]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
mm/page_ext: resurrect struct page extending code for debugging
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
268bb0ce 56#include <linux/prefetch.h>
6e543d57 57#include <linux/mm_inline.h>
041d3a8c 58#include <linux/migrate.h>
c0a32fc5 59#include <linux/page-debug-flags.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
1da177e4 62
7ee3d4e8 63#include <asm/sections.h>
1da177e4 64#include <asm/tlbflush.h>
ac924c60 65#include <asm/div64.h>
1da177e4
LT
66#include "internal.h"
67
c8e251fa
CS
68/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 70#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 71
72812019
LS
72#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73DEFINE_PER_CPU(int, numa_node);
74EXPORT_PER_CPU_SYMBOL(numa_node);
75#endif
76
7aac7898
LS
77#ifdef CONFIG_HAVE_MEMORYLESS_NODES
78/*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 86int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
42aa83cb 208int user_min_free_kbytes = -1;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2 263 if (ret)
613813e8
DH
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
b5e6a5a2 267
bdc8cb98 268 return ret;
c6a57e19
DH
269}
270
271static int page_is_consistent(struct zone *zone, struct page *page)
272{
14e07298 273 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 274 return 0;
1da177e4 275 if (zone != page_zone(page))
c6a57e19
DH
276 return 0;
277
278 return 1;
279}
280/*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283static int bad_range(struct zone *zone, struct page *page)
284{
285 if (page_outside_zone_boundaries(zone, page))
1da177e4 286 return 1;
c6a57e19
DH
287 if (!page_is_consistent(zone, page))
288 return 1;
289
1da177e4
LT
290 return 0;
291}
13e7444b
NP
292#else
293static inline int bad_range(struct zone *zone, struct page *page)
294{
295 return 0;
296}
297#endif
298
d230dec1
KS
299static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
1da177e4 301{
d936cf9b
HD
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
2a7684a2
WF
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
22b751c3 308 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
309 return;
310 }
311
d936cf9b
HD
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
1e9e6365
HD
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
1e9e6365 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 333 current->comm, page_to_pfn(page));
f0b791a3 334 dump_page_badflags(page, reason, bad_flags);
3dc14741 335
4f31888c 336 print_modules();
1da177e4 337 dump_stack();
d936cf9b 338out:
8cc3b392 339 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 340 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
342}
343
1da177e4
LT
344/*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
6416b9fa
WSH
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
1da177e4 353 *
41d78ba5
HD
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
1da177e4 357 */
d98c7a09
HD
358
359static void free_compound_page(struct page *page)
360{
d85f3385 361 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
362}
363
01ad1c08 364void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
365{
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
58a84aa9 374 set_page_count(p, 0);
18229df5 375 p->first_page = page;
668f9abb
DR
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
18229df5
AW
379 }
380}
381
59ff4216 382/* update __split_huge_page_refcount if you change this function */
8cc3b392 383static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
384{
385 int i;
386 int nr_pages = 1 << order;
8cc3b392 387 int bad = 0;
1da177e4 388
0bb2c763 389 if (unlikely(compound_order(page) != order)) {
f0b791a3 390 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
391 bad++;
392 }
1da177e4 393
6d777953 394 __ClearPageHead(page);
8cc3b392 395
18229df5
AW
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
1da177e4 398
f0b791a3
DH
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
404 bad++;
405 }
d85f3385 406 __ClearPageTail(p);
1da177e4 407 }
8cc3b392
HD
408
409 return bad;
1da177e4 410}
1da177e4 411
7aeb09f9
MG
412static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
17cf4406
NP
414{
415 int i;
416
6626c5d5
AM
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
725d704e 421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424}
425
c0a32fc5
SG
426#ifdef CONFIG_DEBUG_PAGEALLOC
427unsigned int _debug_guardpage_minorder;
428
429static int __init debug_guardpage_minorder_setup(char *buf)
430{
431 unsigned long res;
432
433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 return 0;
436 }
437 _debug_guardpage_minorder = res;
438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 return 0;
440}
441__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442
2847cf95
JK
443static inline void set_page_guard(struct zone *zone, struct page *page,
444 unsigned int order, int migratetype)
c0a32fc5
SG
445{
446 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2847cf95
JK
447 INIT_LIST_HEAD(&page->lru);
448 set_page_private(page, order);
449 /* Guard pages are not available for any usage */
450 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
451}
452
2847cf95
JK
453static inline void clear_page_guard(struct zone *zone, struct page *page,
454 unsigned int order, int migratetype)
c0a32fc5
SG
455{
456 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2847cf95
JK
457 set_page_private(page, 0);
458 if (!is_migrate_isolate(migratetype))
459 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
460}
461#else
2847cf95
JK
462static inline void set_page_guard(struct zone *zone, struct page *page,
463 unsigned int order, int migratetype) {}
464static inline void clear_page_guard(struct zone *zone, struct page *page,
465 unsigned int order, int migratetype) {}
c0a32fc5
SG
466#endif
467
7aeb09f9 468static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 469{
4c21e2f2 470 set_page_private(page, order);
676165a8 471 __SetPageBuddy(page);
1da177e4
LT
472}
473
474static inline void rmv_page_order(struct page *page)
475{
676165a8 476 __ClearPageBuddy(page);
4c21e2f2 477 set_page_private(page, 0);
1da177e4
LT
478}
479
1da177e4
LT
480/*
481 * This function checks whether a page is free && is the buddy
482 * we can do coalesce a page and its buddy if
13e7444b 483 * (a) the buddy is not in a hole &&
676165a8 484 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
485 * (c) a page and its buddy have the same order &&
486 * (d) a page and its buddy are in the same zone.
676165a8 487 *
cf6fe945
WSH
488 * For recording whether a page is in the buddy system, we set ->_mapcount
489 * PAGE_BUDDY_MAPCOUNT_VALUE.
490 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
491 * serialized by zone->lock.
1da177e4 492 *
676165a8 493 * For recording page's order, we use page_private(page).
1da177e4 494 */
cb2b95e1 495static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 496 unsigned int order)
1da177e4 497{
14e07298 498 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 499 return 0;
13e7444b 500
c0a32fc5 501 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 502 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
503
504 if (page_zone_id(page) != page_zone_id(buddy))
505 return 0;
506
c0a32fc5
SG
507 return 1;
508 }
509
cb2b95e1 510 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 511 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
512
513 /*
514 * zone check is done late to avoid uselessly
515 * calculating zone/node ids for pages that could
516 * never merge.
517 */
518 if (page_zone_id(page) != page_zone_id(buddy))
519 return 0;
520
6aa3001b 521 return 1;
676165a8 522 }
6aa3001b 523 return 0;
1da177e4
LT
524}
525
526/*
527 * Freeing function for a buddy system allocator.
528 *
529 * The concept of a buddy system is to maintain direct-mapped table
530 * (containing bit values) for memory blocks of various "orders".
531 * The bottom level table contains the map for the smallest allocatable
532 * units of memory (here, pages), and each level above it describes
533 * pairs of units from the levels below, hence, "buddies".
534 * At a high level, all that happens here is marking the table entry
535 * at the bottom level available, and propagating the changes upward
536 * as necessary, plus some accounting needed to play nicely with other
537 * parts of the VM system.
538 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
539 * free pages of length of (1 << order) and marked with _mapcount
540 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
541 * field.
1da177e4 542 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
543 * other. That is, if we allocate a small block, and both were
544 * free, the remainder of the region must be split into blocks.
1da177e4 545 * If a block is freed, and its buddy is also free, then this
5f63b720 546 * triggers coalescing into a block of larger size.
1da177e4 547 *
6d49e352 548 * -- nyc
1da177e4
LT
549 */
550
48db57f8 551static inline void __free_one_page(struct page *page,
dc4b0caf 552 unsigned long pfn,
ed0ae21d
MG
553 struct zone *zone, unsigned int order,
554 int migratetype)
1da177e4
LT
555{
556 unsigned long page_idx;
6dda9d55 557 unsigned long combined_idx;
43506fad 558 unsigned long uninitialized_var(buddy_idx);
6dda9d55 559 struct page *buddy;
3c605096 560 int max_order = MAX_ORDER;
1da177e4 561
d29bb978
CS
562 VM_BUG_ON(!zone_is_initialized(zone));
563
224abf92 564 if (unlikely(PageCompound(page)))
8cc3b392
HD
565 if (unlikely(destroy_compound_page(page, order)))
566 return;
1da177e4 567
ed0ae21d 568 VM_BUG_ON(migratetype == -1);
3c605096
JK
569 if (is_migrate_isolate(migratetype)) {
570 /*
571 * We restrict max order of merging to prevent merge
572 * between freepages on isolate pageblock and normal
573 * pageblock. Without this, pageblock isolation
574 * could cause incorrect freepage accounting.
575 */
576 max_order = min(MAX_ORDER, pageblock_order + 1);
577 } else {
8f82b55d 578 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 579 }
ed0ae21d 580
3c605096 581 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 582
309381fe
SL
583 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
584 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 585
3c605096 586 while (order < max_order - 1) {
43506fad
KC
587 buddy_idx = __find_buddy_index(page_idx, order);
588 buddy = page + (buddy_idx - page_idx);
cb2b95e1 589 if (!page_is_buddy(page, buddy, order))
3c82d0ce 590 break;
c0a32fc5
SG
591 /*
592 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
593 * merge with it and move up one order.
594 */
595 if (page_is_guard(buddy)) {
2847cf95 596 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
597 } else {
598 list_del(&buddy->lru);
599 zone->free_area[order].nr_free--;
600 rmv_page_order(buddy);
601 }
43506fad 602 combined_idx = buddy_idx & page_idx;
1da177e4
LT
603 page = page + (combined_idx - page_idx);
604 page_idx = combined_idx;
605 order++;
606 }
607 set_page_order(page, order);
6dda9d55
CZ
608
609 /*
610 * If this is not the largest possible page, check if the buddy
611 * of the next-highest order is free. If it is, it's possible
612 * that pages are being freed that will coalesce soon. In case,
613 * that is happening, add the free page to the tail of the list
614 * so it's less likely to be used soon and more likely to be merged
615 * as a higher order page
616 */
b7f50cfa 617 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 618 struct page *higher_page, *higher_buddy;
43506fad
KC
619 combined_idx = buddy_idx & page_idx;
620 higher_page = page + (combined_idx - page_idx);
621 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 622 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
623 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
624 list_add_tail(&page->lru,
625 &zone->free_area[order].free_list[migratetype]);
626 goto out;
627 }
628 }
629
630 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
631out:
1da177e4
LT
632 zone->free_area[order].nr_free++;
633}
634
224abf92 635static inline int free_pages_check(struct page *page)
1da177e4 636{
d230dec1 637 const char *bad_reason = NULL;
f0b791a3
DH
638 unsigned long bad_flags = 0;
639
640 if (unlikely(page_mapcount(page)))
641 bad_reason = "nonzero mapcount";
642 if (unlikely(page->mapping != NULL))
643 bad_reason = "non-NULL mapping";
644 if (unlikely(atomic_read(&page->_count) != 0))
645 bad_reason = "nonzero _count";
646 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
647 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
648 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
649 }
9edad6ea
JW
650#ifdef CONFIG_MEMCG
651 if (unlikely(page->mem_cgroup))
652 bad_reason = "page still charged to cgroup";
653#endif
f0b791a3
DH
654 if (unlikely(bad_reason)) {
655 bad_page(page, bad_reason, bad_flags);
79f4b7bf 656 return 1;
8cc3b392 657 }
90572890 658 page_cpupid_reset_last(page);
79f4b7bf
HD
659 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
660 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
661 return 0;
1da177e4
LT
662}
663
664/*
5f8dcc21 665 * Frees a number of pages from the PCP lists
1da177e4 666 * Assumes all pages on list are in same zone, and of same order.
207f36ee 667 * count is the number of pages to free.
1da177e4
LT
668 *
669 * If the zone was previously in an "all pages pinned" state then look to
670 * see if this freeing clears that state.
671 *
672 * And clear the zone's pages_scanned counter, to hold off the "all pages are
673 * pinned" detection logic.
674 */
5f8dcc21
MG
675static void free_pcppages_bulk(struct zone *zone, int count,
676 struct per_cpu_pages *pcp)
1da177e4 677{
5f8dcc21 678 int migratetype = 0;
a6f9edd6 679 int batch_free = 0;
72853e29 680 int to_free = count;
0d5d823a 681 unsigned long nr_scanned;
5f8dcc21 682
c54ad30c 683 spin_lock(&zone->lock);
0d5d823a
MG
684 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
685 if (nr_scanned)
686 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 687
72853e29 688 while (to_free) {
48db57f8 689 struct page *page;
5f8dcc21
MG
690 struct list_head *list;
691
692 /*
a6f9edd6
MG
693 * Remove pages from lists in a round-robin fashion. A
694 * batch_free count is maintained that is incremented when an
695 * empty list is encountered. This is so more pages are freed
696 * off fuller lists instead of spinning excessively around empty
697 * lists
5f8dcc21
MG
698 */
699 do {
a6f9edd6 700 batch_free++;
5f8dcc21
MG
701 if (++migratetype == MIGRATE_PCPTYPES)
702 migratetype = 0;
703 list = &pcp->lists[migratetype];
704 } while (list_empty(list));
48db57f8 705
1d16871d
NK
706 /* This is the only non-empty list. Free them all. */
707 if (batch_free == MIGRATE_PCPTYPES)
708 batch_free = to_free;
709
a6f9edd6 710 do {
770c8aaa
BZ
711 int mt; /* migratetype of the to-be-freed page */
712
a6f9edd6
MG
713 page = list_entry(list->prev, struct page, lru);
714 /* must delete as __free_one_page list manipulates */
715 list_del(&page->lru);
b12c4ad1 716 mt = get_freepage_migratetype(page);
8f82b55d 717 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 718 mt = get_pageblock_migratetype(page);
51bb1a40 719
a7016235 720 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 721 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 722 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 723 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 724 }
c54ad30c 725 spin_unlock(&zone->lock);
1da177e4
LT
726}
727
dc4b0caf
MG
728static void free_one_page(struct zone *zone,
729 struct page *page, unsigned long pfn,
7aeb09f9 730 unsigned int order,
ed0ae21d 731 int migratetype)
1da177e4 732{
0d5d823a 733 unsigned long nr_scanned;
006d22d9 734 spin_lock(&zone->lock);
0d5d823a
MG
735 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
736 if (nr_scanned)
737 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 738
ad53f92e
JK
739 if (unlikely(has_isolate_pageblock(zone) ||
740 is_migrate_isolate(migratetype))) {
741 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 742 }
dc4b0caf 743 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 744 spin_unlock(&zone->lock);
48db57f8
NP
745}
746
ec95f53a 747static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 748{
1da177e4 749 int i;
8cc3b392 750 int bad = 0;
1da177e4 751
ab1f306f
YZ
752 VM_BUG_ON_PAGE(PageTail(page), page);
753 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
754
b413d48a 755 trace_mm_page_free(page, order);
b1eeab67
VN
756 kmemcheck_free_shadow(page, order);
757
8dd60a3a
AA
758 if (PageAnon(page))
759 page->mapping = NULL;
760 for (i = 0; i < (1 << order); i++)
761 bad += free_pages_check(page + i);
8cc3b392 762 if (bad)
ec95f53a 763 return false;
689bcebf 764
3ac7fe5a 765 if (!PageHighMem(page)) {
b8af2941
PK
766 debug_check_no_locks_freed(page_address(page),
767 PAGE_SIZE << order);
3ac7fe5a
TG
768 debug_check_no_obj_freed(page_address(page),
769 PAGE_SIZE << order);
770 }
dafb1367 771 arch_free_page(page, order);
48db57f8 772 kernel_map_pages(page, 1 << order, 0);
dafb1367 773
ec95f53a
KM
774 return true;
775}
776
777static void __free_pages_ok(struct page *page, unsigned int order)
778{
779 unsigned long flags;
95e34412 780 int migratetype;
dc4b0caf 781 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
782
783 if (!free_pages_prepare(page, order))
784 return;
785
cfc47a28 786 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 787 local_irq_save(flags);
f8891e5e 788 __count_vm_events(PGFREE, 1 << order);
95e34412 789 set_freepage_migratetype(page, migratetype);
dc4b0caf 790 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 791 local_irq_restore(flags);
1da177e4
LT
792}
793
170a5a7e 794void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 795{
c3993076 796 unsigned int nr_pages = 1 << order;
e2d0bd2b 797 struct page *p = page;
c3993076 798 unsigned int loop;
a226f6c8 799
e2d0bd2b
YL
800 prefetchw(p);
801 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
802 prefetchw(p + 1);
c3993076
JW
803 __ClearPageReserved(p);
804 set_page_count(p, 0);
a226f6c8 805 }
e2d0bd2b
YL
806 __ClearPageReserved(p);
807 set_page_count(p, 0);
c3993076 808
e2d0bd2b 809 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
810 set_page_refcounted(page);
811 __free_pages(page, order);
a226f6c8
DH
812}
813
47118af0 814#ifdef CONFIG_CMA
9cf510a5 815/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
816void __init init_cma_reserved_pageblock(struct page *page)
817{
818 unsigned i = pageblock_nr_pages;
819 struct page *p = page;
820
821 do {
822 __ClearPageReserved(p);
823 set_page_count(p, 0);
824 } while (++p, --i);
825
47118af0 826 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
827
828 if (pageblock_order >= MAX_ORDER) {
829 i = pageblock_nr_pages;
830 p = page;
831 do {
832 set_page_refcounted(p);
833 __free_pages(p, MAX_ORDER - 1);
834 p += MAX_ORDER_NR_PAGES;
835 } while (i -= MAX_ORDER_NR_PAGES);
836 } else {
837 set_page_refcounted(page);
838 __free_pages(page, pageblock_order);
839 }
840
3dcc0571 841 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
842}
843#endif
1da177e4
LT
844
845/*
846 * The order of subdivision here is critical for the IO subsystem.
847 * Please do not alter this order without good reasons and regression
848 * testing. Specifically, as large blocks of memory are subdivided,
849 * the order in which smaller blocks are delivered depends on the order
850 * they're subdivided in this function. This is the primary factor
851 * influencing the order in which pages are delivered to the IO
852 * subsystem according to empirical testing, and this is also justified
853 * by considering the behavior of a buddy system containing a single
854 * large block of memory acted on by a series of small allocations.
855 * This behavior is a critical factor in sglist merging's success.
856 *
6d49e352 857 * -- nyc
1da177e4 858 */
085cc7d5 859static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
860 int low, int high, struct free_area *area,
861 int migratetype)
1da177e4
LT
862{
863 unsigned long size = 1 << high;
864
865 while (high > low) {
866 area--;
867 high--;
868 size >>= 1;
309381fe 869 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 870
2847cf95
JK
871 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
872 high < debug_guardpage_minorder()) {
c0a32fc5
SG
873 /*
874 * Mark as guard pages (or page), that will allow to
875 * merge back to allocator when buddy will be freed.
876 * Corresponding page table entries will not be touched,
877 * pages will stay not present in virtual address space
878 */
2847cf95 879 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
880 continue;
881 }
b2a0ac88 882 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
883 area->nr_free++;
884 set_page_order(&page[size], high);
885 }
1da177e4
LT
886}
887
1da177e4
LT
888/*
889 * This page is about to be returned from the page allocator
890 */
2a7684a2 891static inline int check_new_page(struct page *page)
1da177e4 892{
d230dec1 893 const char *bad_reason = NULL;
f0b791a3
DH
894 unsigned long bad_flags = 0;
895
896 if (unlikely(page_mapcount(page)))
897 bad_reason = "nonzero mapcount";
898 if (unlikely(page->mapping != NULL))
899 bad_reason = "non-NULL mapping";
900 if (unlikely(atomic_read(&page->_count) != 0))
901 bad_reason = "nonzero _count";
902 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
903 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
904 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
905 }
9edad6ea
JW
906#ifdef CONFIG_MEMCG
907 if (unlikely(page->mem_cgroup))
908 bad_reason = "page still charged to cgroup";
909#endif
f0b791a3
DH
910 if (unlikely(bad_reason)) {
911 bad_page(page, bad_reason, bad_flags);
689bcebf 912 return 1;
8cc3b392 913 }
2a7684a2
WF
914 return 0;
915}
916
7aeb09f9 917static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
2a7684a2
WF
918{
919 int i;
920
921 for (i = 0; i < (1 << order); i++) {
922 struct page *p = page + i;
923 if (unlikely(check_new_page(p)))
924 return 1;
925 }
689bcebf 926
4c21e2f2 927 set_page_private(page, 0);
7835e98b 928 set_page_refcounted(page);
cc102509
NP
929
930 arch_alloc_page(page, order);
1da177e4 931 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
932
933 if (gfp_flags & __GFP_ZERO)
934 prep_zero_page(page, order, gfp_flags);
935
936 if (order && (gfp_flags & __GFP_COMP))
937 prep_compound_page(page, order);
938
689bcebf 939 return 0;
1da177e4
LT
940}
941
56fd56b8
MG
942/*
943 * Go through the free lists for the given migratetype and remove
944 * the smallest available page from the freelists
945 */
728ec980
MG
946static inline
947struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
948 int migratetype)
949{
950 unsigned int current_order;
b8af2941 951 struct free_area *area;
56fd56b8
MG
952 struct page *page;
953
954 /* Find a page of the appropriate size in the preferred list */
955 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
956 area = &(zone->free_area[current_order]);
957 if (list_empty(&area->free_list[migratetype]))
958 continue;
959
960 page = list_entry(area->free_list[migratetype].next,
961 struct page, lru);
962 list_del(&page->lru);
963 rmv_page_order(page);
964 area->nr_free--;
56fd56b8 965 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 966 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
967 return page;
968 }
969
970 return NULL;
971}
972
973
b2a0ac88
MG
974/*
975 * This array describes the order lists are fallen back to when
976 * the free lists for the desirable migrate type are depleted
977 */
47118af0
MN
978static int fallbacks[MIGRATE_TYPES][4] = {
979 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
980 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
981#ifdef CONFIG_CMA
982 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
983 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
984#else
985 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
986#endif
6d4a4916 987 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 988#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 989 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 990#endif
b2a0ac88
MG
991};
992
c361be55
MG
993/*
994 * Move the free pages in a range to the free lists of the requested type.
d9c23400 995 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
996 * boundary. If alignment is required, use move_freepages_block()
997 */
435b405c 998int move_freepages(struct zone *zone,
b69a7288
AB
999 struct page *start_page, struct page *end_page,
1000 int migratetype)
c361be55
MG
1001{
1002 struct page *page;
1003 unsigned long order;
d100313f 1004 int pages_moved = 0;
c361be55
MG
1005
1006#ifndef CONFIG_HOLES_IN_ZONE
1007 /*
1008 * page_zone is not safe to call in this context when
1009 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1010 * anyway as we check zone boundaries in move_freepages_block().
1011 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1012 * grouping pages by mobility
c361be55 1013 */
97ee4ba7 1014 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1015#endif
1016
1017 for (page = start_page; page <= end_page;) {
344c790e 1018 /* Make sure we are not inadvertently changing nodes */
309381fe 1019 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1020
c361be55
MG
1021 if (!pfn_valid_within(page_to_pfn(page))) {
1022 page++;
1023 continue;
1024 }
1025
1026 if (!PageBuddy(page)) {
1027 page++;
1028 continue;
1029 }
1030
1031 order = page_order(page);
84be48d8
KS
1032 list_move(&page->lru,
1033 &zone->free_area[order].free_list[migratetype]);
95e34412 1034 set_freepage_migratetype(page, migratetype);
c361be55 1035 page += 1 << order;
d100313f 1036 pages_moved += 1 << order;
c361be55
MG
1037 }
1038
d100313f 1039 return pages_moved;
c361be55
MG
1040}
1041
ee6f509c 1042int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1043 int migratetype)
c361be55
MG
1044{
1045 unsigned long start_pfn, end_pfn;
1046 struct page *start_page, *end_page;
1047
1048 start_pfn = page_to_pfn(page);
d9c23400 1049 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1050 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1051 end_page = start_page + pageblock_nr_pages - 1;
1052 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1053
1054 /* Do not cross zone boundaries */
108bcc96 1055 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1056 start_page = page;
108bcc96 1057 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1058 return 0;
1059
1060 return move_freepages(zone, start_page, end_page, migratetype);
1061}
1062
2f66a68f
MG
1063static void change_pageblock_range(struct page *pageblock_page,
1064 int start_order, int migratetype)
1065{
1066 int nr_pageblocks = 1 << (start_order - pageblock_order);
1067
1068 while (nr_pageblocks--) {
1069 set_pageblock_migratetype(pageblock_page, migratetype);
1070 pageblock_page += pageblock_nr_pages;
1071 }
1072}
1073
fef903ef
SB
1074/*
1075 * If breaking a large block of pages, move all free pages to the preferred
1076 * allocation list. If falling back for a reclaimable kernel allocation, be
1077 * more aggressive about taking ownership of free pages.
1078 *
1079 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1080 * nor move CMA pages to different free lists. We don't want unmovable pages
1081 * to be allocated from MIGRATE_CMA areas.
1082 *
1083 * Returns the new migratetype of the pageblock (or the same old migratetype
1084 * if it was unchanged).
1085 */
1086static int try_to_steal_freepages(struct zone *zone, struct page *page,
1087 int start_type, int fallback_type)
1088{
1089 int current_order = page_order(page);
1090
0cbef29a
KM
1091 /*
1092 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1093 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1094 * is set to CMA so it is returned to the correct freelist in case
1095 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1096 */
fef903ef
SB
1097 if (is_migrate_cma(fallback_type))
1098 return fallback_type;
1099
1100 /* Take ownership for orders >= pageblock_order */
1101 if (current_order >= pageblock_order) {
1102 change_pageblock_range(page, current_order, start_type);
1103 return start_type;
1104 }
1105
1106 if (current_order >= pageblock_order / 2 ||
1107 start_type == MIGRATE_RECLAIMABLE ||
1108 page_group_by_mobility_disabled) {
1109 int pages;
1110
1111 pages = move_freepages_block(zone, page, start_type);
1112
1113 /* Claim the whole block if over half of it is free */
1114 if (pages >= (1 << (pageblock_order-1)) ||
1115 page_group_by_mobility_disabled) {
1116
1117 set_pageblock_migratetype(page, start_type);
1118 return start_type;
1119 }
1120
1121 }
1122
1123 return fallback_type;
1124}
1125
b2a0ac88 1126/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1127static inline struct page *
7aeb09f9 1128__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1129{
b8af2941 1130 struct free_area *area;
7aeb09f9 1131 unsigned int current_order;
b2a0ac88 1132 struct page *page;
fef903ef 1133 int migratetype, new_type, i;
b2a0ac88
MG
1134
1135 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1136 for (current_order = MAX_ORDER-1;
1137 current_order >= order && current_order <= MAX_ORDER-1;
1138 --current_order) {
6d4a4916 1139 for (i = 0;; i++) {
b2a0ac88
MG
1140 migratetype = fallbacks[start_migratetype][i];
1141
56fd56b8
MG
1142 /* MIGRATE_RESERVE handled later if necessary */
1143 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1144 break;
e010487d 1145
b2a0ac88
MG
1146 area = &(zone->free_area[current_order]);
1147 if (list_empty(&area->free_list[migratetype]))
1148 continue;
1149
1150 page = list_entry(area->free_list[migratetype].next,
1151 struct page, lru);
1152 area->nr_free--;
1153
fef903ef
SB
1154 new_type = try_to_steal_freepages(zone, page,
1155 start_migratetype,
1156 migratetype);
b2a0ac88
MG
1157
1158 /* Remove the page from the freelists */
1159 list_del(&page->lru);
1160 rmv_page_order(page);
b2a0ac88 1161
47118af0 1162 expand(zone, page, order, current_order, area,
0cbef29a 1163 new_type);
5bcc9f86
VB
1164 /* The freepage_migratetype may differ from pageblock's
1165 * migratetype depending on the decisions in
1166 * try_to_steal_freepages. This is OK as long as it does
1167 * not differ for MIGRATE_CMA type.
1168 */
1169 set_freepage_migratetype(page, new_type);
e0fff1bd 1170
52c8f6a5
KM
1171 trace_mm_page_alloc_extfrag(page, order, current_order,
1172 start_migratetype, migratetype, new_type);
e0fff1bd 1173
b2a0ac88
MG
1174 return page;
1175 }
1176 }
1177
728ec980 1178 return NULL;
b2a0ac88
MG
1179}
1180
56fd56b8 1181/*
1da177e4
LT
1182 * Do the hard work of removing an element from the buddy allocator.
1183 * Call me with the zone->lock already held.
1184 */
b2a0ac88
MG
1185static struct page *__rmqueue(struct zone *zone, unsigned int order,
1186 int migratetype)
1da177e4 1187{
1da177e4
LT
1188 struct page *page;
1189
728ec980 1190retry_reserve:
56fd56b8 1191 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1192
728ec980 1193 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1194 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1195
728ec980
MG
1196 /*
1197 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1198 * is used because __rmqueue_smallest is an inline function
1199 * and we want just one call site
1200 */
1201 if (!page) {
1202 migratetype = MIGRATE_RESERVE;
1203 goto retry_reserve;
1204 }
1205 }
1206
0d3d062a 1207 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1208 return page;
1da177e4
LT
1209}
1210
5f63b720 1211/*
1da177e4
LT
1212 * Obtain a specified number of elements from the buddy allocator, all under
1213 * a single hold of the lock, for efficiency. Add them to the supplied list.
1214 * Returns the number of new pages which were placed at *list.
1215 */
5f63b720 1216static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1217 unsigned long count, struct list_head *list,
b745bc85 1218 int migratetype, bool cold)
1da177e4 1219{
5bcc9f86 1220 int i;
5f63b720 1221
c54ad30c 1222 spin_lock(&zone->lock);
1da177e4 1223 for (i = 0; i < count; ++i) {
b2a0ac88 1224 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1225 if (unlikely(page == NULL))
1da177e4 1226 break;
81eabcbe
MG
1227
1228 /*
1229 * Split buddy pages returned by expand() are received here
1230 * in physical page order. The page is added to the callers and
1231 * list and the list head then moves forward. From the callers
1232 * perspective, the linked list is ordered by page number in
1233 * some conditions. This is useful for IO devices that can
1234 * merge IO requests if the physical pages are ordered
1235 * properly.
1236 */
b745bc85 1237 if (likely(!cold))
e084b2d9
MG
1238 list_add(&page->lru, list);
1239 else
1240 list_add_tail(&page->lru, list);
81eabcbe 1241 list = &page->lru;
5bcc9f86 1242 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1243 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1244 -(1 << order));
1da177e4 1245 }
f2260e6b 1246 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1247 spin_unlock(&zone->lock);
085cc7d5 1248 return i;
1da177e4
LT
1249}
1250
4ae7c039 1251#ifdef CONFIG_NUMA
8fce4d8e 1252/*
4037d452
CL
1253 * Called from the vmstat counter updater to drain pagesets of this
1254 * currently executing processor on remote nodes after they have
1255 * expired.
1256 *
879336c3
CL
1257 * Note that this function must be called with the thread pinned to
1258 * a single processor.
8fce4d8e 1259 */
4037d452 1260void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1261{
4ae7c039 1262 unsigned long flags;
7be12fc9 1263 int to_drain, batch;
4ae7c039 1264
4037d452 1265 local_irq_save(flags);
998d39cb 1266 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1267 to_drain = min(pcp->count, batch);
2a13515c
KM
1268 if (to_drain > 0) {
1269 free_pcppages_bulk(zone, to_drain, pcp);
1270 pcp->count -= to_drain;
1271 }
4037d452 1272 local_irq_restore(flags);
4ae7c039
CL
1273}
1274#endif
1275
9f8f2172 1276/*
93481ff0 1277 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1278 *
1279 * The processor must either be the current processor and the
1280 * thread pinned to the current processor or a processor that
1281 * is not online.
1282 */
93481ff0 1283static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1284{
c54ad30c 1285 unsigned long flags;
93481ff0
VB
1286 struct per_cpu_pageset *pset;
1287 struct per_cpu_pages *pcp;
1da177e4 1288
93481ff0
VB
1289 local_irq_save(flags);
1290 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1291
93481ff0
VB
1292 pcp = &pset->pcp;
1293 if (pcp->count) {
1294 free_pcppages_bulk(zone, pcp->count, pcp);
1295 pcp->count = 0;
1296 }
1297 local_irq_restore(flags);
1298}
3dfa5721 1299
93481ff0
VB
1300/*
1301 * Drain pcplists of all zones on the indicated processor.
1302 *
1303 * The processor must either be the current processor and the
1304 * thread pinned to the current processor or a processor that
1305 * is not online.
1306 */
1307static void drain_pages(unsigned int cpu)
1308{
1309 struct zone *zone;
1310
1311 for_each_populated_zone(zone) {
1312 drain_pages_zone(cpu, zone);
1da177e4
LT
1313 }
1314}
1da177e4 1315
9f8f2172
CL
1316/*
1317 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1318 *
1319 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1320 * the single zone's pages.
9f8f2172 1321 */
93481ff0 1322void drain_local_pages(struct zone *zone)
9f8f2172 1323{
93481ff0
VB
1324 int cpu = smp_processor_id();
1325
1326 if (zone)
1327 drain_pages_zone(cpu, zone);
1328 else
1329 drain_pages(cpu);
9f8f2172
CL
1330}
1331
1332/*
74046494
GBY
1333 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1334 *
93481ff0
VB
1335 * When zone parameter is non-NULL, spill just the single zone's pages.
1336 *
74046494
GBY
1337 * Note that this code is protected against sending an IPI to an offline
1338 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1339 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1340 * nothing keeps CPUs from showing up after we populated the cpumask and
1341 * before the call to on_each_cpu_mask().
9f8f2172 1342 */
93481ff0 1343void drain_all_pages(struct zone *zone)
9f8f2172 1344{
74046494 1345 int cpu;
74046494
GBY
1346
1347 /*
1348 * Allocate in the BSS so we wont require allocation in
1349 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1350 */
1351 static cpumask_t cpus_with_pcps;
1352
1353 /*
1354 * We don't care about racing with CPU hotplug event
1355 * as offline notification will cause the notified
1356 * cpu to drain that CPU pcps and on_each_cpu_mask
1357 * disables preemption as part of its processing
1358 */
1359 for_each_online_cpu(cpu) {
93481ff0
VB
1360 struct per_cpu_pageset *pcp;
1361 struct zone *z;
74046494 1362 bool has_pcps = false;
93481ff0
VB
1363
1364 if (zone) {
74046494 1365 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1366 if (pcp->pcp.count)
74046494 1367 has_pcps = true;
93481ff0
VB
1368 } else {
1369 for_each_populated_zone(z) {
1370 pcp = per_cpu_ptr(z->pageset, cpu);
1371 if (pcp->pcp.count) {
1372 has_pcps = true;
1373 break;
1374 }
74046494
GBY
1375 }
1376 }
93481ff0 1377
74046494
GBY
1378 if (has_pcps)
1379 cpumask_set_cpu(cpu, &cpus_with_pcps);
1380 else
1381 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1382 }
93481ff0
VB
1383 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1384 zone, 1);
9f8f2172
CL
1385}
1386
296699de 1387#ifdef CONFIG_HIBERNATION
1da177e4
LT
1388
1389void mark_free_pages(struct zone *zone)
1390{
f623f0db
RW
1391 unsigned long pfn, max_zone_pfn;
1392 unsigned long flags;
7aeb09f9 1393 unsigned int order, t;
1da177e4
LT
1394 struct list_head *curr;
1395
8080fc03 1396 if (zone_is_empty(zone))
1da177e4
LT
1397 return;
1398
1399 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1400
108bcc96 1401 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1402 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1403 if (pfn_valid(pfn)) {
1404 struct page *page = pfn_to_page(pfn);
1405
7be98234
RW
1406 if (!swsusp_page_is_forbidden(page))
1407 swsusp_unset_page_free(page);
f623f0db 1408 }
1da177e4 1409
b2a0ac88
MG
1410 for_each_migratetype_order(order, t) {
1411 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1412 unsigned long i;
1da177e4 1413
f623f0db
RW
1414 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1415 for (i = 0; i < (1UL << order); i++)
7be98234 1416 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1417 }
b2a0ac88 1418 }
1da177e4
LT
1419 spin_unlock_irqrestore(&zone->lock, flags);
1420}
e2c55dc8 1421#endif /* CONFIG_PM */
1da177e4 1422
1da177e4
LT
1423/*
1424 * Free a 0-order page
b745bc85 1425 * cold == true ? free a cold page : free a hot page
1da177e4 1426 */
b745bc85 1427void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1428{
1429 struct zone *zone = page_zone(page);
1430 struct per_cpu_pages *pcp;
1431 unsigned long flags;
dc4b0caf 1432 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1433 int migratetype;
1da177e4 1434
ec95f53a 1435 if (!free_pages_prepare(page, 0))
689bcebf
HD
1436 return;
1437
dc4b0caf 1438 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1439 set_freepage_migratetype(page, migratetype);
1da177e4 1440 local_irq_save(flags);
f8891e5e 1441 __count_vm_event(PGFREE);
da456f14 1442
5f8dcc21
MG
1443 /*
1444 * We only track unmovable, reclaimable and movable on pcp lists.
1445 * Free ISOLATE pages back to the allocator because they are being
1446 * offlined but treat RESERVE as movable pages so we can get those
1447 * areas back if necessary. Otherwise, we may have to free
1448 * excessively into the page allocator
1449 */
1450 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1451 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1452 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1453 goto out;
1454 }
1455 migratetype = MIGRATE_MOVABLE;
1456 }
1457
99dcc3e5 1458 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1459 if (!cold)
5f8dcc21 1460 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1461 else
1462 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1463 pcp->count++;
48db57f8 1464 if (pcp->count >= pcp->high) {
998d39cb
CS
1465 unsigned long batch = ACCESS_ONCE(pcp->batch);
1466 free_pcppages_bulk(zone, batch, pcp);
1467 pcp->count -= batch;
48db57f8 1468 }
5f8dcc21
MG
1469
1470out:
1da177e4 1471 local_irq_restore(flags);
1da177e4
LT
1472}
1473
cc59850e
KK
1474/*
1475 * Free a list of 0-order pages
1476 */
b745bc85 1477void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1478{
1479 struct page *page, *next;
1480
1481 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1482 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1483 free_hot_cold_page(page, cold);
1484 }
1485}
1486
8dfcc9ba
NP
1487/*
1488 * split_page takes a non-compound higher-order page, and splits it into
1489 * n (1<<order) sub-pages: page[0..n]
1490 * Each sub-page must be freed individually.
1491 *
1492 * Note: this is probably too low level an operation for use in drivers.
1493 * Please consult with lkml before using this in your driver.
1494 */
1495void split_page(struct page *page, unsigned int order)
1496{
1497 int i;
1498
309381fe
SL
1499 VM_BUG_ON_PAGE(PageCompound(page), page);
1500 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1501
1502#ifdef CONFIG_KMEMCHECK
1503 /*
1504 * Split shadow pages too, because free(page[0]) would
1505 * otherwise free the whole shadow.
1506 */
1507 if (kmemcheck_page_is_tracked(page))
1508 split_page(virt_to_page(page[0].shadow), order);
1509#endif
1510
7835e98b
NP
1511 for (i = 1; i < (1 << order); i++)
1512 set_page_refcounted(page + i);
8dfcc9ba 1513}
5853ff23 1514EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1515
3c605096 1516int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1517{
748446bb
MG
1518 unsigned long watermark;
1519 struct zone *zone;
2139cbe6 1520 int mt;
748446bb
MG
1521
1522 BUG_ON(!PageBuddy(page));
1523
1524 zone = page_zone(page);
2e30abd1 1525 mt = get_pageblock_migratetype(page);
748446bb 1526
194159fb 1527 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1528 /* Obey watermarks as if the page was being allocated */
1529 watermark = low_wmark_pages(zone) + (1 << order);
1530 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1531 return 0;
1532
8fb74b9f 1533 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1534 }
748446bb
MG
1535
1536 /* Remove page from free list */
1537 list_del(&page->lru);
1538 zone->free_area[order].nr_free--;
1539 rmv_page_order(page);
2139cbe6 1540
8fb74b9f 1541 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1542 if (order >= pageblock_order - 1) {
1543 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1544 for (; page < endpage; page += pageblock_nr_pages) {
1545 int mt = get_pageblock_migratetype(page);
194159fb 1546 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1547 set_pageblock_migratetype(page,
1548 MIGRATE_MOVABLE);
1549 }
748446bb
MG
1550 }
1551
8fb74b9f 1552 return 1UL << order;
1fb3f8ca
MG
1553}
1554
1555/*
1556 * Similar to split_page except the page is already free. As this is only
1557 * being used for migration, the migratetype of the block also changes.
1558 * As this is called with interrupts disabled, the caller is responsible
1559 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1560 * are enabled.
1561 *
1562 * Note: this is probably too low level an operation for use in drivers.
1563 * Please consult with lkml before using this in your driver.
1564 */
1565int split_free_page(struct page *page)
1566{
1567 unsigned int order;
1568 int nr_pages;
1569
1fb3f8ca
MG
1570 order = page_order(page);
1571
8fb74b9f 1572 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1573 if (!nr_pages)
1574 return 0;
1575
1576 /* Split into individual pages */
1577 set_page_refcounted(page);
1578 split_page(page, order);
1579 return nr_pages;
748446bb
MG
1580}
1581
1da177e4
LT
1582/*
1583 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1584 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1585 * or two.
1586 */
0a15c3e9
MG
1587static inline
1588struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1589 struct zone *zone, unsigned int order,
1590 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1591{
1592 unsigned long flags;
689bcebf 1593 struct page *page;
b745bc85 1594 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1595
689bcebf 1596again:
48db57f8 1597 if (likely(order == 0)) {
1da177e4 1598 struct per_cpu_pages *pcp;
5f8dcc21 1599 struct list_head *list;
1da177e4 1600
1da177e4 1601 local_irq_save(flags);
99dcc3e5
CL
1602 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1603 list = &pcp->lists[migratetype];
5f8dcc21 1604 if (list_empty(list)) {
535131e6 1605 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1606 pcp->batch, list,
e084b2d9 1607 migratetype, cold);
5f8dcc21 1608 if (unlikely(list_empty(list)))
6fb332fa 1609 goto failed;
535131e6 1610 }
b92a6edd 1611
5f8dcc21
MG
1612 if (cold)
1613 page = list_entry(list->prev, struct page, lru);
1614 else
1615 page = list_entry(list->next, struct page, lru);
1616
b92a6edd
MG
1617 list_del(&page->lru);
1618 pcp->count--;
7fb1d9fc 1619 } else {
dab48dab
AM
1620 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1621 /*
1622 * __GFP_NOFAIL is not to be used in new code.
1623 *
1624 * All __GFP_NOFAIL callers should be fixed so that they
1625 * properly detect and handle allocation failures.
1626 *
1627 * We most definitely don't want callers attempting to
4923abf9 1628 * allocate greater than order-1 page units with
dab48dab
AM
1629 * __GFP_NOFAIL.
1630 */
4923abf9 1631 WARN_ON_ONCE(order > 1);
dab48dab 1632 }
1da177e4 1633 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1634 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1635 spin_unlock(&zone->lock);
1636 if (!page)
1637 goto failed;
d1ce749a 1638 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1639 get_freepage_migratetype(page));
1da177e4
LT
1640 }
1641
3a025760 1642 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1643 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1644 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1645 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1646
f8891e5e 1647 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1648 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1649 local_irq_restore(flags);
1da177e4 1650
309381fe 1651 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1652 if (prep_new_page(page, order, gfp_flags))
a74609fa 1653 goto again;
1da177e4 1654 return page;
a74609fa
NP
1655
1656failed:
1657 local_irq_restore(flags);
a74609fa 1658 return NULL;
1da177e4
LT
1659}
1660
933e312e
AM
1661#ifdef CONFIG_FAIL_PAGE_ALLOC
1662
b2588c4b 1663static struct {
933e312e
AM
1664 struct fault_attr attr;
1665
1666 u32 ignore_gfp_highmem;
1667 u32 ignore_gfp_wait;
54114994 1668 u32 min_order;
933e312e
AM
1669} fail_page_alloc = {
1670 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1671 .ignore_gfp_wait = 1,
1672 .ignore_gfp_highmem = 1,
54114994 1673 .min_order = 1,
933e312e
AM
1674};
1675
1676static int __init setup_fail_page_alloc(char *str)
1677{
1678 return setup_fault_attr(&fail_page_alloc.attr, str);
1679}
1680__setup("fail_page_alloc=", setup_fail_page_alloc);
1681
deaf386e 1682static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1683{
54114994 1684 if (order < fail_page_alloc.min_order)
deaf386e 1685 return false;
933e312e 1686 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1687 return false;
933e312e 1688 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1689 return false;
933e312e 1690 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1691 return false;
933e312e
AM
1692
1693 return should_fail(&fail_page_alloc.attr, 1 << order);
1694}
1695
1696#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1697
1698static int __init fail_page_alloc_debugfs(void)
1699{
f4ae40a6 1700 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1701 struct dentry *dir;
933e312e 1702
dd48c085
AM
1703 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1704 &fail_page_alloc.attr);
1705 if (IS_ERR(dir))
1706 return PTR_ERR(dir);
933e312e 1707
b2588c4b
AM
1708 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1709 &fail_page_alloc.ignore_gfp_wait))
1710 goto fail;
1711 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1712 &fail_page_alloc.ignore_gfp_highmem))
1713 goto fail;
1714 if (!debugfs_create_u32("min-order", mode, dir,
1715 &fail_page_alloc.min_order))
1716 goto fail;
1717
1718 return 0;
1719fail:
dd48c085 1720 debugfs_remove_recursive(dir);
933e312e 1721
b2588c4b 1722 return -ENOMEM;
933e312e
AM
1723}
1724
1725late_initcall(fail_page_alloc_debugfs);
1726
1727#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1728
1729#else /* CONFIG_FAIL_PAGE_ALLOC */
1730
deaf386e 1731static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1732{
deaf386e 1733 return false;
933e312e
AM
1734}
1735
1736#endif /* CONFIG_FAIL_PAGE_ALLOC */
1737
1da177e4 1738/*
88f5acf8 1739 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1740 * of the allocation.
1741 */
7aeb09f9
MG
1742static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1743 unsigned long mark, int classzone_idx, int alloc_flags,
1744 long free_pages)
1da177e4 1745{
26086de3 1746 /* free_pages may go negative - that's OK */
d23ad423 1747 long min = mark;
1da177e4 1748 int o;
026b0814 1749 long free_cma = 0;
1da177e4 1750
df0a6daa 1751 free_pages -= (1 << order) - 1;
7fb1d9fc 1752 if (alloc_flags & ALLOC_HIGH)
1da177e4 1753 min -= min / 2;
7fb1d9fc 1754 if (alloc_flags & ALLOC_HARDER)
1da177e4 1755 min -= min / 4;
d95ea5d1
BZ
1756#ifdef CONFIG_CMA
1757 /* If allocation can't use CMA areas don't use free CMA pages */
1758 if (!(alloc_flags & ALLOC_CMA))
026b0814 1759 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1760#endif
026b0814 1761
3484b2de 1762 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1763 return false;
1da177e4
LT
1764 for (o = 0; o < order; o++) {
1765 /* At the next order, this order's pages become unavailable */
1766 free_pages -= z->free_area[o].nr_free << o;
1767
1768 /* Require fewer higher order pages to be free */
1769 min >>= 1;
1770
1771 if (free_pages <= min)
88f5acf8 1772 return false;
1da177e4 1773 }
88f5acf8
MG
1774 return true;
1775}
1776
7aeb09f9 1777bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1778 int classzone_idx, int alloc_flags)
1779{
1780 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1781 zone_page_state(z, NR_FREE_PAGES));
1782}
1783
7aeb09f9
MG
1784bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1785 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1786{
1787 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1788
1789 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1790 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1791
1792 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1793 free_pages);
1da177e4
LT
1794}
1795
9276b1bc
PJ
1796#ifdef CONFIG_NUMA
1797/*
1798 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1799 * skip over zones that are not allowed by the cpuset, or that have
1800 * been recently (in last second) found to be nearly full. See further
1801 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1802 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1803 *
a1aeb65a 1804 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1805 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1806 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1807 *
1808 * If the zonelist cache is not available for this zonelist, does
1809 * nothing and returns NULL.
1810 *
1811 * If the fullzones BITMAP in the zonelist cache is stale (more than
1812 * a second since last zap'd) then we zap it out (clear its bits.)
1813 *
1814 * We hold off even calling zlc_setup, until after we've checked the
1815 * first zone in the zonelist, on the theory that most allocations will
1816 * be satisfied from that first zone, so best to examine that zone as
1817 * quickly as we can.
1818 */
1819static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1820{
1821 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1822 nodemask_t *allowednodes; /* zonelist_cache approximation */
1823
1824 zlc = zonelist->zlcache_ptr;
1825 if (!zlc)
1826 return NULL;
1827
f05111f5 1828 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1829 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1830 zlc->last_full_zap = jiffies;
1831 }
1832
1833 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1834 &cpuset_current_mems_allowed :
4b0ef1fe 1835 &node_states[N_MEMORY];
9276b1bc
PJ
1836 return allowednodes;
1837}
1838
1839/*
1840 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1841 * if it is worth looking at further for free memory:
1842 * 1) Check that the zone isn't thought to be full (doesn't have its
1843 * bit set in the zonelist_cache fullzones BITMAP).
1844 * 2) Check that the zones node (obtained from the zonelist_cache
1845 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1846 * Return true (non-zero) if zone is worth looking at further, or
1847 * else return false (zero) if it is not.
1848 *
1849 * This check -ignores- the distinction between various watermarks,
1850 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1851 * found to be full for any variation of these watermarks, it will
1852 * be considered full for up to one second by all requests, unless
1853 * we are so low on memory on all allowed nodes that we are forced
1854 * into the second scan of the zonelist.
1855 *
1856 * In the second scan we ignore this zonelist cache and exactly
1857 * apply the watermarks to all zones, even it is slower to do so.
1858 * We are low on memory in the second scan, and should leave no stone
1859 * unturned looking for a free page.
1860 */
dd1a239f 1861static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1862 nodemask_t *allowednodes)
1863{
1864 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1865 int i; /* index of *z in zonelist zones */
1866 int n; /* node that zone *z is on */
1867
1868 zlc = zonelist->zlcache_ptr;
1869 if (!zlc)
1870 return 1;
1871
dd1a239f 1872 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1873 n = zlc->z_to_n[i];
1874
1875 /* This zone is worth trying if it is allowed but not full */
1876 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1877}
1878
1879/*
1880 * Given 'z' scanning a zonelist, set the corresponding bit in
1881 * zlc->fullzones, so that subsequent attempts to allocate a page
1882 * from that zone don't waste time re-examining it.
1883 */
dd1a239f 1884static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1885{
1886 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1887 int i; /* index of *z in zonelist zones */
1888
1889 zlc = zonelist->zlcache_ptr;
1890 if (!zlc)
1891 return;
1892
dd1a239f 1893 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1894
1895 set_bit(i, zlc->fullzones);
1896}
1897
76d3fbf8
MG
1898/*
1899 * clear all zones full, called after direct reclaim makes progress so that
1900 * a zone that was recently full is not skipped over for up to a second
1901 */
1902static void zlc_clear_zones_full(struct zonelist *zonelist)
1903{
1904 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1905
1906 zlc = zonelist->zlcache_ptr;
1907 if (!zlc)
1908 return;
1909
1910 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1911}
1912
81c0a2bb
JW
1913static bool zone_local(struct zone *local_zone, struct zone *zone)
1914{
fff4068c 1915 return local_zone->node == zone->node;
81c0a2bb
JW
1916}
1917
957f822a
DR
1918static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1919{
5f7a75ac
MG
1920 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1921 RECLAIM_DISTANCE;
957f822a
DR
1922}
1923
9276b1bc
PJ
1924#else /* CONFIG_NUMA */
1925
1926static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1927{
1928 return NULL;
1929}
1930
dd1a239f 1931static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1932 nodemask_t *allowednodes)
1933{
1934 return 1;
1935}
1936
dd1a239f 1937static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1938{
1939}
76d3fbf8
MG
1940
1941static void zlc_clear_zones_full(struct zonelist *zonelist)
1942{
1943}
957f822a 1944
81c0a2bb
JW
1945static bool zone_local(struct zone *local_zone, struct zone *zone)
1946{
1947 return true;
1948}
1949
957f822a
DR
1950static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1951{
1952 return true;
1953}
1954
9276b1bc
PJ
1955#endif /* CONFIG_NUMA */
1956
4ffeaf35
MG
1957static void reset_alloc_batches(struct zone *preferred_zone)
1958{
1959 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1960
1961 do {
1962 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1963 high_wmark_pages(zone) - low_wmark_pages(zone) -
1964 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 1965 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
1966 } while (zone++ != preferred_zone);
1967}
1968
7fb1d9fc 1969/*
0798e519 1970 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1971 * a page.
1972 */
1973static struct page *
19770b32 1974get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1975 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
d8846374 1976 struct zone *preferred_zone, int classzone_idx, int migratetype)
753ee728 1977{
dd1a239f 1978 struct zoneref *z;
7fb1d9fc 1979 struct page *page = NULL;
5117f45d 1980 struct zone *zone;
9276b1bc
PJ
1981 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1982 int zlc_active = 0; /* set if using zonelist_cache */
1983 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
1984 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1985 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
1986 int nr_fair_skipped = 0;
1987 bool zonelist_rescan;
54a6eb5c 1988
9276b1bc 1989zonelist_scan:
4ffeaf35
MG
1990 zonelist_rescan = false;
1991
7fb1d9fc 1992 /*
9276b1bc 1993 * Scan zonelist, looking for a zone with enough free.
344736f2 1994 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 1995 */
19770b32
MG
1996 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1997 high_zoneidx, nodemask) {
e085dbc5
JW
1998 unsigned long mark;
1999
e5adfffc 2000 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2001 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2002 continue;
664eedde
MG
2003 if (cpusets_enabled() &&
2004 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2005 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2006 continue;
81c0a2bb
JW
2007 /*
2008 * Distribute pages in proportion to the individual
2009 * zone size to ensure fair page aging. The zone a
2010 * page was allocated in should have no effect on the
2011 * time the page has in memory before being reclaimed.
81c0a2bb 2012 */
3a025760 2013 if (alloc_flags & ALLOC_FAIR) {
fff4068c 2014 if (!zone_local(preferred_zone, zone))
f7b5d647 2015 break;
57054651 2016 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2017 nr_fair_skipped++;
3a025760 2018 continue;
4ffeaf35 2019 }
81c0a2bb 2020 }
a756cf59
JW
2021 /*
2022 * When allocating a page cache page for writing, we
2023 * want to get it from a zone that is within its dirty
2024 * limit, such that no single zone holds more than its
2025 * proportional share of globally allowed dirty pages.
2026 * The dirty limits take into account the zone's
2027 * lowmem reserves and high watermark so that kswapd
2028 * should be able to balance it without having to
2029 * write pages from its LRU list.
2030 *
2031 * This may look like it could increase pressure on
2032 * lower zones by failing allocations in higher zones
2033 * before they are full. But the pages that do spill
2034 * over are limited as the lower zones are protected
2035 * by this very same mechanism. It should not become
2036 * a practical burden to them.
2037 *
2038 * XXX: For now, allow allocations to potentially
2039 * exceed the per-zone dirty limit in the slowpath
2040 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2041 * which is important when on a NUMA setup the allowed
2042 * zones are together not big enough to reach the
2043 * global limit. The proper fix for these situations
2044 * will require awareness of zones in the
2045 * dirty-throttling and the flusher threads.
2046 */
a6e21b14 2047 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2048 continue;
7fb1d9fc 2049
e085dbc5
JW
2050 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2051 if (!zone_watermark_ok(zone, order, mark,
2052 classzone_idx, alloc_flags)) {
fa5e084e
MG
2053 int ret;
2054
5dab2911
MG
2055 /* Checked here to keep the fast path fast */
2056 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2057 if (alloc_flags & ALLOC_NO_WATERMARKS)
2058 goto try_this_zone;
2059
e5adfffc
KS
2060 if (IS_ENABLED(CONFIG_NUMA) &&
2061 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2062 /*
2063 * we do zlc_setup if there are multiple nodes
2064 * and before considering the first zone allowed
2065 * by the cpuset.
2066 */
2067 allowednodes = zlc_setup(zonelist, alloc_flags);
2068 zlc_active = 1;
2069 did_zlc_setup = 1;
2070 }
2071
957f822a
DR
2072 if (zone_reclaim_mode == 0 ||
2073 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2074 goto this_zone_full;
2075
cd38b115
MG
2076 /*
2077 * As we may have just activated ZLC, check if the first
2078 * eligible zone has failed zone_reclaim recently.
2079 */
e5adfffc 2080 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2081 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2082 continue;
2083
fa5e084e
MG
2084 ret = zone_reclaim(zone, gfp_mask, order);
2085 switch (ret) {
2086 case ZONE_RECLAIM_NOSCAN:
2087 /* did not scan */
cd38b115 2088 continue;
fa5e084e
MG
2089 case ZONE_RECLAIM_FULL:
2090 /* scanned but unreclaimable */
cd38b115 2091 continue;
fa5e084e
MG
2092 default:
2093 /* did we reclaim enough */
fed2719e 2094 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2095 classzone_idx, alloc_flags))
fed2719e
MG
2096 goto try_this_zone;
2097
2098 /*
2099 * Failed to reclaim enough to meet watermark.
2100 * Only mark the zone full if checking the min
2101 * watermark or if we failed to reclaim just
2102 * 1<<order pages or else the page allocator
2103 * fastpath will prematurely mark zones full
2104 * when the watermark is between the low and
2105 * min watermarks.
2106 */
2107 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2108 ret == ZONE_RECLAIM_SOME)
9276b1bc 2109 goto this_zone_full;
fed2719e
MG
2110
2111 continue;
0798e519 2112 }
7fb1d9fc
RS
2113 }
2114
fa5e084e 2115try_this_zone:
3dd28266
MG
2116 page = buffered_rmqueue(preferred_zone, zone, order,
2117 gfp_mask, migratetype);
0798e519 2118 if (page)
7fb1d9fc 2119 break;
9276b1bc 2120this_zone_full:
65bb3719 2121 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2122 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2123 }
9276b1bc 2124
4ffeaf35 2125 if (page) {
b121186a
AS
2126 /*
2127 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2128 * necessary to allocate the page. The expectation is
2129 * that the caller is taking steps that will free more
2130 * memory. The caller should avoid the page being used
2131 * for !PFMEMALLOC purposes.
2132 */
2133 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
4ffeaf35
MG
2134 return page;
2135 }
b121186a 2136
4ffeaf35
MG
2137 /*
2138 * The first pass makes sure allocations are spread fairly within the
2139 * local node. However, the local node might have free pages left
2140 * after the fairness batches are exhausted, and remote zones haven't
2141 * even been considered yet. Try once more without fairness, and
2142 * include remote zones now, before entering the slowpath and waking
2143 * kswapd: prefer spilling to a remote zone over swapping locally.
2144 */
2145 if (alloc_flags & ALLOC_FAIR) {
2146 alloc_flags &= ~ALLOC_FAIR;
2147 if (nr_fair_skipped) {
2148 zonelist_rescan = true;
2149 reset_alloc_batches(preferred_zone);
2150 }
2151 if (nr_online_nodes > 1)
2152 zonelist_rescan = true;
2153 }
2154
2155 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2156 /* Disable zlc cache for second zonelist scan */
2157 zlc_active = 0;
2158 zonelist_rescan = true;
2159 }
2160
2161 if (zonelist_rescan)
2162 goto zonelist_scan;
2163
2164 return NULL;
753ee728
MH
2165}
2166
29423e77
DR
2167/*
2168 * Large machines with many possible nodes should not always dump per-node
2169 * meminfo in irq context.
2170 */
2171static inline bool should_suppress_show_mem(void)
2172{
2173 bool ret = false;
2174
2175#if NODES_SHIFT > 8
2176 ret = in_interrupt();
2177#endif
2178 return ret;
2179}
2180
a238ab5b
DH
2181static DEFINE_RATELIMIT_STATE(nopage_rs,
2182 DEFAULT_RATELIMIT_INTERVAL,
2183 DEFAULT_RATELIMIT_BURST);
2184
2185void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2186{
a238ab5b
DH
2187 unsigned int filter = SHOW_MEM_FILTER_NODES;
2188
c0a32fc5
SG
2189 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2190 debug_guardpage_minorder() > 0)
a238ab5b
DH
2191 return;
2192
2193 /*
2194 * This documents exceptions given to allocations in certain
2195 * contexts that are allowed to allocate outside current's set
2196 * of allowed nodes.
2197 */
2198 if (!(gfp_mask & __GFP_NOMEMALLOC))
2199 if (test_thread_flag(TIF_MEMDIE) ||
2200 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2201 filter &= ~SHOW_MEM_FILTER_NODES;
2202 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2203 filter &= ~SHOW_MEM_FILTER_NODES;
2204
2205 if (fmt) {
3ee9a4f0
JP
2206 struct va_format vaf;
2207 va_list args;
2208
a238ab5b 2209 va_start(args, fmt);
3ee9a4f0
JP
2210
2211 vaf.fmt = fmt;
2212 vaf.va = &args;
2213
2214 pr_warn("%pV", &vaf);
2215
a238ab5b
DH
2216 va_end(args);
2217 }
2218
3ee9a4f0
JP
2219 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2220 current->comm, order, gfp_mask);
a238ab5b
DH
2221
2222 dump_stack();
2223 if (!should_suppress_show_mem())
2224 show_mem(filter);
2225}
2226
11e33f6a
MG
2227static inline int
2228should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2229 unsigned long did_some_progress,
11e33f6a 2230 unsigned long pages_reclaimed)
1da177e4 2231{
11e33f6a
MG
2232 /* Do not loop if specifically requested */
2233 if (gfp_mask & __GFP_NORETRY)
2234 return 0;
1da177e4 2235
f90ac398
MG
2236 /* Always retry if specifically requested */
2237 if (gfp_mask & __GFP_NOFAIL)
2238 return 1;
2239
2240 /*
2241 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2242 * making forward progress without invoking OOM. Suspend also disables
2243 * storage devices so kswapd will not help. Bail if we are suspending.
2244 */
2245 if (!did_some_progress && pm_suspended_storage())
2246 return 0;
2247
11e33f6a
MG
2248 /*
2249 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2250 * means __GFP_NOFAIL, but that may not be true in other
2251 * implementations.
2252 */
2253 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2254 return 1;
2255
2256 /*
2257 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2258 * specified, then we retry until we no longer reclaim any pages
2259 * (above), or we've reclaimed an order of pages at least as
2260 * large as the allocation's order. In both cases, if the
2261 * allocation still fails, we stop retrying.
2262 */
2263 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2264 return 1;
cf40bd16 2265
11e33f6a
MG
2266 return 0;
2267}
933e312e 2268
11e33f6a
MG
2269static inline struct page *
2270__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2271 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2272 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2273 int classzone_idx, int migratetype)
11e33f6a
MG
2274{
2275 struct page *page;
2276
e972a070
DR
2277 /* Acquire the per-zone oom lock for each zone */
2278 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
11e33f6a 2279 schedule_timeout_uninterruptible(1);
1da177e4
LT
2280 return NULL;
2281 }
6b1de916 2282
5695be14
MH
2283 /*
2284 * PM-freezer should be notified that there might be an OOM killer on
2285 * its way to kill and wake somebody up. This is too early and we might
2286 * end up not killing anything but false positives are acceptable.
2287 * See freeze_processes.
2288 */
2289 note_oom_kill();
2290
11e33f6a
MG
2291 /*
2292 * Go through the zonelist yet one more time, keep very high watermark
2293 * here, this is only to catch a parallel oom killing, we must fail if
2294 * we're still under heavy pressure.
2295 */
2296 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2297 order, zonelist, high_zoneidx,
5117f45d 2298 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
d8846374 2299 preferred_zone, classzone_idx, migratetype);
7fb1d9fc 2300 if (page)
11e33f6a
MG
2301 goto out;
2302
4365a567
KH
2303 if (!(gfp_mask & __GFP_NOFAIL)) {
2304 /* The OOM killer will not help higher order allocs */
2305 if (order > PAGE_ALLOC_COSTLY_ORDER)
2306 goto out;
03668b3c
DR
2307 /* The OOM killer does not needlessly kill tasks for lowmem */
2308 if (high_zoneidx < ZONE_NORMAL)
2309 goto out;
4365a567
KH
2310 /*
2311 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2312 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2313 * The caller should handle page allocation failure by itself if
2314 * it specifies __GFP_THISNODE.
2315 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2316 */
2317 if (gfp_mask & __GFP_THISNODE)
2318 goto out;
2319 }
11e33f6a 2320 /* Exhausted what can be done so it's blamo time */
08ab9b10 2321 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2322
2323out:
e972a070 2324 oom_zonelist_unlock(zonelist, gfp_mask);
11e33f6a
MG
2325 return page;
2326}
2327
56de7263
MG
2328#ifdef CONFIG_COMPACTION
2329/* Try memory compaction for high-order allocations before reclaim */
2330static struct page *
2331__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2332 struct zonelist *zonelist, enum zone_type high_zoneidx,
2333 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2334 int classzone_idx, int migratetype, enum migrate_mode mode,
1f9efdef 2335 int *contended_compaction, bool *deferred_compaction)
56de7263 2336{
53853e2d 2337 unsigned long compact_result;
98dd3b48 2338 struct page *page;
53853e2d
VB
2339
2340 if (!order)
66199712 2341 return NULL;
66199712 2342
c06b1fca 2343 current->flags |= PF_MEMALLOC;
53853e2d 2344 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
e0b9daeb 2345 nodemask, mode,
53853e2d 2346 contended_compaction,
97d47a65 2347 alloc_flags, classzone_idx);
c06b1fca 2348 current->flags &= ~PF_MEMALLOC;
56de7263 2349
98dd3b48
VB
2350 switch (compact_result) {
2351 case COMPACT_DEFERRED:
53853e2d 2352 *deferred_compaction = true;
98dd3b48
VB
2353 /* fall-through */
2354 case COMPACT_SKIPPED:
2355 return NULL;
2356 default:
2357 break;
2358 }
53853e2d 2359
98dd3b48
VB
2360 /*
2361 * At least in one zone compaction wasn't deferred or skipped, so let's
2362 * count a compaction stall
2363 */
2364 count_vm_event(COMPACTSTALL);
8fb74b9f 2365
98dd3b48
VB
2366 page = get_page_from_freelist(gfp_mask, nodemask,
2367 order, zonelist, high_zoneidx,
2368 alloc_flags & ~ALLOC_NO_WATERMARKS,
2369 preferred_zone, classzone_idx, migratetype);
53853e2d 2370
98dd3b48
VB
2371 if (page) {
2372 struct zone *zone = page_zone(page);
53853e2d 2373
98dd3b48
VB
2374 zone->compact_blockskip_flush = false;
2375 compaction_defer_reset(zone, order, true);
2376 count_vm_event(COMPACTSUCCESS);
2377 return page;
2378 }
56de7263 2379
98dd3b48
VB
2380 /*
2381 * It's bad if compaction run occurs and fails. The most likely reason
2382 * is that pages exist, but not enough to satisfy watermarks.
2383 */
2384 count_vm_event(COMPACTFAIL);
66199712 2385
98dd3b48 2386 cond_resched();
56de7263
MG
2387
2388 return NULL;
2389}
2390#else
2391static inline struct page *
2392__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2393 struct zonelist *zonelist, enum zone_type high_zoneidx,
2394 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
53853e2d 2395 int classzone_idx, int migratetype, enum migrate_mode mode,
1f9efdef 2396 int *contended_compaction, bool *deferred_compaction)
56de7263
MG
2397{
2398 return NULL;
2399}
2400#endif /* CONFIG_COMPACTION */
2401
bba90710
MS
2402/* Perform direct synchronous page reclaim */
2403static int
2404__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2405 nodemask_t *nodemask)
11e33f6a 2406{
11e33f6a 2407 struct reclaim_state reclaim_state;
bba90710 2408 int progress;
11e33f6a
MG
2409
2410 cond_resched();
2411
2412 /* We now go into synchronous reclaim */
2413 cpuset_memory_pressure_bump();
c06b1fca 2414 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2415 lockdep_set_current_reclaim_state(gfp_mask);
2416 reclaim_state.reclaimed_slab = 0;
c06b1fca 2417 current->reclaim_state = &reclaim_state;
11e33f6a 2418
bba90710 2419 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2420
c06b1fca 2421 current->reclaim_state = NULL;
11e33f6a 2422 lockdep_clear_current_reclaim_state();
c06b1fca 2423 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2424
2425 cond_resched();
2426
bba90710
MS
2427 return progress;
2428}
2429
2430/* The really slow allocator path where we enter direct reclaim */
2431static inline struct page *
2432__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2433 struct zonelist *zonelist, enum zone_type high_zoneidx,
2434 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2435 int classzone_idx, int migratetype, unsigned long *did_some_progress)
bba90710
MS
2436{
2437 struct page *page = NULL;
2438 bool drained = false;
2439
2440 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2441 nodemask);
9ee493ce
MG
2442 if (unlikely(!(*did_some_progress)))
2443 return NULL;
11e33f6a 2444
76d3fbf8 2445 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2446 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2447 zlc_clear_zones_full(zonelist);
2448
9ee493ce
MG
2449retry:
2450 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2451 zonelist, high_zoneidx,
cfd19c5a 2452 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374
MG
2453 preferred_zone, classzone_idx,
2454 migratetype);
9ee493ce
MG
2455
2456 /*
2457 * If an allocation failed after direct reclaim, it could be because
2458 * pages are pinned on the per-cpu lists. Drain them and try again
2459 */
2460 if (!page && !drained) {
93481ff0 2461 drain_all_pages(NULL);
9ee493ce
MG
2462 drained = true;
2463 goto retry;
2464 }
2465
11e33f6a
MG
2466 return page;
2467}
2468
1da177e4 2469/*
11e33f6a
MG
2470 * This is called in the allocator slow-path if the allocation request is of
2471 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2472 */
11e33f6a
MG
2473static inline struct page *
2474__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2475 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2476 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2477 int classzone_idx, int migratetype)
11e33f6a
MG
2478{
2479 struct page *page;
2480
2481 do {
2482 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2483 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
d8846374 2484 preferred_zone, classzone_idx, migratetype);
11e33f6a
MG
2485
2486 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2487 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2488 } while (!page && (gfp_mask & __GFP_NOFAIL));
2489
2490 return page;
2491}
2492
3a025760
JW
2493static void wake_all_kswapds(unsigned int order,
2494 struct zonelist *zonelist,
2495 enum zone_type high_zoneidx,
7ade3c99
WY
2496 struct zone *preferred_zone,
2497 nodemask_t *nodemask)
3a025760
JW
2498{
2499 struct zoneref *z;
2500 struct zone *zone;
2501
7ade3c99
WY
2502 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2503 high_zoneidx, nodemask)
3a025760
JW
2504 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2505}
2506
341ce06f
PZ
2507static inline int
2508gfp_to_alloc_flags(gfp_t gfp_mask)
2509{
341ce06f 2510 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2511 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2512
a56f57ff 2513 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2514 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2515
341ce06f
PZ
2516 /*
2517 * The caller may dip into page reserves a bit more if the caller
2518 * cannot run direct reclaim, or if the caller has realtime scheduling
2519 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2520 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2521 */
e6223a3b 2522 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2523
b104a35d 2524 if (atomic) {
5c3240d9 2525 /*
b104a35d
DR
2526 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2527 * if it can't schedule.
5c3240d9 2528 */
b104a35d 2529 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2530 alloc_flags |= ALLOC_HARDER;
523b9458 2531 /*
b104a35d 2532 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2533 * comment for __cpuset_node_allowed().
523b9458 2534 */
341ce06f 2535 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2536 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2537 alloc_flags |= ALLOC_HARDER;
2538
b37f1dd0
MG
2539 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2540 if (gfp_mask & __GFP_MEMALLOC)
2541 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2542 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2543 alloc_flags |= ALLOC_NO_WATERMARKS;
2544 else if (!in_interrupt() &&
2545 ((current->flags & PF_MEMALLOC) ||
2546 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2547 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2548 }
d95ea5d1 2549#ifdef CONFIG_CMA
43e7a34d 2550 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2551 alloc_flags |= ALLOC_CMA;
2552#endif
341ce06f
PZ
2553 return alloc_flags;
2554}
2555
072bb0aa
MG
2556bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2557{
b37f1dd0 2558 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2559}
2560
11e33f6a
MG
2561static inline struct page *
2562__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2563 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2564 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2565 int classzone_idx, int migratetype)
11e33f6a
MG
2566{
2567 const gfp_t wait = gfp_mask & __GFP_WAIT;
2568 struct page *page = NULL;
2569 int alloc_flags;
2570 unsigned long pages_reclaimed = 0;
2571 unsigned long did_some_progress;
e0b9daeb 2572 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2573 bool deferred_compaction = false;
1f9efdef 2574 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2575
72807a74
MG
2576 /*
2577 * In the slowpath, we sanity check order to avoid ever trying to
2578 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2579 * be using allocators in order of preference for an area that is
2580 * too large.
2581 */
1fc28b70
MG
2582 if (order >= MAX_ORDER) {
2583 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2584 return NULL;
1fc28b70 2585 }
1da177e4 2586
952f3b51
CL
2587 /*
2588 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2589 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2590 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2591 * using a larger set of nodes after it has established that the
2592 * allowed per node queues are empty and that nodes are
2593 * over allocated.
2594 */
3a025760
JW
2595 if (IS_ENABLED(CONFIG_NUMA) &&
2596 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2597 goto nopage;
2598
cc4a6851 2599restart:
3a025760 2600 if (!(gfp_mask & __GFP_NO_KSWAPD))
7ade3c99
WY
2601 wake_all_kswapds(order, zonelist, high_zoneidx,
2602 preferred_zone, nodemask);
1da177e4 2603
9bf2229f 2604 /*
7fb1d9fc
RS
2605 * OK, we're below the kswapd watermark and have kicked background
2606 * reclaim. Now things get more complex, so set up alloc_flags according
2607 * to how we want to proceed.
9bf2229f 2608 */
341ce06f 2609 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2610
f33261d7
DR
2611 /*
2612 * Find the true preferred zone if the allocation is unconstrained by
2613 * cpusets.
2614 */
d8846374
MG
2615 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2616 struct zoneref *preferred_zoneref;
2617 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2618 NULL, &preferred_zone);
2619 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2620 }
f33261d7 2621
cfa54a0f 2622rebalance:
341ce06f 2623 /* This is the last chance, in general, before the goto nopage. */
19770b32 2624 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f 2625 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2626 preferred_zone, classzone_idx, migratetype);
7fb1d9fc
RS
2627 if (page)
2628 goto got_pg;
1da177e4 2629
11e33f6a 2630 /* Allocate without watermarks if the context allows */
341ce06f 2631 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2632 /*
2633 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2634 * the allocation is high priority and these type of
2635 * allocations are system rather than user orientated
2636 */
2637 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2638
341ce06f
PZ
2639 page = __alloc_pages_high_priority(gfp_mask, order,
2640 zonelist, high_zoneidx, nodemask,
d8846374 2641 preferred_zone, classzone_idx, migratetype);
cfd19c5a 2642 if (page) {
341ce06f 2643 goto got_pg;
cfd19c5a 2644 }
1da177e4
LT
2645 }
2646
2647 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2648 if (!wait) {
2649 /*
2650 * All existing users of the deprecated __GFP_NOFAIL are
2651 * blockable, so warn of any new users that actually allow this
2652 * type of allocation to fail.
2653 */
2654 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2655 goto nopage;
aed0a0e3 2656 }
1da177e4 2657
341ce06f 2658 /* Avoid recursion of direct reclaim */
c06b1fca 2659 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2660 goto nopage;
2661
6583bb64
DR
2662 /* Avoid allocations with no watermarks from looping endlessly */
2663 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2664 goto nopage;
2665
77f1fe6b
MG
2666 /*
2667 * Try direct compaction. The first pass is asynchronous. Subsequent
2668 * attempts after direct reclaim are synchronous
2669 */
e0b9daeb
DR
2670 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2671 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2672 preferred_zone,
2673 classzone_idx, migratetype,
e0b9daeb 2674 migration_mode, &contended_compaction,
53853e2d 2675 &deferred_compaction);
56de7263
MG
2676 if (page)
2677 goto got_pg;
75f30861 2678
1f9efdef
VB
2679 /* Checks for THP-specific high-order allocations */
2680 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2681 /*
2682 * If compaction is deferred for high-order allocations, it is
2683 * because sync compaction recently failed. If this is the case
2684 * and the caller requested a THP allocation, we do not want
2685 * to heavily disrupt the system, so we fail the allocation
2686 * instead of entering direct reclaim.
2687 */
2688 if (deferred_compaction)
2689 goto nopage;
2690
2691 /*
2692 * In all zones where compaction was attempted (and not
2693 * deferred or skipped), lock contention has been detected.
2694 * For THP allocation we do not want to disrupt the others
2695 * so we fallback to base pages instead.
2696 */
2697 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2698 goto nopage;
2699
2700 /*
2701 * If compaction was aborted due to need_resched(), we do not
2702 * want to further increase allocation latency, unless it is
2703 * khugepaged trying to collapse.
2704 */
2705 if (contended_compaction == COMPACT_CONTENDED_SCHED
2706 && !(current->flags & PF_KTHREAD))
2707 goto nopage;
2708 }
66199712 2709
8fe78048
DR
2710 /*
2711 * It can become very expensive to allocate transparent hugepages at
2712 * fault, so use asynchronous memory compaction for THP unless it is
2713 * khugepaged trying to collapse.
2714 */
2715 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2716 (current->flags & PF_KTHREAD))
2717 migration_mode = MIGRATE_SYNC_LIGHT;
2718
11e33f6a
MG
2719 /* Try direct reclaim and then allocating */
2720 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2721 zonelist, high_zoneidx,
2722 nodemask,
5117f45d 2723 alloc_flags, preferred_zone,
d8846374
MG
2724 classzone_idx, migratetype,
2725 &did_some_progress);
11e33f6a
MG
2726 if (page)
2727 goto got_pg;
1da177e4 2728
e33c3b5e 2729 /*
11e33f6a
MG
2730 * If we failed to make any progress reclaiming, then we are
2731 * running out of options and have to consider going OOM
e33c3b5e 2732 */
11e33f6a 2733 if (!did_some_progress) {
b9921ecd 2734 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2735 if (oom_killer_disabled)
2736 goto nopage;
29fd66d2
DR
2737 /* Coredumps can quickly deplete all memory reserves */
2738 if ((current->flags & PF_DUMPCORE) &&
2739 !(gfp_mask & __GFP_NOFAIL))
2740 goto nopage;
11e33f6a
MG
2741 page = __alloc_pages_may_oom(gfp_mask, order,
2742 zonelist, high_zoneidx,
3dd28266 2743 nodemask, preferred_zone,
d8846374 2744 classzone_idx, migratetype);
11e33f6a
MG
2745 if (page)
2746 goto got_pg;
1da177e4 2747
03668b3c
DR
2748 if (!(gfp_mask & __GFP_NOFAIL)) {
2749 /*
2750 * The oom killer is not called for high-order
2751 * allocations that may fail, so if no progress
2752 * is being made, there are no other options and
2753 * retrying is unlikely to help.
2754 */
2755 if (order > PAGE_ALLOC_COSTLY_ORDER)
2756 goto nopage;
2757 /*
2758 * The oom killer is not called for lowmem
2759 * allocations to prevent needlessly killing
2760 * innocent tasks.
2761 */
2762 if (high_zoneidx < ZONE_NORMAL)
2763 goto nopage;
2764 }
e2c55dc8 2765
ff0ceb9d
DR
2766 goto restart;
2767 }
1da177e4
LT
2768 }
2769
11e33f6a 2770 /* Check if we should retry the allocation */
a41f24ea 2771 pages_reclaimed += did_some_progress;
f90ac398
MG
2772 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2773 pages_reclaimed)) {
11e33f6a 2774 /* Wait for some write requests to complete then retry */
0e093d99 2775 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2776 goto rebalance;
3e7d3449
MG
2777 } else {
2778 /*
2779 * High-order allocations do not necessarily loop after
2780 * direct reclaim and reclaim/compaction depends on compaction
2781 * being called after reclaim so call directly if necessary
2782 */
e0b9daeb
DR
2783 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2784 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2785 preferred_zone,
2786 classzone_idx, migratetype,
e0b9daeb 2787 migration_mode, &contended_compaction,
53853e2d 2788 &deferred_compaction);
3e7d3449
MG
2789 if (page)
2790 goto got_pg;
1da177e4
LT
2791 }
2792
2793nopage:
a238ab5b 2794 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2795 return page;
1da177e4 2796got_pg:
b1eeab67
VN
2797 if (kmemcheck_enabled)
2798 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2799
072bb0aa 2800 return page;
1da177e4 2801}
11e33f6a
MG
2802
2803/*
2804 * This is the 'heart' of the zoned buddy allocator.
2805 */
2806struct page *
2807__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2808 struct zonelist *zonelist, nodemask_t *nodemask)
2809{
2810 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2811 struct zone *preferred_zone;
d8846374 2812 struct zoneref *preferred_zoneref;
cc9a6c87 2813 struct page *page = NULL;
43e7a34d 2814 int migratetype = gfpflags_to_migratetype(gfp_mask);
cc9a6c87 2815 unsigned int cpuset_mems_cookie;
3a025760 2816 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
d8846374 2817 int classzone_idx;
11e33f6a 2818
dcce284a
BH
2819 gfp_mask &= gfp_allowed_mask;
2820
11e33f6a
MG
2821 lockdep_trace_alloc(gfp_mask);
2822
2823 might_sleep_if(gfp_mask & __GFP_WAIT);
2824
2825 if (should_fail_alloc_page(gfp_mask, order))
2826 return NULL;
2827
2828 /*
2829 * Check the zones suitable for the gfp_mask contain at least one
2830 * valid zone. It's possible to have an empty zonelist as a result
2831 * of GFP_THISNODE and a memoryless node
2832 */
2833 if (unlikely(!zonelist->_zonerefs->zone))
2834 return NULL;
2835
21bb9bd1
VB
2836 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2837 alloc_flags |= ALLOC_CMA;
2838
cc9a6c87 2839retry_cpuset:
d26914d1 2840 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2841
5117f45d 2842 /* The preferred zone is used for statistics later */
d8846374 2843 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
f33261d7
DR
2844 nodemask ? : &cpuset_current_mems_allowed,
2845 &preferred_zone);
cc9a6c87
MG
2846 if (!preferred_zone)
2847 goto out;
d8846374 2848 classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2849
2850 /* First allocation attempt */
11e33f6a 2851 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2852 zonelist, high_zoneidx, alloc_flags,
d8846374 2853 preferred_zone, classzone_idx, migratetype);
21caf2fc
ML
2854 if (unlikely(!page)) {
2855 /*
2856 * Runtime PM, block IO and its error handling path
2857 * can deadlock because I/O on the device might not
2858 * complete.
2859 */
2860 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2861 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2862 zonelist, high_zoneidx, nodemask,
d8846374 2863 preferred_zone, classzone_idx, migratetype);
21caf2fc 2864 }
11e33f6a 2865
4b4f278c 2866 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2867
2868out:
2869 /*
2870 * When updating a task's mems_allowed, it is possible to race with
2871 * parallel threads in such a way that an allocation can fail while
2872 * the mask is being updated. If a page allocation is about to fail,
2873 * check if the cpuset changed during allocation and if so, retry.
2874 */
d26914d1 2875 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2876 goto retry_cpuset;
2877
11e33f6a 2878 return page;
1da177e4 2879}
d239171e 2880EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2881
2882/*
2883 * Common helper functions.
2884 */
920c7a5d 2885unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2886{
945a1113
AM
2887 struct page *page;
2888
2889 /*
2890 * __get_free_pages() returns a 32-bit address, which cannot represent
2891 * a highmem page
2892 */
2893 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2894
1da177e4
LT
2895 page = alloc_pages(gfp_mask, order);
2896 if (!page)
2897 return 0;
2898 return (unsigned long) page_address(page);
2899}
1da177e4
LT
2900EXPORT_SYMBOL(__get_free_pages);
2901
920c7a5d 2902unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2903{
945a1113 2904 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2905}
1da177e4
LT
2906EXPORT_SYMBOL(get_zeroed_page);
2907
920c7a5d 2908void __free_pages(struct page *page, unsigned int order)
1da177e4 2909{
b5810039 2910 if (put_page_testzero(page)) {
1da177e4 2911 if (order == 0)
b745bc85 2912 free_hot_cold_page(page, false);
1da177e4
LT
2913 else
2914 __free_pages_ok(page, order);
2915 }
2916}
2917
2918EXPORT_SYMBOL(__free_pages);
2919
920c7a5d 2920void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2921{
2922 if (addr != 0) {
725d704e 2923 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2924 __free_pages(virt_to_page((void *)addr), order);
2925 }
2926}
2927
2928EXPORT_SYMBOL(free_pages);
2929
6a1a0d3b 2930/*
52383431
VD
2931 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2932 * of the current memory cgroup.
6a1a0d3b 2933 *
52383431
VD
2934 * It should be used when the caller would like to use kmalloc, but since the
2935 * allocation is large, it has to fall back to the page allocator.
2936 */
2937struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2938{
2939 struct page *page;
2940 struct mem_cgroup *memcg = NULL;
2941
2942 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2943 return NULL;
2944 page = alloc_pages(gfp_mask, order);
2945 memcg_kmem_commit_charge(page, memcg, order);
2946 return page;
2947}
2948
2949struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2950{
2951 struct page *page;
2952 struct mem_cgroup *memcg = NULL;
2953
2954 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2955 return NULL;
2956 page = alloc_pages_node(nid, gfp_mask, order);
2957 memcg_kmem_commit_charge(page, memcg, order);
2958 return page;
2959}
2960
2961/*
2962 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2963 * alloc_kmem_pages.
6a1a0d3b 2964 */
52383431 2965void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2966{
2967 memcg_kmem_uncharge_pages(page, order);
2968 __free_pages(page, order);
2969}
2970
52383431 2971void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2972{
2973 if (addr != 0) {
2974 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2975 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2976 }
2977}
2978
ee85c2e1
AK
2979static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2980{
2981 if (addr) {
2982 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2983 unsigned long used = addr + PAGE_ALIGN(size);
2984
2985 split_page(virt_to_page((void *)addr), order);
2986 while (used < alloc_end) {
2987 free_page(used);
2988 used += PAGE_SIZE;
2989 }
2990 }
2991 return (void *)addr;
2992}
2993
2be0ffe2
TT
2994/**
2995 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2996 * @size: the number of bytes to allocate
2997 * @gfp_mask: GFP flags for the allocation
2998 *
2999 * This function is similar to alloc_pages(), except that it allocates the
3000 * minimum number of pages to satisfy the request. alloc_pages() can only
3001 * allocate memory in power-of-two pages.
3002 *
3003 * This function is also limited by MAX_ORDER.
3004 *
3005 * Memory allocated by this function must be released by free_pages_exact().
3006 */
3007void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3008{
3009 unsigned int order = get_order(size);
3010 unsigned long addr;
3011
3012 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3013 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3014}
3015EXPORT_SYMBOL(alloc_pages_exact);
3016
ee85c2e1
AK
3017/**
3018 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3019 * pages on a node.
b5e6ab58 3020 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3021 * @size: the number of bytes to allocate
3022 * @gfp_mask: GFP flags for the allocation
3023 *
3024 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3025 * back.
3026 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3027 * but is not exact.
3028 */
e1931811 3029void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3030{
3031 unsigned order = get_order(size);
3032 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3033 if (!p)
3034 return NULL;
3035 return make_alloc_exact((unsigned long)page_address(p), order, size);
3036}
ee85c2e1 3037
2be0ffe2
TT
3038/**
3039 * free_pages_exact - release memory allocated via alloc_pages_exact()
3040 * @virt: the value returned by alloc_pages_exact.
3041 * @size: size of allocation, same value as passed to alloc_pages_exact().
3042 *
3043 * Release the memory allocated by a previous call to alloc_pages_exact.
3044 */
3045void free_pages_exact(void *virt, size_t size)
3046{
3047 unsigned long addr = (unsigned long)virt;
3048 unsigned long end = addr + PAGE_ALIGN(size);
3049
3050 while (addr < end) {
3051 free_page(addr);
3052 addr += PAGE_SIZE;
3053 }
3054}
3055EXPORT_SYMBOL(free_pages_exact);
3056
e0fb5815
ZY
3057/**
3058 * nr_free_zone_pages - count number of pages beyond high watermark
3059 * @offset: The zone index of the highest zone
3060 *
3061 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3062 * high watermark within all zones at or below a given zone index. For each
3063 * zone, the number of pages is calculated as:
834405c3 3064 * managed_pages - high_pages
e0fb5815 3065 */
ebec3862 3066static unsigned long nr_free_zone_pages(int offset)
1da177e4 3067{
dd1a239f 3068 struct zoneref *z;
54a6eb5c
MG
3069 struct zone *zone;
3070
e310fd43 3071 /* Just pick one node, since fallback list is circular */
ebec3862 3072 unsigned long sum = 0;
1da177e4 3073
0e88460d 3074 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3075
54a6eb5c 3076 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3077 unsigned long size = zone->managed_pages;
41858966 3078 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3079 if (size > high)
3080 sum += size - high;
1da177e4
LT
3081 }
3082
3083 return sum;
3084}
3085
e0fb5815
ZY
3086/**
3087 * nr_free_buffer_pages - count number of pages beyond high watermark
3088 *
3089 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3090 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3091 */
ebec3862 3092unsigned long nr_free_buffer_pages(void)
1da177e4 3093{
af4ca457 3094 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3095}
c2f1a551 3096EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3097
e0fb5815
ZY
3098/**
3099 * nr_free_pagecache_pages - count number of pages beyond high watermark
3100 *
3101 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3102 * high watermark within all zones.
1da177e4 3103 */
ebec3862 3104unsigned long nr_free_pagecache_pages(void)
1da177e4 3105{
2a1e274a 3106 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3107}
08e0f6a9
CL
3108
3109static inline void show_node(struct zone *zone)
1da177e4 3110{
e5adfffc 3111 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3112 printk("Node %d ", zone_to_nid(zone));
1da177e4 3113}
1da177e4 3114
1da177e4
LT
3115void si_meminfo(struct sysinfo *val)
3116{
3117 val->totalram = totalram_pages;
cc7452b6 3118 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3119 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3120 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3121 val->totalhigh = totalhigh_pages;
3122 val->freehigh = nr_free_highpages();
1da177e4
LT
3123 val->mem_unit = PAGE_SIZE;
3124}
3125
3126EXPORT_SYMBOL(si_meminfo);
3127
3128#ifdef CONFIG_NUMA
3129void si_meminfo_node(struct sysinfo *val, int nid)
3130{
cdd91a77
JL
3131 int zone_type; /* needs to be signed */
3132 unsigned long managed_pages = 0;
1da177e4
LT
3133 pg_data_t *pgdat = NODE_DATA(nid);
3134
cdd91a77
JL
3135 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3136 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3137 val->totalram = managed_pages;
cc7452b6 3138 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3139 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3140#ifdef CONFIG_HIGHMEM
b40da049 3141 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3142 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3143 NR_FREE_PAGES);
98d2b0eb
CL
3144#else
3145 val->totalhigh = 0;
3146 val->freehigh = 0;
3147#endif
1da177e4
LT
3148 val->mem_unit = PAGE_SIZE;
3149}
3150#endif
3151
ddd588b5 3152/*
7bf02ea2
DR
3153 * Determine whether the node should be displayed or not, depending on whether
3154 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3155 */
7bf02ea2 3156bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3157{
3158 bool ret = false;
cc9a6c87 3159 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3160
3161 if (!(flags & SHOW_MEM_FILTER_NODES))
3162 goto out;
3163
cc9a6c87 3164 do {
d26914d1 3165 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3166 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3167 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3168out:
3169 return ret;
3170}
3171
1da177e4
LT
3172#define K(x) ((x) << (PAGE_SHIFT-10))
3173
377e4f16
RV
3174static void show_migration_types(unsigned char type)
3175{
3176 static const char types[MIGRATE_TYPES] = {
3177 [MIGRATE_UNMOVABLE] = 'U',
3178 [MIGRATE_RECLAIMABLE] = 'E',
3179 [MIGRATE_MOVABLE] = 'M',
3180 [MIGRATE_RESERVE] = 'R',
3181#ifdef CONFIG_CMA
3182 [MIGRATE_CMA] = 'C',
3183#endif
194159fb 3184#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3185 [MIGRATE_ISOLATE] = 'I',
194159fb 3186#endif
377e4f16
RV
3187 };
3188 char tmp[MIGRATE_TYPES + 1];
3189 char *p = tmp;
3190 int i;
3191
3192 for (i = 0; i < MIGRATE_TYPES; i++) {
3193 if (type & (1 << i))
3194 *p++ = types[i];
3195 }
3196
3197 *p = '\0';
3198 printk("(%s) ", tmp);
3199}
3200
1da177e4
LT
3201/*
3202 * Show free area list (used inside shift_scroll-lock stuff)
3203 * We also calculate the percentage fragmentation. We do this by counting the
3204 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3205 * Suppresses nodes that are not allowed by current's cpuset if
3206 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3207 */
7bf02ea2 3208void show_free_areas(unsigned int filter)
1da177e4 3209{
c7241913 3210 int cpu;
1da177e4
LT
3211 struct zone *zone;
3212
ee99c71c 3213 for_each_populated_zone(zone) {
7bf02ea2 3214 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3215 continue;
c7241913
JS
3216 show_node(zone);
3217 printk("%s per-cpu:\n", zone->name);
1da177e4 3218
6b482c67 3219 for_each_online_cpu(cpu) {
1da177e4
LT
3220 struct per_cpu_pageset *pageset;
3221
99dcc3e5 3222 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3223
3dfa5721
CL
3224 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3225 cpu, pageset->pcp.high,
3226 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3227 }
3228 }
3229
a731286d
KM
3230 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3231 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3232 " unevictable:%lu"
b76146ed 3233 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3234 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3235 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3236 " free_cma:%lu\n",
4f98a2fe 3237 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3238 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3239 global_page_state(NR_ISOLATED_ANON),
3240 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3241 global_page_state(NR_INACTIVE_FILE),
a731286d 3242 global_page_state(NR_ISOLATED_FILE),
7b854121 3243 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3244 global_page_state(NR_FILE_DIRTY),
ce866b34 3245 global_page_state(NR_WRITEBACK),
fd39fc85 3246 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3247 global_page_state(NR_FREE_PAGES),
3701b033
KM
3248 global_page_state(NR_SLAB_RECLAIMABLE),
3249 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3250 global_page_state(NR_FILE_MAPPED),
4b02108a 3251 global_page_state(NR_SHMEM),
a25700a5 3252 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3253 global_page_state(NR_BOUNCE),
3254 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3255
ee99c71c 3256 for_each_populated_zone(zone) {
1da177e4
LT
3257 int i;
3258
7bf02ea2 3259 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3260 continue;
1da177e4
LT
3261 show_node(zone);
3262 printk("%s"
3263 " free:%lukB"
3264 " min:%lukB"
3265 " low:%lukB"
3266 " high:%lukB"
4f98a2fe
RR
3267 " active_anon:%lukB"
3268 " inactive_anon:%lukB"
3269 " active_file:%lukB"
3270 " inactive_file:%lukB"
7b854121 3271 " unevictable:%lukB"
a731286d
KM
3272 " isolated(anon):%lukB"
3273 " isolated(file):%lukB"
1da177e4 3274 " present:%lukB"
9feedc9d 3275 " managed:%lukB"
4a0aa73f
KM
3276 " mlocked:%lukB"
3277 " dirty:%lukB"
3278 " writeback:%lukB"
3279 " mapped:%lukB"
4b02108a 3280 " shmem:%lukB"
4a0aa73f
KM
3281 " slab_reclaimable:%lukB"
3282 " slab_unreclaimable:%lukB"
c6a7f572 3283 " kernel_stack:%lukB"
4a0aa73f
KM
3284 " pagetables:%lukB"
3285 " unstable:%lukB"
3286 " bounce:%lukB"
d1ce749a 3287 " free_cma:%lukB"
4a0aa73f 3288 " writeback_tmp:%lukB"
1da177e4
LT
3289 " pages_scanned:%lu"
3290 " all_unreclaimable? %s"
3291 "\n",
3292 zone->name,
88f5acf8 3293 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3294 K(min_wmark_pages(zone)),
3295 K(low_wmark_pages(zone)),
3296 K(high_wmark_pages(zone)),
4f98a2fe
RR
3297 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3298 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3299 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3300 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3301 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3302 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3303 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3304 K(zone->present_pages),
9feedc9d 3305 K(zone->managed_pages),
4a0aa73f
KM
3306 K(zone_page_state(zone, NR_MLOCK)),
3307 K(zone_page_state(zone, NR_FILE_DIRTY)),
3308 K(zone_page_state(zone, NR_WRITEBACK)),
3309 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3310 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3311 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3312 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3313 zone_page_state(zone, NR_KERNEL_STACK) *
3314 THREAD_SIZE / 1024,
4a0aa73f
KM
3315 K(zone_page_state(zone, NR_PAGETABLE)),
3316 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3317 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3318 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3319 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3320 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3321 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3322 );
3323 printk("lowmem_reserve[]:");
3324 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3325 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3326 printk("\n");
3327 }
3328
ee99c71c 3329 for_each_populated_zone(zone) {
b8af2941 3330 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3331 unsigned char types[MAX_ORDER];
1da177e4 3332
7bf02ea2 3333 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3334 continue;
1da177e4
LT
3335 show_node(zone);
3336 printk("%s: ", zone->name);
1da177e4
LT
3337
3338 spin_lock_irqsave(&zone->lock, flags);
3339 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3340 struct free_area *area = &zone->free_area[order];
3341 int type;
3342
3343 nr[order] = area->nr_free;
8f9de51a 3344 total += nr[order] << order;
377e4f16
RV
3345
3346 types[order] = 0;
3347 for (type = 0; type < MIGRATE_TYPES; type++) {
3348 if (!list_empty(&area->free_list[type]))
3349 types[order] |= 1 << type;
3350 }
1da177e4
LT
3351 }
3352 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3353 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3354 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3355 if (nr[order])
3356 show_migration_types(types[order]);
3357 }
1da177e4
LT
3358 printk("= %lukB\n", K(total));
3359 }
3360
949f7ec5
DR
3361 hugetlb_show_meminfo();
3362
e6f3602d
LW
3363 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3364
1da177e4
LT
3365 show_swap_cache_info();
3366}
3367
19770b32
MG
3368static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3369{
3370 zoneref->zone = zone;
3371 zoneref->zone_idx = zone_idx(zone);
3372}
3373
1da177e4
LT
3374/*
3375 * Builds allocation fallback zone lists.
1a93205b
CL
3376 *
3377 * Add all populated zones of a node to the zonelist.
1da177e4 3378 */
f0c0b2b8 3379static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3380 int nr_zones)
1da177e4 3381{
1a93205b 3382 struct zone *zone;
bc732f1d 3383 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3384
3385 do {
2f6726e5 3386 zone_type--;
070f8032 3387 zone = pgdat->node_zones + zone_type;
1a93205b 3388 if (populated_zone(zone)) {
dd1a239f
MG
3389 zoneref_set_zone(zone,
3390 &zonelist->_zonerefs[nr_zones++]);
070f8032 3391 check_highest_zone(zone_type);
1da177e4 3392 }
2f6726e5 3393 } while (zone_type);
bc732f1d 3394
070f8032 3395 return nr_zones;
1da177e4
LT
3396}
3397
f0c0b2b8
KH
3398
3399/*
3400 * zonelist_order:
3401 * 0 = automatic detection of better ordering.
3402 * 1 = order by ([node] distance, -zonetype)
3403 * 2 = order by (-zonetype, [node] distance)
3404 *
3405 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3406 * the same zonelist. So only NUMA can configure this param.
3407 */
3408#define ZONELIST_ORDER_DEFAULT 0
3409#define ZONELIST_ORDER_NODE 1
3410#define ZONELIST_ORDER_ZONE 2
3411
3412/* zonelist order in the kernel.
3413 * set_zonelist_order() will set this to NODE or ZONE.
3414 */
3415static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3416static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3417
3418
1da177e4 3419#ifdef CONFIG_NUMA
f0c0b2b8
KH
3420/* The value user specified ....changed by config */
3421static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3422/* string for sysctl */
3423#define NUMA_ZONELIST_ORDER_LEN 16
3424char numa_zonelist_order[16] = "default";
3425
3426/*
3427 * interface for configure zonelist ordering.
3428 * command line option "numa_zonelist_order"
3429 * = "[dD]efault - default, automatic configuration.
3430 * = "[nN]ode - order by node locality, then by zone within node
3431 * = "[zZ]one - order by zone, then by locality within zone
3432 */
3433
3434static int __parse_numa_zonelist_order(char *s)
3435{
3436 if (*s == 'd' || *s == 'D') {
3437 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3438 } else if (*s == 'n' || *s == 'N') {
3439 user_zonelist_order = ZONELIST_ORDER_NODE;
3440 } else if (*s == 'z' || *s == 'Z') {
3441 user_zonelist_order = ZONELIST_ORDER_ZONE;
3442 } else {
3443 printk(KERN_WARNING
3444 "Ignoring invalid numa_zonelist_order value: "
3445 "%s\n", s);
3446 return -EINVAL;
3447 }
3448 return 0;
3449}
3450
3451static __init int setup_numa_zonelist_order(char *s)
3452{
ecb256f8
VL
3453 int ret;
3454
3455 if (!s)
3456 return 0;
3457
3458 ret = __parse_numa_zonelist_order(s);
3459 if (ret == 0)
3460 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3461
3462 return ret;
f0c0b2b8
KH
3463}
3464early_param("numa_zonelist_order", setup_numa_zonelist_order);
3465
3466/*
3467 * sysctl handler for numa_zonelist_order
3468 */
cccad5b9 3469int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3470 void __user *buffer, size_t *length,
f0c0b2b8
KH
3471 loff_t *ppos)
3472{
3473 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3474 int ret;
443c6f14 3475 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3476
443c6f14 3477 mutex_lock(&zl_order_mutex);
dacbde09
CG
3478 if (write) {
3479 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3480 ret = -EINVAL;
3481 goto out;
3482 }
3483 strcpy(saved_string, (char *)table->data);
3484 }
8d65af78 3485 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3486 if (ret)
443c6f14 3487 goto out;
f0c0b2b8
KH
3488 if (write) {
3489 int oldval = user_zonelist_order;
dacbde09
CG
3490
3491 ret = __parse_numa_zonelist_order((char *)table->data);
3492 if (ret) {
f0c0b2b8
KH
3493 /*
3494 * bogus value. restore saved string
3495 */
dacbde09 3496 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3497 NUMA_ZONELIST_ORDER_LEN);
3498 user_zonelist_order = oldval;
4eaf3f64
HL
3499 } else if (oldval != user_zonelist_order) {
3500 mutex_lock(&zonelists_mutex);
9adb62a5 3501 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3502 mutex_unlock(&zonelists_mutex);
3503 }
f0c0b2b8 3504 }
443c6f14
AK
3505out:
3506 mutex_unlock(&zl_order_mutex);
3507 return ret;
f0c0b2b8
KH
3508}
3509
3510
62bc62a8 3511#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3512static int node_load[MAX_NUMNODES];
3513
1da177e4 3514/**
4dc3b16b 3515 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3516 * @node: node whose fallback list we're appending
3517 * @used_node_mask: nodemask_t of already used nodes
3518 *
3519 * We use a number of factors to determine which is the next node that should
3520 * appear on a given node's fallback list. The node should not have appeared
3521 * already in @node's fallback list, and it should be the next closest node
3522 * according to the distance array (which contains arbitrary distance values
3523 * from each node to each node in the system), and should also prefer nodes
3524 * with no CPUs, since presumably they'll have very little allocation pressure
3525 * on them otherwise.
3526 * It returns -1 if no node is found.
3527 */
f0c0b2b8 3528static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3529{
4cf808eb 3530 int n, val;
1da177e4 3531 int min_val = INT_MAX;
00ef2d2f 3532 int best_node = NUMA_NO_NODE;
a70f7302 3533 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3534
4cf808eb
LT
3535 /* Use the local node if we haven't already */
3536 if (!node_isset(node, *used_node_mask)) {
3537 node_set(node, *used_node_mask);
3538 return node;
3539 }
1da177e4 3540
4b0ef1fe 3541 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3542
3543 /* Don't want a node to appear more than once */
3544 if (node_isset(n, *used_node_mask))
3545 continue;
3546
1da177e4
LT
3547 /* Use the distance array to find the distance */
3548 val = node_distance(node, n);
3549
4cf808eb
LT
3550 /* Penalize nodes under us ("prefer the next node") */
3551 val += (n < node);
3552
1da177e4 3553 /* Give preference to headless and unused nodes */
a70f7302
RR
3554 tmp = cpumask_of_node(n);
3555 if (!cpumask_empty(tmp))
1da177e4
LT
3556 val += PENALTY_FOR_NODE_WITH_CPUS;
3557
3558 /* Slight preference for less loaded node */
3559 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3560 val += node_load[n];
3561
3562 if (val < min_val) {
3563 min_val = val;
3564 best_node = n;
3565 }
3566 }
3567
3568 if (best_node >= 0)
3569 node_set(best_node, *used_node_mask);
3570
3571 return best_node;
3572}
3573
f0c0b2b8
KH
3574
3575/*
3576 * Build zonelists ordered by node and zones within node.
3577 * This results in maximum locality--normal zone overflows into local
3578 * DMA zone, if any--but risks exhausting DMA zone.
3579 */
3580static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3581{
f0c0b2b8 3582 int j;
1da177e4 3583 struct zonelist *zonelist;
f0c0b2b8 3584
54a6eb5c 3585 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3586 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3587 ;
bc732f1d 3588 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3589 zonelist->_zonerefs[j].zone = NULL;
3590 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3591}
3592
523b9458
CL
3593/*
3594 * Build gfp_thisnode zonelists
3595 */
3596static void build_thisnode_zonelists(pg_data_t *pgdat)
3597{
523b9458
CL
3598 int j;
3599 struct zonelist *zonelist;
3600
54a6eb5c 3601 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3602 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3603 zonelist->_zonerefs[j].zone = NULL;
3604 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3605}
3606
f0c0b2b8
KH
3607/*
3608 * Build zonelists ordered by zone and nodes within zones.
3609 * This results in conserving DMA zone[s] until all Normal memory is
3610 * exhausted, but results in overflowing to remote node while memory
3611 * may still exist in local DMA zone.
3612 */
3613static int node_order[MAX_NUMNODES];
3614
3615static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3616{
f0c0b2b8
KH
3617 int pos, j, node;
3618 int zone_type; /* needs to be signed */
3619 struct zone *z;
3620 struct zonelist *zonelist;
3621
54a6eb5c
MG
3622 zonelist = &pgdat->node_zonelists[0];
3623 pos = 0;
3624 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3625 for (j = 0; j < nr_nodes; j++) {
3626 node = node_order[j];
3627 z = &NODE_DATA(node)->node_zones[zone_type];
3628 if (populated_zone(z)) {
dd1a239f
MG
3629 zoneref_set_zone(z,
3630 &zonelist->_zonerefs[pos++]);
54a6eb5c 3631 check_highest_zone(zone_type);
f0c0b2b8
KH
3632 }
3633 }
f0c0b2b8 3634 }
dd1a239f
MG
3635 zonelist->_zonerefs[pos].zone = NULL;
3636 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3637}
3638
3193913c
MG
3639#if defined(CONFIG_64BIT)
3640/*
3641 * Devices that require DMA32/DMA are relatively rare and do not justify a
3642 * penalty to every machine in case the specialised case applies. Default
3643 * to Node-ordering on 64-bit NUMA machines
3644 */
3645static int default_zonelist_order(void)
3646{
3647 return ZONELIST_ORDER_NODE;
3648}
3649#else
3650/*
3651 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3652 * by the kernel. If processes running on node 0 deplete the low memory zone
3653 * then reclaim will occur more frequency increasing stalls and potentially
3654 * be easier to OOM if a large percentage of the zone is under writeback or
3655 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3656 * Hence, default to zone ordering on 32-bit.
3657 */
f0c0b2b8
KH
3658static int default_zonelist_order(void)
3659{
f0c0b2b8
KH
3660 return ZONELIST_ORDER_ZONE;
3661}
3193913c 3662#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3663
3664static void set_zonelist_order(void)
3665{
3666 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3667 current_zonelist_order = default_zonelist_order();
3668 else
3669 current_zonelist_order = user_zonelist_order;
3670}
3671
3672static void build_zonelists(pg_data_t *pgdat)
3673{
3674 int j, node, load;
3675 enum zone_type i;
1da177e4 3676 nodemask_t used_mask;
f0c0b2b8
KH
3677 int local_node, prev_node;
3678 struct zonelist *zonelist;
3679 int order = current_zonelist_order;
1da177e4
LT
3680
3681 /* initialize zonelists */
523b9458 3682 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3683 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3684 zonelist->_zonerefs[0].zone = NULL;
3685 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3686 }
3687
3688 /* NUMA-aware ordering of nodes */
3689 local_node = pgdat->node_id;
62bc62a8 3690 load = nr_online_nodes;
1da177e4
LT
3691 prev_node = local_node;
3692 nodes_clear(used_mask);
f0c0b2b8 3693
f0c0b2b8
KH
3694 memset(node_order, 0, sizeof(node_order));
3695 j = 0;
3696
1da177e4
LT
3697 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3698 /*
3699 * We don't want to pressure a particular node.
3700 * So adding penalty to the first node in same
3701 * distance group to make it round-robin.
3702 */
957f822a
DR
3703 if (node_distance(local_node, node) !=
3704 node_distance(local_node, prev_node))
f0c0b2b8
KH
3705 node_load[node] = load;
3706
1da177e4
LT
3707 prev_node = node;
3708 load--;
f0c0b2b8
KH
3709 if (order == ZONELIST_ORDER_NODE)
3710 build_zonelists_in_node_order(pgdat, node);
3711 else
3712 node_order[j++] = node; /* remember order */
3713 }
1da177e4 3714
f0c0b2b8
KH
3715 if (order == ZONELIST_ORDER_ZONE) {
3716 /* calculate node order -- i.e., DMA last! */
3717 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3718 }
523b9458
CL
3719
3720 build_thisnode_zonelists(pgdat);
1da177e4
LT
3721}
3722
9276b1bc 3723/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3724static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3725{
54a6eb5c
MG
3726 struct zonelist *zonelist;
3727 struct zonelist_cache *zlc;
dd1a239f 3728 struct zoneref *z;
9276b1bc 3729
54a6eb5c
MG
3730 zonelist = &pgdat->node_zonelists[0];
3731 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3732 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3733 for (z = zonelist->_zonerefs; z->zone; z++)
3734 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3735}
3736
7aac7898
LS
3737#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3738/*
3739 * Return node id of node used for "local" allocations.
3740 * I.e., first node id of first zone in arg node's generic zonelist.
3741 * Used for initializing percpu 'numa_mem', which is used primarily
3742 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3743 */
3744int local_memory_node(int node)
3745{
3746 struct zone *zone;
3747
3748 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3749 gfp_zone(GFP_KERNEL),
3750 NULL,
3751 &zone);
3752 return zone->node;
3753}
3754#endif
f0c0b2b8 3755
1da177e4
LT
3756#else /* CONFIG_NUMA */
3757
f0c0b2b8
KH
3758static void set_zonelist_order(void)
3759{
3760 current_zonelist_order = ZONELIST_ORDER_ZONE;
3761}
3762
3763static void build_zonelists(pg_data_t *pgdat)
1da177e4 3764{
19655d34 3765 int node, local_node;
54a6eb5c
MG
3766 enum zone_type j;
3767 struct zonelist *zonelist;
1da177e4
LT
3768
3769 local_node = pgdat->node_id;
1da177e4 3770
54a6eb5c 3771 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3772 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3773
54a6eb5c
MG
3774 /*
3775 * Now we build the zonelist so that it contains the zones
3776 * of all the other nodes.
3777 * We don't want to pressure a particular node, so when
3778 * building the zones for node N, we make sure that the
3779 * zones coming right after the local ones are those from
3780 * node N+1 (modulo N)
3781 */
3782 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3783 if (!node_online(node))
3784 continue;
bc732f1d 3785 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3786 }
54a6eb5c
MG
3787 for (node = 0; node < local_node; node++) {
3788 if (!node_online(node))
3789 continue;
bc732f1d 3790 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3791 }
3792
dd1a239f
MG
3793 zonelist->_zonerefs[j].zone = NULL;
3794 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3795}
3796
9276b1bc 3797/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3798static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3799{
54a6eb5c 3800 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3801}
3802
1da177e4
LT
3803#endif /* CONFIG_NUMA */
3804
99dcc3e5
CL
3805/*
3806 * Boot pageset table. One per cpu which is going to be used for all
3807 * zones and all nodes. The parameters will be set in such a way
3808 * that an item put on a list will immediately be handed over to
3809 * the buddy list. This is safe since pageset manipulation is done
3810 * with interrupts disabled.
3811 *
3812 * The boot_pagesets must be kept even after bootup is complete for
3813 * unused processors and/or zones. They do play a role for bootstrapping
3814 * hotplugged processors.
3815 *
3816 * zoneinfo_show() and maybe other functions do
3817 * not check if the processor is online before following the pageset pointer.
3818 * Other parts of the kernel may not check if the zone is available.
3819 */
3820static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3821static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3822static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3823
4eaf3f64
HL
3824/*
3825 * Global mutex to protect against size modification of zonelists
3826 * as well as to serialize pageset setup for the new populated zone.
3827 */
3828DEFINE_MUTEX(zonelists_mutex);
3829
9b1a4d38 3830/* return values int ....just for stop_machine() */
4ed7e022 3831static int __build_all_zonelists(void *data)
1da177e4 3832{
6811378e 3833 int nid;
99dcc3e5 3834 int cpu;
9adb62a5 3835 pg_data_t *self = data;
9276b1bc 3836
7f9cfb31
BL
3837#ifdef CONFIG_NUMA
3838 memset(node_load, 0, sizeof(node_load));
3839#endif
9adb62a5
JL
3840
3841 if (self && !node_online(self->node_id)) {
3842 build_zonelists(self);
3843 build_zonelist_cache(self);
3844 }
3845
9276b1bc 3846 for_each_online_node(nid) {
7ea1530a
CL
3847 pg_data_t *pgdat = NODE_DATA(nid);
3848
3849 build_zonelists(pgdat);
3850 build_zonelist_cache(pgdat);
9276b1bc 3851 }
99dcc3e5
CL
3852
3853 /*
3854 * Initialize the boot_pagesets that are going to be used
3855 * for bootstrapping processors. The real pagesets for
3856 * each zone will be allocated later when the per cpu
3857 * allocator is available.
3858 *
3859 * boot_pagesets are used also for bootstrapping offline
3860 * cpus if the system is already booted because the pagesets
3861 * are needed to initialize allocators on a specific cpu too.
3862 * F.e. the percpu allocator needs the page allocator which
3863 * needs the percpu allocator in order to allocate its pagesets
3864 * (a chicken-egg dilemma).
3865 */
7aac7898 3866 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3867 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3868
7aac7898
LS
3869#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3870 /*
3871 * We now know the "local memory node" for each node--
3872 * i.e., the node of the first zone in the generic zonelist.
3873 * Set up numa_mem percpu variable for on-line cpus. During
3874 * boot, only the boot cpu should be on-line; we'll init the
3875 * secondary cpus' numa_mem as they come on-line. During
3876 * node/memory hotplug, we'll fixup all on-line cpus.
3877 */
3878 if (cpu_online(cpu))
3879 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3880#endif
3881 }
3882
6811378e
YG
3883 return 0;
3884}
3885
4eaf3f64
HL
3886/*
3887 * Called with zonelists_mutex held always
3888 * unless system_state == SYSTEM_BOOTING.
3889 */
9adb62a5 3890void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3891{
f0c0b2b8
KH
3892 set_zonelist_order();
3893
6811378e 3894 if (system_state == SYSTEM_BOOTING) {
423b41d7 3895 __build_all_zonelists(NULL);
68ad8df4 3896 mminit_verify_zonelist();
6811378e
YG
3897 cpuset_init_current_mems_allowed();
3898 } else {
e9959f0f 3899#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3900 if (zone)
3901 setup_zone_pageset(zone);
e9959f0f 3902#endif
dd1895e2
CS
3903 /* we have to stop all cpus to guarantee there is no user
3904 of zonelist */
9adb62a5 3905 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3906 /* cpuset refresh routine should be here */
3907 }
bd1e22b8 3908 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3909 /*
3910 * Disable grouping by mobility if the number of pages in the
3911 * system is too low to allow the mechanism to work. It would be
3912 * more accurate, but expensive to check per-zone. This check is
3913 * made on memory-hotadd so a system can start with mobility
3914 * disabled and enable it later
3915 */
d9c23400 3916 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3917 page_group_by_mobility_disabled = 1;
3918 else
3919 page_group_by_mobility_disabled = 0;
3920
f88dfff5 3921 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 3922 "Total pages: %ld\n",
62bc62a8 3923 nr_online_nodes,
f0c0b2b8 3924 zonelist_order_name[current_zonelist_order],
9ef9acb0 3925 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3926 vm_total_pages);
3927#ifdef CONFIG_NUMA
f88dfff5 3928 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 3929#endif
1da177e4
LT
3930}
3931
3932/*
3933 * Helper functions to size the waitqueue hash table.
3934 * Essentially these want to choose hash table sizes sufficiently
3935 * large so that collisions trying to wait on pages are rare.
3936 * But in fact, the number of active page waitqueues on typical
3937 * systems is ridiculously low, less than 200. So this is even
3938 * conservative, even though it seems large.
3939 *
3940 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3941 * waitqueues, i.e. the size of the waitq table given the number of pages.
3942 */
3943#define PAGES_PER_WAITQUEUE 256
3944
cca448fe 3945#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3946static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3947{
3948 unsigned long size = 1;
3949
3950 pages /= PAGES_PER_WAITQUEUE;
3951
3952 while (size < pages)
3953 size <<= 1;
3954
3955 /*
3956 * Once we have dozens or even hundreds of threads sleeping
3957 * on IO we've got bigger problems than wait queue collision.
3958 * Limit the size of the wait table to a reasonable size.
3959 */
3960 size = min(size, 4096UL);
3961
3962 return max(size, 4UL);
3963}
cca448fe
YG
3964#else
3965/*
3966 * A zone's size might be changed by hot-add, so it is not possible to determine
3967 * a suitable size for its wait_table. So we use the maximum size now.
3968 *
3969 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3970 *
3971 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3972 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3973 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3974 *
3975 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3976 * or more by the traditional way. (See above). It equals:
3977 *
3978 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3979 * ia64(16K page size) : = ( 8G + 4M)byte.
3980 * powerpc (64K page size) : = (32G +16M)byte.
3981 */
3982static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3983{
3984 return 4096UL;
3985}
3986#endif
1da177e4
LT
3987
3988/*
3989 * This is an integer logarithm so that shifts can be used later
3990 * to extract the more random high bits from the multiplicative
3991 * hash function before the remainder is taken.
3992 */
3993static inline unsigned long wait_table_bits(unsigned long size)
3994{
3995 return ffz(~size);
3996}
3997
6d3163ce
AH
3998/*
3999 * Check if a pageblock contains reserved pages
4000 */
4001static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4002{
4003 unsigned long pfn;
4004
4005 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4006 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4007 return 1;
4008 }
4009 return 0;
4010}
4011
56fd56b8 4012/*
d9c23400 4013 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4014 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4015 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4016 * higher will lead to a bigger reserve which will get freed as contiguous
4017 * blocks as reclaim kicks in
4018 */
4019static void setup_zone_migrate_reserve(struct zone *zone)
4020{
6d3163ce 4021 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4022 struct page *page;
78986a67
MG
4023 unsigned long block_migratetype;
4024 int reserve;
943dca1a 4025 int old_reserve;
56fd56b8 4026
d0215638
MH
4027 /*
4028 * Get the start pfn, end pfn and the number of blocks to reserve
4029 * We have to be careful to be aligned to pageblock_nr_pages to
4030 * make sure that we always check pfn_valid for the first page in
4031 * the block.
4032 */
56fd56b8 4033 start_pfn = zone->zone_start_pfn;
108bcc96 4034 end_pfn = zone_end_pfn(zone);
d0215638 4035 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4036 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4037 pageblock_order;
56fd56b8 4038
78986a67
MG
4039 /*
4040 * Reserve blocks are generally in place to help high-order atomic
4041 * allocations that are short-lived. A min_free_kbytes value that
4042 * would result in more than 2 reserve blocks for atomic allocations
4043 * is assumed to be in place to help anti-fragmentation for the
4044 * future allocation of hugepages at runtime.
4045 */
4046 reserve = min(2, reserve);
943dca1a
YI
4047 old_reserve = zone->nr_migrate_reserve_block;
4048
4049 /* When memory hot-add, we almost always need to do nothing */
4050 if (reserve == old_reserve)
4051 return;
4052 zone->nr_migrate_reserve_block = reserve;
78986a67 4053
d9c23400 4054 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4055 if (!pfn_valid(pfn))
4056 continue;
4057 page = pfn_to_page(pfn);
4058
344c790e
AL
4059 /* Watch out for overlapping nodes */
4060 if (page_to_nid(page) != zone_to_nid(zone))
4061 continue;
4062
56fd56b8
MG
4063 block_migratetype = get_pageblock_migratetype(page);
4064
938929f1
MG
4065 /* Only test what is necessary when the reserves are not met */
4066 if (reserve > 0) {
4067 /*
4068 * Blocks with reserved pages will never free, skip
4069 * them.
4070 */
4071 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4072 if (pageblock_is_reserved(pfn, block_end_pfn))
4073 continue;
56fd56b8 4074
938929f1
MG
4075 /* If this block is reserved, account for it */
4076 if (block_migratetype == MIGRATE_RESERVE) {
4077 reserve--;
4078 continue;
4079 }
4080
4081 /* Suitable for reserving if this block is movable */
4082 if (block_migratetype == MIGRATE_MOVABLE) {
4083 set_pageblock_migratetype(page,
4084 MIGRATE_RESERVE);
4085 move_freepages_block(zone, page,
4086 MIGRATE_RESERVE);
4087 reserve--;
4088 continue;
4089 }
943dca1a
YI
4090 } else if (!old_reserve) {
4091 /*
4092 * At boot time we don't need to scan the whole zone
4093 * for turning off MIGRATE_RESERVE.
4094 */
4095 break;
56fd56b8
MG
4096 }
4097
4098 /*
4099 * If the reserve is met and this is a previous reserved block,
4100 * take it back
4101 */
4102 if (block_migratetype == MIGRATE_RESERVE) {
4103 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4104 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4105 }
4106 }
4107}
ac0e5b7a 4108
1da177e4
LT
4109/*
4110 * Initially all pages are reserved - free ones are freed
4111 * up by free_all_bootmem() once the early boot process is
4112 * done. Non-atomic initialization, single-pass.
4113 */
c09b4240 4114void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4115 unsigned long start_pfn, enum memmap_context context)
1da177e4 4116{
1da177e4 4117 struct page *page;
29751f69
AW
4118 unsigned long end_pfn = start_pfn + size;
4119 unsigned long pfn;
86051ca5 4120 struct zone *z;
1da177e4 4121
22b31eec
HD
4122 if (highest_memmap_pfn < end_pfn - 1)
4123 highest_memmap_pfn = end_pfn - 1;
4124
86051ca5 4125 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4126 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4127 /*
4128 * There can be holes in boot-time mem_map[]s
4129 * handed to this function. They do not
4130 * exist on hotplugged memory.
4131 */
4132 if (context == MEMMAP_EARLY) {
4133 if (!early_pfn_valid(pfn))
4134 continue;
4135 if (!early_pfn_in_nid(pfn, nid))
4136 continue;
4137 }
d41dee36
AW
4138 page = pfn_to_page(pfn);
4139 set_page_links(page, zone, nid, pfn);
708614e6 4140 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4141 init_page_count(page);
22b751c3 4142 page_mapcount_reset(page);
90572890 4143 page_cpupid_reset_last(page);
1da177e4 4144 SetPageReserved(page);
b2a0ac88
MG
4145 /*
4146 * Mark the block movable so that blocks are reserved for
4147 * movable at startup. This will force kernel allocations
4148 * to reserve their blocks rather than leaking throughout
4149 * the address space during boot when many long-lived
56fd56b8
MG
4150 * kernel allocations are made. Later some blocks near
4151 * the start are marked MIGRATE_RESERVE by
4152 * setup_zone_migrate_reserve()
86051ca5
KH
4153 *
4154 * bitmap is created for zone's valid pfn range. but memmap
4155 * can be created for invalid pages (for alignment)
4156 * check here not to call set_pageblock_migratetype() against
4157 * pfn out of zone.
b2a0ac88 4158 */
86051ca5 4159 if ((z->zone_start_pfn <= pfn)
108bcc96 4160 && (pfn < zone_end_pfn(z))
86051ca5 4161 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4162 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4163
1da177e4
LT
4164 INIT_LIST_HEAD(&page->lru);
4165#ifdef WANT_PAGE_VIRTUAL
4166 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4167 if (!is_highmem_idx(zone))
3212c6be 4168 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4169#endif
1da177e4
LT
4170 }
4171}
4172
1e548deb 4173static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4174{
7aeb09f9 4175 unsigned int order, t;
b2a0ac88
MG
4176 for_each_migratetype_order(order, t) {
4177 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4178 zone->free_area[order].nr_free = 0;
4179 }
4180}
4181
4182#ifndef __HAVE_ARCH_MEMMAP_INIT
4183#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4184 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4185#endif
4186
7cd2b0a3 4187static int zone_batchsize(struct zone *zone)
e7c8d5c9 4188{
3a6be87f 4189#ifdef CONFIG_MMU
e7c8d5c9
CL
4190 int batch;
4191
4192 /*
4193 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4194 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4195 *
4196 * OK, so we don't know how big the cache is. So guess.
4197 */
b40da049 4198 batch = zone->managed_pages / 1024;
ba56e91c
SR
4199 if (batch * PAGE_SIZE > 512 * 1024)
4200 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4201 batch /= 4; /* We effectively *= 4 below */
4202 if (batch < 1)
4203 batch = 1;
4204
4205 /*
0ceaacc9
NP
4206 * Clamp the batch to a 2^n - 1 value. Having a power
4207 * of 2 value was found to be more likely to have
4208 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4209 *
0ceaacc9
NP
4210 * For example if 2 tasks are alternately allocating
4211 * batches of pages, one task can end up with a lot
4212 * of pages of one half of the possible page colors
4213 * and the other with pages of the other colors.
e7c8d5c9 4214 */
9155203a 4215 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4216
e7c8d5c9 4217 return batch;
3a6be87f
DH
4218
4219#else
4220 /* The deferral and batching of frees should be suppressed under NOMMU
4221 * conditions.
4222 *
4223 * The problem is that NOMMU needs to be able to allocate large chunks
4224 * of contiguous memory as there's no hardware page translation to
4225 * assemble apparent contiguous memory from discontiguous pages.
4226 *
4227 * Queueing large contiguous runs of pages for batching, however,
4228 * causes the pages to actually be freed in smaller chunks. As there
4229 * can be a significant delay between the individual batches being
4230 * recycled, this leads to the once large chunks of space being
4231 * fragmented and becoming unavailable for high-order allocations.
4232 */
4233 return 0;
4234#endif
e7c8d5c9
CL
4235}
4236
8d7a8fa9
CS
4237/*
4238 * pcp->high and pcp->batch values are related and dependent on one another:
4239 * ->batch must never be higher then ->high.
4240 * The following function updates them in a safe manner without read side
4241 * locking.
4242 *
4243 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4244 * those fields changing asynchronously (acording the the above rule).
4245 *
4246 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4247 * outside of boot time (or some other assurance that no concurrent updaters
4248 * exist).
4249 */
4250static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4251 unsigned long batch)
4252{
4253 /* start with a fail safe value for batch */
4254 pcp->batch = 1;
4255 smp_wmb();
4256
4257 /* Update high, then batch, in order */
4258 pcp->high = high;
4259 smp_wmb();
4260
4261 pcp->batch = batch;
4262}
4263
3664033c 4264/* a companion to pageset_set_high() */
4008bab7
CS
4265static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4266{
8d7a8fa9 4267 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4268}
4269
88c90dbc 4270static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4271{
4272 struct per_cpu_pages *pcp;
5f8dcc21 4273 int migratetype;
2caaad41 4274
1c6fe946
MD
4275 memset(p, 0, sizeof(*p));
4276
3dfa5721 4277 pcp = &p->pcp;
2caaad41 4278 pcp->count = 0;
5f8dcc21
MG
4279 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4280 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4281}
4282
88c90dbc
CS
4283static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4284{
4285 pageset_init(p);
4286 pageset_set_batch(p, batch);
4287}
4288
8ad4b1fb 4289/*
3664033c 4290 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4291 * to the value high for the pageset p.
4292 */
3664033c 4293static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4294 unsigned long high)
4295{
8d7a8fa9
CS
4296 unsigned long batch = max(1UL, high / 4);
4297 if ((high / 4) > (PAGE_SHIFT * 8))
4298 batch = PAGE_SHIFT * 8;
8ad4b1fb 4299
8d7a8fa9 4300 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4301}
4302
7cd2b0a3
DR
4303static void pageset_set_high_and_batch(struct zone *zone,
4304 struct per_cpu_pageset *pcp)
56cef2b8 4305{
56cef2b8 4306 if (percpu_pagelist_fraction)
3664033c 4307 pageset_set_high(pcp,
56cef2b8
CS
4308 (zone->managed_pages /
4309 percpu_pagelist_fraction));
4310 else
4311 pageset_set_batch(pcp, zone_batchsize(zone));
4312}
4313
169f6c19
CS
4314static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4315{
4316 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4317
4318 pageset_init(pcp);
4319 pageset_set_high_and_batch(zone, pcp);
4320}
4321
4ed7e022 4322static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4323{
4324 int cpu;
319774e2 4325 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4326 for_each_possible_cpu(cpu)
4327 zone_pageset_init(zone, cpu);
319774e2
WF
4328}
4329
2caaad41 4330/*
99dcc3e5
CL
4331 * Allocate per cpu pagesets and initialize them.
4332 * Before this call only boot pagesets were available.
e7c8d5c9 4333 */
99dcc3e5 4334void __init setup_per_cpu_pageset(void)
e7c8d5c9 4335{
99dcc3e5 4336 struct zone *zone;
e7c8d5c9 4337
319774e2
WF
4338 for_each_populated_zone(zone)
4339 setup_zone_pageset(zone);
e7c8d5c9
CL
4340}
4341
577a32f6 4342static noinline __init_refok
cca448fe 4343int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4344{
4345 int i;
cca448fe 4346 size_t alloc_size;
ed8ece2e
DH
4347
4348 /*
4349 * The per-page waitqueue mechanism uses hashed waitqueues
4350 * per zone.
4351 */
02b694de
YG
4352 zone->wait_table_hash_nr_entries =
4353 wait_table_hash_nr_entries(zone_size_pages);
4354 zone->wait_table_bits =
4355 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4356 alloc_size = zone->wait_table_hash_nr_entries
4357 * sizeof(wait_queue_head_t);
4358
cd94b9db 4359 if (!slab_is_available()) {
cca448fe 4360 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4361 memblock_virt_alloc_node_nopanic(
4362 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4363 } else {
4364 /*
4365 * This case means that a zone whose size was 0 gets new memory
4366 * via memory hot-add.
4367 * But it may be the case that a new node was hot-added. In
4368 * this case vmalloc() will not be able to use this new node's
4369 * memory - this wait_table must be initialized to use this new
4370 * node itself as well.
4371 * To use this new node's memory, further consideration will be
4372 * necessary.
4373 */
8691f3a7 4374 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4375 }
4376 if (!zone->wait_table)
4377 return -ENOMEM;
ed8ece2e 4378
b8af2941 4379 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4380 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4381
4382 return 0;
ed8ece2e
DH
4383}
4384
c09b4240 4385static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4386{
99dcc3e5
CL
4387 /*
4388 * per cpu subsystem is not up at this point. The following code
4389 * relies on the ability of the linker to provide the
4390 * offset of a (static) per cpu variable into the per cpu area.
4391 */
4392 zone->pageset = &boot_pageset;
ed8ece2e 4393
b38a8725 4394 if (populated_zone(zone))
99dcc3e5
CL
4395 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4396 zone->name, zone->present_pages,
4397 zone_batchsize(zone));
ed8ece2e
DH
4398}
4399
4ed7e022 4400int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4401 unsigned long zone_start_pfn,
a2f3aa02
DH
4402 unsigned long size,
4403 enum memmap_context context)
ed8ece2e
DH
4404{
4405 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4406 int ret;
4407 ret = zone_wait_table_init(zone, size);
4408 if (ret)
4409 return ret;
ed8ece2e
DH
4410 pgdat->nr_zones = zone_idx(zone) + 1;
4411
ed8ece2e
DH
4412 zone->zone_start_pfn = zone_start_pfn;
4413
708614e6
MG
4414 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4415 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4416 pgdat->node_id,
4417 (unsigned long)zone_idx(zone),
4418 zone_start_pfn, (zone_start_pfn + size));
4419
1e548deb 4420 zone_init_free_lists(zone);
718127cc
YG
4421
4422 return 0;
ed8ece2e
DH
4423}
4424
0ee332c1 4425#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4426#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4427/*
4428 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4429 */
f2dbcfa7 4430int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4431{
c13291a5 4432 unsigned long start_pfn, end_pfn;
e76b63f8 4433 int nid;
7c243c71
RA
4434 /*
4435 * NOTE: The following SMP-unsafe globals are only used early in boot
4436 * when the kernel is running single-threaded.
4437 */
4438 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4439 static int __meminitdata last_nid;
4440
4441 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4442 return last_nid;
c713216d 4443
e76b63f8
YL
4444 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4445 if (nid != -1) {
4446 last_start_pfn = start_pfn;
4447 last_end_pfn = end_pfn;
4448 last_nid = nid;
4449 }
4450
4451 return nid;
c713216d
MG
4452}
4453#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4454
f2dbcfa7
KH
4455int __meminit early_pfn_to_nid(unsigned long pfn)
4456{
cc2559bc
KH
4457 int nid;
4458
4459 nid = __early_pfn_to_nid(pfn);
4460 if (nid >= 0)
4461 return nid;
4462 /* just returns 0 */
4463 return 0;
f2dbcfa7
KH
4464}
4465
cc2559bc
KH
4466#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4467bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4468{
4469 int nid;
4470
4471 nid = __early_pfn_to_nid(pfn);
4472 if (nid >= 0 && nid != node)
4473 return false;
4474 return true;
4475}
4476#endif
f2dbcfa7 4477
c713216d 4478/**
6782832e 4479 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4480 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4481 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4482 *
7d018176
ZZ
4483 * If an architecture guarantees that all ranges registered contain no holes
4484 * and may be freed, this this function may be used instead of calling
4485 * memblock_free_early_nid() manually.
c713216d 4486 */
c13291a5 4487void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4488{
c13291a5
TH
4489 unsigned long start_pfn, end_pfn;
4490 int i, this_nid;
edbe7d23 4491
c13291a5
TH
4492 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4493 start_pfn = min(start_pfn, max_low_pfn);
4494 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4495
c13291a5 4496 if (start_pfn < end_pfn)
6782832e
SS
4497 memblock_free_early_nid(PFN_PHYS(start_pfn),
4498 (end_pfn - start_pfn) << PAGE_SHIFT,
4499 this_nid);
edbe7d23 4500 }
edbe7d23 4501}
edbe7d23 4502
c713216d
MG
4503/**
4504 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4505 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4506 *
7d018176
ZZ
4507 * If an architecture guarantees that all ranges registered contain no holes and may
4508 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4509 */
4510void __init sparse_memory_present_with_active_regions(int nid)
4511{
c13291a5
TH
4512 unsigned long start_pfn, end_pfn;
4513 int i, this_nid;
c713216d 4514
c13291a5
TH
4515 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4516 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4517}
4518
4519/**
4520 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4521 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4522 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4523 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4524 *
4525 * It returns the start and end page frame of a node based on information
7d018176 4526 * provided by memblock_set_node(). If called for a node
c713216d 4527 * with no available memory, a warning is printed and the start and end
88ca3b94 4528 * PFNs will be 0.
c713216d 4529 */
a3142c8e 4530void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4531 unsigned long *start_pfn, unsigned long *end_pfn)
4532{
c13291a5 4533 unsigned long this_start_pfn, this_end_pfn;
c713216d 4534 int i;
c13291a5 4535
c713216d
MG
4536 *start_pfn = -1UL;
4537 *end_pfn = 0;
4538
c13291a5
TH
4539 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4540 *start_pfn = min(*start_pfn, this_start_pfn);
4541 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4542 }
4543
633c0666 4544 if (*start_pfn == -1UL)
c713216d 4545 *start_pfn = 0;
c713216d
MG
4546}
4547
2a1e274a
MG
4548/*
4549 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4550 * assumption is made that zones within a node are ordered in monotonic
4551 * increasing memory addresses so that the "highest" populated zone is used
4552 */
b69a7288 4553static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4554{
4555 int zone_index;
4556 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4557 if (zone_index == ZONE_MOVABLE)
4558 continue;
4559
4560 if (arch_zone_highest_possible_pfn[zone_index] >
4561 arch_zone_lowest_possible_pfn[zone_index])
4562 break;
4563 }
4564
4565 VM_BUG_ON(zone_index == -1);
4566 movable_zone = zone_index;
4567}
4568
4569/*
4570 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4571 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4572 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4573 * in each node depending on the size of each node and how evenly kernelcore
4574 * is distributed. This helper function adjusts the zone ranges
4575 * provided by the architecture for a given node by using the end of the
4576 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4577 * zones within a node are in order of monotonic increases memory addresses
4578 */
b69a7288 4579static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4580 unsigned long zone_type,
4581 unsigned long node_start_pfn,
4582 unsigned long node_end_pfn,
4583 unsigned long *zone_start_pfn,
4584 unsigned long *zone_end_pfn)
4585{
4586 /* Only adjust if ZONE_MOVABLE is on this node */
4587 if (zone_movable_pfn[nid]) {
4588 /* Size ZONE_MOVABLE */
4589 if (zone_type == ZONE_MOVABLE) {
4590 *zone_start_pfn = zone_movable_pfn[nid];
4591 *zone_end_pfn = min(node_end_pfn,
4592 arch_zone_highest_possible_pfn[movable_zone]);
4593
4594 /* Adjust for ZONE_MOVABLE starting within this range */
4595 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4596 *zone_end_pfn > zone_movable_pfn[nid]) {
4597 *zone_end_pfn = zone_movable_pfn[nid];
4598
4599 /* Check if this whole range is within ZONE_MOVABLE */
4600 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4601 *zone_start_pfn = *zone_end_pfn;
4602 }
4603}
4604
c713216d
MG
4605/*
4606 * Return the number of pages a zone spans in a node, including holes
4607 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4608 */
6ea6e688 4609static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4610 unsigned long zone_type,
7960aedd
ZY
4611 unsigned long node_start_pfn,
4612 unsigned long node_end_pfn,
c713216d
MG
4613 unsigned long *ignored)
4614{
c713216d
MG
4615 unsigned long zone_start_pfn, zone_end_pfn;
4616
7960aedd 4617 /* Get the start and end of the zone */
c713216d
MG
4618 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4619 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4620 adjust_zone_range_for_zone_movable(nid, zone_type,
4621 node_start_pfn, node_end_pfn,
4622 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4623
4624 /* Check that this node has pages within the zone's required range */
4625 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4626 return 0;
4627
4628 /* Move the zone boundaries inside the node if necessary */
4629 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4630 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4631
4632 /* Return the spanned pages */
4633 return zone_end_pfn - zone_start_pfn;
4634}
4635
4636/*
4637 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4638 * then all holes in the requested range will be accounted for.
c713216d 4639 */
32996250 4640unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4641 unsigned long range_start_pfn,
4642 unsigned long range_end_pfn)
4643{
96e907d1
TH
4644 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4645 unsigned long start_pfn, end_pfn;
4646 int i;
c713216d 4647
96e907d1
TH
4648 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4649 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4650 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4651 nr_absent -= end_pfn - start_pfn;
c713216d 4652 }
96e907d1 4653 return nr_absent;
c713216d
MG
4654}
4655
4656/**
4657 * absent_pages_in_range - Return number of page frames in holes within a range
4658 * @start_pfn: The start PFN to start searching for holes
4659 * @end_pfn: The end PFN to stop searching for holes
4660 *
88ca3b94 4661 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4662 */
4663unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4664 unsigned long end_pfn)
4665{
4666 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4667}
4668
4669/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4670static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4671 unsigned long zone_type,
7960aedd
ZY
4672 unsigned long node_start_pfn,
4673 unsigned long node_end_pfn,
c713216d
MG
4674 unsigned long *ignored)
4675{
96e907d1
TH
4676 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4677 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4678 unsigned long zone_start_pfn, zone_end_pfn;
4679
96e907d1
TH
4680 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4681 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4682
2a1e274a
MG
4683 adjust_zone_range_for_zone_movable(nid, zone_type,
4684 node_start_pfn, node_end_pfn,
4685 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4686 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4687}
0e0b864e 4688
0ee332c1 4689#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4690static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4691 unsigned long zone_type,
7960aedd
ZY
4692 unsigned long node_start_pfn,
4693 unsigned long node_end_pfn,
c713216d
MG
4694 unsigned long *zones_size)
4695{
4696 return zones_size[zone_type];
4697}
4698
6ea6e688 4699static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4700 unsigned long zone_type,
7960aedd
ZY
4701 unsigned long node_start_pfn,
4702 unsigned long node_end_pfn,
c713216d
MG
4703 unsigned long *zholes_size)
4704{
4705 if (!zholes_size)
4706 return 0;
4707
4708 return zholes_size[zone_type];
4709}
20e6926d 4710
0ee332c1 4711#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4712
a3142c8e 4713static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4714 unsigned long node_start_pfn,
4715 unsigned long node_end_pfn,
4716 unsigned long *zones_size,
4717 unsigned long *zholes_size)
c713216d
MG
4718{
4719 unsigned long realtotalpages, totalpages = 0;
4720 enum zone_type i;
4721
4722 for (i = 0; i < MAX_NR_ZONES; i++)
4723 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4724 node_start_pfn,
4725 node_end_pfn,
4726 zones_size);
c713216d
MG
4727 pgdat->node_spanned_pages = totalpages;
4728
4729 realtotalpages = totalpages;
4730 for (i = 0; i < MAX_NR_ZONES; i++)
4731 realtotalpages -=
4732 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4733 node_start_pfn, node_end_pfn,
4734 zholes_size);
c713216d
MG
4735 pgdat->node_present_pages = realtotalpages;
4736 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4737 realtotalpages);
4738}
4739
835c134e
MG
4740#ifndef CONFIG_SPARSEMEM
4741/*
4742 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4743 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4744 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4745 * round what is now in bits to nearest long in bits, then return it in
4746 * bytes.
4747 */
7c45512d 4748static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4749{
4750 unsigned long usemapsize;
4751
7c45512d 4752 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4753 usemapsize = roundup(zonesize, pageblock_nr_pages);
4754 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4755 usemapsize *= NR_PAGEBLOCK_BITS;
4756 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4757
4758 return usemapsize / 8;
4759}
4760
4761static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4762 struct zone *zone,
4763 unsigned long zone_start_pfn,
4764 unsigned long zonesize)
835c134e 4765{
7c45512d 4766 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4767 zone->pageblock_flags = NULL;
58a01a45 4768 if (usemapsize)
6782832e
SS
4769 zone->pageblock_flags =
4770 memblock_virt_alloc_node_nopanic(usemapsize,
4771 pgdat->node_id);
835c134e
MG
4772}
4773#else
7c45512d
LT
4774static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4775 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4776#endif /* CONFIG_SPARSEMEM */
4777
d9c23400 4778#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4779
d9c23400 4780/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4781void __paginginit set_pageblock_order(void)
d9c23400 4782{
955c1cd7
AM
4783 unsigned int order;
4784
d9c23400
MG
4785 /* Check that pageblock_nr_pages has not already been setup */
4786 if (pageblock_order)
4787 return;
4788
955c1cd7
AM
4789 if (HPAGE_SHIFT > PAGE_SHIFT)
4790 order = HUGETLB_PAGE_ORDER;
4791 else
4792 order = MAX_ORDER - 1;
4793
d9c23400
MG
4794 /*
4795 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4796 * This value may be variable depending on boot parameters on IA64 and
4797 * powerpc.
d9c23400
MG
4798 */
4799 pageblock_order = order;
4800}
4801#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4802
ba72cb8c
MG
4803/*
4804 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4805 * is unused as pageblock_order is set at compile-time. See
4806 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4807 * the kernel config
ba72cb8c 4808 */
15ca220e 4809void __paginginit set_pageblock_order(void)
ba72cb8c 4810{
ba72cb8c 4811}
d9c23400
MG
4812
4813#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4814
01cefaef
JL
4815static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4816 unsigned long present_pages)
4817{
4818 unsigned long pages = spanned_pages;
4819
4820 /*
4821 * Provide a more accurate estimation if there are holes within
4822 * the zone and SPARSEMEM is in use. If there are holes within the
4823 * zone, each populated memory region may cost us one or two extra
4824 * memmap pages due to alignment because memmap pages for each
4825 * populated regions may not naturally algined on page boundary.
4826 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4827 */
4828 if (spanned_pages > present_pages + (present_pages >> 4) &&
4829 IS_ENABLED(CONFIG_SPARSEMEM))
4830 pages = present_pages;
4831
4832 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4833}
4834
1da177e4
LT
4835/*
4836 * Set up the zone data structures:
4837 * - mark all pages reserved
4838 * - mark all memory queues empty
4839 * - clear the memory bitmaps
6527af5d
MK
4840 *
4841 * NOTE: pgdat should get zeroed by caller.
1da177e4 4842 */
b5a0e011 4843static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4844 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4845 unsigned long *zones_size, unsigned long *zholes_size)
4846{
2f1b6248 4847 enum zone_type j;
ed8ece2e 4848 int nid = pgdat->node_id;
1da177e4 4849 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4850 int ret;
1da177e4 4851
208d54e5 4852 pgdat_resize_init(pgdat);
8177a420
AA
4853#ifdef CONFIG_NUMA_BALANCING
4854 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4855 pgdat->numabalancing_migrate_nr_pages = 0;
4856 pgdat->numabalancing_migrate_next_window = jiffies;
4857#endif
1da177e4 4858 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4859 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 4860 pgdat_page_ext_init(pgdat);
5f63b720 4861
1da177e4
LT
4862 for (j = 0; j < MAX_NR_ZONES; j++) {
4863 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4864 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4865
7960aedd
ZY
4866 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4867 node_end_pfn, zones_size);
9feedc9d 4868 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4869 node_start_pfn,
4870 node_end_pfn,
c713216d 4871 zholes_size);
1da177e4 4872
0e0b864e 4873 /*
9feedc9d 4874 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4875 * is used by this zone for memmap. This affects the watermark
4876 * and per-cpu initialisations
4877 */
01cefaef 4878 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4879 if (freesize >= memmap_pages) {
4880 freesize -= memmap_pages;
5594c8c8
YL
4881 if (memmap_pages)
4882 printk(KERN_DEBUG
4883 " %s zone: %lu pages used for memmap\n",
4884 zone_names[j], memmap_pages);
0e0b864e
MG
4885 } else
4886 printk(KERN_WARNING
9feedc9d
JL
4887 " %s zone: %lu pages exceeds freesize %lu\n",
4888 zone_names[j], memmap_pages, freesize);
0e0b864e 4889
6267276f 4890 /* Account for reserved pages */
9feedc9d
JL
4891 if (j == 0 && freesize > dma_reserve) {
4892 freesize -= dma_reserve;
d903ef9f 4893 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4894 zone_names[0], dma_reserve);
0e0b864e
MG
4895 }
4896
98d2b0eb 4897 if (!is_highmem_idx(j))
9feedc9d 4898 nr_kernel_pages += freesize;
01cefaef
JL
4899 /* Charge for highmem memmap if there are enough kernel pages */
4900 else if (nr_kernel_pages > memmap_pages * 2)
4901 nr_kernel_pages -= memmap_pages;
9feedc9d 4902 nr_all_pages += freesize;
1da177e4
LT
4903
4904 zone->spanned_pages = size;
306f2e9e 4905 zone->present_pages = realsize;
9feedc9d
JL
4906 /*
4907 * Set an approximate value for lowmem here, it will be adjusted
4908 * when the bootmem allocator frees pages into the buddy system.
4909 * And all highmem pages will be managed by the buddy system.
4910 */
4911 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4912#ifdef CONFIG_NUMA
d5f541ed 4913 zone->node = nid;
9feedc9d 4914 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4915 / 100;
9feedc9d 4916 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4917#endif
1da177e4
LT
4918 zone->name = zone_names[j];
4919 spin_lock_init(&zone->lock);
4920 spin_lock_init(&zone->lru_lock);
bdc8cb98 4921 zone_seqlock_init(zone);
1da177e4 4922 zone->zone_pgdat = pgdat;
ed8ece2e 4923 zone_pcp_init(zone);
81c0a2bb
JW
4924
4925 /* For bootup, initialized properly in watermark setup */
4926 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4927
bea8c150 4928 lruvec_init(&zone->lruvec);
1da177e4
LT
4929 if (!size)
4930 continue;
4931
955c1cd7 4932 set_pageblock_order();
7c45512d 4933 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4934 ret = init_currently_empty_zone(zone, zone_start_pfn,
4935 size, MEMMAP_EARLY);
718127cc 4936 BUG_ON(ret);
76cdd58e 4937 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4938 zone_start_pfn += size;
1da177e4
LT
4939 }
4940}
4941
577a32f6 4942static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4943{
1da177e4
LT
4944 /* Skip empty nodes */
4945 if (!pgdat->node_spanned_pages)
4946 return;
4947
d41dee36 4948#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4949 /* ia64 gets its own node_mem_map, before this, without bootmem */
4950 if (!pgdat->node_mem_map) {
e984bb43 4951 unsigned long size, start, end;
d41dee36
AW
4952 struct page *map;
4953
e984bb43
BP
4954 /*
4955 * The zone's endpoints aren't required to be MAX_ORDER
4956 * aligned but the node_mem_map endpoints must be in order
4957 * for the buddy allocator to function correctly.
4958 */
4959 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4960 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4961 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4962 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4963 map = alloc_remap(pgdat->node_id, size);
4964 if (!map)
6782832e
SS
4965 map = memblock_virt_alloc_node_nopanic(size,
4966 pgdat->node_id);
e984bb43 4967 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4968 }
12d810c1 4969#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4970 /*
4971 * With no DISCONTIG, the global mem_map is just set as node 0's
4972 */
c713216d 4973 if (pgdat == NODE_DATA(0)) {
1da177e4 4974 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4975#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4976 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4977 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4978#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4979 }
1da177e4 4980#endif
d41dee36 4981#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4982}
4983
9109fb7b
JW
4984void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4985 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4986{
9109fb7b 4987 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4988 unsigned long start_pfn = 0;
4989 unsigned long end_pfn = 0;
9109fb7b 4990
88fdf75d 4991 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4992 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4993
1da177e4
LT
4994 pgdat->node_id = nid;
4995 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
4996#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4997 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8b375f64
LC
4998 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
4999 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5000#endif
5001 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5002 zones_size, zholes_size);
1da177e4
LT
5003
5004 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5005#ifdef CONFIG_FLAT_NODE_MEM_MAP
5006 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5007 nid, (unsigned long)pgdat,
5008 (unsigned long)pgdat->node_mem_map);
5009#endif
1da177e4 5010
7960aedd
ZY
5011 free_area_init_core(pgdat, start_pfn, end_pfn,
5012 zones_size, zholes_size);
1da177e4
LT
5013}
5014
0ee332c1 5015#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5016
5017#if MAX_NUMNODES > 1
5018/*
5019 * Figure out the number of possible node ids.
5020 */
f9872caf 5021void __init setup_nr_node_ids(void)
418508c1
MS
5022{
5023 unsigned int node;
5024 unsigned int highest = 0;
5025
5026 for_each_node_mask(node, node_possible_map)
5027 highest = node;
5028 nr_node_ids = highest + 1;
5029}
418508c1
MS
5030#endif
5031
1e01979c
TH
5032/**
5033 * node_map_pfn_alignment - determine the maximum internode alignment
5034 *
5035 * This function should be called after node map is populated and sorted.
5036 * It calculates the maximum power of two alignment which can distinguish
5037 * all the nodes.
5038 *
5039 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5040 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5041 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5042 * shifted, 1GiB is enough and this function will indicate so.
5043 *
5044 * This is used to test whether pfn -> nid mapping of the chosen memory
5045 * model has fine enough granularity to avoid incorrect mapping for the
5046 * populated node map.
5047 *
5048 * Returns the determined alignment in pfn's. 0 if there is no alignment
5049 * requirement (single node).
5050 */
5051unsigned long __init node_map_pfn_alignment(void)
5052{
5053 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5054 unsigned long start, end, mask;
1e01979c 5055 int last_nid = -1;
c13291a5 5056 int i, nid;
1e01979c 5057
c13291a5 5058 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5059 if (!start || last_nid < 0 || last_nid == nid) {
5060 last_nid = nid;
5061 last_end = end;
5062 continue;
5063 }
5064
5065 /*
5066 * Start with a mask granular enough to pin-point to the
5067 * start pfn and tick off bits one-by-one until it becomes
5068 * too coarse to separate the current node from the last.
5069 */
5070 mask = ~((1 << __ffs(start)) - 1);
5071 while (mask && last_end <= (start & (mask << 1)))
5072 mask <<= 1;
5073
5074 /* accumulate all internode masks */
5075 accl_mask |= mask;
5076 }
5077
5078 /* convert mask to number of pages */
5079 return ~accl_mask + 1;
5080}
5081
a6af2bc3 5082/* Find the lowest pfn for a node */
b69a7288 5083static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5084{
a6af2bc3 5085 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5086 unsigned long start_pfn;
5087 int i;
1abbfb41 5088
c13291a5
TH
5089 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5090 min_pfn = min(min_pfn, start_pfn);
c713216d 5091
a6af2bc3
MG
5092 if (min_pfn == ULONG_MAX) {
5093 printk(KERN_WARNING
2bc0d261 5094 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5095 return 0;
5096 }
5097
5098 return min_pfn;
c713216d
MG
5099}
5100
5101/**
5102 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5103 *
5104 * It returns the minimum PFN based on information provided via
7d018176 5105 * memblock_set_node().
c713216d
MG
5106 */
5107unsigned long __init find_min_pfn_with_active_regions(void)
5108{
5109 return find_min_pfn_for_node(MAX_NUMNODES);
5110}
5111
37b07e41
LS
5112/*
5113 * early_calculate_totalpages()
5114 * Sum pages in active regions for movable zone.
4b0ef1fe 5115 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5116 */
484f51f8 5117static unsigned long __init early_calculate_totalpages(void)
7e63efef 5118{
7e63efef 5119 unsigned long totalpages = 0;
c13291a5
TH
5120 unsigned long start_pfn, end_pfn;
5121 int i, nid;
5122
5123 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5124 unsigned long pages = end_pfn - start_pfn;
7e63efef 5125
37b07e41
LS
5126 totalpages += pages;
5127 if (pages)
4b0ef1fe 5128 node_set_state(nid, N_MEMORY);
37b07e41 5129 }
b8af2941 5130 return totalpages;
7e63efef
MG
5131}
5132
2a1e274a
MG
5133/*
5134 * Find the PFN the Movable zone begins in each node. Kernel memory
5135 * is spread evenly between nodes as long as the nodes have enough
5136 * memory. When they don't, some nodes will have more kernelcore than
5137 * others
5138 */
b224ef85 5139static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5140{
5141 int i, nid;
5142 unsigned long usable_startpfn;
5143 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5144 /* save the state before borrow the nodemask */
4b0ef1fe 5145 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5146 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5147 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5148 struct memblock_region *r;
b2f3eebe
TC
5149
5150 /* Need to find movable_zone earlier when movable_node is specified. */
5151 find_usable_zone_for_movable();
5152
5153 /*
5154 * If movable_node is specified, ignore kernelcore and movablecore
5155 * options.
5156 */
5157 if (movable_node_is_enabled()) {
136199f0
EM
5158 for_each_memblock(memory, r) {
5159 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5160 continue;
5161
136199f0 5162 nid = r->nid;
b2f3eebe 5163
136199f0 5164 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5165 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5166 min(usable_startpfn, zone_movable_pfn[nid]) :
5167 usable_startpfn;
5168 }
5169
5170 goto out2;
5171 }
2a1e274a 5172
7e63efef 5173 /*
b2f3eebe 5174 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5175 * kernelcore that corresponds so that memory usable for
5176 * any allocation type is evenly spread. If both kernelcore
5177 * and movablecore are specified, then the value of kernelcore
5178 * will be used for required_kernelcore if it's greater than
5179 * what movablecore would have allowed.
5180 */
5181 if (required_movablecore) {
7e63efef
MG
5182 unsigned long corepages;
5183
5184 /*
5185 * Round-up so that ZONE_MOVABLE is at least as large as what
5186 * was requested by the user
5187 */
5188 required_movablecore =
5189 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5190 corepages = totalpages - required_movablecore;
5191
5192 required_kernelcore = max(required_kernelcore, corepages);
5193 }
5194
20e6926d
YL
5195 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5196 if (!required_kernelcore)
66918dcd 5197 goto out;
2a1e274a
MG
5198
5199 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5200 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5201
5202restart:
5203 /* Spread kernelcore memory as evenly as possible throughout nodes */
5204 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5205 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5206 unsigned long start_pfn, end_pfn;
5207
2a1e274a
MG
5208 /*
5209 * Recalculate kernelcore_node if the division per node
5210 * now exceeds what is necessary to satisfy the requested
5211 * amount of memory for the kernel
5212 */
5213 if (required_kernelcore < kernelcore_node)
5214 kernelcore_node = required_kernelcore / usable_nodes;
5215
5216 /*
5217 * As the map is walked, we track how much memory is usable
5218 * by the kernel using kernelcore_remaining. When it is
5219 * 0, the rest of the node is usable by ZONE_MOVABLE
5220 */
5221 kernelcore_remaining = kernelcore_node;
5222
5223 /* Go through each range of PFNs within this node */
c13291a5 5224 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5225 unsigned long size_pages;
5226
c13291a5 5227 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5228 if (start_pfn >= end_pfn)
5229 continue;
5230
5231 /* Account for what is only usable for kernelcore */
5232 if (start_pfn < usable_startpfn) {
5233 unsigned long kernel_pages;
5234 kernel_pages = min(end_pfn, usable_startpfn)
5235 - start_pfn;
5236
5237 kernelcore_remaining -= min(kernel_pages,
5238 kernelcore_remaining);
5239 required_kernelcore -= min(kernel_pages,
5240 required_kernelcore);
5241
5242 /* Continue if range is now fully accounted */
5243 if (end_pfn <= usable_startpfn) {
5244
5245 /*
5246 * Push zone_movable_pfn to the end so
5247 * that if we have to rebalance
5248 * kernelcore across nodes, we will
5249 * not double account here
5250 */
5251 zone_movable_pfn[nid] = end_pfn;
5252 continue;
5253 }
5254 start_pfn = usable_startpfn;
5255 }
5256
5257 /*
5258 * The usable PFN range for ZONE_MOVABLE is from
5259 * start_pfn->end_pfn. Calculate size_pages as the
5260 * number of pages used as kernelcore
5261 */
5262 size_pages = end_pfn - start_pfn;
5263 if (size_pages > kernelcore_remaining)
5264 size_pages = kernelcore_remaining;
5265 zone_movable_pfn[nid] = start_pfn + size_pages;
5266
5267 /*
5268 * Some kernelcore has been met, update counts and
5269 * break if the kernelcore for this node has been
b8af2941 5270 * satisfied
2a1e274a
MG
5271 */
5272 required_kernelcore -= min(required_kernelcore,
5273 size_pages);
5274 kernelcore_remaining -= size_pages;
5275 if (!kernelcore_remaining)
5276 break;
5277 }
5278 }
5279
5280 /*
5281 * If there is still required_kernelcore, we do another pass with one
5282 * less node in the count. This will push zone_movable_pfn[nid] further
5283 * along on the nodes that still have memory until kernelcore is
b8af2941 5284 * satisfied
2a1e274a
MG
5285 */
5286 usable_nodes--;
5287 if (usable_nodes && required_kernelcore > usable_nodes)
5288 goto restart;
5289
b2f3eebe 5290out2:
2a1e274a
MG
5291 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5292 for (nid = 0; nid < MAX_NUMNODES; nid++)
5293 zone_movable_pfn[nid] =
5294 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5295
20e6926d 5296out:
66918dcd 5297 /* restore the node_state */
4b0ef1fe 5298 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5299}
5300
4b0ef1fe
LJ
5301/* Any regular or high memory on that node ? */
5302static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5303{
37b07e41
LS
5304 enum zone_type zone_type;
5305
4b0ef1fe
LJ
5306 if (N_MEMORY == N_NORMAL_MEMORY)
5307 return;
5308
5309 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5310 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5311 if (populated_zone(zone)) {
4b0ef1fe
LJ
5312 node_set_state(nid, N_HIGH_MEMORY);
5313 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5314 zone_type <= ZONE_NORMAL)
5315 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5316 break;
5317 }
37b07e41 5318 }
37b07e41
LS
5319}
5320
c713216d
MG
5321/**
5322 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5323 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5324 *
5325 * This will call free_area_init_node() for each active node in the system.
7d018176 5326 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5327 * zone in each node and their holes is calculated. If the maximum PFN
5328 * between two adjacent zones match, it is assumed that the zone is empty.
5329 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5330 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5331 * starts where the previous one ended. For example, ZONE_DMA32 starts
5332 * at arch_max_dma_pfn.
5333 */
5334void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5335{
c13291a5
TH
5336 unsigned long start_pfn, end_pfn;
5337 int i, nid;
a6af2bc3 5338
c713216d
MG
5339 /* Record where the zone boundaries are */
5340 memset(arch_zone_lowest_possible_pfn, 0,
5341 sizeof(arch_zone_lowest_possible_pfn));
5342 memset(arch_zone_highest_possible_pfn, 0,
5343 sizeof(arch_zone_highest_possible_pfn));
5344 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5345 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5346 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5347 if (i == ZONE_MOVABLE)
5348 continue;
c713216d
MG
5349 arch_zone_lowest_possible_pfn[i] =
5350 arch_zone_highest_possible_pfn[i-1];
5351 arch_zone_highest_possible_pfn[i] =
5352 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5353 }
2a1e274a
MG
5354 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5355 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5356
5357 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5358 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5359 find_zone_movable_pfns_for_nodes();
c713216d 5360
c713216d 5361 /* Print out the zone ranges */
f88dfff5 5362 pr_info("Zone ranges:\n");
2a1e274a
MG
5363 for (i = 0; i < MAX_NR_ZONES; i++) {
5364 if (i == ZONE_MOVABLE)
5365 continue;
f88dfff5 5366 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5367 if (arch_zone_lowest_possible_pfn[i] ==
5368 arch_zone_highest_possible_pfn[i])
f88dfff5 5369 pr_cont("empty\n");
72f0ba02 5370 else
f88dfff5 5371 pr_cont("[mem %0#10lx-%0#10lx]\n",
a62e2f4f
BH
5372 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5373 (arch_zone_highest_possible_pfn[i]
5374 << PAGE_SHIFT) - 1);
2a1e274a
MG
5375 }
5376
5377 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5378 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5379 for (i = 0; i < MAX_NUMNODES; i++) {
5380 if (zone_movable_pfn[i])
f88dfff5 5381 pr_info(" Node %d: %#010lx\n", i,
a62e2f4f 5382 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5383 }
c713216d 5384
f2d52fe5 5385 /* Print out the early node map */
f88dfff5 5386 pr_info("Early memory node ranges\n");
c13291a5 5387 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
f88dfff5 5388 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
a62e2f4f 5389 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5390
5391 /* Initialise every node */
708614e6 5392 mminit_verify_pageflags_layout();
8ef82866 5393 setup_nr_node_ids();
c713216d
MG
5394 for_each_online_node(nid) {
5395 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5396 free_area_init_node(nid, NULL,
c713216d 5397 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5398
5399 /* Any memory on that node */
5400 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5401 node_set_state(nid, N_MEMORY);
5402 check_for_memory(pgdat, nid);
c713216d
MG
5403 }
5404}
2a1e274a 5405
7e63efef 5406static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5407{
5408 unsigned long long coremem;
5409 if (!p)
5410 return -EINVAL;
5411
5412 coremem = memparse(p, &p);
7e63efef 5413 *core = coremem >> PAGE_SHIFT;
2a1e274a 5414
7e63efef 5415 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5416 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5417
5418 return 0;
5419}
ed7ed365 5420
7e63efef
MG
5421/*
5422 * kernelcore=size sets the amount of memory for use for allocations that
5423 * cannot be reclaimed or migrated.
5424 */
5425static int __init cmdline_parse_kernelcore(char *p)
5426{
5427 return cmdline_parse_core(p, &required_kernelcore);
5428}
5429
5430/*
5431 * movablecore=size sets the amount of memory for use for allocations that
5432 * can be reclaimed or migrated.
5433 */
5434static int __init cmdline_parse_movablecore(char *p)
5435{
5436 return cmdline_parse_core(p, &required_movablecore);
5437}
5438
ed7ed365 5439early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5440early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5441
0ee332c1 5442#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5443
c3d5f5f0
JL
5444void adjust_managed_page_count(struct page *page, long count)
5445{
5446 spin_lock(&managed_page_count_lock);
5447 page_zone(page)->managed_pages += count;
5448 totalram_pages += count;
3dcc0571
JL
5449#ifdef CONFIG_HIGHMEM
5450 if (PageHighMem(page))
5451 totalhigh_pages += count;
5452#endif
c3d5f5f0
JL
5453 spin_unlock(&managed_page_count_lock);
5454}
3dcc0571 5455EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5456
11199692 5457unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5458{
11199692
JL
5459 void *pos;
5460 unsigned long pages = 0;
69afade7 5461
11199692
JL
5462 start = (void *)PAGE_ALIGN((unsigned long)start);
5463 end = (void *)((unsigned long)end & PAGE_MASK);
5464 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5465 if ((unsigned int)poison <= 0xFF)
11199692
JL
5466 memset(pos, poison, PAGE_SIZE);
5467 free_reserved_page(virt_to_page(pos));
69afade7
JL
5468 }
5469
5470 if (pages && s)
11199692 5471 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5472 s, pages << (PAGE_SHIFT - 10), start, end);
5473
5474 return pages;
5475}
11199692 5476EXPORT_SYMBOL(free_reserved_area);
69afade7 5477
cfa11e08
JL
5478#ifdef CONFIG_HIGHMEM
5479void free_highmem_page(struct page *page)
5480{
5481 __free_reserved_page(page);
5482 totalram_pages++;
7b4b2a0d 5483 page_zone(page)->managed_pages++;
cfa11e08
JL
5484 totalhigh_pages++;
5485}
5486#endif
5487
7ee3d4e8
JL
5488
5489void __init mem_init_print_info(const char *str)
5490{
5491 unsigned long physpages, codesize, datasize, rosize, bss_size;
5492 unsigned long init_code_size, init_data_size;
5493
5494 physpages = get_num_physpages();
5495 codesize = _etext - _stext;
5496 datasize = _edata - _sdata;
5497 rosize = __end_rodata - __start_rodata;
5498 bss_size = __bss_stop - __bss_start;
5499 init_data_size = __init_end - __init_begin;
5500 init_code_size = _einittext - _sinittext;
5501
5502 /*
5503 * Detect special cases and adjust section sizes accordingly:
5504 * 1) .init.* may be embedded into .data sections
5505 * 2) .init.text.* may be out of [__init_begin, __init_end],
5506 * please refer to arch/tile/kernel/vmlinux.lds.S.
5507 * 3) .rodata.* may be embedded into .text or .data sections.
5508 */
5509#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5510 do { \
5511 if (start <= pos && pos < end && size > adj) \
5512 size -= adj; \
5513 } while (0)
7ee3d4e8
JL
5514
5515 adj_init_size(__init_begin, __init_end, init_data_size,
5516 _sinittext, init_code_size);
5517 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5518 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5519 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5520 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5521
5522#undef adj_init_size
5523
f88dfff5 5524 pr_info("Memory: %luK/%luK available "
7ee3d4e8
JL
5525 "(%luK kernel code, %luK rwdata, %luK rodata, "
5526 "%luK init, %luK bss, %luK reserved"
5527#ifdef CONFIG_HIGHMEM
5528 ", %luK highmem"
5529#endif
5530 "%s%s)\n",
5531 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5532 codesize >> 10, datasize >> 10, rosize >> 10,
5533 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5534 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5535#ifdef CONFIG_HIGHMEM
5536 totalhigh_pages << (PAGE_SHIFT-10),
5537#endif
5538 str ? ", " : "", str ? str : "");
5539}
5540
0e0b864e 5541/**
88ca3b94
RD
5542 * set_dma_reserve - set the specified number of pages reserved in the first zone
5543 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5544 *
5545 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5546 * In the DMA zone, a significant percentage may be consumed by kernel image
5547 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5548 * function may optionally be used to account for unfreeable pages in the
5549 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5550 * smaller per-cpu batchsize.
0e0b864e
MG
5551 */
5552void __init set_dma_reserve(unsigned long new_dma_reserve)
5553{
5554 dma_reserve = new_dma_reserve;
5555}
5556
1da177e4
LT
5557void __init free_area_init(unsigned long *zones_size)
5558{
9109fb7b 5559 free_area_init_node(0, zones_size,
1da177e4
LT
5560 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5561}
1da177e4 5562
1da177e4
LT
5563static int page_alloc_cpu_notify(struct notifier_block *self,
5564 unsigned long action, void *hcpu)
5565{
5566 int cpu = (unsigned long)hcpu;
1da177e4 5567
8bb78442 5568 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5569 lru_add_drain_cpu(cpu);
9f8f2172
CL
5570 drain_pages(cpu);
5571
5572 /*
5573 * Spill the event counters of the dead processor
5574 * into the current processors event counters.
5575 * This artificially elevates the count of the current
5576 * processor.
5577 */
f8891e5e 5578 vm_events_fold_cpu(cpu);
9f8f2172
CL
5579
5580 /*
5581 * Zero the differential counters of the dead processor
5582 * so that the vm statistics are consistent.
5583 *
5584 * This is only okay since the processor is dead and cannot
5585 * race with what we are doing.
5586 */
2bb921e5 5587 cpu_vm_stats_fold(cpu);
1da177e4
LT
5588 }
5589 return NOTIFY_OK;
5590}
1da177e4
LT
5591
5592void __init page_alloc_init(void)
5593{
5594 hotcpu_notifier(page_alloc_cpu_notify, 0);
5595}
5596
cb45b0e9
HA
5597/*
5598 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5599 * or min_free_kbytes changes.
5600 */
5601static void calculate_totalreserve_pages(void)
5602{
5603 struct pglist_data *pgdat;
5604 unsigned long reserve_pages = 0;
2f6726e5 5605 enum zone_type i, j;
cb45b0e9
HA
5606
5607 for_each_online_pgdat(pgdat) {
5608 for (i = 0; i < MAX_NR_ZONES; i++) {
5609 struct zone *zone = pgdat->node_zones + i;
3484b2de 5610 long max = 0;
cb45b0e9
HA
5611
5612 /* Find valid and maximum lowmem_reserve in the zone */
5613 for (j = i; j < MAX_NR_ZONES; j++) {
5614 if (zone->lowmem_reserve[j] > max)
5615 max = zone->lowmem_reserve[j];
5616 }
5617
41858966
MG
5618 /* we treat the high watermark as reserved pages. */
5619 max += high_wmark_pages(zone);
cb45b0e9 5620
b40da049
JL
5621 if (max > zone->managed_pages)
5622 max = zone->managed_pages;
cb45b0e9 5623 reserve_pages += max;
ab8fabd4
JW
5624 /*
5625 * Lowmem reserves are not available to
5626 * GFP_HIGHUSER page cache allocations and
5627 * kswapd tries to balance zones to their high
5628 * watermark. As a result, neither should be
5629 * regarded as dirtyable memory, to prevent a
5630 * situation where reclaim has to clean pages
5631 * in order to balance the zones.
5632 */
5633 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5634 }
5635 }
ab8fabd4 5636 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5637 totalreserve_pages = reserve_pages;
5638}
5639
1da177e4
LT
5640/*
5641 * setup_per_zone_lowmem_reserve - called whenever
5642 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5643 * has a correct pages reserved value, so an adequate number of
5644 * pages are left in the zone after a successful __alloc_pages().
5645 */
5646static void setup_per_zone_lowmem_reserve(void)
5647{
5648 struct pglist_data *pgdat;
2f6726e5 5649 enum zone_type j, idx;
1da177e4 5650
ec936fc5 5651 for_each_online_pgdat(pgdat) {
1da177e4
LT
5652 for (j = 0; j < MAX_NR_ZONES; j++) {
5653 struct zone *zone = pgdat->node_zones + j;
b40da049 5654 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5655
5656 zone->lowmem_reserve[j] = 0;
5657
2f6726e5
CL
5658 idx = j;
5659 while (idx) {
1da177e4
LT
5660 struct zone *lower_zone;
5661
2f6726e5
CL
5662 idx--;
5663
1da177e4
LT
5664 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5665 sysctl_lowmem_reserve_ratio[idx] = 1;
5666
5667 lower_zone = pgdat->node_zones + idx;
b40da049 5668 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5669 sysctl_lowmem_reserve_ratio[idx];
b40da049 5670 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5671 }
5672 }
5673 }
cb45b0e9
HA
5674
5675 /* update totalreserve_pages */
5676 calculate_totalreserve_pages();
1da177e4
LT
5677}
5678
cfd3da1e 5679static void __setup_per_zone_wmarks(void)
1da177e4
LT
5680{
5681 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5682 unsigned long lowmem_pages = 0;
5683 struct zone *zone;
5684 unsigned long flags;
5685
5686 /* Calculate total number of !ZONE_HIGHMEM pages */
5687 for_each_zone(zone) {
5688 if (!is_highmem(zone))
b40da049 5689 lowmem_pages += zone->managed_pages;
1da177e4
LT
5690 }
5691
5692 for_each_zone(zone) {
ac924c60
AM
5693 u64 tmp;
5694
1125b4e3 5695 spin_lock_irqsave(&zone->lock, flags);
b40da049 5696 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5697 do_div(tmp, lowmem_pages);
1da177e4
LT
5698 if (is_highmem(zone)) {
5699 /*
669ed175
NP
5700 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5701 * need highmem pages, so cap pages_min to a small
5702 * value here.
5703 *
41858966 5704 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5705 * deltas controls asynch page reclaim, and so should
5706 * not be capped for highmem.
1da177e4 5707 */
90ae8d67 5708 unsigned long min_pages;
1da177e4 5709
b40da049 5710 min_pages = zone->managed_pages / 1024;
90ae8d67 5711 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5712 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5713 } else {
669ed175
NP
5714 /*
5715 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5716 * proportionate to the zone's size.
5717 */
41858966 5718 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5719 }
5720
41858966
MG
5721 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5722 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5723
81c0a2bb 5724 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5725 high_wmark_pages(zone) - low_wmark_pages(zone) -
5726 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5727
56fd56b8 5728 setup_zone_migrate_reserve(zone);
1125b4e3 5729 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5730 }
cb45b0e9
HA
5731
5732 /* update totalreserve_pages */
5733 calculate_totalreserve_pages();
1da177e4
LT
5734}
5735
cfd3da1e
MG
5736/**
5737 * setup_per_zone_wmarks - called when min_free_kbytes changes
5738 * or when memory is hot-{added|removed}
5739 *
5740 * Ensures that the watermark[min,low,high] values for each zone are set
5741 * correctly with respect to min_free_kbytes.
5742 */
5743void setup_per_zone_wmarks(void)
5744{
5745 mutex_lock(&zonelists_mutex);
5746 __setup_per_zone_wmarks();
5747 mutex_unlock(&zonelists_mutex);
5748}
5749
55a4462a 5750/*
556adecb
RR
5751 * The inactive anon list should be small enough that the VM never has to
5752 * do too much work, but large enough that each inactive page has a chance
5753 * to be referenced again before it is swapped out.
5754 *
5755 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5756 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5757 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5758 * the anonymous pages are kept on the inactive list.
5759 *
5760 * total target max
5761 * memory ratio inactive anon
5762 * -------------------------------------
5763 * 10MB 1 5MB
5764 * 100MB 1 50MB
5765 * 1GB 3 250MB
5766 * 10GB 10 0.9GB
5767 * 100GB 31 3GB
5768 * 1TB 101 10GB
5769 * 10TB 320 32GB
5770 */
1b79acc9 5771static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5772{
96cb4df5 5773 unsigned int gb, ratio;
556adecb 5774
96cb4df5 5775 /* Zone size in gigabytes */
b40da049 5776 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5777 if (gb)
556adecb 5778 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5779 else
5780 ratio = 1;
556adecb 5781
96cb4df5
MK
5782 zone->inactive_ratio = ratio;
5783}
556adecb 5784
839a4fcc 5785static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5786{
5787 struct zone *zone;
5788
5789 for_each_zone(zone)
5790 calculate_zone_inactive_ratio(zone);
556adecb
RR
5791}
5792
1da177e4
LT
5793/*
5794 * Initialise min_free_kbytes.
5795 *
5796 * For small machines we want it small (128k min). For large machines
5797 * we want it large (64MB max). But it is not linear, because network
5798 * bandwidth does not increase linearly with machine size. We use
5799 *
b8af2941 5800 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5801 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5802 *
5803 * which yields
5804 *
5805 * 16MB: 512k
5806 * 32MB: 724k
5807 * 64MB: 1024k
5808 * 128MB: 1448k
5809 * 256MB: 2048k
5810 * 512MB: 2896k
5811 * 1024MB: 4096k
5812 * 2048MB: 5792k
5813 * 4096MB: 8192k
5814 * 8192MB: 11584k
5815 * 16384MB: 16384k
5816 */
1b79acc9 5817int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5818{
5819 unsigned long lowmem_kbytes;
5f12733e 5820 int new_min_free_kbytes;
1da177e4
LT
5821
5822 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5823 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5824
5825 if (new_min_free_kbytes > user_min_free_kbytes) {
5826 min_free_kbytes = new_min_free_kbytes;
5827 if (min_free_kbytes < 128)
5828 min_free_kbytes = 128;
5829 if (min_free_kbytes > 65536)
5830 min_free_kbytes = 65536;
5831 } else {
5832 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5833 new_min_free_kbytes, user_min_free_kbytes);
5834 }
bc75d33f 5835 setup_per_zone_wmarks();
a6cccdc3 5836 refresh_zone_stat_thresholds();
1da177e4 5837 setup_per_zone_lowmem_reserve();
556adecb 5838 setup_per_zone_inactive_ratio();
1da177e4
LT
5839 return 0;
5840}
bc75d33f 5841module_init(init_per_zone_wmark_min)
1da177e4
LT
5842
5843/*
b8af2941 5844 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5845 * that we can call two helper functions whenever min_free_kbytes
5846 * changes.
5847 */
cccad5b9 5848int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5849 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5850{
da8c757b
HP
5851 int rc;
5852
5853 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5854 if (rc)
5855 return rc;
5856
5f12733e
MH
5857 if (write) {
5858 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5859 setup_per_zone_wmarks();
5f12733e 5860 }
1da177e4
LT
5861 return 0;
5862}
5863
9614634f 5864#ifdef CONFIG_NUMA
cccad5b9 5865int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5866 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5867{
5868 struct zone *zone;
5869 int rc;
5870
8d65af78 5871 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5872 if (rc)
5873 return rc;
5874
5875 for_each_zone(zone)
b40da049 5876 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5877 sysctl_min_unmapped_ratio) / 100;
5878 return 0;
5879}
0ff38490 5880
cccad5b9 5881int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5882 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5883{
5884 struct zone *zone;
5885 int rc;
5886
8d65af78 5887 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5888 if (rc)
5889 return rc;
5890
5891 for_each_zone(zone)
b40da049 5892 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5893 sysctl_min_slab_ratio) / 100;
5894 return 0;
5895}
9614634f
CL
5896#endif
5897
1da177e4
LT
5898/*
5899 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5900 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5901 * whenever sysctl_lowmem_reserve_ratio changes.
5902 *
5903 * The reserve ratio obviously has absolutely no relation with the
41858966 5904 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5905 * if in function of the boot time zone sizes.
5906 */
cccad5b9 5907int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5908 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5909{
8d65af78 5910 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5911 setup_per_zone_lowmem_reserve();
5912 return 0;
5913}
5914
8ad4b1fb
RS
5915/*
5916 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5917 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5918 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5919 */
cccad5b9 5920int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5921 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5922{
5923 struct zone *zone;
7cd2b0a3 5924 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5925 int ret;
5926
7cd2b0a3
DR
5927 mutex_lock(&pcp_batch_high_lock);
5928 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5929
8d65af78 5930 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5931 if (!write || ret < 0)
5932 goto out;
5933
5934 /* Sanity checking to avoid pcp imbalance */
5935 if (percpu_pagelist_fraction &&
5936 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5937 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5938 ret = -EINVAL;
5939 goto out;
5940 }
5941
5942 /* No change? */
5943 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5944 goto out;
c8e251fa 5945
364df0eb 5946 for_each_populated_zone(zone) {
7cd2b0a3
DR
5947 unsigned int cpu;
5948
22a7f12b 5949 for_each_possible_cpu(cpu)
7cd2b0a3
DR
5950 pageset_set_high_and_batch(zone,
5951 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 5952 }
7cd2b0a3 5953out:
c8e251fa 5954 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5955 return ret;
8ad4b1fb
RS
5956}
5957
f034b5d4 5958int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5959
5960#ifdef CONFIG_NUMA
5961static int __init set_hashdist(char *str)
5962{
5963 if (!str)
5964 return 0;
5965 hashdist = simple_strtoul(str, &str, 0);
5966 return 1;
5967}
5968__setup("hashdist=", set_hashdist);
5969#endif
5970
5971/*
5972 * allocate a large system hash table from bootmem
5973 * - it is assumed that the hash table must contain an exact power-of-2
5974 * quantity of entries
5975 * - limit is the number of hash buckets, not the total allocation size
5976 */
5977void *__init alloc_large_system_hash(const char *tablename,
5978 unsigned long bucketsize,
5979 unsigned long numentries,
5980 int scale,
5981 int flags,
5982 unsigned int *_hash_shift,
5983 unsigned int *_hash_mask,
31fe62b9
TB
5984 unsigned long low_limit,
5985 unsigned long high_limit)
1da177e4 5986{
31fe62b9 5987 unsigned long long max = high_limit;
1da177e4
LT
5988 unsigned long log2qty, size;
5989 void *table = NULL;
5990
5991 /* allow the kernel cmdline to have a say */
5992 if (!numentries) {
5993 /* round applicable memory size up to nearest megabyte */
04903664 5994 numentries = nr_kernel_pages;
a7e83318
JZ
5995
5996 /* It isn't necessary when PAGE_SIZE >= 1MB */
5997 if (PAGE_SHIFT < 20)
5998 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5999
6000 /* limit to 1 bucket per 2^scale bytes of low memory */
6001 if (scale > PAGE_SHIFT)
6002 numentries >>= (scale - PAGE_SHIFT);
6003 else
6004 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6005
6006 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6007 if (unlikely(flags & HASH_SMALL)) {
6008 /* Makes no sense without HASH_EARLY */
6009 WARN_ON(!(flags & HASH_EARLY));
6010 if (!(numentries >> *_hash_shift)) {
6011 numentries = 1UL << *_hash_shift;
6012 BUG_ON(!numentries);
6013 }
6014 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6015 numentries = PAGE_SIZE / bucketsize;
1da177e4 6016 }
6e692ed3 6017 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6018
6019 /* limit allocation size to 1/16 total memory by default */
6020 if (max == 0) {
6021 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6022 do_div(max, bucketsize);
6023 }
074b8517 6024 max = min(max, 0x80000000ULL);
1da177e4 6025
31fe62b9
TB
6026 if (numentries < low_limit)
6027 numentries = low_limit;
1da177e4
LT
6028 if (numentries > max)
6029 numentries = max;
6030
f0d1b0b3 6031 log2qty = ilog2(numentries);
1da177e4
LT
6032
6033 do {
6034 size = bucketsize << log2qty;
6035 if (flags & HASH_EARLY)
6782832e 6036 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6037 else if (hashdist)
6038 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6039 else {
1037b83b
ED
6040 /*
6041 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6042 * some pages at the end of hash table which
6043 * alloc_pages_exact() automatically does
1037b83b 6044 */
264ef8a9 6045 if (get_order(size) < MAX_ORDER) {
a1dd268c 6046 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6047 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6048 }
1da177e4
LT
6049 }
6050 } while (!table && size > PAGE_SIZE && --log2qty);
6051
6052 if (!table)
6053 panic("Failed to allocate %s hash table\n", tablename);
6054
f241e660 6055 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6056 tablename,
f241e660 6057 (1UL << log2qty),
f0d1b0b3 6058 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6059 size);
6060
6061 if (_hash_shift)
6062 *_hash_shift = log2qty;
6063 if (_hash_mask)
6064 *_hash_mask = (1 << log2qty) - 1;
6065
6066 return table;
6067}
a117e66e 6068
835c134e
MG
6069/* Return a pointer to the bitmap storing bits affecting a block of pages */
6070static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6071 unsigned long pfn)
6072{
6073#ifdef CONFIG_SPARSEMEM
6074 return __pfn_to_section(pfn)->pageblock_flags;
6075#else
6076 return zone->pageblock_flags;
6077#endif /* CONFIG_SPARSEMEM */
6078}
6079
6080static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6081{
6082#ifdef CONFIG_SPARSEMEM
6083 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6084 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6085#else
c060f943 6086 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6087 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6088#endif /* CONFIG_SPARSEMEM */
6089}
6090
6091/**
1aab4d77 6092 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6093 * @page: The page within the block of interest
1aab4d77
RD
6094 * @pfn: The target page frame number
6095 * @end_bitidx: The last bit of interest to retrieve
6096 * @mask: mask of bits that the caller is interested in
6097 *
6098 * Return: pageblock_bits flags
835c134e 6099 */
dc4b0caf 6100unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6101 unsigned long end_bitidx,
6102 unsigned long mask)
835c134e
MG
6103{
6104 struct zone *zone;
6105 unsigned long *bitmap;
dc4b0caf 6106 unsigned long bitidx, word_bitidx;
e58469ba 6107 unsigned long word;
835c134e
MG
6108
6109 zone = page_zone(page);
835c134e
MG
6110 bitmap = get_pageblock_bitmap(zone, pfn);
6111 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6112 word_bitidx = bitidx / BITS_PER_LONG;
6113 bitidx &= (BITS_PER_LONG-1);
835c134e 6114
e58469ba
MG
6115 word = bitmap[word_bitidx];
6116 bitidx += end_bitidx;
6117 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6118}
6119
6120/**
dc4b0caf 6121 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6122 * @page: The page within the block of interest
835c134e 6123 * @flags: The flags to set
1aab4d77
RD
6124 * @pfn: The target page frame number
6125 * @end_bitidx: The last bit of interest
6126 * @mask: mask of bits that the caller is interested in
835c134e 6127 */
dc4b0caf
MG
6128void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6129 unsigned long pfn,
e58469ba
MG
6130 unsigned long end_bitidx,
6131 unsigned long mask)
835c134e
MG
6132{
6133 struct zone *zone;
6134 unsigned long *bitmap;
dc4b0caf 6135 unsigned long bitidx, word_bitidx;
e58469ba
MG
6136 unsigned long old_word, word;
6137
6138 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6139
6140 zone = page_zone(page);
835c134e
MG
6141 bitmap = get_pageblock_bitmap(zone, pfn);
6142 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6143 word_bitidx = bitidx / BITS_PER_LONG;
6144 bitidx &= (BITS_PER_LONG-1);
6145
309381fe 6146 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6147
e58469ba
MG
6148 bitidx += end_bitidx;
6149 mask <<= (BITS_PER_LONG - bitidx - 1);
6150 flags <<= (BITS_PER_LONG - bitidx - 1);
6151
6152 word = ACCESS_ONCE(bitmap[word_bitidx]);
6153 for (;;) {
6154 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6155 if (word == old_word)
6156 break;
6157 word = old_word;
6158 }
835c134e 6159}
a5d76b54
KH
6160
6161/*
80934513
MK
6162 * This function checks whether pageblock includes unmovable pages or not.
6163 * If @count is not zero, it is okay to include less @count unmovable pages
6164 *
b8af2941 6165 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6166 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6167 * expect this function should be exact.
a5d76b54 6168 */
b023f468
WC
6169bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6170 bool skip_hwpoisoned_pages)
49ac8255
KH
6171{
6172 unsigned long pfn, iter, found;
47118af0
MN
6173 int mt;
6174
49ac8255
KH
6175 /*
6176 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6177 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6178 */
6179 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6180 return false;
47118af0
MN
6181 mt = get_pageblock_migratetype(page);
6182 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6183 return false;
49ac8255
KH
6184
6185 pfn = page_to_pfn(page);
6186 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6187 unsigned long check = pfn + iter;
6188
29723fcc 6189 if (!pfn_valid_within(check))
49ac8255 6190 continue;
29723fcc 6191
49ac8255 6192 page = pfn_to_page(check);
c8721bbb
NH
6193
6194 /*
6195 * Hugepages are not in LRU lists, but they're movable.
6196 * We need not scan over tail pages bacause we don't
6197 * handle each tail page individually in migration.
6198 */
6199 if (PageHuge(page)) {
6200 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6201 continue;
6202 }
6203
97d255c8
MK
6204 /*
6205 * We can't use page_count without pin a page
6206 * because another CPU can free compound page.
6207 * This check already skips compound tails of THP
6208 * because their page->_count is zero at all time.
6209 */
6210 if (!atomic_read(&page->_count)) {
49ac8255
KH
6211 if (PageBuddy(page))
6212 iter += (1 << page_order(page)) - 1;
6213 continue;
6214 }
97d255c8 6215
b023f468
WC
6216 /*
6217 * The HWPoisoned page may be not in buddy system, and
6218 * page_count() is not 0.
6219 */
6220 if (skip_hwpoisoned_pages && PageHWPoison(page))
6221 continue;
6222
49ac8255
KH
6223 if (!PageLRU(page))
6224 found++;
6225 /*
6226 * If there are RECLAIMABLE pages, we need to check it.
6227 * But now, memory offline itself doesn't call shrink_slab()
6228 * and it still to be fixed.
6229 */
6230 /*
6231 * If the page is not RAM, page_count()should be 0.
6232 * we don't need more check. This is an _used_ not-movable page.
6233 *
6234 * The problematic thing here is PG_reserved pages. PG_reserved
6235 * is set to both of a memory hole page and a _used_ kernel
6236 * page at boot.
6237 */
6238 if (found > count)
80934513 6239 return true;
49ac8255 6240 }
80934513 6241 return false;
49ac8255
KH
6242}
6243
6244bool is_pageblock_removable_nolock(struct page *page)
6245{
656a0706
MH
6246 struct zone *zone;
6247 unsigned long pfn;
687875fb
MH
6248
6249 /*
6250 * We have to be careful here because we are iterating over memory
6251 * sections which are not zone aware so we might end up outside of
6252 * the zone but still within the section.
656a0706
MH
6253 * We have to take care about the node as well. If the node is offline
6254 * its NODE_DATA will be NULL - see page_zone.
687875fb 6255 */
656a0706
MH
6256 if (!node_online(page_to_nid(page)))
6257 return false;
6258
6259 zone = page_zone(page);
6260 pfn = page_to_pfn(page);
108bcc96 6261 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6262 return false;
6263
b023f468 6264 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6265}
0c0e6195 6266
041d3a8c
MN
6267#ifdef CONFIG_CMA
6268
6269static unsigned long pfn_max_align_down(unsigned long pfn)
6270{
6271 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6272 pageblock_nr_pages) - 1);
6273}
6274
6275static unsigned long pfn_max_align_up(unsigned long pfn)
6276{
6277 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6278 pageblock_nr_pages));
6279}
6280
041d3a8c 6281/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6282static int __alloc_contig_migrate_range(struct compact_control *cc,
6283 unsigned long start, unsigned long end)
041d3a8c
MN
6284{
6285 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6286 unsigned long nr_reclaimed;
041d3a8c
MN
6287 unsigned long pfn = start;
6288 unsigned int tries = 0;
6289 int ret = 0;
6290
be49a6e1 6291 migrate_prep();
041d3a8c 6292
bb13ffeb 6293 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6294 if (fatal_signal_pending(current)) {
6295 ret = -EINTR;
6296 break;
6297 }
6298
bb13ffeb
MG
6299 if (list_empty(&cc->migratepages)) {
6300 cc->nr_migratepages = 0;
edc2ca61 6301 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6302 if (!pfn) {
6303 ret = -EINTR;
6304 break;
6305 }
6306 tries = 0;
6307 } else if (++tries == 5) {
6308 ret = ret < 0 ? ret : -EBUSY;
6309 break;
6310 }
6311
beb51eaa
MK
6312 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6313 &cc->migratepages);
6314 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6315
9c620e2b 6316 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6317 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6318 }
2a6f5124
SP
6319 if (ret < 0) {
6320 putback_movable_pages(&cc->migratepages);
6321 return ret;
6322 }
6323 return 0;
041d3a8c
MN
6324}
6325
6326/**
6327 * alloc_contig_range() -- tries to allocate given range of pages
6328 * @start: start PFN to allocate
6329 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6330 * @migratetype: migratetype of the underlaying pageblocks (either
6331 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6332 * in range must have the same migratetype and it must
6333 * be either of the two.
041d3a8c
MN
6334 *
6335 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6336 * aligned, however it's the caller's responsibility to guarantee that
6337 * we are the only thread that changes migrate type of pageblocks the
6338 * pages fall in.
6339 *
6340 * The PFN range must belong to a single zone.
6341 *
6342 * Returns zero on success or negative error code. On success all
6343 * pages which PFN is in [start, end) are allocated for the caller and
6344 * need to be freed with free_contig_range().
6345 */
0815f3d8
MN
6346int alloc_contig_range(unsigned long start, unsigned long end,
6347 unsigned migratetype)
041d3a8c 6348{
041d3a8c
MN
6349 unsigned long outer_start, outer_end;
6350 int ret = 0, order;
6351
bb13ffeb
MG
6352 struct compact_control cc = {
6353 .nr_migratepages = 0,
6354 .order = -1,
6355 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6356 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6357 .ignore_skip_hint = true,
6358 };
6359 INIT_LIST_HEAD(&cc.migratepages);
6360
041d3a8c
MN
6361 /*
6362 * What we do here is we mark all pageblocks in range as
6363 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6364 * have different sizes, and due to the way page allocator
6365 * work, we align the range to biggest of the two pages so
6366 * that page allocator won't try to merge buddies from
6367 * different pageblocks and change MIGRATE_ISOLATE to some
6368 * other migration type.
6369 *
6370 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6371 * migrate the pages from an unaligned range (ie. pages that
6372 * we are interested in). This will put all the pages in
6373 * range back to page allocator as MIGRATE_ISOLATE.
6374 *
6375 * When this is done, we take the pages in range from page
6376 * allocator removing them from the buddy system. This way
6377 * page allocator will never consider using them.
6378 *
6379 * This lets us mark the pageblocks back as
6380 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6381 * aligned range but not in the unaligned, original range are
6382 * put back to page allocator so that buddy can use them.
6383 */
6384
6385 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6386 pfn_max_align_up(end), migratetype,
6387 false);
041d3a8c 6388 if (ret)
86a595f9 6389 return ret;
041d3a8c 6390
bb13ffeb 6391 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6392 if (ret)
6393 goto done;
6394
6395 /*
6396 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6397 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6398 * more, all pages in [start, end) are free in page allocator.
6399 * What we are going to do is to allocate all pages from
6400 * [start, end) (that is remove them from page allocator).
6401 *
6402 * The only problem is that pages at the beginning and at the
6403 * end of interesting range may be not aligned with pages that
6404 * page allocator holds, ie. they can be part of higher order
6405 * pages. Because of this, we reserve the bigger range and
6406 * once this is done free the pages we are not interested in.
6407 *
6408 * We don't have to hold zone->lock here because the pages are
6409 * isolated thus they won't get removed from buddy.
6410 */
6411
6412 lru_add_drain_all();
510f5507 6413 drain_all_pages(cc.zone);
041d3a8c
MN
6414
6415 order = 0;
6416 outer_start = start;
6417 while (!PageBuddy(pfn_to_page(outer_start))) {
6418 if (++order >= MAX_ORDER) {
6419 ret = -EBUSY;
6420 goto done;
6421 }
6422 outer_start &= ~0UL << order;
6423 }
6424
6425 /* Make sure the range is really isolated. */
b023f468 6426 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6427 pr_info("%s: [%lx, %lx) PFNs busy\n",
6428 __func__, outer_start, end);
041d3a8c
MN
6429 ret = -EBUSY;
6430 goto done;
6431 }
6432
49f223a9 6433 /* Grab isolated pages from freelists. */
bb13ffeb 6434 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6435 if (!outer_end) {
6436 ret = -EBUSY;
6437 goto done;
6438 }
6439
6440 /* Free head and tail (if any) */
6441 if (start != outer_start)
6442 free_contig_range(outer_start, start - outer_start);
6443 if (end != outer_end)
6444 free_contig_range(end, outer_end - end);
6445
6446done:
6447 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6448 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6449 return ret;
6450}
6451
6452void free_contig_range(unsigned long pfn, unsigned nr_pages)
6453{
bcc2b02f
MS
6454 unsigned int count = 0;
6455
6456 for (; nr_pages--; pfn++) {
6457 struct page *page = pfn_to_page(pfn);
6458
6459 count += page_count(page) != 1;
6460 __free_page(page);
6461 }
6462 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6463}
6464#endif
6465
4ed7e022 6466#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6467/*
6468 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6469 * page high values need to be recalulated.
6470 */
4ed7e022
JL
6471void __meminit zone_pcp_update(struct zone *zone)
6472{
0a647f38 6473 unsigned cpu;
c8e251fa 6474 mutex_lock(&pcp_batch_high_lock);
0a647f38 6475 for_each_possible_cpu(cpu)
169f6c19
CS
6476 pageset_set_high_and_batch(zone,
6477 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6478 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6479}
6480#endif
6481
340175b7
JL
6482void zone_pcp_reset(struct zone *zone)
6483{
6484 unsigned long flags;
5a883813
MK
6485 int cpu;
6486 struct per_cpu_pageset *pset;
340175b7
JL
6487
6488 /* avoid races with drain_pages() */
6489 local_irq_save(flags);
6490 if (zone->pageset != &boot_pageset) {
5a883813
MK
6491 for_each_online_cpu(cpu) {
6492 pset = per_cpu_ptr(zone->pageset, cpu);
6493 drain_zonestat(zone, pset);
6494 }
340175b7
JL
6495 free_percpu(zone->pageset);
6496 zone->pageset = &boot_pageset;
6497 }
6498 local_irq_restore(flags);
6499}
6500
6dcd73d7 6501#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6502/*
6503 * All pages in the range must be isolated before calling this.
6504 */
6505void
6506__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6507{
6508 struct page *page;
6509 struct zone *zone;
7aeb09f9 6510 unsigned int order, i;
0c0e6195
KH
6511 unsigned long pfn;
6512 unsigned long flags;
6513 /* find the first valid pfn */
6514 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6515 if (pfn_valid(pfn))
6516 break;
6517 if (pfn == end_pfn)
6518 return;
6519 zone = page_zone(pfn_to_page(pfn));
6520 spin_lock_irqsave(&zone->lock, flags);
6521 pfn = start_pfn;
6522 while (pfn < end_pfn) {
6523 if (!pfn_valid(pfn)) {
6524 pfn++;
6525 continue;
6526 }
6527 page = pfn_to_page(pfn);
b023f468
WC
6528 /*
6529 * The HWPoisoned page may be not in buddy system, and
6530 * page_count() is not 0.
6531 */
6532 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6533 pfn++;
6534 SetPageReserved(page);
6535 continue;
6536 }
6537
0c0e6195
KH
6538 BUG_ON(page_count(page));
6539 BUG_ON(!PageBuddy(page));
6540 order = page_order(page);
6541#ifdef CONFIG_DEBUG_VM
6542 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6543 pfn, 1 << order, end_pfn);
6544#endif
6545 list_del(&page->lru);
6546 rmv_page_order(page);
6547 zone->free_area[order].nr_free--;
0c0e6195
KH
6548 for (i = 0; i < (1 << order); i++)
6549 SetPageReserved((page+i));
6550 pfn += (1 << order);
6551 }
6552 spin_unlock_irqrestore(&zone->lock, flags);
6553}
6554#endif
8d22ba1b
WF
6555
6556#ifdef CONFIG_MEMORY_FAILURE
6557bool is_free_buddy_page(struct page *page)
6558{
6559 struct zone *zone = page_zone(page);
6560 unsigned long pfn = page_to_pfn(page);
6561 unsigned long flags;
7aeb09f9 6562 unsigned int order;
8d22ba1b
WF
6563
6564 spin_lock_irqsave(&zone->lock, flags);
6565 for (order = 0; order < MAX_ORDER; order++) {
6566 struct page *page_head = page - (pfn & ((1 << order) - 1));
6567
6568 if (PageBuddy(page_head) && page_order(page_head) >= order)
6569 break;
6570 }
6571 spin_unlock_irqrestore(&zone->lock, flags);
6572
6573 return order < MAX_ORDER;
6574}
6575#endif