]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
mm, debug: move bad flags printing to bad_page()
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
1da177e4 252
2c85f51d
JB
253static unsigned long __meminitdata nr_kernel_pages;
254static unsigned long __meminitdata nr_all_pages;
a3142c8e 255static unsigned long __meminitdata dma_reserve;
1da177e4 256
0ee332c1
TH
257#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
258static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
259static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __initdata required_kernelcore;
261static unsigned long __initdata required_movablecore;
262static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 263static bool mirrored_kernelcore;
0ee332c1
TH
264
265/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
266int movable_zone;
267EXPORT_SYMBOL(movable_zone);
268#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 269
418508c1
MS
270#if MAX_NUMNODES > 1
271int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 272int nr_online_nodes __read_mostly = 1;
418508c1 273EXPORT_SYMBOL(nr_node_ids);
62bc62a8 274EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
275#endif
276
9ef9acb0
MG
277int page_group_by_mobility_disabled __read_mostly;
278
3a80a7fa
MG
279#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
280static inline void reset_deferred_meminit(pg_data_t *pgdat)
281{
282 pgdat->first_deferred_pfn = ULONG_MAX;
283}
284
285/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 286static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 287{
ae026b2a 288 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
289 return true;
290
291 return false;
292}
293
7e18adb4
MG
294static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
295{
296 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
297 return true;
298
299 return false;
300}
301
3a80a7fa
MG
302/*
303 * Returns false when the remaining initialisation should be deferred until
304 * later in the boot cycle when it can be parallelised.
305 */
306static inline bool update_defer_init(pg_data_t *pgdat,
307 unsigned long pfn, unsigned long zone_end,
308 unsigned long *nr_initialised)
309{
310 /* Always populate low zones for address-contrained allocations */
311 if (zone_end < pgdat_end_pfn(pgdat))
312 return true;
313
314 /* Initialise at least 2G of the highest zone */
315 (*nr_initialised)++;
316 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
317 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
318 pgdat->first_deferred_pfn = pfn;
319 return false;
320 }
321
322 return true;
323}
324#else
325static inline void reset_deferred_meminit(pg_data_t *pgdat)
326{
327}
328
329static inline bool early_page_uninitialised(unsigned long pfn)
330{
331 return false;
332}
333
7e18adb4
MG
334static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
335{
336 return false;
337}
338
3a80a7fa
MG
339static inline bool update_defer_init(pg_data_t *pgdat,
340 unsigned long pfn, unsigned long zone_end,
341 unsigned long *nr_initialised)
342{
343 return true;
344}
345#endif
346
347
ee6f509c 348void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 349{
5d0f3f72
KM
350 if (unlikely(page_group_by_mobility_disabled &&
351 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
352 migratetype = MIGRATE_UNMOVABLE;
353
b2a0ac88
MG
354 set_pageblock_flags_group(page, (unsigned long)migratetype,
355 PB_migrate, PB_migrate_end);
356}
357
13e7444b 358#ifdef CONFIG_DEBUG_VM
c6a57e19 359static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 360{
bdc8cb98
DH
361 int ret = 0;
362 unsigned seq;
363 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 364 unsigned long sp, start_pfn;
c6a57e19 365
bdc8cb98
DH
366 do {
367 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
368 start_pfn = zone->zone_start_pfn;
369 sp = zone->spanned_pages;
108bcc96 370 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
371 ret = 1;
372 } while (zone_span_seqretry(zone, seq));
373
b5e6a5a2 374 if (ret)
613813e8
DH
375 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
376 pfn, zone_to_nid(zone), zone->name,
377 start_pfn, start_pfn + sp);
b5e6a5a2 378
bdc8cb98 379 return ret;
c6a57e19
DH
380}
381
382static int page_is_consistent(struct zone *zone, struct page *page)
383{
14e07298 384 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 385 return 0;
1da177e4 386 if (zone != page_zone(page))
c6a57e19
DH
387 return 0;
388
389 return 1;
390}
391/*
392 * Temporary debugging check for pages not lying within a given zone.
393 */
394static int bad_range(struct zone *zone, struct page *page)
395{
396 if (page_outside_zone_boundaries(zone, page))
1da177e4 397 return 1;
c6a57e19
DH
398 if (!page_is_consistent(zone, page))
399 return 1;
400
1da177e4
LT
401 return 0;
402}
13e7444b
NP
403#else
404static inline int bad_range(struct zone *zone, struct page *page)
405{
406 return 0;
407}
408#endif
409
d230dec1
KS
410static void bad_page(struct page *page, const char *reason,
411 unsigned long bad_flags)
1da177e4 412{
d936cf9b
HD
413 static unsigned long resume;
414 static unsigned long nr_shown;
415 static unsigned long nr_unshown;
416
2a7684a2
WF
417 /* Don't complain about poisoned pages */
418 if (PageHWPoison(page)) {
22b751c3 419 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
420 return;
421 }
422
d936cf9b
HD
423 /*
424 * Allow a burst of 60 reports, then keep quiet for that minute;
425 * or allow a steady drip of one report per second.
426 */
427 if (nr_shown == 60) {
428 if (time_before(jiffies, resume)) {
429 nr_unshown++;
430 goto out;
431 }
432 if (nr_unshown) {
ff8e8116 433 pr_alert(
1e9e6365 434 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
435 nr_unshown);
436 nr_unshown = 0;
437 }
438 nr_shown = 0;
439 }
440 if (nr_shown++ == 0)
441 resume = jiffies + 60 * HZ;
442
ff8e8116 443 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 444 current->comm, page_to_pfn(page));
ff8e8116
VB
445 __dump_page(page, reason);
446 bad_flags &= page->flags;
447 if (bad_flags)
448 pr_alert("bad because of flags: %#lx(%pGp)\n",
449 bad_flags, &bad_flags);
4e462112 450 dump_page_owner(page);
3dc14741 451
4f31888c 452 print_modules();
1da177e4 453 dump_stack();
d936cf9b 454out:
8cc3b392 455 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 456 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 457 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
458}
459
1da177e4
LT
460/*
461 * Higher-order pages are called "compound pages". They are structured thusly:
462 *
1d798ca3 463 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 464 *
1d798ca3
KS
465 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
466 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 467 *
1d798ca3
KS
468 * The first tail page's ->compound_dtor holds the offset in array of compound
469 * page destructors. See compound_page_dtors.
1da177e4 470 *
1d798ca3 471 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 472 * This usage means that zero-order pages may not be compound.
1da177e4 473 */
d98c7a09 474
9a982250 475void free_compound_page(struct page *page)
d98c7a09 476{
d85f3385 477 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
478}
479
d00181b9 480void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
481{
482 int i;
483 int nr_pages = 1 << order;
484
f1e61557 485 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
486 set_compound_order(page, order);
487 __SetPageHead(page);
488 for (i = 1; i < nr_pages; i++) {
489 struct page *p = page + i;
58a84aa9 490 set_page_count(p, 0);
1c290f64 491 p->mapping = TAIL_MAPPING;
1d798ca3 492 set_compound_head(p, page);
18229df5 493 }
53f9263b 494 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
495}
496
c0a32fc5
SG
497#ifdef CONFIG_DEBUG_PAGEALLOC
498unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
499bool _debug_pagealloc_enabled __read_mostly
500 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
e30825f1
JK
501bool _debug_guardpage_enabled __read_mostly;
502
031bc574
JK
503static int __init early_debug_pagealloc(char *buf)
504{
505 if (!buf)
506 return -EINVAL;
507
508 if (strcmp(buf, "on") == 0)
509 _debug_pagealloc_enabled = true;
510
ea6eabb0
CB
511 if (strcmp(buf, "off") == 0)
512 _debug_pagealloc_enabled = false;
513
031bc574
JK
514 return 0;
515}
516early_param("debug_pagealloc", early_debug_pagealloc);
517
e30825f1
JK
518static bool need_debug_guardpage(void)
519{
031bc574
JK
520 /* If we don't use debug_pagealloc, we don't need guard page */
521 if (!debug_pagealloc_enabled())
522 return false;
523
e30825f1
JK
524 return true;
525}
526
527static void init_debug_guardpage(void)
528{
031bc574
JK
529 if (!debug_pagealloc_enabled())
530 return;
531
e30825f1
JK
532 _debug_guardpage_enabled = true;
533}
534
535struct page_ext_operations debug_guardpage_ops = {
536 .need = need_debug_guardpage,
537 .init = init_debug_guardpage,
538};
c0a32fc5
SG
539
540static int __init debug_guardpage_minorder_setup(char *buf)
541{
542 unsigned long res;
543
544 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
545 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
546 return 0;
547 }
548 _debug_guardpage_minorder = res;
549 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
550 return 0;
551}
552__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
553
2847cf95
JK
554static inline void set_page_guard(struct zone *zone, struct page *page,
555 unsigned int order, int migratetype)
c0a32fc5 556{
e30825f1
JK
557 struct page_ext *page_ext;
558
559 if (!debug_guardpage_enabled())
560 return;
561
562 page_ext = lookup_page_ext(page);
563 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
564
2847cf95
JK
565 INIT_LIST_HEAD(&page->lru);
566 set_page_private(page, order);
567 /* Guard pages are not available for any usage */
568 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
569}
570
2847cf95
JK
571static inline void clear_page_guard(struct zone *zone, struct page *page,
572 unsigned int order, int migratetype)
c0a32fc5 573{
e30825f1
JK
574 struct page_ext *page_ext;
575
576 if (!debug_guardpage_enabled())
577 return;
578
579 page_ext = lookup_page_ext(page);
580 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
581
2847cf95
JK
582 set_page_private(page, 0);
583 if (!is_migrate_isolate(migratetype))
584 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
585}
586#else
e30825f1 587struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
588static inline void set_page_guard(struct zone *zone, struct page *page,
589 unsigned int order, int migratetype) {}
590static inline void clear_page_guard(struct zone *zone, struct page *page,
591 unsigned int order, int migratetype) {}
c0a32fc5
SG
592#endif
593
7aeb09f9 594static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 595{
4c21e2f2 596 set_page_private(page, order);
676165a8 597 __SetPageBuddy(page);
1da177e4
LT
598}
599
600static inline void rmv_page_order(struct page *page)
601{
676165a8 602 __ClearPageBuddy(page);
4c21e2f2 603 set_page_private(page, 0);
1da177e4
LT
604}
605
1da177e4
LT
606/*
607 * This function checks whether a page is free && is the buddy
608 * we can do coalesce a page and its buddy if
13e7444b 609 * (a) the buddy is not in a hole &&
676165a8 610 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
611 * (c) a page and its buddy have the same order &&
612 * (d) a page and its buddy are in the same zone.
676165a8 613 *
cf6fe945
WSH
614 * For recording whether a page is in the buddy system, we set ->_mapcount
615 * PAGE_BUDDY_MAPCOUNT_VALUE.
616 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
617 * serialized by zone->lock.
1da177e4 618 *
676165a8 619 * For recording page's order, we use page_private(page).
1da177e4 620 */
cb2b95e1 621static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 622 unsigned int order)
1da177e4 623{
14e07298 624 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 625 return 0;
13e7444b 626
c0a32fc5 627 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
628 if (page_zone_id(page) != page_zone_id(buddy))
629 return 0;
630
4c5018ce
WY
631 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
632
c0a32fc5
SG
633 return 1;
634 }
635
cb2b95e1 636 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 /*
638 * zone check is done late to avoid uselessly
639 * calculating zone/node ids for pages that could
640 * never merge.
641 */
642 if (page_zone_id(page) != page_zone_id(buddy))
643 return 0;
644
4c5018ce
WY
645 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
646
6aa3001b 647 return 1;
676165a8 648 }
6aa3001b 649 return 0;
1da177e4
LT
650}
651
652/*
653 * Freeing function for a buddy system allocator.
654 *
655 * The concept of a buddy system is to maintain direct-mapped table
656 * (containing bit values) for memory blocks of various "orders".
657 * The bottom level table contains the map for the smallest allocatable
658 * units of memory (here, pages), and each level above it describes
659 * pairs of units from the levels below, hence, "buddies".
660 * At a high level, all that happens here is marking the table entry
661 * at the bottom level available, and propagating the changes upward
662 * as necessary, plus some accounting needed to play nicely with other
663 * parts of the VM system.
664 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
665 * free pages of length of (1 << order) and marked with _mapcount
666 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
667 * field.
1da177e4 668 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
669 * other. That is, if we allocate a small block, and both were
670 * free, the remainder of the region must be split into blocks.
1da177e4 671 * If a block is freed, and its buddy is also free, then this
5f63b720 672 * triggers coalescing into a block of larger size.
1da177e4 673 *
6d49e352 674 * -- nyc
1da177e4
LT
675 */
676
48db57f8 677static inline void __free_one_page(struct page *page,
dc4b0caf 678 unsigned long pfn,
ed0ae21d
MG
679 struct zone *zone, unsigned int order,
680 int migratetype)
1da177e4
LT
681{
682 unsigned long page_idx;
6dda9d55 683 unsigned long combined_idx;
43506fad 684 unsigned long uninitialized_var(buddy_idx);
6dda9d55 685 struct page *buddy;
d00181b9 686 unsigned int max_order = MAX_ORDER;
1da177e4 687
d29bb978 688 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 689 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 690
ed0ae21d 691 VM_BUG_ON(migratetype == -1);
3c605096
JK
692 if (is_migrate_isolate(migratetype)) {
693 /*
694 * We restrict max order of merging to prevent merge
695 * between freepages on isolate pageblock and normal
696 * pageblock. Without this, pageblock isolation
697 * could cause incorrect freepage accounting.
698 */
d00181b9 699 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
3c605096 700 } else {
8f82b55d 701 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 702 }
ed0ae21d 703
3c605096 704 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 705
309381fe
SL
706 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
707 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 708
3c605096 709 while (order < max_order - 1) {
43506fad
KC
710 buddy_idx = __find_buddy_index(page_idx, order);
711 buddy = page + (buddy_idx - page_idx);
cb2b95e1 712 if (!page_is_buddy(page, buddy, order))
3c82d0ce 713 break;
c0a32fc5
SG
714 /*
715 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
716 * merge with it and move up one order.
717 */
718 if (page_is_guard(buddy)) {
2847cf95 719 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
720 } else {
721 list_del(&buddy->lru);
722 zone->free_area[order].nr_free--;
723 rmv_page_order(buddy);
724 }
43506fad 725 combined_idx = buddy_idx & page_idx;
1da177e4
LT
726 page = page + (combined_idx - page_idx);
727 page_idx = combined_idx;
728 order++;
729 }
730 set_page_order(page, order);
6dda9d55
CZ
731
732 /*
733 * If this is not the largest possible page, check if the buddy
734 * of the next-highest order is free. If it is, it's possible
735 * that pages are being freed that will coalesce soon. In case,
736 * that is happening, add the free page to the tail of the list
737 * so it's less likely to be used soon and more likely to be merged
738 * as a higher order page
739 */
b7f50cfa 740 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 741 struct page *higher_page, *higher_buddy;
43506fad
KC
742 combined_idx = buddy_idx & page_idx;
743 higher_page = page + (combined_idx - page_idx);
744 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 745 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
746 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
747 list_add_tail(&page->lru,
748 &zone->free_area[order].free_list[migratetype]);
749 goto out;
750 }
751 }
752
753 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
754out:
1da177e4
LT
755 zone->free_area[order].nr_free++;
756}
757
224abf92 758static inline int free_pages_check(struct page *page)
1da177e4 759{
d230dec1 760 const char *bad_reason = NULL;
f0b791a3
DH
761 unsigned long bad_flags = 0;
762
53f9263b 763 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
764 bad_reason = "nonzero mapcount";
765 if (unlikely(page->mapping != NULL))
766 bad_reason = "non-NULL mapping";
767 if (unlikely(atomic_read(&page->_count) != 0))
768 bad_reason = "nonzero _count";
769 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
770 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
771 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
772 }
9edad6ea
JW
773#ifdef CONFIG_MEMCG
774 if (unlikely(page->mem_cgroup))
775 bad_reason = "page still charged to cgroup";
776#endif
f0b791a3
DH
777 if (unlikely(bad_reason)) {
778 bad_page(page, bad_reason, bad_flags);
79f4b7bf 779 return 1;
8cc3b392 780 }
90572890 781 page_cpupid_reset_last(page);
79f4b7bf
HD
782 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
783 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
784 return 0;
1da177e4
LT
785}
786
787/*
5f8dcc21 788 * Frees a number of pages from the PCP lists
1da177e4 789 * Assumes all pages on list are in same zone, and of same order.
207f36ee 790 * count is the number of pages to free.
1da177e4
LT
791 *
792 * If the zone was previously in an "all pages pinned" state then look to
793 * see if this freeing clears that state.
794 *
795 * And clear the zone's pages_scanned counter, to hold off the "all pages are
796 * pinned" detection logic.
797 */
5f8dcc21
MG
798static void free_pcppages_bulk(struct zone *zone, int count,
799 struct per_cpu_pages *pcp)
1da177e4 800{
5f8dcc21 801 int migratetype = 0;
a6f9edd6 802 int batch_free = 0;
72853e29 803 int to_free = count;
0d5d823a 804 unsigned long nr_scanned;
5f8dcc21 805
c54ad30c 806 spin_lock(&zone->lock);
0d5d823a
MG
807 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
808 if (nr_scanned)
809 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 810
72853e29 811 while (to_free) {
48db57f8 812 struct page *page;
5f8dcc21
MG
813 struct list_head *list;
814
815 /*
a6f9edd6
MG
816 * Remove pages from lists in a round-robin fashion. A
817 * batch_free count is maintained that is incremented when an
818 * empty list is encountered. This is so more pages are freed
819 * off fuller lists instead of spinning excessively around empty
820 * lists
5f8dcc21
MG
821 */
822 do {
a6f9edd6 823 batch_free++;
5f8dcc21
MG
824 if (++migratetype == MIGRATE_PCPTYPES)
825 migratetype = 0;
826 list = &pcp->lists[migratetype];
827 } while (list_empty(list));
48db57f8 828
1d16871d
NK
829 /* This is the only non-empty list. Free them all. */
830 if (batch_free == MIGRATE_PCPTYPES)
831 batch_free = to_free;
832
a6f9edd6 833 do {
770c8aaa
BZ
834 int mt; /* migratetype of the to-be-freed page */
835
a16601c5 836 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
837 /* must delete as __free_one_page list manipulates */
838 list_del(&page->lru);
aa016d14 839
bb14c2c7 840 mt = get_pcppage_migratetype(page);
aa016d14
VB
841 /* MIGRATE_ISOLATE page should not go to pcplists */
842 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
843 /* Pageblock could have been isolated meanwhile */
8f82b55d 844 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 845 mt = get_pageblock_migratetype(page);
51bb1a40 846
dc4b0caf 847 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 848 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 849 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 850 }
c54ad30c 851 spin_unlock(&zone->lock);
1da177e4
LT
852}
853
dc4b0caf
MG
854static void free_one_page(struct zone *zone,
855 struct page *page, unsigned long pfn,
7aeb09f9 856 unsigned int order,
ed0ae21d 857 int migratetype)
1da177e4 858{
0d5d823a 859 unsigned long nr_scanned;
006d22d9 860 spin_lock(&zone->lock);
0d5d823a
MG
861 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
862 if (nr_scanned)
863 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 864
ad53f92e
JK
865 if (unlikely(has_isolate_pageblock(zone) ||
866 is_migrate_isolate(migratetype))) {
867 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 868 }
dc4b0caf 869 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 870 spin_unlock(&zone->lock);
48db57f8
NP
871}
872
81422f29
KS
873static int free_tail_pages_check(struct page *head_page, struct page *page)
874{
1d798ca3
KS
875 int ret = 1;
876
877 /*
878 * We rely page->lru.next never has bit 0 set, unless the page
879 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
880 */
881 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
882
883 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
884 ret = 0;
885 goto out;
886 }
9a982250
KS
887 switch (page - head_page) {
888 case 1:
889 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
890 if (unlikely(compound_mapcount(page))) {
891 bad_page(page, "nonzero compound_mapcount", 0);
892 goto out;
893 }
9a982250
KS
894 break;
895 case 2:
896 /*
897 * the second tail page: ->mapping is
898 * page_deferred_list().next -- ignore value.
899 */
900 break;
901 default:
902 if (page->mapping != TAIL_MAPPING) {
903 bad_page(page, "corrupted mapping in tail page", 0);
904 goto out;
905 }
906 break;
1c290f64 907 }
81422f29
KS
908 if (unlikely(!PageTail(page))) {
909 bad_page(page, "PageTail not set", 0);
1d798ca3 910 goto out;
81422f29 911 }
1d798ca3
KS
912 if (unlikely(compound_head(page) != head_page)) {
913 bad_page(page, "compound_head not consistent", 0);
914 goto out;
81422f29 915 }
1d798ca3
KS
916 ret = 0;
917out:
1c290f64 918 page->mapping = NULL;
1d798ca3
KS
919 clear_compound_head(page);
920 return ret;
81422f29
KS
921}
922
1e8ce83c
RH
923static void __meminit __init_single_page(struct page *page, unsigned long pfn,
924 unsigned long zone, int nid)
925{
1e8ce83c 926 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
927 init_page_count(page);
928 page_mapcount_reset(page);
929 page_cpupid_reset_last(page);
1e8ce83c 930
1e8ce83c
RH
931 INIT_LIST_HEAD(&page->lru);
932#ifdef WANT_PAGE_VIRTUAL
933 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
934 if (!is_highmem_idx(zone))
935 set_page_address(page, __va(pfn << PAGE_SHIFT));
936#endif
937}
938
939static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
940 int nid)
941{
942 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
943}
944
7e18adb4
MG
945#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
946static void init_reserved_page(unsigned long pfn)
947{
948 pg_data_t *pgdat;
949 int nid, zid;
950
951 if (!early_page_uninitialised(pfn))
952 return;
953
954 nid = early_pfn_to_nid(pfn);
955 pgdat = NODE_DATA(nid);
956
957 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
958 struct zone *zone = &pgdat->node_zones[zid];
959
960 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
961 break;
962 }
963 __init_single_pfn(pfn, zid, nid);
964}
965#else
966static inline void init_reserved_page(unsigned long pfn)
967{
968}
969#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
970
92923ca3
NZ
971/*
972 * Initialised pages do not have PageReserved set. This function is
973 * called for each range allocated by the bootmem allocator and
974 * marks the pages PageReserved. The remaining valid pages are later
975 * sent to the buddy page allocator.
976 */
7e18adb4 977void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
978{
979 unsigned long start_pfn = PFN_DOWN(start);
980 unsigned long end_pfn = PFN_UP(end);
981
7e18adb4
MG
982 for (; start_pfn < end_pfn; start_pfn++) {
983 if (pfn_valid(start_pfn)) {
984 struct page *page = pfn_to_page(start_pfn);
985
986 init_reserved_page(start_pfn);
1d798ca3
KS
987
988 /* Avoid false-positive PageTail() */
989 INIT_LIST_HEAD(&page->lru);
990
7e18adb4
MG
991 SetPageReserved(page);
992 }
993 }
92923ca3
NZ
994}
995
ec95f53a 996static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 997{
81422f29
KS
998 bool compound = PageCompound(page);
999 int i, bad = 0;
1da177e4 1000
ab1f306f 1001 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 1002 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 1003
b413d48a 1004 trace_mm_page_free(page, order);
b1eeab67 1005 kmemcheck_free_shadow(page, order);
b8c73fc2 1006 kasan_free_pages(page, order);
b1eeab67 1007
8dd60a3a
AA
1008 if (PageAnon(page))
1009 page->mapping = NULL;
81422f29
KS
1010 bad += free_pages_check(page);
1011 for (i = 1; i < (1 << order); i++) {
1012 if (compound)
1013 bad += free_tail_pages_check(page, page + i);
8dd60a3a 1014 bad += free_pages_check(page + i);
81422f29 1015 }
8cc3b392 1016 if (bad)
ec95f53a 1017 return false;
689bcebf 1018
48c96a36
JK
1019 reset_page_owner(page, order);
1020
3ac7fe5a 1021 if (!PageHighMem(page)) {
b8af2941
PK
1022 debug_check_no_locks_freed(page_address(page),
1023 PAGE_SIZE << order);
3ac7fe5a
TG
1024 debug_check_no_obj_freed(page_address(page),
1025 PAGE_SIZE << order);
1026 }
dafb1367 1027 arch_free_page(page, order);
48db57f8 1028 kernel_map_pages(page, 1 << order, 0);
dafb1367 1029
ec95f53a
KM
1030 return true;
1031}
1032
1033static void __free_pages_ok(struct page *page, unsigned int order)
1034{
1035 unsigned long flags;
95e34412 1036 int migratetype;
dc4b0caf 1037 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1038
1039 if (!free_pages_prepare(page, order))
1040 return;
1041
cfc47a28 1042 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1043 local_irq_save(flags);
f8891e5e 1044 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1045 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1046 local_irq_restore(flags);
1da177e4
LT
1047}
1048
0e1cc95b 1049static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 1050 unsigned long pfn, unsigned int order)
a226f6c8 1051{
c3993076 1052 unsigned int nr_pages = 1 << order;
e2d0bd2b 1053 struct page *p = page;
c3993076 1054 unsigned int loop;
a226f6c8 1055
e2d0bd2b
YL
1056 prefetchw(p);
1057 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1058 prefetchw(p + 1);
c3993076
JW
1059 __ClearPageReserved(p);
1060 set_page_count(p, 0);
a226f6c8 1061 }
e2d0bd2b
YL
1062 __ClearPageReserved(p);
1063 set_page_count(p, 0);
c3993076 1064
e2d0bd2b 1065 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1066 set_page_refcounted(page);
1067 __free_pages(page, order);
a226f6c8
DH
1068}
1069
75a592a4
MG
1070#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1071 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1072
75a592a4
MG
1073static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1074
1075int __meminit early_pfn_to_nid(unsigned long pfn)
1076{
7ace9917 1077 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1078 int nid;
1079
7ace9917 1080 spin_lock(&early_pfn_lock);
75a592a4 1081 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1082 if (nid < 0)
1083 nid = 0;
1084 spin_unlock(&early_pfn_lock);
1085
1086 return nid;
75a592a4
MG
1087}
1088#endif
1089
1090#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1091static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1092 struct mminit_pfnnid_cache *state)
1093{
1094 int nid;
1095
1096 nid = __early_pfn_to_nid(pfn, state);
1097 if (nid >= 0 && nid != node)
1098 return false;
1099 return true;
1100}
1101
1102/* Only safe to use early in boot when initialisation is single-threaded */
1103static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1104{
1105 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1106}
1107
1108#else
1109
1110static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1111{
1112 return true;
1113}
1114static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1115 struct mminit_pfnnid_cache *state)
1116{
1117 return true;
1118}
1119#endif
1120
1121
0e1cc95b 1122void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1123 unsigned int order)
1124{
1125 if (early_page_uninitialised(pfn))
1126 return;
1127 return __free_pages_boot_core(page, pfn, order);
1128}
1129
7e18adb4 1130#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1131static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1132 unsigned long pfn, int nr_pages)
1133{
1134 int i;
1135
1136 if (!page)
1137 return;
1138
1139 /* Free a large naturally-aligned chunk if possible */
1140 if (nr_pages == MAX_ORDER_NR_PAGES &&
1141 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1142 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1143 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1144 return;
1145 }
1146
1147 for (i = 0; i < nr_pages; i++, page++, pfn++)
1148 __free_pages_boot_core(page, pfn, 0);
1149}
1150
d3cd131d
NS
1151/* Completion tracking for deferred_init_memmap() threads */
1152static atomic_t pgdat_init_n_undone __initdata;
1153static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1154
1155static inline void __init pgdat_init_report_one_done(void)
1156{
1157 if (atomic_dec_and_test(&pgdat_init_n_undone))
1158 complete(&pgdat_init_all_done_comp);
1159}
0e1cc95b 1160
7e18adb4 1161/* Initialise remaining memory on a node */
0e1cc95b 1162static int __init deferred_init_memmap(void *data)
7e18adb4 1163{
0e1cc95b
MG
1164 pg_data_t *pgdat = data;
1165 int nid = pgdat->node_id;
7e18adb4
MG
1166 struct mminit_pfnnid_cache nid_init_state = { };
1167 unsigned long start = jiffies;
1168 unsigned long nr_pages = 0;
1169 unsigned long walk_start, walk_end;
1170 int i, zid;
1171 struct zone *zone;
7e18adb4 1172 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1173 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1174
0e1cc95b 1175 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1176 pgdat_init_report_one_done();
0e1cc95b
MG
1177 return 0;
1178 }
1179
1180 /* Bind memory initialisation thread to a local node if possible */
1181 if (!cpumask_empty(cpumask))
1182 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1183
1184 /* Sanity check boundaries */
1185 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1186 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1187 pgdat->first_deferred_pfn = ULONG_MAX;
1188
1189 /* Only the highest zone is deferred so find it */
1190 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1191 zone = pgdat->node_zones + zid;
1192 if (first_init_pfn < zone_end_pfn(zone))
1193 break;
1194 }
1195
1196 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1197 unsigned long pfn, end_pfn;
54608c3f 1198 struct page *page = NULL;
a4de83dd
MG
1199 struct page *free_base_page = NULL;
1200 unsigned long free_base_pfn = 0;
1201 int nr_to_free = 0;
7e18adb4
MG
1202
1203 end_pfn = min(walk_end, zone_end_pfn(zone));
1204 pfn = first_init_pfn;
1205 if (pfn < walk_start)
1206 pfn = walk_start;
1207 if (pfn < zone->zone_start_pfn)
1208 pfn = zone->zone_start_pfn;
1209
1210 for (; pfn < end_pfn; pfn++) {
54608c3f 1211 if (!pfn_valid_within(pfn))
a4de83dd 1212 goto free_range;
7e18adb4 1213
54608c3f
MG
1214 /*
1215 * Ensure pfn_valid is checked every
1216 * MAX_ORDER_NR_PAGES for memory holes
1217 */
1218 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1219 if (!pfn_valid(pfn)) {
1220 page = NULL;
a4de83dd 1221 goto free_range;
54608c3f
MG
1222 }
1223 }
1224
1225 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1226 page = NULL;
a4de83dd 1227 goto free_range;
54608c3f
MG
1228 }
1229
1230 /* Minimise pfn page lookups and scheduler checks */
1231 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1232 page++;
1233 } else {
a4de83dd
MG
1234 nr_pages += nr_to_free;
1235 deferred_free_range(free_base_page,
1236 free_base_pfn, nr_to_free);
1237 free_base_page = NULL;
1238 free_base_pfn = nr_to_free = 0;
1239
54608c3f
MG
1240 page = pfn_to_page(pfn);
1241 cond_resched();
1242 }
7e18adb4
MG
1243
1244 if (page->flags) {
1245 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1246 goto free_range;
7e18adb4
MG
1247 }
1248
1249 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1250 if (!free_base_page) {
1251 free_base_page = page;
1252 free_base_pfn = pfn;
1253 nr_to_free = 0;
1254 }
1255 nr_to_free++;
1256
1257 /* Where possible, batch up pages for a single free */
1258 continue;
1259free_range:
1260 /* Free the current block of pages to allocator */
1261 nr_pages += nr_to_free;
1262 deferred_free_range(free_base_page, free_base_pfn,
1263 nr_to_free);
1264 free_base_page = NULL;
1265 free_base_pfn = nr_to_free = 0;
7e18adb4 1266 }
a4de83dd 1267
7e18adb4
MG
1268 first_init_pfn = max(end_pfn, first_init_pfn);
1269 }
1270
1271 /* Sanity check that the next zone really is unpopulated */
1272 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1273
0e1cc95b 1274 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1275 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1276
1277 pgdat_init_report_one_done();
0e1cc95b
MG
1278 return 0;
1279}
1280
1281void __init page_alloc_init_late(void)
1282{
1283 int nid;
1284
d3cd131d
NS
1285 /* There will be num_node_state(N_MEMORY) threads */
1286 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1287 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1288 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1289 }
1290
1291 /* Block until all are initialised */
d3cd131d 1292 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1293
1294 /* Reinit limits that are based on free pages after the kernel is up */
1295 files_maxfiles_init();
7e18adb4
MG
1296}
1297#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1298
47118af0 1299#ifdef CONFIG_CMA
9cf510a5 1300/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1301void __init init_cma_reserved_pageblock(struct page *page)
1302{
1303 unsigned i = pageblock_nr_pages;
1304 struct page *p = page;
1305
1306 do {
1307 __ClearPageReserved(p);
1308 set_page_count(p, 0);
1309 } while (++p, --i);
1310
47118af0 1311 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1312
1313 if (pageblock_order >= MAX_ORDER) {
1314 i = pageblock_nr_pages;
1315 p = page;
1316 do {
1317 set_page_refcounted(p);
1318 __free_pages(p, MAX_ORDER - 1);
1319 p += MAX_ORDER_NR_PAGES;
1320 } while (i -= MAX_ORDER_NR_PAGES);
1321 } else {
1322 set_page_refcounted(page);
1323 __free_pages(page, pageblock_order);
1324 }
1325
3dcc0571 1326 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1327}
1328#endif
1da177e4
LT
1329
1330/*
1331 * The order of subdivision here is critical for the IO subsystem.
1332 * Please do not alter this order without good reasons and regression
1333 * testing. Specifically, as large blocks of memory are subdivided,
1334 * the order in which smaller blocks are delivered depends on the order
1335 * they're subdivided in this function. This is the primary factor
1336 * influencing the order in which pages are delivered to the IO
1337 * subsystem according to empirical testing, and this is also justified
1338 * by considering the behavior of a buddy system containing a single
1339 * large block of memory acted on by a series of small allocations.
1340 * This behavior is a critical factor in sglist merging's success.
1341 *
6d49e352 1342 * -- nyc
1da177e4 1343 */
085cc7d5 1344static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1345 int low, int high, struct free_area *area,
1346 int migratetype)
1da177e4
LT
1347{
1348 unsigned long size = 1 << high;
1349
1350 while (high > low) {
1351 area--;
1352 high--;
1353 size >>= 1;
309381fe 1354 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1355
2847cf95 1356 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1357 debug_guardpage_enabled() &&
2847cf95 1358 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1359 /*
1360 * Mark as guard pages (or page), that will allow to
1361 * merge back to allocator when buddy will be freed.
1362 * Corresponding page table entries will not be touched,
1363 * pages will stay not present in virtual address space
1364 */
2847cf95 1365 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1366 continue;
1367 }
b2a0ac88 1368 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1369 area->nr_free++;
1370 set_page_order(&page[size], high);
1371 }
1da177e4
LT
1372}
1373
1da177e4
LT
1374/*
1375 * This page is about to be returned from the page allocator
1376 */
2a7684a2 1377static inline int check_new_page(struct page *page)
1da177e4 1378{
d230dec1 1379 const char *bad_reason = NULL;
f0b791a3
DH
1380 unsigned long bad_flags = 0;
1381
53f9263b 1382 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1383 bad_reason = "nonzero mapcount";
1384 if (unlikely(page->mapping != NULL))
1385 bad_reason = "non-NULL mapping";
1386 if (unlikely(atomic_read(&page->_count) != 0))
1387 bad_reason = "nonzero _count";
f4c18e6f
NH
1388 if (unlikely(page->flags & __PG_HWPOISON)) {
1389 bad_reason = "HWPoisoned (hardware-corrupted)";
1390 bad_flags = __PG_HWPOISON;
1391 }
f0b791a3
DH
1392 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1393 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1394 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1395 }
9edad6ea
JW
1396#ifdef CONFIG_MEMCG
1397 if (unlikely(page->mem_cgroup))
1398 bad_reason = "page still charged to cgroup";
1399#endif
f0b791a3
DH
1400 if (unlikely(bad_reason)) {
1401 bad_page(page, bad_reason, bad_flags);
689bcebf 1402 return 1;
8cc3b392 1403 }
2a7684a2
WF
1404 return 0;
1405}
1406
75379191
VB
1407static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1408 int alloc_flags)
2a7684a2
WF
1409{
1410 int i;
1411
1412 for (i = 0; i < (1 << order); i++) {
1413 struct page *p = page + i;
1414 if (unlikely(check_new_page(p)))
1415 return 1;
1416 }
689bcebf 1417
4c21e2f2 1418 set_page_private(page, 0);
7835e98b 1419 set_page_refcounted(page);
cc102509
NP
1420
1421 arch_alloc_page(page, order);
1da177e4 1422 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1423 kasan_alloc_pages(page, order);
17cf4406
NP
1424
1425 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1426 for (i = 0; i < (1 << order); i++)
1427 clear_highpage(page + i);
17cf4406
NP
1428
1429 if (order && (gfp_flags & __GFP_COMP))
1430 prep_compound_page(page, order);
1431
48c96a36
JK
1432 set_page_owner(page, order, gfp_flags);
1433
75379191 1434 /*
2f064f34 1435 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1436 * allocate the page. The expectation is that the caller is taking
1437 * steps that will free more memory. The caller should avoid the page
1438 * being used for !PFMEMALLOC purposes.
1439 */
2f064f34
MH
1440 if (alloc_flags & ALLOC_NO_WATERMARKS)
1441 set_page_pfmemalloc(page);
1442 else
1443 clear_page_pfmemalloc(page);
75379191 1444
689bcebf 1445 return 0;
1da177e4
LT
1446}
1447
56fd56b8
MG
1448/*
1449 * Go through the free lists for the given migratetype and remove
1450 * the smallest available page from the freelists
1451 */
728ec980
MG
1452static inline
1453struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1454 int migratetype)
1455{
1456 unsigned int current_order;
b8af2941 1457 struct free_area *area;
56fd56b8
MG
1458 struct page *page;
1459
1460 /* Find a page of the appropriate size in the preferred list */
1461 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1462 area = &(zone->free_area[current_order]);
a16601c5 1463 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1464 struct page, lru);
a16601c5
GT
1465 if (!page)
1466 continue;
56fd56b8
MG
1467 list_del(&page->lru);
1468 rmv_page_order(page);
1469 area->nr_free--;
56fd56b8 1470 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1471 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1472 return page;
1473 }
1474
1475 return NULL;
1476}
1477
1478
b2a0ac88
MG
1479/*
1480 * This array describes the order lists are fallen back to when
1481 * the free lists for the desirable migrate type are depleted
1482 */
47118af0 1483static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1484 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1485 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1486 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1487#ifdef CONFIG_CMA
974a786e 1488 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1489#endif
194159fb 1490#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1491 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1492#endif
b2a0ac88
MG
1493};
1494
dc67647b
JK
1495#ifdef CONFIG_CMA
1496static struct page *__rmqueue_cma_fallback(struct zone *zone,
1497 unsigned int order)
1498{
1499 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1500}
1501#else
1502static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1503 unsigned int order) { return NULL; }
1504#endif
1505
c361be55
MG
1506/*
1507 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1508 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1509 * boundary. If alignment is required, use move_freepages_block()
1510 */
435b405c 1511int move_freepages(struct zone *zone,
b69a7288
AB
1512 struct page *start_page, struct page *end_page,
1513 int migratetype)
c361be55
MG
1514{
1515 struct page *page;
d00181b9 1516 unsigned int order;
d100313f 1517 int pages_moved = 0;
c361be55
MG
1518
1519#ifndef CONFIG_HOLES_IN_ZONE
1520 /*
1521 * page_zone is not safe to call in this context when
1522 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1523 * anyway as we check zone boundaries in move_freepages_block().
1524 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1525 * grouping pages by mobility
c361be55 1526 */
97ee4ba7 1527 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1528#endif
1529
1530 for (page = start_page; page <= end_page;) {
344c790e 1531 /* Make sure we are not inadvertently changing nodes */
309381fe 1532 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1533
c361be55
MG
1534 if (!pfn_valid_within(page_to_pfn(page))) {
1535 page++;
1536 continue;
1537 }
1538
1539 if (!PageBuddy(page)) {
1540 page++;
1541 continue;
1542 }
1543
1544 order = page_order(page);
84be48d8
KS
1545 list_move(&page->lru,
1546 &zone->free_area[order].free_list[migratetype]);
c361be55 1547 page += 1 << order;
d100313f 1548 pages_moved += 1 << order;
c361be55
MG
1549 }
1550
d100313f 1551 return pages_moved;
c361be55
MG
1552}
1553
ee6f509c 1554int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1555 int migratetype)
c361be55
MG
1556{
1557 unsigned long start_pfn, end_pfn;
1558 struct page *start_page, *end_page;
1559
1560 start_pfn = page_to_pfn(page);
d9c23400 1561 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1562 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1563 end_page = start_page + pageblock_nr_pages - 1;
1564 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1565
1566 /* Do not cross zone boundaries */
108bcc96 1567 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1568 start_page = page;
108bcc96 1569 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1570 return 0;
1571
1572 return move_freepages(zone, start_page, end_page, migratetype);
1573}
1574
2f66a68f
MG
1575static void change_pageblock_range(struct page *pageblock_page,
1576 int start_order, int migratetype)
1577{
1578 int nr_pageblocks = 1 << (start_order - pageblock_order);
1579
1580 while (nr_pageblocks--) {
1581 set_pageblock_migratetype(pageblock_page, migratetype);
1582 pageblock_page += pageblock_nr_pages;
1583 }
1584}
1585
fef903ef 1586/*
9c0415eb
VB
1587 * When we are falling back to another migratetype during allocation, try to
1588 * steal extra free pages from the same pageblocks to satisfy further
1589 * allocations, instead of polluting multiple pageblocks.
1590 *
1591 * If we are stealing a relatively large buddy page, it is likely there will
1592 * be more free pages in the pageblock, so try to steal them all. For
1593 * reclaimable and unmovable allocations, we steal regardless of page size,
1594 * as fragmentation caused by those allocations polluting movable pageblocks
1595 * is worse than movable allocations stealing from unmovable and reclaimable
1596 * pageblocks.
fef903ef 1597 */
4eb7dce6
JK
1598static bool can_steal_fallback(unsigned int order, int start_mt)
1599{
1600 /*
1601 * Leaving this order check is intended, although there is
1602 * relaxed order check in next check. The reason is that
1603 * we can actually steal whole pageblock if this condition met,
1604 * but, below check doesn't guarantee it and that is just heuristic
1605 * so could be changed anytime.
1606 */
1607 if (order >= pageblock_order)
1608 return true;
1609
1610 if (order >= pageblock_order / 2 ||
1611 start_mt == MIGRATE_RECLAIMABLE ||
1612 start_mt == MIGRATE_UNMOVABLE ||
1613 page_group_by_mobility_disabled)
1614 return true;
1615
1616 return false;
1617}
1618
1619/*
1620 * This function implements actual steal behaviour. If order is large enough,
1621 * we can steal whole pageblock. If not, we first move freepages in this
1622 * pageblock and check whether half of pages are moved or not. If half of
1623 * pages are moved, we can change migratetype of pageblock and permanently
1624 * use it's pages as requested migratetype in the future.
1625 */
1626static void steal_suitable_fallback(struct zone *zone, struct page *page,
1627 int start_type)
fef903ef 1628{
d00181b9 1629 unsigned int current_order = page_order(page);
4eb7dce6 1630 int pages;
fef903ef 1631
fef903ef
SB
1632 /* Take ownership for orders >= pageblock_order */
1633 if (current_order >= pageblock_order) {
1634 change_pageblock_range(page, current_order, start_type);
3a1086fb 1635 return;
fef903ef
SB
1636 }
1637
4eb7dce6 1638 pages = move_freepages_block(zone, page, start_type);
fef903ef 1639
4eb7dce6
JK
1640 /* Claim the whole block if over half of it is free */
1641 if (pages >= (1 << (pageblock_order-1)) ||
1642 page_group_by_mobility_disabled)
1643 set_pageblock_migratetype(page, start_type);
1644}
1645
2149cdae
JK
1646/*
1647 * Check whether there is a suitable fallback freepage with requested order.
1648 * If only_stealable is true, this function returns fallback_mt only if
1649 * we can steal other freepages all together. This would help to reduce
1650 * fragmentation due to mixed migratetype pages in one pageblock.
1651 */
1652int find_suitable_fallback(struct free_area *area, unsigned int order,
1653 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1654{
1655 int i;
1656 int fallback_mt;
1657
1658 if (area->nr_free == 0)
1659 return -1;
1660
1661 *can_steal = false;
1662 for (i = 0;; i++) {
1663 fallback_mt = fallbacks[migratetype][i];
974a786e 1664 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1665 break;
1666
1667 if (list_empty(&area->free_list[fallback_mt]))
1668 continue;
fef903ef 1669
4eb7dce6
JK
1670 if (can_steal_fallback(order, migratetype))
1671 *can_steal = true;
1672
2149cdae
JK
1673 if (!only_stealable)
1674 return fallback_mt;
1675
1676 if (*can_steal)
1677 return fallback_mt;
fef903ef 1678 }
4eb7dce6
JK
1679
1680 return -1;
fef903ef
SB
1681}
1682
0aaa29a5
MG
1683/*
1684 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1685 * there are no empty page blocks that contain a page with a suitable order
1686 */
1687static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1688 unsigned int alloc_order)
1689{
1690 int mt;
1691 unsigned long max_managed, flags;
1692
1693 /*
1694 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1695 * Check is race-prone but harmless.
1696 */
1697 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1698 if (zone->nr_reserved_highatomic >= max_managed)
1699 return;
1700
1701 spin_lock_irqsave(&zone->lock, flags);
1702
1703 /* Recheck the nr_reserved_highatomic limit under the lock */
1704 if (zone->nr_reserved_highatomic >= max_managed)
1705 goto out_unlock;
1706
1707 /* Yoink! */
1708 mt = get_pageblock_migratetype(page);
1709 if (mt != MIGRATE_HIGHATOMIC &&
1710 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1711 zone->nr_reserved_highatomic += pageblock_nr_pages;
1712 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1713 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1714 }
1715
1716out_unlock:
1717 spin_unlock_irqrestore(&zone->lock, flags);
1718}
1719
1720/*
1721 * Used when an allocation is about to fail under memory pressure. This
1722 * potentially hurts the reliability of high-order allocations when under
1723 * intense memory pressure but failed atomic allocations should be easier
1724 * to recover from than an OOM.
1725 */
1726static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1727{
1728 struct zonelist *zonelist = ac->zonelist;
1729 unsigned long flags;
1730 struct zoneref *z;
1731 struct zone *zone;
1732 struct page *page;
1733 int order;
1734
1735 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1736 ac->nodemask) {
1737 /* Preserve at least one pageblock */
1738 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1739 continue;
1740
1741 spin_lock_irqsave(&zone->lock, flags);
1742 for (order = 0; order < MAX_ORDER; order++) {
1743 struct free_area *area = &(zone->free_area[order]);
1744
a16601c5
GT
1745 page = list_first_entry_or_null(
1746 &area->free_list[MIGRATE_HIGHATOMIC],
1747 struct page, lru);
1748 if (!page)
0aaa29a5
MG
1749 continue;
1750
0aaa29a5
MG
1751 /*
1752 * It should never happen but changes to locking could
1753 * inadvertently allow a per-cpu drain to add pages
1754 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1755 * and watch for underflows.
1756 */
1757 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1758 zone->nr_reserved_highatomic);
1759
1760 /*
1761 * Convert to ac->migratetype and avoid the normal
1762 * pageblock stealing heuristics. Minimally, the caller
1763 * is doing the work and needs the pages. More
1764 * importantly, if the block was always converted to
1765 * MIGRATE_UNMOVABLE or another type then the number
1766 * of pageblocks that cannot be completely freed
1767 * may increase.
1768 */
1769 set_pageblock_migratetype(page, ac->migratetype);
1770 move_freepages_block(zone, page, ac->migratetype);
1771 spin_unlock_irqrestore(&zone->lock, flags);
1772 return;
1773 }
1774 spin_unlock_irqrestore(&zone->lock, flags);
1775 }
1776}
1777
b2a0ac88 1778/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1779static inline struct page *
7aeb09f9 1780__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1781{
b8af2941 1782 struct free_area *area;
7aeb09f9 1783 unsigned int current_order;
b2a0ac88 1784 struct page *page;
4eb7dce6
JK
1785 int fallback_mt;
1786 bool can_steal;
b2a0ac88
MG
1787
1788 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1789 for (current_order = MAX_ORDER-1;
1790 current_order >= order && current_order <= MAX_ORDER-1;
1791 --current_order) {
4eb7dce6
JK
1792 area = &(zone->free_area[current_order]);
1793 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1794 start_migratetype, false, &can_steal);
4eb7dce6
JK
1795 if (fallback_mt == -1)
1796 continue;
b2a0ac88 1797
a16601c5 1798 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1799 struct page, lru);
1800 if (can_steal)
1801 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1802
4eb7dce6
JK
1803 /* Remove the page from the freelists */
1804 area->nr_free--;
1805 list_del(&page->lru);
1806 rmv_page_order(page);
3a1086fb 1807
4eb7dce6
JK
1808 expand(zone, page, order, current_order, area,
1809 start_migratetype);
1810 /*
bb14c2c7 1811 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1812 * migratetype depending on the decisions in
bb14c2c7
VB
1813 * find_suitable_fallback(). This is OK as long as it does not
1814 * differ for MIGRATE_CMA pageblocks. Those can be used as
1815 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1816 */
bb14c2c7 1817 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1818
4eb7dce6
JK
1819 trace_mm_page_alloc_extfrag(page, order, current_order,
1820 start_migratetype, fallback_mt);
e0fff1bd 1821
4eb7dce6 1822 return page;
b2a0ac88
MG
1823 }
1824
728ec980 1825 return NULL;
b2a0ac88
MG
1826}
1827
56fd56b8 1828/*
1da177e4
LT
1829 * Do the hard work of removing an element from the buddy allocator.
1830 * Call me with the zone->lock already held.
1831 */
b2a0ac88 1832static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1833 int migratetype)
1da177e4 1834{
1da177e4
LT
1835 struct page *page;
1836
56fd56b8 1837 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1838 if (unlikely(!page)) {
dc67647b
JK
1839 if (migratetype == MIGRATE_MOVABLE)
1840 page = __rmqueue_cma_fallback(zone, order);
1841
1842 if (!page)
1843 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1844 }
1845
0d3d062a 1846 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1847 return page;
1da177e4
LT
1848}
1849
5f63b720 1850/*
1da177e4
LT
1851 * Obtain a specified number of elements from the buddy allocator, all under
1852 * a single hold of the lock, for efficiency. Add them to the supplied list.
1853 * Returns the number of new pages which were placed at *list.
1854 */
5f63b720 1855static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1856 unsigned long count, struct list_head *list,
b745bc85 1857 int migratetype, bool cold)
1da177e4 1858{
5bcc9f86 1859 int i;
5f63b720 1860
c54ad30c 1861 spin_lock(&zone->lock);
1da177e4 1862 for (i = 0; i < count; ++i) {
6ac0206b 1863 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1864 if (unlikely(page == NULL))
1da177e4 1865 break;
81eabcbe
MG
1866
1867 /*
1868 * Split buddy pages returned by expand() are received here
1869 * in physical page order. The page is added to the callers and
1870 * list and the list head then moves forward. From the callers
1871 * perspective, the linked list is ordered by page number in
1872 * some conditions. This is useful for IO devices that can
1873 * merge IO requests if the physical pages are ordered
1874 * properly.
1875 */
b745bc85 1876 if (likely(!cold))
e084b2d9
MG
1877 list_add(&page->lru, list);
1878 else
1879 list_add_tail(&page->lru, list);
81eabcbe 1880 list = &page->lru;
bb14c2c7 1881 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1882 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1883 -(1 << order));
1da177e4 1884 }
f2260e6b 1885 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1886 spin_unlock(&zone->lock);
085cc7d5 1887 return i;
1da177e4
LT
1888}
1889
4ae7c039 1890#ifdef CONFIG_NUMA
8fce4d8e 1891/*
4037d452
CL
1892 * Called from the vmstat counter updater to drain pagesets of this
1893 * currently executing processor on remote nodes after they have
1894 * expired.
1895 *
879336c3
CL
1896 * Note that this function must be called with the thread pinned to
1897 * a single processor.
8fce4d8e 1898 */
4037d452 1899void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1900{
4ae7c039 1901 unsigned long flags;
7be12fc9 1902 int to_drain, batch;
4ae7c039 1903
4037d452 1904 local_irq_save(flags);
4db0c3c2 1905 batch = READ_ONCE(pcp->batch);
7be12fc9 1906 to_drain = min(pcp->count, batch);
2a13515c
KM
1907 if (to_drain > 0) {
1908 free_pcppages_bulk(zone, to_drain, pcp);
1909 pcp->count -= to_drain;
1910 }
4037d452 1911 local_irq_restore(flags);
4ae7c039
CL
1912}
1913#endif
1914
9f8f2172 1915/*
93481ff0 1916 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1917 *
1918 * The processor must either be the current processor and the
1919 * thread pinned to the current processor or a processor that
1920 * is not online.
1921 */
93481ff0 1922static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1923{
c54ad30c 1924 unsigned long flags;
93481ff0
VB
1925 struct per_cpu_pageset *pset;
1926 struct per_cpu_pages *pcp;
1da177e4 1927
93481ff0
VB
1928 local_irq_save(flags);
1929 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1930
93481ff0
VB
1931 pcp = &pset->pcp;
1932 if (pcp->count) {
1933 free_pcppages_bulk(zone, pcp->count, pcp);
1934 pcp->count = 0;
1935 }
1936 local_irq_restore(flags);
1937}
3dfa5721 1938
93481ff0
VB
1939/*
1940 * Drain pcplists of all zones on the indicated processor.
1941 *
1942 * The processor must either be the current processor and the
1943 * thread pinned to the current processor or a processor that
1944 * is not online.
1945 */
1946static void drain_pages(unsigned int cpu)
1947{
1948 struct zone *zone;
1949
1950 for_each_populated_zone(zone) {
1951 drain_pages_zone(cpu, zone);
1da177e4
LT
1952 }
1953}
1da177e4 1954
9f8f2172
CL
1955/*
1956 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1957 *
1958 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1959 * the single zone's pages.
9f8f2172 1960 */
93481ff0 1961void drain_local_pages(struct zone *zone)
9f8f2172 1962{
93481ff0
VB
1963 int cpu = smp_processor_id();
1964
1965 if (zone)
1966 drain_pages_zone(cpu, zone);
1967 else
1968 drain_pages(cpu);
9f8f2172
CL
1969}
1970
1971/*
74046494
GBY
1972 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1973 *
93481ff0
VB
1974 * When zone parameter is non-NULL, spill just the single zone's pages.
1975 *
74046494
GBY
1976 * Note that this code is protected against sending an IPI to an offline
1977 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1978 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1979 * nothing keeps CPUs from showing up after we populated the cpumask and
1980 * before the call to on_each_cpu_mask().
9f8f2172 1981 */
93481ff0 1982void drain_all_pages(struct zone *zone)
9f8f2172 1983{
74046494 1984 int cpu;
74046494
GBY
1985
1986 /*
1987 * Allocate in the BSS so we wont require allocation in
1988 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1989 */
1990 static cpumask_t cpus_with_pcps;
1991
1992 /*
1993 * We don't care about racing with CPU hotplug event
1994 * as offline notification will cause the notified
1995 * cpu to drain that CPU pcps and on_each_cpu_mask
1996 * disables preemption as part of its processing
1997 */
1998 for_each_online_cpu(cpu) {
93481ff0
VB
1999 struct per_cpu_pageset *pcp;
2000 struct zone *z;
74046494 2001 bool has_pcps = false;
93481ff0
VB
2002
2003 if (zone) {
74046494 2004 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2005 if (pcp->pcp.count)
74046494 2006 has_pcps = true;
93481ff0
VB
2007 } else {
2008 for_each_populated_zone(z) {
2009 pcp = per_cpu_ptr(z->pageset, cpu);
2010 if (pcp->pcp.count) {
2011 has_pcps = true;
2012 break;
2013 }
74046494
GBY
2014 }
2015 }
93481ff0 2016
74046494
GBY
2017 if (has_pcps)
2018 cpumask_set_cpu(cpu, &cpus_with_pcps);
2019 else
2020 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2021 }
93481ff0
VB
2022 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2023 zone, 1);
9f8f2172
CL
2024}
2025
296699de 2026#ifdef CONFIG_HIBERNATION
1da177e4
LT
2027
2028void mark_free_pages(struct zone *zone)
2029{
f623f0db
RW
2030 unsigned long pfn, max_zone_pfn;
2031 unsigned long flags;
7aeb09f9 2032 unsigned int order, t;
86760a2c 2033 struct page *page;
1da177e4 2034
8080fc03 2035 if (zone_is_empty(zone))
1da177e4
LT
2036 return;
2037
2038 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2039
108bcc96 2040 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2041 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2042 if (pfn_valid(pfn)) {
86760a2c 2043 page = pfn_to_page(pfn);
7be98234
RW
2044 if (!swsusp_page_is_forbidden(page))
2045 swsusp_unset_page_free(page);
f623f0db 2046 }
1da177e4 2047
b2a0ac88 2048 for_each_migratetype_order(order, t) {
86760a2c
GT
2049 list_for_each_entry(page,
2050 &zone->free_area[order].free_list[t], lru) {
f623f0db 2051 unsigned long i;
1da177e4 2052
86760a2c 2053 pfn = page_to_pfn(page);
f623f0db 2054 for (i = 0; i < (1UL << order); i++)
7be98234 2055 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2056 }
b2a0ac88 2057 }
1da177e4
LT
2058 spin_unlock_irqrestore(&zone->lock, flags);
2059}
e2c55dc8 2060#endif /* CONFIG_PM */
1da177e4 2061
1da177e4
LT
2062/*
2063 * Free a 0-order page
b745bc85 2064 * cold == true ? free a cold page : free a hot page
1da177e4 2065 */
b745bc85 2066void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2067{
2068 struct zone *zone = page_zone(page);
2069 struct per_cpu_pages *pcp;
2070 unsigned long flags;
dc4b0caf 2071 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2072 int migratetype;
1da177e4 2073
ec95f53a 2074 if (!free_pages_prepare(page, 0))
689bcebf
HD
2075 return;
2076
dc4b0caf 2077 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2078 set_pcppage_migratetype(page, migratetype);
1da177e4 2079 local_irq_save(flags);
f8891e5e 2080 __count_vm_event(PGFREE);
da456f14 2081
5f8dcc21
MG
2082 /*
2083 * We only track unmovable, reclaimable and movable on pcp lists.
2084 * Free ISOLATE pages back to the allocator because they are being
2085 * offlined but treat RESERVE as movable pages so we can get those
2086 * areas back if necessary. Otherwise, we may have to free
2087 * excessively into the page allocator
2088 */
2089 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2090 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2091 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2092 goto out;
2093 }
2094 migratetype = MIGRATE_MOVABLE;
2095 }
2096
99dcc3e5 2097 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2098 if (!cold)
5f8dcc21 2099 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2100 else
2101 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2102 pcp->count++;
48db57f8 2103 if (pcp->count >= pcp->high) {
4db0c3c2 2104 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2105 free_pcppages_bulk(zone, batch, pcp);
2106 pcp->count -= batch;
48db57f8 2107 }
5f8dcc21
MG
2108
2109out:
1da177e4 2110 local_irq_restore(flags);
1da177e4
LT
2111}
2112
cc59850e
KK
2113/*
2114 * Free a list of 0-order pages
2115 */
b745bc85 2116void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2117{
2118 struct page *page, *next;
2119
2120 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2121 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2122 free_hot_cold_page(page, cold);
2123 }
2124}
2125
8dfcc9ba
NP
2126/*
2127 * split_page takes a non-compound higher-order page, and splits it into
2128 * n (1<<order) sub-pages: page[0..n]
2129 * Each sub-page must be freed individually.
2130 *
2131 * Note: this is probably too low level an operation for use in drivers.
2132 * Please consult with lkml before using this in your driver.
2133 */
2134void split_page(struct page *page, unsigned int order)
2135{
2136 int i;
e2cfc911 2137 gfp_t gfp_mask;
8dfcc9ba 2138
309381fe
SL
2139 VM_BUG_ON_PAGE(PageCompound(page), page);
2140 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2141
2142#ifdef CONFIG_KMEMCHECK
2143 /*
2144 * Split shadow pages too, because free(page[0]) would
2145 * otherwise free the whole shadow.
2146 */
2147 if (kmemcheck_page_is_tracked(page))
2148 split_page(virt_to_page(page[0].shadow), order);
2149#endif
2150
e2cfc911
JK
2151 gfp_mask = get_page_owner_gfp(page);
2152 set_page_owner(page, 0, gfp_mask);
48c96a36 2153 for (i = 1; i < (1 << order); i++) {
7835e98b 2154 set_page_refcounted(page + i);
e2cfc911 2155 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2156 }
8dfcc9ba 2157}
5853ff23 2158EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2159
3c605096 2160int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2161{
748446bb
MG
2162 unsigned long watermark;
2163 struct zone *zone;
2139cbe6 2164 int mt;
748446bb
MG
2165
2166 BUG_ON(!PageBuddy(page));
2167
2168 zone = page_zone(page);
2e30abd1 2169 mt = get_pageblock_migratetype(page);
748446bb 2170
194159fb 2171 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2172 /* Obey watermarks as if the page was being allocated */
2173 watermark = low_wmark_pages(zone) + (1 << order);
2174 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2175 return 0;
2176
8fb74b9f 2177 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2178 }
748446bb
MG
2179
2180 /* Remove page from free list */
2181 list_del(&page->lru);
2182 zone->free_area[order].nr_free--;
2183 rmv_page_order(page);
2139cbe6 2184
e2cfc911 2185 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2186
8fb74b9f 2187 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2188 if (order >= pageblock_order - 1) {
2189 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2190 for (; page < endpage; page += pageblock_nr_pages) {
2191 int mt = get_pageblock_migratetype(page);
194159fb 2192 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2193 set_pageblock_migratetype(page,
2194 MIGRATE_MOVABLE);
2195 }
748446bb
MG
2196 }
2197
f3a14ced 2198
8fb74b9f 2199 return 1UL << order;
1fb3f8ca
MG
2200}
2201
2202/*
2203 * Similar to split_page except the page is already free. As this is only
2204 * being used for migration, the migratetype of the block also changes.
2205 * As this is called with interrupts disabled, the caller is responsible
2206 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2207 * are enabled.
2208 *
2209 * Note: this is probably too low level an operation for use in drivers.
2210 * Please consult with lkml before using this in your driver.
2211 */
2212int split_free_page(struct page *page)
2213{
2214 unsigned int order;
2215 int nr_pages;
2216
1fb3f8ca
MG
2217 order = page_order(page);
2218
8fb74b9f 2219 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2220 if (!nr_pages)
2221 return 0;
2222
2223 /* Split into individual pages */
2224 set_page_refcounted(page);
2225 split_page(page, order);
2226 return nr_pages;
748446bb
MG
2227}
2228
1da177e4 2229/*
75379191 2230 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2231 */
0a15c3e9
MG
2232static inline
2233struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2234 struct zone *zone, unsigned int order,
0aaa29a5 2235 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2236{
2237 unsigned long flags;
689bcebf 2238 struct page *page;
b745bc85 2239 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2240
48db57f8 2241 if (likely(order == 0)) {
1da177e4 2242 struct per_cpu_pages *pcp;
5f8dcc21 2243 struct list_head *list;
1da177e4 2244
1da177e4 2245 local_irq_save(flags);
99dcc3e5
CL
2246 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2247 list = &pcp->lists[migratetype];
5f8dcc21 2248 if (list_empty(list)) {
535131e6 2249 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2250 pcp->batch, list,
e084b2d9 2251 migratetype, cold);
5f8dcc21 2252 if (unlikely(list_empty(list)))
6fb332fa 2253 goto failed;
535131e6 2254 }
b92a6edd 2255
5f8dcc21 2256 if (cold)
a16601c5 2257 page = list_last_entry(list, struct page, lru);
5f8dcc21 2258 else
a16601c5 2259 page = list_first_entry(list, struct page, lru);
5f8dcc21 2260
b92a6edd
MG
2261 list_del(&page->lru);
2262 pcp->count--;
7fb1d9fc 2263 } else {
dab48dab
AM
2264 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2265 /*
2266 * __GFP_NOFAIL is not to be used in new code.
2267 *
2268 * All __GFP_NOFAIL callers should be fixed so that they
2269 * properly detect and handle allocation failures.
2270 *
2271 * We most definitely don't want callers attempting to
4923abf9 2272 * allocate greater than order-1 page units with
dab48dab
AM
2273 * __GFP_NOFAIL.
2274 */
4923abf9 2275 WARN_ON_ONCE(order > 1);
dab48dab 2276 }
1da177e4 2277 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2278
2279 page = NULL;
2280 if (alloc_flags & ALLOC_HARDER) {
2281 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2282 if (page)
2283 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2284 }
2285 if (!page)
6ac0206b 2286 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2287 spin_unlock(&zone->lock);
2288 if (!page)
2289 goto failed;
d1ce749a 2290 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2291 get_pcppage_migratetype(page));
1da177e4
LT
2292 }
2293
3a025760 2294 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2295 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2296 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2297 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2298
f8891e5e 2299 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2300 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2301 local_irq_restore(flags);
1da177e4 2302
309381fe 2303 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2304 return page;
a74609fa
NP
2305
2306failed:
2307 local_irq_restore(flags);
a74609fa 2308 return NULL;
1da177e4
LT
2309}
2310
933e312e
AM
2311#ifdef CONFIG_FAIL_PAGE_ALLOC
2312
b2588c4b 2313static struct {
933e312e
AM
2314 struct fault_attr attr;
2315
621a5f7a 2316 bool ignore_gfp_highmem;
71baba4b 2317 bool ignore_gfp_reclaim;
54114994 2318 u32 min_order;
933e312e
AM
2319} fail_page_alloc = {
2320 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2321 .ignore_gfp_reclaim = true,
621a5f7a 2322 .ignore_gfp_highmem = true,
54114994 2323 .min_order = 1,
933e312e
AM
2324};
2325
2326static int __init setup_fail_page_alloc(char *str)
2327{
2328 return setup_fault_attr(&fail_page_alloc.attr, str);
2329}
2330__setup("fail_page_alloc=", setup_fail_page_alloc);
2331
deaf386e 2332static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2333{
54114994 2334 if (order < fail_page_alloc.min_order)
deaf386e 2335 return false;
933e312e 2336 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2337 return false;
933e312e 2338 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2339 return false;
71baba4b
MG
2340 if (fail_page_alloc.ignore_gfp_reclaim &&
2341 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2342 return false;
933e312e
AM
2343
2344 return should_fail(&fail_page_alloc.attr, 1 << order);
2345}
2346
2347#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2348
2349static int __init fail_page_alloc_debugfs(void)
2350{
f4ae40a6 2351 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2352 struct dentry *dir;
933e312e 2353
dd48c085
AM
2354 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2355 &fail_page_alloc.attr);
2356 if (IS_ERR(dir))
2357 return PTR_ERR(dir);
933e312e 2358
b2588c4b 2359 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2360 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2361 goto fail;
2362 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2363 &fail_page_alloc.ignore_gfp_highmem))
2364 goto fail;
2365 if (!debugfs_create_u32("min-order", mode, dir,
2366 &fail_page_alloc.min_order))
2367 goto fail;
2368
2369 return 0;
2370fail:
dd48c085 2371 debugfs_remove_recursive(dir);
933e312e 2372
b2588c4b 2373 return -ENOMEM;
933e312e
AM
2374}
2375
2376late_initcall(fail_page_alloc_debugfs);
2377
2378#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2379
2380#else /* CONFIG_FAIL_PAGE_ALLOC */
2381
deaf386e 2382static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2383{
deaf386e 2384 return false;
933e312e
AM
2385}
2386
2387#endif /* CONFIG_FAIL_PAGE_ALLOC */
2388
1da177e4 2389/*
97a16fc8
MG
2390 * Return true if free base pages are above 'mark'. For high-order checks it
2391 * will return true of the order-0 watermark is reached and there is at least
2392 * one free page of a suitable size. Checking now avoids taking the zone lock
2393 * to check in the allocation paths if no pages are free.
1da177e4 2394 */
7aeb09f9
MG
2395static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2396 unsigned long mark, int classzone_idx, int alloc_flags,
2397 long free_pages)
1da177e4 2398{
d23ad423 2399 long min = mark;
1da177e4 2400 int o;
97a16fc8 2401 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2402
0aaa29a5 2403 /* free_pages may go negative - that's OK */
df0a6daa 2404 free_pages -= (1 << order) - 1;
0aaa29a5 2405
7fb1d9fc 2406 if (alloc_flags & ALLOC_HIGH)
1da177e4 2407 min -= min / 2;
0aaa29a5
MG
2408
2409 /*
2410 * If the caller does not have rights to ALLOC_HARDER then subtract
2411 * the high-atomic reserves. This will over-estimate the size of the
2412 * atomic reserve but it avoids a search.
2413 */
97a16fc8 2414 if (likely(!alloc_harder))
0aaa29a5
MG
2415 free_pages -= z->nr_reserved_highatomic;
2416 else
1da177e4 2417 min -= min / 4;
e2b19197 2418
d95ea5d1
BZ
2419#ifdef CONFIG_CMA
2420 /* If allocation can't use CMA areas don't use free CMA pages */
2421 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2422 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2423#endif
026b0814 2424
97a16fc8
MG
2425 /*
2426 * Check watermarks for an order-0 allocation request. If these
2427 * are not met, then a high-order request also cannot go ahead
2428 * even if a suitable page happened to be free.
2429 */
2430 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2431 return false;
1da177e4 2432
97a16fc8
MG
2433 /* If this is an order-0 request then the watermark is fine */
2434 if (!order)
2435 return true;
2436
2437 /* For a high-order request, check at least one suitable page is free */
2438 for (o = order; o < MAX_ORDER; o++) {
2439 struct free_area *area = &z->free_area[o];
2440 int mt;
2441
2442 if (!area->nr_free)
2443 continue;
2444
2445 if (alloc_harder)
2446 return true;
1da177e4 2447
97a16fc8
MG
2448 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2449 if (!list_empty(&area->free_list[mt]))
2450 return true;
2451 }
2452
2453#ifdef CONFIG_CMA
2454 if ((alloc_flags & ALLOC_CMA) &&
2455 !list_empty(&area->free_list[MIGRATE_CMA])) {
2456 return true;
2457 }
2458#endif
1da177e4 2459 }
97a16fc8 2460 return false;
88f5acf8
MG
2461}
2462
7aeb09f9 2463bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2464 int classzone_idx, int alloc_flags)
2465{
2466 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2467 zone_page_state(z, NR_FREE_PAGES));
2468}
2469
7aeb09f9 2470bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2471 unsigned long mark, int classzone_idx)
88f5acf8
MG
2472{
2473 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2474
2475 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2476 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2477
e2b19197 2478 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2479 free_pages);
1da177e4
LT
2480}
2481
9276b1bc 2482#ifdef CONFIG_NUMA
81c0a2bb
JW
2483static bool zone_local(struct zone *local_zone, struct zone *zone)
2484{
fff4068c 2485 return local_zone->node == zone->node;
81c0a2bb
JW
2486}
2487
957f822a
DR
2488static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2489{
5f7a75ac
MG
2490 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2491 RECLAIM_DISTANCE;
957f822a 2492}
9276b1bc 2493#else /* CONFIG_NUMA */
81c0a2bb
JW
2494static bool zone_local(struct zone *local_zone, struct zone *zone)
2495{
2496 return true;
2497}
2498
957f822a
DR
2499static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2500{
2501 return true;
2502}
9276b1bc
PJ
2503#endif /* CONFIG_NUMA */
2504
4ffeaf35
MG
2505static void reset_alloc_batches(struct zone *preferred_zone)
2506{
2507 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2508
2509 do {
2510 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2511 high_wmark_pages(zone) - low_wmark_pages(zone) -
2512 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2513 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2514 } while (zone++ != preferred_zone);
2515}
2516
7fb1d9fc 2517/*
0798e519 2518 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2519 * a page.
2520 */
2521static struct page *
a9263751
VB
2522get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2523 const struct alloc_context *ac)
753ee728 2524{
a9263751 2525 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2526 struct zoneref *z;
7fb1d9fc 2527 struct page *page = NULL;
5117f45d 2528 struct zone *zone;
4ffeaf35
MG
2529 int nr_fair_skipped = 0;
2530 bool zonelist_rescan;
54a6eb5c 2531
9276b1bc 2532zonelist_scan:
4ffeaf35
MG
2533 zonelist_rescan = false;
2534
7fb1d9fc 2535 /*
9276b1bc 2536 * Scan zonelist, looking for a zone with enough free.
344736f2 2537 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2538 */
a9263751
VB
2539 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2540 ac->nodemask) {
e085dbc5
JW
2541 unsigned long mark;
2542
664eedde
MG
2543 if (cpusets_enabled() &&
2544 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2545 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2546 continue;
81c0a2bb
JW
2547 /*
2548 * Distribute pages in proportion to the individual
2549 * zone size to ensure fair page aging. The zone a
2550 * page was allocated in should have no effect on the
2551 * time the page has in memory before being reclaimed.
81c0a2bb 2552 */
3a025760 2553 if (alloc_flags & ALLOC_FAIR) {
a9263751 2554 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2555 break;
57054651 2556 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2557 nr_fair_skipped++;
3a025760 2558 continue;
4ffeaf35 2559 }
81c0a2bb 2560 }
a756cf59
JW
2561 /*
2562 * When allocating a page cache page for writing, we
2563 * want to get it from a zone that is within its dirty
2564 * limit, such that no single zone holds more than its
2565 * proportional share of globally allowed dirty pages.
2566 * The dirty limits take into account the zone's
2567 * lowmem reserves and high watermark so that kswapd
2568 * should be able to balance it without having to
2569 * write pages from its LRU list.
2570 *
2571 * This may look like it could increase pressure on
2572 * lower zones by failing allocations in higher zones
2573 * before they are full. But the pages that do spill
2574 * over are limited as the lower zones are protected
2575 * by this very same mechanism. It should not become
2576 * a practical burden to them.
2577 *
2578 * XXX: For now, allow allocations to potentially
2579 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2580 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2581 * which is important when on a NUMA setup the allowed
2582 * zones are together not big enough to reach the
2583 * global limit. The proper fix for these situations
2584 * will require awareness of zones in the
2585 * dirty-throttling and the flusher threads.
2586 */
c9ab0c4f 2587 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2588 continue;
7fb1d9fc 2589
e085dbc5
JW
2590 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2591 if (!zone_watermark_ok(zone, order, mark,
a9263751 2592 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2593 int ret;
2594
5dab2911
MG
2595 /* Checked here to keep the fast path fast */
2596 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2597 if (alloc_flags & ALLOC_NO_WATERMARKS)
2598 goto try_this_zone;
2599
957f822a 2600 if (zone_reclaim_mode == 0 ||
a9263751 2601 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2602 continue;
2603
fa5e084e
MG
2604 ret = zone_reclaim(zone, gfp_mask, order);
2605 switch (ret) {
2606 case ZONE_RECLAIM_NOSCAN:
2607 /* did not scan */
cd38b115 2608 continue;
fa5e084e
MG
2609 case ZONE_RECLAIM_FULL:
2610 /* scanned but unreclaimable */
cd38b115 2611 continue;
fa5e084e
MG
2612 default:
2613 /* did we reclaim enough */
fed2719e 2614 if (zone_watermark_ok(zone, order, mark,
a9263751 2615 ac->classzone_idx, alloc_flags))
fed2719e
MG
2616 goto try_this_zone;
2617
fed2719e 2618 continue;
0798e519 2619 }
7fb1d9fc
RS
2620 }
2621
fa5e084e 2622try_this_zone:
a9263751 2623 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2624 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2625 if (page) {
2626 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2627 goto try_this_zone;
0aaa29a5
MG
2628
2629 /*
2630 * If this is a high-order atomic allocation then check
2631 * if the pageblock should be reserved for the future
2632 */
2633 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2634 reserve_highatomic_pageblock(page, zone, order);
2635
75379191
VB
2636 return page;
2637 }
54a6eb5c 2638 }
9276b1bc 2639
4ffeaf35
MG
2640 /*
2641 * The first pass makes sure allocations are spread fairly within the
2642 * local node. However, the local node might have free pages left
2643 * after the fairness batches are exhausted, and remote zones haven't
2644 * even been considered yet. Try once more without fairness, and
2645 * include remote zones now, before entering the slowpath and waking
2646 * kswapd: prefer spilling to a remote zone over swapping locally.
2647 */
2648 if (alloc_flags & ALLOC_FAIR) {
2649 alloc_flags &= ~ALLOC_FAIR;
2650 if (nr_fair_skipped) {
2651 zonelist_rescan = true;
a9263751 2652 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2653 }
2654 if (nr_online_nodes > 1)
2655 zonelist_rescan = true;
2656 }
2657
4ffeaf35
MG
2658 if (zonelist_rescan)
2659 goto zonelist_scan;
2660
2661 return NULL;
753ee728
MH
2662}
2663
29423e77
DR
2664/*
2665 * Large machines with many possible nodes should not always dump per-node
2666 * meminfo in irq context.
2667 */
2668static inline bool should_suppress_show_mem(void)
2669{
2670 bool ret = false;
2671
2672#if NODES_SHIFT > 8
2673 ret = in_interrupt();
2674#endif
2675 return ret;
2676}
2677
a238ab5b
DH
2678static DEFINE_RATELIMIT_STATE(nopage_rs,
2679 DEFAULT_RATELIMIT_INTERVAL,
2680 DEFAULT_RATELIMIT_BURST);
2681
d00181b9 2682void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2683{
a238ab5b
DH
2684 unsigned int filter = SHOW_MEM_FILTER_NODES;
2685
c0a32fc5
SG
2686 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2687 debug_guardpage_minorder() > 0)
a238ab5b
DH
2688 return;
2689
2690 /*
2691 * This documents exceptions given to allocations in certain
2692 * contexts that are allowed to allocate outside current's set
2693 * of allowed nodes.
2694 */
2695 if (!(gfp_mask & __GFP_NOMEMALLOC))
2696 if (test_thread_flag(TIF_MEMDIE) ||
2697 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2698 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2699 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2700 filter &= ~SHOW_MEM_FILTER_NODES;
2701
2702 if (fmt) {
3ee9a4f0
JP
2703 struct va_format vaf;
2704 va_list args;
2705
a238ab5b 2706 va_start(args, fmt);
3ee9a4f0
JP
2707
2708 vaf.fmt = fmt;
2709 vaf.va = &args;
2710
2711 pr_warn("%pV", &vaf);
2712
a238ab5b
DH
2713 va_end(args);
2714 }
2715
c5c990e8
VB
2716 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2717 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2718 dump_stack();
2719 if (!should_suppress_show_mem())
2720 show_mem(filter);
2721}
2722
11e33f6a
MG
2723static inline struct page *
2724__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2725 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2726{
6e0fc46d
DR
2727 struct oom_control oc = {
2728 .zonelist = ac->zonelist,
2729 .nodemask = ac->nodemask,
2730 .gfp_mask = gfp_mask,
2731 .order = order,
6e0fc46d 2732 };
11e33f6a
MG
2733 struct page *page;
2734
9879de73
JW
2735 *did_some_progress = 0;
2736
9879de73 2737 /*
dc56401f
JW
2738 * Acquire the oom lock. If that fails, somebody else is
2739 * making progress for us.
9879de73 2740 */
dc56401f 2741 if (!mutex_trylock(&oom_lock)) {
9879de73 2742 *did_some_progress = 1;
11e33f6a 2743 schedule_timeout_uninterruptible(1);
1da177e4
LT
2744 return NULL;
2745 }
6b1de916 2746
11e33f6a
MG
2747 /*
2748 * Go through the zonelist yet one more time, keep very high watermark
2749 * here, this is only to catch a parallel oom killing, we must fail if
2750 * we're still under heavy pressure.
2751 */
a9263751
VB
2752 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2753 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2754 if (page)
11e33f6a
MG
2755 goto out;
2756
4365a567 2757 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2758 /* Coredumps can quickly deplete all memory reserves */
2759 if (current->flags & PF_DUMPCORE)
2760 goto out;
4365a567
KH
2761 /* The OOM killer will not help higher order allocs */
2762 if (order > PAGE_ALLOC_COSTLY_ORDER)
2763 goto out;
03668b3c 2764 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2765 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2766 goto out;
9083905a 2767 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2768 if (!(gfp_mask & __GFP_FS)) {
2769 /*
2770 * XXX: Page reclaim didn't yield anything,
2771 * and the OOM killer can't be invoked, but
9083905a 2772 * keep looping as per tradition.
cc873177
JW
2773 */
2774 *did_some_progress = 1;
9879de73 2775 goto out;
cc873177 2776 }
9083905a
JW
2777 if (pm_suspended_storage())
2778 goto out;
4167e9b2 2779 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2780 if (gfp_mask & __GFP_THISNODE)
2781 goto out;
2782 }
11e33f6a 2783 /* Exhausted what can be done so it's blamo time */
5020e285 2784 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2785 *did_some_progress = 1;
5020e285
MH
2786
2787 if (gfp_mask & __GFP_NOFAIL) {
2788 page = get_page_from_freelist(gfp_mask, order,
2789 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2790 /*
2791 * fallback to ignore cpuset restriction if our nodes
2792 * are depleted
2793 */
2794 if (!page)
2795 page = get_page_from_freelist(gfp_mask, order,
2796 ALLOC_NO_WATERMARKS, ac);
2797 }
2798 }
11e33f6a 2799out:
dc56401f 2800 mutex_unlock(&oom_lock);
11e33f6a
MG
2801 return page;
2802}
2803
56de7263
MG
2804#ifdef CONFIG_COMPACTION
2805/* Try memory compaction for high-order allocations before reclaim */
2806static struct page *
2807__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2808 int alloc_flags, const struct alloc_context *ac,
2809 enum migrate_mode mode, int *contended_compaction,
2810 bool *deferred_compaction)
56de7263 2811{
53853e2d 2812 unsigned long compact_result;
98dd3b48 2813 struct page *page;
53853e2d
VB
2814
2815 if (!order)
66199712 2816 return NULL;
66199712 2817
c06b1fca 2818 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2819 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2820 mode, contended_compaction);
c06b1fca 2821 current->flags &= ~PF_MEMALLOC;
56de7263 2822
98dd3b48
VB
2823 switch (compact_result) {
2824 case COMPACT_DEFERRED:
53853e2d 2825 *deferred_compaction = true;
98dd3b48
VB
2826 /* fall-through */
2827 case COMPACT_SKIPPED:
2828 return NULL;
2829 default:
2830 break;
2831 }
53853e2d 2832
98dd3b48
VB
2833 /*
2834 * At least in one zone compaction wasn't deferred or skipped, so let's
2835 * count a compaction stall
2836 */
2837 count_vm_event(COMPACTSTALL);
8fb74b9f 2838
a9263751
VB
2839 page = get_page_from_freelist(gfp_mask, order,
2840 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2841
98dd3b48
VB
2842 if (page) {
2843 struct zone *zone = page_zone(page);
53853e2d 2844
98dd3b48
VB
2845 zone->compact_blockskip_flush = false;
2846 compaction_defer_reset(zone, order, true);
2847 count_vm_event(COMPACTSUCCESS);
2848 return page;
2849 }
56de7263 2850
98dd3b48
VB
2851 /*
2852 * It's bad if compaction run occurs and fails. The most likely reason
2853 * is that pages exist, but not enough to satisfy watermarks.
2854 */
2855 count_vm_event(COMPACTFAIL);
66199712 2856
98dd3b48 2857 cond_resched();
56de7263
MG
2858
2859 return NULL;
2860}
2861#else
2862static inline struct page *
2863__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2864 int alloc_flags, const struct alloc_context *ac,
2865 enum migrate_mode mode, int *contended_compaction,
2866 bool *deferred_compaction)
56de7263
MG
2867{
2868 return NULL;
2869}
2870#endif /* CONFIG_COMPACTION */
2871
bba90710
MS
2872/* Perform direct synchronous page reclaim */
2873static int
a9263751
VB
2874__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2875 const struct alloc_context *ac)
11e33f6a 2876{
11e33f6a 2877 struct reclaim_state reclaim_state;
bba90710 2878 int progress;
11e33f6a
MG
2879
2880 cond_resched();
2881
2882 /* We now go into synchronous reclaim */
2883 cpuset_memory_pressure_bump();
c06b1fca 2884 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2885 lockdep_set_current_reclaim_state(gfp_mask);
2886 reclaim_state.reclaimed_slab = 0;
c06b1fca 2887 current->reclaim_state = &reclaim_state;
11e33f6a 2888
a9263751
VB
2889 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2890 ac->nodemask);
11e33f6a 2891
c06b1fca 2892 current->reclaim_state = NULL;
11e33f6a 2893 lockdep_clear_current_reclaim_state();
c06b1fca 2894 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2895
2896 cond_resched();
2897
bba90710
MS
2898 return progress;
2899}
2900
2901/* The really slow allocator path where we enter direct reclaim */
2902static inline struct page *
2903__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2904 int alloc_flags, const struct alloc_context *ac,
2905 unsigned long *did_some_progress)
bba90710
MS
2906{
2907 struct page *page = NULL;
2908 bool drained = false;
2909
a9263751 2910 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2911 if (unlikely(!(*did_some_progress)))
2912 return NULL;
11e33f6a 2913
9ee493ce 2914retry:
a9263751
VB
2915 page = get_page_from_freelist(gfp_mask, order,
2916 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2917
2918 /*
2919 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
2920 * pages are pinned on the per-cpu lists or in high alloc reserves.
2921 * Shrink them them and try again
9ee493ce
MG
2922 */
2923 if (!page && !drained) {
0aaa29a5 2924 unreserve_highatomic_pageblock(ac);
93481ff0 2925 drain_all_pages(NULL);
9ee493ce
MG
2926 drained = true;
2927 goto retry;
2928 }
2929
11e33f6a
MG
2930 return page;
2931}
2932
a9263751 2933static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2934{
2935 struct zoneref *z;
2936 struct zone *zone;
2937
a9263751
VB
2938 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2939 ac->high_zoneidx, ac->nodemask)
2940 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2941}
2942
341ce06f
PZ
2943static inline int
2944gfp_to_alloc_flags(gfp_t gfp_mask)
2945{
341ce06f 2946 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 2947
a56f57ff 2948 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2949 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2950
341ce06f
PZ
2951 /*
2952 * The caller may dip into page reserves a bit more if the caller
2953 * cannot run direct reclaim, or if the caller has realtime scheduling
2954 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 2955 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2956 */
e6223a3b 2957 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2958
d0164adc 2959 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 2960 /*
b104a35d
DR
2961 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2962 * if it can't schedule.
5c3240d9 2963 */
b104a35d 2964 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2965 alloc_flags |= ALLOC_HARDER;
523b9458 2966 /*
b104a35d 2967 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2968 * comment for __cpuset_node_allowed().
523b9458 2969 */
341ce06f 2970 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2971 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2972 alloc_flags |= ALLOC_HARDER;
2973
b37f1dd0
MG
2974 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2975 if (gfp_mask & __GFP_MEMALLOC)
2976 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2977 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2978 alloc_flags |= ALLOC_NO_WATERMARKS;
2979 else if (!in_interrupt() &&
2980 ((current->flags & PF_MEMALLOC) ||
2981 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2982 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2983 }
d95ea5d1 2984#ifdef CONFIG_CMA
43e7a34d 2985 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2986 alloc_flags |= ALLOC_CMA;
2987#endif
341ce06f
PZ
2988 return alloc_flags;
2989}
2990
072bb0aa
MG
2991bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2992{
b37f1dd0 2993 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2994}
2995
d0164adc
MG
2996static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2997{
2998 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2999}
3000
11e33f6a
MG
3001static inline struct page *
3002__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3003 struct alloc_context *ac)
11e33f6a 3004{
d0164adc 3005 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
3006 struct page *page = NULL;
3007 int alloc_flags;
3008 unsigned long pages_reclaimed = 0;
3009 unsigned long did_some_progress;
e0b9daeb 3010 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3011 bool deferred_compaction = false;
1f9efdef 3012 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3013
72807a74
MG
3014 /*
3015 * In the slowpath, we sanity check order to avoid ever trying to
3016 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3017 * be using allocators in order of preference for an area that is
3018 * too large.
3019 */
1fc28b70
MG
3020 if (order >= MAX_ORDER) {
3021 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3022 return NULL;
1fc28b70 3023 }
1da177e4 3024
d0164adc
MG
3025 /*
3026 * We also sanity check to catch abuse of atomic reserves being used by
3027 * callers that are not in atomic context.
3028 */
3029 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3030 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3031 gfp_mask &= ~__GFP_ATOMIC;
3032
952f3b51 3033 /*
4167e9b2
DR
3034 * If this allocation cannot block and it is for a specific node, then
3035 * fail early. There's no need to wakeup kswapd or retry for a
3036 * speculative node-specific allocation.
952f3b51 3037 */
d0164adc 3038 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
952f3b51
CL
3039 goto nopage;
3040
9879de73 3041retry:
d0164adc 3042 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3043 wake_all_kswapds(order, ac);
1da177e4 3044
9bf2229f 3045 /*
7fb1d9fc
RS
3046 * OK, we're below the kswapd watermark and have kicked background
3047 * reclaim. Now things get more complex, so set up alloc_flags according
3048 * to how we want to proceed.
9bf2229f 3049 */
341ce06f 3050 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3051
f33261d7
DR
3052 /*
3053 * Find the true preferred zone if the allocation is unconstrained by
3054 * cpusets.
3055 */
a9263751 3056 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3057 struct zoneref *preferred_zoneref;
a9263751
VB
3058 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3059 ac->high_zoneidx, NULL, &ac->preferred_zone);
3060 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3061 }
f33261d7 3062
341ce06f 3063 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3064 page = get_page_from_freelist(gfp_mask, order,
3065 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3066 if (page)
3067 goto got_pg;
1da177e4 3068
11e33f6a 3069 /* Allocate without watermarks if the context allows */
341ce06f 3070 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3071 /*
3072 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3073 * the allocation is high priority and these type of
3074 * allocations are system rather than user orientated
3075 */
a9263751 3076 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3077 page = get_page_from_freelist(gfp_mask, order,
3078 ALLOC_NO_WATERMARKS, ac);
3079 if (page)
3080 goto got_pg;
1da177e4
LT
3081 }
3082
d0164adc
MG
3083 /* Caller is not willing to reclaim, we can't balance anything */
3084 if (!can_direct_reclaim) {
aed0a0e3 3085 /*
33d53103
MH
3086 * All existing users of the __GFP_NOFAIL are blockable, so warn
3087 * of any new users that actually allow this type of allocation
3088 * to fail.
aed0a0e3
DR
3089 */
3090 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3091 goto nopage;
aed0a0e3 3092 }
1da177e4 3093
341ce06f 3094 /* Avoid recursion of direct reclaim */
33d53103
MH
3095 if (current->flags & PF_MEMALLOC) {
3096 /*
3097 * __GFP_NOFAIL request from this context is rather bizarre
3098 * because we cannot reclaim anything and only can loop waiting
3099 * for somebody to do a work for us.
3100 */
3101 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3102 cond_resched();
3103 goto retry;
3104 }
341ce06f 3105 goto nopage;
33d53103 3106 }
341ce06f 3107
6583bb64
DR
3108 /* Avoid allocations with no watermarks from looping endlessly */
3109 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3110 goto nopage;
3111
77f1fe6b
MG
3112 /*
3113 * Try direct compaction. The first pass is asynchronous. Subsequent
3114 * attempts after direct reclaim are synchronous
3115 */
a9263751
VB
3116 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3117 migration_mode,
3118 &contended_compaction,
53853e2d 3119 &deferred_compaction);
56de7263
MG
3120 if (page)
3121 goto got_pg;
75f30861 3122
1f9efdef 3123 /* Checks for THP-specific high-order allocations */
d0164adc 3124 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3125 /*
3126 * If compaction is deferred for high-order allocations, it is
3127 * because sync compaction recently failed. If this is the case
3128 * and the caller requested a THP allocation, we do not want
3129 * to heavily disrupt the system, so we fail the allocation
3130 * instead of entering direct reclaim.
3131 */
3132 if (deferred_compaction)
3133 goto nopage;
3134
3135 /*
3136 * In all zones where compaction was attempted (and not
3137 * deferred or skipped), lock contention has been detected.
3138 * For THP allocation we do not want to disrupt the others
3139 * so we fallback to base pages instead.
3140 */
3141 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3142 goto nopage;
3143
3144 /*
3145 * If compaction was aborted due to need_resched(), we do not
3146 * want to further increase allocation latency, unless it is
3147 * khugepaged trying to collapse.
3148 */
3149 if (contended_compaction == COMPACT_CONTENDED_SCHED
3150 && !(current->flags & PF_KTHREAD))
3151 goto nopage;
3152 }
66199712 3153
8fe78048
DR
3154 /*
3155 * It can become very expensive to allocate transparent hugepages at
3156 * fault, so use asynchronous memory compaction for THP unless it is
3157 * khugepaged trying to collapse.
3158 */
d0164adc 3159 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3160 migration_mode = MIGRATE_SYNC_LIGHT;
3161
11e33f6a 3162 /* Try direct reclaim and then allocating */
a9263751
VB
3163 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3164 &did_some_progress);
11e33f6a
MG
3165 if (page)
3166 goto got_pg;
1da177e4 3167
9083905a
JW
3168 /* Do not loop if specifically requested */
3169 if (gfp_mask & __GFP_NORETRY)
3170 goto noretry;
3171
3172 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3173 pages_reclaimed += did_some_progress;
9083905a
JW
3174 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3175 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3176 /* Wait for some write requests to complete then retry */
a9263751 3177 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3178 goto retry;
1da177e4
LT
3179 }
3180
9083905a
JW
3181 /* Reclaim has failed us, start killing things */
3182 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3183 if (page)
3184 goto got_pg;
3185
3186 /* Retry as long as the OOM killer is making progress */
3187 if (did_some_progress)
3188 goto retry;
3189
3190noretry:
3191 /*
3192 * High-order allocations do not necessarily loop after
3193 * direct reclaim and reclaim/compaction depends on compaction
3194 * being called after reclaim so call directly if necessary
3195 */
3196 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3197 ac, migration_mode,
3198 &contended_compaction,
3199 &deferred_compaction);
3200 if (page)
3201 goto got_pg;
1da177e4 3202nopage:
a238ab5b 3203 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3204got_pg:
072bb0aa 3205 return page;
1da177e4 3206}
11e33f6a
MG
3207
3208/*
3209 * This is the 'heart' of the zoned buddy allocator.
3210 */
3211struct page *
3212__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3213 struct zonelist *zonelist, nodemask_t *nodemask)
3214{
d8846374 3215 struct zoneref *preferred_zoneref;
cc9a6c87 3216 struct page *page = NULL;
cc9a6c87 3217 unsigned int cpuset_mems_cookie;
3a025760 3218 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3219 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3220 struct alloc_context ac = {
3221 .high_zoneidx = gfp_zone(gfp_mask),
3222 .nodemask = nodemask,
3223 .migratetype = gfpflags_to_migratetype(gfp_mask),
3224 };
11e33f6a 3225
dcce284a
BH
3226 gfp_mask &= gfp_allowed_mask;
3227
11e33f6a
MG
3228 lockdep_trace_alloc(gfp_mask);
3229
d0164adc 3230 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3231
3232 if (should_fail_alloc_page(gfp_mask, order))
3233 return NULL;
3234
3235 /*
3236 * Check the zones suitable for the gfp_mask contain at least one
3237 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3238 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3239 */
3240 if (unlikely(!zonelist->_zonerefs->zone))
3241 return NULL;
3242
a9263751 3243 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3244 alloc_flags |= ALLOC_CMA;
3245
cc9a6c87 3246retry_cpuset:
d26914d1 3247 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3248
a9263751
VB
3249 /* We set it here, as __alloc_pages_slowpath might have changed it */
3250 ac.zonelist = zonelist;
c9ab0c4f
MG
3251
3252 /* Dirty zone balancing only done in the fast path */
3253 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3254
5117f45d 3255 /* The preferred zone is used for statistics later */
a9263751
VB
3256 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3257 ac.nodemask ? : &cpuset_current_mems_allowed,
3258 &ac.preferred_zone);
3259 if (!ac.preferred_zone)
cc9a6c87 3260 goto out;
a9263751 3261 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3262
3263 /* First allocation attempt */
91fbdc0f 3264 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3265 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3266 if (unlikely(!page)) {
3267 /*
3268 * Runtime PM, block IO and its error handling path
3269 * can deadlock because I/O on the device might not
3270 * complete.
3271 */
91fbdc0f 3272 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3273 ac.spread_dirty_pages = false;
91fbdc0f 3274
a9263751 3275 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3276 }
11e33f6a 3277
23f086f9
XQ
3278 if (kmemcheck_enabled && page)
3279 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3280
a9263751 3281 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3282
3283out:
3284 /*
3285 * When updating a task's mems_allowed, it is possible to race with
3286 * parallel threads in such a way that an allocation can fail while
3287 * the mask is being updated. If a page allocation is about to fail,
3288 * check if the cpuset changed during allocation and if so, retry.
3289 */
d26914d1 3290 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3291 goto retry_cpuset;
3292
11e33f6a 3293 return page;
1da177e4 3294}
d239171e 3295EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3296
3297/*
3298 * Common helper functions.
3299 */
920c7a5d 3300unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3301{
945a1113
AM
3302 struct page *page;
3303
3304 /*
3305 * __get_free_pages() returns a 32-bit address, which cannot represent
3306 * a highmem page
3307 */
3308 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3309
1da177e4
LT
3310 page = alloc_pages(gfp_mask, order);
3311 if (!page)
3312 return 0;
3313 return (unsigned long) page_address(page);
3314}
1da177e4
LT
3315EXPORT_SYMBOL(__get_free_pages);
3316
920c7a5d 3317unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3318{
945a1113 3319 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3320}
1da177e4
LT
3321EXPORT_SYMBOL(get_zeroed_page);
3322
920c7a5d 3323void __free_pages(struct page *page, unsigned int order)
1da177e4 3324{
b5810039 3325 if (put_page_testzero(page)) {
1da177e4 3326 if (order == 0)
b745bc85 3327 free_hot_cold_page(page, false);
1da177e4
LT
3328 else
3329 __free_pages_ok(page, order);
3330 }
3331}
3332
3333EXPORT_SYMBOL(__free_pages);
3334
920c7a5d 3335void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3336{
3337 if (addr != 0) {
725d704e 3338 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3339 __free_pages(virt_to_page((void *)addr), order);
3340 }
3341}
3342
3343EXPORT_SYMBOL(free_pages);
3344
b63ae8ca
AD
3345/*
3346 * Page Fragment:
3347 * An arbitrary-length arbitrary-offset area of memory which resides
3348 * within a 0 or higher order page. Multiple fragments within that page
3349 * are individually refcounted, in the page's reference counter.
3350 *
3351 * The page_frag functions below provide a simple allocation framework for
3352 * page fragments. This is used by the network stack and network device
3353 * drivers to provide a backing region of memory for use as either an
3354 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3355 */
3356static struct page *__page_frag_refill(struct page_frag_cache *nc,
3357 gfp_t gfp_mask)
3358{
3359 struct page *page = NULL;
3360 gfp_t gfp = gfp_mask;
3361
3362#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3363 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3364 __GFP_NOMEMALLOC;
3365 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3366 PAGE_FRAG_CACHE_MAX_ORDER);
3367 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3368#endif
3369 if (unlikely(!page))
3370 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3371
3372 nc->va = page ? page_address(page) : NULL;
3373
3374 return page;
3375}
3376
3377void *__alloc_page_frag(struct page_frag_cache *nc,
3378 unsigned int fragsz, gfp_t gfp_mask)
3379{
3380 unsigned int size = PAGE_SIZE;
3381 struct page *page;
3382 int offset;
3383
3384 if (unlikely(!nc->va)) {
3385refill:
3386 page = __page_frag_refill(nc, gfp_mask);
3387 if (!page)
3388 return NULL;
3389
3390#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3391 /* if size can vary use size else just use PAGE_SIZE */
3392 size = nc->size;
3393#endif
3394 /* Even if we own the page, we do not use atomic_set().
3395 * This would break get_page_unless_zero() users.
3396 */
3397 atomic_add(size - 1, &page->_count);
3398
3399 /* reset page count bias and offset to start of new frag */
2f064f34 3400 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3401 nc->pagecnt_bias = size;
3402 nc->offset = size;
3403 }
3404
3405 offset = nc->offset - fragsz;
3406 if (unlikely(offset < 0)) {
3407 page = virt_to_page(nc->va);
3408
3409 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3410 goto refill;
3411
3412#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3413 /* if size can vary use size else just use PAGE_SIZE */
3414 size = nc->size;
3415#endif
3416 /* OK, page count is 0, we can safely set it */
3417 atomic_set(&page->_count, size);
3418
3419 /* reset page count bias and offset to start of new frag */
3420 nc->pagecnt_bias = size;
3421 offset = size - fragsz;
3422 }
3423
3424 nc->pagecnt_bias--;
3425 nc->offset = offset;
3426
3427 return nc->va + offset;
3428}
3429EXPORT_SYMBOL(__alloc_page_frag);
3430
3431/*
3432 * Frees a page fragment allocated out of either a compound or order 0 page.
3433 */
3434void __free_page_frag(void *addr)
3435{
3436 struct page *page = virt_to_head_page(addr);
3437
3438 if (unlikely(put_page_testzero(page)))
3439 __free_pages_ok(page, compound_order(page));
3440}
3441EXPORT_SYMBOL(__free_page_frag);
3442
6a1a0d3b 3443/*
52383431 3444 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3445 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3446 * equivalent to alloc_pages.
6a1a0d3b 3447 *
52383431
VD
3448 * It should be used when the caller would like to use kmalloc, but since the
3449 * allocation is large, it has to fall back to the page allocator.
3450 */
3451struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3452{
3453 struct page *page;
52383431 3454
52383431 3455 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3456 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3457 __free_pages(page, order);
3458 page = NULL;
3459 }
52383431
VD
3460 return page;
3461}
3462
3463struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3464{
3465 struct page *page;
52383431 3466
52383431 3467 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3468 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3469 __free_pages(page, order);
3470 page = NULL;
3471 }
52383431
VD
3472 return page;
3473}
3474
3475/*
3476 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3477 * alloc_kmem_pages.
6a1a0d3b 3478 */
52383431 3479void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3480{
d05e83a6 3481 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3482 __free_pages(page, order);
3483}
3484
52383431 3485void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3486{
3487 if (addr != 0) {
3488 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3489 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3490 }
3491}
3492
d00181b9
KS
3493static void *make_alloc_exact(unsigned long addr, unsigned int order,
3494 size_t size)
ee85c2e1
AK
3495{
3496 if (addr) {
3497 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3498 unsigned long used = addr + PAGE_ALIGN(size);
3499
3500 split_page(virt_to_page((void *)addr), order);
3501 while (used < alloc_end) {
3502 free_page(used);
3503 used += PAGE_SIZE;
3504 }
3505 }
3506 return (void *)addr;
3507}
3508
2be0ffe2
TT
3509/**
3510 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3511 * @size: the number of bytes to allocate
3512 * @gfp_mask: GFP flags for the allocation
3513 *
3514 * This function is similar to alloc_pages(), except that it allocates the
3515 * minimum number of pages to satisfy the request. alloc_pages() can only
3516 * allocate memory in power-of-two pages.
3517 *
3518 * This function is also limited by MAX_ORDER.
3519 *
3520 * Memory allocated by this function must be released by free_pages_exact().
3521 */
3522void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3523{
3524 unsigned int order = get_order(size);
3525 unsigned long addr;
3526
3527 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3528 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3529}
3530EXPORT_SYMBOL(alloc_pages_exact);
3531
ee85c2e1
AK
3532/**
3533 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3534 * pages on a node.
b5e6ab58 3535 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3536 * @size: the number of bytes to allocate
3537 * @gfp_mask: GFP flags for the allocation
3538 *
3539 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3540 * back.
ee85c2e1 3541 */
e1931811 3542void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3543{
d00181b9 3544 unsigned int order = get_order(size);
ee85c2e1
AK
3545 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3546 if (!p)
3547 return NULL;
3548 return make_alloc_exact((unsigned long)page_address(p), order, size);
3549}
ee85c2e1 3550
2be0ffe2
TT
3551/**
3552 * free_pages_exact - release memory allocated via alloc_pages_exact()
3553 * @virt: the value returned by alloc_pages_exact.
3554 * @size: size of allocation, same value as passed to alloc_pages_exact().
3555 *
3556 * Release the memory allocated by a previous call to alloc_pages_exact.
3557 */
3558void free_pages_exact(void *virt, size_t size)
3559{
3560 unsigned long addr = (unsigned long)virt;
3561 unsigned long end = addr + PAGE_ALIGN(size);
3562
3563 while (addr < end) {
3564 free_page(addr);
3565 addr += PAGE_SIZE;
3566 }
3567}
3568EXPORT_SYMBOL(free_pages_exact);
3569
e0fb5815
ZY
3570/**
3571 * nr_free_zone_pages - count number of pages beyond high watermark
3572 * @offset: The zone index of the highest zone
3573 *
3574 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3575 * high watermark within all zones at or below a given zone index. For each
3576 * zone, the number of pages is calculated as:
834405c3 3577 * managed_pages - high_pages
e0fb5815 3578 */
ebec3862 3579static unsigned long nr_free_zone_pages(int offset)
1da177e4 3580{
dd1a239f 3581 struct zoneref *z;
54a6eb5c
MG
3582 struct zone *zone;
3583
e310fd43 3584 /* Just pick one node, since fallback list is circular */
ebec3862 3585 unsigned long sum = 0;
1da177e4 3586
0e88460d 3587 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3588
54a6eb5c 3589 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3590 unsigned long size = zone->managed_pages;
41858966 3591 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3592 if (size > high)
3593 sum += size - high;
1da177e4
LT
3594 }
3595
3596 return sum;
3597}
3598
e0fb5815
ZY
3599/**
3600 * nr_free_buffer_pages - count number of pages beyond high watermark
3601 *
3602 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3603 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3604 */
ebec3862 3605unsigned long nr_free_buffer_pages(void)
1da177e4 3606{
af4ca457 3607 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3608}
c2f1a551 3609EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3610
e0fb5815
ZY
3611/**
3612 * nr_free_pagecache_pages - count number of pages beyond high watermark
3613 *
3614 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3615 * high watermark within all zones.
1da177e4 3616 */
ebec3862 3617unsigned long nr_free_pagecache_pages(void)
1da177e4 3618{
2a1e274a 3619 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3620}
08e0f6a9
CL
3621
3622static inline void show_node(struct zone *zone)
1da177e4 3623{
e5adfffc 3624 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3625 printk("Node %d ", zone_to_nid(zone));
1da177e4 3626}
1da177e4 3627
1da177e4
LT
3628void si_meminfo(struct sysinfo *val)
3629{
3630 val->totalram = totalram_pages;
cc7452b6 3631 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3632 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3633 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3634 val->totalhigh = totalhigh_pages;
3635 val->freehigh = nr_free_highpages();
1da177e4
LT
3636 val->mem_unit = PAGE_SIZE;
3637}
3638
3639EXPORT_SYMBOL(si_meminfo);
3640
3641#ifdef CONFIG_NUMA
3642void si_meminfo_node(struct sysinfo *val, int nid)
3643{
cdd91a77
JL
3644 int zone_type; /* needs to be signed */
3645 unsigned long managed_pages = 0;
1da177e4
LT
3646 pg_data_t *pgdat = NODE_DATA(nid);
3647
cdd91a77
JL
3648 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3649 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3650 val->totalram = managed_pages;
cc7452b6 3651 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3652 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3653#ifdef CONFIG_HIGHMEM
b40da049 3654 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3655 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3656 NR_FREE_PAGES);
98d2b0eb
CL
3657#else
3658 val->totalhigh = 0;
3659 val->freehigh = 0;
3660#endif
1da177e4
LT
3661 val->mem_unit = PAGE_SIZE;
3662}
3663#endif
3664
ddd588b5 3665/*
7bf02ea2
DR
3666 * Determine whether the node should be displayed or not, depending on whether
3667 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3668 */
7bf02ea2 3669bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3670{
3671 bool ret = false;
cc9a6c87 3672 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3673
3674 if (!(flags & SHOW_MEM_FILTER_NODES))
3675 goto out;
3676
cc9a6c87 3677 do {
d26914d1 3678 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3679 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3680 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3681out:
3682 return ret;
3683}
3684
1da177e4
LT
3685#define K(x) ((x) << (PAGE_SHIFT-10))
3686
377e4f16
RV
3687static void show_migration_types(unsigned char type)
3688{
3689 static const char types[MIGRATE_TYPES] = {
3690 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3691 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3692 [MIGRATE_RECLAIMABLE] = 'E',
3693 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3694#ifdef CONFIG_CMA
3695 [MIGRATE_CMA] = 'C',
3696#endif
194159fb 3697#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3698 [MIGRATE_ISOLATE] = 'I',
194159fb 3699#endif
377e4f16
RV
3700 };
3701 char tmp[MIGRATE_TYPES + 1];
3702 char *p = tmp;
3703 int i;
3704
3705 for (i = 0; i < MIGRATE_TYPES; i++) {
3706 if (type & (1 << i))
3707 *p++ = types[i];
3708 }
3709
3710 *p = '\0';
3711 printk("(%s) ", tmp);
3712}
3713
1da177e4
LT
3714/*
3715 * Show free area list (used inside shift_scroll-lock stuff)
3716 * We also calculate the percentage fragmentation. We do this by counting the
3717 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3718 *
3719 * Bits in @filter:
3720 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3721 * cpuset.
1da177e4 3722 */
7bf02ea2 3723void show_free_areas(unsigned int filter)
1da177e4 3724{
d1bfcdb8 3725 unsigned long free_pcp = 0;
c7241913 3726 int cpu;
1da177e4
LT
3727 struct zone *zone;
3728
ee99c71c 3729 for_each_populated_zone(zone) {
7bf02ea2 3730 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3731 continue;
d1bfcdb8 3732
761b0677
KK
3733 for_each_online_cpu(cpu)
3734 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3735 }
3736
a731286d
KM
3737 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3738 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3739 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3740 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3741 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3742 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3743 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3744 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3745 global_page_state(NR_ISOLATED_ANON),
3746 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3747 global_page_state(NR_INACTIVE_FILE),
a731286d 3748 global_page_state(NR_ISOLATED_FILE),
7b854121 3749 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3750 global_page_state(NR_FILE_DIRTY),
ce866b34 3751 global_page_state(NR_WRITEBACK),
fd39fc85 3752 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3753 global_page_state(NR_SLAB_RECLAIMABLE),
3754 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3755 global_page_state(NR_FILE_MAPPED),
4b02108a 3756 global_page_state(NR_SHMEM),
a25700a5 3757 global_page_state(NR_PAGETABLE),
d1ce749a 3758 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3759 global_page_state(NR_FREE_PAGES),
3760 free_pcp,
d1ce749a 3761 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3762
ee99c71c 3763 for_each_populated_zone(zone) {
1da177e4
LT
3764 int i;
3765
7bf02ea2 3766 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3767 continue;
d1bfcdb8
KK
3768
3769 free_pcp = 0;
3770 for_each_online_cpu(cpu)
3771 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3772
1da177e4
LT
3773 show_node(zone);
3774 printk("%s"
3775 " free:%lukB"
3776 " min:%lukB"
3777 " low:%lukB"
3778 " high:%lukB"
4f98a2fe
RR
3779 " active_anon:%lukB"
3780 " inactive_anon:%lukB"
3781 " active_file:%lukB"
3782 " inactive_file:%lukB"
7b854121 3783 " unevictable:%lukB"
a731286d
KM
3784 " isolated(anon):%lukB"
3785 " isolated(file):%lukB"
1da177e4 3786 " present:%lukB"
9feedc9d 3787 " managed:%lukB"
4a0aa73f
KM
3788 " mlocked:%lukB"
3789 " dirty:%lukB"
3790 " writeback:%lukB"
3791 " mapped:%lukB"
4b02108a 3792 " shmem:%lukB"
4a0aa73f
KM
3793 " slab_reclaimable:%lukB"
3794 " slab_unreclaimable:%lukB"
c6a7f572 3795 " kernel_stack:%lukB"
4a0aa73f
KM
3796 " pagetables:%lukB"
3797 " unstable:%lukB"
3798 " bounce:%lukB"
d1bfcdb8
KK
3799 " free_pcp:%lukB"
3800 " local_pcp:%ukB"
d1ce749a 3801 " free_cma:%lukB"
4a0aa73f 3802 " writeback_tmp:%lukB"
1da177e4
LT
3803 " pages_scanned:%lu"
3804 " all_unreclaimable? %s"
3805 "\n",
3806 zone->name,
88f5acf8 3807 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3808 K(min_wmark_pages(zone)),
3809 K(low_wmark_pages(zone)),
3810 K(high_wmark_pages(zone)),
4f98a2fe
RR
3811 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3812 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3813 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3814 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3815 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3816 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3817 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3818 K(zone->present_pages),
9feedc9d 3819 K(zone->managed_pages),
4a0aa73f
KM
3820 K(zone_page_state(zone, NR_MLOCK)),
3821 K(zone_page_state(zone, NR_FILE_DIRTY)),
3822 K(zone_page_state(zone, NR_WRITEBACK)),
3823 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3824 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3825 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3826 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3827 zone_page_state(zone, NR_KERNEL_STACK) *
3828 THREAD_SIZE / 1024,
4a0aa73f
KM
3829 K(zone_page_state(zone, NR_PAGETABLE)),
3830 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3831 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3832 K(free_pcp),
3833 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3834 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3835 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3836 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3837 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3838 );
3839 printk("lowmem_reserve[]:");
3840 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3841 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3842 printk("\n");
3843 }
3844
ee99c71c 3845 for_each_populated_zone(zone) {
d00181b9
KS
3846 unsigned int order;
3847 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3848 unsigned char types[MAX_ORDER];
1da177e4 3849
7bf02ea2 3850 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3851 continue;
1da177e4
LT
3852 show_node(zone);
3853 printk("%s: ", zone->name);
1da177e4
LT
3854
3855 spin_lock_irqsave(&zone->lock, flags);
3856 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3857 struct free_area *area = &zone->free_area[order];
3858 int type;
3859
3860 nr[order] = area->nr_free;
8f9de51a 3861 total += nr[order] << order;
377e4f16
RV
3862
3863 types[order] = 0;
3864 for (type = 0; type < MIGRATE_TYPES; type++) {
3865 if (!list_empty(&area->free_list[type]))
3866 types[order] |= 1 << type;
3867 }
1da177e4
LT
3868 }
3869 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3870 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3871 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3872 if (nr[order])
3873 show_migration_types(types[order]);
3874 }
1da177e4
LT
3875 printk("= %lukB\n", K(total));
3876 }
3877
949f7ec5
DR
3878 hugetlb_show_meminfo();
3879
e6f3602d
LW
3880 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3881
1da177e4
LT
3882 show_swap_cache_info();
3883}
3884
19770b32
MG
3885static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3886{
3887 zoneref->zone = zone;
3888 zoneref->zone_idx = zone_idx(zone);
3889}
3890
1da177e4
LT
3891/*
3892 * Builds allocation fallback zone lists.
1a93205b
CL
3893 *
3894 * Add all populated zones of a node to the zonelist.
1da177e4 3895 */
f0c0b2b8 3896static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3897 int nr_zones)
1da177e4 3898{
1a93205b 3899 struct zone *zone;
bc732f1d 3900 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3901
3902 do {
2f6726e5 3903 zone_type--;
070f8032 3904 zone = pgdat->node_zones + zone_type;
1a93205b 3905 if (populated_zone(zone)) {
dd1a239f
MG
3906 zoneref_set_zone(zone,
3907 &zonelist->_zonerefs[nr_zones++]);
070f8032 3908 check_highest_zone(zone_type);
1da177e4 3909 }
2f6726e5 3910 } while (zone_type);
bc732f1d 3911
070f8032 3912 return nr_zones;
1da177e4
LT
3913}
3914
f0c0b2b8
KH
3915
3916/*
3917 * zonelist_order:
3918 * 0 = automatic detection of better ordering.
3919 * 1 = order by ([node] distance, -zonetype)
3920 * 2 = order by (-zonetype, [node] distance)
3921 *
3922 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3923 * the same zonelist. So only NUMA can configure this param.
3924 */
3925#define ZONELIST_ORDER_DEFAULT 0
3926#define ZONELIST_ORDER_NODE 1
3927#define ZONELIST_ORDER_ZONE 2
3928
3929/* zonelist order in the kernel.
3930 * set_zonelist_order() will set this to NODE or ZONE.
3931 */
3932static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3933static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3934
3935
1da177e4 3936#ifdef CONFIG_NUMA
f0c0b2b8
KH
3937/* The value user specified ....changed by config */
3938static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3939/* string for sysctl */
3940#define NUMA_ZONELIST_ORDER_LEN 16
3941char numa_zonelist_order[16] = "default";
3942
3943/*
3944 * interface for configure zonelist ordering.
3945 * command line option "numa_zonelist_order"
3946 * = "[dD]efault - default, automatic configuration.
3947 * = "[nN]ode - order by node locality, then by zone within node
3948 * = "[zZ]one - order by zone, then by locality within zone
3949 */
3950
3951static int __parse_numa_zonelist_order(char *s)
3952{
3953 if (*s == 'd' || *s == 'D') {
3954 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3955 } else if (*s == 'n' || *s == 'N') {
3956 user_zonelist_order = ZONELIST_ORDER_NODE;
3957 } else if (*s == 'z' || *s == 'Z') {
3958 user_zonelist_order = ZONELIST_ORDER_ZONE;
3959 } else {
3960 printk(KERN_WARNING
3961 "Ignoring invalid numa_zonelist_order value: "
3962 "%s\n", s);
3963 return -EINVAL;
3964 }
3965 return 0;
3966}
3967
3968static __init int setup_numa_zonelist_order(char *s)
3969{
ecb256f8
VL
3970 int ret;
3971
3972 if (!s)
3973 return 0;
3974
3975 ret = __parse_numa_zonelist_order(s);
3976 if (ret == 0)
3977 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3978
3979 return ret;
f0c0b2b8
KH
3980}
3981early_param("numa_zonelist_order", setup_numa_zonelist_order);
3982
3983/*
3984 * sysctl handler for numa_zonelist_order
3985 */
cccad5b9 3986int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3987 void __user *buffer, size_t *length,
f0c0b2b8
KH
3988 loff_t *ppos)
3989{
3990 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3991 int ret;
443c6f14 3992 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3993
443c6f14 3994 mutex_lock(&zl_order_mutex);
dacbde09
CG
3995 if (write) {
3996 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3997 ret = -EINVAL;
3998 goto out;
3999 }
4000 strcpy(saved_string, (char *)table->data);
4001 }
8d65af78 4002 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4003 if (ret)
443c6f14 4004 goto out;
f0c0b2b8
KH
4005 if (write) {
4006 int oldval = user_zonelist_order;
dacbde09
CG
4007
4008 ret = __parse_numa_zonelist_order((char *)table->data);
4009 if (ret) {
f0c0b2b8
KH
4010 /*
4011 * bogus value. restore saved string
4012 */
dacbde09 4013 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4014 NUMA_ZONELIST_ORDER_LEN);
4015 user_zonelist_order = oldval;
4eaf3f64
HL
4016 } else if (oldval != user_zonelist_order) {
4017 mutex_lock(&zonelists_mutex);
9adb62a5 4018 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4019 mutex_unlock(&zonelists_mutex);
4020 }
f0c0b2b8 4021 }
443c6f14
AK
4022out:
4023 mutex_unlock(&zl_order_mutex);
4024 return ret;
f0c0b2b8
KH
4025}
4026
4027
62bc62a8 4028#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4029static int node_load[MAX_NUMNODES];
4030
1da177e4 4031/**
4dc3b16b 4032 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4033 * @node: node whose fallback list we're appending
4034 * @used_node_mask: nodemask_t of already used nodes
4035 *
4036 * We use a number of factors to determine which is the next node that should
4037 * appear on a given node's fallback list. The node should not have appeared
4038 * already in @node's fallback list, and it should be the next closest node
4039 * according to the distance array (which contains arbitrary distance values
4040 * from each node to each node in the system), and should also prefer nodes
4041 * with no CPUs, since presumably they'll have very little allocation pressure
4042 * on them otherwise.
4043 * It returns -1 if no node is found.
4044 */
f0c0b2b8 4045static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4046{
4cf808eb 4047 int n, val;
1da177e4 4048 int min_val = INT_MAX;
00ef2d2f 4049 int best_node = NUMA_NO_NODE;
a70f7302 4050 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4051
4cf808eb
LT
4052 /* Use the local node if we haven't already */
4053 if (!node_isset(node, *used_node_mask)) {
4054 node_set(node, *used_node_mask);
4055 return node;
4056 }
1da177e4 4057
4b0ef1fe 4058 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4059
4060 /* Don't want a node to appear more than once */
4061 if (node_isset(n, *used_node_mask))
4062 continue;
4063
1da177e4
LT
4064 /* Use the distance array to find the distance */
4065 val = node_distance(node, n);
4066
4cf808eb
LT
4067 /* Penalize nodes under us ("prefer the next node") */
4068 val += (n < node);
4069
1da177e4 4070 /* Give preference to headless and unused nodes */
a70f7302
RR
4071 tmp = cpumask_of_node(n);
4072 if (!cpumask_empty(tmp))
1da177e4
LT
4073 val += PENALTY_FOR_NODE_WITH_CPUS;
4074
4075 /* Slight preference for less loaded node */
4076 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4077 val += node_load[n];
4078
4079 if (val < min_val) {
4080 min_val = val;
4081 best_node = n;
4082 }
4083 }
4084
4085 if (best_node >= 0)
4086 node_set(best_node, *used_node_mask);
4087
4088 return best_node;
4089}
4090
f0c0b2b8
KH
4091
4092/*
4093 * Build zonelists ordered by node and zones within node.
4094 * This results in maximum locality--normal zone overflows into local
4095 * DMA zone, if any--but risks exhausting DMA zone.
4096 */
4097static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4098{
f0c0b2b8 4099 int j;
1da177e4 4100 struct zonelist *zonelist;
f0c0b2b8 4101
54a6eb5c 4102 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4103 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4104 ;
bc732f1d 4105 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4106 zonelist->_zonerefs[j].zone = NULL;
4107 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4108}
4109
523b9458
CL
4110/*
4111 * Build gfp_thisnode zonelists
4112 */
4113static void build_thisnode_zonelists(pg_data_t *pgdat)
4114{
523b9458
CL
4115 int j;
4116 struct zonelist *zonelist;
4117
54a6eb5c 4118 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4119 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4120 zonelist->_zonerefs[j].zone = NULL;
4121 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4122}
4123
f0c0b2b8
KH
4124/*
4125 * Build zonelists ordered by zone and nodes within zones.
4126 * This results in conserving DMA zone[s] until all Normal memory is
4127 * exhausted, but results in overflowing to remote node while memory
4128 * may still exist in local DMA zone.
4129 */
4130static int node_order[MAX_NUMNODES];
4131
4132static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4133{
f0c0b2b8
KH
4134 int pos, j, node;
4135 int zone_type; /* needs to be signed */
4136 struct zone *z;
4137 struct zonelist *zonelist;
4138
54a6eb5c
MG
4139 zonelist = &pgdat->node_zonelists[0];
4140 pos = 0;
4141 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4142 for (j = 0; j < nr_nodes; j++) {
4143 node = node_order[j];
4144 z = &NODE_DATA(node)->node_zones[zone_type];
4145 if (populated_zone(z)) {
dd1a239f
MG
4146 zoneref_set_zone(z,
4147 &zonelist->_zonerefs[pos++]);
54a6eb5c 4148 check_highest_zone(zone_type);
f0c0b2b8
KH
4149 }
4150 }
f0c0b2b8 4151 }
dd1a239f
MG
4152 zonelist->_zonerefs[pos].zone = NULL;
4153 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4154}
4155
3193913c
MG
4156#if defined(CONFIG_64BIT)
4157/*
4158 * Devices that require DMA32/DMA are relatively rare and do not justify a
4159 * penalty to every machine in case the specialised case applies. Default
4160 * to Node-ordering on 64-bit NUMA machines
4161 */
4162static int default_zonelist_order(void)
4163{
4164 return ZONELIST_ORDER_NODE;
4165}
4166#else
4167/*
4168 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4169 * by the kernel. If processes running on node 0 deplete the low memory zone
4170 * then reclaim will occur more frequency increasing stalls and potentially
4171 * be easier to OOM if a large percentage of the zone is under writeback or
4172 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4173 * Hence, default to zone ordering on 32-bit.
4174 */
f0c0b2b8
KH
4175static int default_zonelist_order(void)
4176{
f0c0b2b8
KH
4177 return ZONELIST_ORDER_ZONE;
4178}
3193913c 4179#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4180
4181static void set_zonelist_order(void)
4182{
4183 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4184 current_zonelist_order = default_zonelist_order();
4185 else
4186 current_zonelist_order = user_zonelist_order;
4187}
4188
4189static void build_zonelists(pg_data_t *pgdat)
4190{
c00eb15a 4191 int i, node, load;
1da177e4 4192 nodemask_t used_mask;
f0c0b2b8
KH
4193 int local_node, prev_node;
4194 struct zonelist *zonelist;
d00181b9 4195 unsigned int order = current_zonelist_order;
1da177e4
LT
4196
4197 /* initialize zonelists */
523b9458 4198 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4199 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4200 zonelist->_zonerefs[0].zone = NULL;
4201 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4202 }
4203
4204 /* NUMA-aware ordering of nodes */
4205 local_node = pgdat->node_id;
62bc62a8 4206 load = nr_online_nodes;
1da177e4
LT
4207 prev_node = local_node;
4208 nodes_clear(used_mask);
f0c0b2b8 4209
f0c0b2b8 4210 memset(node_order, 0, sizeof(node_order));
c00eb15a 4211 i = 0;
f0c0b2b8 4212
1da177e4
LT
4213 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4214 /*
4215 * We don't want to pressure a particular node.
4216 * So adding penalty to the first node in same
4217 * distance group to make it round-robin.
4218 */
957f822a
DR
4219 if (node_distance(local_node, node) !=
4220 node_distance(local_node, prev_node))
f0c0b2b8
KH
4221 node_load[node] = load;
4222
1da177e4
LT
4223 prev_node = node;
4224 load--;
f0c0b2b8
KH
4225 if (order == ZONELIST_ORDER_NODE)
4226 build_zonelists_in_node_order(pgdat, node);
4227 else
c00eb15a 4228 node_order[i++] = node; /* remember order */
f0c0b2b8 4229 }
1da177e4 4230
f0c0b2b8
KH
4231 if (order == ZONELIST_ORDER_ZONE) {
4232 /* calculate node order -- i.e., DMA last! */
c00eb15a 4233 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4234 }
523b9458
CL
4235
4236 build_thisnode_zonelists(pgdat);
1da177e4
LT
4237}
4238
7aac7898
LS
4239#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4240/*
4241 * Return node id of node used for "local" allocations.
4242 * I.e., first node id of first zone in arg node's generic zonelist.
4243 * Used for initializing percpu 'numa_mem', which is used primarily
4244 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4245 */
4246int local_memory_node(int node)
4247{
4248 struct zone *zone;
4249
4250 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4251 gfp_zone(GFP_KERNEL),
4252 NULL,
4253 &zone);
4254 return zone->node;
4255}
4256#endif
f0c0b2b8 4257
1da177e4
LT
4258#else /* CONFIG_NUMA */
4259
f0c0b2b8
KH
4260static void set_zonelist_order(void)
4261{
4262 current_zonelist_order = ZONELIST_ORDER_ZONE;
4263}
4264
4265static void build_zonelists(pg_data_t *pgdat)
1da177e4 4266{
19655d34 4267 int node, local_node;
54a6eb5c
MG
4268 enum zone_type j;
4269 struct zonelist *zonelist;
1da177e4
LT
4270
4271 local_node = pgdat->node_id;
1da177e4 4272
54a6eb5c 4273 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4274 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4275
54a6eb5c
MG
4276 /*
4277 * Now we build the zonelist so that it contains the zones
4278 * of all the other nodes.
4279 * We don't want to pressure a particular node, so when
4280 * building the zones for node N, we make sure that the
4281 * zones coming right after the local ones are those from
4282 * node N+1 (modulo N)
4283 */
4284 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4285 if (!node_online(node))
4286 continue;
bc732f1d 4287 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4288 }
54a6eb5c
MG
4289 for (node = 0; node < local_node; node++) {
4290 if (!node_online(node))
4291 continue;
bc732f1d 4292 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4293 }
4294
dd1a239f
MG
4295 zonelist->_zonerefs[j].zone = NULL;
4296 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4297}
4298
4299#endif /* CONFIG_NUMA */
4300
99dcc3e5
CL
4301/*
4302 * Boot pageset table. One per cpu which is going to be used for all
4303 * zones and all nodes. The parameters will be set in such a way
4304 * that an item put on a list will immediately be handed over to
4305 * the buddy list. This is safe since pageset manipulation is done
4306 * with interrupts disabled.
4307 *
4308 * The boot_pagesets must be kept even after bootup is complete for
4309 * unused processors and/or zones. They do play a role for bootstrapping
4310 * hotplugged processors.
4311 *
4312 * zoneinfo_show() and maybe other functions do
4313 * not check if the processor is online before following the pageset pointer.
4314 * Other parts of the kernel may not check if the zone is available.
4315 */
4316static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4317static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4318static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4319
4eaf3f64
HL
4320/*
4321 * Global mutex to protect against size modification of zonelists
4322 * as well as to serialize pageset setup for the new populated zone.
4323 */
4324DEFINE_MUTEX(zonelists_mutex);
4325
9b1a4d38 4326/* return values int ....just for stop_machine() */
4ed7e022 4327static int __build_all_zonelists(void *data)
1da177e4 4328{
6811378e 4329 int nid;
99dcc3e5 4330 int cpu;
9adb62a5 4331 pg_data_t *self = data;
9276b1bc 4332
7f9cfb31
BL
4333#ifdef CONFIG_NUMA
4334 memset(node_load, 0, sizeof(node_load));
4335#endif
9adb62a5
JL
4336
4337 if (self && !node_online(self->node_id)) {
4338 build_zonelists(self);
9adb62a5
JL
4339 }
4340
9276b1bc 4341 for_each_online_node(nid) {
7ea1530a
CL
4342 pg_data_t *pgdat = NODE_DATA(nid);
4343
4344 build_zonelists(pgdat);
9276b1bc 4345 }
99dcc3e5
CL
4346
4347 /*
4348 * Initialize the boot_pagesets that are going to be used
4349 * for bootstrapping processors. The real pagesets for
4350 * each zone will be allocated later when the per cpu
4351 * allocator is available.
4352 *
4353 * boot_pagesets are used also for bootstrapping offline
4354 * cpus if the system is already booted because the pagesets
4355 * are needed to initialize allocators on a specific cpu too.
4356 * F.e. the percpu allocator needs the page allocator which
4357 * needs the percpu allocator in order to allocate its pagesets
4358 * (a chicken-egg dilemma).
4359 */
7aac7898 4360 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4361 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4362
7aac7898
LS
4363#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4364 /*
4365 * We now know the "local memory node" for each node--
4366 * i.e., the node of the first zone in the generic zonelist.
4367 * Set up numa_mem percpu variable for on-line cpus. During
4368 * boot, only the boot cpu should be on-line; we'll init the
4369 * secondary cpus' numa_mem as they come on-line. During
4370 * node/memory hotplug, we'll fixup all on-line cpus.
4371 */
4372 if (cpu_online(cpu))
4373 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4374#endif
4375 }
4376
6811378e
YG
4377 return 0;
4378}
4379
061f67bc
RV
4380static noinline void __init
4381build_all_zonelists_init(void)
4382{
4383 __build_all_zonelists(NULL);
4384 mminit_verify_zonelist();
4385 cpuset_init_current_mems_allowed();
4386}
4387
4eaf3f64
HL
4388/*
4389 * Called with zonelists_mutex held always
4390 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4391 *
4392 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4393 * [we're only called with non-NULL zone through __meminit paths] and
4394 * (2) call of __init annotated helper build_all_zonelists_init
4395 * [protected by SYSTEM_BOOTING].
4eaf3f64 4396 */
9adb62a5 4397void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4398{
f0c0b2b8
KH
4399 set_zonelist_order();
4400
6811378e 4401 if (system_state == SYSTEM_BOOTING) {
061f67bc 4402 build_all_zonelists_init();
6811378e 4403 } else {
e9959f0f 4404#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4405 if (zone)
4406 setup_zone_pageset(zone);
e9959f0f 4407#endif
dd1895e2
CS
4408 /* we have to stop all cpus to guarantee there is no user
4409 of zonelist */
9adb62a5 4410 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4411 /* cpuset refresh routine should be here */
4412 }
bd1e22b8 4413 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4414 /*
4415 * Disable grouping by mobility if the number of pages in the
4416 * system is too low to allow the mechanism to work. It would be
4417 * more accurate, but expensive to check per-zone. This check is
4418 * made on memory-hotadd so a system can start with mobility
4419 * disabled and enable it later
4420 */
d9c23400 4421 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4422 page_group_by_mobility_disabled = 1;
4423 else
4424 page_group_by_mobility_disabled = 0;
4425
f88dfff5 4426 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4427 "Total pages: %ld\n",
62bc62a8 4428 nr_online_nodes,
f0c0b2b8 4429 zonelist_order_name[current_zonelist_order],
9ef9acb0 4430 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4431 vm_total_pages);
4432#ifdef CONFIG_NUMA
f88dfff5 4433 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4434#endif
1da177e4
LT
4435}
4436
4437/*
4438 * Helper functions to size the waitqueue hash table.
4439 * Essentially these want to choose hash table sizes sufficiently
4440 * large so that collisions trying to wait on pages are rare.
4441 * But in fact, the number of active page waitqueues on typical
4442 * systems is ridiculously low, less than 200. So this is even
4443 * conservative, even though it seems large.
4444 *
4445 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4446 * waitqueues, i.e. the size of the waitq table given the number of pages.
4447 */
4448#define PAGES_PER_WAITQUEUE 256
4449
cca448fe 4450#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4451static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4452{
4453 unsigned long size = 1;
4454
4455 pages /= PAGES_PER_WAITQUEUE;
4456
4457 while (size < pages)
4458 size <<= 1;
4459
4460 /*
4461 * Once we have dozens or even hundreds of threads sleeping
4462 * on IO we've got bigger problems than wait queue collision.
4463 * Limit the size of the wait table to a reasonable size.
4464 */
4465 size = min(size, 4096UL);
4466
4467 return max(size, 4UL);
4468}
cca448fe
YG
4469#else
4470/*
4471 * A zone's size might be changed by hot-add, so it is not possible to determine
4472 * a suitable size for its wait_table. So we use the maximum size now.
4473 *
4474 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4475 *
4476 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4477 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4478 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4479 *
4480 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4481 * or more by the traditional way. (See above). It equals:
4482 *
4483 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4484 * ia64(16K page size) : = ( 8G + 4M)byte.
4485 * powerpc (64K page size) : = (32G +16M)byte.
4486 */
4487static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4488{
4489 return 4096UL;
4490}
4491#endif
1da177e4
LT
4492
4493/*
4494 * This is an integer logarithm so that shifts can be used later
4495 * to extract the more random high bits from the multiplicative
4496 * hash function before the remainder is taken.
4497 */
4498static inline unsigned long wait_table_bits(unsigned long size)
4499{
4500 return ffz(~size);
4501}
4502
1da177e4
LT
4503/*
4504 * Initially all pages are reserved - free ones are freed
4505 * up by free_all_bootmem() once the early boot process is
4506 * done. Non-atomic initialization, single-pass.
4507 */
c09b4240 4508void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4509 unsigned long start_pfn, enum memmap_context context)
1da177e4 4510{
4b94ffdc 4511 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4512 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4513 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4514 unsigned long pfn;
3a80a7fa 4515 unsigned long nr_initialised = 0;
342332e6
TI
4516#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4517 struct memblock_region *r = NULL, *tmp;
4518#endif
1da177e4 4519
22b31eec
HD
4520 if (highest_memmap_pfn < end_pfn - 1)
4521 highest_memmap_pfn = end_pfn - 1;
4522
4b94ffdc
DW
4523 /*
4524 * Honor reservation requested by the driver for this ZONE_DEVICE
4525 * memory
4526 */
4527 if (altmap && start_pfn == altmap->base_pfn)
4528 start_pfn += altmap->reserve;
4529
cbe8dd4a 4530 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4531 /*
b72d0ffb
AM
4532 * There can be holes in boot-time mem_map[]s handed to this
4533 * function. They do not exist on hotplugged memory.
a2f3aa02 4534 */
b72d0ffb
AM
4535 if (context != MEMMAP_EARLY)
4536 goto not_early;
4537
4538 if (!early_pfn_valid(pfn))
4539 continue;
4540 if (!early_pfn_in_nid(pfn, nid))
4541 continue;
4542 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4543 break;
342332e6
TI
4544
4545#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4546 /*
4547 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4548 * from zone_movable_pfn[nid] to end of each node should be
4549 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4550 */
4551 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4552 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4553 continue;
342332e6 4554
b72d0ffb
AM
4555 /*
4556 * Check given memblock attribute by firmware which can affect
4557 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4558 * mirrored, it's an overlapped memmap init. skip it.
4559 */
4560 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4561 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4562 for_each_memblock(memory, tmp)
4563 if (pfn < memblock_region_memory_end_pfn(tmp))
4564 break;
4565 r = tmp;
4566 }
4567 if (pfn >= memblock_region_memory_base_pfn(r) &&
4568 memblock_is_mirror(r)) {
4569 /* already initialized as NORMAL */
4570 pfn = memblock_region_memory_end_pfn(r);
4571 continue;
342332e6 4572 }
a2f3aa02 4573 }
b72d0ffb 4574#endif
ac5d2539 4575
b72d0ffb 4576not_early:
ac5d2539
MG
4577 /*
4578 * Mark the block movable so that blocks are reserved for
4579 * movable at startup. This will force kernel allocations
4580 * to reserve their blocks rather than leaking throughout
4581 * the address space during boot when many long-lived
974a786e 4582 * kernel allocations are made.
ac5d2539
MG
4583 *
4584 * bitmap is created for zone's valid pfn range. but memmap
4585 * can be created for invalid pages (for alignment)
4586 * check here not to call set_pageblock_migratetype() against
4587 * pfn out of zone.
4588 */
4589 if (!(pfn & (pageblock_nr_pages - 1))) {
4590 struct page *page = pfn_to_page(pfn);
4591
4592 __init_single_page(page, pfn, zone, nid);
4593 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4594 } else {
4595 __init_single_pfn(pfn, zone, nid);
4596 }
1da177e4
LT
4597 }
4598}
4599
1e548deb 4600static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4601{
7aeb09f9 4602 unsigned int order, t;
b2a0ac88
MG
4603 for_each_migratetype_order(order, t) {
4604 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4605 zone->free_area[order].nr_free = 0;
4606 }
4607}
4608
4609#ifndef __HAVE_ARCH_MEMMAP_INIT
4610#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4611 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4612#endif
4613
7cd2b0a3 4614static int zone_batchsize(struct zone *zone)
e7c8d5c9 4615{
3a6be87f 4616#ifdef CONFIG_MMU
e7c8d5c9
CL
4617 int batch;
4618
4619 /*
4620 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4621 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4622 *
4623 * OK, so we don't know how big the cache is. So guess.
4624 */
b40da049 4625 batch = zone->managed_pages / 1024;
ba56e91c
SR
4626 if (batch * PAGE_SIZE > 512 * 1024)
4627 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4628 batch /= 4; /* We effectively *= 4 below */
4629 if (batch < 1)
4630 batch = 1;
4631
4632 /*
0ceaacc9
NP
4633 * Clamp the batch to a 2^n - 1 value. Having a power
4634 * of 2 value was found to be more likely to have
4635 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4636 *
0ceaacc9
NP
4637 * For example if 2 tasks are alternately allocating
4638 * batches of pages, one task can end up with a lot
4639 * of pages of one half of the possible page colors
4640 * and the other with pages of the other colors.
e7c8d5c9 4641 */
9155203a 4642 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4643
e7c8d5c9 4644 return batch;
3a6be87f
DH
4645
4646#else
4647 /* The deferral and batching of frees should be suppressed under NOMMU
4648 * conditions.
4649 *
4650 * The problem is that NOMMU needs to be able to allocate large chunks
4651 * of contiguous memory as there's no hardware page translation to
4652 * assemble apparent contiguous memory from discontiguous pages.
4653 *
4654 * Queueing large contiguous runs of pages for batching, however,
4655 * causes the pages to actually be freed in smaller chunks. As there
4656 * can be a significant delay between the individual batches being
4657 * recycled, this leads to the once large chunks of space being
4658 * fragmented and becoming unavailable for high-order allocations.
4659 */
4660 return 0;
4661#endif
e7c8d5c9
CL
4662}
4663
8d7a8fa9
CS
4664/*
4665 * pcp->high and pcp->batch values are related and dependent on one another:
4666 * ->batch must never be higher then ->high.
4667 * The following function updates them in a safe manner without read side
4668 * locking.
4669 *
4670 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4671 * those fields changing asynchronously (acording the the above rule).
4672 *
4673 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4674 * outside of boot time (or some other assurance that no concurrent updaters
4675 * exist).
4676 */
4677static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4678 unsigned long batch)
4679{
4680 /* start with a fail safe value for batch */
4681 pcp->batch = 1;
4682 smp_wmb();
4683
4684 /* Update high, then batch, in order */
4685 pcp->high = high;
4686 smp_wmb();
4687
4688 pcp->batch = batch;
4689}
4690
3664033c 4691/* a companion to pageset_set_high() */
4008bab7
CS
4692static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4693{
8d7a8fa9 4694 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4695}
4696
88c90dbc 4697static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4698{
4699 struct per_cpu_pages *pcp;
5f8dcc21 4700 int migratetype;
2caaad41 4701
1c6fe946
MD
4702 memset(p, 0, sizeof(*p));
4703
3dfa5721 4704 pcp = &p->pcp;
2caaad41 4705 pcp->count = 0;
5f8dcc21
MG
4706 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4707 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4708}
4709
88c90dbc
CS
4710static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4711{
4712 pageset_init(p);
4713 pageset_set_batch(p, batch);
4714}
4715
8ad4b1fb 4716/*
3664033c 4717 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4718 * to the value high for the pageset p.
4719 */
3664033c 4720static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4721 unsigned long high)
4722{
8d7a8fa9
CS
4723 unsigned long batch = max(1UL, high / 4);
4724 if ((high / 4) > (PAGE_SHIFT * 8))
4725 batch = PAGE_SHIFT * 8;
8ad4b1fb 4726
8d7a8fa9 4727 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4728}
4729
7cd2b0a3
DR
4730static void pageset_set_high_and_batch(struct zone *zone,
4731 struct per_cpu_pageset *pcp)
56cef2b8 4732{
56cef2b8 4733 if (percpu_pagelist_fraction)
3664033c 4734 pageset_set_high(pcp,
56cef2b8
CS
4735 (zone->managed_pages /
4736 percpu_pagelist_fraction));
4737 else
4738 pageset_set_batch(pcp, zone_batchsize(zone));
4739}
4740
169f6c19
CS
4741static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4742{
4743 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4744
4745 pageset_init(pcp);
4746 pageset_set_high_and_batch(zone, pcp);
4747}
4748
4ed7e022 4749static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4750{
4751 int cpu;
319774e2 4752 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4753 for_each_possible_cpu(cpu)
4754 zone_pageset_init(zone, cpu);
319774e2
WF
4755}
4756
2caaad41 4757/*
99dcc3e5
CL
4758 * Allocate per cpu pagesets and initialize them.
4759 * Before this call only boot pagesets were available.
e7c8d5c9 4760 */
99dcc3e5 4761void __init setup_per_cpu_pageset(void)
e7c8d5c9 4762{
99dcc3e5 4763 struct zone *zone;
e7c8d5c9 4764
319774e2
WF
4765 for_each_populated_zone(zone)
4766 setup_zone_pageset(zone);
e7c8d5c9
CL
4767}
4768
577a32f6 4769static noinline __init_refok
cca448fe 4770int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4771{
4772 int i;
cca448fe 4773 size_t alloc_size;
ed8ece2e
DH
4774
4775 /*
4776 * The per-page waitqueue mechanism uses hashed waitqueues
4777 * per zone.
4778 */
02b694de
YG
4779 zone->wait_table_hash_nr_entries =
4780 wait_table_hash_nr_entries(zone_size_pages);
4781 zone->wait_table_bits =
4782 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4783 alloc_size = zone->wait_table_hash_nr_entries
4784 * sizeof(wait_queue_head_t);
4785
cd94b9db 4786 if (!slab_is_available()) {
cca448fe 4787 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4788 memblock_virt_alloc_node_nopanic(
4789 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4790 } else {
4791 /*
4792 * This case means that a zone whose size was 0 gets new memory
4793 * via memory hot-add.
4794 * But it may be the case that a new node was hot-added. In
4795 * this case vmalloc() will not be able to use this new node's
4796 * memory - this wait_table must be initialized to use this new
4797 * node itself as well.
4798 * To use this new node's memory, further consideration will be
4799 * necessary.
4800 */
8691f3a7 4801 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4802 }
4803 if (!zone->wait_table)
4804 return -ENOMEM;
ed8ece2e 4805
b8af2941 4806 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4807 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4808
4809 return 0;
ed8ece2e
DH
4810}
4811
c09b4240 4812static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4813{
99dcc3e5
CL
4814 /*
4815 * per cpu subsystem is not up at this point. The following code
4816 * relies on the ability of the linker to provide the
4817 * offset of a (static) per cpu variable into the per cpu area.
4818 */
4819 zone->pageset = &boot_pageset;
ed8ece2e 4820
b38a8725 4821 if (populated_zone(zone))
99dcc3e5
CL
4822 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4823 zone->name, zone->present_pages,
4824 zone_batchsize(zone));
ed8ece2e
DH
4825}
4826
4ed7e022 4827int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4828 unsigned long zone_start_pfn,
b171e409 4829 unsigned long size)
ed8ece2e
DH
4830{
4831 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4832 int ret;
4833 ret = zone_wait_table_init(zone, size);
4834 if (ret)
4835 return ret;
ed8ece2e
DH
4836 pgdat->nr_zones = zone_idx(zone) + 1;
4837
ed8ece2e
DH
4838 zone->zone_start_pfn = zone_start_pfn;
4839
708614e6
MG
4840 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4841 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4842 pgdat->node_id,
4843 (unsigned long)zone_idx(zone),
4844 zone_start_pfn, (zone_start_pfn + size));
4845
1e548deb 4846 zone_init_free_lists(zone);
718127cc
YG
4847
4848 return 0;
ed8ece2e
DH
4849}
4850
0ee332c1 4851#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4852#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4853
c713216d
MG
4854/*
4855 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4856 */
8a942fde
MG
4857int __meminit __early_pfn_to_nid(unsigned long pfn,
4858 struct mminit_pfnnid_cache *state)
c713216d 4859{
c13291a5 4860 unsigned long start_pfn, end_pfn;
e76b63f8 4861 int nid;
7c243c71 4862
8a942fde
MG
4863 if (state->last_start <= pfn && pfn < state->last_end)
4864 return state->last_nid;
c713216d 4865
e76b63f8
YL
4866 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4867 if (nid != -1) {
8a942fde
MG
4868 state->last_start = start_pfn;
4869 state->last_end = end_pfn;
4870 state->last_nid = nid;
e76b63f8
YL
4871 }
4872
4873 return nid;
c713216d
MG
4874}
4875#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4876
c713216d 4877/**
6782832e 4878 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4879 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4880 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4881 *
7d018176
ZZ
4882 * If an architecture guarantees that all ranges registered contain no holes
4883 * and may be freed, this this function may be used instead of calling
4884 * memblock_free_early_nid() manually.
c713216d 4885 */
c13291a5 4886void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4887{
c13291a5
TH
4888 unsigned long start_pfn, end_pfn;
4889 int i, this_nid;
edbe7d23 4890
c13291a5
TH
4891 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4892 start_pfn = min(start_pfn, max_low_pfn);
4893 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4894
c13291a5 4895 if (start_pfn < end_pfn)
6782832e
SS
4896 memblock_free_early_nid(PFN_PHYS(start_pfn),
4897 (end_pfn - start_pfn) << PAGE_SHIFT,
4898 this_nid);
edbe7d23 4899 }
edbe7d23 4900}
edbe7d23 4901
c713216d
MG
4902/**
4903 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4904 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4905 *
7d018176
ZZ
4906 * If an architecture guarantees that all ranges registered contain no holes and may
4907 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4908 */
4909void __init sparse_memory_present_with_active_regions(int nid)
4910{
c13291a5
TH
4911 unsigned long start_pfn, end_pfn;
4912 int i, this_nid;
c713216d 4913
c13291a5
TH
4914 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4915 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4916}
4917
4918/**
4919 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4920 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4921 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4922 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4923 *
4924 * It returns the start and end page frame of a node based on information
7d018176 4925 * provided by memblock_set_node(). If called for a node
c713216d 4926 * with no available memory, a warning is printed and the start and end
88ca3b94 4927 * PFNs will be 0.
c713216d 4928 */
a3142c8e 4929void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4930 unsigned long *start_pfn, unsigned long *end_pfn)
4931{
c13291a5 4932 unsigned long this_start_pfn, this_end_pfn;
c713216d 4933 int i;
c13291a5 4934
c713216d
MG
4935 *start_pfn = -1UL;
4936 *end_pfn = 0;
4937
c13291a5
TH
4938 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4939 *start_pfn = min(*start_pfn, this_start_pfn);
4940 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4941 }
4942
633c0666 4943 if (*start_pfn == -1UL)
c713216d 4944 *start_pfn = 0;
c713216d
MG
4945}
4946
2a1e274a
MG
4947/*
4948 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4949 * assumption is made that zones within a node are ordered in monotonic
4950 * increasing memory addresses so that the "highest" populated zone is used
4951 */
b69a7288 4952static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4953{
4954 int zone_index;
4955 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4956 if (zone_index == ZONE_MOVABLE)
4957 continue;
4958
4959 if (arch_zone_highest_possible_pfn[zone_index] >
4960 arch_zone_lowest_possible_pfn[zone_index])
4961 break;
4962 }
4963
4964 VM_BUG_ON(zone_index == -1);
4965 movable_zone = zone_index;
4966}
4967
4968/*
4969 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4970 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4971 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4972 * in each node depending on the size of each node and how evenly kernelcore
4973 * is distributed. This helper function adjusts the zone ranges
4974 * provided by the architecture for a given node by using the end of the
4975 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4976 * zones within a node are in order of monotonic increases memory addresses
4977 */
b69a7288 4978static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4979 unsigned long zone_type,
4980 unsigned long node_start_pfn,
4981 unsigned long node_end_pfn,
4982 unsigned long *zone_start_pfn,
4983 unsigned long *zone_end_pfn)
4984{
4985 /* Only adjust if ZONE_MOVABLE is on this node */
4986 if (zone_movable_pfn[nid]) {
4987 /* Size ZONE_MOVABLE */
4988 if (zone_type == ZONE_MOVABLE) {
4989 *zone_start_pfn = zone_movable_pfn[nid];
4990 *zone_end_pfn = min(node_end_pfn,
4991 arch_zone_highest_possible_pfn[movable_zone]);
4992
2a1e274a
MG
4993 /* Check if this whole range is within ZONE_MOVABLE */
4994 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4995 *zone_start_pfn = *zone_end_pfn;
4996 }
4997}
4998
c713216d
MG
4999/*
5000 * Return the number of pages a zone spans in a node, including holes
5001 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5002 */
6ea6e688 5003static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5004 unsigned long zone_type,
7960aedd
ZY
5005 unsigned long node_start_pfn,
5006 unsigned long node_end_pfn,
d91749c1
TI
5007 unsigned long *zone_start_pfn,
5008 unsigned long *zone_end_pfn,
c713216d
MG
5009 unsigned long *ignored)
5010{
b5685e92 5011 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5012 if (!node_start_pfn && !node_end_pfn)
5013 return 0;
5014
7960aedd 5015 /* Get the start and end of the zone */
d91749c1
TI
5016 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5017 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5018 adjust_zone_range_for_zone_movable(nid, zone_type,
5019 node_start_pfn, node_end_pfn,
d91749c1 5020 zone_start_pfn, zone_end_pfn);
c713216d
MG
5021
5022 /* Check that this node has pages within the zone's required range */
d91749c1 5023 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5024 return 0;
5025
5026 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5027 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5028 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5029
5030 /* Return the spanned pages */
d91749c1 5031 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5032}
5033
5034/*
5035 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5036 * then all holes in the requested range will be accounted for.
c713216d 5037 */
32996250 5038unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5039 unsigned long range_start_pfn,
5040 unsigned long range_end_pfn)
5041{
96e907d1
TH
5042 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5043 unsigned long start_pfn, end_pfn;
5044 int i;
c713216d 5045
96e907d1
TH
5046 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5047 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5048 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5049 nr_absent -= end_pfn - start_pfn;
c713216d 5050 }
96e907d1 5051 return nr_absent;
c713216d
MG
5052}
5053
5054/**
5055 * absent_pages_in_range - Return number of page frames in holes within a range
5056 * @start_pfn: The start PFN to start searching for holes
5057 * @end_pfn: The end PFN to stop searching for holes
5058 *
88ca3b94 5059 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5060 */
5061unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5062 unsigned long end_pfn)
5063{
5064 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5065}
5066
5067/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5068static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5069 unsigned long zone_type,
7960aedd
ZY
5070 unsigned long node_start_pfn,
5071 unsigned long node_end_pfn,
c713216d
MG
5072 unsigned long *ignored)
5073{
96e907d1
TH
5074 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5075 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5076 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5077 unsigned long nr_absent;
9c7cd687 5078
b5685e92 5079 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5080 if (!node_start_pfn && !node_end_pfn)
5081 return 0;
5082
96e907d1
TH
5083 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5084 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5085
2a1e274a
MG
5086 adjust_zone_range_for_zone_movable(nid, zone_type,
5087 node_start_pfn, node_end_pfn,
5088 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5089 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5090
5091 /*
5092 * ZONE_MOVABLE handling.
5093 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5094 * and vice versa.
5095 */
5096 if (zone_movable_pfn[nid]) {
5097 if (mirrored_kernelcore) {
5098 unsigned long start_pfn, end_pfn;
5099 struct memblock_region *r;
5100
5101 for_each_memblock(memory, r) {
5102 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5103 zone_start_pfn, zone_end_pfn);
5104 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5105 zone_start_pfn, zone_end_pfn);
5106
5107 if (zone_type == ZONE_MOVABLE &&
5108 memblock_is_mirror(r))
5109 nr_absent += end_pfn - start_pfn;
5110
5111 if (zone_type == ZONE_NORMAL &&
5112 !memblock_is_mirror(r))
5113 nr_absent += end_pfn - start_pfn;
5114 }
5115 } else {
5116 if (zone_type == ZONE_NORMAL)
5117 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5118 }
5119 }
5120
5121 return nr_absent;
c713216d 5122}
0e0b864e 5123
0ee332c1 5124#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5125static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5126 unsigned long zone_type,
7960aedd
ZY
5127 unsigned long node_start_pfn,
5128 unsigned long node_end_pfn,
d91749c1
TI
5129 unsigned long *zone_start_pfn,
5130 unsigned long *zone_end_pfn,
c713216d
MG
5131 unsigned long *zones_size)
5132{
d91749c1
TI
5133 unsigned int zone;
5134
5135 *zone_start_pfn = node_start_pfn;
5136 for (zone = 0; zone < zone_type; zone++)
5137 *zone_start_pfn += zones_size[zone];
5138
5139 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5140
c713216d
MG
5141 return zones_size[zone_type];
5142}
5143
6ea6e688 5144static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5145 unsigned long zone_type,
7960aedd
ZY
5146 unsigned long node_start_pfn,
5147 unsigned long node_end_pfn,
c713216d
MG
5148 unsigned long *zholes_size)
5149{
5150 if (!zholes_size)
5151 return 0;
5152
5153 return zholes_size[zone_type];
5154}
20e6926d 5155
0ee332c1 5156#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5157
a3142c8e 5158static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5159 unsigned long node_start_pfn,
5160 unsigned long node_end_pfn,
5161 unsigned long *zones_size,
5162 unsigned long *zholes_size)
c713216d 5163{
febd5949 5164 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5165 enum zone_type i;
5166
febd5949
GZ
5167 for (i = 0; i < MAX_NR_ZONES; i++) {
5168 struct zone *zone = pgdat->node_zones + i;
d91749c1 5169 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5170 unsigned long size, real_size;
c713216d 5171
febd5949
GZ
5172 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5173 node_start_pfn,
5174 node_end_pfn,
d91749c1
TI
5175 &zone_start_pfn,
5176 &zone_end_pfn,
febd5949
GZ
5177 zones_size);
5178 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5179 node_start_pfn, node_end_pfn,
5180 zholes_size);
d91749c1
TI
5181 if (size)
5182 zone->zone_start_pfn = zone_start_pfn;
5183 else
5184 zone->zone_start_pfn = 0;
febd5949
GZ
5185 zone->spanned_pages = size;
5186 zone->present_pages = real_size;
5187
5188 totalpages += size;
5189 realtotalpages += real_size;
5190 }
5191
5192 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5193 pgdat->node_present_pages = realtotalpages;
5194 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5195 realtotalpages);
5196}
5197
835c134e
MG
5198#ifndef CONFIG_SPARSEMEM
5199/*
5200 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5201 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5202 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5203 * round what is now in bits to nearest long in bits, then return it in
5204 * bytes.
5205 */
7c45512d 5206static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5207{
5208 unsigned long usemapsize;
5209
7c45512d 5210 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5211 usemapsize = roundup(zonesize, pageblock_nr_pages);
5212 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5213 usemapsize *= NR_PAGEBLOCK_BITS;
5214 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5215
5216 return usemapsize / 8;
5217}
5218
5219static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5220 struct zone *zone,
5221 unsigned long zone_start_pfn,
5222 unsigned long zonesize)
835c134e 5223{
7c45512d 5224 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5225 zone->pageblock_flags = NULL;
58a01a45 5226 if (usemapsize)
6782832e
SS
5227 zone->pageblock_flags =
5228 memblock_virt_alloc_node_nopanic(usemapsize,
5229 pgdat->node_id);
835c134e
MG
5230}
5231#else
7c45512d
LT
5232static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5233 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5234#endif /* CONFIG_SPARSEMEM */
5235
d9c23400 5236#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5237
d9c23400 5238/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5239void __paginginit set_pageblock_order(void)
d9c23400 5240{
955c1cd7
AM
5241 unsigned int order;
5242
d9c23400
MG
5243 /* Check that pageblock_nr_pages has not already been setup */
5244 if (pageblock_order)
5245 return;
5246
955c1cd7
AM
5247 if (HPAGE_SHIFT > PAGE_SHIFT)
5248 order = HUGETLB_PAGE_ORDER;
5249 else
5250 order = MAX_ORDER - 1;
5251
d9c23400
MG
5252 /*
5253 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5254 * This value may be variable depending on boot parameters on IA64 and
5255 * powerpc.
d9c23400
MG
5256 */
5257 pageblock_order = order;
5258}
5259#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5260
ba72cb8c
MG
5261/*
5262 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5263 * is unused as pageblock_order is set at compile-time. See
5264 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5265 * the kernel config
ba72cb8c 5266 */
15ca220e 5267void __paginginit set_pageblock_order(void)
ba72cb8c 5268{
ba72cb8c 5269}
d9c23400
MG
5270
5271#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5272
01cefaef
JL
5273static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5274 unsigned long present_pages)
5275{
5276 unsigned long pages = spanned_pages;
5277
5278 /*
5279 * Provide a more accurate estimation if there are holes within
5280 * the zone and SPARSEMEM is in use. If there are holes within the
5281 * zone, each populated memory region may cost us one or two extra
5282 * memmap pages due to alignment because memmap pages for each
5283 * populated regions may not naturally algined on page boundary.
5284 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5285 */
5286 if (spanned_pages > present_pages + (present_pages >> 4) &&
5287 IS_ENABLED(CONFIG_SPARSEMEM))
5288 pages = present_pages;
5289
5290 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5291}
5292
1da177e4
LT
5293/*
5294 * Set up the zone data structures:
5295 * - mark all pages reserved
5296 * - mark all memory queues empty
5297 * - clear the memory bitmaps
6527af5d
MK
5298 *
5299 * NOTE: pgdat should get zeroed by caller.
1da177e4 5300 */
7f3eb55b 5301static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5302{
2f1b6248 5303 enum zone_type j;
ed8ece2e 5304 int nid = pgdat->node_id;
718127cc 5305 int ret;
1da177e4 5306
208d54e5 5307 pgdat_resize_init(pgdat);
8177a420
AA
5308#ifdef CONFIG_NUMA_BALANCING
5309 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5310 pgdat->numabalancing_migrate_nr_pages = 0;
5311 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5312#endif
5313#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5314 spin_lock_init(&pgdat->split_queue_lock);
5315 INIT_LIST_HEAD(&pgdat->split_queue);
5316 pgdat->split_queue_len = 0;
8177a420 5317#endif
1da177e4 5318 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5319 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5320 pgdat_page_ext_init(pgdat);
5f63b720 5321
1da177e4
LT
5322 for (j = 0; j < MAX_NR_ZONES; j++) {
5323 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5324 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5325 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5326
febd5949
GZ
5327 size = zone->spanned_pages;
5328 realsize = freesize = zone->present_pages;
1da177e4 5329
0e0b864e 5330 /*
9feedc9d 5331 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5332 * is used by this zone for memmap. This affects the watermark
5333 * and per-cpu initialisations
5334 */
01cefaef 5335 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5336 if (!is_highmem_idx(j)) {
5337 if (freesize >= memmap_pages) {
5338 freesize -= memmap_pages;
5339 if (memmap_pages)
5340 printk(KERN_DEBUG
5341 " %s zone: %lu pages used for memmap\n",
5342 zone_names[j], memmap_pages);
5343 } else
5344 printk(KERN_WARNING
5345 " %s zone: %lu pages exceeds freesize %lu\n",
5346 zone_names[j], memmap_pages, freesize);
5347 }
0e0b864e 5348
6267276f 5349 /* Account for reserved pages */
9feedc9d
JL
5350 if (j == 0 && freesize > dma_reserve) {
5351 freesize -= dma_reserve;
d903ef9f 5352 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5353 zone_names[0], dma_reserve);
0e0b864e
MG
5354 }
5355
98d2b0eb 5356 if (!is_highmem_idx(j))
9feedc9d 5357 nr_kernel_pages += freesize;
01cefaef
JL
5358 /* Charge for highmem memmap if there are enough kernel pages */
5359 else if (nr_kernel_pages > memmap_pages * 2)
5360 nr_kernel_pages -= memmap_pages;
9feedc9d 5361 nr_all_pages += freesize;
1da177e4 5362
9feedc9d
JL
5363 /*
5364 * Set an approximate value for lowmem here, it will be adjusted
5365 * when the bootmem allocator frees pages into the buddy system.
5366 * And all highmem pages will be managed by the buddy system.
5367 */
5368 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5369#ifdef CONFIG_NUMA
d5f541ed 5370 zone->node = nid;
9feedc9d 5371 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5372 / 100;
9feedc9d 5373 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5374#endif
1da177e4
LT
5375 zone->name = zone_names[j];
5376 spin_lock_init(&zone->lock);
5377 spin_lock_init(&zone->lru_lock);
bdc8cb98 5378 zone_seqlock_init(zone);
1da177e4 5379 zone->zone_pgdat = pgdat;
ed8ece2e 5380 zone_pcp_init(zone);
81c0a2bb
JW
5381
5382 /* For bootup, initialized properly in watermark setup */
5383 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5384
bea8c150 5385 lruvec_init(&zone->lruvec);
1da177e4
LT
5386 if (!size)
5387 continue;
5388
955c1cd7 5389 set_pageblock_order();
7c45512d 5390 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5391 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5392 BUG_ON(ret);
76cdd58e 5393 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5394 }
5395}
5396
577a32f6 5397static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5398{
b0aeba74 5399 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5400 unsigned long __maybe_unused offset = 0;
5401
1da177e4
LT
5402 /* Skip empty nodes */
5403 if (!pgdat->node_spanned_pages)
5404 return;
5405
d41dee36 5406#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5407 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5408 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5409 /* ia64 gets its own node_mem_map, before this, without bootmem */
5410 if (!pgdat->node_mem_map) {
b0aeba74 5411 unsigned long size, end;
d41dee36
AW
5412 struct page *map;
5413
e984bb43
BP
5414 /*
5415 * The zone's endpoints aren't required to be MAX_ORDER
5416 * aligned but the node_mem_map endpoints must be in order
5417 * for the buddy allocator to function correctly.
5418 */
108bcc96 5419 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5420 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5421 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5422 map = alloc_remap(pgdat->node_id, size);
5423 if (!map)
6782832e
SS
5424 map = memblock_virt_alloc_node_nopanic(size,
5425 pgdat->node_id);
a1c34a3b 5426 pgdat->node_mem_map = map + offset;
1da177e4 5427 }
12d810c1 5428#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5429 /*
5430 * With no DISCONTIG, the global mem_map is just set as node 0's
5431 */
c713216d 5432 if (pgdat == NODE_DATA(0)) {
1da177e4 5433 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5434#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5435 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5436 mem_map -= offset;
0ee332c1 5437#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5438 }
1da177e4 5439#endif
d41dee36 5440#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5441}
5442
9109fb7b
JW
5443void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5444 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5445{
9109fb7b 5446 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5447 unsigned long start_pfn = 0;
5448 unsigned long end_pfn = 0;
9109fb7b 5449
88fdf75d 5450 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5451 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5452
3a80a7fa 5453 reset_deferred_meminit(pgdat);
1da177e4
LT
5454 pgdat->node_id = nid;
5455 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5456#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5457 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5458 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5459 (u64)start_pfn << PAGE_SHIFT,
5460 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5461#else
5462 start_pfn = node_start_pfn;
7960aedd
ZY
5463#endif
5464 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5465 zones_size, zholes_size);
1da177e4
LT
5466
5467 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5468#ifdef CONFIG_FLAT_NODE_MEM_MAP
5469 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5470 nid, (unsigned long)pgdat,
5471 (unsigned long)pgdat->node_mem_map);
5472#endif
1da177e4 5473
7f3eb55b 5474 free_area_init_core(pgdat);
1da177e4
LT
5475}
5476
0ee332c1 5477#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5478
5479#if MAX_NUMNODES > 1
5480/*
5481 * Figure out the number of possible node ids.
5482 */
f9872caf 5483void __init setup_nr_node_ids(void)
418508c1 5484{
904a9553 5485 unsigned int highest;
418508c1 5486
904a9553 5487 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5488 nr_node_ids = highest + 1;
5489}
418508c1
MS
5490#endif
5491
1e01979c
TH
5492/**
5493 * node_map_pfn_alignment - determine the maximum internode alignment
5494 *
5495 * This function should be called after node map is populated and sorted.
5496 * It calculates the maximum power of two alignment which can distinguish
5497 * all the nodes.
5498 *
5499 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5500 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5501 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5502 * shifted, 1GiB is enough and this function will indicate so.
5503 *
5504 * This is used to test whether pfn -> nid mapping of the chosen memory
5505 * model has fine enough granularity to avoid incorrect mapping for the
5506 * populated node map.
5507 *
5508 * Returns the determined alignment in pfn's. 0 if there is no alignment
5509 * requirement (single node).
5510 */
5511unsigned long __init node_map_pfn_alignment(void)
5512{
5513 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5514 unsigned long start, end, mask;
1e01979c 5515 int last_nid = -1;
c13291a5 5516 int i, nid;
1e01979c 5517
c13291a5 5518 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5519 if (!start || last_nid < 0 || last_nid == nid) {
5520 last_nid = nid;
5521 last_end = end;
5522 continue;
5523 }
5524
5525 /*
5526 * Start with a mask granular enough to pin-point to the
5527 * start pfn and tick off bits one-by-one until it becomes
5528 * too coarse to separate the current node from the last.
5529 */
5530 mask = ~((1 << __ffs(start)) - 1);
5531 while (mask && last_end <= (start & (mask << 1)))
5532 mask <<= 1;
5533
5534 /* accumulate all internode masks */
5535 accl_mask |= mask;
5536 }
5537
5538 /* convert mask to number of pages */
5539 return ~accl_mask + 1;
5540}
5541
a6af2bc3 5542/* Find the lowest pfn for a node */
b69a7288 5543static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5544{
a6af2bc3 5545 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5546 unsigned long start_pfn;
5547 int i;
1abbfb41 5548
c13291a5
TH
5549 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5550 min_pfn = min(min_pfn, start_pfn);
c713216d 5551
a6af2bc3
MG
5552 if (min_pfn == ULONG_MAX) {
5553 printk(KERN_WARNING
2bc0d261 5554 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5555 return 0;
5556 }
5557
5558 return min_pfn;
c713216d
MG
5559}
5560
5561/**
5562 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5563 *
5564 * It returns the minimum PFN based on information provided via
7d018176 5565 * memblock_set_node().
c713216d
MG
5566 */
5567unsigned long __init find_min_pfn_with_active_regions(void)
5568{
5569 return find_min_pfn_for_node(MAX_NUMNODES);
5570}
5571
37b07e41
LS
5572/*
5573 * early_calculate_totalpages()
5574 * Sum pages in active regions for movable zone.
4b0ef1fe 5575 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5576 */
484f51f8 5577static unsigned long __init early_calculate_totalpages(void)
7e63efef 5578{
7e63efef 5579 unsigned long totalpages = 0;
c13291a5
TH
5580 unsigned long start_pfn, end_pfn;
5581 int i, nid;
5582
5583 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5584 unsigned long pages = end_pfn - start_pfn;
7e63efef 5585
37b07e41
LS
5586 totalpages += pages;
5587 if (pages)
4b0ef1fe 5588 node_set_state(nid, N_MEMORY);
37b07e41 5589 }
b8af2941 5590 return totalpages;
7e63efef
MG
5591}
5592
2a1e274a
MG
5593/*
5594 * Find the PFN the Movable zone begins in each node. Kernel memory
5595 * is spread evenly between nodes as long as the nodes have enough
5596 * memory. When they don't, some nodes will have more kernelcore than
5597 * others
5598 */
b224ef85 5599static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5600{
5601 int i, nid;
5602 unsigned long usable_startpfn;
5603 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5604 /* save the state before borrow the nodemask */
4b0ef1fe 5605 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5606 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5607 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5608 struct memblock_region *r;
b2f3eebe
TC
5609
5610 /* Need to find movable_zone earlier when movable_node is specified. */
5611 find_usable_zone_for_movable();
5612
5613 /*
5614 * If movable_node is specified, ignore kernelcore and movablecore
5615 * options.
5616 */
5617 if (movable_node_is_enabled()) {
136199f0
EM
5618 for_each_memblock(memory, r) {
5619 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5620 continue;
5621
136199f0 5622 nid = r->nid;
b2f3eebe 5623
136199f0 5624 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5625 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5626 min(usable_startpfn, zone_movable_pfn[nid]) :
5627 usable_startpfn;
5628 }
5629
5630 goto out2;
5631 }
2a1e274a 5632
342332e6
TI
5633 /*
5634 * If kernelcore=mirror is specified, ignore movablecore option
5635 */
5636 if (mirrored_kernelcore) {
5637 bool mem_below_4gb_not_mirrored = false;
5638
5639 for_each_memblock(memory, r) {
5640 if (memblock_is_mirror(r))
5641 continue;
5642
5643 nid = r->nid;
5644
5645 usable_startpfn = memblock_region_memory_base_pfn(r);
5646
5647 if (usable_startpfn < 0x100000) {
5648 mem_below_4gb_not_mirrored = true;
5649 continue;
5650 }
5651
5652 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5653 min(usable_startpfn, zone_movable_pfn[nid]) :
5654 usable_startpfn;
5655 }
5656
5657 if (mem_below_4gb_not_mirrored)
5658 pr_warn("This configuration results in unmirrored kernel memory.");
5659
5660 goto out2;
5661 }
5662
7e63efef 5663 /*
b2f3eebe 5664 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5665 * kernelcore that corresponds so that memory usable for
5666 * any allocation type is evenly spread. If both kernelcore
5667 * and movablecore are specified, then the value of kernelcore
5668 * will be used for required_kernelcore if it's greater than
5669 * what movablecore would have allowed.
5670 */
5671 if (required_movablecore) {
7e63efef
MG
5672 unsigned long corepages;
5673
5674 /*
5675 * Round-up so that ZONE_MOVABLE is at least as large as what
5676 * was requested by the user
5677 */
5678 required_movablecore =
5679 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5680 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5681 corepages = totalpages - required_movablecore;
5682
5683 required_kernelcore = max(required_kernelcore, corepages);
5684 }
5685
bde304bd
XQ
5686 /*
5687 * If kernelcore was not specified or kernelcore size is larger
5688 * than totalpages, there is no ZONE_MOVABLE.
5689 */
5690 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5691 goto out;
2a1e274a
MG
5692
5693 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5694 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5695
5696restart:
5697 /* Spread kernelcore memory as evenly as possible throughout nodes */
5698 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5699 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5700 unsigned long start_pfn, end_pfn;
5701
2a1e274a
MG
5702 /*
5703 * Recalculate kernelcore_node if the division per node
5704 * now exceeds what is necessary to satisfy the requested
5705 * amount of memory for the kernel
5706 */
5707 if (required_kernelcore < kernelcore_node)
5708 kernelcore_node = required_kernelcore / usable_nodes;
5709
5710 /*
5711 * As the map is walked, we track how much memory is usable
5712 * by the kernel using kernelcore_remaining. When it is
5713 * 0, the rest of the node is usable by ZONE_MOVABLE
5714 */
5715 kernelcore_remaining = kernelcore_node;
5716
5717 /* Go through each range of PFNs within this node */
c13291a5 5718 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5719 unsigned long size_pages;
5720
c13291a5 5721 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5722 if (start_pfn >= end_pfn)
5723 continue;
5724
5725 /* Account for what is only usable for kernelcore */
5726 if (start_pfn < usable_startpfn) {
5727 unsigned long kernel_pages;
5728 kernel_pages = min(end_pfn, usable_startpfn)
5729 - start_pfn;
5730
5731 kernelcore_remaining -= min(kernel_pages,
5732 kernelcore_remaining);
5733 required_kernelcore -= min(kernel_pages,
5734 required_kernelcore);
5735
5736 /* Continue if range is now fully accounted */
5737 if (end_pfn <= usable_startpfn) {
5738
5739 /*
5740 * Push zone_movable_pfn to the end so
5741 * that if we have to rebalance
5742 * kernelcore across nodes, we will
5743 * not double account here
5744 */
5745 zone_movable_pfn[nid] = end_pfn;
5746 continue;
5747 }
5748 start_pfn = usable_startpfn;
5749 }
5750
5751 /*
5752 * The usable PFN range for ZONE_MOVABLE is from
5753 * start_pfn->end_pfn. Calculate size_pages as the
5754 * number of pages used as kernelcore
5755 */
5756 size_pages = end_pfn - start_pfn;
5757 if (size_pages > kernelcore_remaining)
5758 size_pages = kernelcore_remaining;
5759 zone_movable_pfn[nid] = start_pfn + size_pages;
5760
5761 /*
5762 * Some kernelcore has been met, update counts and
5763 * break if the kernelcore for this node has been
b8af2941 5764 * satisfied
2a1e274a
MG
5765 */
5766 required_kernelcore -= min(required_kernelcore,
5767 size_pages);
5768 kernelcore_remaining -= size_pages;
5769 if (!kernelcore_remaining)
5770 break;
5771 }
5772 }
5773
5774 /*
5775 * If there is still required_kernelcore, we do another pass with one
5776 * less node in the count. This will push zone_movable_pfn[nid] further
5777 * along on the nodes that still have memory until kernelcore is
b8af2941 5778 * satisfied
2a1e274a
MG
5779 */
5780 usable_nodes--;
5781 if (usable_nodes && required_kernelcore > usable_nodes)
5782 goto restart;
5783
b2f3eebe 5784out2:
2a1e274a
MG
5785 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5786 for (nid = 0; nid < MAX_NUMNODES; nid++)
5787 zone_movable_pfn[nid] =
5788 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5789
20e6926d 5790out:
66918dcd 5791 /* restore the node_state */
4b0ef1fe 5792 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5793}
5794
4b0ef1fe
LJ
5795/* Any regular or high memory on that node ? */
5796static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5797{
37b07e41
LS
5798 enum zone_type zone_type;
5799
4b0ef1fe
LJ
5800 if (N_MEMORY == N_NORMAL_MEMORY)
5801 return;
5802
5803 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5804 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5805 if (populated_zone(zone)) {
4b0ef1fe
LJ
5806 node_set_state(nid, N_HIGH_MEMORY);
5807 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5808 zone_type <= ZONE_NORMAL)
5809 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5810 break;
5811 }
37b07e41 5812 }
37b07e41
LS
5813}
5814
c713216d
MG
5815/**
5816 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5817 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5818 *
5819 * This will call free_area_init_node() for each active node in the system.
7d018176 5820 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5821 * zone in each node and their holes is calculated. If the maximum PFN
5822 * between two adjacent zones match, it is assumed that the zone is empty.
5823 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5824 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5825 * starts where the previous one ended. For example, ZONE_DMA32 starts
5826 * at arch_max_dma_pfn.
5827 */
5828void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5829{
c13291a5
TH
5830 unsigned long start_pfn, end_pfn;
5831 int i, nid;
a6af2bc3 5832
c713216d
MG
5833 /* Record where the zone boundaries are */
5834 memset(arch_zone_lowest_possible_pfn, 0,
5835 sizeof(arch_zone_lowest_possible_pfn));
5836 memset(arch_zone_highest_possible_pfn, 0,
5837 sizeof(arch_zone_highest_possible_pfn));
5838 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5839 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5840 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5841 if (i == ZONE_MOVABLE)
5842 continue;
c713216d
MG
5843 arch_zone_lowest_possible_pfn[i] =
5844 arch_zone_highest_possible_pfn[i-1];
5845 arch_zone_highest_possible_pfn[i] =
5846 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5847 }
2a1e274a
MG
5848 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5849 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5850
5851 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5852 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5853 find_zone_movable_pfns_for_nodes();
c713216d 5854
c713216d 5855 /* Print out the zone ranges */
f88dfff5 5856 pr_info("Zone ranges:\n");
2a1e274a
MG
5857 for (i = 0; i < MAX_NR_ZONES; i++) {
5858 if (i == ZONE_MOVABLE)
5859 continue;
f88dfff5 5860 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5861 if (arch_zone_lowest_possible_pfn[i] ==
5862 arch_zone_highest_possible_pfn[i])
f88dfff5 5863 pr_cont("empty\n");
72f0ba02 5864 else
8d29e18a
JG
5865 pr_cont("[mem %#018Lx-%#018Lx]\n",
5866 (u64)arch_zone_lowest_possible_pfn[i]
5867 << PAGE_SHIFT,
5868 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5869 << PAGE_SHIFT) - 1);
2a1e274a
MG
5870 }
5871
5872 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5873 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5874 for (i = 0; i < MAX_NUMNODES; i++) {
5875 if (zone_movable_pfn[i])
8d29e18a
JG
5876 pr_info(" Node %d: %#018Lx\n", i,
5877 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5878 }
c713216d 5879
f2d52fe5 5880 /* Print out the early node map */
f88dfff5 5881 pr_info("Early memory node ranges\n");
c13291a5 5882 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5883 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5884 (u64)start_pfn << PAGE_SHIFT,
5885 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5886
5887 /* Initialise every node */
708614e6 5888 mminit_verify_pageflags_layout();
8ef82866 5889 setup_nr_node_ids();
c713216d
MG
5890 for_each_online_node(nid) {
5891 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5892 free_area_init_node(nid, NULL,
c713216d 5893 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5894
5895 /* Any memory on that node */
5896 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5897 node_set_state(nid, N_MEMORY);
5898 check_for_memory(pgdat, nid);
c713216d
MG
5899 }
5900}
2a1e274a 5901
7e63efef 5902static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5903{
5904 unsigned long long coremem;
5905 if (!p)
5906 return -EINVAL;
5907
5908 coremem = memparse(p, &p);
7e63efef 5909 *core = coremem >> PAGE_SHIFT;
2a1e274a 5910
7e63efef 5911 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5912 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5913
5914 return 0;
5915}
ed7ed365 5916
7e63efef
MG
5917/*
5918 * kernelcore=size sets the amount of memory for use for allocations that
5919 * cannot be reclaimed or migrated.
5920 */
5921static int __init cmdline_parse_kernelcore(char *p)
5922{
342332e6
TI
5923 /* parse kernelcore=mirror */
5924 if (parse_option_str(p, "mirror")) {
5925 mirrored_kernelcore = true;
5926 return 0;
5927 }
5928
7e63efef
MG
5929 return cmdline_parse_core(p, &required_kernelcore);
5930}
5931
5932/*
5933 * movablecore=size sets the amount of memory for use for allocations that
5934 * can be reclaimed or migrated.
5935 */
5936static int __init cmdline_parse_movablecore(char *p)
5937{
5938 return cmdline_parse_core(p, &required_movablecore);
5939}
5940
ed7ed365 5941early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5942early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5943
0ee332c1 5944#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5945
c3d5f5f0
JL
5946void adjust_managed_page_count(struct page *page, long count)
5947{
5948 spin_lock(&managed_page_count_lock);
5949 page_zone(page)->managed_pages += count;
5950 totalram_pages += count;
3dcc0571
JL
5951#ifdef CONFIG_HIGHMEM
5952 if (PageHighMem(page))
5953 totalhigh_pages += count;
5954#endif
c3d5f5f0
JL
5955 spin_unlock(&managed_page_count_lock);
5956}
3dcc0571 5957EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5958
11199692 5959unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5960{
11199692
JL
5961 void *pos;
5962 unsigned long pages = 0;
69afade7 5963
11199692
JL
5964 start = (void *)PAGE_ALIGN((unsigned long)start);
5965 end = (void *)((unsigned long)end & PAGE_MASK);
5966 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5967 if ((unsigned int)poison <= 0xFF)
11199692
JL
5968 memset(pos, poison, PAGE_SIZE);
5969 free_reserved_page(virt_to_page(pos));
69afade7
JL
5970 }
5971
5972 if (pages && s)
11199692 5973 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5974 s, pages << (PAGE_SHIFT - 10), start, end);
5975
5976 return pages;
5977}
11199692 5978EXPORT_SYMBOL(free_reserved_area);
69afade7 5979
cfa11e08
JL
5980#ifdef CONFIG_HIGHMEM
5981void free_highmem_page(struct page *page)
5982{
5983 __free_reserved_page(page);
5984 totalram_pages++;
7b4b2a0d 5985 page_zone(page)->managed_pages++;
cfa11e08
JL
5986 totalhigh_pages++;
5987}
5988#endif
5989
7ee3d4e8
JL
5990
5991void __init mem_init_print_info(const char *str)
5992{
5993 unsigned long physpages, codesize, datasize, rosize, bss_size;
5994 unsigned long init_code_size, init_data_size;
5995
5996 physpages = get_num_physpages();
5997 codesize = _etext - _stext;
5998 datasize = _edata - _sdata;
5999 rosize = __end_rodata - __start_rodata;
6000 bss_size = __bss_stop - __bss_start;
6001 init_data_size = __init_end - __init_begin;
6002 init_code_size = _einittext - _sinittext;
6003
6004 /*
6005 * Detect special cases and adjust section sizes accordingly:
6006 * 1) .init.* may be embedded into .data sections
6007 * 2) .init.text.* may be out of [__init_begin, __init_end],
6008 * please refer to arch/tile/kernel/vmlinux.lds.S.
6009 * 3) .rodata.* may be embedded into .text or .data sections.
6010 */
6011#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6012 do { \
6013 if (start <= pos && pos < end && size > adj) \
6014 size -= adj; \
6015 } while (0)
7ee3d4e8
JL
6016
6017 adj_init_size(__init_begin, __init_end, init_data_size,
6018 _sinittext, init_code_size);
6019 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6020 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6021 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6022 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6023
6024#undef adj_init_size
6025
f88dfff5 6026 pr_info("Memory: %luK/%luK available "
7ee3d4e8 6027 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 6028 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
6029#ifdef CONFIG_HIGHMEM
6030 ", %luK highmem"
6031#endif
6032 "%s%s)\n",
6033 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
6034 codesize >> 10, datasize >> 10, rosize >> 10,
6035 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
6036 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
6037 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
6038#ifdef CONFIG_HIGHMEM
6039 totalhigh_pages << (PAGE_SHIFT-10),
6040#endif
6041 str ? ", " : "", str ? str : "");
6042}
6043
0e0b864e 6044/**
88ca3b94
RD
6045 * set_dma_reserve - set the specified number of pages reserved in the first zone
6046 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6047 *
013110a7 6048 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6049 * In the DMA zone, a significant percentage may be consumed by kernel image
6050 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6051 * function may optionally be used to account for unfreeable pages in the
6052 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6053 * smaller per-cpu batchsize.
0e0b864e
MG
6054 */
6055void __init set_dma_reserve(unsigned long new_dma_reserve)
6056{
6057 dma_reserve = new_dma_reserve;
6058}
6059
1da177e4
LT
6060void __init free_area_init(unsigned long *zones_size)
6061{
9109fb7b 6062 free_area_init_node(0, zones_size,
1da177e4
LT
6063 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6064}
1da177e4 6065
1da177e4
LT
6066static int page_alloc_cpu_notify(struct notifier_block *self,
6067 unsigned long action, void *hcpu)
6068{
6069 int cpu = (unsigned long)hcpu;
1da177e4 6070
8bb78442 6071 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6072 lru_add_drain_cpu(cpu);
9f8f2172
CL
6073 drain_pages(cpu);
6074
6075 /*
6076 * Spill the event counters of the dead processor
6077 * into the current processors event counters.
6078 * This artificially elevates the count of the current
6079 * processor.
6080 */
f8891e5e 6081 vm_events_fold_cpu(cpu);
9f8f2172
CL
6082
6083 /*
6084 * Zero the differential counters of the dead processor
6085 * so that the vm statistics are consistent.
6086 *
6087 * This is only okay since the processor is dead and cannot
6088 * race with what we are doing.
6089 */
2bb921e5 6090 cpu_vm_stats_fold(cpu);
1da177e4
LT
6091 }
6092 return NOTIFY_OK;
6093}
1da177e4
LT
6094
6095void __init page_alloc_init(void)
6096{
6097 hotcpu_notifier(page_alloc_cpu_notify, 0);
6098}
6099
cb45b0e9 6100/*
34b10060 6101 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6102 * or min_free_kbytes changes.
6103 */
6104static void calculate_totalreserve_pages(void)
6105{
6106 struct pglist_data *pgdat;
6107 unsigned long reserve_pages = 0;
2f6726e5 6108 enum zone_type i, j;
cb45b0e9
HA
6109
6110 for_each_online_pgdat(pgdat) {
6111 for (i = 0; i < MAX_NR_ZONES; i++) {
6112 struct zone *zone = pgdat->node_zones + i;
3484b2de 6113 long max = 0;
cb45b0e9
HA
6114
6115 /* Find valid and maximum lowmem_reserve in the zone */
6116 for (j = i; j < MAX_NR_ZONES; j++) {
6117 if (zone->lowmem_reserve[j] > max)
6118 max = zone->lowmem_reserve[j];
6119 }
6120
41858966
MG
6121 /* we treat the high watermark as reserved pages. */
6122 max += high_wmark_pages(zone);
cb45b0e9 6123
b40da049
JL
6124 if (max > zone->managed_pages)
6125 max = zone->managed_pages;
a8d01437
JW
6126
6127 zone->totalreserve_pages = max;
6128
cb45b0e9
HA
6129 reserve_pages += max;
6130 }
6131 }
6132 totalreserve_pages = reserve_pages;
6133}
6134
1da177e4
LT
6135/*
6136 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6137 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6138 * has a correct pages reserved value, so an adequate number of
6139 * pages are left in the zone after a successful __alloc_pages().
6140 */
6141static void setup_per_zone_lowmem_reserve(void)
6142{
6143 struct pglist_data *pgdat;
2f6726e5 6144 enum zone_type j, idx;
1da177e4 6145
ec936fc5 6146 for_each_online_pgdat(pgdat) {
1da177e4
LT
6147 for (j = 0; j < MAX_NR_ZONES; j++) {
6148 struct zone *zone = pgdat->node_zones + j;
b40da049 6149 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6150
6151 zone->lowmem_reserve[j] = 0;
6152
2f6726e5
CL
6153 idx = j;
6154 while (idx) {
1da177e4
LT
6155 struct zone *lower_zone;
6156
2f6726e5
CL
6157 idx--;
6158
1da177e4
LT
6159 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6160 sysctl_lowmem_reserve_ratio[idx] = 1;
6161
6162 lower_zone = pgdat->node_zones + idx;
b40da049 6163 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6164 sysctl_lowmem_reserve_ratio[idx];
b40da049 6165 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6166 }
6167 }
6168 }
cb45b0e9
HA
6169
6170 /* update totalreserve_pages */
6171 calculate_totalreserve_pages();
1da177e4
LT
6172}
6173
cfd3da1e 6174static void __setup_per_zone_wmarks(void)
1da177e4
LT
6175{
6176 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6177 unsigned long lowmem_pages = 0;
6178 struct zone *zone;
6179 unsigned long flags;
6180
6181 /* Calculate total number of !ZONE_HIGHMEM pages */
6182 for_each_zone(zone) {
6183 if (!is_highmem(zone))
b40da049 6184 lowmem_pages += zone->managed_pages;
1da177e4
LT
6185 }
6186
6187 for_each_zone(zone) {
ac924c60
AM
6188 u64 tmp;
6189
1125b4e3 6190 spin_lock_irqsave(&zone->lock, flags);
b40da049 6191 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6192 do_div(tmp, lowmem_pages);
1da177e4
LT
6193 if (is_highmem(zone)) {
6194 /*
669ed175
NP
6195 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6196 * need highmem pages, so cap pages_min to a small
6197 * value here.
6198 *
41858966 6199 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6200 * deltas control asynch page reclaim, and so should
669ed175 6201 * not be capped for highmem.
1da177e4 6202 */
90ae8d67 6203 unsigned long min_pages;
1da177e4 6204
b40da049 6205 min_pages = zone->managed_pages / 1024;
90ae8d67 6206 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6207 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6208 } else {
669ed175
NP
6209 /*
6210 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6211 * proportionate to the zone's size.
6212 */
41858966 6213 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6214 }
6215
41858966
MG
6216 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6217 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6218
81c0a2bb 6219 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6220 high_wmark_pages(zone) - low_wmark_pages(zone) -
6221 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6222
1125b4e3 6223 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6224 }
cb45b0e9
HA
6225
6226 /* update totalreserve_pages */
6227 calculate_totalreserve_pages();
1da177e4
LT
6228}
6229
cfd3da1e
MG
6230/**
6231 * setup_per_zone_wmarks - called when min_free_kbytes changes
6232 * or when memory is hot-{added|removed}
6233 *
6234 * Ensures that the watermark[min,low,high] values for each zone are set
6235 * correctly with respect to min_free_kbytes.
6236 */
6237void setup_per_zone_wmarks(void)
6238{
6239 mutex_lock(&zonelists_mutex);
6240 __setup_per_zone_wmarks();
6241 mutex_unlock(&zonelists_mutex);
6242}
6243
55a4462a 6244/*
556adecb
RR
6245 * The inactive anon list should be small enough that the VM never has to
6246 * do too much work, but large enough that each inactive page has a chance
6247 * to be referenced again before it is swapped out.
6248 *
6249 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6250 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6251 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6252 * the anonymous pages are kept on the inactive list.
6253 *
6254 * total target max
6255 * memory ratio inactive anon
6256 * -------------------------------------
6257 * 10MB 1 5MB
6258 * 100MB 1 50MB
6259 * 1GB 3 250MB
6260 * 10GB 10 0.9GB
6261 * 100GB 31 3GB
6262 * 1TB 101 10GB
6263 * 10TB 320 32GB
6264 */
1b79acc9 6265static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6266{
96cb4df5 6267 unsigned int gb, ratio;
556adecb 6268
96cb4df5 6269 /* Zone size in gigabytes */
b40da049 6270 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6271 if (gb)
556adecb 6272 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6273 else
6274 ratio = 1;
556adecb 6275
96cb4df5
MK
6276 zone->inactive_ratio = ratio;
6277}
556adecb 6278
839a4fcc 6279static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6280{
6281 struct zone *zone;
6282
6283 for_each_zone(zone)
6284 calculate_zone_inactive_ratio(zone);
556adecb
RR
6285}
6286
1da177e4
LT
6287/*
6288 * Initialise min_free_kbytes.
6289 *
6290 * For small machines we want it small (128k min). For large machines
6291 * we want it large (64MB max). But it is not linear, because network
6292 * bandwidth does not increase linearly with machine size. We use
6293 *
b8af2941 6294 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6295 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6296 *
6297 * which yields
6298 *
6299 * 16MB: 512k
6300 * 32MB: 724k
6301 * 64MB: 1024k
6302 * 128MB: 1448k
6303 * 256MB: 2048k
6304 * 512MB: 2896k
6305 * 1024MB: 4096k
6306 * 2048MB: 5792k
6307 * 4096MB: 8192k
6308 * 8192MB: 11584k
6309 * 16384MB: 16384k
6310 */
1b79acc9 6311int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6312{
6313 unsigned long lowmem_kbytes;
5f12733e 6314 int new_min_free_kbytes;
1da177e4
LT
6315
6316 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6317 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6318
6319 if (new_min_free_kbytes > user_min_free_kbytes) {
6320 min_free_kbytes = new_min_free_kbytes;
6321 if (min_free_kbytes < 128)
6322 min_free_kbytes = 128;
6323 if (min_free_kbytes > 65536)
6324 min_free_kbytes = 65536;
6325 } else {
6326 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6327 new_min_free_kbytes, user_min_free_kbytes);
6328 }
bc75d33f 6329 setup_per_zone_wmarks();
a6cccdc3 6330 refresh_zone_stat_thresholds();
1da177e4 6331 setup_per_zone_lowmem_reserve();
556adecb 6332 setup_per_zone_inactive_ratio();
1da177e4
LT
6333 return 0;
6334}
bc75d33f 6335module_init(init_per_zone_wmark_min)
1da177e4
LT
6336
6337/*
b8af2941 6338 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6339 * that we can call two helper functions whenever min_free_kbytes
6340 * changes.
6341 */
cccad5b9 6342int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6343 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6344{
da8c757b
HP
6345 int rc;
6346
6347 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6348 if (rc)
6349 return rc;
6350
5f12733e
MH
6351 if (write) {
6352 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6353 setup_per_zone_wmarks();
5f12733e 6354 }
1da177e4
LT
6355 return 0;
6356}
6357
9614634f 6358#ifdef CONFIG_NUMA
cccad5b9 6359int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6360 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6361{
6362 struct zone *zone;
6363 int rc;
6364
8d65af78 6365 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6366 if (rc)
6367 return rc;
6368
6369 for_each_zone(zone)
b40da049 6370 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6371 sysctl_min_unmapped_ratio) / 100;
6372 return 0;
6373}
0ff38490 6374
cccad5b9 6375int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6376 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6377{
6378 struct zone *zone;
6379 int rc;
6380
8d65af78 6381 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6382 if (rc)
6383 return rc;
6384
6385 for_each_zone(zone)
b40da049 6386 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6387 sysctl_min_slab_ratio) / 100;
6388 return 0;
6389}
9614634f
CL
6390#endif
6391
1da177e4
LT
6392/*
6393 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6394 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6395 * whenever sysctl_lowmem_reserve_ratio changes.
6396 *
6397 * The reserve ratio obviously has absolutely no relation with the
41858966 6398 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6399 * if in function of the boot time zone sizes.
6400 */
cccad5b9 6401int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6402 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6403{
8d65af78 6404 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6405 setup_per_zone_lowmem_reserve();
6406 return 0;
6407}
6408
8ad4b1fb
RS
6409/*
6410 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6411 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6412 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6413 */
cccad5b9 6414int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6415 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6416{
6417 struct zone *zone;
7cd2b0a3 6418 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6419 int ret;
6420
7cd2b0a3
DR
6421 mutex_lock(&pcp_batch_high_lock);
6422 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6423
8d65af78 6424 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6425 if (!write || ret < 0)
6426 goto out;
6427
6428 /* Sanity checking to avoid pcp imbalance */
6429 if (percpu_pagelist_fraction &&
6430 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6431 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6432 ret = -EINVAL;
6433 goto out;
6434 }
6435
6436 /* No change? */
6437 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6438 goto out;
c8e251fa 6439
364df0eb 6440 for_each_populated_zone(zone) {
7cd2b0a3
DR
6441 unsigned int cpu;
6442
22a7f12b 6443 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6444 pageset_set_high_and_batch(zone,
6445 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6446 }
7cd2b0a3 6447out:
c8e251fa 6448 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6449 return ret;
8ad4b1fb
RS
6450}
6451
a9919c79 6452#ifdef CONFIG_NUMA
f034b5d4 6453int hashdist = HASHDIST_DEFAULT;
1da177e4 6454
1da177e4
LT
6455static int __init set_hashdist(char *str)
6456{
6457 if (!str)
6458 return 0;
6459 hashdist = simple_strtoul(str, &str, 0);
6460 return 1;
6461}
6462__setup("hashdist=", set_hashdist);
6463#endif
6464
6465/*
6466 * allocate a large system hash table from bootmem
6467 * - it is assumed that the hash table must contain an exact power-of-2
6468 * quantity of entries
6469 * - limit is the number of hash buckets, not the total allocation size
6470 */
6471void *__init alloc_large_system_hash(const char *tablename,
6472 unsigned long bucketsize,
6473 unsigned long numentries,
6474 int scale,
6475 int flags,
6476 unsigned int *_hash_shift,
6477 unsigned int *_hash_mask,
31fe62b9
TB
6478 unsigned long low_limit,
6479 unsigned long high_limit)
1da177e4 6480{
31fe62b9 6481 unsigned long long max = high_limit;
1da177e4
LT
6482 unsigned long log2qty, size;
6483 void *table = NULL;
6484
6485 /* allow the kernel cmdline to have a say */
6486 if (!numentries) {
6487 /* round applicable memory size up to nearest megabyte */
04903664 6488 numentries = nr_kernel_pages;
a7e83318
JZ
6489
6490 /* It isn't necessary when PAGE_SIZE >= 1MB */
6491 if (PAGE_SHIFT < 20)
6492 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6493
6494 /* limit to 1 bucket per 2^scale bytes of low memory */
6495 if (scale > PAGE_SHIFT)
6496 numentries >>= (scale - PAGE_SHIFT);
6497 else
6498 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6499
6500 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6501 if (unlikely(flags & HASH_SMALL)) {
6502 /* Makes no sense without HASH_EARLY */
6503 WARN_ON(!(flags & HASH_EARLY));
6504 if (!(numentries >> *_hash_shift)) {
6505 numentries = 1UL << *_hash_shift;
6506 BUG_ON(!numentries);
6507 }
6508 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6509 numentries = PAGE_SIZE / bucketsize;
1da177e4 6510 }
6e692ed3 6511 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6512
6513 /* limit allocation size to 1/16 total memory by default */
6514 if (max == 0) {
6515 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6516 do_div(max, bucketsize);
6517 }
074b8517 6518 max = min(max, 0x80000000ULL);
1da177e4 6519
31fe62b9
TB
6520 if (numentries < low_limit)
6521 numentries = low_limit;
1da177e4
LT
6522 if (numentries > max)
6523 numentries = max;
6524
f0d1b0b3 6525 log2qty = ilog2(numentries);
1da177e4
LT
6526
6527 do {
6528 size = bucketsize << log2qty;
6529 if (flags & HASH_EARLY)
6782832e 6530 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6531 else if (hashdist)
6532 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6533 else {
1037b83b
ED
6534 /*
6535 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6536 * some pages at the end of hash table which
6537 * alloc_pages_exact() automatically does
1037b83b 6538 */
264ef8a9 6539 if (get_order(size) < MAX_ORDER) {
a1dd268c 6540 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6541 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6542 }
1da177e4
LT
6543 }
6544 } while (!table && size > PAGE_SIZE && --log2qty);
6545
6546 if (!table)
6547 panic("Failed to allocate %s hash table\n", tablename);
6548
f241e660 6549 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6550 tablename,
f241e660 6551 (1UL << log2qty),
f0d1b0b3 6552 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6553 size);
6554
6555 if (_hash_shift)
6556 *_hash_shift = log2qty;
6557 if (_hash_mask)
6558 *_hash_mask = (1 << log2qty) - 1;
6559
6560 return table;
6561}
a117e66e 6562
835c134e
MG
6563/* Return a pointer to the bitmap storing bits affecting a block of pages */
6564static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6565 unsigned long pfn)
6566{
6567#ifdef CONFIG_SPARSEMEM
6568 return __pfn_to_section(pfn)->pageblock_flags;
6569#else
6570 return zone->pageblock_flags;
6571#endif /* CONFIG_SPARSEMEM */
6572}
6573
6574static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6575{
6576#ifdef CONFIG_SPARSEMEM
6577 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6578 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6579#else
c060f943 6580 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6581 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6582#endif /* CONFIG_SPARSEMEM */
6583}
6584
6585/**
1aab4d77 6586 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6587 * @page: The page within the block of interest
1aab4d77
RD
6588 * @pfn: The target page frame number
6589 * @end_bitidx: The last bit of interest to retrieve
6590 * @mask: mask of bits that the caller is interested in
6591 *
6592 * Return: pageblock_bits flags
835c134e 6593 */
dc4b0caf 6594unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6595 unsigned long end_bitidx,
6596 unsigned long mask)
835c134e
MG
6597{
6598 struct zone *zone;
6599 unsigned long *bitmap;
dc4b0caf 6600 unsigned long bitidx, word_bitidx;
e58469ba 6601 unsigned long word;
835c134e
MG
6602
6603 zone = page_zone(page);
835c134e
MG
6604 bitmap = get_pageblock_bitmap(zone, pfn);
6605 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6606 word_bitidx = bitidx / BITS_PER_LONG;
6607 bitidx &= (BITS_PER_LONG-1);
835c134e 6608
e58469ba
MG
6609 word = bitmap[word_bitidx];
6610 bitidx += end_bitidx;
6611 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6612}
6613
6614/**
dc4b0caf 6615 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6616 * @page: The page within the block of interest
835c134e 6617 * @flags: The flags to set
1aab4d77
RD
6618 * @pfn: The target page frame number
6619 * @end_bitidx: The last bit of interest
6620 * @mask: mask of bits that the caller is interested in
835c134e 6621 */
dc4b0caf
MG
6622void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6623 unsigned long pfn,
e58469ba
MG
6624 unsigned long end_bitidx,
6625 unsigned long mask)
835c134e
MG
6626{
6627 struct zone *zone;
6628 unsigned long *bitmap;
dc4b0caf 6629 unsigned long bitidx, word_bitidx;
e58469ba
MG
6630 unsigned long old_word, word;
6631
6632 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6633
6634 zone = page_zone(page);
835c134e
MG
6635 bitmap = get_pageblock_bitmap(zone, pfn);
6636 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6637 word_bitidx = bitidx / BITS_PER_LONG;
6638 bitidx &= (BITS_PER_LONG-1);
6639
309381fe 6640 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6641
e58469ba
MG
6642 bitidx += end_bitidx;
6643 mask <<= (BITS_PER_LONG - bitidx - 1);
6644 flags <<= (BITS_PER_LONG - bitidx - 1);
6645
4db0c3c2 6646 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6647 for (;;) {
6648 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6649 if (word == old_word)
6650 break;
6651 word = old_word;
6652 }
835c134e 6653}
a5d76b54
KH
6654
6655/*
80934513
MK
6656 * This function checks whether pageblock includes unmovable pages or not.
6657 * If @count is not zero, it is okay to include less @count unmovable pages
6658 *
b8af2941 6659 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6660 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6661 * expect this function should be exact.
a5d76b54 6662 */
b023f468
WC
6663bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6664 bool skip_hwpoisoned_pages)
49ac8255
KH
6665{
6666 unsigned long pfn, iter, found;
47118af0
MN
6667 int mt;
6668
49ac8255
KH
6669 /*
6670 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6671 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6672 */
6673 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6674 return false;
47118af0
MN
6675 mt = get_pageblock_migratetype(page);
6676 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6677 return false;
49ac8255
KH
6678
6679 pfn = page_to_pfn(page);
6680 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6681 unsigned long check = pfn + iter;
6682
29723fcc 6683 if (!pfn_valid_within(check))
49ac8255 6684 continue;
29723fcc 6685
49ac8255 6686 page = pfn_to_page(check);
c8721bbb
NH
6687
6688 /*
6689 * Hugepages are not in LRU lists, but they're movable.
6690 * We need not scan over tail pages bacause we don't
6691 * handle each tail page individually in migration.
6692 */
6693 if (PageHuge(page)) {
6694 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6695 continue;
6696 }
6697
97d255c8
MK
6698 /*
6699 * We can't use page_count without pin a page
6700 * because another CPU can free compound page.
6701 * This check already skips compound tails of THP
6702 * because their page->_count is zero at all time.
6703 */
6704 if (!atomic_read(&page->_count)) {
49ac8255
KH
6705 if (PageBuddy(page))
6706 iter += (1 << page_order(page)) - 1;
6707 continue;
6708 }
97d255c8 6709
b023f468
WC
6710 /*
6711 * The HWPoisoned page may be not in buddy system, and
6712 * page_count() is not 0.
6713 */
6714 if (skip_hwpoisoned_pages && PageHWPoison(page))
6715 continue;
6716
49ac8255
KH
6717 if (!PageLRU(page))
6718 found++;
6719 /*
6b4f7799
JW
6720 * If there are RECLAIMABLE pages, we need to check
6721 * it. But now, memory offline itself doesn't call
6722 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6723 */
6724 /*
6725 * If the page is not RAM, page_count()should be 0.
6726 * we don't need more check. This is an _used_ not-movable page.
6727 *
6728 * The problematic thing here is PG_reserved pages. PG_reserved
6729 * is set to both of a memory hole page and a _used_ kernel
6730 * page at boot.
6731 */
6732 if (found > count)
80934513 6733 return true;
49ac8255 6734 }
80934513 6735 return false;
49ac8255
KH
6736}
6737
6738bool is_pageblock_removable_nolock(struct page *page)
6739{
656a0706
MH
6740 struct zone *zone;
6741 unsigned long pfn;
687875fb
MH
6742
6743 /*
6744 * We have to be careful here because we are iterating over memory
6745 * sections which are not zone aware so we might end up outside of
6746 * the zone but still within the section.
656a0706
MH
6747 * We have to take care about the node as well. If the node is offline
6748 * its NODE_DATA will be NULL - see page_zone.
687875fb 6749 */
656a0706
MH
6750 if (!node_online(page_to_nid(page)))
6751 return false;
6752
6753 zone = page_zone(page);
6754 pfn = page_to_pfn(page);
108bcc96 6755 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6756 return false;
6757
b023f468 6758 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6759}
0c0e6195 6760
080fe206 6761#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6762
6763static unsigned long pfn_max_align_down(unsigned long pfn)
6764{
6765 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6766 pageblock_nr_pages) - 1);
6767}
6768
6769static unsigned long pfn_max_align_up(unsigned long pfn)
6770{
6771 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6772 pageblock_nr_pages));
6773}
6774
041d3a8c 6775/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6776static int __alloc_contig_migrate_range(struct compact_control *cc,
6777 unsigned long start, unsigned long end)
041d3a8c
MN
6778{
6779 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6780 unsigned long nr_reclaimed;
041d3a8c
MN
6781 unsigned long pfn = start;
6782 unsigned int tries = 0;
6783 int ret = 0;
6784
be49a6e1 6785 migrate_prep();
041d3a8c 6786
bb13ffeb 6787 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6788 if (fatal_signal_pending(current)) {
6789 ret = -EINTR;
6790 break;
6791 }
6792
bb13ffeb
MG
6793 if (list_empty(&cc->migratepages)) {
6794 cc->nr_migratepages = 0;
edc2ca61 6795 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6796 if (!pfn) {
6797 ret = -EINTR;
6798 break;
6799 }
6800 tries = 0;
6801 } else if (++tries == 5) {
6802 ret = ret < 0 ? ret : -EBUSY;
6803 break;
6804 }
6805
beb51eaa
MK
6806 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6807 &cc->migratepages);
6808 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6809
9c620e2b 6810 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6811 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6812 }
2a6f5124
SP
6813 if (ret < 0) {
6814 putback_movable_pages(&cc->migratepages);
6815 return ret;
6816 }
6817 return 0;
041d3a8c
MN
6818}
6819
6820/**
6821 * alloc_contig_range() -- tries to allocate given range of pages
6822 * @start: start PFN to allocate
6823 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6824 * @migratetype: migratetype of the underlaying pageblocks (either
6825 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6826 * in range must have the same migratetype and it must
6827 * be either of the two.
041d3a8c
MN
6828 *
6829 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6830 * aligned, however it's the caller's responsibility to guarantee that
6831 * we are the only thread that changes migrate type of pageblocks the
6832 * pages fall in.
6833 *
6834 * The PFN range must belong to a single zone.
6835 *
6836 * Returns zero on success or negative error code. On success all
6837 * pages which PFN is in [start, end) are allocated for the caller and
6838 * need to be freed with free_contig_range().
6839 */
0815f3d8
MN
6840int alloc_contig_range(unsigned long start, unsigned long end,
6841 unsigned migratetype)
041d3a8c 6842{
041d3a8c 6843 unsigned long outer_start, outer_end;
d00181b9
KS
6844 unsigned int order;
6845 int ret = 0;
041d3a8c 6846
bb13ffeb
MG
6847 struct compact_control cc = {
6848 .nr_migratepages = 0,
6849 .order = -1,
6850 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6851 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6852 .ignore_skip_hint = true,
6853 };
6854 INIT_LIST_HEAD(&cc.migratepages);
6855
041d3a8c
MN
6856 /*
6857 * What we do here is we mark all pageblocks in range as
6858 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6859 * have different sizes, and due to the way page allocator
6860 * work, we align the range to biggest of the two pages so
6861 * that page allocator won't try to merge buddies from
6862 * different pageblocks and change MIGRATE_ISOLATE to some
6863 * other migration type.
6864 *
6865 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6866 * migrate the pages from an unaligned range (ie. pages that
6867 * we are interested in). This will put all the pages in
6868 * range back to page allocator as MIGRATE_ISOLATE.
6869 *
6870 * When this is done, we take the pages in range from page
6871 * allocator removing them from the buddy system. This way
6872 * page allocator will never consider using them.
6873 *
6874 * This lets us mark the pageblocks back as
6875 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6876 * aligned range but not in the unaligned, original range are
6877 * put back to page allocator so that buddy can use them.
6878 */
6879
6880 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6881 pfn_max_align_up(end), migratetype,
6882 false);
041d3a8c 6883 if (ret)
86a595f9 6884 return ret;
041d3a8c 6885
8ef5849f
JK
6886 /*
6887 * In case of -EBUSY, we'd like to know which page causes problem.
6888 * So, just fall through. We will check it in test_pages_isolated().
6889 */
bb13ffeb 6890 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 6891 if (ret && ret != -EBUSY)
041d3a8c
MN
6892 goto done;
6893
6894 /*
6895 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6896 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6897 * more, all pages in [start, end) are free in page allocator.
6898 * What we are going to do is to allocate all pages from
6899 * [start, end) (that is remove them from page allocator).
6900 *
6901 * The only problem is that pages at the beginning and at the
6902 * end of interesting range may be not aligned with pages that
6903 * page allocator holds, ie. they can be part of higher order
6904 * pages. Because of this, we reserve the bigger range and
6905 * once this is done free the pages we are not interested in.
6906 *
6907 * We don't have to hold zone->lock here because the pages are
6908 * isolated thus they won't get removed from buddy.
6909 */
6910
6911 lru_add_drain_all();
510f5507 6912 drain_all_pages(cc.zone);
041d3a8c
MN
6913
6914 order = 0;
6915 outer_start = start;
6916 while (!PageBuddy(pfn_to_page(outer_start))) {
6917 if (++order >= MAX_ORDER) {
8ef5849f
JK
6918 outer_start = start;
6919 break;
041d3a8c
MN
6920 }
6921 outer_start &= ~0UL << order;
6922 }
6923
8ef5849f
JK
6924 if (outer_start != start) {
6925 order = page_order(pfn_to_page(outer_start));
6926
6927 /*
6928 * outer_start page could be small order buddy page and
6929 * it doesn't include start page. Adjust outer_start
6930 * in this case to report failed page properly
6931 * on tracepoint in test_pages_isolated()
6932 */
6933 if (outer_start + (1UL << order) <= start)
6934 outer_start = start;
6935 }
6936
041d3a8c 6937 /* Make sure the range is really isolated. */
b023f468 6938 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6939 pr_info("%s: [%lx, %lx) PFNs busy\n",
6940 __func__, outer_start, end);
041d3a8c
MN
6941 ret = -EBUSY;
6942 goto done;
6943 }
6944
49f223a9 6945 /* Grab isolated pages from freelists. */
bb13ffeb 6946 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6947 if (!outer_end) {
6948 ret = -EBUSY;
6949 goto done;
6950 }
6951
6952 /* Free head and tail (if any) */
6953 if (start != outer_start)
6954 free_contig_range(outer_start, start - outer_start);
6955 if (end != outer_end)
6956 free_contig_range(end, outer_end - end);
6957
6958done:
6959 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6960 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6961 return ret;
6962}
6963
6964void free_contig_range(unsigned long pfn, unsigned nr_pages)
6965{
bcc2b02f
MS
6966 unsigned int count = 0;
6967
6968 for (; nr_pages--; pfn++) {
6969 struct page *page = pfn_to_page(pfn);
6970
6971 count += page_count(page) != 1;
6972 __free_page(page);
6973 }
6974 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6975}
6976#endif
6977
4ed7e022 6978#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6979/*
6980 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6981 * page high values need to be recalulated.
6982 */
4ed7e022
JL
6983void __meminit zone_pcp_update(struct zone *zone)
6984{
0a647f38 6985 unsigned cpu;
c8e251fa 6986 mutex_lock(&pcp_batch_high_lock);
0a647f38 6987 for_each_possible_cpu(cpu)
169f6c19
CS
6988 pageset_set_high_and_batch(zone,
6989 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6990 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6991}
6992#endif
6993
340175b7
JL
6994void zone_pcp_reset(struct zone *zone)
6995{
6996 unsigned long flags;
5a883813
MK
6997 int cpu;
6998 struct per_cpu_pageset *pset;
340175b7
JL
6999
7000 /* avoid races with drain_pages() */
7001 local_irq_save(flags);
7002 if (zone->pageset != &boot_pageset) {
5a883813
MK
7003 for_each_online_cpu(cpu) {
7004 pset = per_cpu_ptr(zone->pageset, cpu);
7005 drain_zonestat(zone, pset);
7006 }
340175b7
JL
7007 free_percpu(zone->pageset);
7008 zone->pageset = &boot_pageset;
7009 }
7010 local_irq_restore(flags);
7011}
7012
6dcd73d7 7013#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
7014/*
7015 * All pages in the range must be isolated before calling this.
7016 */
7017void
7018__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7019{
7020 struct page *page;
7021 struct zone *zone;
7aeb09f9 7022 unsigned int order, i;
0c0e6195
KH
7023 unsigned long pfn;
7024 unsigned long flags;
7025 /* find the first valid pfn */
7026 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7027 if (pfn_valid(pfn))
7028 break;
7029 if (pfn == end_pfn)
7030 return;
7031 zone = page_zone(pfn_to_page(pfn));
7032 spin_lock_irqsave(&zone->lock, flags);
7033 pfn = start_pfn;
7034 while (pfn < end_pfn) {
7035 if (!pfn_valid(pfn)) {
7036 pfn++;
7037 continue;
7038 }
7039 page = pfn_to_page(pfn);
b023f468
WC
7040 /*
7041 * The HWPoisoned page may be not in buddy system, and
7042 * page_count() is not 0.
7043 */
7044 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7045 pfn++;
7046 SetPageReserved(page);
7047 continue;
7048 }
7049
0c0e6195
KH
7050 BUG_ON(page_count(page));
7051 BUG_ON(!PageBuddy(page));
7052 order = page_order(page);
7053#ifdef CONFIG_DEBUG_VM
7054 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7055 pfn, 1 << order, end_pfn);
7056#endif
7057 list_del(&page->lru);
7058 rmv_page_order(page);
7059 zone->free_area[order].nr_free--;
0c0e6195
KH
7060 for (i = 0; i < (1 << order); i++)
7061 SetPageReserved((page+i));
7062 pfn += (1 << order);
7063 }
7064 spin_unlock_irqrestore(&zone->lock, flags);
7065}
7066#endif
8d22ba1b
WF
7067
7068#ifdef CONFIG_MEMORY_FAILURE
7069bool is_free_buddy_page(struct page *page)
7070{
7071 struct zone *zone = page_zone(page);
7072 unsigned long pfn = page_to_pfn(page);
7073 unsigned long flags;
7aeb09f9 7074 unsigned int order;
8d22ba1b
WF
7075
7076 spin_lock_irqsave(&zone->lock, flags);
7077 for (order = 0; order < MAX_ORDER; order++) {
7078 struct page *page_head = page - (pfn & ((1 << order) - 1));
7079
7080 if (PageBuddy(page_head) && page_order(page_head) >= order)
7081 break;
7082 }
7083 spin_unlock_irqrestore(&zone->lock, flags);
7084
7085 return order < MAX_ORDER;
7086}
7087#endif