]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
mm: vmscan: convert lumpy_mode into a bitmask
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
5a3135c2 33#include <linux/oom.h>
1da177e4
LT
34#include <linux/notifier.h>
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
4be38e35 42#include <linux/mempolicy.h>
6811378e 43#include <linux/stop_machine.h>
c713216d
MG
44#include <linux/sort.h>
45#include <linux/pfn.h>
3fcfab16 46#include <linux/backing-dev.h>
933e312e 47#include <linux/fault-inject.h>
a5d76b54 48#include <linux/page-isolation.h>
52d4b9ac 49#include <linux/page_cgroup.h>
3ac7fe5a 50#include <linux/debugobjects.h>
dbb1f81c 51#include <linux/kmemleak.h>
925cc71e 52#include <linux/memory.h>
56de7263 53#include <linux/compaction.h>
0d3d062a 54#include <trace/events/kmem.h>
718a3821 55#include <linux/ftrace_event.h>
1da177e4
LT
56
57#include <asm/tlbflush.h>
ac924c60 58#include <asm/div64.h>
1da177e4
LT
59#include "internal.h"
60
72812019
LS
61#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62DEFINE_PER_CPU(int, numa_node);
63EXPORT_PER_CPU_SYMBOL(numa_node);
64#endif
65
7aac7898
LS
66#ifdef CONFIG_HAVE_MEMORYLESS_NODES
67/*
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
72 */
73DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75#endif
76
1da177e4 77/*
13808910 78 * Array of node states.
1da177e4 79 */
13808910
CL
80nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83#ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85#ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87#endif
88 [N_CPU] = { { [0] = 1UL } },
89#endif /* NUMA */
90};
91EXPORT_SYMBOL(node_states);
92
6c231b7b 93unsigned long totalram_pages __read_mostly;
cb45b0e9 94unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 95int percpu_pagelist_fraction;
dcce284a 96gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 97
452aa699
RW
98#ifdef CONFIG_PM_SLEEP
99/*
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
106 */
c9e664f1
RW
107
108static gfp_t saved_gfp_mask;
109
110void pm_restore_gfp_mask(void)
452aa699
RW
111{
112 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
116 }
452aa699
RW
117}
118
c9e664f1 119void pm_restrict_gfp_mask(void)
452aa699 120{
452aa699 121 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
452aa699
RW
125}
126#endif /* CONFIG_PM_SLEEP */
127
d9c23400
MG
128#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129int pageblock_order __read_mostly;
130#endif
131
d98c7a09 132static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 133
1da177e4
LT
134/*
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
141 *
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
1da177e4 144 */
2f1b6248 145int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 146#ifdef CONFIG_ZONE_DMA
2f1b6248 147 256,
4b51d669 148#endif
fb0e7942 149#ifdef CONFIG_ZONE_DMA32
2f1b6248 150 256,
fb0e7942 151#endif
e53ef38d 152#ifdef CONFIG_HIGHMEM
2a1e274a 153 32,
e53ef38d 154#endif
2a1e274a 155 32,
2f1b6248 156};
1da177e4
LT
157
158EXPORT_SYMBOL(totalram_pages);
1da177e4 159
15ad7cdc 160static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 161#ifdef CONFIG_ZONE_DMA
2f1b6248 162 "DMA",
4b51d669 163#endif
fb0e7942 164#ifdef CONFIG_ZONE_DMA32
2f1b6248 165 "DMA32",
fb0e7942 166#endif
2f1b6248 167 "Normal",
e53ef38d 168#ifdef CONFIG_HIGHMEM
2a1e274a 169 "HighMem",
e53ef38d 170#endif
2a1e274a 171 "Movable",
2f1b6248
CL
172};
173
1da177e4
LT
174int min_free_kbytes = 1024;
175
2c85f51d
JB
176static unsigned long __meminitdata nr_kernel_pages;
177static unsigned long __meminitdata nr_all_pages;
a3142c8e 178static unsigned long __meminitdata dma_reserve;
1da177e4 179
c713216d
MG
180#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181 /*
183ff22b 182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
187 */
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
200
98011f56
JB
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 205 static unsigned long __initdata required_kernelcore;
484f51f8 206 static unsigned long __initdata required_movablecore;
b69a7288 207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
208
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
c713216d
MG
212#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213
418508c1
MS
214#if MAX_NUMNODES > 1
215int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 216int nr_online_nodes __read_mostly = 1;
418508c1 217EXPORT_SYMBOL(nr_node_ids);
62bc62a8 218EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
219#endif
220
9ef9acb0
MG
221int page_group_by_mobility_disabled __read_mostly;
222
b2a0ac88
MG
223static void set_pageblock_migratetype(struct page *page, int migratetype)
224{
49255c61
MG
225
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
228
b2a0ac88
MG
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
231}
232
7f33d49a
RW
233bool oom_killer_disabled __read_mostly;
234
13e7444b 235#ifdef CONFIG_DEBUG_VM
c6a57e19 236static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 237{
bdc8cb98
DH
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
c6a57e19 241
bdc8cb98
DH
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
249
250 return ret;
c6a57e19
DH
251}
252
253static int page_is_consistent(struct zone *zone, struct page *page)
254{
14e07298 255 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 256 return 0;
1da177e4 257 if (zone != page_zone(page))
c6a57e19
DH
258 return 0;
259
260 return 1;
261}
262/*
263 * Temporary debugging check for pages not lying within a given zone.
264 */
265static int bad_range(struct zone *zone, struct page *page)
266{
267 if (page_outside_zone_boundaries(zone, page))
1da177e4 268 return 1;
c6a57e19
DH
269 if (!page_is_consistent(zone, page))
270 return 1;
271
1da177e4
LT
272 return 0;
273}
13e7444b
NP
274#else
275static inline int bad_range(struct zone *zone, struct page *page)
276{
277 return 0;
278}
279#endif
280
224abf92 281static void bad_page(struct page *page)
1da177e4 282{
d936cf9b
HD
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
286
2a7684a2
WF
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 __ClearPageBuddy(page);
290 return;
291 }
292
d936cf9b
HD
293 /*
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
296 */
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
301 }
302 if (nr_unshown) {
1e9e6365
HD
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
305 nr_unshown);
306 nr_unshown = 0;
307 }
308 nr_shown = 0;
309 }
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
312
1e9e6365 313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 314 current->comm, page_to_pfn(page));
718a3821 315 dump_page(page);
3dc14741 316
1da177e4 317 dump_stack();
d936cf9b 318out:
8cc3b392
HD
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page);
9f158333 321 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
322}
323
1da177e4
LT
324/*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
333 *
41d78ba5
HD
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
1da177e4 337 */
d98c7a09
HD
338
339static void free_compound_page(struct page *page)
340{
d85f3385 341 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
342}
343
01ad1c08 344void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
345{
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
354
355 __SetPageTail(p);
356 p->first_page = page;
357 }
358}
359
8cc3b392 360static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
361{
362 int i;
363 int nr_pages = 1 << order;
8cc3b392 364 int bad = 0;
1da177e4 365
8cc3b392
HD
366 if (unlikely(compound_order(page) != order) ||
367 unlikely(!PageHead(page))) {
224abf92 368 bad_page(page);
8cc3b392
HD
369 bad++;
370 }
1da177e4 371
6d777953 372 __ClearPageHead(page);
8cc3b392 373
18229df5
AW
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
1da177e4 376
e713a21d 377 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 378 bad_page(page);
8cc3b392
HD
379 bad++;
380 }
d85f3385 381 __ClearPageTail(p);
1da177e4 382 }
8cc3b392
HD
383
384 return bad;
1da177e4 385}
1da177e4 386
17cf4406
NP
387static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388{
389 int i;
390
6626c5d5
AM
391 /*
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 */
725d704e 395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
396 for (i = 0; i < (1 << order); i++)
397 clear_highpage(page + i);
398}
399
6aa3001b
AM
400static inline void set_page_order(struct page *page, int order)
401{
4c21e2f2 402 set_page_private(page, order);
676165a8 403 __SetPageBuddy(page);
1da177e4
LT
404}
405
406static inline void rmv_page_order(struct page *page)
407{
676165a8 408 __ClearPageBuddy(page);
4c21e2f2 409 set_page_private(page, 0);
1da177e4
LT
410}
411
412/*
413 * Locate the struct page for both the matching buddy in our
414 * pair (buddy1) and the combined O(n+1) page they form (page).
415 *
416 * 1) Any buddy B1 will have an order O twin B2 which satisfies
417 * the following equation:
418 * B2 = B1 ^ (1 << O)
419 * For example, if the starting buddy (buddy2) is #8 its order
420 * 1 buddy is #10:
421 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
422 *
423 * 2) Any buddy B will have an order O+1 parent P which
424 * satisfies the following equation:
425 * P = B & ~(1 << O)
426 *
d6e05edc 427 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
428 */
429static inline struct page *
430__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
431{
432 unsigned long buddy_idx = page_idx ^ (1 << order);
433
434 return page + (buddy_idx - page_idx);
435}
436
437static inline unsigned long
438__find_combined_index(unsigned long page_idx, unsigned int order)
439{
440 return (page_idx & ~(1 << order));
441}
442
443/*
444 * This function checks whether a page is free && is the buddy
445 * we can do coalesce a page and its buddy if
13e7444b 446 * (a) the buddy is not in a hole &&
676165a8 447 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
448 * (c) a page and its buddy have the same order &&
449 * (d) a page and its buddy are in the same zone.
676165a8
NP
450 *
451 * For recording whether a page is in the buddy system, we use PG_buddy.
452 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 453 *
676165a8 454 * For recording page's order, we use page_private(page).
1da177e4 455 */
cb2b95e1
AW
456static inline int page_is_buddy(struct page *page, struct page *buddy,
457 int order)
1da177e4 458{
14e07298 459 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 460 return 0;
13e7444b 461
cb2b95e1
AW
462 if (page_zone_id(page) != page_zone_id(buddy))
463 return 0;
464
465 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 466 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 467 return 1;
676165a8 468 }
6aa3001b 469 return 0;
1da177e4
LT
470}
471
472/*
473 * Freeing function for a buddy system allocator.
474 *
475 * The concept of a buddy system is to maintain direct-mapped table
476 * (containing bit values) for memory blocks of various "orders".
477 * The bottom level table contains the map for the smallest allocatable
478 * units of memory (here, pages), and each level above it describes
479 * pairs of units from the levels below, hence, "buddies".
480 * At a high level, all that happens here is marking the table entry
481 * at the bottom level available, and propagating the changes upward
482 * as necessary, plus some accounting needed to play nicely with other
483 * parts of the VM system.
484 * At each level, we keep a list of pages, which are heads of continuous
676165a8 485 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 486 * order is recorded in page_private(page) field.
1da177e4
LT
487 * So when we are allocating or freeing one, we can derive the state of the
488 * other. That is, if we allocate a small block, and both were
489 * free, the remainder of the region must be split into blocks.
490 * If a block is freed, and its buddy is also free, then this
491 * triggers coalescing into a block of larger size.
492 *
493 * -- wli
494 */
495
48db57f8 496static inline void __free_one_page(struct page *page,
ed0ae21d
MG
497 struct zone *zone, unsigned int order,
498 int migratetype)
1da177e4
LT
499{
500 unsigned long page_idx;
6dda9d55
CZ
501 unsigned long combined_idx;
502 struct page *buddy;
1da177e4 503
224abf92 504 if (unlikely(PageCompound(page)))
8cc3b392
HD
505 if (unlikely(destroy_compound_page(page, order)))
506 return;
1da177e4 507
ed0ae21d
MG
508 VM_BUG_ON(migratetype == -1);
509
1da177e4
LT
510 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
511
f2260e6b 512 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 513 VM_BUG_ON(bad_range(zone, page));
1da177e4 514
1da177e4 515 while (order < MAX_ORDER-1) {
1da177e4 516 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 517 if (!page_is_buddy(page, buddy, order))
3c82d0ce 518 break;
13e7444b 519
3c82d0ce 520 /* Our buddy is free, merge with it and move up one order. */
1da177e4 521 list_del(&buddy->lru);
b2a0ac88 522 zone->free_area[order].nr_free--;
1da177e4 523 rmv_page_order(buddy);
13e7444b 524 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
525 page = page + (combined_idx - page_idx);
526 page_idx = combined_idx;
527 order++;
528 }
529 set_page_order(page, order);
6dda9d55
CZ
530
531 /*
532 * If this is not the largest possible page, check if the buddy
533 * of the next-highest order is free. If it is, it's possible
534 * that pages are being freed that will coalesce soon. In case,
535 * that is happening, add the free page to the tail of the list
536 * so it's less likely to be used soon and more likely to be merged
537 * as a higher order page
538 */
b7f50cfa 539 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55
CZ
540 struct page *higher_page, *higher_buddy;
541 combined_idx = __find_combined_index(page_idx, order);
542 higher_page = page + combined_idx - page_idx;
543 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
547 goto out;
548 }
549 }
550
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552out:
1da177e4
LT
553 zone->free_area[order].nr_free++;
554}
555
092cead6
KM
556/*
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
560 */
561static inline void free_page_mlock(struct page *page)
562{
092cead6
KM
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
565}
092cead6 566
224abf92 567static inline int free_pages_check(struct page *page)
1da177e4 568{
92be2e33
NP
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
a3af9c38 571 (atomic_read(&page->_count) != 0) |
8cc3b392 572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 573 bad_page(page);
79f4b7bf 574 return 1;
8cc3b392 575 }
79f4b7bf
HD
576 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
577 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
578 return 0;
1da177e4
LT
579}
580
581/*
5f8dcc21 582 * Frees a number of pages from the PCP lists
1da177e4 583 * Assumes all pages on list are in same zone, and of same order.
207f36ee 584 * count is the number of pages to free.
1da177e4
LT
585 *
586 * If the zone was previously in an "all pages pinned" state then look to
587 * see if this freeing clears that state.
588 *
589 * And clear the zone's pages_scanned counter, to hold off the "all pages are
590 * pinned" detection logic.
591 */
5f8dcc21
MG
592static void free_pcppages_bulk(struct zone *zone, int count,
593 struct per_cpu_pages *pcp)
1da177e4 594{
5f8dcc21 595 int migratetype = 0;
a6f9edd6 596 int batch_free = 0;
72853e29 597 int to_free = count;
5f8dcc21 598
c54ad30c 599 spin_lock(&zone->lock);
93e4a89a 600 zone->all_unreclaimable = 0;
1da177e4 601 zone->pages_scanned = 0;
f2260e6b 602
72853e29 603 while (to_free) {
48db57f8 604 struct page *page;
5f8dcc21
MG
605 struct list_head *list;
606
607 /*
a6f9edd6
MG
608 * Remove pages from lists in a round-robin fashion. A
609 * batch_free count is maintained that is incremented when an
610 * empty list is encountered. This is so more pages are freed
611 * off fuller lists instead of spinning excessively around empty
612 * lists
5f8dcc21
MG
613 */
614 do {
a6f9edd6 615 batch_free++;
5f8dcc21
MG
616 if (++migratetype == MIGRATE_PCPTYPES)
617 migratetype = 0;
618 list = &pcp->lists[migratetype];
619 } while (list_empty(list));
48db57f8 620
a6f9edd6
MG
621 do {
622 page = list_entry(list->prev, struct page, lru);
623 /* must delete as __free_one_page list manipulates */
624 list_del(&page->lru);
a7016235
HD
625 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
626 __free_one_page(page, zone, 0, page_private(page));
627 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 628 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 629 }
72853e29 630 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 631 spin_unlock(&zone->lock);
1da177e4
LT
632}
633
ed0ae21d
MG
634static void free_one_page(struct zone *zone, struct page *page, int order,
635 int migratetype)
1da177e4 636{
006d22d9 637 spin_lock(&zone->lock);
93e4a89a 638 zone->all_unreclaimable = 0;
006d22d9 639 zone->pages_scanned = 0;
f2260e6b 640
ed0ae21d 641 __free_one_page(page, zone, order, migratetype);
72853e29 642 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 643 spin_unlock(&zone->lock);
48db57f8
NP
644}
645
ec95f53a 646static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 647{
1da177e4 648 int i;
8cc3b392 649 int bad = 0;
1da177e4 650
f650316c 651 trace_mm_page_free_direct(page, order);
b1eeab67
VN
652 kmemcheck_free_shadow(page, order);
653
ec95f53a
KM
654 for (i = 0; i < (1 << order); i++) {
655 struct page *pg = page + i;
656
657 if (PageAnon(pg))
658 pg->mapping = NULL;
659 bad += free_pages_check(pg);
660 }
8cc3b392 661 if (bad)
ec95f53a 662 return false;
689bcebf 663
3ac7fe5a 664 if (!PageHighMem(page)) {
9858db50 665 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
666 debug_check_no_obj_freed(page_address(page),
667 PAGE_SIZE << order);
668 }
dafb1367 669 arch_free_page(page, order);
48db57f8 670 kernel_map_pages(page, 1 << order, 0);
dafb1367 671
ec95f53a
KM
672 return true;
673}
674
675static void __free_pages_ok(struct page *page, unsigned int order)
676{
677 unsigned long flags;
678 int wasMlocked = __TestClearPageMlocked(page);
679
680 if (!free_pages_prepare(page, order))
681 return;
682
c54ad30c 683 local_irq_save(flags);
c277331d 684 if (unlikely(wasMlocked))
da456f14 685 free_page_mlock(page);
f8891e5e 686 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
687 free_one_page(page_zone(page), page, order,
688 get_pageblock_migratetype(page));
c54ad30c 689 local_irq_restore(flags);
1da177e4
LT
690}
691
a226f6c8
DH
692/*
693 * permit the bootmem allocator to evade page validation on high-order frees
694 */
af370fb8 695void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
696{
697 if (order == 0) {
698 __ClearPageReserved(page);
699 set_page_count(page, 0);
7835e98b 700 set_page_refcounted(page);
545b1ea9 701 __free_page(page);
a226f6c8 702 } else {
a226f6c8
DH
703 int loop;
704
545b1ea9 705 prefetchw(page);
a226f6c8
DH
706 for (loop = 0; loop < BITS_PER_LONG; loop++) {
707 struct page *p = &page[loop];
708
545b1ea9
NP
709 if (loop + 1 < BITS_PER_LONG)
710 prefetchw(p + 1);
a226f6c8
DH
711 __ClearPageReserved(p);
712 set_page_count(p, 0);
713 }
714
7835e98b 715 set_page_refcounted(page);
545b1ea9 716 __free_pages(page, order);
a226f6c8
DH
717 }
718}
719
1da177e4
LT
720
721/*
722 * The order of subdivision here is critical for the IO subsystem.
723 * Please do not alter this order without good reasons and regression
724 * testing. Specifically, as large blocks of memory are subdivided,
725 * the order in which smaller blocks are delivered depends on the order
726 * they're subdivided in this function. This is the primary factor
727 * influencing the order in which pages are delivered to the IO
728 * subsystem according to empirical testing, and this is also justified
729 * by considering the behavior of a buddy system containing a single
730 * large block of memory acted on by a series of small allocations.
731 * This behavior is a critical factor in sglist merging's success.
732 *
733 * -- wli
734 */
085cc7d5 735static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
736 int low, int high, struct free_area *area,
737 int migratetype)
1da177e4
LT
738{
739 unsigned long size = 1 << high;
740
741 while (high > low) {
742 area--;
743 high--;
744 size >>= 1;
725d704e 745 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 746 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
747 area->nr_free++;
748 set_page_order(&page[size], high);
749 }
1da177e4
LT
750}
751
1da177e4
LT
752/*
753 * This page is about to be returned from the page allocator
754 */
2a7684a2 755static inline int check_new_page(struct page *page)
1da177e4 756{
92be2e33
NP
757 if (unlikely(page_mapcount(page) |
758 (page->mapping != NULL) |
a3af9c38 759 (atomic_read(&page->_count) != 0) |
8cc3b392 760 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 761 bad_page(page);
689bcebf 762 return 1;
8cc3b392 763 }
2a7684a2
WF
764 return 0;
765}
766
767static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
768{
769 int i;
770
771 for (i = 0; i < (1 << order); i++) {
772 struct page *p = page + i;
773 if (unlikely(check_new_page(p)))
774 return 1;
775 }
689bcebf 776
4c21e2f2 777 set_page_private(page, 0);
7835e98b 778 set_page_refcounted(page);
cc102509
NP
779
780 arch_alloc_page(page, order);
1da177e4 781 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
782
783 if (gfp_flags & __GFP_ZERO)
784 prep_zero_page(page, order, gfp_flags);
785
786 if (order && (gfp_flags & __GFP_COMP))
787 prep_compound_page(page, order);
788
689bcebf 789 return 0;
1da177e4
LT
790}
791
56fd56b8
MG
792/*
793 * Go through the free lists for the given migratetype and remove
794 * the smallest available page from the freelists
795 */
728ec980
MG
796static inline
797struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
798 int migratetype)
799{
800 unsigned int current_order;
801 struct free_area * area;
802 struct page *page;
803
804 /* Find a page of the appropriate size in the preferred list */
805 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
806 area = &(zone->free_area[current_order]);
807 if (list_empty(&area->free_list[migratetype]))
808 continue;
809
810 page = list_entry(area->free_list[migratetype].next,
811 struct page, lru);
812 list_del(&page->lru);
813 rmv_page_order(page);
814 area->nr_free--;
56fd56b8
MG
815 expand(zone, page, order, current_order, area, migratetype);
816 return page;
817 }
818
819 return NULL;
820}
821
822
b2a0ac88
MG
823/*
824 * This array describes the order lists are fallen back to when
825 * the free lists for the desirable migrate type are depleted
826 */
827static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
828 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
829 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
830 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
831 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
832};
833
c361be55
MG
834/*
835 * Move the free pages in a range to the free lists of the requested type.
d9c23400 836 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
837 * boundary. If alignment is required, use move_freepages_block()
838 */
b69a7288
AB
839static int move_freepages(struct zone *zone,
840 struct page *start_page, struct page *end_page,
841 int migratetype)
c361be55
MG
842{
843 struct page *page;
844 unsigned long order;
d100313f 845 int pages_moved = 0;
c361be55
MG
846
847#ifndef CONFIG_HOLES_IN_ZONE
848 /*
849 * page_zone is not safe to call in this context when
850 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
851 * anyway as we check zone boundaries in move_freepages_block().
852 * Remove at a later date when no bug reports exist related to
ac0e5b7a 853 * grouping pages by mobility
c361be55
MG
854 */
855 BUG_ON(page_zone(start_page) != page_zone(end_page));
856#endif
857
858 for (page = start_page; page <= end_page;) {
344c790e
AL
859 /* Make sure we are not inadvertently changing nodes */
860 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
861
c361be55
MG
862 if (!pfn_valid_within(page_to_pfn(page))) {
863 page++;
864 continue;
865 }
866
867 if (!PageBuddy(page)) {
868 page++;
869 continue;
870 }
871
872 order = page_order(page);
873 list_del(&page->lru);
874 list_add(&page->lru,
875 &zone->free_area[order].free_list[migratetype]);
876 page += 1 << order;
d100313f 877 pages_moved += 1 << order;
c361be55
MG
878 }
879
d100313f 880 return pages_moved;
c361be55
MG
881}
882
b69a7288
AB
883static int move_freepages_block(struct zone *zone, struct page *page,
884 int migratetype)
c361be55
MG
885{
886 unsigned long start_pfn, end_pfn;
887 struct page *start_page, *end_page;
888
889 start_pfn = page_to_pfn(page);
d9c23400 890 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 891 start_page = pfn_to_page(start_pfn);
d9c23400
MG
892 end_page = start_page + pageblock_nr_pages - 1;
893 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
894
895 /* Do not cross zone boundaries */
896 if (start_pfn < zone->zone_start_pfn)
897 start_page = page;
898 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
899 return 0;
900
901 return move_freepages(zone, start_page, end_page, migratetype);
902}
903
2f66a68f
MG
904static void change_pageblock_range(struct page *pageblock_page,
905 int start_order, int migratetype)
906{
907 int nr_pageblocks = 1 << (start_order - pageblock_order);
908
909 while (nr_pageblocks--) {
910 set_pageblock_migratetype(pageblock_page, migratetype);
911 pageblock_page += pageblock_nr_pages;
912 }
913}
914
b2a0ac88 915/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
916static inline struct page *
917__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
918{
919 struct free_area * area;
920 int current_order;
921 struct page *page;
922 int migratetype, i;
923
924 /* Find the largest possible block of pages in the other list */
925 for (current_order = MAX_ORDER-1; current_order >= order;
926 --current_order) {
927 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
928 migratetype = fallbacks[start_migratetype][i];
929
56fd56b8
MG
930 /* MIGRATE_RESERVE handled later if necessary */
931 if (migratetype == MIGRATE_RESERVE)
932 continue;
e010487d 933
b2a0ac88
MG
934 area = &(zone->free_area[current_order]);
935 if (list_empty(&area->free_list[migratetype]))
936 continue;
937
938 page = list_entry(area->free_list[migratetype].next,
939 struct page, lru);
940 area->nr_free--;
941
942 /*
c361be55 943 * If breaking a large block of pages, move all free
46dafbca
MG
944 * pages to the preferred allocation list. If falling
945 * back for a reclaimable kernel allocation, be more
946 * agressive about taking ownership of free pages
b2a0ac88 947 */
d9c23400 948 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
949 start_migratetype == MIGRATE_RECLAIMABLE ||
950 page_group_by_mobility_disabled) {
46dafbca
MG
951 unsigned long pages;
952 pages = move_freepages_block(zone, page,
953 start_migratetype);
954
955 /* Claim the whole block if over half of it is free */
dd5d241e
MG
956 if (pages >= (1 << (pageblock_order-1)) ||
957 page_group_by_mobility_disabled)
46dafbca
MG
958 set_pageblock_migratetype(page,
959 start_migratetype);
960
b2a0ac88 961 migratetype = start_migratetype;
c361be55 962 }
b2a0ac88
MG
963
964 /* Remove the page from the freelists */
965 list_del(&page->lru);
966 rmv_page_order(page);
b2a0ac88 967
2f66a68f
MG
968 /* Take ownership for orders >= pageblock_order */
969 if (current_order >= pageblock_order)
970 change_pageblock_range(page, current_order,
b2a0ac88
MG
971 start_migratetype);
972
973 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
974
975 trace_mm_page_alloc_extfrag(page, order, current_order,
976 start_migratetype, migratetype);
977
b2a0ac88
MG
978 return page;
979 }
980 }
981
728ec980 982 return NULL;
b2a0ac88
MG
983}
984
56fd56b8 985/*
1da177e4
LT
986 * Do the hard work of removing an element from the buddy allocator.
987 * Call me with the zone->lock already held.
988 */
b2a0ac88
MG
989static struct page *__rmqueue(struct zone *zone, unsigned int order,
990 int migratetype)
1da177e4 991{
1da177e4
LT
992 struct page *page;
993
728ec980 994retry_reserve:
56fd56b8 995 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 996
728ec980 997 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 998 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 999
728ec980
MG
1000 /*
1001 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1002 * is used because __rmqueue_smallest is an inline function
1003 * and we want just one call site
1004 */
1005 if (!page) {
1006 migratetype = MIGRATE_RESERVE;
1007 goto retry_reserve;
1008 }
1009 }
1010
0d3d062a 1011 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1012 return page;
1da177e4
LT
1013}
1014
1015/*
1016 * Obtain a specified number of elements from the buddy allocator, all under
1017 * a single hold of the lock, for efficiency. Add them to the supplied list.
1018 * Returns the number of new pages which were placed at *list.
1019 */
1020static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1021 unsigned long count, struct list_head *list,
e084b2d9 1022 int migratetype, int cold)
1da177e4 1023{
1da177e4 1024 int i;
1da177e4 1025
c54ad30c 1026 spin_lock(&zone->lock);
1da177e4 1027 for (i = 0; i < count; ++i) {
b2a0ac88 1028 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1029 if (unlikely(page == NULL))
1da177e4 1030 break;
81eabcbe
MG
1031
1032 /*
1033 * Split buddy pages returned by expand() are received here
1034 * in physical page order. The page is added to the callers and
1035 * list and the list head then moves forward. From the callers
1036 * perspective, the linked list is ordered by page number in
1037 * some conditions. This is useful for IO devices that can
1038 * merge IO requests if the physical pages are ordered
1039 * properly.
1040 */
e084b2d9
MG
1041 if (likely(cold == 0))
1042 list_add(&page->lru, list);
1043 else
1044 list_add_tail(&page->lru, list);
535131e6 1045 set_page_private(page, migratetype);
81eabcbe 1046 list = &page->lru;
1da177e4 1047 }
f2260e6b 1048 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1049 spin_unlock(&zone->lock);
085cc7d5 1050 return i;
1da177e4
LT
1051}
1052
4ae7c039 1053#ifdef CONFIG_NUMA
8fce4d8e 1054/*
4037d452
CL
1055 * Called from the vmstat counter updater to drain pagesets of this
1056 * currently executing processor on remote nodes after they have
1057 * expired.
1058 *
879336c3
CL
1059 * Note that this function must be called with the thread pinned to
1060 * a single processor.
8fce4d8e 1061 */
4037d452 1062void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1063{
4ae7c039 1064 unsigned long flags;
4037d452 1065 int to_drain;
4ae7c039 1066
4037d452
CL
1067 local_irq_save(flags);
1068 if (pcp->count >= pcp->batch)
1069 to_drain = pcp->batch;
1070 else
1071 to_drain = pcp->count;
5f8dcc21 1072 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1073 pcp->count -= to_drain;
1074 local_irq_restore(flags);
4ae7c039
CL
1075}
1076#endif
1077
9f8f2172
CL
1078/*
1079 * Drain pages of the indicated processor.
1080 *
1081 * The processor must either be the current processor and the
1082 * thread pinned to the current processor or a processor that
1083 * is not online.
1084 */
1085static void drain_pages(unsigned int cpu)
1da177e4 1086{
c54ad30c 1087 unsigned long flags;
1da177e4 1088 struct zone *zone;
1da177e4 1089
ee99c71c 1090 for_each_populated_zone(zone) {
1da177e4 1091 struct per_cpu_pageset *pset;
3dfa5721 1092 struct per_cpu_pages *pcp;
1da177e4 1093
99dcc3e5
CL
1094 local_irq_save(flags);
1095 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1096
1097 pcp = &pset->pcp;
5f8dcc21 1098 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1099 pcp->count = 0;
1100 local_irq_restore(flags);
1da177e4
LT
1101 }
1102}
1da177e4 1103
9f8f2172
CL
1104/*
1105 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1106 */
1107void drain_local_pages(void *arg)
1108{
1109 drain_pages(smp_processor_id());
1110}
1111
1112/*
1113 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1114 */
1115void drain_all_pages(void)
1116{
15c8b6c1 1117 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1118}
1119
296699de 1120#ifdef CONFIG_HIBERNATION
1da177e4
LT
1121
1122void mark_free_pages(struct zone *zone)
1123{
f623f0db
RW
1124 unsigned long pfn, max_zone_pfn;
1125 unsigned long flags;
b2a0ac88 1126 int order, t;
1da177e4
LT
1127 struct list_head *curr;
1128
1129 if (!zone->spanned_pages)
1130 return;
1131
1132 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1133
1134 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1135 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1136 if (pfn_valid(pfn)) {
1137 struct page *page = pfn_to_page(pfn);
1138
7be98234
RW
1139 if (!swsusp_page_is_forbidden(page))
1140 swsusp_unset_page_free(page);
f623f0db 1141 }
1da177e4 1142
b2a0ac88
MG
1143 for_each_migratetype_order(order, t) {
1144 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1145 unsigned long i;
1da177e4 1146
f623f0db
RW
1147 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1148 for (i = 0; i < (1UL << order); i++)
7be98234 1149 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1150 }
b2a0ac88 1151 }
1da177e4
LT
1152 spin_unlock_irqrestore(&zone->lock, flags);
1153}
e2c55dc8 1154#endif /* CONFIG_PM */
1da177e4 1155
1da177e4
LT
1156/*
1157 * Free a 0-order page
fc91668e 1158 * cold == 1 ? free a cold page : free a hot page
1da177e4 1159 */
fc91668e 1160void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1161{
1162 struct zone *zone = page_zone(page);
1163 struct per_cpu_pages *pcp;
1164 unsigned long flags;
5f8dcc21 1165 int migratetype;
451ea25d 1166 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1167
ec95f53a 1168 if (!free_pages_prepare(page, 0))
689bcebf
HD
1169 return;
1170
5f8dcc21
MG
1171 migratetype = get_pageblock_migratetype(page);
1172 set_page_private(page, migratetype);
1da177e4 1173 local_irq_save(flags);
c277331d 1174 if (unlikely(wasMlocked))
da456f14 1175 free_page_mlock(page);
f8891e5e 1176 __count_vm_event(PGFREE);
da456f14 1177
5f8dcc21
MG
1178 /*
1179 * We only track unmovable, reclaimable and movable on pcp lists.
1180 * Free ISOLATE pages back to the allocator because they are being
1181 * offlined but treat RESERVE as movable pages so we can get those
1182 * areas back if necessary. Otherwise, we may have to free
1183 * excessively into the page allocator
1184 */
1185 if (migratetype >= MIGRATE_PCPTYPES) {
1186 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1187 free_one_page(zone, page, 0, migratetype);
1188 goto out;
1189 }
1190 migratetype = MIGRATE_MOVABLE;
1191 }
1192
99dcc3e5 1193 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1194 if (cold)
5f8dcc21 1195 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1196 else
5f8dcc21 1197 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1198 pcp->count++;
48db57f8 1199 if (pcp->count >= pcp->high) {
5f8dcc21 1200 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1201 pcp->count -= pcp->batch;
1202 }
5f8dcc21
MG
1203
1204out:
1da177e4 1205 local_irq_restore(flags);
1da177e4
LT
1206}
1207
8dfcc9ba
NP
1208/*
1209 * split_page takes a non-compound higher-order page, and splits it into
1210 * n (1<<order) sub-pages: page[0..n]
1211 * Each sub-page must be freed individually.
1212 *
1213 * Note: this is probably too low level an operation for use in drivers.
1214 * Please consult with lkml before using this in your driver.
1215 */
1216void split_page(struct page *page, unsigned int order)
1217{
1218 int i;
1219
725d704e
NP
1220 VM_BUG_ON(PageCompound(page));
1221 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1222
1223#ifdef CONFIG_KMEMCHECK
1224 /*
1225 * Split shadow pages too, because free(page[0]) would
1226 * otherwise free the whole shadow.
1227 */
1228 if (kmemcheck_page_is_tracked(page))
1229 split_page(virt_to_page(page[0].shadow), order);
1230#endif
1231
7835e98b
NP
1232 for (i = 1; i < (1 << order); i++)
1233 set_page_refcounted(page + i);
8dfcc9ba 1234}
8dfcc9ba 1235
748446bb
MG
1236/*
1237 * Similar to split_page except the page is already free. As this is only
1238 * being used for migration, the migratetype of the block also changes.
1239 * As this is called with interrupts disabled, the caller is responsible
1240 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1241 * are enabled.
1242 *
1243 * Note: this is probably too low level an operation for use in drivers.
1244 * Please consult with lkml before using this in your driver.
1245 */
1246int split_free_page(struct page *page)
1247{
1248 unsigned int order;
1249 unsigned long watermark;
1250 struct zone *zone;
1251
1252 BUG_ON(!PageBuddy(page));
1253
1254 zone = page_zone(page);
1255 order = page_order(page);
1256
1257 /* Obey watermarks as if the page was being allocated */
1258 watermark = low_wmark_pages(zone) + (1 << order);
1259 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1260 return 0;
1261
1262 /* Remove page from free list */
1263 list_del(&page->lru);
1264 zone->free_area[order].nr_free--;
1265 rmv_page_order(page);
1266 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1267
1268 /* Split into individual pages */
1269 set_page_refcounted(page);
1270 split_page(page, order);
1271
1272 if (order >= pageblock_order - 1) {
1273 struct page *endpage = page + (1 << order) - 1;
1274 for (; page < endpage; page += pageblock_nr_pages)
1275 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1276 }
1277
1278 return 1 << order;
1279}
1280
1da177e4
LT
1281/*
1282 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1283 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1284 * or two.
1285 */
0a15c3e9
MG
1286static inline
1287struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1288 struct zone *zone, int order, gfp_t gfp_flags,
1289 int migratetype)
1da177e4
LT
1290{
1291 unsigned long flags;
689bcebf 1292 struct page *page;
1da177e4
LT
1293 int cold = !!(gfp_flags & __GFP_COLD);
1294
689bcebf 1295again:
48db57f8 1296 if (likely(order == 0)) {
1da177e4 1297 struct per_cpu_pages *pcp;
5f8dcc21 1298 struct list_head *list;
1da177e4 1299
1da177e4 1300 local_irq_save(flags);
99dcc3e5
CL
1301 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1302 list = &pcp->lists[migratetype];
5f8dcc21 1303 if (list_empty(list)) {
535131e6 1304 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1305 pcp->batch, list,
e084b2d9 1306 migratetype, cold);
5f8dcc21 1307 if (unlikely(list_empty(list)))
6fb332fa 1308 goto failed;
535131e6 1309 }
b92a6edd 1310
5f8dcc21
MG
1311 if (cold)
1312 page = list_entry(list->prev, struct page, lru);
1313 else
1314 page = list_entry(list->next, struct page, lru);
1315
b92a6edd
MG
1316 list_del(&page->lru);
1317 pcp->count--;
7fb1d9fc 1318 } else {
dab48dab
AM
1319 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1320 /*
1321 * __GFP_NOFAIL is not to be used in new code.
1322 *
1323 * All __GFP_NOFAIL callers should be fixed so that they
1324 * properly detect and handle allocation failures.
1325 *
1326 * We most definitely don't want callers attempting to
4923abf9 1327 * allocate greater than order-1 page units with
dab48dab
AM
1328 * __GFP_NOFAIL.
1329 */
4923abf9 1330 WARN_ON_ONCE(order > 1);
dab48dab 1331 }
1da177e4 1332 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1333 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1334 spin_unlock(&zone->lock);
1335 if (!page)
1336 goto failed;
6ccf80eb 1337 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1338 }
1339
f8891e5e 1340 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1341 zone_statistics(preferred_zone, zone);
a74609fa 1342 local_irq_restore(flags);
1da177e4 1343
725d704e 1344 VM_BUG_ON(bad_range(zone, page));
17cf4406 1345 if (prep_new_page(page, order, gfp_flags))
a74609fa 1346 goto again;
1da177e4 1347 return page;
a74609fa
NP
1348
1349failed:
1350 local_irq_restore(flags);
a74609fa 1351 return NULL;
1da177e4
LT
1352}
1353
41858966
MG
1354/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1355#define ALLOC_WMARK_MIN WMARK_MIN
1356#define ALLOC_WMARK_LOW WMARK_LOW
1357#define ALLOC_WMARK_HIGH WMARK_HIGH
1358#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1359
1360/* Mask to get the watermark bits */
1361#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1362
3148890b
NP
1363#define ALLOC_HARDER 0x10 /* try to alloc harder */
1364#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1365#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1366
933e312e
AM
1367#ifdef CONFIG_FAIL_PAGE_ALLOC
1368
1369static struct fail_page_alloc_attr {
1370 struct fault_attr attr;
1371
1372 u32 ignore_gfp_highmem;
1373 u32 ignore_gfp_wait;
54114994 1374 u32 min_order;
933e312e
AM
1375
1376#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1377
1378 struct dentry *ignore_gfp_highmem_file;
1379 struct dentry *ignore_gfp_wait_file;
54114994 1380 struct dentry *min_order_file;
933e312e
AM
1381
1382#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1383
1384} fail_page_alloc = {
1385 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1386 .ignore_gfp_wait = 1,
1387 .ignore_gfp_highmem = 1,
54114994 1388 .min_order = 1,
933e312e
AM
1389};
1390
1391static int __init setup_fail_page_alloc(char *str)
1392{
1393 return setup_fault_attr(&fail_page_alloc.attr, str);
1394}
1395__setup("fail_page_alloc=", setup_fail_page_alloc);
1396
1397static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1398{
54114994
AM
1399 if (order < fail_page_alloc.min_order)
1400 return 0;
933e312e
AM
1401 if (gfp_mask & __GFP_NOFAIL)
1402 return 0;
1403 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1404 return 0;
1405 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1406 return 0;
1407
1408 return should_fail(&fail_page_alloc.attr, 1 << order);
1409}
1410
1411#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1412
1413static int __init fail_page_alloc_debugfs(void)
1414{
1415 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1416 struct dentry *dir;
1417 int err;
1418
1419 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1420 "fail_page_alloc");
1421 if (err)
1422 return err;
1423 dir = fail_page_alloc.attr.dentries.dir;
1424
1425 fail_page_alloc.ignore_gfp_wait_file =
1426 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1427 &fail_page_alloc.ignore_gfp_wait);
1428
1429 fail_page_alloc.ignore_gfp_highmem_file =
1430 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1431 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1432 fail_page_alloc.min_order_file =
1433 debugfs_create_u32("min-order", mode, dir,
1434 &fail_page_alloc.min_order);
933e312e
AM
1435
1436 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1437 !fail_page_alloc.ignore_gfp_highmem_file ||
1438 !fail_page_alloc.min_order_file) {
933e312e
AM
1439 err = -ENOMEM;
1440 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1441 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1442 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1443 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1444 }
1445
1446 return err;
1447}
1448
1449late_initcall(fail_page_alloc_debugfs);
1450
1451#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1452
1453#else /* CONFIG_FAIL_PAGE_ALLOC */
1454
1455static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1456{
1457 return 0;
1458}
1459
1460#endif /* CONFIG_FAIL_PAGE_ALLOC */
1461
1da177e4 1462/*
88f5acf8 1463 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1464 * of the allocation.
1465 */
88f5acf8
MG
1466static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1467 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1468{
1469 /* free_pages my go negative - that's OK */
d23ad423 1470 long min = mark;
1da177e4
LT
1471 int o;
1472
88f5acf8 1473 free_pages -= (1 << order) + 1;
7fb1d9fc 1474 if (alloc_flags & ALLOC_HIGH)
1da177e4 1475 min -= min / 2;
7fb1d9fc 1476 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1477 min -= min / 4;
1478
1479 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1480 return false;
1da177e4
LT
1481 for (o = 0; o < order; o++) {
1482 /* At the next order, this order's pages become unavailable */
1483 free_pages -= z->free_area[o].nr_free << o;
1484
1485 /* Require fewer higher order pages to be free */
1486 min >>= 1;
1487
1488 if (free_pages <= min)
88f5acf8 1489 return false;
1da177e4 1490 }
88f5acf8
MG
1491 return true;
1492}
1493
1494bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1495 int classzone_idx, int alloc_flags)
1496{
1497 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1498 zone_page_state(z, NR_FREE_PAGES));
1499}
1500
1501bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1502 int classzone_idx, int alloc_flags)
1503{
1504 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1505
1506 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1507 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1508
1509 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1510 free_pages);
1da177e4
LT
1511}
1512
9276b1bc
PJ
1513#ifdef CONFIG_NUMA
1514/*
1515 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1516 * skip over zones that are not allowed by the cpuset, or that have
1517 * been recently (in last second) found to be nearly full. See further
1518 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1519 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1520 *
1521 * If the zonelist cache is present in the passed in zonelist, then
1522 * returns a pointer to the allowed node mask (either the current
37b07e41 1523 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1524 *
1525 * If the zonelist cache is not available for this zonelist, does
1526 * nothing and returns NULL.
1527 *
1528 * If the fullzones BITMAP in the zonelist cache is stale (more than
1529 * a second since last zap'd) then we zap it out (clear its bits.)
1530 *
1531 * We hold off even calling zlc_setup, until after we've checked the
1532 * first zone in the zonelist, on the theory that most allocations will
1533 * be satisfied from that first zone, so best to examine that zone as
1534 * quickly as we can.
1535 */
1536static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1537{
1538 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1539 nodemask_t *allowednodes; /* zonelist_cache approximation */
1540
1541 zlc = zonelist->zlcache_ptr;
1542 if (!zlc)
1543 return NULL;
1544
f05111f5 1545 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1546 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1547 zlc->last_full_zap = jiffies;
1548 }
1549
1550 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1551 &cpuset_current_mems_allowed :
37b07e41 1552 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1553 return allowednodes;
1554}
1555
1556/*
1557 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1558 * if it is worth looking at further for free memory:
1559 * 1) Check that the zone isn't thought to be full (doesn't have its
1560 * bit set in the zonelist_cache fullzones BITMAP).
1561 * 2) Check that the zones node (obtained from the zonelist_cache
1562 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1563 * Return true (non-zero) if zone is worth looking at further, or
1564 * else return false (zero) if it is not.
1565 *
1566 * This check -ignores- the distinction between various watermarks,
1567 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1568 * found to be full for any variation of these watermarks, it will
1569 * be considered full for up to one second by all requests, unless
1570 * we are so low on memory on all allowed nodes that we are forced
1571 * into the second scan of the zonelist.
1572 *
1573 * In the second scan we ignore this zonelist cache and exactly
1574 * apply the watermarks to all zones, even it is slower to do so.
1575 * We are low on memory in the second scan, and should leave no stone
1576 * unturned looking for a free page.
1577 */
dd1a239f 1578static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1579 nodemask_t *allowednodes)
1580{
1581 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1582 int i; /* index of *z in zonelist zones */
1583 int n; /* node that zone *z is on */
1584
1585 zlc = zonelist->zlcache_ptr;
1586 if (!zlc)
1587 return 1;
1588
dd1a239f 1589 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1590 n = zlc->z_to_n[i];
1591
1592 /* This zone is worth trying if it is allowed but not full */
1593 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1594}
1595
1596/*
1597 * Given 'z' scanning a zonelist, set the corresponding bit in
1598 * zlc->fullzones, so that subsequent attempts to allocate a page
1599 * from that zone don't waste time re-examining it.
1600 */
dd1a239f 1601static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1602{
1603 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1604 int i; /* index of *z in zonelist zones */
1605
1606 zlc = zonelist->zlcache_ptr;
1607 if (!zlc)
1608 return;
1609
dd1a239f 1610 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1611
1612 set_bit(i, zlc->fullzones);
1613}
1614
1615#else /* CONFIG_NUMA */
1616
1617static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1618{
1619 return NULL;
1620}
1621
dd1a239f 1622static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1623 nodemask_t *allowednodes)
1624{
1625 return 1;
1626}
1627
dd1a239f 1628static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1629{
1630}
1631#endif /* CONFIG_NUMA */
1632
7fb1d9fc 1633/*
0798e519 1634 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1635 * a page.
1636 */
1637static struct page *
19770b32 1638get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1639 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1640 struct zone *preferred_zone, int migratetype)
753ee728 1641{
dd1a239f 1642 struct zoneref *z;
7fb1d9fc 1643 struct page *page = NULL;
54a6eb5c 1644 int classzone_idx;
5117f45d 1645 struct zone *zone;
9276b1bc
PJ
1646 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1647 int zlc_active = 0; /* set if using zonelist_cache */
1648 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1649
19770b32 1650 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1651zonelist_scan:
7fb1d9fc 1652 /*
9276b1bc 1653 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1654 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1655 */
19770b32
MG
1656 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1657 high_zoneidx, nodemask) {
9276b1bc
PJ
1658 if (NUMA_BUILD && zlc_active &&
1659 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1660 continue;
7fb1d9fc 1661 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1662 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1663 goto try_next_zone;
7fb1d9fc 1664
41858966 1665 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1666 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1667 unsigned long mark;
fa5e084e
MG
1668 int ret;
1669
41858966 1670 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1671 if (zone_watermark_ok(zone, order, mark,
1672 classzone_idx, alloc_flags))
1673 goto try_this_zone;
1674
1675 if (zone_reclaim_mode == 0)
1676 goto this_zone_full;
1677
1678 ret = zone_reclaim(zone, gfp_mask, order);
1679 switch (ret) {
1680 case ZONE_RECLAIM_NOSCAN:
1681 /* did not scan */
1682 goto try_next_zone;
1683 case ZONE_RECLAIM_FULL:
1684 /* scanned but unreclaimable */
1685 goto this_zone_full;
1686 default:
1687 /* did we reclaim enough */
1688 if (!zone_watermark_ok(zone, order, mark,
1689 classzone_idx, alloc_flags))
9276b1bc 1690 goto this_zone_full;
0798e519 1691 }
7fb1d9fc
RS
1692 }
1693
fa5e084e 1694try_this_zone:
3dd28266
MG
1695 page = buffered_rmqueue(preferred_zone, zone, order,
1696 gfp_mask, migratetype);
0798e519 1697 if (page)
7fb1d9fc 1698 break;
9276b1bc
PJ
1699this_zone_full:
1700 if (NUMA_BUILD)
1701 zlc_mark_zone_full(zonelist, z);
1702try_next_zone:
62bc62a8 1703 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1704 /*
1705 * we do zlc_setup after the first zone is tried but only
1706 * if there are multiple nodes make it worthwhile
1707 */
9276b1bc
PJ
1708 allowednodes = zlc_setup(zonelist, alloc_flags);
1709 zlc_active = 1;
1710 did_zlc_setup = 1;
1711 }
54a6eb5c 1712 }
9276b1bc
PJ
1713
1714 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1715 /* Disable zlc cache for second zonelist scan */
1716 zlc_active = 0;
1717 goto zonelist_scan;
1718 }
7fb1d9fc 1719 return page;
753ee728
MH
1720}
1721
11e33f6a
MG
1722static inline int
1723should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1724 unsigned long pages_reclaimed)
1da177e4 1725{
11e33f6a
MG
1726 /* Do not loop if specifically requested */
1727 if (gfp_mask & __GFP_NORETRY)
1728 return 0;
1da177e4 1729
11e33f6a
MG
1730 /*
1731 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1732 * means __GFP_NOFAIL, but that may not be true in other
1733 * implementations.
1734 */
1735 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1736 return 1;
1737
1738 /*
1739 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1740 * specified, then we retry until we no longer reclaim any pages
1741 * (above), or we've reclaimed an order of pages at least as
1742 * large as the allocation's order. In both cases, if the
1743 * allocation still fails, we stop retrying.
1744 */
1745 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1746 return 1;
cf40bd16 1747
11e33f6a
MG
1748 /*
1749 * Don't let big-order allocations loop unless the caller
1750 * explicitly requests that.
1751 */
1752 if (gfp_mask & __GFP_NOFAIL)
1753 return 1;
1da177e4 1754
11e33f6a
MG
1755 return 0;
1756}
933e312e 1757
11e33f6a
MG
1758static inline struct page *
1759__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1760 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1761 nodemask_t *nodemask, struct zone *preferred_zone,
1762 int migratetype)
11e33f6a
MG
1763{
1764 struct page *page;
1765
1766 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1767 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1768 schedule_timeout_uninterruptible(1);
1da177e4
LT
1769 return NULL;
1770 }
6b1de916 1771
11e33f6a
MG
1772 /*
1773 * Go through the zonelist yet one more time, keep very high watermark
1774 * here, this is only to catch a parallel oom killing, we must fail if
1775 * we're still under heavy pressure.
1776 */
1777 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1778 order, zonelist, high_zoneidx,
5117f45d 1779 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1780 preferred_zone, migratetype);
7fb1d9fc 1781 if (page)
11e33f6a
MG
1782 goto out;
1783
4365a567
KH
1784 if (!(gfp_mask & __GFP_NOFAIL)) {
1785 /* The OOM killer will not help higher order allocs */
1786 if (order > PAGE_ALLOC_COSTLY_ORDER)
1787 goto out;
03668b3c
DR
1788 /* The OOM killer does not needlessly kill tasks for lowmem */
1789 if (high_zoneidx < ZONE_NORMAL)
1790 goto out;
4365a567
KH
1791 /*
1792 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1793 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1794 * The caller should handle page allocation failure by itself if
1795 * it specifies __GFP_THISNODE.
1796 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1797 */
1798 if (gfp_mask & __GFP_THISNODE)
1799 goto out;
1800 }
11e33f6a 1801 /* Exhausted what can be done so it's blamo time */
4365a567 1802 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1803
1804out:
1805 clear_zonelist_oom(zonelist, gfp_mask);
1806 return page;
1807}
1808
56de7263
MG
1809#ifdef CONFIG_COMPACTION
1810/* Try memory compaction for high-order allocations before reclaim */
1811static struct page *
1812__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1813 struct zonelist *zonelist, enum zone_type high_zoneidx,
1814 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1815 int migratetype, unsigned long *did_some_progress)
1816{
1817 struct page *page;
1818
4f92e258 1819 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1820 return NULL;
1821
1822 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1823 nodemask);
1824 if (*did_some_progress != COMPACT_SKIPPED) {
1825
1826 /* Page migration frees to the PCP lists but we want merging */
1827 drain_pages(get_cpu());
1828 put_cpu();
1829
1830 page = get_page_from_freelist(gfp_mask, nodemask,
1831 order, zonelist, high_zoneidx,
1832 alloc_flags, preferred_zone,
1833 migratetype);
1834 if (page) {
4f92e258
MG
1835 preferred_zone->compact_considered = 0;
1836 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1837 count_vm_event(COMPACTSUCCESS);
1838 return page;
1839 }
1840
1841 /*
1842 * It's bad if compaction run occurs and fails.
1843 * The most likely reason is that pages exist,
1844 * but not enough to satisfy watermarks.
1845 */
1846 count_vm_event(COMPACTFAIL);
4f92e258 1847 defer_compaction(preferred_zone);
56de7263
MG
1848
1849 cond_resched();
1850 }
1851
1852 return NULL;
1853}
1854#else
1855static inline struct page *
1856__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1857 struct zonelist *zonelist, enum zone_type high_zoneidx,
1858 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1859 int migratetype, unsigned long *did_some_progress)
1860{
1861 return NULL;
1862}
1863#endif /* CONFIG_COMPACTION */
1864
11e33f6a
MG
1865/* The really slow allocator path where we enter direct reclaim */
1866static inline struct page *
1867__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1868 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1869 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1870 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1871{
1872 struct page *page = NULL;
1873 struct reclaim_state reclaim_state;
1874 struct task_struct *p = current;
9ee493ce 1875 bool drained = false;
11e33f6a
MG
1876
1877 cond_resched();
1878
1879 /* We now go into synchronous reclaim */
1880 cpuset_memory_pressure_bump();
11e33f6a
MG
1881 p->flags |= PF_MEMALLOC;
1882 lockdep_set_current_reclaim_state(gfp_mask);
1883 reclaim_state.reclaimed_slab = 0;
1884 p->reclaim_state = &reclaim_state;
1885
1886 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1887
1888 p->reclaim_state = NULL;
1889 lockdep_clear_current_reclaim_state();
1890 p->flags &= ~PF_MEMALLOC;
1891
1892 cond_resched();
1893
9ee493ce
MG
1894 if (unlikely(!(*did_some_progress)))
1895 return NULL;
11e33f6a 1896
9ee493ce
MG
1897retry:
1898 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1899 zonelist, high_zoneidx,
3dd28266
MG
1900 alloc_flags, preferred_zone,
1901 migratetype);
9ee493ce
MG
1902
1903 /*
1904 * If an allocation failed after direct reclaim, it could be because
1905 * pages are pinned on the per-cpu lists. Drain them and try again
1906 */
1907 if (!page && !drained) {
1908 drain_all_pages();
1909 drained = true;
1910 goto retry;
1911 }
1912
11e33f6a
MG
1913 return page;
1914}
1915
1da177e4 1916/*
11e33f6a
MG
1917 * This is called in the allocator slow-path if the allocation request is of
1918 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1919 */
11e33f6a
MG
1920static inline struct page *
1921__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1922 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1923 nodemask_t *nodemask, struct zone *preferred_zone,
1924 int migratetype)
11e33f6a
MG
1925{
1926 struct page *page;
1927
1928 do {
1929 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1930 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1931 preferred_zone, migratetype);
11e33f6a
MG
1932
1933 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 1934 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1935 } while (!page && (gfp_mask & __GFP_NOFAIL));
1936
1937 return page;
1938}
1939
1940static inline
1941void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1942 enum zone_type high_zoneidx)
1da177e4 1943{
dd1a239f
MG
1944 struct zoneref *z;
1945 struct zone *zone;
1da177e4 1946
11e33f6a
MG
1947 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1948 wakeup_kswapd(zone, order);
1949}
cf40bd16 1950
341ce06f
PZ
1951static inline int
1952gfp_to_alloc_flags(gfp_t gfp_mask)
1953{
1954 struct task_struct *p = current;
1955 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1956 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1957
a56f57ff 1958 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 1959 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 1960
341ce06f
PZ
1961 /*
1962 * The caller may dip into page reserves a bit more if the caller
1963 * cannot run direct reclaim, or if the caller has realtime scheduling
1964 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1965 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1966 */
e6223a3b 1967 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 1968
341ce06f
PZ
1969 if (!wait) {
1970 alloc_flags |= ALLOC_HARDER;
523b9458 1971 /*
341ce06f
PZ
1972 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1973 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1974 */
341ce06f 1975 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1976 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1977 alloc_flags |= ALLOC_HARDER;
1978
1979 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1980 if (!in_interrupt() &&
1981 ((p->flags & PF_MEMALLOC) ||
1982 unlikely(test_thread_flag(TIF_MEMDIE))))
1983 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1984 }
6b1de916 1985
341ce06f
PZ
1986 return alloc_flags;
1987}
1988
11e33f6a
MG
1989static inline struct page *
1990__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1991 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1992 nodemask_t *nodemask, struct zone *preferred_zone,
1993 int migratetype)
11e33f6a
MG
1994{
1995 const gfp_t wait = gfp_mask & __GFP_WAIT;
1996 struct page *page = NULL;
1997 int alloc_flags;
1998 unsigned long pages_reclaimed = 0;
1999 unsigned long did_some_progress;
2000 struct task_struct *p = current;
1da177e4 2001
72807a74
MG
2002 /*
2003 * In the slowpath, we sanity check order to avoid ever trying to
2004 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2005 * be using allocators in order of preference for an area that is
2006 * too large.
2007 */
1fc28b70
MG
2008 if (order >= MAX_ORDER) {
2009 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2010 return NULL;
1fc28b70 2011 }
1da177e4 2012
952f3b51
CL
2013 /*
2014 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2015 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2016 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2017 * using a larger set of nodes after it has established that the
2018 * allowed per node queues are empty and that nodes are
2019 * over allocated.
2020 */
2021 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2022 goto nopage;
2023
cc4a6851 2024restart:
11e33f6a 2025 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 2026
9bf2229f 2027 /*
7fb1d9fc
RS
2028 * OK, we're below the kswapd watermark and have kicked background
2029 * reclaim. Now things get more complex, so set up alloc_flags according
2030 * to how we want to proceed.
9bf2229f 2031 */
341ce06f 2032 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2033
341ce06f 2034 /* This is the last chance, in general, before the goto nopage. */
19770b32 2035 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2036 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2037 preferred_zone, migratetype);
7fb1d9fc
RS
2038 if (page)
2039 goto got_pg;
1da177e4 2040
b43a57bb 2041rebalance:
11e33f6a 2042 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2043 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2044 page = __alloc_pages_high_priority(gfp_mask, order,
2045 zonelist, high_zoneidx, nodemask,
2046 preferred_zone, migratetype);
2047 if (page)
2048 goto got_pg;
1da177e4
LT
2049 }
2050
2051 /* Atomic allocations - we can't balance anything */
2052 if (!wait)
2053 goto nopage;
2054
341ce06f
PZ
2055 /* Avoid recursion of direct reclaim */
2056 if (p->flags & PF_MEMALLOC)
2057 goto nopage;
2058
6583bb64
DR
2059 /* Avoid allocations with no watermarks from looping endlessly */
2060 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2061 goto nopage;
2062
56de7263
MG
2063 /* Try direct compaction */
2064 page = __alloc_pages_direct_compact(gfp_mask, order,
2065 zonelist, high_zoneidx,
2066 nodemask,
2067 alloc_flags, preferred_zone,
2068 migratetype, &did_some_progress);
2069 if (page)
2070 goto got_pg;
2071
11e33f6a
MG
2072 /* Try direct reclaim and then allocating */
2073 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2074 zonelist, high_zoneidx,
2075 nodemask,
5117f45d 2076 alloc_flags, preferred_zone,
3dd28266 2077 migratetype, &did_some_progress);
11e33f6a
MG
2078 if (page)
2079 goto got_pg;
1da177e4 2080
e33c3b5e 2081 /*
11e33f6a
MG
2082 * If we failed to make any progress reclaiming, then we are
2083 * running out of options and have to consider going OOM
e33c3b5e 2084 */
11e33f6a
MG
2085 if (!did_some_progress) {
2086 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2087 if (oom_killer_disabled)
2088 goto nopage;
11e33f6a
MG
2089 page = __alloc_pages_may_oom(gfp_mask, order,
2090 zonelist, high_zoneidx,
3dd28266
MG
2091 nodemask, preferred_zone,
2092 migratetype);
11e33f6a
MG
2093 if (page)
2094 goto got_pg;
1da177e4 2095
03668b3c
DR
2096 if (!(gfp_mask & __GFP_NOFAIL)) {
2097 /*
2098 * The oom killer is not called for high-order
2099 * allocations that may fail, so if no progress
2100 * is being made, there are no other options and
2101 * retrying is unlikely to help.
2102 */
2103 if (order > PAGE_ALLOC_COSTLY_ORDER)
2104 goto nopage;
2105 /*
2106 * The oom killer is not called for lowmem
2107 * allocations to prevent needlessly killing
2108 * innocent tasks.
2109 */
2110 if (high_zoneidx < ZONE_NORMAL)
2111 goto nopage;
2112 }
e2c55dc8 2113
ff0ceb9d
DR
2114 goto restart;
2115 }
1da177e4
LT
2116 }
2117
11e33f6a 2118 /* Check if we should retry the allocation */
a41f24ea 2119 pages_reclaimed += did_some_progress;
11e33f6a
MG
2120 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2121 /* Wait for some write requests to complete then retry */
0e093d99 2122 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4
LT
2123 goto rebalance;
2124 }
2125
2126nopage:
2127 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2128 printk(KERN_WARNING "%s: page allocation failure."
2129 " order:%d, mode:0x%x\n",
2130 p->comm, order, gfp_mask);
2131 dump_stack();
578c2fd6 2132 show_mem();
1da177e4 2133 }
b1eeab67 2134 return page;
1da177e4 2135got_pg:
b1eeab67
VN
2136 if (kmemcheck_enabled)
2137 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2138 return page;
11e33f6a 2139
1da177e4 2140}
11e33f6a
MG
2141
2142/*
2143 * This is the 'heart' of the zoned buddy allocator.
2144 */
2145struct page *
2146__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2147 struct zonelist *zonelist, nodemask_t *nodemask)
2148{
2149 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2150 struct zone *preferred_zone;
11e33f6a 2151 struct page *page;
3dd28266 2152 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2153
dcce284a
BH
2154 gfp_mask &= gfp_allowed_mask;
2155
11e33f6a
MG
2156 lockdep_trace_alloc(gfp_mask);
2157
2158 might_sleep_if(gfp_mask & __GFP_WAIT);
2159
2160 if (should_fail_alloc_page(gfp_mask, order))
2161 return NULL;
2162
2163 /*
2164 * Check the zones suitable for the gfp_mask contain at least one
2165 * valid zone. It's possible to have an empty zonelist as a result
2166 * of GFP_THISNODE and a memoryless node
2167 */
2168 if (unlikely(!zonelist->_zonerefs->zone))
2169 return NULL;
2170
c0ff7453 2171 get_mems_allowed();
5117f45d
MG
2172 /* The preferred zone is used for statistics later */
2173 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
c0ff7453
MX
2174 if (!preferred_zone) {
2175 put_mems_allowed();
5117f45d 2176 return NULL;
c0ff7453 2177 }
5117f45d
MG
2178
2179 /* First allocation attempt */
11e33f6a 2180 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2181 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2182 preferred_zone, migratetype);
11e33f6a
MG
2183 if (unlikely(!page))
2184 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2185 zonelist, high_zoneidx, nodemask,
3dd28266 2186 preferred_zone, migratetype);
c0ff7453 2187 put_mems_allowed();
11e33f6a 2188
4b4f278c 2189 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2190 return page;
1da177e4 2191}
d239171e 2192EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2193
2194/*
2195 * Common helper functions.
2196 */
920c7a5d 2197unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2198{
945a1113
AM
2199 struct page *page;
2200
2201 /*
2202 * __get_free_pages() returns a 32-bit address, which cannot represent
2203 * a highmem page
2204 */
2205 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2206
1da177e4
LT
2207 page = alloc_pages(gfp_mask, order);
2208 if (!page)
2209 return 0;
2210 return (unsigned long) page_address(page);
2211}
1da177e4
LT
2212EXPORT_SYMBOL(__get_free_pages);
2213
920c7a5d 2214unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2215{
945a1113 2216 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2217}
1da177e4
LT
2218EXPORT_SYMBOL(get_zeroed_page);
2219
2220void __pagevec_free(struct pagevec *pvec)
2221{
2222 int i = pagevec_count(pvec);
2223
4b4f278c
MG
2224 while (--i >= 0) {
2225 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2226 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2227 }
1da177e4
LT
2228}
2229
920c7a5d 2230void __free_pages(struct page *page, unsigned int order)
1da177e4 2231{
b5810039 2232 if (put_page_testzero(page)) {
1da177e4 2233 if (order == 0)
fc91668e 2234 free_hot_cold_page(page, 0);
1da177e4
LT
2235 else
2236 __free_pages_ok(page, order);
2237 }
2238}
2239
2240EXPORT_SYMBOL(__free_pages);
2241
920c7a5d 2242void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2243{
2244 if (addr != 0) {
725d704e 2245 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2246 __free_pages(virt_to_page((void *)addr), order);
2247 }
2248}
2249
2250EXPORT_SYMBOL(free_pages);
2251
2be0ffe2
TT
2252/**
2253 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2254 * @size: the number of bytes to allocate
2255 * @gfp_mask: GFP flags for the allocation
2256 *
2257 * This function is similar to alloc_pages(), except that it allocates the
2258 * minimum number of pages to satisfy the request. alloc_pages() can only
2259 * allocate memory in power-of-two pages.
2260 *
2261 * This function is also limited by MAX_ORDER.
2262 *
2263 * Memory allocated by this function must be released by free_pages_exact().
2264 */
2265void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2266{
2267 unsigned int order = get_order(size);
2268 unsigned long addr;
2269
2270 addr = __get_free_pages(gfp_mask, order);
2271 if (addr) {
2272 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2273 unsigned long used = addr + PAGE_ALIGN(size);
2274
5bfd7560 2275 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2276 while (used < alloc_end) {
2277 free_page(used);
2278 used += PAGE_SIZE;
2279 }
2280 }
2281
2282 return (void *)addr;
2283}
2284EXPORT_SYMBOL(alloc_pages_exact);
2285
2286/**
2287 * free_pages_exact - release memory allocated via alloc_pages_exact()
2288 * @virt: the value returned by alloc_pages_exact.
2289 * @size: size of allocation, same value as passed to alloc_pages_exact().
2290 *
2291 * Release the memory allocated by a previous call to alloc_pages_exact.
2292 */
2293void free_pages_exact(void *virt, size_t size)
2294{
2295 unsigned long addr = (unsigned long)virt;
2296 unsigned long end = addr + PAGE_ALIGN(size);
2297
2298 while (addr < end) {
2299 free_page(addr);
2300 addr += PAGE_SIZE;
2301 }
2302}
2303EXPORT_SYMBOL(free_pages_exact);
2304
1da177e4
LT
2305static unsigned int nr_free_zone_pages(int offset)
2306{
dd1a239f 2307 struct zoneref *z;
54a6eb5c
MG
2308 struct zone *zone;
2309
e310fd43 2310 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2311 unsigned int sum = 0;
2312
0e88460d 2313 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2314
54a6eb5c 2315 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2316 unsigned long size = zone->present_pages;
41858966 2317 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2318 if (size > high)
2319 sum += size - high;
1da177e4
LT
2320 }
2321
2322 return sum;
2323}
2324
2325/*
2326 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2327 */
2328unsigned int nr_free_buffer_pages(void)
2329{
af4ca457 2330 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2331}
c2f1a551 2332EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2333
2334/*
2335 * Amount of free RAM allocatable within all zones
2336 */
2337unsigned int nr_free_pagecache_pages(void)
2338{
2a1e274a 2339 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2340}
08e0f6a9
CL
2341
2342static inline void show_node(struct zone *zone)
1da177e4 2343{
08e0f6a9 2344 if (NUMA_BUILD)
25ba77c1 2345 printk("Node %d ", zone_to_nid(zone));
1da177e4 2346}
1da177e4 2347
1da177e4
LT
2348void si_meminfo(struct sysinfo *val)
2349{
2350 val->totalram = totalram_pages;
2351 val->sharedram = 0;
d23ad423 2352 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2353 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2354 val->totalhigh = totalhigh_pages;
2355 val->freehigh = nr_free_highpages();
1da177e4
LT
2356 val->mem_unit = PAGE_SIZE;
2357}
2358
2359EXPORT_SYMBOL(si_meminfo);
2360
2361#ifdef CONFIG_NUMA
2362void si_meminfo_node(struct sysinfo *val, int nid)
2363{
2364 pg_data_t *pgdat = NODE_DATA(nid);
2365
2366 val->totalram = pgdat->node_present_pages;
d23ad423 2367 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2368#ifdef CONFIG_HIGHMEM
1da177e4 2369 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2370 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2371 NR_FREE_PAGES);
98d2b0eb
CL
2372#else
2373 val->totalhigh = 0;
2374 val->freehigh = 0;
2375#endif
1da177e4
LT
2376 val->mem_unit = PAGE_SIZE;
2377}
2378#endif
2379
2380#define K(x) ((x) << (PAGE_SHIFT-10))
2381
2382/*
2383 * Show free area list (used inside shift_scroll-lock stuff)
2384 * We also calculate the percentage fragmentation. We do this by counting the
2385 * memory on each free list with the exception of the first item on the list.
2386 */
2387void show_free_areas(void)
2388{
c7241913 2389 int cpu;
1da177e4
LT
2390 struct zone *zone;
2391
ee99c71c 2392 for_each_populated_zone(zone) {
c7241913
JS
2393 show_node(zone);
2394 printk("%s per-cpu:\n", zone->name);
1da177e4 2395
6b482c67 2396 for_each_online_cpu(cpu) {
1da177e4
LT
2397 struct per_cpu_pageset *pageset;
2398
99dcc3e5 2399 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2400
3dfa5721
CL
2401 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2402 cpu, pageset->pcp.high,
2403 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2404 }
2405 }
2406
a731286d
KM
2407 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2408 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2409 " unevictable:%lu"
b76146ed 2410 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2411 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2412 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2413 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2414 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2415 global_page_state(NR_ISOLATED_ANON),
2416 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2417 global_page_state(NR_INACTIVE_FILE),
a731286d 2418 global_page_state(NR_ISOLATED_FILE),
7b854121 2419 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2420 global_page_state(NR_FILE_DIRTY),
ce866b34 2421 global_page_state(NR_WRITEBACK),
fd39fc85 2422 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2423 global_page_state(NR_FREE_PAGES),
3701b033
KM
2424 global_page_state(NR_SLAB_RECLAIMABLE),
2425 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2426 global_page_state(NR_FILE_MAPPED),
4b02108a 2427 global_page_state(NR_SHMEM),
a25700a5
AM
2428 global_page_state(NR_PAGETABLE),
2429 global_page_state(NR_BOUNCE));
1da177e4 2430
ee99c71c 2431 for_each_populated_zone(zone) {
1da177e4
LT
2432 int i;
2433
2434 show_node(zone);
2435 printk("%s"
2436 " free:%lukB"
2437 " min:%lukB"
2438 " low:%lukB"
2439 " high:%lukB"
4f98a2fe
RR
2440 " active_anon:%lukB"
2441 " inactive_anon:%lukB"
2442 " active_file:%lukB"
2443 " inactive_file:%lukB"
7b854121 2444 " unevictable:%lukB"
a731286d
KM
2445 " isolated(anon):%lukB"
2446 " isolated(file):%lukB"
1da177e4 2447 " present:%lukB"
4a0aa73f
KM
2448 " mlocked:%lukB"
2449 " dirty:%lukB"
2450 " writeback:%lukB"
2451 " mapped:%lukB"
4b02108a 2452 " shmem:%lukB"
4a0aa73f
KM
2453 " slab_reclaimable:%lukB"
2454 " slab_unreclaimable:%lukB"
c6a7f572 2455 " kernel_stack:%lukB"
4a0aa73f
KM
2456 " pagetables:%lukB"
2457 " unstable:%lukB"
2458 " bounce:%lukB"
2459 " writeback_tmp:%lukB"
1da177e4
LT
2460 " pages_scanned:%lu"
2461 " all_unreclaimable? %s"
2462 "\n",
2463 zone->name,
88f5acf8 2464 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2465 K(min_wmark_pages(zone)),
2466 K(low_wmark_pages(zone)),
2467 K(high_wmark_pages(zone)),
4f98a2fe
RR
2468 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2469 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2470 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2471 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2472 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2473 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2474 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2475 K(zone->present_pages),
4a0aa73f
KM
2476 K(zone_page_state(zone, NR_MLOCK)),
2477 K(zone_page_state(zone, NR_FILE_DIRTY)),
2478 K(zone_page_state(zone, NR_WRITEBACK)),
2479 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2480 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2481 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2482 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2483 zone_page_state(zone, NR_KERNEL_STACK) *
2484 THREAD_SIZE / 1024,
4a0aa73f
KM
2485 K(zone_page_state(zone, NR_PAGETABLE)),
2486 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2487 K(zone_page_state(zone, NR_BOUNCE)),
2488 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2489 zone->pages_scanned,
93e4a89a 2490 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2491 );
2492 printk("lowmem_reserve[]:");
2493 for (i = 0; i < MAX_NR_ZONES; i++)
2494 printk(" %lu", zone->lowmem_reserve[i]);
2495 printk("\n");
2496 }
2497
ee99c71c 2498 for_each_populated_zone(zone) {
8f9de51a 2499 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2500
2501 show_node(zone);
2502 printk("%s: ", zone->name);
1da177e4
LT
2503
2504 spin_lock_irqsave(&zone->lock, flags);
2505 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2506 nr[order] = zone->free_area[order].nr_free;
2507 total += nr[order] << order;
1da177e4
LT
2508 }
2509 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2510 for (order = 0; order < MAX_ORDER; order++)
2511 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2512 printk("= %lukB\n", K(total));
2513 }
2514
e6f3602d
LW
2515 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2516
1da177e4
LT
2517 show_swap_cache_info();
2518}
2519
19770b32
MG
2520static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2521{
2522 zoneref->zone = zone;
2523 zoneref->zone_idx = zone_idx(zone);
2524}
2525
1da177e4
LT
2526/*
2527 * Builds allocation fallback zone lists.
1a93205b
CL
2528 *
2529 * Add all populated zones of a node to the zonelist.
1da177e4 2530 */
f0c0b2b8
KH
2531static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2532 int nr_zones, enum zone_type zone_type)
1da177e4 2533{
1a93205b
CL
2534 struct zone *zone;
2535
98d2b0eb 2536 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2537 zone_type++;
02a68a5e
CL
2538
2539 do {
2f6726e5 2540 zone_type--;
070f8032 2541 zone = pgdat->node_zones + zone_type;
1a93205b 2542 if (populated_zone(zone)) {
dd1a239f
MG
2543 zoneref_set_zone(zone,
2544 &zonelist->_zonerefs[nr_zones++]);
070f8032 2545 check_highest_zone(zone_type);
1da177e4 2546 }
02a68a5e 2547
2f6726e5 2548 } while (zone_type);
070f8032 2549 return nr_zones;
1da177e4
LT
2550}
2551
f0c0b2b8
KH
2552
2553/*
2554 * zonelist_order:
2555 * 0 = automatic detection of better ordering.
2556 * 1 = order by ([node] distance, -zonetype)
2557 * 2 = order by (-zonetype, [node] distance)
2558 *
2559 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2560 * the same zonelist. So only NUMA can configure this param.
2561 */
2562#define ZONELIST_ORDER_DEFAULT 0
2563#define ZONELIST_ORDER_NODE 1
2564#define ZONELIST_ORDER_ZONE 2
2565
2566/* zonelist order in the kernel.
2567 * set_zonelist_order() will set this to NODE or ZONE.
2568 */
2569static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2570static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2571
2572
1da177e4 2573#ifdef CONFIG_NUMA
f0c0b2b8
KH
2574/* The value user specified ....changed by config */
2575static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2576/* string for sysctl */
2577#define NUMA_ZONELIST_ORDER_LEN 16
2578char numa_zonelist_order[16] = "default";
2579
2580/*
2581 * interface for configure zonelist ordering.
2582 * command line option "numa_zonelist_order"
2583 * = "[dD]efault - default, automatic configuration.
2584 * = "[nN]ode - order by node locality, then by zone within node
2585 * = "[zZ]one - order by zone, then by locality within zone
2586 */
2587
2588static int __parse_numa_zonelist_order(char *s)
2589{
2590 if (*s == 'd' || *s == 'D') {
2591 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2592 } else if (*s == 'n' || *s == 'N') {
2593 user_zonelist_order = ZONELIST_ORDER_NODE;
2594 } else if (*s == 'z' || *s == 'Z') {
2595 user_zonelist_order = ZONELIST_ORDER_ZONE;
2596 } else {
2597 printk(KERN_WARNING
2598 "Ignoring invalid numa_zonelist_order value: "
2599 "%s\n", s);
2600 return -EINVAL;
2601 }
2602 return 0;
2603}
2604
2605static __init int setup_numa_zonelist_order(char *s)
2606{
2607 if (s)
2608 return __parse_numa_zonelist_order(s);
2609 return 0;
2610}
2611early_param("numa_zonelist_order", setup_numa_zonelist_order);
2612
2613/*
2614 * sysctl handler for numa_zonelist_order
2615 */
2616int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2617 void __user *buffer, size_t *length,
f0c0b2b8
KH
2618 loff_t *ppos)
2619{
2620 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2621 int ret;
443c6f14 2622 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2623
443c6f14 2624 mutex_lock(&zl_order_mutex);
f0c0b2b8 2625 if (write)
443c6f14 2626 strcpy(saved_string, (char*)table->data);
8d65af78 2627 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2628 if (ret)
443c6f14 2629 goto out;
f0c0b2b8
KH
2630 if (write) {
2631 int oldval = user_zonelist_order;
2632 if (__parse_numa_zonelist_order((char*)table->data)) {
2633 /*
2634 * bogus value. restore saved string
2635 */
2636 strncpy((char*)table->data, saved_string,
2637 NUMA_ZONELIST_ORDER_LEN);
2638 user_zonelist_order = oldval;
4eaf3f64
HL
2639 } else if (oldval != user_zonelist_order) {
2640 mutex_lock(&zonelists_mutex);
1f522509 2641 build_all_zonelists(NULL);
4eaf3f64
HL
2642 mutex_unlock(&zonelists_mutex);
2643 }
f0c0b2b8 2644 }
443c6f14
AK
2645out:
2646 mutex_unlock(&zl_order_mutex);
2647 return ret;
f0c0b2b8
KH
2648}
2649
2650
62bc62a8 2651#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2652static int node_load[MAX_NUMNODES];
2653
1da177e4 2654/**
4dc3b16b 2655 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2656 * @node: node whose fallback list we're appending
2657 * @used_node_mask: nodemask_t of already used nodes
2658 *
2659 * We use a number of factors to determine which is the next node that should
2660 * appear on a given node's fallback list. The node should not have appeared
2661 * already in @node's fallback list, and it should be the next closest node
2662 * according to the distance array (which contains arbitrary distance values
2663 * from each node to each node in the system), and should also prefer nodes
2664 * with no CPUs, since presumably they'll have very little allocation pressure
2665 * on them otherwise.
2666 * It returns -1 if no node is found.
2667 */
f0c0b2b8 2668static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2669{
4cf808eb 2670 int n, val;
1da177e4
LT
2671 int min_val = INT_MAX;
2672 int best_node = -1;
a70f7302 2673 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2674
4cf808eb
LT
2675 /* Use the local node if we haven't already */
2676 if (!node_isset(node, *used_node_mask)) {
2677 node_set(node, *used_node_mask);
2678 return node;
2679 }
1da177e4 2680
37b07e41 2681 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2682
2683 /* Don't want a node to appear more than once */
2684 if (node_isset(n, *used_node_mask))
2685 continue;
2686
1da177e4
LT
2687 /* Use the distance array to find the distance */
2688 val = node_distance(node, n);
2689
4cf808eb
LT
2690 /* Penalize nodes under us ("prefer the next node") */
2691 val += (n < node);
2692
1da177e4 2693 /* Give preference to headless and unused nodes */
a70f7302
RR
2694 tmp = cpumask_of_node(n);
2695 if (!cpumask_empty(tmp))
1da177e4
LT
2696 val += PENALTY_FOR_NODE_WITH_CPUS;
2697
2698 /* Slight preference for less loaded node */
2699 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2700 val += node_load[n];
2701
2702 if (val < min_val) {
2703 min_val = val;
2704 best_node = n;
2705 }
2706 }
2707
2708 if (best_node >= 0)
2709 node_set(best_node, *used_node_mask);
2710
2711 return best_node;
2712}
2713
f0c0b2b8
KH
2714
2715/*
2716 * Build zonelists ordered by node and zones within node.
2717 * This results in maximum locality--normal zone overflows into local
2718 * DMA zone, if any--but risks exhausting DMA zone.
2719 */
2720static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2721{
f0c0b2b8 2722 int j;
1da177e4 2723 struct zonelist *zonelist;
f0c0b2b8 2724
54a6eb5c 2725 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2726 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2727 ;
2728 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2729 MAX_NR_ZONES - 1);
dd1a239f
MG
2730 zonelist->_zonerefs[j].zone = NULL;
2731 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2732}
2733
523b9458
CL
2734/*
2735 * Build gfp_thisnode zonelists
2736 */
2737static void build_thisnode_zonelists(pg_data_t *pgdat)
2738{
523b9458
CL
2739 int j;
2740 struct zonelist *zonelist;
2741
54a6eb5c
MG
2742 zonelist = &pgdat->node_zonelists[1];
2743 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2744 zonelist->_zonerefs[j].zone = NULL;
2745 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2746}
2747
f0c0b2b8
KH
2748/*
2749 * Build zonelists ordered by zone and nodes within zones.
2750 * This results in conserving DMA zone[s] until all Normal memory is
2751 * exhausted, but results in overflowing to remote node while memory
2752 * may still exist in local DMA zone.
2753 */
2754static int node_order[MAX_NUMNODES];
2755
2756static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2757{
f0c0b2b8
KH
2758 int pos, j, node;
2759 int zone_type; /* needs to be signed */
2760 struct zone *z;
2761 struct zonelist *zonelist;
2762
54a6eb5c
MG
2763 zonelist = &pgdat->node_zonelists[0];
2764 pos = 0;
2765 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2766 for (j = 0; j < nr_nodes; j++) {
2767 node = node_order[j];
2768 z = &NODE_DATA(node)->node_zones[zone_type];
2769 if (populated_zone(z)) {
dd1a239f
MG
2770 zoneref_set_zone(z,
2771 &zonelist->_zonerefs[pos++]);
54a6eb5c 2772 check_highest_zone(zone_type);
f0c0b2b8
KH
2773 }
2774 }
f0c0b2b8 2775 }
dd1a239f
MG
2776 zonelist->_zonerefs[pos].zone = NULL;
2777 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2778}
2779
2780static int default_zonelist_order(void)
2781{
2782 int nid, zone_type;
2783 unsigned long low_kmem_size,total_size;
2784 struct zone *z;
2785 int average_size;
2786 /*
88393161 2787 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2788 * If they are really small and used heavily, the system can fall
2789 * into OOM very easily.
e325c90f 2790 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2791 */
2792 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2793 low_kmem_size = 0;
2794 total_size = 0;
2795 for_each_online_node(nid) {
2796 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2797 z = &NODE_DATA(nid)->node_zones[zone_type];
2798 if (populated_zone(z)) {
2799 if (zone_type < ZONE_NORMAL)
2800 low_kmem_size += z->present_pages;
2801 total_size += z->present_pages;
e325c90f
DR
2802 } else if (zone_type == ZONE_NORMAL) {
2803 /*
2804 * If any node has only lowmem, then node order
2805 * is preferred to allow kernel allocations
2806 * locally; otherwise, they can easily infringe
2807 * on other nodes when there is an abundance of
2808 * lowmem available to allocate from.
2809 */
2810 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2811 }
2812 }
2813 }
2814 if (!low_kmem_size || /* there are no DMA area. */
2815 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2816 return ZONELIST_ORDER_NODE;
2817 /*
2818 * look into each node's config.
2819 * If there is a node whose DMA/DMA32 memory is very big area on
2820 * local memory, NODE_ORDER may be suitable.
2821 */
37b07e41
LS
2822 average_size = total_size /
2823 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2824 for_each_online_node(nid) {
2825 low_kmem_size = 0;
2826 total_size = 0;
2827 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2828 z = &NODE_DATA(nid)->node_zones[zone_type];
2829 if (populated_zone(z)) {
2830 if (zone_type < ZONE_NORMAL)
2831 low_kmem_size += z->present_pages;
2832 total_size += z->present_pages;
2833 }
2834 }
2835 if (low_kmem_size &&
2836 total_size > average_size && /* ignore small node */
2837 low_kmem_size > total_size * 70/100)
2838 return ZONELIST_ORDER_NODE;
2839 }
2840 return ZONELIST_ORDER_ZONE;
2841}
2842
2843static void set_zonelist_order(void)
2844{
2845 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2846 current_zonelist_order = default_zonelist_order();
2847 else
2848 current_zonelist_order = user_zonelist_order;
2849}
2850
2851static void build_zonelists(pg_data_t *pgdat)
2852{
2853 int j, node, load;
2854 enum zone_type i;
1da177e4 2855 nodemask_t used_mask;
f0c0b2b8
KH
2856 int local_node, prev_node;
2857 struct zonelist *zonelist;
2858 int order = current_zonelist_order;
1da177e4
LT
2859
2860 /* initialize zonelists */
523b9458 2861 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2862 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2863 zonelist->_zonerefs[0].zone = NULL;
2864 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2865 }
2866
2867 /* NUMA-aware ordering of nodes */
2868 local_node = pgdat->node_id;
62bc62a8 2869 load = nr_online_nodes;
1da177e4
LT
2870 prev_node = local_node;
2871 nodes_clear(used_mask);
f0c0b2b8 2872
f0c0b2b8
KH
2873 memset(node_order, 0, sizeof(node_order));
2874 j = 0;
2875
1da177e4 2876 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2877 int distance = node_distance(local_node, node);
2878
2879 /*
2880 * If another node is sufficiently far away then it is better
2881 * to reclaim pages in a zone before going off node.
2882 */
2883 if (distance > RECLAIM_DISTANCE)
2884 zone_reclaim_mode = 1;
2885
1da177e4
LT
2886 /*
2887 * We don't want to pressure a particular node.
2888 * So adding penalty to the first node in same
2889 * distance group to make it round-robin.
2890 */
9eeff239 2891 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2892 node_load[node] = load;
2893
1da177e4
LT
2894 prev_node = node;
2895 load--;
f0c0b2b8
KH
2896 if (order == ZONELIST_ORDER_NODE)
2897 build_zonelists_in_node_order(pgdat, node);
2898 else
2899 node_order[j++] = node; /* remember order */
2900 }
1da177e4 2901
f0c0b2b8
KH
2902 if (order == ZONELIST_ORDER_ZONE) {
2903 /* calculate node order -- i.e., DMA last! */
2904 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2905 }
523b9458
CL
2906
2907 build_thisnode_zonelists(pgdat);
1da177e4
LT
2908}
2909
9276b1bc 2910/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2911static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2912{
54a6eb5c
MG
2913 struct zonelist *zonelist;
2914 struct zonelist_cache *zlc;
dd1a239f 2915 struct zoneref *z;
9276b1bc 2916
54a6eb5c
MG
2917 zonelist = &pgdat->node_zonelists[0];
2918 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2919 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2920 for (z = zonelist->_zonerefs; z->zone; z++)
2921 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2922}
2923
7aac7898
LS
2924#ifdef CONFIG_HAVE_MEMORYLESS_NODES
2925/*
2926 * Return node id of node used for "local" allocations.
2927 * I.e., first node id of first zone in arg node's generic zonelist.
2928 * Used for initializing percpu 'numa_mem', which is used primarily
2929 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2930 */
2931int local_memory_node(int node)
2932{
2933 struct zone *zone;
2934
2935 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2936 gfp_zone(GFP_KERNEL),
2937 NULL,
2938 &zone);
2939 return zone->node;
2940}
2941#endif
f0c0b2b8 2942
1da177e4
LT
2943#else /* CONFIG_NUMA */
2944
f0c0b2b8
KH
2945static void set_zonelist_order(void)
2946{
2947 current_zonelist_order = ZONELIST_ORDER_ZONE;
2948}
2949
2950static void build_zonelists(pg_data_t *pgdat)
1da177e4 2951{
19655d34 2952 int node, local_node;
54a6eb5c
MG
2953 enum zone_type j;
2954 struct zonelist *zonelist;
1da177e4
LT
2955
2956 local_node = pgdat->node_id;
1da177e4 2957
54a6eb5c
MG
2958 zonelist = &pgdat->node_zonelists[0];
2959 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2960
54a6eb5c
MG
2961 /*
2962 * Now we build the zonelist so that it contains the zones
2963 * of all the other nodes.
2964 * We don't want to pressure a particular node, so when
2965 * building the zones for node N, we make sure that the
2966 * zones coming right after the local ones are those from
2967 * node N+1 (modulo N)
2968 */
2969 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2970 if (!node_online(node))
2971 continue;
2972 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2973 MAX_NR_ZONES - 1);
1da177e4 2974 }
54a6eb5c
MG
2975 for (node = 0; node < local_node; node++) {
2976 if (!node_online(node))
2977 continue;
2978 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2979 MAX_NR_ZONES - 1);
2980 }
2981
dd1a239f
MG
2982 zonelist->_zonerefs[j].zone = NULL;
2983 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2984}
2985
9276b1bc 2986/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2987static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2988{
54a6eb5c 2989 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2990}
2991
1da177e4
LT
2992#endif /* CONFIG_NUMA */
2993
99dcc3e5
CL
2994/*
2995 * Boot pageset table. One per cpu which is going to be used for all
2996 * zones and all nodes. The parameters will be set in such a way
2997 * that an item put on a list will immediately be handed over to
2998 * the buddy list. This is safe since pageset manipulation is done
2999 * with interrupts disabled.
3000 *
3001 * The boot_pagesets must be kept even after bootup is complete for
3002 * unused processors and/or zones. They do play a role for bootstrapping
3003 * hotplugged processors.
3004 *
3005 * zoneinfo_show() and maybe other functions do
3006 * not check if the processor is online before following the pageset pointer.
3007 * Other parts of the kernel may not check if the zone is available.
3008 */
3009static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3010static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3011static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3012
4eaf3f64
HL
3013/*
3014 * Global mutex to protect against size modification of zonelists
3015 * as well as to serialize pageset setup for the new populated zone.
3016 */
3017DEFINE_MUTEX(zonelists_mutex);
3018
9b1a4d38 3019/* return values int ....just for stop_machine() */
1f522509 3020static __init_refok int __build_all_zonelists(void *data)
1da177e4 3021{
6811378e 3022 int nid;
99dcc3e5 3023 int cpu;
9276b1bc 3024
7f9cfb31
BL
3025#ifdef CONFIG_NUMA
3026 memset(node_load, 0, sizeof(node_load));
3027#endif
9276b1bc 3028 for_each_online_node(nid) {
7ea1530a
CL
3029 pg_data_t *pgdat = NODE_DATA(nid);
3030
3031 build_zonelists(pgdat);
3032 build_zonelist_cache(pgdat);
9276b1bc 3033 }
99dcc3e5
CL
3034
3035 /*
3036 * Initialize the boot_pagesets that are going to be used
3037 * for bootstrapping processors. The real pagesets for
3038 * each zone will be allocated later when the per cpu
3039 * allocator is available.
3040 *
3041 * boot_pagesets are used also for bootstrapping offline
3042 * cpus if the system is already booted because the pagesets
3043 * are needed to initialize allocators on a specific cpu too.
3044 * F.e. the percpu allocator needs the page allocator which
3045 * needs the percpu allocator in order to allocate its pagesets
3046 * (a chicken-egg dilemma).
3047 */
7aac7898 3048 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3049 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3050
7aac7898
LS
3051#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3052 /*
3053 * We now know the "local memory node" for each node--
3054 * i.e., the node of the first zone in the generic zonelist.
3055 * Set up numa_mem percpu variable for on-line cpus. During
3056 * boot, only the boot cpu should be on-line; we'll init the
3057 * secondary cpus' numa_mem as they come on-line. During
3058 * node/memory hotplug, we'll fixup all on-line cpus.
3059 */
3060 if (cpu_online(cpu))
3061 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3062#endif
3063 }
3064
6811378e
YG
3065 return 0;
3066}
3067
4eaf3f64
HL
3068/*
3069 * Called with zonelists_mutex held always
3070 * unless system_state == SYSTEM_BOOTING.
3071 */
1f522509 3072void build_all_zonelists(void *data)
6811378e 3073{
f0c0b2b8
KH
3074 set_zonelist_order();
3075
6811378e 3076 if (system_state == SYSTEM_BOOTING) {
423b41d7 3077 __build_all_zonelists(NULL);
68ad8df4 3078 mminit_verify_zonelist();
6811378e
YG
3079 cpuset_init_current_mems_allowed();
3080 } else {
183ff22b 3081 /* we have to stop all cpus to guarantee there is no user
6811378e 3082 of zonelist */
e9959f0f
KH
3083#ifdef CONFIG_MEMORY_HOTPLUG
3084 if (data)
3085 setup_zone_pageset((struct zone *)data);
3086#endif
3087 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3088 /* cpuset refresh routine should be here */
3089 }
bd1e22b8 3090 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3091 /*
3092 * Disable grouping by mobility if the number of pages in the
3093 * system is too low to allow the mechanism to work. It would be
3094 * more accurate, but expensive to check per-zone. This check is
3095 * made on memory-hotadd so a system can start with mobility
3096 * disabled and enable it later
3097 */
d9c23400 3098 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3099 page_group_by_mobility_disabled = 1;
3100 else
3101 page_group_by_mobility_disabled = 0;
3102
3103 printk("Built %i zonelists in %s order, mobility grouping %s. "
3104 "Total pages: %ld\n",
62bc62a8 3105 nr_online_nodes,
f0c0b2b8 3106 zonelist_order_name[current_zonelist_order],
9ef9acb0 3107 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3108 vm_total_pages);
3109#ifdef CONFIG_NUMA
3110 printk("Policy zone: %s\n", zone_names[policy_zone]);
3111#endif
1da177e4
LT
3112}
3113
3114/*
3115 * Helper functions to size the waitqueue hash table.
3116 * Essentially these want to choose hash table sizes sufficiently
3117 * large so that collisions trying to wait on pages are rare.
3118 * But in fact, the number of active page waitqueues on typical
3119 * systems is ridiculously low, less than 200. So this is even
3120 * conservative, even though it seems large.
3121 *
3122 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3123 * waitqueues, i.e. the size of the waitq table given the number of pages.
3124 */
3125#define PAGES_PER_WAITQUEUE 256
3126
cca448fe 3127#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3128static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3129{
3130 unsigned long size = 1;
3131
3132 pages /= PAGES_PER_WAITQUEUE;
3133
3134 while (size < pages)
3135 size <<= 1;
3136
3137 /*
3138 * Once we have dozens or even hundreds of threads sleeping
3139 * on IO we've got bigger problems than wait queue collision.
3140 * Limit the size of the wait table to a reasonable size.
3141 */
3142 size = min(size, 4096UL);
3143
3144 return max(size, 4UL);
3145}
cca448fe
YG
3146#else
3147/*
3148 * A zone's size might be changed by hot-add, so it is not possible to determine
3149 * a suitable size for its wait_table. So we use the maximum size now.
3150 *
3151 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3152 *
3153 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3154 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3155 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3156 *
3157 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3158 * or more by the traditional way. (See above). It equals:
3159 *
3160 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3161 * ia64(16K page size) : = ( 8G + 4M)byte.
3162 * powerpc (64K page size) : = (32G +16M)byte.
3163 */
3164static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3165{
3166 return 4096UL;
3167}
3168#endif
1da177e4
LT
3169
3170/*
3171 * This is an integer logarithm so that shifts can be used later
3172 * to extract the more random high bits from the multiplicative
3173 * hash function before the remainder is taken.
3174 */
3175static inline unsigned long wait_table_bits(unsigned long size)
3176{
3177 return ffz(~size);
3178}
3179
3180#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3181
56fd56b8 3182/*
d9c23400 3183 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3184 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3185 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3186 * higher will lead to a bigger reserve which will get freed as contiguous
3187 * blocks as reclaim kicks in
3188 */
3189static void setup_zone_migrate_reserve(struct zone *zone)
3190{
3191 unsigned long start_pfn, pfn, end_pfn;
3192 struct page *page;
78986a67
MG
3193 unsigned long block_migratetype;
3194 int reserve;
56fd56b8
MG
3195
3196 /* Get the start pfn, end pfn and the number of blocks to reserve */
3197 start_pfn = zone->zone_start_pfn;
3198 end_pfn = start_pfn + zone->spanned_pages;
41858966 3199 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3200 pageblock_order;
56fd56b8 3201
78986a67
MG
3202 /*
3203 * Reserve blocks are generally in place to help high-order atomic
3204 * allocations that are short-lived. A min_free_kbytes value that
3205 * would result in more than 2 reserve blocks for atomic allocations
3206 * is assumed to be in place to help anti-fragmentation for the
3207 * future allocation of hugepages at runtime.
3208 */
3209 reserve = min(2, reserve);
3210
d9c23400 3211 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3212 if (!pfn_valid(pfn))
3213 continue;
3214 page = pfn_to_page(pfn);
3215
344c790e
AL
3216 /* Watch out for overlapping nodes */
3217 if (page_to_nid(page) != zone_to_nid(zone))
3218 continue;
3219
56fd56b8
MG
3220 /* Blocks with reserved pages will never free, skip them. */
3221 if (PageReserved(page))
3222 continue;
3223
3224 block_migratetype = get_pageblock_migratetype(page);
3225
3226 /* If this block is reserved, account for it */
3227 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3228 reserve--;
3229 continue;
3230 }
3231
3232 /* Suitable for reserving if this block is movable */
3233 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3234 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3235 move_freepages_block(zone, page, MIGRATE_RESERVE);
3236 reserve--;
3237 continue;
3238 }
3239
3240 /*
3241 * If the reserve is met and this is a previous reserved block,
3242 * take it back
3243 */
3244 if (block_migratetype == MIGRATE_RESERVE) {
3245 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3246 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3247 }
3248 }
3249}
ac0e5b7a 3250
1da177e4
LT
3251/*
3252 * Initially all pages are reserved - free ones are freed
3253 * up by free_all_bootmem() once the early boot process is
3254 * done. Non-atomic initialization, single-pass.
3255 */
c09b4240 3256void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3257 unsigned long start_pfn, enum memmap_context context)
1da177e4 3258{
1da177e4 3259 struct page *page;
29751f69
AW
3260 unsigned long end_pfn = start_pfn + size;
3261 unsigned long pfn;
86051ca5 3262 struct zone *z;
1da177e4 3263
22b31eec
HD
3264 if (highest_memmap_pfn < end_pfn - 1)
3265 highest_memmap_pfn = end_pfn - 1;
3266
86051ca5 3267 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3268 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3269 /*
3270 * There can be holes in boot-time mem_map[]s
3271 * handed to this function. They do not
3272 * exist on hotplugged memory.
3273 */
3274 if (context == MEMMAP_EARLY) {
3275 if (!early_pfn_valid(pfn))
3276 continue;
3277 if (!early_pfn_in_nid(pfn, nid))
3278 continue;
3279 }
d41dee36
AW
3280 page = pfn_to_page(pfn);
3281 set_page_links(page, zone, nid, pfn);
708614e6 3282 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3283 init_page_count(page);
1da177e4
LT
3284 reset_page_mapcount(page);
3285 SetPageReserved(page);
b2a0ac88
MG
3286 /*
3287 * Mark the block movable so that blocks are reserved for
3288 * movable at startup. This will force kernel allocations
3289 * to reserve their blocks rather than leaking throughout
3290 * the address space during boot when many long-lived
56fd56b8
MG
3291 * kernel allocations are made. Later some blocks near
3292 * the start are marked MIGRATE_RESERVE by
3293 * setup_zone_migrate_reserve()
86051ca5
KH
3294 *
3295 * bitmap is created for zone's valid pfn range. but memmap
3296 * can be created for invalid pages (for alignment)
3297 * check here not to call set_pageblock_migratetype() against
3298 * pfn out of zone.
b2a0ac88 3299 */
86051ca5
KH
3300 if ((z->zone_start_pfn <= pfn)
3301 && (pfn < z->zone_start_pfn + z->spanned_pages)
3302 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3303 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3304
1da177e4
LT
3305 INIT_LIST_HEAD(&page->lru);
3306#ifdef WANT_PAGE_VIRTUAL
3307 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3308 if (!is_highmem_idx(zone))
3212c6be 3309 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3310#endif
1da177e4
LT
3311 }
3312}
3313
1e548deb 3314static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3315{
b2a0ac88
MG
3316 int order, t;
3317 for_each_migratetype_order(order, t) {
3318 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3319 zone->free_area[order].nr_free = 0;
3320 }
3321}
3322
3323#ifndef __HAVE_ARCH_MEMMAP_INIT
3324#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3325 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3326#endif
3327
1d6f4e60 3328static int zone_batchsize(struct zone *zone)
e7c8d5c9 3329{
3a6be87f 3330#ifdef CONFIG_MMU
e7c8d5c9
CL
3331 int batch;
3332
3333 /*
3334 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3335 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3336 *
3337 * OK, so we don't know how big the cache is. So guess.
3338 */
3339 batch = zone->present_pages / 1024;
ba56e91c
SR
3340 if (batch * PAGE_SIZE > 512 * 1024)
3341 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3342 batch /= 4; /* We effectively *= 4 below */
3343 if (batch < 1)
3344 batch = 1;
3345
3346 /*
0ceaacc9
NP
3347 * Clamp the batch to a 2^n - 1 value. Having a power
3348 * of 2 value was found to be more likely to have
3349 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3350 *
0ceaacc9
NP
3351 * For example if 2 tasks are alternately allocating
3352 * batches of pages, one task can end up with a lot
3353 * of pages of one half of the possible page colors
3354 * and the other with pages of the other colors.
e7c8d5c9 3355 */
9155203a 3356 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3357
e7c8d5c9 3358 return batch;
3a6be87f
DH
3359
3360#else
3361 /* The deferral and batching of frees should be suppressed under NOMMU
3362 * conditions.
3363 *
3364 * The problem is that NOMMU needs to be able to allocate large chunks
3365 * of contiguous memory as there's no hardware page translation to
3366 * assemble apparent contiguous memory from discontiguous pages.
3367 *
3368 * Queueing large contiguous runs of pages for batching, however,
3369 * causes the pages to actually be freed in smaller chunks. As there
3370 * can be a significant delay between the individual batches being
3371 * recycled, this leads to the once large chunks of space being
3372 * fragmented and becoming unavailable for high-order allocations.
3373 */
3374 return 0;
3375#endif
e7c8d5c9
CL
3376}
3377
b69a7288 3378static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3379{
3380 struct per_cpu_pages *pcp;
5f8dcc21 3381 int migratetype;
2caaad41 3382
1c6fe946
MD
3383 memset(p, 0, sizeof(*p));
3384
3dfa5721 3385 pcp = &p->pcp;
2caaad41 3386 pcp->count = 0;
2caaad41
CL
3387 pcp->high = 6 * batch;
3388 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3389 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3390 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3391}
3392
8ad4b1fb
RS
3393/*
3394 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3395 * to the value high for the pageset p.
3396 */
3397
3398static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3399 unsigned long high)
3400{
3401 struct per_cpu_pages *pcp;
3402
3dfa5721 3403 pcp = &p->pcp;
8ad4b1fb
RS
3404 pcp->high = high;
3405 pcp->batch = max(1UL, high/4);
3406 if ((high/4) > (PAGE_SHIFT * 8))
3407 pcp->batch = PAGE_SHIFT * 8;
3408}
3409
319774e2
WF
3410static __meminit void setup_zone_pageset(struct zone *zone)
3411{
3412 int cpu;
3413
3414 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3415
3416 for_each_possible_cpu(cpu) {
3417 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3418
3419 setup_pageset(pcp, zone_batchsize(zone));
3420
3421 if (percpu_pagelist_fraction)
3422 setup_pagelist_highmark(pcp,
3423 (zone->present_pages /
3424 percpu_pagelist_fraction));
3425 }
3426}
3427
2caaad41 3428/*
99dcc3e5
CL
3429 * Allocate per cpu pagesets and initialize them.
3430 * Before this call only boot pagesets were available.
e7c8d5c9 3431 */
99dcc3e5 3432void __init setup_per_cpu_pageset(void)
e7c8d5c9 3433{
99dcc3e5 3434 struct zone *zone;
e7c8d5c9 3435
319774e2
WF
3436 for_each_populated_zone(zone)
3437 setup_zone_pageset(zone);
e7c8d5c9
CL
3438}
3439
577a32f6 3440static noinline __init_refok
cca448fe 3441int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3442{
3443 int i;
3444 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3445 size_t alloc_size;
ed8ece2e
DH
3446
3447 /*
3448 * The per-page waitqueue mechanism uses hashed waitqueues
3449 * per zone.
3450 */
02b694de
YG
3451 zone->wait_table_hash_nr_entries =
3452 wait_table_hash_nr_entries(zone_size_pages);
3453 zone->wait_table_bits =
3454 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3455 alloc_size = zone->wait_table_hash_nr_entries
3456 * sizeof(wait_queue_head_t);
3457
cd94b9db 3458 if (!slab_is_available()) {
cca448fe
YG
3459 zone->wait_table = (wait_queue_head_t *)
3460 alloc_bootmem_node(pgdat, alloc_size);
3461 } else {
3462 /*
3463 * This case means that a zone whose size was 0 gets new memory
3464 * via memory hot-add.
3465 * But it may be the case that a new node was hot-added. In
3466 * this case vmalloc() will not be able to use this new node's
3467 * memory - this wait_table must be initialized to use this new
3468 * node itself as well.
3469 * To use this new node's memory, further consideration will be
3470 * necessary.
3471 */
8691f3a7 3472 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3473 }
3474 if (!zone->wait_table)
3475 return -ENOMEM;
ed8ece2e 3476
02b694de 3477 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3478 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3479
3480 return 0;
ed8ece2e
DH
3481}
3482
112067f0
SL
3483static int __zone_pcp_update(void *data)
3484{
3485 struct zone *zone = data;
3486 int cpu;
3487 unsigned long batch = zone_batchsize(zone), flags;
3488
2d30a1f6 3489 for_each_possible_cpu(cpu) {
112067f0
SL
3490 struct per_cpu_pageset *pset;
3491 struct per_cpu_pages *pcp;
3492
99dcc3e5 3493 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3494 pcp = &pset->pcp;
3495
3496 local_irq_save(flags);
5f8dcc21 3497 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3498 setup_pageset(pset, batch);
3499 local_irq_restore(flags);
3500 }
3501 return 0;
3502}
3503
3504void zone_pcp_update(struct zone *zone)
3505{
3506 stop_machine(__zone_pcp_update, zone, NULL);
3507}
3508
c09b4240 3509static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3510{
99dcc3e5
CL
3511 /*
3512 * per cpu subsystem is not up at this point. The following code
3513 * relies on the ability of the linker to provide the
3514 * offset of a (static) per cpu variable into the per cpu area.
3515 */
3516 zone->pageset = &boot_pageset;
ed8ece2e 3517
f5335c0f 3518 if (zone->present_pages)
99dcc3e5
CL
3519 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3520 zone->name, zone->present_pages,
3521 zone_batchsize(zone));
ed8ece2e
DH
3522}
3523
718127cc
YG
3524__meminit int init_currently_empty_zone(struct zone *zone,
3525 unsigned long zone_start_pfn,
a2f3aa02
DH
3526 unsigned long size,
3527 enum memmap_context context)
ed8ece2e
DH
3528{
3529 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3530 int ret;
3531 ret = zone_wait_table_init(zone, size);
3532 if (ret)
3533 return ret;
ed8ece2e
DH
3534 pgdat->nr_zones = zone_idx(zone) + 1;
3535
ed8ece2e
DH
3536 zone->zone_start_pfn = zone_start_pfn;
3537
708614e6
MG
3538 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3539 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3540 pgdat->node_id,
3541 (unsigned long)zone_idx(zone),
3542 zone_start_pfn, (zone_start_pfn + size));
3543
1e548deb 3544 zone_init_free_lists(zone);
718127cc
YG
3545
3546 return 0;
ed8ece2e
DH
3547}
3548
c713216d
MG
3549#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3550/*
3551 * Basic iterator support. Return the first range of PFNs for a node
3552 * Note: nid == MAX_NUMNODES returns first region regardless of node
3553 */
a3142c8e 3554static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3555{
3556 int i;
3557
3558 for (i = 0; i < nr_nodemap_entries; i++)
3559 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3560 return i;
3561
3562 return -1;
3563}
3564
3565/*
3566 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3567 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3568 */
a3142c8e 3569static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3570{
3571 for (index = index + 1; index < nr_nodemap_entries; index++)
3572 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3573 return index;
3574
3575 return -1;
3576}
3577
3578#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3579/*
3580 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3581 * Architectures may implement their own version but if add_active_range()
3582 * was used and there are no special requirements, this is a convenient
3583 * alternative
3584 */
f2dbcfa7 3585int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3586{
3587 int i;
3588
3589 for (i = 0; i < nr_nodemap_entries; i++) {
3590 unsigned long start_pfn = early_node_map[i].start_pfn;
3591 unsigned long end_pfn = early_node_map[i].end_pfn;
3592
3593 if (start_pfn <= pfn && pfn < end_pfn)
3594 return early_node_map[i].nid;
3595 }
cc2559bc
KH
3596 /* This is a memory hole */
3597 return -1;
c713216d
MG
3598}
3599#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3600
f2dbcfa7
KH
3601int __meminit early_pfn_to_nid(unsigned long pfn)
3602{
cc2559bc
KH
3603 int nid;
3604
3605 nid = __early_pfn_to_nid(pfn);
3606 if (nid >= 0)
3607 return nid;
3608 /* just returns 0 */
3609 return 0;
f2dbcfa7
KH
3610}
3611
cc2559bc
KH
3612#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3613bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3614{
3615 int nid;
3616
3617 nid = __early_pfn_to_nid(pfn);
3618 if (nid >= 0 && nid != node)
3619 return false;
3620 return true;
3621}
3622#endif
f2dbcfa7 3623
c713216d
MG
3624/* Basic iterator support to walk early_node_map[] */
3625#define for_each_active_range_index_in_nid(i, nid) \
3626 for (i = first_active_region_index_in_nid(nid); i != -1; \
3627 i = next_active_region_index_in_nid(i, nid))
3628
3629/**
3630 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3631 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3632 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3633 *
3634 * If an architecture guarantees that all ranges registered with
3635 * add_active_ranges() contain no holes and may be freed, this
3636 * this function may be used instead of calling free_bootmem() manually.
3637 */
3638void __init free_bootmem_with_active_regions(int nid,
3639 unsigned long max_low_pfn)
3640{
3641 int i;
3642
3643 for_each_active_range_index_in_nid(i, nid) {
3644 unsigned long size_pages = 0;
3645 unsigned long end_pfn = early_node_map[i].end_pfn;
3646
3647 if (early_node_map[i].start_pfn >= max_low_pfn)
3648 continue;
3649
3650 if (end_pfn > max_low_pfn)
3651 end_pfn = max_low_pfn;
3652
3653 size_pages = end_pfn - early_node_map[i].start_pfn;
3654 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3655 PFN_PHYS(early_node_map[i].start_pfn),
3656 size_pages << PAGE_SHIFT);
3657 }
3658}
3659
edbe7d23
YL
3660#ifdef CONFIG_HAVE_MEMBLOCK
3661u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3662 u64 goal, u64 limit)
3663{
3664 int i;
3665
3666 /* Need to go over early_node_map to find out good range for node */
3667 for_each_active_range_index_in_nid(i, nid) {
3668 u64 addr;
3669 u64 ei_start, ei_last;
3670 u64 final_start, final_end;
3671
3672 ei_last = early_node_map[i].end_pfn;
3673 ei_last <<= PAGE_SHIFT;
3674 ei_start = early_node_map[i].start_pfn;
3675 ei_start <<= PAGE_SHIFT;
3676
3677 final_start = max(ei_start, goal);
3678 final_end = min(ei_last, limit);
3679
3680 if (final_start >= final_end)
3681 continue;
3682
3683 addr = memblock_find_in_range(final_start, final_end, size, align);
3684
3685 if (addr == MEMBLOCK_ERROR)
3686 continue;
3687
3688 return addr;
3689 }
3690
3691 return MEMBLOCK_ERROR;
3692}
3693#endif
3694
08677214
YL
3695int __init add_from_early_node_map(struct range *range, int az,
3696 int nr_range, int nid)
3697{
3698 int i;
3699 u64 start, end;
3700
3701 /* need to go over early_node_map to find out good range for node */
3702 for_each_active_range_index_in_nid(i, nid) {
3703 start = early_node_map[i].start_pfn;
3704 end = early_node_map[i].end_pfn;
3705 nr_range = add_range(range, az, nr_range, start, end);
3706 }
3707 return nr_range;
3708}
3709
2ee78f7b 3710#ifdef CONFIG_NO_BOOTMEM
08677214
YL
3711void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3712 u64 goal, u64 limit)
3713{
08677214 3714 void *ptr;
72d7c3b3 3715 u64 addr;
08677214 3716
72d7c3b3
YL
3717 if (limit > memblock.current_limit)
3718 limit = memblock.current_limit;
b8ab9f82 3719
72d7c3b3 3720 addr = find_memory_core_early(nid, size, align, goal, limit);
08677214 3721
72d7c3b3
YL
3722 if (addr == MEMBLOCK_ERROR)
3723 return NULL;
08677214 3724
72d7c3b3
YL
3725 ptr = phys_to_virt(addr);
3726 memset(ptr, 0, size);
3727 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3728 /*
3729 * The min_count is set to 0 so that bootmem allocated blocks
3730 * are never reported as leaks.
3731 */
3732 kmemleak_alloc(ptr, size, 0, 0);
3733 return ptr;
08677214 3734}
2ee78f7b 3735#endif
08677214
YL
3736
3737
b5bc6c0e
YL
3738void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3739{
3740 int i;
d52d53b8 3741 int ret;
b5bc6c0e 3742
d52d53b8
YL
3743 for_each_active_range_index_in_nid(i, nid) {
3744 ret = work_fn(early_node_map[i].start_pfn,
3745 early_node_map[i].end_pfn, data);
3746 if (ret)
3747 break;
3748 }
b5bc6c0e 3749}
c713216d
MG
3750/**
3751 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3752 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3753 *
3754 * If an architecture guarantees that all ranges registered with
3755 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3756 * function may be used instead of calling memory_present() manually.
c713216d
MG
3757 */
3758void __init sparse_memory_present_with_active_regions(int nid)
3759{
3760 int i;
3761
3762 for_each_active_range_index_in_nid(i, nid)
3763 memory_present(early_node_map[i].nid,
3764 early_node_map[i].start_pfn,
3765 early_node_map[i].end_pfn);
3766}
3767
3768/**
3769 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3770 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3771 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3772 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3773 *
3774 * It returns the start and end page frame of a node based on information
3775 * provided by an arch calling add_active_range(). If called for a node
3776 * with no available memory, a warning is printed and the start and end
88ca3b94 3777 * PFNs will be 0.
c713216d 3778 */
a3142c8e 3779void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3780 unsigned long *start_pfn, unsigned long *end_pfn)
3781{
3782 int i;
3783 *start_pfn = -1UL;
3784 *end_pfn = 0;
3785
3786 for_each_active_range_index_in_nid(i, nid) {
3787 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3788 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3789 }
3790
633c0666 3791 if (*start_pfn == -1UL)
c713216d 3792 *start_pfn = 0;
c713216d
MG
3793}
3794
2a1e274a
MG
3795/*
3796 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3797 * assumption is made that zones within a node are ordered in monotonic
3798 * increasing memory addresses so that the "highest" populated zone is used
3799 */
b69a7288 3800static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3801{
3802 int zone_index;
3803 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3804 if (zone_index == ZONE_MOVABLE)
3805 continue;
3806
3807 if (arch_zone_highest_possible_pfn[zone_index] >
3808 arch_zone_lowest_possible_pfn[zone_index])
3809 break;
3810 }
3811
3812 VM_BUG_ON(zone_index == -1);
3813 movable_zone = zone_index;
3814}
3815
3816/*
3817 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3818 * because it is sized independant of architecture. Unlike the other zones,
3819 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3820 * in each node depending on the size of each node and how evenly kernelcore
3821 * is distributed. This helper function adjusts the zone ranges
3822 * provided by the architecture for a given node by using the end of the
3823 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3824 * zones within a node are in order of monotonic increases memory addresses
3825 */
b69a7288 3826static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3827 unsigned long zone_type,
3828 unsigned long node_start_pfn,
3829 unsigned long node_end_pfn,
3830 unsigned long *zone_start_pfn,
3831 unsigned long *zone_end_pfn)
3832{
3833 /* Only adjust if ZONE_MOVABLE is on this node */
3834 if (zone_movable_pfn[nid]) {
3835 /* Size ZONE_MOVABLE */
3836 if (zone_type == ZONE_MOVABLE) {
3837 *zone_start_pfn = zone_movable_pfn[nid];
3838 *zone_end_pfn = min(node_end_pfn,
3839 arch_zone_highest_possible_pfn[movable_zone]);
3840
3841 /* Adjust for ZONE_MOVABLE starting within this range */
3842 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3843 *zone_end_pfn > zone_movable_pfn[nid]) {
3844 *zone_end_pfn = zone_movable_pfn[nid];
3845
3846 /* Check if this whole range is within ZONE_MOVABLE */
3847 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3848 *zone_start_pfn = *zone_end_pfn;
3849 }
3850}
3851
c713216d
MG
3852/*
3853 * Return the number of pages a zone spans in a node, including holes
3854 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3855 */
6ea6e688 3856static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3857 unsigned long zone_type,
3858 unsigned long *ignored)
3859{
3860 unsigned long node_start_pfn, node_end_pfn;
3861 unsigned long zone_start_pfn, zone_end_pfn;
3862
3863 /* Get the start and end of the node and zone */
3864 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3865 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3866 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3867 adjust_zone_range_for_zone_movable(nid, zone_type,
3868 node_start_pfn, node_end_pfn,
3869 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3870
3871 /* Check that this node has pages within the zone's required range */
3872 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3873 return 0;
3874
3875 /* Move the zone boundaries inside the node if necessary */
3876 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3877 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3878
3879 /* Return the spanned pages */
3880 return zone_end_pfn - zone_start_pfn;
3881}
3882
3883/*
3884 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3885 * then all holes in the requested range will be accounted for.
c713216d 3886 */
32996250 3887unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3888 unsigned long range_start_pfn,
3889 unsigned long range_end_pfn)
3890{
3891 int i = 0;
3892 unsigned long prev_end_pfn = 0, hole_pages = 0;
3893 unsigned long start_pfn;
3894
3895 /* Find the end_pfn of the first active range of pfns in the node */
3896 i = first_active_region_index_in_nid(nid);
3897 if (i == -1)
3898 return 0;
3899
b5445f95
MG
3900 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3901
9c7cd687
MG
3902 /* Account for ranges before physical memory on this node */
3903 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3904 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3905
3906 /* Find all holes for the zone within the node */
3907 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3908
3909 /* No need to continue if prev_end_pfn is outside the zone */
3910 if (prev_end_pfn >= range_end_pfn)
3911 break;
3912
3913 /* Make sure the end of the zone is not within the hole */
3914 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3915 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3916
3917 /* Update the hole size cound and move on */
3918 if (start_pfn > range_start_pfn) {
3919 BUG_ON(prev_end_pfn > start_pfn);
3920 hole_pages += start_pfn - prev_end_pfn;
3921 }
3922 prev_end_pfn = early_node_map[i].end_pfn;
3923 }
3924
9c7cd687
MG
3925 /* Account for ranges past physical memory on this node */
3926 if (range_end_pfn > prev_end_pfn)
0c6cb974 3927 hole_pages += range_end_pfn -
9c7cd687
MG
3928 max(range_start_pfn, prev_end_pfn);
3929
c713216d
MG
3930 return hole_pages;
3931}
3932
3933/**
3934 * absent_pages_in_range - Return number of page frames in holes within a range
3935 * @start_pfn: The start PFN to start searching for holes
3936 * @end_pfn: The end PFN to stop searching for holes
3937 *
88ca3b94 3938 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3939 */
3940unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3941 unsigned long end_pfn)
3942{
3943 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3944}
3945
3946/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3947static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3948 unsigned long zone_type,
3949 unsigned long *ignored)
3950{
9c7cd687
MG
3951 unsigned long node_start_pfn, node_end_pfn;
3952 unsigned long zone_start_pfn, zone_end_pfn;
3953
3954 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3955 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3956 node_start_pfn);
3957 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3958 node_end_pfn);
3959
2a1e274a
MG
3960 adjust_zone_range_for_zone_movable(nid, zone_type,
3961 node_start_pfn, node_end_pfn,
3962 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3963 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3964}
0e0b864e 3965
c713216d 3966#else
6ea6e688 3967static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3968 unsigned long zone_type,
3969 unsigned long *zones_size)
3970{
3971 return zones_size[zone_type];
3972}
3973
6ea6e688 3974static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3975 unsigned long zone_type,
3976 unsigned long *zholes_size)
3977{
3978 if (!zholes_size)
3979 return 0;
3980
3981 return zholes_size[zone_type];
3982}
0e0b864e 3983
c713216d
MG
3984#endif
3985
a3142c8e 3986static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3987 unsigned long *zones_size, unsigned long *zholes_size)
3988{
3989 unsigned long realtotalpages, totalpages = 0;
3990 enum zone_type i;
3991
3992 for (i = 0; i < MAX_NR_ZONES; i++)
3993 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3994 zones_size);
3995 pgdat->node_spanned_pages = totalpages;
3996
3997 realtotalpages = totalpages;
3998 for (i = 0; i < MAX_NR_ZONES; i++)
3999 realtotalpages -=
4000 zone_absent_pages_in_node(pgdat->node_id, i,
4001 zholes_size);
4002 pgdat->node_present_pages = realtotalpages;
4003 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4004 realtotalpages);
4005}
4006
835c134e
MG
4007#ifndef CONFIG_SPARSEMEM
4008/*
4009 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4010 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4011 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4012 * round what is now in bits to nearest long in bits, then return it in
4013 * bytes.
4014 */
4015static unsigned long __init usemap_size(unsigned long zonesize)
4016{
4017 unsigned long usemapsize;
4018
d9c23400
MG
4019 usemapsize = roundup(zonesize, pageblock_nr_pages);
4020 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4021 usemapsize *= NR_PAGEBLOCK_BITS;
4022 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4023
4024 return usemapsize / 8;
4025}
4026
4027static void __init setup_usemap(struct pglist_data *pgdat,
4028 struct zone *zone, unsigned long zonesize)
4029{
4030 unsigned long usemapsize = usemap_size(zonesize);
4031 zone->pageblock_flags = NULL;
58a01a45 4032 if (usemapsize)
835c134e 4033 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
4034}
4035#else
fa9f90be 4036static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4037 struct zone *zone, unsigned long zonesize) {}
4038#endif /* CONFIG_SPARSEMEM */
4039
d9c23400 4040#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4041
4042/* Return a sensible default order for the pageblock size. */
4043static inline int pageblock_default_order(void)
4044{
4045 if (HPAGE_SHIFT > PAGE_SHIFT)
4046 return HUGETLB_PAGE_ORDER;
4047
4048 return MAX_ORDER-1;
4049}
4050
d9c23400
MG
4051/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4052static inline void __init set_pageblock_order(unsigned int order)
4053{
4054 /* Check that pageblock_nr_pages has not already been setup */
4055 if (pageblock_order)
4056 return;
4057
4058 /*
4059 * Assume the largest contiguous order of interest is a huge page.
4060 * This value may be variable depending on boot parameters on IA64
4061 */
4062 pageblock_order = order;
4063}
4064#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4065
ba72cb8c
MG
4066/*
4067 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4068 * and pageblock_default_order() are unused as pageblock_order is set
4069 * at compile-time. See include/linux/pageblock-flags.h for the values of
4070 * pageblock_order based on the kernel config
4071 */
4072static inline int pageblock_default_order(unsigned int order)
4073{
4074 return MAX_ORDER-1;
4075}
d9c23400
MG
4076#define set_pageblock_order(x) do {} while (0)
4077
4078#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4079
1da177e4
LT
4080/*
4081 * Set up the zone data structures:
4082 * - mark all pages reserved
4083 * - mark all memory queues empty
4084 * - clear the memory bitmaps
4085 */
b5a0e011 4086static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4087 unsigned long *zones_size, unsigned long *zholes_size)
4088{
2f1b6248 4089 enum zone_type j;
ed8ece2e 4090 int nid = pgdat->node_id;
1da177e4 4091 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4092 int ret;
1da177e4 4093
208d54e5 4094 pgdat_resize_init(pgdat);
1da177e4
LT
4095 pgdat->nr_zones = 0;
4096 init_waitqueue_head(&pgdat->kswapd_wait);
4097 pgdat->kswapd_max_order = 0;
52d4b9ac 4098 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4099
4100 for (j = 0; j < MAX_NR_ZONES; j++) {
4101 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4102 unsigned long size, realsize, memmap_pages;
b69408e8 4103 enum lru_list l;
1da177e4 4104
c713216d
MG
4105 size = zone_spanned_pages_in_node(nid, j, zones_size);
4106 realsize = size - zone_absent_pages_in_node(nid, j,
4107 zholes_size);
1da177e4 4108
0e0b864e
MG
4109 /*
4110 * Adjust realsize so that it accounts for how much memory
4111 * is used by this zone for memmap. This affects the watermark
4112 * and per-cpu initialisations
4113 */
f7232154
JW
4114 memmap_pages =
4115 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4116 if (realsize >= memmap_pages) {
4117 realsize -= memmap_pages;
5594c8c8
YL
4118 if (memmap_pages)
4119 printk(KERN_DEBUG
4120 " %s zone: %lu pages used for memmap\n",
4121 zone_names[j], memmap_pages);
0e0b864e
MG
4122 } else
4123 printk(KERN_WARNING
4124 " %s zone: %lu pages exceeds realsize %lu\n",
4125 zone_names[j], memmap_pages, realsize);
4126
6267276f
CL
4127 /* Account for reserved pages */
4128 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4129 realsize -= dma_reserve;
d903ef9f 4130 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4131 zone_names[0], dma_reserve);
0e0b864e
MG
4132 }
4133
98d2b0eb 4134 if (!is_highmem_idx(j))
1da177e4
LT
4135 nr_kernel_pages += realsize;
4136 nr_all_pages += realsize;
4137
4138 zone->spanned_pages = size;
4139 zone->present_pages = realsize;
9614634f 4140#ifdef CONFIG_NUMA
d5f541ed 4141 zone->node = nid;
8417bba4 4142 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4143 / 100;
0ff38490 4144 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4145#endif
1da177e4
LT
4146 zone->name = zone_names[j];
4147 spin_lock_init(&zone->lock);
4148 spin_lock_init(&zone->lru_lock);
bdc8cb98 4149 zone_seqlock_init(zone);
1da177e4 4150 zone->zone_pgdat = pgdat;
1da177e4 4151
ed8ece2e 4152 zone_pcp_init(zone);
b69408e8
CL
4153 for_each_lru(l) {
4154 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 4155 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 4156 }
6e901571
KM
4157 zone->reclaim_stat.recent_rotated[0] = 0;
4158 zone->reclaim_stat.recent_rotated[1] = 0;
4159 zone->reclaim_stat.recent_scanned[0] = 0;
4160 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4161 zap_zone_vm_stats(zone);
e815af95 4162 zone->flags = 0;
1da177e4
LT
4163 if (!size)
4164 continue;
4165
ba72cb8c 4166 set_pageblock_order(pageblock_default_order());
835c134e 4167 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4168 ret = init_currently_empty_zone(zone, zone_start_pfn,
4169 size, MEMMAP_EARLY);
718127cc 4170 BUG_ON(ret);
76cdd58e 4171 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4172 zone_start_pfn += size;
1da177e4
LT
4173 }
4174}
4175
577a32f6 4176static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4177{
1da177e4
LT
4178 /* Skip empty nodes */
4179 if (!pgdat->node_spanned_pages)
4180 return;
4181
d41dee36 4182#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4183 /* ia64 gets its own node_mem_map, before this, without bootmem */
4184 if (!pgdat->node_mem_map) {
e984bb43 4185 unsigned long size, start, end;
d41dee36
AW
4186 struct page *map;
4187
e984bb43
BP
4188 /*
4189 * The zone's endpoints aren't required to be MAX_ORDER
4190 * aligned but the node_mem_map endpoints must be in order
4191 * for the buddy allocator to function correctly.
4192 */
4193 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4194 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4195 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4196 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4197 map = alloc_remap(pgdat->node_id, size);
4198 if (!map)
4199 map = alloc_bootmem_node(pgdat, size);
e984bb43 4200 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4201 }
12d810c1 4202#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4203 /*
4204 * With no DISCONTIG, the global mem_map is just set as node 0's
4205 */
c713216d 4206 if (pgdat == NODE_DATA(0)) {
1da177e4 4207 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4208#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4209 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4210 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4211#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4212 }
1da177e4 4213#endif
d41dee36 4214#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4215}
4216
9109fb7b
JW
4217void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4218 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4219{
9109fb7b
JW
4220 pg_data_t *pgdat = NODE_DATA(nid);
4221
1da177e4
LT
4222 pgdat->node_id = nid;
4223 pgdat->node_start_pfn = node_start_pfn;
c713216d 4224 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4225
4226 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4227#ifdef CONFIG_FLAT_NODE_MEM_MAP
4228 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4229 nid, (unsigned long)pgdat,
4230 (unsigned long)pgdat->node_mem_map);
4231#endif
1da177e4
LT
4232
4233 free_area_init_core(pgdat, zones_size, zholes_size);
4234}
4235
c713216d 4236#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4237
4238#if MAX_NUMNODES > 1
4239/*
4240 * Figure out the number of possible node ids.
4241 */
4242static void __init setup_nr_node_ids(void)
4243{
4244 unsigned int node;
4245 unsigned int highest = 0;
4246
4247 for_each_node_mask(node, node_possible_map)
4248 highest = node;
4249 nr_node_ids = highest + 1;
4250}
4251#else
4252static inline void setup_nr_node_ids(void)
4253{
4254}
4255#endif
4256
c713216d
MG
4257/**
4258 * add_active_range - Register a range of PFNs backed by physical memory
4259 * @nid: The node ID the range resides on
4260 * @start_pfn: The start PFN of the available physical memory
4261 * @end_pfn: The end PFN of the available physical memory
4262 *
4263 * These ranges are stored in an early_node_map[] and later used by
4264 * free_area_init_nodes() to calculate zone sizes and holes. If the
4265 * range spans a memory hole, it is up to the architecture to ensure
4266 * the memory is not freed by the bootmem allocator. If possible
4267 * the range being registered will be merged with existing ranges.
4268 */
4269void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4270 unsigned long end_pfn)
4271{
4272 int i;
4273
6b74ab97
MG
4274 mminit_dprintk(MMINIT_TRACE, "memory_register",
4275 "Entering add_active_range(%d, %#lx, %#lx) "
4276 "%d entries of %d used\n",
4277 nid, start_pfn, end_pfn,
4278 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4279
2dbb51c4
MG
4280 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4281
c713216d
MG
4282 /* Merge with existing active regions if possible */
4283 for (i = 0; i < nr_nodemap_entries; i++) {
4284 if (early_node_map[i].nid != nid)
4285 continue;
4286
4287 /* Skip if an existing region covers this new one */
4288 if (start_pfn >= early_node_map[i].start_pfn &&
4289 end_pfn <= early_node_map[i].end_pfn)
4290 return;
4291
4292 /* Merge forward if suitable */
4293 if (start_pfn <= early_node_map[i].end_pfn &&
4294 end_pfn > early_node_map[i].end_pfn) {
4295 early_node_map[i].end_pfn = end_pfn;
4296 return;
4297 }
4298
4299 /* Merge backward if suitable */
d2dbe08d 4300 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4301 end_pfn >= early_node_map[i].start_pfn) {
4302 early_node_map[i].start_pfn = start_pfn;
4303 return;
4304 }
4305 }
4306
4307 /* Check that early_node_map is large enough */
4308 if (i >= MAX_ACTIVE_REGIONS) {
4309 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4310 MAX_ACTIVE_REGIONS);
4311 return;
4312 }
4313
4314 early_node_map[i].nid = nid;
4315 early_node_map[i].start_pfn = start_pfn;
4316 early_node_map[i].end_pfn = end_pfn;
4317 nr_nodemap_entries = i + 1;
4318}
4319
4320/**
cc1050ba 4321 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4322 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4323 * @start_pfn: The new PFN of the range
4324 * @end_pfn: The new PFN of the range
c713216d
MG
4325 *
4326 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4327 * The map is kept near the end physical page range that has already been
4328 * registered. This function allows an arch to shrink an existing registered
4329 * range.
c713216d 4330 */
cc1050ba
YL
4331void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4332 unsigned long end_pfn)
c713216d 4333{
cc1a9d86
YL
4334 int i, j;
4335 int removed = 0;
c713216d 4336
cc1050ba
YL
4337 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4338 nid, start_pfn, end_pfn);
4339
c713216d 4340 /* Find the old active region end and shrink */
cc1a9d86 4341 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4342 if (early_node_map[i].start_pfn >= start_pfn &&
4343 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4344 /* clear it */
cc1050ba 4345 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4346 early_node_map[i].end_pfn = 0;
4347 removed = 1;
4348 continue;
4349 }
cc1050ba
YL
4350 if (early_node_map[i].start_pfn < start_pfn &&
4351 early_node_map[i].end_pfn > start_pfn) {
4352 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4353 early_node_map[i].end_pfn = start_pfn;
4354 if (temp_end_pfn > end_pfn)
4355 add_active_range(nid, end_pfn, temp_end_pfn);
4356 continue;
4357 }
4358 if (early_node_map[i].start_pfn >= start_pfn &&
4359 early_node_map[i].end_pfn > end_pfn &&
4360 early_node_map[i].start_pfn < end_pfn) {
4361 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4362 continue;
c713216d 4363 }
cc1a9d86
YL
4364 }
4365
4366 if (!removed)
4367 return;
4368
4369 /* remove the blank ones */
4370 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4371 if (early_node_map[i].nid != nid)
4372 continue;
4373 if (early_node_map[i].end_pfn)
4374 continue;
4375 /* we found it, get rid of it */
4376 for (j = i; j < nr_nodemap_entries - 1; j++)
4377 memcpy(&early_node_map[j], &early_node_map[j+1],
4378 sizeof(early_node_map[j]));
4379 j = nr_nodemap_entries - 1;
4380 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4381 nr_nodemap_entries--;
4382 }
c713216d
MG
4383}
4384
4385/**
4386 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4387 *
c713216d
MG
4388 * During discovery, it may be found that a table like SRAT is invalid
4389 * and an alternative discovery method must be used. This function removes
4390 * all currently registered regions.
4391 */
88ca3b94 4392void __init remove_all_active_ranges(void)
c713216d
MG
4393{
4394 memset(early_node_map, 0, sizeof(early_node_map));
4395 nr_nodemap_entries = 0;
4396}
4397
4398/* Compare two active node_active_regions */
4399static int __init cmp_node_active_region(const void *a, const void *b)
4400{
4401 struct node_active_region *arange = (struct node_active_region *)a;
4402 struct node_active_region *brange = (struct node_active_region *)b;
4403
4404 /* Done this way to avoid overflows */
4405 if (arange->start_pfn > brange->start_pfn)
4406 return 1;
4407 if (arange->start_pfn < brange->start_pfn)
4408 return -1;
4409
4410 return 0;
4411}
4412
4413/* sort the node_map by start_pfn */
32996250 4414void __init sort_node_map(void)
c713216d
MG
4415{
4416 sort(early_node_map, (size_t)nr_nodemap_entries,
4417 sizeof(struct node_active_region),
4418 cmp_node_active_region, NULL);
4419}
4420
a6af2bc3 4421/* Find the lowest pfn for a node */
b69a7288 4422static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4423{
4424 int i;
a6af2bc3 4425 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4426
c713216d
MG
4427 /* Assuming a sorted map, the first range found has the starting pfn */
4428 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4429 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4430
a6af2bc3
MG
4431 if (min_pfn == ULONG_MAX) {
4432 printk(KERN_WARNING
2bc0d261 4433 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4434 return 0;
4435 }
4436
4437 return min_pfn;
c713216d
MG
4438}
4439
4440/**
4441 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4442 *
4443 * It returns the minimum PFN based on information provided via
88ca3b94 4444 * add_active_range().
c713216d
MG
4445 */
4446unsigned long __init find_min_pfn_with_active_regions(void)
4447{
4448 return find_min_pfn_for_node(MAX_NUMNODES);
4449}
4450
37b07e41
LS
4451/*
4452 * early_calculate_totalpages()
4453 * Sum pages in active regions for movable zone.
4454 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4455 */
484f51f8 4456static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4457{
4458 int i;
4459 unsigned long totalpages = 0;
4460
37b07e41
LS
4461 for (i = 0; i < nr_nodemap_entries; i++) {
4462 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4463 early_node_map[i].start_pfn;
37b07e41
LS
4464 totalpages += pages;
4465 if (pages)
4466 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4467 }
4468 return totalpages;
7e63efef
MG
4469}
4470
2a1e274a
MG
4471/*
4472 * Find the PFN the Movable zone begins in each node. Kernel memory
4473 * is spread evenly between nodes as long as the nodes have enough
4474 * memory. When they don't, some nodes will have more kernelcore than
4475 * others
4476 */
b69a7288 4477static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4478{
4479 int i, nid;
4480 unsigned long usable_startpfn;
4481 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4482 /* save the state before borrow the nodemask */
4483 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4484 unsigned long totalpages = early_calculate_totalpages();
4485 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4486
7e63efef
MG
4487 /*
4488 * If movablecore was specified, calculate what size of
4489 * kernelcore that corresponds so that memory usable for
4490 * any allocation type is evenly spread. If both kernelcore
4491 * and movablecore are specified, then the value of kernelcore
4492 * will be used for required_kernelcore if it's greater than
4493 * what movablecore would have allowed.
4494 */
4495 if (required_movablecore) {
7e63efef
MG
4496 unsigned long corepages;
4497
4498 /*
4499 * Round-up so that ZONE_MOVABLE is at least as large as what
4500 * was requested by the user
4501 */
4502 required_movablecore =
4503 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4504 corepages = totalpages - required_movablecore;
4505
4506 required_kernelcore = max(required_kernelcore, corepages);
4507 }
4508
2a1e274a
MG
4509 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4510 if (!required_kernelcore)
66918dcd 4511 goto out;
2a1e274a
MG
4512
4513 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4514 find_usable_zone_for_movable();
4515 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4516
4517restart:
4518 /* Spread kernelcore memory as evenly as possible throughout nodes */
4519 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4520 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4521 /*
4522 * Recalculate kernelcore_node if the division per node
4523 * now exceeds what is necessary to satisfy the requested
4524 * amount of memory for the kernel
4525 */
4526 if (required_kernelcore < kernelcore_node)
4527 kernelcore_node = required_kernelcore / usable_nodes;
4528
4529 /*
4530 * As the map is walked, we track how much memory is usable
4531 * by the kernel using kernelcore_remaining. When it is
4532 * 0, the rest of the node is usable by ZONE_MOVABLE
4533 */
4534 kernelcore_remaining = kernelcore_node;
4535
4536 /* Go through each range of PFNs within this node */
4537 for_each_active_range_index_in_nid(i, nid) {
4538 unsigned long start_pfn, end_pfn;
4539 unsigned long size_pages;
4540
4541 start_pfn = max(early_node_map[i].start_pfn,
4542 zone_movable_pfn[nid]);
4543 end_pfn = early_node_map[i].end_pfn;
4544 if (start_pfn >= end_pfn)
4545 continue;
4546
4547 /* Account for what is only usable for kernelcore */
4548 if (start_pfn < usable_startpfn) {
4549 unsigned long kernel_pages;
4550 kernel_pages = min(end_pfn, usable_startpfn)
4551 - start_pfn;
4552
4553 kernelcore_remaining -= min(kernel_pages,
4554 kernelcore_remaining);
4555 required_kernelcore -= min(kernel_pages,
4556 required_kernelcore);
4557
4558 /* Continue if range is now fully accounted */
4559 if (end_pfn <= usable_startpfn) {
4560
4561 /*
4562 * Push zone_movable_pfn to the end so
4563 * that if we have to rebalance
4564 * kernelcore across nodes, we will
4565 * not double account here
4566 */
4567 zone_movable_pfn[nid] = end_pfn;
4568 continue;
4569 }
4570 start_pfn = usable_startpfn;
4571 }
4572
4573 /*
4574 * The usable PFN range for ZONE_MOVABLE is from
4575 * start_pfn->end_pfn. Calculate size_pages as the
4576 * number of pages used as kernelcore
4577 */
4578 size_pages = end_pfn - start_pfn;
4579 if (size_pages > kernelcore_remaining)
4580 size_pages = kernelcore_remaining;
4581 zone_movable_pfn[nid] = start_pfn + size_pages;
4582
4583 /*
4584 * Some kernelcore has been met, update counts and
4585 * break if the kernelcore for this node has been
4586 * satisified
4587 */
4588 required_kernelcore -= min(required_kernelcore,
4589 size_pages);
4590 kernelcore_remaining -= size_pages;
4591 if (!kernelcore_remaining)
4592 break;
4593 }
4594 }
4595
4596 /*
4597 * If there is still required_kernelcore, we do another pass with one
4598 * less node in the count. This will push zone_movable_pfn[nid] further
4599 * along on the nodes that still have memory until kernelcore is
4600 * satisified
4601 */
4602 usable_nodes--;
4603 if (usable_nodes && required_kernelcore > usable_nodes)
4604 goto restart;
4605
4606 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4607 for (nid = 0; nid < MAX_NUMNODES; nid++)
4608 zone_movable_pfn[nid] =
4609 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4610
4611out:
4612 /* restore the node_state */
4613 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4614}
4615
37b07e41
LS
4616/* Any regular memory on that node ? */
4617static void check_for_regular_memory(pg_data_t *pgdat)
4618{
4619#ifdef CONFIG_HIGHMEM
4620 enum zone_type zone_type;
4621
4622 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4623 struct zone *zone = &pgdat->node_zones[zone_type];
4624 if (zone->present_pages)
4625 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4626 }
4627#endif
4628}
4629
c713216d
MG
4630/**
4631 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4632 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4633 *
4634 * This will call free_area_init_node() for each active node in the system.
4635 * Using the page ranges provided by add_active_range(), the size of each
4636 * zone in each node and their holes is calculated. If the maximum PFN
4637 * between two adjacent zones match, it is assumed that the zone is empty.
4638 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4639 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4640 * starts where the previous one ended. For example, ZONE_DMA32 starts
4641 * at arch_max_dma_pfn.
4642 */
4643void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4644{
4645 unsigned long nid;
db99100d 4646 int i;
c713216d 4647
a6af2bc3
MG
4648 /* Sort early_node_map as initialisation assumes it is sorted */
4649 sort_node_map();
4650
c713216d
MG
4651 /* Record where the zone boundaries are */
4652 memset(arch_zone_lowest_possible_pfn, 0,
4653 sizeof(arch_zone_lowest_possible_pfn));
4654 memset(arch_zone_highest_possible_pfn, 0,
4655 sizeof(arch_zone_highest_possible_pfn));
4656 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4657 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4658 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4659 if (i == ZONE_MOVABLE)
4660 continue;
c713216d
MG
4661 arch_zone_lowest_possible_pfn[i] =
4662 arch_zone_highest_possible_pfn[i-1];
4663 arch_zone_highest_possible_pfn[i] =
4664 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4665 }
2a1e274a
MG
4666 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4667 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4668
4669 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4670 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4671 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4672
c713216d
MG
4673 /* Print out the zone ranges */
4674 printk("Zone PFN ranges:\n");
2a1e274a
MG
4675 for (i = 0; i < MAX_NR_ZONES; i++) {
4676 if (i == ZONE_MOVABLE)
4677 continue;
72f0ba02
DR
4678 printk(" %-8s ", zone_names[i]);
4679 if (arch_zone_lowest_possible_pfn[i] ==
4680 arch_zone_highest_possible_pfn[i])
4681 printk("empty\n");
4682 else
4683 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4684 arch_zone_lowest_possible_pfn[i],
4685 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4686 }
4687
4688 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4689 printk("Movable zone start PFN for each node\n");
4690 for (i = 0; i < MAX_NUMNODES; i++) {
4691 if (zone_movable_pfn[i])
4692 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4693 }
c713216d
MG
4694
4695 /* Print out the early_node_map[] */
4696 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4697 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4698 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4699 early_node_map[i].start_pfn,
4700 early_node_map[i].end_pfn);
4701
4702 /* Initialise every node */
708614e6 4703 mminit_verify_pageflags_layout();
8ef82866 4704 setup_nr_node_ids();
c713216d
MG
4705 for_each_online_node(nid) {
4706 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4707 free_area_init_node(nid, NULL,
c713216d 4708 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4709
4710 /* Any memory on that node */
4711 if (pgdat->node_present_pages)
4712 node_set_state(nid, N_HIGH_MEMORY);
4713 check_for_regular_memory(pgdat);
c713216d
MG
4714 }
4715}
2a1e274a 4716
7e63efef 4717static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4718{
4719 unsigned long long coremem;
4720 if (!p)
4721 return -EINVAL;
4722
4723 coremem = memparse(p, &p);
7e63efef 4724 *core = coremem >> PAGE_SHIFT;
2a1e274a 4725
7e63efef 4726 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4727 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4728
4729 return 0;
4730}
ed7ed365 4731
7e63efef
MG
4732/*
4733 * kernelcore=size sets the amount of memory for use for allocations that
4734 * cannot be reclaimed or migrated.
4735 */
4736static int __init cmdline_parse_kernelcore(char *p)
4737{
4738 return cmdline_parse_core(p, &required_kernelcore);
4739}
4740
4741/*
4742 * movablecore=size sets the amount of memory for use for allocations that
4743 * can be reclaimed or migrated.
4744 */
4745static int __init cmdline_parse_movablecore(char *p)
4746{
4747 return cmdline_parse_core(p, &required_movablecore);
4748}
4749
ed7ed365 4750early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4751early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4752
c713216d
MG
4753#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4754
0e0b864e 4755/**
88ca3b94
RD
4756 * set_dma_reserve - set the specified number of pages reserved in the first zone
4757 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4758 *
4759 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4760 * In the DMA zone, a significant percentage may be consumed by kernel image
4761 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4762 * function may optionally be used to account for unfreeable pages in the
4763 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4764 * smaller per-cpu batchsize.
0e0b864e
MG
4765 */
4766void __init set_dma_reserve(unsigned long new_dma_reserve)
4767{
4768 dma_reserve = new_dma_reserve;
4769}
4770
93b7504e 4771#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4772struct pglist_data __refdata contig_page_data = {
4773#ifndef CONFIG_NO_BOOTMEM
4774 .bdata = &bootmem_node_data[0]
4775#endif
4776 };
1da177e4 4777EXPORT_SYMBOL(contig_page_data);
93b7504e 4778#endif
1da177e4
LT
4779
4780void __init free_area_init(unsigned long *zones_size)
4781{
9109fb7b 4782 free_area_init_node(0, zones_size,
1da177e4
LT
4783 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4784}
1da177e4 4785
1da177e4
LT
4786static int page_alloc_cpu_notify(struct notifier_block *self,
4787 unsigned long action, void *hcpu)
4788{
4789 int cpu = (unsigned long)hcpu;
1da177e4 4790
8bb78442 4791 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4792 drain_pages(cpu);
4793
4794 /*
4795 * Spill the event counters of the dead processor
4796 * into the current processors event counters.
4797 * This artificially elevates the count of the current
4798 * processor.
4799 */
f8891e5e 4800 vm_events_fold_cpu(cpu);
9f8f2172
CL
4801
4802 /*
4803 * Zero the differential counters of the dead processor
4804 * so that the vm statistics are consistent.
4805 *
4806 * This is only okay since the processor is dead and cannot
4807 * race with what we are doing.
4808 */
2244b95a 4809 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4810 }
4811 return NOTIFY_OK;
4812}
1da177e4
LT
4813
4814void __init page_alloc_init(void)
4815{
4816 hotcpu_notifier(page_alloc_cpu_notify, 0);
4817}
4818
cb45b0e9
HA
4819/*
4820 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4821 * or min_free_kbytes changes.
4822 */
4823static void calculate_totalreserve_pages(void)
4824{
4825 struct pglist_data *pgdat;
4826 unsigned long reserve_pages = 0;
2f6726e5 4827 enum zone_type i, j;
cb45b0e9
HA
4828
4829 for_each_online_pgdat(pgdat) {
4830 for (i = 0; i < MAX_NR_ZONES; i++) {
4831 struct zone *zone = pgdat->node_zones + i;
4832 unsigned long max = 0;
4833
4834 /* Find valid and maximum lowmem_reserve in the zone */
4835 for (j = i; j < MAX_NR_ZONES; j++) {
4836 if (zone->lowmem_reserve[j] > max)
4837 max = zone->lowmem_reserve[j];
4838 }
4839
41858966
MG
4840 /* we treat the high watermark as reserved pages. */
4841 max += high_wmark_pages(zone);
cb45b0e9
HA
4842
4843 if (max > zone->present_pages)
4844 max = zone->present_pages;
4845 reserve_pages += max;
4846 }
4847 }
4848 totalreserve_pages = reserve_pages;
4849}
4850
1da177e4
LT
4851/*
4852 * setup_per_zone_lowmem_reserve - called whenever
4853 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4854 * has a correct pages reserved value, so an adequate number of
4855 * pages are left in the zone after a successful __alloc_pages().
4856 */
4857static void setup_per_zone_lowmem_reserve(void)
4858{
4859 struct pglist_data *pgdat;
2f6726e5 4860 enum zone_type j, idx;
1da177e4 4861
ec936fc5 4862 for_each_online_pgdat(pgdat) {
1da177e4
LT
4863 for (j = 0; j < MAX_NR_ZONES; j++) {
4864 struct zone *zone = pgdat->node_zones + j;
4865 unsigned long present_pages = zone->present_pages;
4866
4867 zone->lowmem_reserve[j] = 0;
4868
2f6726e5
CL
4869 idx = j;
4870 while (idx) {
1da177e4
LT
4871 struct zone *lower_zone;
4872
2f6726e5
CL
4873 idx--;
4874
1da177e4
LT
4875 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4876 sysctl_lowmem_reserve_ratio[idx] = 1;
4877
4878 lower_zone = pgdat->node_zones + idx;
4879 lower_zone->lowmem_reserve[j] = present_pages /
4880 sysctl_lowmem_reserve_ratio[idx];
4881 present_pages += lower_zone->present_pages;
4882 }
4883 }
4884 }
cb45b0e9
HA
4885
4886 /* update totalreserve_pages */
4887 calculate_totalreserve_pages();
1da177e4
LT
4888}
4889
88ca3b94 4890/**
bc75d33f 4891 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4892 * or when memory is hot-{added|removed}
88ca3b94 4893 *
bc75d33f
MK
4894 * Ensures that the watermark[min,low,high] values for each zone are set
4895 * correctly with respect to min_free_kbytes.
1da177e4 4896 */
bc75d33f 4897void setup_per_zone_wmarks(void)
1da177e4
LT
4898{
4899 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4900 unsigned long lowmem_pages = 0;
4901 struct zone *zone;
4902 unsigned long flags;
4903
4904 /* Calculate total number of !ZONE_HIGHMEM pages */
4905 for_each_zone(zone) {
4906 if (!is_highmem(zone))
4907 lowmem_pages += zone->present_pages;
4908 }
4909
4910 for_each_zone(zone) {
ac924c60
AM
4911 u64 tmp;
4912
1125b4e3 4913 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4914 tmp = (u64)pages_min * zone->present_pages;
4915 do_div(tmp, lowmem_pages);
1da177e4
LT
4916 if (is_highmem(zone)) {
4917 /*
669ed175
NP
4918 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4919 * need highmem pages, so cap pages_min to a small
4920 * value here.
4921 *
41858966 4922 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4923 * deltas controls asynch page reclaim, and so should
4924 * not be capped for highmem.
1da177e4
LT
4925 */
4926 int min_pages;
4927
4928 min_pages = zone->present_pages / 1024;
4929 if (min_pages < SWAP_CLUSTER_MAX)
4930 min_pages = SWAP_CLUSTER_MAX;
4931 if (min_pages > 128)
4932 min_pages = 128;
41858966 4933 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4934 } else {
669ed175
NP
4935 /*
4936 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4937 * proportionate to the zone's size.
4938 */
41858966 4939 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4940 }
4941
41858966
MG
4942 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4943 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4944 setup_zone_migrate_reserve(zone);
1125b4e3 4945 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4946 }
cb45b0e9
HA
4947
4948 /* update totalreserve_pages */
4949 calculate_totalreserve_pages();
1da177e4
LT
4950}
4951
55a4462a 4952/*
556adecb
RR
4953 * The inactive anon list should be small enough that the VM never has to
4954 * do too much work, but large enough that each inactive page has a chance
4955 * to be referenced again before it is swapped out.
4956 *
4957 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4958 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4959 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4960 * the anonymous pages are kept on the inactive list.
4961 *
4962 * total target max
4963 * memory ratio inactive anon
4964 * -------------------------------------
4965 * 10MB 1 5MB
4966 * 100MB 1 50MB
4967 * 1GB 3 250MB
4968 * 10GB 10 0.9GB
4969 * 100GB 31 3GB
4970 * 1TB 101 10GB
4971 * 10TB 320 32GB
4972 */
96cb4df5 4973void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4974{
96cb4df5 4975 unsigned int gb, ratio;
556adecb 4976
96cb4df5
MK
4977 /* Zone size in gigabytes */
4978 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4979 if (gb)
556adecb 4980 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4981 else
4982 ratio = 1;
556adecb 4983
96cb4df5
MK
4984 zone->inactive_ratio = ratio;
4985}
556adecb 4986
96cb4df5
MK
4987static void __init setup_per_zone_inactive_ratio(void)
4988{
4989 struct zone *zone;
4990
4991 for_each_zone(zone)
4992 calculate_zone_inactive_ratio(zone);
556adecb
RR
4993}
4994
1da177e4
LT
4995/*
4996 * Initialise min_free_kbytes.
4997 *
4998 * For small machines we want it small (128k min). For large machines
4999 * we want it large (64MB max). But it is not linear, because network
5000 * bandwidth does not increase linearly with machine size. We use
5001 *
5002 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5003 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5004 *
5005 * which yields
5006 *
5007 * 16MB: 512k
5008 * 32MB: 724k
5009 * 64MB: 1024k
5010 * 128MB: 1448k
5011 * 256MB: 2048k
5012 * 512MB: 2896k
5013 * 1024MB: 4096k
5014 * 2048MB: 5792k
5015 * 4096MB: 8192k
5016 * 8192MB: 11584k
5017 * 16384MB: 16384k
5018 */
bc75d33f 5019static int __init init_per_zone_wmark_min(void)
1da177e4
LT
5020{
5021 unsigned long lowmem_kbytes;
5022
5023 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5024
5025 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5026 if (min_free_kbytes < 128)
5027 min_free_kbytes = 128;
5028 if (min_free_kbytes > 65536)
5029 min_free_kbytes = 65536;
bc75d33f 5030 setup_per_zone_wmarks();
1da177e4 5031 setup_per_zone_lowmem_reserve();
556adecb 5032 setup_per_zone_inactive_ratio();
1da177e4
LT
5033 return 0;
5034}
bc75d33f 5035module_init(init_per_zone_wmark_min)
1da177e4
LT
5036
5037/*
5038 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5039 * that we can call two helper functions whenever min_free_kbytes
5040 * changes.
5041 */
5042int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5043 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5044{
8d65af78 5045 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5046 if (write)
bc75d33f 5047 setup_per_zone_wmarks();
1da177e4
LT
5048 return 0;
5049}
5050
9614634f
CL
5051#ifdef CONFIG_NUMA
5052int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5053 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5054{
5055 struct zone *zone;
5056 int rc;
5057
8d65af78 5058 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5059 if (rc)
5060 return rc;
5061
5062 for_each_zone(zone)
8417bba4 5063 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5064 sysctl_min_unmapped_ratio) / 100;
5065 return 0;
5066}
0ff38490
CL
5067
5068int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5069 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5070{
5071 struct zone *zone;
5072 int rc;
5073
8d65af78 5074 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5075 if (rc)
5076 return rc;
5077
5078 for_each_zone(zone)
5079 zone->min_slab_pages = (zone->present_pages *
5080 sysctl_min_slab_ratio) / 100;
5081 return 0;
5082}
9614634f
CL
5083#endif
5084
1da177e4
LT
5085/*
5086 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5087 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5088 * whenever sysctl_lowmem_reserve_ratio changes.
5089 *
5090 * The reserve ratio obviously has absolutely no relation with the
41858966 5091 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5092 * if in function of the boot time zone sizes.
5093 */
5094int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5095 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5096{
8d65af78 5097 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5098 setup_per_zone_lowmem_reserve();
5099 return 0;
5100}
5101
8ad4b1fb
RS
5102/*
5103 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5104 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5105 * can have before it gets flushed back to buddy allocator.
5106 */
5107
5108int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5109 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5110{
5111 struct zone *zone;
5112 unsigned int cpu;
5113 int ret;
5114
8d65af78 5115 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5116 if (!write || (ret == -EINVAL))
5117 return ret;
364df0eb 5118 for_each_populated_zone(zone) {
99dcc3e5 5119 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5120 unsigned long high;
5121 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5122 setup_pagelist_highmark(
5123 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5124 }
5125 }
5126 return 0;
5127}
5128
f034b5d4 5129int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5130
5131#ifdef CONFIG_NUMA
5132static int __init set_hashdist(char *str)
5133{
5134 if (!str)
5135 return 0;
5136 hashdist = simple_strtoul(str, &str, 0);
5137 return 1;
5138}
5139__setup("hashdist=", set_hashdist);
5140#endif
5141
5142/*
5143 * allocate a large system hash table from bootmem
5144 * - it is assumed that the hash table must contain an exact power-of-2
5145 * quantity of entries
5146 * - limit is the number of hash buckets, not the total allocation size
5147 */
5148void *__init alloc_large_system_hash(const char *tablename,
5149 unsigned long bucketsize,
5150 unsigned long numentries,
5151 int scale,
5152 int flags,
5153 unsigned int *_hash_shift,
5154 unsigned int *_hash_mask,
5155 unsigned long limit)
5156{
5157 unsigned long long max = limit;
5158 unsigned long log2qty, size;
5159 void *table = NULL;
5160
5161 /* allow the kernel cmdline to have a say */
5162 if (!numentries) {
5163 /* round applicable memory size up to nearest megabyte */
04903664 5164 numentries = nr_kernel_pages;
1da177e4
LT
5165 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5166 numentries >>= 20 - PAGE_SHIFT;
5167 numentries <<= 20 - PAGE_SHIFT;
5168
5169 /* limit to 1 bucket per 2^scale bytes of low memory */
5170 if (scale > PAGE_SHIFT)
5171 numentries >>= (scale - PAGE_SHIFT);
5172 else
5173 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5174
5175 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5176 if (unlikely(flags & HASH_SMALL)) {
5177 /* Makes no sense without HASH_EARLY */
5178 WARN_ON(!(flags & HASH_EARLY));
5179 if (!(numentries >> *_hash_shift)) {
5180 numentries = 1UL << *_hash_shift;
5181 BUG_ON(!numentries);
5182 }
5183 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5184 numentries = PAGE_SIZE / bucketsize;
1da177e4 5185 }
6e692ed3 5186 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5187
5188 /* limit allocation size to 1/16 total memory by default */
5189 if (max == 0) {
5190 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5191 do_div(max, bucketsize);
5192 }
5193
5194 if (numentries > max)
5195 numentries = max;
5196
f0d1b0b3 5197 log2qty = ilog2(numentries);
1da177e4
LT
5198
5199 do {
5200 size = bucketsize << log2qty;
5201 if (flags & HASH_EARLY)
74768ed8 5202 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5203 else if (hashdist)
5204 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5205 else {
1037b83b
ED
5206 /*
5207 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5208 * some pages at the end of hash table which
5209 * alloc_pages_exact() automatically does
1037b83b 5210 */
264ef8a9 5211 if (get_order(size) < MAX_ORDER) {
a1dd268c 5212 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5213 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5214 }
1da177e4
LT
5215 }
5216 } while (!table && size > PAGE_SIZE && --log2qty);
5217
5218 if (!table)
5219 panic("Failed to allocate %s hash table\n", tablename);
5220
f241e660 5221 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5222 tablename,
f241e660 5223 (1UL << log2qty),
f0d1b0b3 5224 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5225 size);
5226
5227 if (_hash_shift)
5228 *_hash_shift = log2qty;
5229 if (_hash_mask)
5230 *_hash_mask = (1 << log2qty) - 1;
5231
5232 return table;
5233}
a117e66e 5234
835c134e
MG
5235/* Return a pointer to the bitmap storing bits affecting a block of pages */
5236static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5237 unsigned long pfn)
5238{
5239#ifdef CONFIG_SPARSEMEM
5240 return __pfn_to_section(pfn)->pageblock_flags;
5241#else
5242 return zone->pageblock_flags;
5243#endif /* CONFIG_SPARSEMEM */
5244}
5245
5246static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5247{
5248#ifdef CONFIG_SPARSEMEM
5249 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5250 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5251#else
5252 pfn = pfn - zone->zone_start_pfn;
d9c23400 5253 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5254#endif /* CONFIG_SPARSEMEM */
5255}
5256
5257/**
d9c23400 5258 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5259 * @page: The page within the block of interest
5260 * @start_bitidx: The first bit of interest to retrieve
5261 * @end_bitidx: The last bit of interest
5262 * returns pageblock_bits flags
5263 */
5264unsigned long get_pageblock_flags_group(struct page *page,
5265 int start_bitidx, int end_bitidx)
5266{
5267 struct zone *zone;
5268 unsigned long *bitmap;
5269 unsigned long pfn, bitidx;
5270 unsigned long flags = 0;
5271 unsigned long value = 1;
5272
5273 zone = page_zone(page);
5274 pfn = page_to_pfn(page);
5275 bitmap = get_pageblock_bitmap(zone, pfn);
5276 bitidx = pfn_to_bitidx(zone, pfn);
5277
5278 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5279 if (test_bit(bitidx + start_bitidx, bitmap))
5280 flags |= value;
6220ec78 5281
835c134e
MG
5282 return flags;
5283}
5284
5285/**
d9c23400 5286 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5287 * @page: The page within the block of interest
5288 * @start_bitidx: The first bit of interest
5289 * @end_bitidx: The last bit of interest
5290 * @flags: The flags to set
5291 */
5292void set_pageblock_flags_group(struct page *page, unsigned long flags,
5293 int start_bitidx, int end_bitidx)
5294{
5295 struct zone *zone;
5296 unsigned long *bitmap;
5297 unsigned long pfn, bitidx;
5298 unsigned long value = 1;
5299
5300 zone = page_zone(page);
5301 pfn = page_to_pfn(page);
5302 bitmap = get_pageblock_bitmap(zone, pfn);
5303 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5304 VM_BUG_ON(pfn < zone->zone_start_pfn);
5305 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5306
5307 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5308 if (flags & value)
5309 __set_bit(bitidx + start_bitidx, bitmap);
5310 else
5311 __clear_bit(bitidx + start_bitidx, bitmap);
5312}
a5d76b54
KH
5313
5314/*
5315 * This is designed as sub function...plz see page_isolation.c also.
5316 * set/clear page block's type to be ISOLATE.
5317 * page allocater never alloc memory from ISOLATE block.
5318 */
5319
49ac8255
KH
5320static int
5321__count_immobile_pages(struct zone *zone, struct page *page, int count)
5322{
5323 unsigned long pfn, iter, found;
5324 /*
5325 * For avoiding noise data, lru_add_drain_all() should be called
5326 * If ZONE_MOVABLE, the zone never contains immobile pages
5327 */
5328 if (zone_idx(zone) == ZONE_MOVABLE)
5329 return true;
5330
5331 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5332 return true;
5333
5334 pfn = page_to_pfn(page);
5335 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5336 unsigned long check = pfn + iter;
5337
5338 if (!pfn_valid_within(check)) {
5339 iter++;
5340 continue;
5341 }
5342 page = pfn_to_page(check);
5343 if (!page_count(page)) {
5344 if (PageBuddy(page))
5345 iter += (1 << page_order(page)) - 1;
5346 continue;
5347 }
5348 if (!PageLRU(page))
5349 found++;
5350 /*
5351 * If there are RECLAIMABLE pages, we need to check it.
5352 * But now, memory offline itself doesn't call shrink_slab()
5353 * and it still to be fixed.
5354 */
5355 /*
5356 * If the page is not RAM, page_count()should be 0.
5357 * we don't need more check. This is an _used_ not-movable page.
5358 *
5359 * The problematic thing here is PG_reserved pages. PG_reserved
5360 * is set to both of a memory hole page and a _used_ kernel
5361 * page at boot.
5362 */
5363 if (found > count)
5364 return false;
5365 }
5366 return true;
5367}
5368
5369bool is_pageblock_removable_nolock(struct page *page)
5370{
5371 struct zone *zone = page_zone(page);
5372 return __count_immobile_pages(zone, page, 0);
5373}
5374
a5d76b54
KH
5375int set_migratetype_isolate(struct page *page)
5376{
5377 struct zone *zone;
49ac8255 5378 unsigned long flags, pfn;
925cc71e
RJ
5379 struct memory_isolate_notify arg;
5380 int notifier_ret;
a5d76b54 5381 int ret = -EBUSY;
8e7e40d9 5382 int zone_idx;
a5d76b54
KH
5383
5384 zone = page_zone(page);
8e7e40d9 5385 zone_idx = zone_idx(zone);
925cc71e 5386
a5d76b54 5387 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5388
5389 pfn = page_to_pfn(page);
5390 arg.start_pfn = pfn;
5391 arg.nr_pages = pageblock_nr_pages;
5392 arg.pages_found = 0;
5393
a5d76b54 5394 /*
925cc71e
RJ
5395 * It may be possible to isolate a pageblock even if the
5396 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5397 * notifier chain is used by balloon drivers to return the
5398 * number of pages in a range that are held by the balloon
5399 * driver to shrink memory. If all the pages are accounted for
5400 * by balloons, are free, or on the LRU, isolation can continue.
5401 * Later, for example, when memory hotplug notifier runs, these
5402 * pages reported as "can be isolated" should be isolated(freed)
5403 * by the balloon driver through the memory notifier chain.
a5d76b54 5404 */
925cc71e
RJ
5405 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5406 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5407 if (notifier_ret)
a5d76b54 5408 goto out;
49ac8255
KH
5409 /*
5410 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5411 * We just check MOVABLE pages.
5412 */
5413 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5414 ret = 0;
5415
49ac8255
KH
5416 /*
5417 * immobile means "not-on-lru" paes. If immobile is larger than
5418 * removable-by-driver pages reported by notifier, we'll fail.
5419 */
5420
a5d76b54 5421out:
925cc71e
RJ
5422 if (!ret) {
5423 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5424 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5425 }
5426
a5d76b54
KH
5427 spin_unlock_irqrestore(&zone->lock, flags);
5428 if (!ret)
9f8f2172 5429 drain_all_pages();
a5d76b54
KH
5430 return ret;
5431}
5432
5433void unset_migratetype_isolate(struct page *page)
5434{
5435 struct zone *zone;
5436 unsigned long flags;
5437 zone = page_zone(page);
5438 spin_lock_irqsave(&zone->lock, flags);
5439 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5440 goto out;
5441 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5442 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5443out:
5444 spin_unlock_irqrestore(&zone->lock, flags);
5445}
0c0e6195
KH
5446
5447#ifdef CONFIG_MEMORY_HOTREMOVE
5448/*
5449 * All pages in the range must be isolated before calling this.
5450 */
5451void
5452__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5453{
5454 struct page *page;
5455 struct zone *zone;
5456 int order, i;
5457 unsigned long pfn;
5458 unsigned long flags;
5459 /* find the first valid pfn */
5460 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5461 if (pfn_valid(pfn))
5462 break;
5463 if (pfn == end_pfn)
5464 return;
5465 zone = page_zone(pfn_to_page(pfn));
5466 spin_lock_irqsave(&zone->lock, flags);
5467 pfn = start_pfn;
5468 while (pfn < end_pfn) {
5469 if (!pfn_valid(pfn)) {
5470 pfn++;
5471 continue;
5472 }
5473 page = pfn_to_page(pfn);
5474 BUG_ON(page_count(page));
5475 BUG_ON(!PageBuddy(page));
5476 order = page_order(page);
5477#ifdef CONFIG_DEBUG_VM
5478 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5479 pfn, 1 << order, end_pfn);
5480#endif
5481 list_del(&page->lru);
5482 rmv_page_order(page);
5483 zone->free_area[order].nr_free--;
5484 __mod_zone_page_state(zone, NR_FREE_PAGES,
5485 - (1UL << order));
5486 for (i = 0; i < (1 << order); i++)
5487 SetPageReserved((page+i));
5488 pfn += (1 << order);
5489 }
5490 spin_unlock_irqrestore(&zone->lock, flags);
5491}
5492#endif
8d22ba1b
WF
5493
5494#ifdef CONFIG_MEMORY_FAILURE
5495bool is_free_buddy_page(struct page *page)
5496{
5497 struct zone *zone = page_zone(page);
5498 unsigned long pfn = page_to_pfn(page);
5499 unsigned long flags;
5500 int order;
5501
5502 spin_lock_irqsave(&zone->lock, flags);
5503 for (order = 0; order < MAX_ORDER; order++) {
5504 struct page *page_head = page - (pfn & ((1 << order) - 1));
5505
5506 if (PageBuddy(page_head) && page_order(page_head) >= order)
5507 break;
5508 }
5509 spin_unlock_irqrestore(&zone->lock, flags);
5510
5511 return order < MAX_ORDER;
5512}
5513#endif
718a3821
WF
5514
5515static struct trace_print_flags pageflag_names[] = {
5516 {1UL << PG_locked, "locked" },
5517 {1UL << PG_error, "error" },
5518 {1UL << PG_referenced, "referenced" },
5519 {1UL << PG_uptodate, "uptodate" },
5520 {1UL << PG_dirty, "dirty" },
5521 {1UL << PG_lru, "lru" },
5522 {1UL << PG_active, "active" },
5523 {1UL << PG_slab, "slab" },
5524 {1UL << PG_owner_priv_1, "owner_priv_1" },
5525 {1UL << PG_arch_1, "arch_1" },
5526 {1UL << PG_reserved, "reserved" },
5527 {1UL << PG_private, "private" },
5528 {1UL << PG_private_2, "private_2" },
5529 {1UL << PG_writeback, "writeback" },
5530#ifdef CONFIG_PAGEFLAGS_EXTENDED
5531 {1UL << PG_head, "head" },
5532 {1UL << PG_tail, "tail" },
5533#else
5534 {1UL << PG_compound, "compound" },
5535#endif
5536 {1UL << PG_swapcache, "swapcache" },
5537 {1UL << PG_mappedtodisk, "mappedtodisk" },
5538 {1UL << PG_reclaim, "reclaim" },
5539 {1UL << PG_buddy, "buddy" },
5540 {1UL << PG_swapbacked, "swapbacked" },
5541 {1UL << PG_unevictable, "unevictable" },
5542#ifdef CONFIG_MMU
5543 {1UL << PG_mlocked, "mlocked" },
5544#endif
5545#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5546 {1UL << PG_uncached, "uncached" },
5547#endif
5548#ifdef CONFIG_MEMORY_FAILURE
5549 {1UL << PG_hwpoison, "hwpoison" },
5550#endif
5551 {-1UL, NULL },
5552};
5553
5554static void dump_page_flags(unsigned long flags)
5555{
5556 const char *delim = "";
5557 unsigned long mask;
5558 int i;
5559
5560 printk(KERN_ALERT "page flags: %#lx(", flags);
5561
5562 /* remove zone id */
5563 flags &= (1UL << NR_PAGEFLAGS) - 1;
5564
5565 for (i = 0; pageflag_names[i].name && flags; i++) {
5566
5567 mask = pageflag_names[i].mask;
5568 if ((flags & mask) != mask)
5569 continue;
5570
5571 flags &= ~mask;
5572 printk("%s%s", delim, pageflag_names[i].name);
5573 delim = "|";
5574 }
5575
5576 /* check for left over flags */
5577 if (flags)
5578 printk("%s%#lx", delim, flags);
5579
5580 printk(")\n");
5581}
5582
5583void dump_page(struct page *page)
5584{
5585 printk(KERN_ALERT
5586 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5587 page, page_count(page), page_mapcount(page),
5588 page->mapping, page->index);
5589 dump_page_flags(page->flags);
5590}