z->spanned_pages)
3841 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3842 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3843
1da177e4
LT
3844 INIT_LIST_HEAD(&page->lru);
3845#ifdef WANT_PAGE_VIRTUAL
3846 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3847 if (!is_highmem_idx(zone))
3212c6be 3848 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3849#endif
1da177e4
LT
3850 }
3851}
3852
1e548deb 3853static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3854{
b2a0ac88
MG
3855 int order, t;
3856 for_each_migratetype_order(order, t) {
3857 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3858 zone->free_area[order].nr_free = 0;
3859 }
3860}
3861
3862#ifndef __HAVE_ARCH_MEMMAP_INIT
3863#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3864 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3865#endif
3866
4ed7e022 3867static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3868{
3a6be87f 3869#ifdef CONFIG_MMU
e7c8d5c9
CL
3870 int batch;
3871
3872 /*
3873 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3874 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3875 *
3876 * OK, so we don't know how big the cache is. So guess.
3877 */
3878 batch = zone->present_pages / 1024;
ba56e91c
SR
3879 if (batch * PAGE_SIZE > 512 * 1024)
3880 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3881 batch /= 4; /* We effectively *= 4 below */
3882 if (batch < 1)
3883 batch = 1;
3884
3885 /*
0ceaacc9
NP
3886 * Clamp the batch to a 2^n - 1 value. Having a power
3887 * of 2 value was found to be more likely to have
3888 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3889 *
0ceaacc9
NP
3890 * For example if 2 tasks are alternately allocating
3891 * batches of pages, one task can end up with a lot
3892 * of pages of one half of the possible page colors
3893 * and the other with pages of the other colors.
e7c8d5c9 3894 */
9155203a 3895 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3896
e7c8d5c9 3897 return batch;
3a6be87f
DH
3898
3899#else
3900 /* The deferral and batching of frees should be suppressed under NOMMU
3901 * conditions.
3902 *
3903 * The problem is that NOMMU needs to be able to allocate large chunks
3904 * of contiguous memory as there's no hardware page translation to
3905 * assemble apparent contiguous memory from discontiguous pages.
3906 *
3907 * Queueing large contiguous runs of pages for batching, however,
3908 * causes the pages to actually be freed in smaller chunks. As there
3909 * can be a significant delay between the individual batches being
3910 * recycled, this leads to the once large chunks of space being
3911 * fragmented and becoming unavailable for high-order allocations.
3912 */
3913 return 0;
3914#endif
e7c8d5c9
CL
3915}
3916
b69a7288 3917static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3918{
3919 struct per_cpu_pages *pcp;
5f8dcc21 3920 int migratetype;
2caaad41 3921
1c6fe946
MD
3922 memset(p, 0, sizeof(*p));
3923
3dfa5721 3924 pcp = &p->pcp;
2caaad41 3925 pcp->count = 0;
2caaad41
CL
3926 pcp->high = 6 * batch;
3927 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3928 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3929 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3930}
3931
8ad4b1fb
RS
3932/*
3933 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3934 * to the value high for the pageset p.
3935 */
3936
3937static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3938 unsigned long high)
3939{
3940 struct per_cpu_pages *pcp;
3941
3dfa5721 3942 pcp = &p->pcp;
8ad4b1fb
RS
3943 pcp->high = high;
3944 pcp->batch = max(1UL, high/4);
3945 if ((high/4) > (PAGE_SHIFT * 8))
3946 pcp->batch = PAGE_SHIFT * 8;
3947}
3948
4ed7e022 3949static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3950{
3951 int cpu;
3952
3953 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3954
3955 for_each_possible_cpu(cpu) {
3956 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3957
3958 setup_pageset(pcp, zone_batchsize(zone));
3959
3960 if (percpu_pagelist_fraction)
3961 setup_pagelist_highmark(pcp,
3962 (zone->present_pages /
3963 percpu_pagelist_fraction));
3964 }
3965}
3966
2caaad41 3967/*
99dcc3e5
CL
3968 * Allocate per cpu pagesets and initialize them.
3969 * Before this call only boot pagesets were available.
e7c8d5c9 3970 */
99dcc3e5 3971void __init setup_per_cpu_pageset(void)
e7c8d5c9 3972{
99dcc3e5 3973 struct zone *zone;
e7c8d5c9 3974
319774e2
WF
3975 for_each_populated_zone(zone)
3976 setup_zone_pageset(zone);
e7c8d5c9
CL
3977}
3978
577a32f6 3979static noinline __init_refok
cca448fe 3980int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3981{
3982 int i;
3983 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3984 size_t alloc_size;
ed8ece2e
DH
3985
3986 /*
3987 * The per-page waitqueue mechanism uses hashed waitqueues
3988 * per zone.
3989 */
02b694de
YG
3990 zone->wait_table_hash_nr_entries =
3991 wait_table_hash_nr_entries(zone_size_pages);
3992 zone->wait_table_bits =
3993 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3994 alloc_size = zone->wait_table_hash_nr_entries
3995 * sizeof(wait_queue_head_t);
3996
cd94b9db 3997 if (!slab_is_available()) {
cca448fe 3998 zone->wait_table = (wait_queue_head_t *)
8f389a99 3999 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4000 } else {
4001 /*
4002 * This case means that a zone whose size was 0 gets new memory
4003 * via memory hot-add.
4004 * But it may be the case that a new node was hot-added. In
4005 * this case vmalloc() will not be able to use this new node's
4006 * memory - this wait_table must be initialized to use this new
4007 * node itself as well.
4008 * To use this new node's memory, further consideration will be
4009 * necessary.
4010 */
8691f3a7 4011 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4012 }
4013 if (!zone->wait_table)
4014 return -ENOMEM;
ed8ece2e 4015
02b694de 4016 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4017 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4018
4019 return 0;
ed8ece2e
DH
4020}
4021
c09b4240 4022static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4023{
99dcc3e5
CL
4024 /*
4025 * per cpu subsystem is not up at this point. The following code
4026 * relies on the ability of the linker to provide the
4027 * offset of a (static) per cpu variable into the per cpu area.
4028 */
4029 zone->pageset = &boot_pageset;
ed8ece2e 4030
f5335c0f 4031 if (zone->present_pages)
99dcc3e5
CL
4032 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4033 zone->name, zone->present_pages,
4034 zone_batchsize(zone));
ed8ece2e
DH
4035}
4036
4ed7e022 4037int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4038 unsigned long zone_start_pfn,
a2f3aa02
DH
4039 unsigned long size,
4040 enum memmap_context context)
ed8ece2e
DH
4041{
4042 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4043 int ret;
4044 ret = zone_wait_table_init(zone, size);
4045 if (ret)
4046 return ret;
ed8ece2e
DH
4047 pgdat->nr_zones = zone_idx(zone) + 1;
4048
ed8ece2e
DH
4049 zone->zone_start_pfn = zone_start_pfn;
4050
708614e6
MG
4051 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4052 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4053 pgdat->node_id,
4054 (unsigned long)zone_idx(zone),
4055 zone_start_pfn, (zone_start_pfn + size));
4056
1e548deb 4057 zone_init_free_lists(zone);
718127cc
YG
4058
4059 return 0;
ed8ece2e
DH
4060}
4061
0ee332c1 4062#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4063#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4064/*
4065 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4066 * Architectures may implement their own version but if add_active_range()
4067 * was used and there are no special requirements, this is a convenient
4068 * alternative
4069 */
f2dbcfa7 4070int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4071{
c13291a5
TH
4072 unsigned long start_pfn, end_pfn;
4073 int i, nid;
c713216d 4074
c13291a5 4075 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4076 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4077 return nid;
cc2559bc
KH
4078 /* This is a memory hole */
4079 return -1;
c713216d
MG
4080}
4081#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4082
f2dbcfa7
KH
4083int __meminit early_pfn_to_nid(unsigned long pfn)
4084{
cc2559bc
KH
4085 int nid;
4086
4087 nid = __early_pfn_to_nid(pfn);
4088 if (nid >= 0)
4089 return nid;
4090 /* just returns 0 */
4091 return 0;
f2dbcfa7
KH
4092}
4093
cc2559bc
KH
4094#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4095bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4096{
4097 int nid;
4098
4099 nid = __early_pfn_to_nid(pfn);
4100 if (nid >= 0 && nid != node)
4101 return false;
4102 return true;
4103}
4104#endif
f2dbcfa7 4105
c713216d
MG
4106/**
4107 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4108 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4109 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4110 *
4111 * If an architecture guarantees that all ranges registered with
4112 * add_active_ranges() contain no holes and may be freed, this
4113 * this function may be used instead of calling free_bootmem() manually.
4114 */
c13291a5 4115void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4116{
c13291a5
TH
4117 unsigned long start_pfn, end_pfn;
4118 int i, this_nid;
edbe7d23 4119
c13291a5
TH
4120 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4121 start_pfn = min(start_pfn, max_low_pfn);
4122 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4123
c13291a5
TH
4124 if (start_pfn < end_pfn)
4125 free_bootmem_node(NODE_DATA(this_nid),
4126 PFN_PHYS(start_pfn),
4127 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4128 }
edbe7d23 4129}
edbe7d23 4130
c713216d
MG
4131/**
4132 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4133 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4134 *
4135 * If an architecture guarantees that all ranges registered with
4136 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4137 * function may be used instead of calling memory_present() manually.
c713216d
MG
4138 */
4139void __init sparse_memory_present_with_active_regions(int nid)
4140{
c13291a5
TH
4141 unsigned long start_pfn, end_pfn;
4142 int i, this_nid;
c713216d 4143
c13291a5
TH
4144 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4145 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4146}
4147
4148/**
4149 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4150 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4151 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4152 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4153 *
4154 * It returns the start and end page frame of a node based on information
4155 * provided by an arch calling add_active_range(). If called for a node
4156 * with no available memory, a warning is printed and the start and end
88ca3b94 4157 * PFNs will be 0.
c713216d 4158 */
a3142c8e 4159void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4160 unsigned long *start_pfn, unsigned long *end_pfn)
4161{
c13291a5 4162 unsigned long this_start_pfn, this_end_pfn;
c713216d 4163 int i;
c13291a5 4164
c713216d
MG
4165 *start_pfn = -1UL;
4166 *end_pfn = 0;
4167
c13291a5
TH
4168 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4169 *start_pfn = min(*start_pfn, this_start_pfn);
4170 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4171 }
4172
633c0666 4173 if (*start_pfn == -1UL)
c713216d 4174 *start_pfn = 0;
c713216d
MG
4175}
4176
2a1e274a
MG
4177/*
4178 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4179 * assumption is made that zones within a node are ordered in monotonic
4180 * increasing memory addresses so that the "highest" populated zone is used
4181 */
b69a7288 4182static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4183{
4184 int zone_index;
4185 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4186 if (zone_index == ZONE_MOVABLE)
4187 continue;
4188
4189 if (arch_zone_highest_possible_pfn[zone_index] >
4190 arch_zone_lowest_possible_pfn[zone_index])
4191 break;
4192 }
4193
4194 VM_BUG_ON(zone_index == -1);
4195 movable_zone = zone_index;
4196}
4197
4198/*
4199 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4200 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4201 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4202 * in each node depending on the size of each node and how evenly kernelcore
4203 * is distributed. This helper function adjusts the zone ranges
4204 * provided by the architecture for a given node by using the end of the
4205 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4206 * zones within a node are in order of monotonic increases memory addresses
4207 */
b69a7288 4208static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4209 unsigned long zone_type,
4210 unsigned long node_start_pfn,
4211 unsigned long node_end_pfn,
4212 unsigned long *zone_start_pfn,
4213 unsigned long *zone_end_pfn)
4214{
4215 /* Only adjust if ZONE_MOVABLE is on this node */
4216 if (zone_movable_pfn[nid]) {
4217 /* Size ZONE_MOVABLE */
4218 if (zone_type == ZONE_MOVABLE) {
4219 *zone_start_pfn = zone_movable_pfn[nid];
4220 *zone_end_pfn = min(node_end_pfn,
4221 arch_zone_highest_possible_pfn[movable_zone]);
4222
4223 /* Adjust for ZONE_MOVABLE starting within this range */
4224 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4225 *zone_end_pfn > zone_movable_pfn[nid]) {
4226 *zone_end_pfn = zone_movable_pfn[nid];
4227
4228 /* Check if this whole range is within ZONE_MOVABLE */
4229 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4230 *zone_start_pfn = *zone_end_pfn;
4231 }
4232}
4233
c713216d
MG
4234/*
4235 * Return the number of pages a zone spans in a node, including holes
4236 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4237 */
6ea6e688 4238static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4239 unsigned long zone_type,
4240 unsigned long *ignored)
4241{
4242 unsigned long node_start_pfn, node_end_pfn;
4243 unsigned long zone_start_pfn, zone_end_pfn;
4244
4245 /* Get the start and end of the node and zone */
4246 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4247 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4248 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4249 adjust_zone_range_for_zone_movable(nid, zone_type,
4250 node_start_pfn, node_end_pfn,
4251 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4252
4253 /* Check that this node has pages within the zone's required range */
4254 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4255 return 0;
4256
4257 /* Move the zone boundaries inside the node if necessary */
4258 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4259 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4260
4261 /* Return the spanned pages */
4262 return zone_end_pfn - zone_start_pfn;
4263}
4264
4265/*
4266 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4267 * then all holes in the requested range will be accounted for.
c713216d 4268 */
32996250 4269unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4270 unsigned long range_start_pfn,
4271 unsigned long range_end_pfn)
4272{
96e907d1
TH
4273 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4274 unsigned long start_pfn, end_pfn;
4275 int i;
c713216d 4276
96e907d1
TH
4277 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4278 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4279 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4280 nr_absent -= end_pfn - start_pfn;
c713216d 4281 }
96e907d1 4282 return nr_absent;
c713216d
MG
4283}
4284
4285/**
4286 * absent_pages_in_range - Return number of page frames in holes within a range
4287 * @start_pfn: The start PFN to start searching for holes
4288 * @end_pfn: The end PFN to stop searching for holes
4289 *
88ca3b94 4290 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4291 */
4292unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4293 unsigned long end_pfn)
4294{
4295 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4296}
4297
4298/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4299static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4300 unsigned long zone_type,
4301 unsigned long *ignored)
4302{
96e907d1
TH
4303 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4304 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4305 unsigned long node_start_pfn, node_end_pfn;
4306 unsigned long zone_start_pfn, zone_end_pfn;
4307
4308 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4309 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4310 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4311
2a1e274a
MG
4312 adjust_zone_range_for_zone_movable(nid, zone_type,
4313 node_start_pfn, node_end_pfn,
4314 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4315 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4316}
0e0b864e 4317
0ee332c1 4318#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4319static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4320 unsigned long zone_type,
4321 unsigned long *zones_size)
4322{
4323 return zones_size[zone_type];
4324}
4325
6ea6e688 4326static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4327 unsigned long zone_type,
4328 unsigned long *zholes_size)
4329{
4330 if (!zholes_size)
4331 return 0;
4332
4333 return zholes_size[zone_type];
4334}
0e0b864e 4335
0ee332c1 4336#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4337
a3142c8e 4338static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4339 unsigned long *zones_size, unsigned long *zholes_size)
4340{
4341 unsigned long realtotalpages, totalpages = 0;
4342 enum zone_type i;
4343
4344 for (i = 0; i < MAX_NR_ZONES; i++)
4345 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4346 zones_size);
4347 pgdat->node_spanned_pages = totalpages;
4348
4349 realtotalpages = totalpages;
4350 for (i = 0; i < MAX_NR_ZONES; i++)
4351 realtotalpages -=
4352 zone_absent_pages_in_node(pgdat->node_id, i,
4353 zholes_size);
4354 pgdat->node_present_pages = realtotalpages;
4355 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4356 realtotalpages);
4357}
4358
835c134e
MG
4359#ifndef CONFIG_SPARSEMEM
4360/*
4361 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4362 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4363 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4364 * round what is now in bits to nearest long in bits, then return it in
4365 * bytes.
4366 */
4367static unsigned long __init usemap_size(unsigned long zonesize)
4368{
4369 unsigned long usemapsize;
4370
d9c23400
MG
4371 usemapsize = roundup(zonesize, pageblock_nr_pages);
4372 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4373 usemapsize *= NR_PAGEBLOCK_BITS;
4374 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4375
4376 return usemapsize / 8;
4377}
4378
4379static void __init setup_usemap(struct pglist_data *pgdat,
4380 struct zone *zone, unsigned long zonesize)
4381{
4382 unsigned long usemapsize = usemap_size(zonesize);
4383 zone->pageblock_flags = NULL;
58a01a45 4384 if (usemapsize)
8f389a99
YL
4385 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4386 usemapsize);
835c134e
MG
4387}
4388#else
fa9f90be 4389static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4390 struct zone *zone, unsigned long zonesize) {}
4391#endif /* CONFIG_SPARSEMEM */
4392
d9c23400 4393#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4394
d9c23400 4395/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4396void __init set_pageblock_order(void)
d9c23400 4397{
955c1cd7
AM
4398 unsigned int order;
4399
d9c23400
MG
4400 /* Check that pageblock_nr_pages has not already been setup */
4401 if (pageblock_order)
4402 return;
4403
955c1cd7
AM
4404 if (HPAGE_SHIFT > PAGE_SHIFT)
4405 order = HUGETLB_PAGE_ORDER;
4406 else
4407 order = MAX_ORDER - 1;
4408
d9c23400
MG
4409 /*
4410 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4411 * This value may be variable depending on boot parameters on IA64 and
4412 * powerpc.
d9c23400
MG
4413 */
4414 pageblock_order = order;
4415}
4416#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4417
ba72cb8c
MG
4418/*
4419 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4420 * is unused as pageblock_order is set at compile-time. See
4421 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4422 * the kernel config
ba72cb8c 4423 */
ca57df79 4424void __init set_pageblock_order(void)
ba72cb8c 4425{
ba72cb8c 4426}
d9c23400
MG
4427
4428#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4429
1da177e4
LT
4430/*
4431 * Set up the zone data structures:
4432 * - mark all pages reserved
4433 * - mark all memory queues empty
4434 * - clear the memory bitmaps
6527af5d
MK
4435 *
4436 * NOTE: pgdat should get zeroed by caller.
1da177e4 4437 */
b5a0e011 4438static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4439 unsigned long *zones_size, unsigned long *zholes_size)
4440{
2f1b6248 4441 enum zone_type j;
ed8ece2e 4442 int nid = pgdat->node_id;
1da177e4 4443 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4444 int ret;
1da177e4 4445
208d54e5 4446 pgdat_resize_init(pgdat);
1da177e4 4447 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4448 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4449 pgdat_page_cgroup_init(pgdat);
5f63b720 4450
1da177e4
LT
4451 for (j = 0; j < MAX_NR_ZONES; j++) {
4452 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4453 unsigned long size, realsize, memmap_pages;
1da177e4 4454
c713216d
MG
4455 size = zone_spanned_pages_in_node(nid, j, zones_size);
4456 realsize = size - zone_absent_pages_in_node(nid, j,
4457 zholes_size);
1da177e4 4458
0e0b864e
MG
4459 /*
4460 * Adjust realsize so that it accounts for how much memory
4461 * is used by this zone for memmap. This affects the watermark
4462 * and per-cpu initialisations
4463 */
f7232154
JW
4464 memmap_pages =
4465 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4466 if (realsize >= memmap_pages) {
4467 realsize -= memmap_pages;
5594c8c8
YL
4468 if (memmap_pages)
4469 printk(KERN_DEBUG
4470 " %s zone: %lu pages used for memmap\n",
4471 zone_names[j], memmap_pages);
0e0b864e
MG
4472 } else
4473 printk(KERN_WARNING
4474 " %s zone: %lu pages exceeds realsize %lu\n",
4475 zone_names[j], memmap_pages, realsize);
4476
6267276f
CL
4477 /* Account for reserved pages */
4478 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4479 realsize -= dma_reserve;
d903ef9f 4480 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4481 zone_names[0], dma_reserve);
0e0b864e
MG
4482 }
4483
98d2b0eb 4484 if (!is_highmem_idx(j))
1da177e4
LT
4485 nr_kernel_pages += realsize;
4486 nr_all_pages += realsize;
4487
4488 zone->spanned_pages = size;
4489 zone->present_pages = realsize;
7db8889a
RR
4490#if defined CONFIG_COMPACTION || defined CONFIG_CMA
4491 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4492 zone->spanned_pages;
4493 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4494#endif
9614634f 4495#ifdef CONFIG_NUMA
d5f541ed 4496 zone->node = nid;
8417bba4 4497 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4498 / 100;
0ff38490 4499 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4500#endif
1da177e4
LT
4501 zone->name = zone_names[j];
4502 spin_lock_init(&zone->lock);
4503 spin_lock_init(&zone->lru_lock);
bdc8cb98 4504 zone_seqlock_init(zone);
1da177e4 4505 zone->zone_pgdat = pgdat;
1da177e4 4506
ed8ece2e 4507 zone_pcp_init(zone);
7f5e86c2 4508 lruvec_init(&zone->lruvec, zone);
1da177e4
LT
4509 if (!size)
4510 continue;
4511
955c1cd7 4512 set_pageblock_order();
835c134e 4513 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4514 ret = init_currently_empty_zone(zone, zone_start_pfn,
4515 size, MEMMAP_EARLY);
718127cc 4516 BUG_ON(ret);
76cdd58e 4517 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4518 zone_start_pfn += size;
1da177e4
LT
4519 }
4520}
4521
577a32f6 4522static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4523{
1da177e4
LT
4524 /* Skip empty nodes */
4525 if (!pgdat->node_spanned_pages)
4526 return;
4527
d41dee36 4528#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4529 /* ia64 gets its own node_mem_map, before this, without bootmem */
4530 if (!pgdat->node_mem_map) {
e984bb43 4531 unsigned long size, start, end;
d41dee36
AW
4532 struct page *map;
4533
e984bb43
BP
4534 /*
4535 * The zone's endpoints aren't required to be MAX_ORDER
4536 * aligned but the node_mem_map endpoints must be in order
4537 * for the buddy allocator to function correctly.
4538 */
4539 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4540 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4541 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4542 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4543 map = alloc_remap(pgdat->node_id, size);
4544 if (!map)
8f389a99 4545 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4546 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4547 }
12d810c1 4548#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4549 /*
4550 * With no DISCONTIG, the global mem_map is just set as node 0's
4551 */
c713216d 4552 if (pgdat == NODE_DATA(0)) {
1da177e4 4553 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4554#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4555 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4556 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4557#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4558 }
1da177e4 4559#endif
d41dee36 4560#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4561}
4562
9109fb7b
JW
4563void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4564 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4565{
9109fb7b
JW
4566 pg_data_t *pgdat = NODE_DATA(nid);
4567
88fdf75d 4568 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4569 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4570
1da177e4
LT
4571 pgdat->node_id = nid;
4572 pgdat->node_start_pfn = node_start_pfn;
c713216d 4573 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4574
4575 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4576#ifdef CONFIG_FLAT_NODE_MEM_MAP
4577 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4578 nid, (unsigned long)pgdat,
4579 (unsigned long)pgdat->node_mem_map);
4580#endif
1da177e4
LT
4581
4582 free_area_init_core(pgdat, zones_size, zholes_size);
4583}
4584
0ee332c1 4585#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4586
4587#if MAX_NUMNODES > 1
4588/*
4589 * Figure out the number of possible node ids.
4590 */
4591static void __init setup_nr_node_ids(void)
4592{
4593 unsigned int node;
4594 unsigned int highest = 0;
4595
4596 for_each_node_mask(node, node_possible_map)
4597 highest = node;
4598 nr_node_ids = highest + 1;
4599}
4600#else
4601static inline void setup_nr_node_ids(void)
4602{
4603}
4604#endif
4605
1e01979c
TH
4606/**
4607 * node_map_pfn_alignment - determine the maximum internode alignment
4608 *
4609 * This function should be called after node map is populated and sorted.
4610 * It calculates the maximum power of two alignment which can distinguish
4611 * all the nodes.
4612 *
4613 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4614 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4615 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4616 * shifted, 1GiB is enough and this function will indicate so.
4617 *
4618 * This is used to test whether pfn -> nid mapping of the chosen memory
4619 * model has fine enough granularity to avoid incorrect mapping for the
4620 * populated node map.
4621 *
4622 * Returns the determined alignment in pfn's. 0 if there is no alignment
4623 * requirement (single node).
4624 */
4625unsigned long __init node_map_pfn_alignment(void)
4626{
4627 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4628 unsigned long start, end, mask;
1e01979c 4629 int last_nid = -1;
c13291a5 4630 int i, nid;
1e01979c 4631
c13291a5 4632 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4633 if (!start || last_nid < 0 || last_nid == nid) {
4634 last_nid = nid;
4635 last_end = end;
4636 continue;
4637 }
4638
4639 /*
4640 * Start with a mask granular enough to pin-point to the
4641 * start pfn and tick off bits one-by-one until it becomes
4642 * too coarse to separate the current node from the last.
4643 */
4644 mask = ~((1 << __ffs(start)) - 1);
4645 while (mask && last_end <= (start & (mask << 1)))
4646 mask <<= 1;
4647
4648 /* accumulate all internode masks */
4649 accl_mask |= mask;
4650 }
4651
4652 /* convert mask to number of pages */
4653 return ~accl_mask + 1;
4654}
4655
a6af2bc3 4656/* Find the lowest pfn for a node */
b69a7288 4657static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4658{
a6af2bc3 4659 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4660 unsigned long start_pfn;
4661 int i;
1abbfb41 4662
c13291a5
TH
4663 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4664 min_pfn = min(min_pfn, start_pfn);
c713216d 4665
a6af2bc3
MG
4666 if (min_pfn == ULONG_MAX) {
4667 printk(KERN_WARNING
2bc0d261 4668 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4669 return 0;
4670 }
4671
4672 return min_pfn;
c713216d
MG
4673}
4674
4675/**
4676 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4677 *
4678 * It returns the minimum PFN based on information provided via
88ca3b94 4679 * add_active_range().
c713216d
MG
4680 */
4681unsigned long __init find_min_pfn_with_active_regions(void)
4682{
4683 return find_min_pfn_for_node(MAX_NUMNODES);
4684}
4685
37b07e41
LS
4686/*
4687 * early_calculate_totalpages()
4688 * Sum pages in active regions for movable zone.
4689 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4690 */
484f51f8 4691static unsigned long __init early_calculate_totalpages(void)
7e63efef 4692{
7e63efef 4693 unsigned long totalpages = 0;
c13291a5
TH
4694 unsigned long start_pfn, end_pfn;
4695 int i, nid;
4696
4697 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4698 unsigned long pages = end_pfn - start_pfn;
7e63efef 4699
37b07e41
LS
4700 totalpages += pages;
4701 if (pages)
c13291a5 4702 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4703 }
4704 return totalpages;
7e63efef
MG
4705}
4706
2a1e274a
MG
4707/*
4708 * Find the PFN the Movable zone begins in each node. Kernel memory
4709 * is spread evenly between nodes as long as the nodes have enough
4710 * memory. When they don't, some nodes will have more kernelcore than
4711 * others
4712 */
b224ef85 4713static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4714{
4715 int i, nid;
4716 unsigned long usable_startpfn;
4717 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4718 /* save the state before borrow the nodemask */
4719 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4720 unsigned long totalpages = early_calculate_totalpages();
4721 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4722
7e63efef
MG
4723 /*
4724 * If movablecore was specified, calculate what size of
4725 * kernelcore that corresponds so that memory usable for
4726 * any allocation type is evenly spread. If both kernelcore
4727 * and movablecore are specified, then the value of kernelcore
4728 * will be used for required_kernelcore if it's greater than
4729 * what movablecore would have allowed.
4730 */
4731 if (required_movablecore) {
7e63efef
MG
4732 unsigned long corepages;
4733
4734 /*
4735 * Round-up so that ZONE_MOVABLE is at least as large as what
4736 * was requested by the user
4737 */
4738 required_movablecore =
4739 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4740 corepages = totalpages - required_movablecore;
4741
4742 required_kernelcore = max(required_kernelcore, corepages);
4743 }
4744
2a1e274a
MG
4745 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4746 if (!required_kernelcore)
66918dcd 4747 goto out;
2a1e274a
MG
4748
4749 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4750 find_usable_zone_for_movable();
4751 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4752
4753restart:
4754 /* Spread kernelcore memory as evenly as possible throughout nodes */
4755 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4756 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4757 unsigned long start_pfn, end_pfn;
4758
2a1e274a
MG
4759 /*
4760 * Recalculate kernelcore_node if the division per node
4761 * now exceeds what is necessary to satisfy the requested
4762 * amount of memory for the kernel
4763 */
4764 if (required_kernelcore < kernelcore_node)
4765 kernelcore_node = required_kernelcore / usable_nodes;
4766
4767 /*
4768 * As the map is walked, we track how much memory is usable
4769 * by the kernel using kernelcore_remaining. When it is
4770 * 0, the rest of the node is usable by ZONE_MOVABLE
4771 */
4772 kernelcore_remaining = kernelcore_node;
4773
4774 /* Go through each range of PFNs within this node */
c13291a5 4775 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4776 unsigned long size_pages;
4777
c13291a5 4778 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4779 if (start_pfn >= end_pfn)
4780 continue;
4781
4782 /* Account for what is only usable for kernelcore */
4783 if (start_pfn < usable_startpfn) {
4784 unsigned long kernel_pages;
4785 kernel_pages = min(end_pfn, usable_startpfn)
4786 - start_pfn;
4787
4788 kernelcore_remaining -= min(kernel_pages,
4789 kernelcore_remaining);
4790 required_kernelcore -= min(kernel_pages,
4791 required_kernelcore);
4792
4793 /* Continue if range is now fully accounted */
4794 if (end_pfn <= usable_startpfn) {
4795
4796 /*
4797 * Push zone_movable_pfn to the end so
4798 * that if we have to rebalance
4799 * kernelcore across nodes, we will
4800 * not double account here
4801 */
4802 zone_movable_pfn[nid] = end_pfn;
4803 continue;
4804 }
4805 start_pfn = usable_startpfn;
4806 }
4807
4808 /*
4809 * The usable PFN range for ZONE_MOVABLE is from
4810 * start_pfn->end_pfn. Calculate size_pages as the
4811 * number of pages used as kernelcore
4812 */
4813 size_pages = end_pfn - start_pfn;
4814 if (size_pages > kernelcore_remaining)
4815 size_pages = kernelcore_remaining;
4816 zone_movable_pfn[nid] = start_pfn + size_pages;
4817
4818 /*
4819 * Some kernelcore has been met, update counts and
4820 * break if the kernelcore for this node has been
4821 * satisified
4822 */
4823 required_kernelcore -= min(required_kernelcore,
4824 size_pages);
4825 kernelcore_remaining -= size_pages;
4826 if (!kernelcore_remaining)
4827 break;
4828 }
4829 }
4830
4831 /*
4832 * If there is still required_kernelcore, we do another pass with one
4833 * less node in the count. This will push zone_movable_pfn[nid] further
4834 * along on the nodes that still have memory until kernelcore is
4835 * satisified
4836 */
4837 usable_nodes--;
4838 if (usable_nodes && required_kernelcore > usable_nodes)
4839 goto restart;
4840
4841 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4842 for (nid = 0; nid < MAX_NUMNODES; nid++)
4843 zone_movable_pfn[nid] =
4844 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4845
4846out:
4847 /* restore the node_state */
4848 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4849}
4850
37b07e41 4851/* Any regular memory on that node ? */
4ed7e022 4852static void __init check_for_regular_memory(pg_data_t *pgdat)
37b07e41
LS
4853{
4854#ifdef CONFIG_HIGHMEM
4855 enum zone_type zone_type;
4856
4857 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4858 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4859 if (zone->present_pages) {
37b07e41 4860 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4861 break;
4862 }
37b07e41
LS
4863 }
4864#endif
4865}
4866
c713216d
MG
4867/**
4868 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4869 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4870 *
4871 * This will call free_area_init_node() for each active node in the system.
4872 * Using the page ranges provided by add_active_range(), the size of each
4873 * zone in each node and their holes is calculated. If the maximum PFN
4874 * between two adjacent zones match, it is assumed that the zone is empty.
4875 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4876 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4877 * starts where the previous one ended. For example, ZONE_DMA32 starts
4878 * at arch_max_dma_pfn.
4879 */
4880void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4881{
c13291a5
TH
4882 unsigned long start_pfn, end_pfn;
4883 int i, nid;
a6af2bc3 4884
c713216d
MG
4885 /* Record where the zone boundaries are */
4886 memset(arch_zone_lowest_possible_pfn, 0,
4887 sizeof(arch_zone_lowest_possible_pfn));
4888 memset(arch_zone_highest_possible_pfn, 0,
4889 sizeof(arch_zone_highest_possible_pfn));
4890 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4891 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4892 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4893 if (i == ZONE_MOVABLE)
4894 continue;
c713216d
MG
4895 arch_zone_lowest_possible_pfn[i] =
4896 arch_zone_highest_possible_pfn[i-1];
4897 arch_zone_highest_possible_pfn[i] =
4898 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4899 }
2a1e274a
MG
4900 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4901 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4902
4903 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4904 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4905 find_zone_movable_pfns_for_nodes();
c713216d 4906
c713216d 4907 /* Print out the zone ranges */
a62e2f4f 4908 printk("Zone ranges:\n");
2a1e274a
MG
4909 for (i = 0; i < MAX_NR_ZONES; i++) {
4910 if (i == ZONE_MOVABLE)
4911 continue;
155cbfc8 4912 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4913 if (arch_zone_lowest_possible_pfn[i] ==
4914 arch_zone_highest_possible_pfn[i])
155cbfc8 4915 printk(KERN_CONT "empty\n");
72f0ba02 4916 else
a62e2f4f
BH
4917 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4918 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4919 (arch_zone_highest_possible_pfn[i]
4920 << PAGE_SHIFT) - 1);
2a1e274a
MG
4921 }
4922
4923 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4924 printk("Movable zone start for each node\n");
2a1e274a
MG
4925 for (i = 0; i < MAX_NUMNODES; i++) {
4926 if (zone_movable_pfn[i])
a62e2f4f
BH
4927 printk(" Node %d: %#010lx\n", i,
4928 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4929 }
c713216d
MG
4930
4931 /* Print out the early_node_map[] */
a62e2f4f 4932 printk("Early memory node ranges\n");
c13291a5 4933 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4934 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4935 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4936
4937 /* Initialise every node */
708614e6 4938 mminit_verify_pageflags_layout();
8ef82866 4939 setup_nr_node_ids();
c713216d
MG
4940 for_each_online_node(nid) {
4941 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4942 free_area_init_node(nid, NULL,
c713216d 4943 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4944
4945 /* Any memory on that node */
4946 if (pgdat->node_present_pages)
4947 node_set_state(nid, N_HIGH_MEMORY);
4948 check_for_regular_memory(pgdat);
c713216d
MG
4949 }
4950}
2a1e274a 4951
7e63efef 4952static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4953{
4954 unsigned long long coremem;
4955 if (!p)
4956 return -EINVAL;
4957
4958 coremem = memparse(p, &p);
7e63efef 4959 *core = coremem >> PAGE_SHIFT;
2a1e274a 4960
7e63efef 4961 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4962 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4963
4964 return 0;
4965}
ed7ed365 4966
7e63efef
MG
4967/*
4968 * kernelcore=size sets the amount of memory for use for allocations that
4969 * cannot be reclaimed or migrated.
4970 */
4971static int __init cmdline_parse_kernelcore(char *p)
4972{
4973 return cmdline_parse_core(p, &required_kernelcore);
4974}
4975
4976/*
4977 * movablecore=size sets the amount of memory for use for allocations that
4978 * can be reclaimed or migrated.
4979 */
4980static int __init cmdline_parse_movablecore(char *p)
4981{
4982 return cmdline_parse_core(p, &required_movablecore);
4983}
4984
ed7ed365 4985early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4986early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4987
0ee332c1 4988#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4989
0e0b864e 4990/**
88ca3b94
RD
4991 * set_dma_reserve - set the specified number of pages reserved in the first zone
4992 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4993 *
4994 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4995 * In the DMA zone, a significant percentage may be consumed by kernel image
4996 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4997 * function may optionally be used to account for unfreeable pages in the
4998 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4999 * smaller per-cpu batchsize.
0e0b864e
MG
5000 */
5001void __init set_dma_reserve(unsigned long new_dma_reserve)
5002{
5003 dma_reserve = new_dma_reserve;
5004}
5005
1da177e4
LT
5006void __init free_area_init(unsigned long *zones_size)
5007{
9109fb7b 5008 free_area_init_node(0, zones_size,
1da177e4
LT
5009 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5010}
1da177e4 5011
1da177e4
LT
5012static int page_alloc_cpu_notify(struct notifier_block *self,
5013 unsigned long action, void *hcpu)
5014{
5015 int cpu = (unsigned long)hcpu;
1da177e4 5016
8bb78442 5017 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5018 lru_add_drain_cpu(cpu);
9f8f2172
CL
5019 drain_pages(cpu);
5020
5021 /*
5022 * Spill the event counters of the dead processor
5023 * into the current processors event counters.
5024 * This artificially elevates the count of the current
5025 * processor.
5026 */
f8891e5e 5027 vm_events_fold_cpu(cpu);
9f8f2172
CL
5028
5029 /*
5030 * Zero the differential counters of the dead processor
5031 * so that the vm statistics are consistent.
5032 *
5033 * This is only okay since the processor is dead and cannot
5034 * race with what we are doing.
5035 */
2244b95a 5036 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5037 }
5038 return NOTIFY_OK;
5039}
1da177e4
LT
5040
5041void __init page_alloc_init(void)
5042{
5043 hotcpu_notifier(page_alloc_cpu_notify, 0);
5044}
5045
cb45b0e9
HA
5046/*
5047 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5048 * or min_free_kbytes changes.
5049 */
5050static void calculate_totalreserve_pages(void)
5051{
5052 struct pglist_data *pgdat;
5053 unsigned long reserve_pages = 0;
2f6726e5 5054 enum zone_type i, j;
cb45b0e9
HA
5055
5056 for_each_online_pgdat(pgdat) {
5057 for (i = 0; i < MAX_NR_ZONES; i++) {
5058 struct zone *zone = pgdat->node_zones + i;
5059 unsigned long max = 0;
5060
5061 /* Find valid and maximum lowmem_reserve in the zone */
5062 for (j = i; j < MAX_NR_ZONES; j++) {
5063 if (zone->lowmem_reserve[j] > max)
5064 max = zone->lowmem_reserve[j];
5065 }
5066
41858966
MG
5067 /* we treat the high watermark as reserved pages. */
5068 max += high_wmark_pages(zone);
cb45b0e9
HA
5069
5070 if (max > zone->present_pages)
5071 max = zone->present_pages;
5072 reserve_pages += max;
ab8fabd4
JW
5073 /*
5074 * Lowmem reserves are not available to
5075 * GFP_HIGHUSER page cache allocations and
5076 * kswapd tries to balance zones to their high
5077 * watermark. As a result, neither should be
5078 * regarded as dirtyable memory, to prevent a
5079 * situation where reclaim has to clean pages
5080 * in order to balance the zones.
5081 */
5082 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5083 }
5084 }
ab8fabd4 5085 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5086 totalreserve_pages = reserve_pages;
5087}
5088
1da177e4
LT
5089/*
5090 * setup_per_zone_lowmem_reserve - called whenever
5091 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5092 * has a correct pages reserved value, so an adequate number of
5093 * pages are left in the zone after a successful __alloc_pages().
5094 */
5095static void setup_per_zone_lowmem_reserve(void)
5096{
5097 struct pglist_data *pgdat;
2f6726e5 5098 enum zone_type j, idx;
1da177e4 5099
ec936fc5 5100 for_each_online_pgdat(pgdat) {
1da177e4
LT
5101 for (j = 0; j < MAX_NR_ZONES; j++) {
5102 struct zone *zone = pgdat->node_zones + j;
5103 unsigned long present_pages = zone->present_pages;
5104
5105 zone->lowmem_reserve[j] = 0;
5106
2f6726e5
CL
5107 idx = j;
5108 while (idx) {
1da177e4
LT
5109 struct zone *lower_zone;
5110
2f6726e5
CL
5111 idx--;
5112
1da177e4
LT
5113 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5114 sysctl_lowmem_reserve_ratio[idx] = 1;
5115
5116 lower_zone = pgdat->node_zones + idx;
5117 lower_zone->lowmem_reserve[j] = present_pages /
5118 sysctl_lowmem_reserve_ratio[idx];
5119 present_pages += lower_zone->present_pages;
5120 }
5121 }
5122 }
cb45b0e9
HA
5123
5124 /* update totalreserve_pages */
5125 calculate_totalreserve_pages();
1da177e4
LT
5126}
5127
cfd3da1e 5128static void __setup_per_zone_wmarks(void)
1da177e4
LT
5129{
5130 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5131 unsigned long lowmem_pages = 0;
5132 struct zone *zone;
5133 unsigned long flags;
5134
5135 /* Calculate total number of !ZONE_HIGHMEM pages */
5136 for_each_zone(zone) {
5137 if (!is_highmem(zone))
5138 lowmem_pages += zone->present_pages;
5139 }
5140
5141 for_each_zone(zone) {
ac924c60
AM
5142 u64 tmp;
5143
1125b4e3 5144 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5145 tmp = (u64)pages_min * zone->present_pages;
5146 do_div(tmp, lowmem_pages);
1da177e4
LT
5147 if (is_highmem(zone)) {
5148 /*
669ed175
NP
5149 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5150 * need highmem pages, so cap pages_min to a small
5151 * value here.
5152 *
41858966 5153 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5154 * deltas controls asynch page reclaim, and so should
5155 * not be capped for highmem.
1da177e4
LT
5156 */
5157 int min_pages;
5158
5159 min_pages = zone->present_pages / 1024;
5160 if (min_pages < SWAP_CLUSTER_MAX)
5161 min_pages = SWAP_CLUSTER_MAX;
5162 if (min_pages > 128)
5163 min_pages = 128;
41858966 5164 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5165 } else {
669ed175
NP
5166 /*
5167 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5168 * proportionate to the zone's size.
5169 */
41858966 5170 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5171 }
5172
41858966
MG
5173 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5174 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5175
5176 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5177 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5178 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5179
56fd56b8 5180 setup_zone_migrate_reserve(zone);
1125b4e3 5181 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5182 }
cb45b0e9
HA
5183
5184 /* update totalreserve_pages */
5185 calculate_totalreserve_pages();
1da177e4
LT
5186}
5187
cfd3da1e
MG
5188/**
5189 * setup_per_zone_wmarks - called when min_free_kbytes changes
5190 * or when memory is hot-{added|removed}
5191 *
5192 * Ensures that the watermark[min,low,high] values for each zone are set
5193 * correctly with respect to min_free_kbytes.
5194 */
5195void setup_per_zone_wmarks(void)
5196{
5197 mutex_lock(&zonelists_mutex);
5198 __setup_per_zone_wmarks();
5199 mutex_unlock(&zonelists_mutex);
5200}
5201
55a4462a 5202/*
556adecb
RR
5203 * The inactive anon list should be small enough that the VM never has to
5204 * do too much work, but large enough that each inactive page has a chance
5205 * to be referenced again before it is swapped out.
5206 *
5207 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5208 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5209 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5210 * the anonymous pages are kept on the inactive list.
5211 *
5212 * total target max
5213 * memory ratio inactive anon
5214 * -------------------------------------
5215 * 10MB 1 5MB
5216 * 100MB 1 50MB
5217 * 1GB 3 250MB
5218 * 10GB 10 0.9GB
5219 * 100GB 31 3GB
5220 * 1TB 101 10GB
5221 * 10TB 320 32GB
5222 */
1b79acc9 5223static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5224{
96cb4df5 5225 unsigned int gb, ratio;
556adecb 5226
96cb4df5
MK
5227 /* Zone size in gigabytes */
5228 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5229 if (gb)
556adecb 5230 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5231 else
5232 ratio = 1;
556adecb 5233
96cb4df5
MK
5234 zone->inactive_ratio = ratio;
5235}
556adecb 5236
839a4fcc 5237static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5238{
5239 struct zone *zone;
5240
5241 for_each_zone(zone)
5242 calculate_zone_inactive_ratio(zone);
556adecb
RR
5243}
5244
1da177e4
LT
5245/*
5246 * Initialise min_free_kbytes.
5247 *
5248 * For small machines we want it small (128k min). For large machines
5249 * we want it large (64MB max). But it is not linear, because network
5250 * bandwidth does not increase linearly with machine size. We use
5251 *
5252 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5253 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5254 *
5255 * which yields
5256 *
5257 * 16MB: 512k
5258 * 32MB: 724k
5259 * 64MB: 1024k
5260 * 128MB: 1448k
5261 * 256MB: 2048k
5262 * 512MB: 2896k
5263 * 1024MB: 4096k
5264 * 2048MB: 5792k
5265 * 4096MB: 8192k
5266 * 8192MB: 11584k
5267 * 16384MB: 16384k
5268 */
1b79acc9 5269int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5270{
5271 unsigned long lowmem_kbytes;
5272
5273 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5274
5275 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5276 if (min_free_kbytes < 128)
5277 min_free_kbytes = 128;
5278 if (min_free_kbytes > 65536)
5279 min_free_kbytes = 65536;
bc75d33f 5280 setup_per_zone_wmarks();
a6cccdc3 5281 refresh_zone_stat_thresholds();
1da177e4 5282 setup_per_zone_lowmem_reserve();
556adecb 5283 setup_per_zone_inactive_ratio();
1da177e4
LT
5284 return 0;
5285}
bc75d33f 5286module_init(init_per_zone_wmark_min)
1da177e4
LT
5287
5288/*
5289 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5290 * that we can call two helper functions whenever min_free_kbytes
5291 * changes.
5292 */
5293int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5294 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5295{
8d65af78 5296 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5297 if (write)
bc75d33f 5298 setup_per_zone_wmarks();
1da177e4
LT
5299 return 0;
5300}
5301
9614634f
CL
5302#ifdef CONFIG_NUMA
5303int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5304 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5305{
5306 struct zone *zone;
5307 int rc;
5308
8d65af78 5309 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5310 if (rc)
5311 return rc;
5312
5313 for_each_zone(zone)
8417bba4 5314 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5315 sysctl_min_unmapped_ratio) / 100;
5316 return 0;
5317}
0ff38490
CL
5318
5319int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5320 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5321{
5322 struct zone *zone;
5323 int rc;
5324
8d65af78 5325 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5326 if (rc)
5327 return rc;
5328
5329 for_each_zone(zone)
5330 zone->min_slab_pages = (zone->present_pages *
5331 sysctl_min_slab_ratio) / 100;
5332 return 0;
5333}
9614634f
CL
5334#endif
5335
1da177e4
LT
5336/*
5337 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5338 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5339 * whenever sysctl_lowmem_reserve_ratio changes.
5340 *
5341 * The reserve ratio obviously has absolutely no relation with the
41858966 5342 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5343 * if in function of the boot time zone sizes.
5344 */
5345int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5346 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5347{
8d65af78 5348 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5349 setup_per_zone_lowmem_reserve();
5350 return 0;
5351}
5352
8ad4b1fb
RS
5353/*
5354 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5355 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5356 * can have before it gets flushed back to buddy allocator.
5357 */
5358
5359int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5360 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5361{
5362 struct zone *zone;
5363 unsigned int cpu;
5364 int ret;
5365
8d65af78 5366 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5367 if (!write || (ret < 0))
8ad4b1fb 5368 return ret;
364df0eb 5369 for_each_populated_zone(zone) {
99dcc3e5 5370 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5371 unsigned long high;
5372 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5373 setup_pagelist_highmark(
5374 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5375 }
5376 }
5377 return 0;
5378}
5379
f034b5d4 5380int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5381
5382#ifdef CONFIG_NUMA
5383static int __init set_hashdist(char *str)
5384{
5385 if (!str)
5386 return 0;
5387 hashdist = simple_strtoul(str, &str, 0);
5388 return 1;
5389}
5390__setup("hashdist=", set_hashdist);
5391#endif
5392
5393/*
5394 * allocate a large system hash table from bootmem
5395 * - it is assumed that the hash table must contain an exact power-of-2
5396 * quantity of entries
5397 * - limit is the number of hash buckets, not the total allocation size
5398 */
5399void *__init alloc_large_system_hash(const char *tablename,
5400 unsigned long bucketsize,
5401 unsigned long numentries,
5402 int scale,
5403 int flags,
5404 unsigned int *_hash_shift,
5405 unsigned int *_hash_mask,
31fe62b9
TB
5406 unsigned long low_limit,
5407 unsigned long high_limit)
1da177e4 5408{
31fe62b9 5409 unsigned long long max = high_limit;
1da177e4
LT
5410 unsigned long log2qty, size;
5411 void *table = NULL;
5412
5413 /* allow the kernel cmdline to have a say */
5414 if (!numentries) {
5415 /* round applicable memory size up to nearest megabyte */
04903664 5416 numentries = nr_kernel_pages;
1da177e4
LT
5417 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5418 numentries >>= 20 - PAGE_SHIFT;
5419 numentries <<= 20 - PAGE_SHIFT;
5420
5421 /* limit to 1 bucket per 2^scale bytes of low memory */
5422 if (scale > PAGE_SHIFT)
5423 numentries >>= (scale - PAGE_SHIFT);
5424 else
5425 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5426
5427 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5428 if (unlikely(flags & HASH_SMALL)) {
5429 /* Makes no sense without HASH_EARLY */
5430 WARN_ON(!(flags & HASH_EARLY));
5431 if (!(numentries >> *_hash_shift)) {
5432 numentries = 1UL << *_hash_shift;
5433 BUG_ON(!numentries);
5434 }
5435 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5436 numentries = PAGE_SIZE / bucketsize;
1da177e4 5437 }
6e692ed3 5438 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5439
5440 /* limit allocation size to 1/16 total memory by default */
5441 if (max == 0) {
5442 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5443 do_div(max, bucketsize);
5444 }
074b8517 5445 max = min(max, 0x80000000ULL);
1da177e4 5446
31fe62b9
TB
5447 if (numentries < low_limit)
5448 numentries = low_limit;
1da177e4
LT
5449 if (numentries > max)
5450 numentries = max;
5451
f0d1b0b3 5452 log2qty = ilog2(numentries);
1da177e4
LT
5453
5454 do {
5455 size = bucketsize << log2qty;
5456 if (flags & HASH_EARLY)
74768ed8 5457 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5458 else if (hashdist)
5459 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5460 else {
1037b83b
ED
5461 /*
5462 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5463 * some pages at the end of hash table which
5464 * alloc_pages_exact() automatically does
1037b83b 5465 */
264ef8a9 5466 if (get_order(size) < MAX_ORDER) {
a1dd268c 5467 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5468 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5469 }
1da177e4
LT
5470 }
5471 } while (!table && size > PAGE_SIZE && --log2qty);
5472
5473 if (!table)
5474 panic("Failed to allocate %s hash table\n", tablename);
5475
f241e660 5476 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5477 tablename,
f241e660 5478 (1UL << log2qty),
f0d1b0b3 5479 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5480 size);
5481
5482 if (_hash_shift)
5483 *_hash_shift = log2qty;
5484 if (_hash_mask)
5485 *_hash_mask = (1 << log2qty) - 1;
5486
5487 return table;
5488}
a117e66e 5489
835c134e
MG
5490/* Return a pointer to the bitmap storing bits affecting a block of pages */
5491static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5492 unsigned long pfn)
5493{
5494#ifdef CONFIG_SPARSEMEM
5495 return __pfn_to_section(pfn)->pageblock_flags;
5496#else
5497 return zone->pageblock_flags;
5498#endif /* CONFIG_SPARSEMEM */
5499}
5500
5501static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5502{
5503#ifdef CONFIG_SPARSEMEM
5504 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5505 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5506#else
5507 pfn = pfn - zone->zone_start_pfn;
d9c23400 5508 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5509#endif /* CONFIG_SPARSEMEM */
5510}
5511
5512/**
d9c23400 5513 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5514 * @page: The page within the block of interest
5515 * @start_bitidx: The first bit of interest to retrieve
5516 * @end_bitidx: The last bit of interest
5517 * returns pageblock_bits flags
5518 */
5519unsigned long get_pageblock_flags_group(struct page *page,
5520 int start_bitidx, int end_bitidx)
5521{
5522 struct zone *zone;
5523 unsigned long *bitmap;
5524 unsigned long pfn, bitidx;
5525 unsigned long flags = 0;
5526 unsigned long value = 1;
5527
5528 zone = page_zone(page);
5529 pfn = page_to_pfn(page);
5530 bitmap = get_pageblock_bitmap(zone, pfn);
5531 bitidx = pfn_to_bitidx(zone, pfn);
5532
5533 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5534 if (test_bit(bitidx + start_bitidx, bitmap))
5535 flags |= value;
6220ec78 5536
835c134e
MG
5537 return flags;
5538}
5539
5540/**
d9c23400 5541 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5542 * @page: The page within the block of interest
5543 * @start_bitidx: The first bit of interest
5544 * @end_bitidx: The last bit of interest
5545 * @flags: The flags to set
5546 */
5547void set_pageblock_flags_group(struct page *page, unsigned long flags,
5548 int start_bitidx, int end_bitidx)
5549{
5550 struct zone *zone;
5551 unsigned long *bitmap;
5552 unsigned long pfn, bitidx;
5553 unsigned long value = 1;
5554
5555 zone = page_zone(page);
5556 pfn = page_to_pfn(page);
5557 bitmap = get_pageblock_bitmap(zone, pfn);
5558 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5559 VM_BUG_ON(pfn < zone->zone_start_pfn);
5560 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5561
5562 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5563 if (flags & value)
5564 __set_bit(bitidx + start_bitidx, bitmap);
5565 else
5566 __clear_bit(bitidx + start_bitidx, bitmap);
5567}
a5d76b54
KH
5568
5569/*
80934513
MK
5570 * This function checks whether pageblock includes unmovable pages or not.
5571 * If @count is not zero, it is okay to include less @count unmovable pages
5572 *
5573 * PageLRU check wihtout isolation or lru_lock could race so that
5574 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5575 * expect this function should be exact.
a5d76b54 5576 */
ee6f509c 5577bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
49ac8255
KH
5578{
5579 unsigned long pfn, iter, found;
47118af0
MN
5580 int mt;
5581
49ac8255
KH
5582 /*
5583 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5584 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5585 */
5586 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5587 return false;
47118af0
MN
5588 mt = get_pageblock_migratetype(page);
5589 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5590 return false;
49ac8255
KH
5591
5592 pfn = page_to_pfn(page);
5593 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5594 unsigned long check = pfn + iter;
5595
29723fcc 5596 if (!pfn_valid_within(check))
49ac8255 5597 continue;
29723fcc 5598
49ac8255 5599 page = pfn_to_page(check);
97d255c8
MK
5600 /*
5601 * We can't use page_count without pin a page
5602 * because another CPU can free compound page.
5603 * This check already skips compound tails of THP
5604 * because their page->_count is zero at all time.
5605 */
5606 if (!atomic_read(&page->_count)) {
49ac8255
KH
5607 if (PageBuddy(page))
5608 iter += (1 << page_order(page)) - 1;
5609 continue;
5610 }
97d255c8 5611
49ac8255
KH
5612 if (!PageLRU(page))
5613 found++;
5614 /*
5615 * If there are RECLAIMABLE pages, we need to check it.
5616 * But now, memory offline itself doesn't call shrink_slab()
5617 * and it still to be fixed.
5618 */
5619 /*
5620 * If the page is not RAM, page_count()should be 0.
5621 * we don't need more check. This is an _used_ not-movable page.
5622 *
5623 * The problematic thing here is PG_reserved pages. PG_reserved
5624 * is set to both of a memory hole page and a _used_ kernel
5625 * page at boot.
5626 */
5627 if (found > count)
80934513 5628 return true;
49ac8255 5629 }
80934513 5630 return false;
49ac8255
KH
5631}
5632
5633bool is_pageblock_removable_nolock(struct page *page)
5634{
656a0706
MH
5635 struct zone *zone;
5636 unsigned long pfn;
687875fb
MH
5637
5638 /*
5639 * We have to be careful here because we are iterating over memory
5640 * sections which are not zone aware so we might end up outside of
5641 * the zone but still within the section.
656a0706
MH
5642 * We have to take care about the node as well. If the node is offline
5643 * its NODE_DATA will be NULL - see page_zone.
687875fb 5644 */
656a0706
MH
5645 if (!node_online(page_to_nid(page)))
5646 return false;
5647
5648 zone = page_zone(page);
5649 pfn = page_to_pfn(page);
5650 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5651 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5652 return false;
5653
ee6f509c 5654 return !has_unmovable_pages(zone, page, 0);
a5d76b54 5655}
0c0e6195 5656
041d3a8c
MN
5657#ifdef CONFIG_CMA
5658
5659static unsigned long pfn_max_align_down(unsigned long pfn)
5660{
5661 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5662 pageblock_nr_pages) - 1);
5663}
5664
5665static unsigned long pfn_max_align_up(unsigned long pfn)
5666{
5667 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5668 pageblock_nr_pages));
5669}
5670
5671static struct page *
5672__alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5673 int **resultp)
5674{
6a6dccba
RV
5675 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5676
5677 if (PageHighMem(page))
5678 gfp_mask |= __GFP_HIGHMEM;
5679
5680 return alloc_page(gfp_mask);
041d3a8c
MN
5681}
5682
5683/* [start, end) must belong to a single zone. */
5684static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5685{
5686 /* This function is based on compact_zone() from compaction.c. */
5687
5688 unsigned long pfn = start;
5689 unsigned int tries = 0;
5690 int ret = 0;
5691
5692 struct compact_control cc = {
5693 .nr_migratepages = 0,
5694 .order = -1,
5695 .zone = page_zone(pfn_to_page(start)),
68e3e926 5696 .sync = true,
041d3a8c
MN
5697 };
5698 INIT_LIST_HEAD(&cc.migratepages);
5699
5700 migrate_prep_local();
5701
5702 while (pfn < end || !list_empty(&cc.migratepages)) {
5703 if (fatal_signal_pending(current)) {
5704 ret = -EINTR;
5705 break;
5706 }
5707
5708 if (list_empty(&cc.migratepages)) {
5709 cc.nr_migratepages = 0;
5710 pfn = isolate_migratepages_range(cc.zone, &cc,
5711 pfn, end);
5712 if (!pfn) {
5713 ret = -EINTR;
5714 break;
5715 }
5716 tries = 0;
5717 } else if (++tries == 5) {
5718 ret = ret < 0 ? ret : -EBUSY;
5719 break;
5720 }
5721
02c6de8d
MK
5722 reclaim_clean_pages_from_list(cc.zone, &cc.migratepages);
5723
041d3a8c
MN
5724 ret = migrate_pages(&cc.migratepages,
5725 __alloc_contig_migrate_alloc,
58f42fd5 5726 0, false, MIGRATE_SYNC);
041d3a8c
MN
5727 }
5728
5729 putback_lru_pages(&cc.migratepages);
5730 return ret > 0 ? 0 : ret;
5731}
5732
49f223a9
MS
5733/*
5734 * Update zone's cma pages counter used for watermark level calculation.
5735 */
5736static inline void __update_cma_watermarks(struct zone *zone, int count)
5737{
5738 unsigned long flags;
5739 spin_lock_irqsave(&zone->lock, flags);
5740 zone->min_cma_pages += count;
5741 spin_unlock_irqrestore(&zone->lock, flags);
5742 setup_per_zone_wmarks();
5743}
5744
5745/*
5746 * Trigger memory pressure bump to reclaim some pages in order to be able to
5747 * allocate 'count' pages in single page units. Does similar work as
5748 *__alloc_pages_slowpath() function.
5749 */
5750static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5751{
5752 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5753 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5754 int did_some_progress = 0;
5755 int order = 1;
5756
5757 /*
5758 * Increase level of watermarks to force kswapd do his job
5759 * to stabilise at new watermark level.
5760 */
5761 __update_cma_watermarks(zone, count);
5762
5763 /* Obey watermarks as if the page was being allocated */
5764 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5765 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5766
5767 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5768 NULL);
5769 if (!did_some_progress) {
5770 /* Exhausted what can be done so it's blamo time */
5771 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5772 }
5773 }
5774
5775 /* Restore original watermark levels. */
5776 __update_cma_watermarks(zone, -count);
5777
5778 return count;
5779}
5780
041d3a8c
MN
5781/**
5782 * alloc_contig_range() -- tries to allocate given range of pages
5783 * @start: start PFN to allocate
5784 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5785 * @migratetype: migratetype of the underlaying pageblocks (either
5786 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5787 * in range must have the same migratetype and it must
5788 * be either of the two.
041d3a8c
MN
5789 *
5790 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5791 * aligned, however it's the caller's responsibility to guarantee that
5792 * we are the only thread that changes migrate type of pageblocks the
5793 * pages fall in.
5794 *
5795 * The PFN range must belong to a single zone.
5796 *
5797 * Returns zero on success or negative error code. On success all
5798 * pages which PFN is in [start, end) are allocated for the caller and
5799 * need to be freed with free_contig_range().
5800 */
0815f3d8
MN
5801int alloc_contig_range(unsigned long start, unsigned long end,
5802 unsigned migratetype)
041d3a8c
MN
5803{
5804 struct zone *zone = page_zone(pfn_to_page(start));
5805 unsigned long outer_start, outer_end;
5806 int ret = 0, order;
5807
5808 /*
5809 * What we do here is we mark all pageblocks in range as
5810 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5811 * have different sizes, and due to the way page allocator
5812 * work, we align the range to biggest of the two pages so
5813 * that page allocator won't try to merge buddies from
5814 * different pageblocks and change MIGRATE_ISOLATE to some
5815 * other migration type.
5816 *
5817 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5818 * migrate the pages from an unaligned range (ie. pages that
5819 * we are interested in). This will put all the pages in
5820 * range back to page allocator as MIGRATE_ISOLATE.
5821 *
5822 * When this is done, we take the pages in range from page
5823 * allocator removing them from the buddy system. This way
5824 * page allocator will never consider using them.
5825 *
5826 * This lets us mark the pageblocks back as
5827 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5828 * aligned range but not in the unaligned, original range are
5829 * put back to page allocator so that buddy can use them.
5830 */
5831
5832 ret = start_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5833 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5834 if (ret)
5835 goto done;
5836
5837 ret = __alloc_contig_migrate_range(start, end);
5838 if (ret)
5839 goto done;
5840
5841 /*
5842 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5843 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5844 * more, all pages in [start, end) are free in page allocator.
5845 * What we are going to do is to allocate all pages from
5846 * [start, end) (that is remove them from page allocator).
5847 *
5848 * The only problem is that pages at the beginning and at the
5849 * end of interesting range may be not aligned with pages that
5850 * page allocator holds, ie. they can be part of higher order
5851 * pages. Because of this, we reserve the bigger range and
5852 * once this is done free the pages we are not interested in.
5853 *
5854 * We don't have to hold zone->lock here because the pages are
5855 * isolated thus they won't get removed from buddy.
5856 */
5857
5858 lru_add_drain_all();
5859 drain_all_pages();
5860
5861 order = 0;
5862 outer_start = start;
5863 while (!PageBuddy(pfn_to_page(outer_start))) {
5864 if (++order >= MAX_ORDER) {
5865 ret = -EBUSY;
5866 goto done;
5867 }
5868 outer_start &= ~0UL << order;
5869 }
5870
5871 /* Make sure the range is really isolated. */
5872 if (test_pages_isolated(outer_start, end)) {
5873 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5874 outer_start, end);
5875 ret = -EBUSY;
5876 goto done;
5877 }
5878
49f223a9
MS
5879 /*
5880 * Reclaim enough pages to make sure that contiguous allocation
5881 * will not starve the system.
5882 */
5883 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5884
5885 /* Grab isolated pages from freelists. */
041d3a8c
MN
5886 outer_end = isolate_freepages_range(outer_start, end);
5887 if (!outer_end) {
5888 ret = -EBUSY;
5889 goto done;
5890 }
5891
5892 /* Free head and tail (if any) */
5893 if (start != outer_start)
5894 free_contig_range(outer_start, start - outer_start);
5895 if (end != outer_end)
5896 free_contig_range(end, outer_end - end);
5897
5898done:
5899 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5900 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5901 return ret;
5902}
5903
5904void free_contig_range(unsigned long pfn, unsigned nr_pages)
5905{
5906 for (; nr_pages--; ++pfn)
5907 __free_page(pfn_to_page(pfn));
5908}
5909#endif
5910
4ed7e022
JL
5911#ifdef CONFIG_MEMORY_HOTPLUG
5912static int __meminit __zone_pcp_update(void *data)
5913{
5914 struct zone *zone = data;
5915 int cpu;
5916 unsigned long batch = zone_batchsize(zone), flags;
5917
5918 for_each_possible_cpu(cpu) {
5919 struct per_cpu_pageset *pset;
5920 struct per_cpu_pages *pcp;
5921
5922 pset = per_cpu_ptr(zone->pageset, cpu);
5923 pcp = &pset->pcp;
5924
5925 local_irq_save(flags);
5926 if (pcp->count > 0)
5927 free_pcppages_bulk(zone, pcp->count, pcp);
5928 setup_pageset(pset, batch);
5929 local_irq_restore(flags);
5930 }
5931 return 0;
5932}
5933
5934void __meminit zone_pcp_update(struct zone *zone)
5935{
5936 stop_machine(__zone_pcp_update, zone, NULL);
5937}
5938#endif
5939
0c0e6195 5940#ifdef CONFIG_MEMORY_HOTREMOVE
340175b7
JL
5941void zone_pcp_reset(struct zone *zone)
5942{
5943 unsigned long flags;
5944
5945 /* avoid races with drain_pages() */
5946 local_irq_save(flags);
5947 if (zone->pageset != &boot_pageset) {
5948 free_percpu(zone->pageset);
5949 zone->pageset = &boot_pageset;
5950 }
5951 local_irq_restore(flags);
5952}
5953
0c0e6195
KH
5954/*
5955 * All pages in the range must be isolated before calling this.
5956 */
5957void
5958__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5959{
5960 struct page *page;
5961 struct zone *zone;
5962 int order, i;
5963 unsigned long pfn;
5964 unsigned long flags;
5965 /* find the first valid pfn */
5966 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5967 if (pfn_valid(pfn))
5968 break;
5969 if (pfn == end_pfn)
5970 return;
5971 zone = page_zone(pfn_to_page(pfn));
5972 spin_lock_irqsave(&zone->lock, flags);
5973 pfn = start_pfn;
5974 while (pfn < end_pfn) {
5975 if (!pfn_valid(pfn)) {
5976 pfn++;
5977 continue;
5978 }
5979 page = pfn_to_page(pfn);
5980 BUG_ON(page_count(page));
5981 BUG_ON(!PageBuddy(page));
5982 order = page_order(page);
5983#ifdef CONFIG_DEBUG_VM
5984 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5985 pfn, 1 << order, end_pfn);
5986#endif
5987 list_del(&page->lru);
5988 rmv_page_order(page);
5989 zone->free_area[order].nr_free--;
5990 __mod_zone_page_state(zone, NR_FREE_PAGES,
5991 - (1UL << order));
5992 for (i = 0; i < (1 << order); i++)
5993 SetPageReserved((page+i));
5994 pfn += (1 << order);
5995 }
5996 spin_unlock_irqrestore(&zone->lock, flags);
5997}
5998#endif
8d22ba1b
WF
5999
6000#ifdef CONFIG_MEMORY_FAILURE
6001bool is_free_buddy_page(struct page *page)
6002{
6003 struct zone *zone = page_zone(page);
6004 unsigned long pfn = page_to_pfn(page);
6005 unsigned long flags;
6006 int order;
6007
6008 spin_lock_irqsave(&zone->lock, flags);
6009 for (order = 0; order < MAX_ORDER; order++) {
6010 struct page *page_head = page - (pfn & ((1 << order) - 1));
6011
6012 if (PageBuddy(page_head) && page_order(page_head) >= order)
6013 break;
6014 }
6015 spin_unlock_irqrestore(&zone->lock, flags);
6016
6017 return order < MAX_ORDER;
6018}
6019#endif
718a3821 6020
51300cef 6021static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6022 {1UL << PG_locked, "locked" },
6023 {1UL << PG_error, "error" },
6024 {1UL << PG_referenced, "referenced" },
6025 {1UL << PG_uptodate, "uptodate" },
6026 {1UL << PG_dirty, "dirty" },
6027 {1UL << PG_lru, "lru" },
6028 {1UL << PG_active, "active" },
6029 {1UL << PG_slab, "slab" },
6030 {1UL << PG_owner_priv_1, "owner_priv_1" },
6031 {1UL << PG_arch_1, "arch_1" },
6032 {1UL << PG_reserved, "reserved" },
6033 {1UL << PG_private, "private" },
6034 {1UL << PG_private_2, "private_2" },
6035 {1UL << PG_writeback, "writeback" },
6036#ifdef CONFIG_PAGEFLAGS_EXTENDED
6037 {1UL << PG_head, "head" },
6038 {1UL << PG_tail, "tail" },
6039#else
6040 {1UL << PG_compound, "compound" },
6041#endif
6042 {1UL << PG_swapcache, "swapcache" },
6043 {1UL << PG_mappedtodisk, "mappedtodisk" },
6044 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6045 {1UL << PG_swapbacked, "swapbacked" },
6046 {1UL << PG_unevictable, "unevictable" },
6047#ifdef CONFIG_MMU
6048 {1UL << PG_mlocked, "mlocked" },
6049#endif
6050#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6051 {1UL << PG_uncached, "uncached" },
6052#endif
6053#ifdef CONFIG_MEMORY_FAILURE
6054 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6055#endif
6056#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6057 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6058#endif
718a3821
WF
6059};
6060
6061static void dump_page_flags(unsigned long flags)
6062{
6063 const char *delim = "";
6064 unsigned long mask;
6065 int i;
6066
51300cef 6067 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6068
718a3821
WF
6069 printk(KERN_ALERT "page flags: %#lx(", flags);
6070
6071 /* remove zone id */
6072 flags &= (1UL << NR_PAGEFLAGS) - 1;
6073
51300cef 6074 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6075
6076 mask = pageflag_names[i].mask;
6077 if ((flags & mask) != mask)
6078 continue;
6079
6080 flags &= ~mask;
6081 printk("%s%s", delim, pageflag_names[i].name);
6082 delim = "|";
6083 }
6084
6085 /* check for left over flags */
6086 if (flags)
6087 printk("%s%#lx", delim, flags);
6088
6089 printk(")\n");
6090}
6091
6092void dump_page(struct page *page)
6093{
6094 printk(KERN_ALERT
6095 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6096 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6097 page->mapping, page->index);
6098 dump_page_flags(page->flags);
f212ad7c 6099 mem_cgroup_print_bad_page(page);
718a3821 6100}