]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/slub.c
arm64: tegra: Use correct interrupts for Tegra234 TKE
[thirdparty/linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
c7b23b68 14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
68ef169a 25#include <linux/kmsan.h>
81819f0f
CL
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
5cf909c5 30#include <linux/stackdepot.h>
3ac7fe5a 31#include <linux/debugobjects.h>
81819f0f 32#include <linux/kallsyms.h>
b89fb5ef 33#include <linux/kfence.h>
b9049e23 34#include <linux/memory.h>
f8bd2258 35#include <linux/math64.h>
773ff60e 36#include <linux/fault-inject.h>
bfa71457 37#include <linux/stacktrace.h>
4de900b4 38#include <linux/prefetch.h>
2633d7a0 39#include <linux/memcontrol.h>
2482ddec 40#include <linux/random.h>
1f9f78b1 41#include <kunit/test.h>
909c6475 42#include <kunit/test-bug.h>
553c0369 43#include <linux/sort.h>
81819f0f 44
64dd6849 45#include <linux/debugfs.h>
4a92379b
RK
46#include <trace/events/kmem.h>
47
072bb0aa
MG
48#include "internal.h"
49
81819f0f
CL
50/*
51 * Lock order:
18004c5d 52 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
53 * 2. node->list_lock (Spinlock)
54 * 3. kmem_cache->cpu_slab->lock (Local lock)
41bec7c3 55 * 4. slab_lock(slab) (Only on some arches)
bd0e7491 56 * 5. object_map_lock (Only for debugging)
81819f0f 57 *
18004c5d 58 * slab_mutex
881db7fb 59 *
18004c5d 60 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 61 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
62 * Also synchronizes memory hotplug callbacks.
63 *
64 * slab_lock
65 *
66 * The slab_lock is a wrapper around the page lock, thus it is a bit
67 * spinlock.
881db7fb 68 *
41bec7c3
VB
69 * The slab_lock is only used on arches that do not have the ability
70 * to do a cmpxchg_double. It only protects:
71 *
c2092c12
VB
72 * A. slab->freelist -> List of free objects in a slab
73 * B. slab->inuse -> Number of objects in use
74 * C. slab->objects -> Number of objects in slab
75 * D. slab->frozen -> frozen state
881db7fb 76 *
bd0e7491
VB
77 * Frozen slabs
78 *
881db7fb 79 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0 80 * on any list except per cpu partial list. The processor that froze the
c2092c12 81 * slab is the one who can perform list operations on the slab. Other
632b2ef0
LX
82 * processors may put objects onto the freelist but the processor that
83 * froze the slab is the only one that can retrieve the objects from the
c2092c12 84 * slab's freelist.
81819f0f 85 *
bd0e7491
VB
86 * list_lock
87 *
81819f0f
CL
88 * The list_lock protects the partial and full list on each node and
89 * the partial slab counter. If taken then no new slabs may be added or
90 * removed from the lists nor make the number of partial slabs be modified.
91 * (Note that the total number of slabs is an atomic value that may be
92 * modified without taking the list lock).
93 *
94 * The list_lock is a centralized lock and thus we avoid taking it as
95 * much as possible. As long as SLUB does not have to handle partial
96 * slabs, operations can continue without any centralized lock. F.e.
97 * allocating a long series of objects that fill up slabs does not require
98 * the list lock.
bd0e7491 99 *
41bec7c3
VB
100 * For debug caches, all allocations are forced to go through a list_lock
101 * protected region to serialize against concurrent validation.
102 *
bd0e7491
VB
103 * cpu_slab->lock local lock
104 *
105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
106 * except the stat counters. This is a percpu structure manipulated only by
107 * the local cpu, so the lock protects against being preempted or interrupted
108 * by an irq. Fast path operations rely on lockless operations instead.
1f04b07d
TG
109 *
110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111 * which means the lockless fastpath cannot be used as it might interfere with
112 * an in-progress slow path operations. In this case the local lock is always
113 * taken but it still utilizes the freelist for the common operations.
bd0e7491
VB
114 *
115 * lockless fastpaths
116 *
117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118 * are fully lockless when satisfied from the percpu slab (and when
119 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
120 * They also don't disable preemption or migration or irqs. They rely on
121 * the transaction id (tid) field to detect being preempted or moved to
122 * another cpu.
123 *
124 * irq, preemption, migration considerations
125 *
126 * Interrupts are disabled as part of list_lock or local_lock operations, or
127 * around the slab_lock operation, in order to make the slab allocator safe
128 * to use in the context of an irq.
129 *
130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
134 *
135 * SLUB assigns one slab for allocation to each processor.
136 * Allocations only occur from these slabs called cpu slabs.
137 *
672bba3a
CL
138 * Slabs with free elements are kept on a partial list and during regular
139 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 140 * freed then the slab will show up again on the partial lists.
672bba3a
CL
141 * We track full slabs for debugging purposes though because otherwise we
142 * cannot scan all objects.
81819f0f
CL
143 *
144 * Slabs are freed when they become empty. Teardown and setup is
145 * minimal so we rely on the page allocators per cpu caches for
146 * fast frees and allocs.
147 *
c2092c12 148 * slab->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
149 * This means that the slab is dedicated to a purpose
150 * such as satisfying allocations for a specific
151 * processor. Objects may be freed in the slab while
152 * it is frozen but slab_free will then skip the usual
153 * list operations. It is up to the processor holding
154 * the slab to integrate the slab into the slab lists
155 * when the slab is no longer needed.
156 *
157 * One use of this flag is to mark slabs that are
158 * used for allocations. Then such a slab becomes a cpu
159 * slab. The cpu slab may be equipped with an additional
dfb4f096 160 * freelist that allows lockless access to
894b8788
CL
161 * free objects in addition to the regular freelist
162 * that requires the slab lock.
81819f0f 163 *
aed68148 164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 165 * options set. This moves slab handling out of
894b8788 166 * the fast path and disables lockless freelists.
81819f0f
CL
167 */
168
25c00c50
VB
169/*
170 * We could simply use migrate_disable()/enable() but as long as it's a
171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172 */
173#ifndef CONFIG_PREEMPT_RT
1f04b07d
TG
174#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
175#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
176#define USE_LOCKLESS_FAST_PATH() (true)
25c00c50
VB
177#else
178#define slub_get_cpu_ptr(var) \
179({ \
180 migrate_disable(); \
181 this_cpu_ptr(var); \
182})
183#define slub_put_cpu_ptr(var) \
184do { \
185 (void)(var); \
186 migrate_enable(); \
187} while (0)
1f04b07d 188#define USE_LOCKLESS_FAST_PATH() (false)
25c00c50
VB
189#endif
190
be784ba8
VB
191#ifndef CONFIG_SLUB_TINY
192#define __fastpath_inline __always_inline
193#else
194#define __fastpath_inline
195#endif
196
ca0cab65
VB
197#ifdef CONFIG_SLUB_DEBUG
198#ifdef CONFIG_SLUB_DEBUG_ON
199DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200#else
201DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202#endif
79270291 203#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 204
6edf2576
FT
205/* Structure holding parameters for get_partial() call chain */
206struct partial_context {
207 struct slab **slab;
208 gfp_t flags;
209 unsigned int orig_size;
210};
211
59052e89
VB
212static inline bool kmem_cache_debug(struct kmem_cache *s)
213{
214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 215}
5577bd8a 216
6edf2576
FT
217static inline bool slub_debug_orig_size(struct kmem_cache *s)
218{
219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 (s->flags & SLAB_KMALLOC));
221}
222
117d54df 223void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 224{
59052e89 225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
226 p += s->red_left_pad;
227
228 return p;
229}
230
345c905d
JK
231static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232{
233#ifdef CONFIG_SLUB_CPU_PARTIAL
234 return !kmem_cache_debug(s);
235#else
236 return false;
237#endif
238}
239
81819f0f
CL
240/*
241 * Issues still to be resolved:
242 *
81819f0f
CL
243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244 *
81819f0f
CL
245 * - Variable sizing of the per node arrays
246 */
247
b789ef51
CL
248/* Enable to log cmpxchg failures */
249#undef SLUB_DEBUG_CMPXCHG
250
5a8a3c1f 251#ifndef CONFIG_SLUB_TINY
2086d26a 252/*
dc84207d 253 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
255 */
76be8950 256#define MIN_PARTIAL 5
e95eed57 257
2086d26a
CL
258/*
259 * Maximum number of desirable partial slabs.
260 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 261 * sort the partial list by the number of objects in use.
2086d26a
CL
262 */
263#define MAX_PARTIAL 10
5a8a3c1f
VB
264#else
265#define MIN_PARTIAL 0
266#define MAX_PARTIAL 0
267#endif
2086d26a 268
becfda68 269#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 270 SLAB_POISON | SLAB_STORE_USER)
672bba3a 271
149daaf3
LA
272/*
273 * These debug flags cannot use CMPXCHG because there might be consistency
274 * issues when checking or reading debug information
275 */
276#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 SLAB_TRACE)
278
279
fa5ec8a1 280/*
3de47213
DR
281 * Debugging flags that require metadata to be stored in the slab. These get
282 * disabled when slub_debug=O is used and a cache's min order increases with
283 * metadata.
fa5ec8a1 284 */
3de47213 285#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 286
210b5c06
CG
287#define OO_SHIFT 16
288#define OO_MASK ((1 << OO_SHIFT) - 1)
c2092c12 289#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
210b5c06 290
81819f0f 291/* Internal SLUB flags */
d50112ed 292/* Poison object */
4fd0b46e 293#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 294/* Use cmpxchg_double */
6801be4f
PZ
295
296#ifdef system_has_freelist_aba
4fd0b46e 297#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
6801be4f
PZ
298#else
299#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0U)
300#endif
81819f0f 301
02cbc874
CL
302/*
303 * Tracking user of a slab.
304 */
d6543e39 305#define TRACK_ADDRS_COUNT 16
02cbc874 306struct track {
ce71e27c 307 unsigned long addr; /* Called from address */
5cf909c5
OG
308#ifdef CONFIG_STACKDEPOT
309 depot_stack_handle_t handle;
d6543e39 310#endif
02cbc874
CL
311 int cpu; /* Was running on cpu */
312 int pid; /* Pid context */
313 unsigned long when; /* When did the operation occur */
314};
315
316enum track_item { TRACK_ALLOC, TRACK_FREE };
317
b1a413a3 318#ifdef SLAB_SUPPORTS_SYSFS
81819f0f
CL
319static int sysfs_slab_add(struct kmem_cache *);
320static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 321#else
0c710013
CL
322static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
323static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
324 { return 0; }
81819f0f
CL
325#endif
326
64dd6849
FM
327#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328static void debugfs_slab_add(struct kmem_cache *);
329#else
330static inline void debugfs_slab_add(struct kmem_cache *s) { }
331#endif
332
4fdccdfb 333static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
334{
335#ifdef CONFIG_SLUB_STATS
88da03a6
CL
336 /*
337 * The rmw is racy on a preemptible kernel but this is acceptable, so
338 * avoid this_cpu_add()'s irq-disable overhead.
339 */
340 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
341#endif
342}
343
7e1fa93d
VB
344/*
345 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
346 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
347 * differ during memory hotplug/hotremove operations.
348 * Protected by slab_mutex.
349 */
350static nodemask_t slab_nodes;
351
0af8489b 352#ifndef CONFIG_SLUB_TINY
e45cc288
ML
353/*
354 * Workqueue used for flush_cpu_slab().
355 */
356static struct workqueue_struct *flushwq;
0af8489b 357#endif
e45cc288 358
81819f0f
CL
359/********************************************************************
360 * Core slab cache functions
361 *******************************************************************/
362
44f6a42d
JH
363/*
364 * freeptr_t represents a SLUB freelist pointer, which might be encoded
365 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
366 */
367typedef struct { unsigned long v; } freeptr_t;
368
2482ddec
KC
369/*
370 * Returns freelist pointer (ptr). With hardening, this is obfuscated
371 * with an XOR of the address where the pointer is held and a per-cache
372 * random number.
373 */
44f6a42d
JH
374static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
375 void *ptr, unsigned long ptr_addr)
2482ddec 376{
b06952cd
VB
377 unsigned long encoded;
378
2482ddec 379#ifdef CONFIG_SLAB_FREELIST_HARDENED
b06952cd 380 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
44f6a42d 381#else
b06952cd 382 encoded = (unsigned long)ptr;
44f6a42d 383#endif
b06952cd 384 return (freeptr_t){.v = encoded};
44f6a42d
JH
385}
386
387static inline void *freelist_ptr_decode(const struct kmem_cache *s,
388 freeptr_t ptr, unsigned long ptr_addr)
389{
390 void *decoded;
391
392#ifdef CONFIG_SLAB_FREELIST_HARDENED
b06952cd 393 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
2482ddec 394#else
44f6a42d 395 decoded = (void *)ptr.v;
2482ddec 396#endif
44f6a42d 397 return decoded;
2482ddec
KC
398}
399
7656c72b
CL
400static inline void *get_freepointer(struct kmem_cache *s, void *object)
401{
1662b6c2
VB
402 unsigned long ptr_addr;
403 freeptr_t p;
404
aa1ef4d7 405 object = kasan_reset_tag(object);
1662b6c2
VB
406 ptr_addr = (unsigned long)object + s->offset;
407 p = *(freeptr_t *)(ptr_addr);
408 return freelist_ptr_decode(s, p, ptr_addr);
7656c72b
CL
409}
410
0af8489b 411#ifndef CONFIG_SLUB_TINY
0ad9500e
ED
412static void prefetch_freepointer(const struct kmem_cache *s, void *object)
413{
04b4b006 414 prefetchw(object + s->offset);
0ad9500e 415}
0af8489b 416#endif
0ad9500e 417
68ef169a
AP
418/*
419 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
420 * pointer value in the case the current thread loses the race for the next
421 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
422 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
423 * KMSAN will still check all arguments of cmpxchg because of imperfect
424 * handling of inline assembly.
425 * To work around this problem, we apply __no_kmsan_checks to ensure that
426 * get_freepointer_safe() returns initialized memory.
427 */
428__no_kmsan_checks
1393d9a1
CL
429static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
430{
2482ddec 431 unsigned long freepointer_addr;
44f6a42d 432 freeptr_t p;
1393d9a1 433
8e57f8ac 434 if (!debug_pagealloc_enabled_static())
922d566c
JK
435 return get_freepointer(s, object);
436
f70b0049 437 object = kasan_reset_tag(object);
2482ddec 438 freepointer_addr = (unsigned long)object + s->offset;
44f6a42d
JH
439 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
440 return freelist_ptr_decode(s, p, freepointer_addr);
1393d9a1
CL
441}
442
7656c72b
CL
443static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
444{
2482ddec
KC
445 unsigned long freeptr_addr = (unsigned long)object + s->offset;
446
ce6fa91b
AP
447#ifdef CONFIG_SLAB_FREELIST_HARDENED
448 BUG_ON(object == fp); /* naive detection of double free or corruption */
449#endif
450
aa1ef4d7 451 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
44f6a42d 452 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
7656c72b
CL
453}
454
455/* Loop over all objects in a slab */
224a88be 456#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
457 for (__p = fixup_red_left(__s, __addr); \
458 __p < (__addr) + (__objects) * (__s)->size; \
459 __p += (__s)->size)
7656c72b 460
9736d2a9 461static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 462{
9736d2a9 463 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
464}
465
19af27af 466static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 467 unsigned int size)
834f3d11
CL
468{
469 struct kmem_cache_order_objects x = {
9736d2a9 470 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
471 };
472
473 return x;
474}
475
19af27af 476static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 477{
210b5c06 478 return x.x >> OO_SHIFT;
834f3d11
CL
479}
480
19af27af 481static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 482{
210b5c06 483 return x.x & OO_MASK;
834f3d11
CL
484}
485
b47291ef
VB
486#ifdef CONFIG_SLUB_CPU_PARTIAL
487static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
488{
bb192ed9 489 unsigned int nr_slabs;
b47291ef
VB
490
491 s->cpu_partial = nr_objects;
492
493 /*
494 * We take the number of objects but actually limit the number of
c2092c12
VB
495 * slabs on the per cpu partial list, in order to limit excessive
496 * growth of the list. For simplicity we assume that the slabs will
b47291ef
VB
497 * be half-full.
498 */
bb192ed9
VB
499 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
500 s->cpu_partial_slabs = nr_slabs;
b47291ef
VB
501}
502#else
503static inline void
504slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
505{
506}
507#endif /* CONFIG_SLUB_CPU_PARTIAL */
508
881db7fb
CL
509/*
510 * Per slab locking using the pagelock
511 */
5875e598 512static __always_inline void slab_lock(struct slab *slab)
881db7fb 513{
0393895b
VB
514 struct page *page = slab_page(slab);
515
48c935ad 516 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
517 bit_spin_lock(PG_locked, &page->flags);
518}
519
5875e598 520static __always_inline void slab_unlock(struct slab *slab)
881db7fb 521{
0393895b
VB
522 struct page *page = slab_page(slab);
523
48c935ad 524 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
525 __bit_spin_unlock(PG_locked, &page->flags);
526}
527
6801be4f
PZ
528static inline bool
529__update_freelist_fast(struct slab *slab,
530 void *freelist_old, unsigned long counters_old,
531 void *freelist_new, unsigned long counters_new)
532{
533#ifdef system_has_freelist_aba
534 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
535 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
536
537 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
538#else
539 return false;
540#endif
541}
542
543static inline bool
544__update_freelist_slow(struct slab *slab,
545 void *freelist_old, unsigned long counters_old,
546 void *freelist_new, unsigned long counters_new)
547{
548 bool ret = false;
549
550 slab_lock(slab);
551 if (slab->freelist == freelist_old &&
552 slab->counters == counters_old) {
553 slab->freelist = freelist_new;
554 slab->counters = counters_new;
555 ret = true;
556 }
557 slab_unlock(slab);
558
559 return ret;
560}
561
a2b4ae8b
VB
562/*
563 * Interrupts must be disabled (for the fallback code to work right), typically
5875e598
VB
564 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
565 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
566 * allocation/ free operation in hardirq context. Therefore nothing can
567 * interrupt the operation.
a2b4ae8b 568 */
6801be4f 569static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
1d07171c
CL
570 void *freelist_old, unsigned long counters_old,
571 void *freelist_new, unsigned long counters_new,
572 const char *n)
573{
6801be4f
PZ
574 bool ret;
575
1f04b07d 576 if (USE_LOCKLESS_FAST_PATH())
a2b4ae8b 577 lockdep_assert_irqs_disabled();
6801be4f 578
1d07171c 579 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
580 ret = __update_freelist_fast(slab, freelist_old, counters_old,
581 freelist_new, counters_new);
582 } else {
583 ret = __update_freelist_slow(slab, freelist_old, counters_old,
584 freelist_new, counters_new);
1d07171c 585 }
6801be4f
PZ
586 if (likely(ret))
587 return true;
1d07171c
CL
588
589 cpu_relax();
590 stat(s, CMPXCHG_DOUBLE_FAIL);
591
592#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 593 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
594#endif
595
6f6528a1 596 return false;
1d07171c
CL
597}
598
6801be4f 599static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
b789ef51
CL
600 void *freelist_old, unsigned long counters_old,
601 void *freelist_new, unsigned long counters_new,
602 const char *n)
603{
6801be4f
PZ
604 bool ret;
605
b789ef51 606 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
607 ret = __update_freelist_fast(slab, freelist_old, counters_old,
608 freelist_new, counters_new);
609 } else {
1d07171c
CL
610 unsigned long flags;
611
612 local_irq_save(flags);
6801be4f
PZ
613 ret = __update_freelist_slow(slab, freelist_old, counters_old,
614 freelist_new, counters_new);
1d07171c 615 local_irq_restore(flags);
b789ef51 616 }
6801be4f
PZ
617 if (likely(ret))
618 return true;
b789ef51
CL
619
620 cpu_relax();
621 stat(s, CMPXCHG_DOUBLE_FAIL);
622
623#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 624 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
625#endif
626
6f6528a1 627 return false;
b789ef51
CL
628}
629
41ecc55b 630#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 631static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
4ef3f5a3 632static DEFINE_SPINLOCK(object_map_lock);
90e9f6a6 633
b3fd64e1 634static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
bb192ed9 635 struct slab *slab)
b3fd64e1 636{
bb192ed9 637 void *addr = slab_address(slab);
b3fd64e1
VB
638 void *p;
639
bb192ed9 640 bitmap_zero(obj_map, slab->objects);
b3fd64e1 641
bb192ed9 642 for (p = slab->freelist; p; p = get_freepointer(s, p))
b3fd64e1
VB
643 set_bit(__obj_to_index(s, addr, p), obj_map);
644}
645
1f9f78b1
OG
646#if IS_ENABLED(CONFIG_KUNIT)
647static bool slab_add_kunit_errors(void)
648{
649 struct kunit_resource *resource;
650
909c6475 651 if (!kunit_get_current_test())
1f9f78b1
OG
652 return false;
653
654 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
655 if (!resource)
656 return false;
657
658 (*(int *)resource->data)++;
659 kunit_put_resource(resource);
660 return true;
661}
662#else
663static inline bool slab_add_kunit_errors(void) { return false; }
664#endif
665
870b1fbb 666static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
667{
668 if (s->flags & SLAB_RED_ZONE)
669 return s->size - s->red_left_pad;
670
671 return s->size;
672}
673
674static inline void *restore_red_left(struct kmem_cache *s, void *p)
675{
676 if (s->flags & SLAB_RED_ZONE)
677 p -= s->red_left_pad;
678
679 return p;
680}
681
41ecc55b
CL
682/*
683 * Debug settings:
684 */
89d3c87e 685#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 686static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 687#else
d50112ed 688static slab_flags_t slub_debug;
f0630fff 689#endif
41ecc55b 690
e17f1dfb 691static char *slub_debug_string;
fa5ec8a1 692static int disable_higher_order_debug;
41ecc55b 693
a79316c6
AR
694/*
695 * slub is about to manipulate internal object metadata. This memory lies
696 * outside the range of the allocated object, so accessing it would normally
697 * be reported by kasan as a bounds error. metadata_access_enable() is used
698 * to tell kasan that these accesses are OK.
699 */
700static inline void metadata_access_enable(void)
701{
702 kasan_disable_current();
703}
704
705static inline void metadata_access_disable(void)
706{
707 kasan_enable_current();
708}
709
81819f0f
CL
710/*
711 * Object debugging
712 */
d86bd1be
JK
713
714/* Verify that a pointer has an address that is valid within a slab page */
715static inline int check_valid_pointer(struct kmem_cache *s,
bb192ed9 716 struct slab *slab, void *object)
d86bd1be
JK
717{
718 void *base;
719
720 if (!object)
721 return 1;
722
bb192ed9 723 base = slab_address(slab);
338cfaad 724 object = kasan_reset_tag(object);
d86bd1be 725 object = restore_red_left(s, object);
bb192ed9 726 if (object < base || object >= base + slab->objects * s->size ||
d86bd1be
JK
727 (object - base) % s->size) {
728 return 0;
729 }
730
731 return 1;
732}
733
aa2efd5e
DT
734static void print_section(char *level, char *text, u8 *addr,
735 unsigned int length)
81819f0f 736{
a79316c6 737 metadata_access_enable();
340caf17
KYL
738 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
739 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 740 metadata_access_disable();
81819f0f
CL
741}
742
cbfc35a4
WL
743/*
744 * See comment in calculate_sizes().
745 */
746static inline bool freeptr_outside_object(struct kmem_cache *s)
747{
748 return s->offset >= s->inuse;
749}
750
751/*
752 * Return offset of the end of info block which is inuse + free pointer if
753 * not overlapping with object.
754 */
755static inline unsigned int get_info_end(struct kmem_cache *s)
756{
757 if (freeptr_outside_object(s))
758 return s->inuse + sizeof(void *);
759 else
760 return s->inuse;
761}
762
81819f0f
CL
763static struct track *get_track(struct kmem_cache *s, void *object,
764 enum track_item alloc)
765{
766 struct track *p;
767
cbfc35a4 768 p = object + get_info_end(s);
81819f0f 769
aa1ef4d7 770 return kasan_reset_tag(p + alloc);
81819f0f
CL
771}
772
5cf909c5 773#ifdef CONFIG_STACKDEPOT
c4cf6785
SAS
774static noinline depot_stack_handle_t set_track_prepare(void)
775{
776 depot_stack_handle_t handle;
5cf909c5 777 unsigned long entries[TRACK_ADDRS_COUNT];
0cd1a029 778 unsigned int nr_entries;
ae14c63a 779
5cf909c5 780 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
c4cf6785
SAS
781 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
782
783 return handle;
784}
785#else
786static inline depot_stack_handle_t set_track_prepare(void)
787{
788 return 0;
789}
d6543e39 790#endif
5cf909c5 791
c4cf6785
SAS
792static void set_track_update(struct kmem_cache *s, void *object,
793 enum track_item alloc, unsigned long addr,
794 depot_stack_handle_t handle)
795{
796 struct track *p = get_track(s, object, alloc);
797
798#ifdef CONFIG_STACKDEPOT
799 p->handle = handle;
800#endif
0cd1a029
VB
801 p->addr = addr;
802 p->cpu = smp_processor_id();
803 p->pid = current->pid;
804 p->when = jiffies;
81819f0f
CL
805}
806
c4cf6785
SAS
807static __always_inline void set_track(struct kmem_cache *s, void *object,
808 enum track_item alloc, unsigned long addr)
809{
810 depot_stack_handle_t handle = set_track_prepare();
811
812 set_track_update(s, object, alloc, addr, handle);
813}
814
81819f0f
CL
815static void init_tracking(struct kmem_cache *s, void *object)
816{
0cd1a029
VB
817 struct track *p;
818
24922684
CL
819 if (!(s->flags & SLAB_STORE_USER))
820 return;
821
0cd1a029
VB
822 p = get_track(s, object, TRACK_ALLOC);
823 memset(p, 0, 2*sizeof(struct track));
81819f0f
CL
824}
825
86609d33 826static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f 827{
5cf909c5
OG
828 depot_stack_handle_t handle __maybe_unused;
829
81819f0f
CL
830 if (!t->addr)
831 return;
832
96b94abc 833 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 834 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
5cf909c5
OG
835#ifdef CONFIG_STACKDEPOT
836 handle = READ_ONCE(t->handle);
837 if (handle)
838 stack_depot_print(handle);
839 else
840 pr_err("object allocation/free stack trace missing\n");
d6543e39 841#endif
24922684
CL
842}
843
e42f174e 844void print_tracking(struct kmem_cache *s, void *object)
24922684 845{
86609d33 846 unsigned long pr_time = jiffies;
24922684
CL
847 if (!(s->flags & SLAB_STORE_USER))
848 return;
849
86609d33
CP
850 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
851 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
852}
853
fb012e27 854static void print_slab_info(const struct slab *slab)
24922684 855{
fb012e27 856 struct folio *folio = (struct folio *)slab_folio(slab);
24922684 857
fb012e27
MWO
858 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
859 slab, slab->objects, slab->inuse, slab->freelist,
860 folio_flags(folio, 0));
24922684
CL
861}
862
6edf2576
FT
863/*
864 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
865 * family will round up the real request size to these fixed ones, so
866 * there could be an extra area than what is requested. Save the original
867 * request size in the meta data area, for better debug and sanity check.
868 */
869static inline void set_orig_size(struct kmem_cache *s,
870 void *object, unsigned int orig_size)
871{
872 void *p = kasan_reset_tag(object);
873
874 if (!slub_debug_orig_size(s))
875 return;
876
946fa0db
FT
877#ifdef CONFIG_KASAN_GENERIC
878 /*
879 * KASAN could save its free meta data in object's data area at
880 * offset 0, if the size is larger than 'orig_size', it will
881 * overlap the data redzone in [orig_size+1, object_size], and
882 * the check should be skipped.
883 */
884 if (kasan_metadata_size(s, true) > orig_size)
885 orig_size = s->object_size;
886#endif
887
6edf2576
FT
888 p += get_info_end(s);
889 p += sizeof(struct track) * 2;
890
891 *(unsigned int *)p = orig_size;
892}
893
894static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
895{
896 void *p = kasan_reset_tag(object);
897
898 if (!slub_debug_orig_size(s))
899 return s->object_size;
900
901 p += get_info_end(s);
902 p += sizeof(struct track) * 2;
903
904 return *(unsigned int *)p;
905}
906
946fa0db
FT
907void skip_orig_size_check(struct kmem_cache *s, const void *object)
908{
909 set_orig_size(s, (void *)object, s->object_size);
910}
911
24922684
CL
912static void slab_bug(struct kmem_cache *s, char *fmt, ...)
913{
ecc42fbe 914 struct va_format vaf;
24922684 915 va_list args;
24922684
CL
916
917 va_start(args, fmt);
ecc42fbe
FF
918 vaf.fmt = fmt;
919 vaf.va = &args;
f9f58285 920 pr_err("=============================================================================\n");
ecc42fbe 921 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 922 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 923 va_end(args);
81819f0f
CL
924}
925
582d1212 926__printf(2, 3)
24922684
CL
927static void slab_fix(struct kmem_cache *s, char *fmt, ...)
928{
ecc42fbe 929 struct va_format vaf;
24922684 930 va_list args;
24922684 931
1f9f78b1
OG
932 if (slab_add_kunit_errors())
933 return;
934
24922684 935 va_start(args, fmt);
ecc42fbe
FF
936 vaf.fmt = fmt;
937 vaf.va = &args;
938 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 939 va_end(args);
24922684
CL
940}
941
bb192ed9 942static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f
CL
943{
944 unsigned int off; /* Offset of last byte */
bb192ed9 945 u8 *addr = slab_address(slab);
24922684
CL
946
947 print_tracking(s, p);
948
bb192ed9 949 print_slab_info(slab);
24922684 950
96b94abc 951 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 952 p, p - addr, get_freepointer(s, p));
24922684 953
d86bd1be 954 if (s->flags & SLAB_RED_ZONE)
8669dbab 955 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 956 s->red_left_pad);
d86bd1be 957 else if (p > addr + 16)
aa2efd5e 958 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 959
8669dbab 960 print_section(KERN_ERR, "Object ", p,
1b473f29 961 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 962 if (s->flags & SLAB_RED_ZONE)
8669dbab 963 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 964 s->inuse - s->object_size);
81819f0f 965
cbfc35a4 966 off = get_info_end(s);
81819f0f 967
24922684 968 if (s->flags & SLAB_STORE_USER)
81819f0f 969 off += 2 * sizeof(struct track);
81819f0f 970
6edf2576
FT
971 if (slub_debug_orig_size(s))
972 off += sizeof(unsigned int);
973
5d1ba310 974 off += kasan_metadata_size(s, false);
80a9201a 975
d86bd1be 976 if (off != size_from_object(s))
81819f0f 977 /* Beginning of the filler is the free pointer */
8669dbab 978 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 979 size_from_object(s) - off);
24922684
CL
980
981 dump_stack();
81819f0f
CL
982}
983
bb192ed9 984static void object_err(struct kmem_cache *s, struct slab *slab,
81819f0f
CL
985 u8 *object, char *reason)
986{
1f9f78b1
OG
987 if (slab_add_kunit_errors())
988 return;
989
3dc50637 990 slab_bug(s, "%s", reason);
bb192ed9 991 print_trailer(s, slab, object);
65ebdeef 992 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
993}
994
bb192ed9 995static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
ae16d059
VB
996 void **freelist, void *nextfree)
997{
998 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
bb192ed9
VB
999 !check_valid_pointer(s, slab, nextfree) && freelist) {
1000 object_err(s, slab, *freelist, "Freechain corrupt");
ae16d059
VB
1001 *freelist = NULL;
1002 slab_fix(s, "Isolate corrupted freechain");
1003 return true;
1004 }
1005
1006 return false;
1007}
1008
bb192ed9 1009static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
d0e0ac97 1010 const char *fmt, ...)
81819f0f
CL
1011{
1012 va_list args;
1013 char buf[100];
1014
1f9f78b1
OG
1015 if (slab_add_kunit_errors())
1016 return;
1017
24922684
CL
1018 va_start(args, fmt);
1019 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 1020 va_end(args);
3dc50637 1021 slab_bug(s, "%s", buf);
bb192ed9 1022 print_slab_info(slab);
81819f0f 1023 dump_stack();
65ebdeef 1024 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
1025}
1026
f7cb1933 1027static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 1028{
aa1ef4d7 1029 u8 *p = kasan_reset_tag(object);
946fa0db 1030 unsigned int poison_size = s->object_size;
81819f0f 1031
946fa0db 1032 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
1033 memset(p - s->red_left_pad, val, s->red_left_pad);
1034
946fa0db
FT
1035 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1036 /*
1037 * Redzone the extra allocated space by kmalloc than
1038 * requested, and the poison size will be limited to
1039 * the original request size accordingly.
1040 */
1041 poison_size = get_orig_size(s, object);
1042 }
1043 }
1044
81819f0f 1045 if (s->flags & __OBJECT_POISON) {
946fa0db
FT
1046 memset(p, POISON_FREE, poison_size - 1);
1047 p[poison_size - 1] = POISON_END;
81819f0f
CL
1048 }
1049
1050 if (s->flags & SLAB_RED_ZONE)
946fa0db 1051 memset(p + poison_size, val, s->inuse - poison_size);
81819f0f
CL
1052}
1053
24922684
CL
1054static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1055 void *from, void *to)
1056{
582d1212 1057 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
1058 memset(from, data, to - from);
1059}
1060
bb192ed9 1061static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
24922684 1062 u8 *object, char *what,
06428780 1063 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
1064{
1065 u8 *fault;
1066 u8 *end;
bb192ed9 1067 u8 *addr = slab_address(slab);
24922684 1068
a79316c6 1069 metadata_access_enable();
aa1ef4d7 1070 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 1071 metadata_access_disable();
24922684
CL
1072 if (!fault)
1073 return 1;
1074
1075 end = start + bytes;
1076 while (end > fault && end[-1] == value)
1077 end--;
1078
1f9f78b1
OG
1079 if (slab_add_kunit_errors())
1080 goto skip_bug_print;
1081
24922684 1082 slab_bug(s, "%s overwritten", what);
96b94abc 1083 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
1084 fault, end - 1, fault - addr,
1085 fault[0], value);
bb192ed9 1086 print_trailer(s, slab, object);
65ebdeef 1087 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 1088
1f9f78b1 1089skip_bug_print:
24922684
CL
1090 restore_bytes(s, what, value, fault, end);
1091 return 0;
81819f0f
CL
1092}
1093
81819f0f
CL
1094/*
1095 * Object layout:
1096 *
1097 * object address
1098 * Bytes of the object to be managed.
1099 * If the freepointer may overlay the object then the free
cbfc35a4 1100 * pointer is at the middle of the object.
672bba3a 1101 *
81819f0f
CL
1102 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1103 * 0xa5 (POISON_END)
1104 *
3b0efdfa 1105 * object + s->object_size
81819f0f 1106 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 1107 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 1108 * object_size == inuse.
672bba3a 1109 *
81819f0f
CL
1110 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1111 * 0xcc (RED_ACTIVE) for objects in use.
1112 *
1113 * object + s->inuse
672bba3a
CL
1114 * Meta data starts here.
1115 *
81819f0f
CL
1116 * A. Free pointer (if we cannot overwrite object on free)
1117 * B. Tracking data for SLAB_STORE_USER
6edf2576
FT
1118 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1119 * D. Padding to reach required alignment boundary or at minimum
6446faa2 1120 * one word if debugging is on to be able to detect writes
672bba3a
CL
1121 * before the word boundary.
1122 *
1123 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
1124 *
1125 * object + s->size
672bba3a 1126 * Nothing is used beyond s->size.
81819f0f 1127 *
3b0efdfa 1128 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 1129 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
1130 * may be used with merged slabcaches.
1131 */
1132
bb192ed9 1133static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f 1134{
cbfc35a4 1135 unsigned long off = get_info_end(s); /* The end of info */
81819f0f 1136
6edf2576 1137 if (s->flags & SLAB_STORE_USER) {
81819f0f
CL
1138 /* We also have user information there */
1139 off += 2 * sizeof(struct track);
1140
6edf2576
FT
1141 if (s->flags & SLAB_KMALLOC)
1142 off += sizeof(unsigned int);
1143 }
1144
5d1ba310 1145 off += kasan_metadata_size(s, false);
80a9201a 1146
d86bd1be 1147 if (size_from_object(s) == off)
81819f0f
CL
1148 return 1;
1149
bb192ed9 1150 return check_bytes_and_report(s, slab, p, "Object padding",
d86bd1be 1151 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
1152}
1153
39b26464 1154/* Check the pad bytes at the end of a slab page */
a204e6d6 1155static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
81819f0f 1156{
24922684
CL
1157 u8 *start;
1158 u8 *fault;
1159 u8 *end;
5d682681 1160 u8 *pad;
24922684
CL
1161 int length;
1162 int remainder;
81819f0f
CL
1163
1164 if (!(s->flags & SLAB_POISON))
a204e6d6 1165 return;
81819f0f 1166
bb192ed9
VB
1167 start = slab_address(slab);
1168 length = slab_size(slab);
39b26464
CL
1169 end = start + length;
1170 remainder = length % s->size;
81819f0f 1171 if (!remainder)
a204e6d6 1172 return;
81819f0f 1173
5d682681 1174 pad = end - remainder;
a79316c6 1175 metadata_access_enable();
aa1ef4d7 1176 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1177 metadata_access_disable();
24922684 1178 if (!fault)
a204e6d6 1179 return;
24922684
CL
1180 while (end > fault && end[-1] == POISON_INUSE)
1181 end--;
1182
bb192ed9 1183 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
e1b70dd1 1184 fault, end - 1, fault - start);
5d682681 1185 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1186
5d682681 1187 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
81819f0f
CL
1188}
1189
bb192ed9 1190static int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1191 void *object, u8 val)
81819f0f
CL
1192{
1193 u8 *p = object;
3b0efdfa 1194 u8 *endobject = object + s->object_size;
946fa0db 1195 unsigned int orig_size;
81819f0f
CL
1196
1197 if (s->flags & SLAB_RED_ZONE) {
bb192ed9 1198 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
d86bd1be
JK
1199 object - s->red_left_pad, val, s->red_left_pad))
1200 return 0;
1201
bb192ed9 1202 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
3b0efdfa 1203 endobject, val, s->inuse - s->object_size))
81819f0f 1204 return 0;
946fa0db
FT
1205
1206 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1207 orig_size = get_orig_size(s, object);
1208
1209 if (s->object_size > orig_size &&
1210 !check_bytes_and_report(s, slab, object,
1211 "kmalloc Redzone", p + orig_size,
1212 val, s->object_size - orig_size)) {
1213 return 0;
1214 }
1215 }
81819f0f 1216 } else {
3b0efdfa 1217 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
bb192ed9 1218 check_bytes_and_report(s, slab, p, "Alignment padding",
d0e0ac97
CG
1219 endobject, POISON_INUSE,
1220 s->inuse - s->object_size);
3adbefee 1221 }
81819f0f
CL
1222 }
1223
1224 if (s->flags & SLAB_POISON) {
f7cb1933 1225 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
bb192ed9 1226 (!check_bytes_and_report(s, slab, p, "Poison", p,
3b0efdfa 1227 POISON_FREE, s->object_size - 1) ||
bb192ed9 1228 !check_bytes_and_report(s, slab, p, "End Poison",
3b0efdfa 1229 p + s->object_size - 1, POISON_END, 1)))
81819f0f 1230 return 0;
81819f0f
CL
1231 /*
1232 * check_pad_bytes cleans up on its own.
1233 */
bb192ed9 1234 check_pad_bytes(s, slab, p);
81819f0f
CL
1235 }
1236
cbfc35a4 1237 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
1238 /*
1239 * Object and freepointer overlap. Cannot check
1240 * freepointer while object is allocated.
1241 */
1242 return 1;
1243
1244 /* Check free pointer validity */
bb192ed9
VB
1245 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1246 object_err(s, slab, p, "Freepointer corrupt");
81819f0f 1247 /*
9f6c708e 1248 * No choice but to zap it and thus lose the remainder
81819f0f 1249 * of the free objects in this slab. May cause
672bba3a 1250 * another error because the object count is now wrong.
81819f0f 1251 */
a973e9dd 1252 set_freepointer(s, p, NULL);
81819f0f
CL
1253 return 0;
1254 }
1255 return 1;
1256}
1257
bb192ed9 1258static int check_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 1259{
39b26464
CL
1260 int maxobj;
1261
bb192ed9
VB
1262 if (!folio_test_slab(slab_folio(slab))) {
1263 slab_err(s, slab, "Not a valid slab page");
81819f0f
CL
1264 return 0;
1265 }
39b26464 1266
bb192ed9
VB
1267 maxobj = order_objects(slab_order(slab), s->size);
1268 if (slab->objects > maxobj) {
1269 slab_err(s, slab, "objects %u > max %u",
1270 slab->objects, maxobj);
39b26464
CL
1271 return 0;
1272 }
bb192ed9
VB
1273 if (slab->inuse > slab->objects) {
1274 slab_err(s, slab, "inuse %u > max %u",
1275 slab->inuse, slab->objects);
81819f0f
CL
1276 return 0;
1277 }
1278 /* Slab_pad_check fixes things up after itself */
bb192ed9 1279 slab_pad_check(s, slab);
81819f0f
CL
1280 return 1;
1281}
1282
1283/*
c2092c12 1284 * Determine if a certain object in a slab is on the freelist. Must hold the
672bba3a 1285 * slab lock to guarantee that the chains are in a consistent state.
81819f0f 1286 */
bb192ed9 1287static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
81819f0f
CL
1288{
1289 int nr = 0;
881db7fb 1290 void *fp;
81819f0f 1291 void *object = NULL;
f6edde9c 1292 int max_objects;
81819f0f 1293
bb192ed9
VB
1294 fp = slab->freelist;
1295 while (fp && nr <= slab->objects) {
81819f0f
CL
1296 if (fp == search)
1297 return 1;
bb192ed9 1298 if (!check_valid_pointer(s, slab, fp)) {
81819f0f 1299 if (object) {
bb192ed9 1300 object_err(s, slab, object,
81819f0f 1301 "Freechain corrupt");
a973e9dd 1302 set_freepointer(s, object, NULL);
81819f0f 1303 } else {
bb192ed9
VB
1304 slab_err(s, slab, "Freepointer corrupt");
1305 slab->freelist = NULL;
1306 slab->inuse = slab->objects;
24922684 1307 slab_fix(s, "Freelist cleared");
81819f0f
CL
1308 return 0;
1309 }
1310 break;
1311 }
1312 object = fp;
1313 fp = get_freepointer(s, object);
1314 nr++;
1315 }
1316
bb192ed9 1317 max_objects = order_objects(slab_order(slab), s->size);
210b5c06
CG
1318 if (max_objects > MAX_OBJS_PER_PAGE)
1319 max_objects = MAX_OBJS_PER_PAGE;
224a88be 1320
bb192ed9
VB
1321 if (slab->objects != max_objects) {
1322 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1323 slab->objects, max_objects);
1324 slab->objects = max_objects;
582d1212 1325 slab_fix(s, "Number of objects adjusted");
224a88be 1326 }
bb192ed9
VB
1327 if (slab->inuse != slab->objects - nr) {
1328 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1329 slab->inuse, slab->objects - nr);
1330 slab->inuse = slab->objects - nr;
582d1212 1331 slab_fix(s, "Object count adjusted");
81819f0f
CL
1332 }
1333 return search == NULL;
1334}
1335
bb192ed9 1336static void trace(struct kmem_cache *s, struct slab *slab, void *object,
0121c619 1337 int alloc)
3ec09742
CL
1338{
1339 if (s->flags & SLAB_TRACE) {
f9f58285 1340 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1341 s->name,
1342 alloc ? "alloc" : "free",
bb192ed9
VB
1343 object, slab->inuse,
1344 slab->freelist);
3ec09742
CL
1345
1346 if (!alloc)
aa2efd5e 1347 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1348 s->object_size);
3ec09742
CL
1349
1350 dump_stack();
1351 }
1352}
1353
643b1138 1354/*
672bba3a 1355 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1356 */
5cc6eee8 1357static void add_full(struct kmem_cache *s,
bb192ed9 1358 struct kmem_cache_node *n, struct slab *slab)
643b1138 1359{
5cc6eee8
CL
1360 if (!(s->flags & SLAB_STORE_USER))
1361 return;
1362
255d0884 1363 lockdep_assert_held(&n->list_lock);
bb192ed9 1364 list_add(&slab->slab_list, &n->full);
643b1138
CL
1365}
1366
bb192ed9 1367static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
643b1138 1368{
643b1138
CL
1369 if (!(s->flags & SLAB_STORE_USER))
1370 return;
1371
255d0884 1372 lockdep_assert_held(&n->list_lock);
bb192ed9 1373 list_del(&slab->slab_list);
643b1138
CL
1374}
1375
26c02cf0
AB
1376static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1377{
1378 return atomic_long_read(&n->nr_slabs);
1379}
1380
205ab99d 1381static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1382{
1383 struct kmem_cache_node *n = get_node(s, node);
1384
1385 /*
1386 * May be called early in order to allocate a slab for the
1387 * kmem_cache_node structure. Solve the chicken-egg
1388 * dilemma by deferring the increment of the count during
1389 * bootstrap (see early_kmem_cache_node_alloc).
1390 */
338b2642 1391 if (likely(n)) {
0f389ec6 1392 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1393 atomic_long_add(objects, &n->total_objects);
1394 }
0f389ec6 1395}
205ab99d 1396static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1397{
1398 struct kmem_cache_node *n = get_node(s, node);
1399
1400 atomic_long_dec(&n->nr_slabs);
205ab99d 1401 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1402}
1403
1404/* Object debug checks for alloc/free paths */
c0f81a94 1405static void setup_object_debug(struct kmem_cache *s, void *object)
3ec09742 1406{
8fc8d666 1407 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1408 return;
1409
f7cb1933 1410 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1411 init_tracking(s, object);
1412}
1413
a50b854e 1414static
bb192ed9 1415void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
a7101224 1416{
8fc8d666 1417 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1418 return;
1419
1420 metadata_access_enable();
bb192ed9 1421 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
a7101224
AK
1422 metadata_access_disable();
1423}
1424
becfda68 1425static inline int alloc_consistency_checks(struct kmem_cache *s,
bb192ed9 1426 struct slab *slab, void *object)
81819f0f 1427{
bb192ed9 1428 if (!check_slab(s, slab))
becfda68 1429 return 0;
81819f0f 1430
bb192ed9
VB
1431 if (!check_valid_pointer(s, slab, object)) {
1432 object_err(s, slab, object, "Freelist Pointer check fails");
becfda68 1433 return 0;
81819f0f
CL
1434 }
1435
bb192ed9 1436 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
becfda68
LA
1437 return 0;
1438
1439 return 1;
1440}
1441
fa9b88e4 1442static noinline bool alloc_debug_processing(struct kmem_cache *s,
6edf2576 1443 struct slab *slab, void *object, int orig_size)
becfda68
LA
1444{
1445 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1446 if (!alloc_consistency_checks(s, slab, object))
becfda68
LA
1447 goto bad;
1448 }
81819f0f 1449
c7323a5a 1450 /* Success. Perform special debug activities for allocs */
bb192ed9 1451 trace(s, slab, object, 1);
6edf2576 1452 set_orig_size(s, object, orig_size);
f7cb1933 1453 init_object(s, object, SLUB_RED_ACTIVE);
fa9b88e4 1454 return true;
3ec09742 1455
81819f0f 1456bad:
bb192ed9 1457 if (folio_test_slab(slab_folio(slab))) {
81819f0f
CL
1458 /*
1459 * If this is a slab page then lets do the best we can
1460 * to avoid issues in the future. Marking all objects
672bba3a 1461 * as used avoids touching the remaining objects.
81819f0f 1462 */
24922684 1463 slab_fix(s, "Marking all objects used");
bb192ed9
VB
1464 slab->inuse = slab->objects;
1465 slab->freelist = NULL;
81819f0f 1466 }
fa9b88e4 1467 return false;
81819f0f
CL
1468}
1469
becfda68 1470static inline int free_consistency_checks(struct kmem_cache *s,
bb192ed9 1471 struct slab *slab, void *object, unsigned long addr)
81819f0f 1472{
bb192ed9
VB
1473 if (!check_valid_pointer(s, slab, object)) {
1474 slab_err(s, slab, "Invalid object pointer 0x%p", object);
becfda68 1475 return 0;
81819f0f
CL
1476 }
1477
bb192ed9
VB
1478 if (on_freelist(s, slab, object)) {
1479 object_err(s, slab, object, "Object already free");
becfda68 1480 return 0;
81819f0f
CL
1481 }
1482
bb192ed9 1483 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
becfda68 1484 return 0;
81819f0f 1485
bb192ed9
VB
1486 if (unlikely(s != slab->slab_cache)) {
1487 if (!folio_test_slab(slab_folio(slab))) {
1488 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
756a025f 1489 object);
bb192ed9 1490 } else if (!slab->slab_cache) {
f9f58285
FF
1491 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1492 object);
70d71228 1493 dump_stack();
06428780 1494 } else
bb192ed9 1495 object_err(s, slab, object,
24922684 1496 "page slab pointer corrupt.");
becfda68
LA
1497 return 0;
1498 }
1499 return 1;
1500}
1501
e17f1dfb
VB
1502/*
1503 * Parse a block of slub_debug options. Blocks are delimited by ';'
1504 *
1505 * @str: start of block
1506 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1507 * @slabs: return start of list of slabs, or NULL when there's no list
1508 * @init: assume this is initial parsing and not per-kmem-create parsing
1509 *
1510 * returns the start of next block if there's any, or NULL
1511 */
1512static char *
1513parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1514{
e17f1dfb 1515 bool higher_order_disable = false;
f0630fff 1516
e17f1dfb
VB
1517 /* Skip any completely empty blocks */
1518 while (*str && *str == ';')
1519 str++;
1520
1521 if (*str == ',') {
f0630fff
CL
1522 /*
1523 * No options but restriction on slabs. This means full
1524 * debugging for slabs matching a pattern.
1525 */
e17f1dfb 1526 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1527 goto check_slabs;
e17f1dfb
VB
1528 }
1529 *flags = 0;
f0630fff 1530
e17f1dfb
VB
1531 /* Determine which debug features should be switched on */
1532 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1533 switch (tolower(*str)) {
e17f1dfb
VB
1534 case '-':
1535 *flags = 0;
1536 break;
f0630fff 1537 case 'f':
e17f1dfb 1538 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1539 break;
1540 case 'z':
e17f1dfb 1541 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1542 break;
1543 case 'p':
e17f1dfb 1544 *flags |= SLAB_POISON;
f0630fff
CL
1545 break;
1546 case 'u':
e17f1dfb 1547 *flags |= SLAB_STORE_USER;
f0630fff
CL
1548 break;
1549 case 't':
e17f1dfb 1550 *flags |= SLAB_TRACE;
f0630fff 1551 break;
4c13dd3b 1552 case 'a':
e17f1dfb 1553 *flags |= SLAB_FAILSLAB;
4c13dd3b 1554 break;
08303a73
CA
1555 case 'o':
1556 /*
1557 * Avoid enabling debugging on caches if its minimum
1558 * order would increase as a result.
1559 */
e17f1dfb 1560 higher_order_disable = true;
08303a73 1561 break;
f0630fff 1562 default:
e17f1dfb
VB
1563 if (init)
1564 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1565 }
41ecc55b 1566 }
f0630fff 1567check_slabs:
41ecc55b 1568 if (*str == ',')
e17f1dfb
VB
1569 *slabs = ++str;
1570 else
1571 *slabs = NULL;
1572
1573 /* Skip over the slab list */
1574 while (*str && *str != ';')
1575 str++;
1576
1577 /* Skip any completely empty blocks */
1578 while (*str && *str == ';')
1579 str++;
1580
1581 if (init && higher_order_disable)
1582 disable_higher_order_debug = 1;
1583
1584 if (*str)
1585 return str;
1586 else
1587 return NULL;
1588}
1589
1590static int __init setup_slub_debug(char *str)
1591{
1592 slab_flags_t flags;
a7f1d485 1593 slab_flags_t global_flags;
e17f1dfb
VB
1594 char *saved_str;
1595 char *slab_list;
1596 bool global_slub_debug_changed = false;
1597 bool slab_list_specified = false;
1598
a7f1d485 1599 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1600 if (*str++ != '=' || !*str)
1601 /*
1602 * No options specified. Switch on full debugging.
1603 */
1604 goto out;
1605
1606 saved_str = str;
1607 while (str) {
1608 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1609
1610 if (!slab_list) {
a7f1d485 1611 global_flags = flags;
e17f1dfb
VB
1612 global_slub_debug_changed = true;
1613 } else {
1614 slab_list_specified = true;
5cf909c5 1615 if (flags & SLAB_STORE_USER)
1c0310ad 1616 stack_depot_request_early_init();
e17f1dfb
VB
1617 }
1618 }
1619
1620 /*
1621 * For backwards compatibility, a single list of flags with list of
a7f1d485
VB
1622 * slabs means debugging is only changed for those slabs, so the global
1623 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1624 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1625 * long as there is no option specifying flags without a slab list.
1626 */
1627 if (slab_list_specified) {
1628 if (!global_slub_debug_changed)
a7f1d485 1629 global_flags = slub_debug;
e17f1dfb
VB
1630 slub_debug_string = saved_str;
1631 }
f0630fff 1632out:
a7f1d485 1633 slub_debug = global_flags;
5cf909c5 1634 if (slub_debug & SLAB_STORE_USER)
1c0310ad 1635 stack_depot_request_early_init();
ca0cab65
VB
1636 if (slub_debug != 0 || slub_debug_string)
1637 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1638 else
1639 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1640 if ((static_branch_unlikely(&init_on_alloc) ||
1641 static_branch_unlikely(&init_on_free)) &&
1642 (slub_debug & SLAB_POISON))
1643 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1644 return 1;
1645}
1646
1647__setup("slub_debug", setup_slub_debug);
1648
c5fd3ca0
AT
1649/*
1650 * kmem_cache_flags - apply debugging options to the cache
1651 * @object_size: the size of an object without meta data
1652 * @flags: flags to set
1653 * @name: name of the cache
c5fd3ca0
AT
1654 *
1655 * Debug option(s) are applied to @flags. In addition to the debug
1656 * option(s), if a slab name (or multiple) is specified i.e.
1657 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1658 * then only the select slabs will receive the debug option(s).
1659 */
0293d1fd 1660slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1661 slab_flags_t flags, const char *name)
41ecc55b 1662{
c5fd3ca0
AT
1663 char *iter;
1664 size_t len;
e17f1dfb
VB
1665 char *next_block;
1666 slab_flags_t block_flags;
ca220593
JB
1667 slab_flags_t slub_debug_local = slub_debug;
1668
a285909f
HY
1669 if (flags & SLAB_NO_USER_FLAGS)
1670 return flags;
1671
ca220593
JB
1672 /*
1673 * If the slab cache is for debugging (e.g. kmemleak) then
1674 * don't store user (stack trace) information by default,
1675 * but let the user enable it via the command line below.
1676 */
1677 if (flags & SLAB_NOLEAKTRACE)
1678 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1679
c5fd3ca0 1680 len = strlen(name);
e17f1dfb
VB
1681 next_block = slub_debug_string;
1682 /* Go through all blocks of debug options, see if any matches our slab's name */
1683 while (next_block) {
1684 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1685 if (!iter)
1686 continue;
1687 /* Found a block that has a slab list, search it */
1688 while (*iter) {
1689 char *end, *glob;
1690 size_t cmplen;
1691
1692 end = strchrnul(iter, ',');
1693 if (next_block && next_block < end)
1694 end = next_block - 1;
1695
1696 glob = strnchr(iter, end - iter, '*');
1697 if (glob)
1698 cmplen = glob - iter;
1699 else
1700 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1701
e17f1dfb
VB
1702 if (!strncmp(name, iter, cmplen)) {
1703 flags |= block_flags;
1704 return flags;
1705 }
c5fd3ca0 1706
e17f1dfb
VB
1707 if (!*end || *end == ';')
1708 break;
1709 iter = end + 1;
c5fd3ca0 1710 }
c5fd3ca0 1711 }
ba0268a8 1712
ca220593 1713 return flags | slub_debug_local;
41ecc55b 1714}
b4a64718 1715#else /* !CONFIG_SLUB_DEBUG */
c0f81a94 1716static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
a50b854e 1717static inline
bb192ed9 1718void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
41ecc55b 1719
fa9b88e4
VB
1720static inline bool alloc_debug_processing(struct kmem_cache *s,
1721 struct slab *slab, void *object, int orig_size) { return true; }
41ecc55b 1722
fa9b88e4
VB
1723static inline bool free_debug_processing(struct kmem_cache *s,
1724 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1725 unsigned long addr, depot_stack_handle_t handle) { return true; }
41ecc55b 1726
a204e6d6 1727static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
bb192ed9 1728static inline int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1729 void *object, u8 val) { return 1; }
fa9b88e4 1730static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
c7323a5a
VB
1731static inline void set_track(struct kmem_cache *s, void *object,
1732 enum track_item alloc, unsigned long addr) {}
5cc6eee8 1733static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1734 struct slab *slab) {}
c65c1877 1735static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1736 struct slab *slab) {}
0293d1fd 1737slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1738 slab_flags_t flags, const char *name)
ba0268a8
CL
1739{
1740 return flags;
1741}
41ecc55b 1742#define slub_debug 0
0f389ec6 1743
fdaa45e9
IM
1744#define disable_higher_order_debug 0
1745
26c02cf0
AB
1746static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1747 { return 0; }
205ab99d
CL
1748static inline void inc_slabs_node(struct kmem_cache *s, int node,
1749 int objects) {}
1750static inline void dec_slabs_node(struct kmem_cache *s, int node,
1751 int objects) {}
7d550c56 1752
0af8489b 1753#ifndef CONFIG_SLUB_TINY
bb192ed9 1754static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
dc07a728 1755 void **freelist, void *nextfree)
52f23478
DZ
1756{
1757 return false;
1758}
0af8489b 1759#endif
02e72cc6
AR
1760#endif /* CONFIG_SLUB_DEBUG */
1761
1762/*
1763 * Hooks for other subsystems that check memory allocations. In a typical
1764 * production configuration these hooks all should produce no code at all.
1765 */
d57a964e
AK
1766static __always_inline bool slab_free_hook(struct kmem_cache *s,
1767 void *x, bool init)
d56791b3
RB
1768{
1769 kmemleak_free_recursive(x, s->flags);
68ef169a 1770 kmsan_slab_free(s, x);
7d550c56 1771
84048039 1772 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 1773
02e72cc6
AR
1774 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1775 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1776
cfbe1636
ME
1777 /* Use KCSAN to help debug racy use-after-free. */
1778 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1779 __kcsan_check_access(x, s->object_size,
1780 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1781
d57a964e
AK
1782 /*
1783 * As memory initialization might be integrated into KASAN,
1784 * kasan_slab_free and initialization memset's must be
1785 * kept together to avoid discrepancies in behavior.
1786 *
1787 * The initialization memset's clear the object and the metadata,
1788 * but don't touch the SLAB redzone.
1789 */
1790 if (init) {
1791 int rsize;
1792
1793 if (!kasan_has_integrated_init())
1794 memset(kasan_reset_tag(x), 0, s->object_size);
1795 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1796 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1797 s->size - s->inuse - rsize);
1798 }
1799 /* KASAN might put x into memory quarantine, delaying its reuse. */
1800 return kasan_slab_free(s, x, init);
02e72cc6 1801}
205ab99d 1802
c3895391 1803static inline bool slab_free_freelist_hook(struct kmem_cache *s,
899447f6
ML
1804 void **head, void **tail,
1805 int *cnt)
81084651 1806{
6471384a
AP
1807
1808 void *object;
1809 void *next = *head;
1810 void *old_tail = *tail ? *tail : *head;
6471384a 1811
b89fb5ef 1812 if (is_kfence_address(next)) {
d57a964e 1813 slab_free_hook(s, next, false);
b89fb5ef
AP
1814 return true;
1815 }
1816
aea4df4c
LA
1817 /* Head and tail of the reconstructed freelist */
1818 *head = NULL;
1819 *tail = NULL;
1b7e816f 1820
aea4df4c
LA
1821 do {
1822 object = next;
1823 next = get_freepointer(s, object);
1824
c3895391 1825 /* If object's reuse doesn't have to be delayed */
d57a964e 1826 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1827 /* Move object to the new freelist */
1828 set_freepointer(s, object, *head);
1829 *head = object;
1830 if (!*tail)
1831 *tail = object;
899447f6
ML
1832 } else {
1833 /*
1834 * Adjust the reconstructed freelist depth
1835 * accordingly if object's reuse is delayed.
1836 */
1837 --(*cnt);
c3895391
AK
1838 }
1839 } while (object != old_tail);
1840
1841 if (*head == *tail)
1842 *tail = NULL;
1843
1844 return *head != NULL;
81084651
JDB
1845}
1846
c0f81a94 1847static void *setup_object(struct kmem_cache *s, void *object)
588f8ba9 1848{
c0f81a94 1849 setup_object_debug(s, object);
4d176711 1850 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1851 if (unlikely(s->ctor)) {
1852 kasan_unpoison_object_data(s, object);
1853 s->ctor(object);
1854 kasan_poison_object_data(s, object);
1855 }
4d176711 1856 return object;
588f8ba9
TG
1857}
1858
81819f0f
CL
1859/*
1860 * Slab allocation and freeing
1861 */
a485e1da
XS
1862static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1863 struct kmem_cache_order_objects oo)
65c3376a 1864{
45387b8c
VB
1865 struct folio *folio;
1866 struct slab *slab;
19af27af 1867 unsigned int order = oo_order(oo);
65c3376a 1868
2154a336 1869 if (node == NUMA_NO_NODE)
45387b8c 1870 folio = (struct folio *)alloc_pages(flags, order);
65c3376a 1871 else
45387b8c 1872 folio = (struct folio *)__alloc_pages_node(node, flags, order);
5dfb4175 1873
45387b8c
VB
1874 if (!folio)
1875 return NULL;
1876
1877 slab = folio_slab(folio);
1878 __folio_set_slab(folio);
8b881763
VB
1879 /* Make the flag visible before any changes to folio->mapping */
1880 smp_wmb();
02d65d6f 1881 if (folio_is_pfmemalloc(folio))
45387b8c
VB
1882 slab_set_pfmemalloc(slab);
1883
1884 return slab;
65c3376a
CL
1885}
1886
210e7a43
TG
1887#ifdef CONFIG_SLAB_FREELIST_RANDOM
1888/* Pre-initialize the random sequence cache */
1889static int init_cache_random_seq(struct kmem_cache *s)
1890{
19af27af 1891 unsigned int count = oo_objects(s->oo);
210e7a43 1892 int err;
210e7a43 1893
a810007a
SR
1894 /* Bailout if already initialised */
1895 if (s->random_seq)
1896 return 0;
1897
210e7a43
TG
1898 err = cache_random_seq_create(s, count, GFP_KERNEL);
1899 if (err) {
1900 pr_err("SLUB: Unable to initialize free list for %s\n",
1901 s->name);
1902 return err;
1903 }
1904
1905 /* Transform to an offset on the set of pages */
1906 if (s->random_seq) {
19af27af
AD
1907 unsigned int i;
1908
210e7a43
TG
1909 for (i = 0; i < count; i++)
1910 s->random_seq[i] *= s->size;
1911 }
1912 return 0;
1913}
1914
1915/* Initialize each random sequence freelist per cache */
1916static void __init init_freelist_randomization(void)
1917{
1918 struct kmem_cache *s;
1919
1920 mutex_lock(&slab_mutex);
1921
1922 list_for_each_entry(s, &slab_caches, list)
1923 init_cache_random_seq(s);
1924
1925 mutex_unlock(&slab_mutex);
1926}
1927
1928/* Get the next entry on the pre-computed freelist randomized */
bb192ed9 1929static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
210e7a43
TG
1930 unsigned long *pos, void *start,
1931 unsigned long page_limit,
1932 unsigned long freelist_count)
1933{
1934 unsigned int idx;
1935
1936 /*
1937 * If the target page allocation failed, the number of objects on the
1938 * page might be smaller than the usual size defined by the cache.
1939 */
1940 do {
1941 idx = s->random_seq[*pos];
1942 *pos += 1;
1943 if (*pos >= freelist_count)
1944 *pos = 0;
1945 } while (unlikely(idx >= page_limit));
1946
1947 return (char *)start + idx;
1948}
1949
1950/* Shuffle the single linked freelist based on a random pre-computed sequence */
bb192ed9 1951static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
1952{
1953 void *start;
1954 void *cur;
1955 void *next;
1956 unsigned long idx, pos, page_limit, freelist_count;
1957
bb192ed9 1958 if (slab->objects < 2 || !s->random_seq)
210e7a43
TG
1959 return false;
1960
1961 freelist_count = oo_objects(s->oo);
8032bf12 1962 pos = get_random_u32_below(freelist_count);
210e7a43 1963
bb192ed9
VB
1964 page_limit = slab->objects * s->size;
1965 start = fixup_red_left(s, slab_address(slab));
210e7a43
TG
1966
1967 /* First entry is used as the base of the freelist */
bb192ed9 1968 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 1969 freelist_count);
c0f81a94 1970 cur = setup_object(s, cur);
bb192ed9 1971 slab->freelist = cur;
210e7a43 1972
bb192ed9
VB
1973 for (idx = 1; idx < slab->objects; idx++) {
1974 next = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 1975 freelist_count);
c0f81a94 1976 next = setup_object(s, next);
210e7a43
TG
1977 set_freepointer(s, cur, next);
1978 cur = next;
1979 }
210e7a43
TG
1980 set_freepointer(s, cur, NULL);
1981
1982 return true;
1983}
1984#else
1985static inline int init_cache_random_seq(struct kmem_cache *s)
1986{
1987 return 0;
1988}
1989static inline void init_freelist_randomization(void) { }
bb192ed9 1990static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
1991{
1992 return false;
1993}
1994#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1995
bb192ed9 1996static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
81819f0f 1997{
bb192ed9 1998 struct slab *slab;
834f3d11 1999 struct kmem_cache_order_objects oo = s->oo;
ba52270d 2000 gfp_t alloc_gfp;
4d176711 2001 void *start, *p, *next;
a50b854e 2002 int idx;
210e7a43 2003 bool shuffle;
81819f0f 2004
7e0528da
CL
2005 flags &= gfp_allowed_mask;
2006
b7a49f0d 2007 flags |= s->allocflags;
e12ba74d 2008
ba52270d
PE
2009 /*
2010 * Let the initial higher-order allocation fail under memory pressure
2011 * so we fall-back to the minimum order allocation.
2012 */
2013 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 2014 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
27c08f75 2015 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
ba52270d 2016
a485e1da 2017 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2018 if (unlikely(!slab)) {
65c3376a 2019 oo = s->min;
80c3a998 2020 alloc_gfp = flags;
65c3376a
CL
2021 /*
2022 * Allocation may have failed due to fragmentation.
2023 * Try a lower order alloc if possible
2024 */
a485e1da 2025 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2026 if (unlikely(!slab))
c7323a5a 2027 return NULL;
588f8ba9 2028 stat(s, ORDER_FALLBACK);
65c3376a 2029 }
5a896d9e 2030
bb192ed9 2031 slab->objects = oo_objects(oo);
c7323a5a
VB
2032 slab->inuse = 0;
2033 slab->frozen = 0;
81819f0f 2034
bb192ed9 2035 account_slab(slab, oo_order(oo), s, flags);
1f3147b4 2036
bb192ed9 2037 slab->slab_cache = s;
81819f0f 2038
6e48a966 2039 kasan_poison_slab(slab);
81819f0f 2040
bb192ed9 2041 start = slab_address(slab);
81819f0f 2042
bb192ed9 2043 setup_slab_debug(s, slab, start);
0316bec2 2044
bb192ed9 2045 shuffle = shuffle_freelist(s, slab);
210e7a43
TG
2046
2047 if (!shuffle) {
4d176711 2048 start = fixup_red_left(s, start);
c0f81a94 2049 start = setup_object(s, start);
bb192ed9
VB
2050 slab->freelist = start;
2051 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
18e50661 2052 next = p + s->size;
c0f81a94 2053 next = setup_object(s, next);
18e50661
AK
2054 set_freepointer(s, p, next);
2055 p = next;
2056 }
2057 set_freepointer(s, p, NULL);
81819f0f 2058 }
81819f0f 2059
bb192ed9 2060 return slab;
81819f0f
CL
2061}
2062
bb192ed9 2063static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
588f8ba9 2064{
44405099
LL
2065 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2066 flags = kmalloc_fix_flags(flags);
588f8ba9 2067
53a0de06
VB
2068 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2069
588f8ba9
TG
2070 return allocate_slab(s,
2071 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2072}
2073
4020b4a2 2074static void __free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2075{
4020b4a2
VB
2076 struct folio *folio = slab_folio(slab);
2077 int order = folio_order(folio);
834f3d11 2078 int pages = 1 << order;
81819f0f 2079
4020b4a2 2080 __slab_clear_pfmemalloc(slab);
4020b4a2 2081 folio->mapping = NULL;
8b881763
VB
2082 /* Make the mapping reset visible before clearing the flag */
2083 smp_wmb();
2084 __folio_clear_slab(folio);
c7b23b68 2085 mm_account_reclaimed_pages(pages);
4020b4a2 2086 unaccount_slab(slab, order, s);
c034c6a4 2087 __free_pages(&folio->page, order);
81819f0f
CL
2088}
2089
2090static void rcu_free_slab(struct rcu_head *h)
2091{
bb192ed9 2092 struct slab *slab = container_of(h, struct slab, rcu_head);
da9a638c 2093
bb192ed9 2094 __free_slab(slab->slab_cache, slab);
81819f0f
CL
2095}
2096
bb192ed9 2097static void free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2098{
bc29d5bd
VB
2099 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2100 void *p;
2101
2102 slab_pad_check(s, slab);
2103 for_each_object(p, s, slab_address(slab), slab->objects)
2104 check_object(s, slab, p, SLUB_RED_INACTIVE);
2105 }
2106
2107 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
bb192ed9 2108 call_rcu(&slab->rcu_head, rcu_free_slab);
bc29d5bd 2109 else
bb192ed9 2110 __free_slab(s, slab);
81819f0f
CL
2111}
2112
bb192ed9 2113static void discard_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2114{
bb192ed9
VB
2115 dec_slabs_node(s, slab_nid(slab), slab->objects);
2116 free_slab(s, slab);
81819f0f
CL
2117}
2118
2119/*
5cc6eee8 2120 * Management of partially allocated slabs.
81819f0f 2121 */
1e4dd946 2122static inline void
bb192ed9 2123__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
81819f0f 2124{
e95eed57 2125 n->nr_partial++;
136333d1 2126 if (tail == DEACTIVATE_TO_TAIL)
bb192ed9 2127 list_add_tail(&slab->slab_list, &n->partial);
7c2e132c 2128 else
bb192ed9 2129 list_add(&slab->slab_list, &n->partial);
81819f0f
CL
2130}
2131
1e4dd946 2132static inline void add_partial(struct kmem_cache_node *n,
bb192ed9 2133 struct slab *slab, int tail)
62e346a8 2134{
c65c1877 2135 lockdep_assert_held(&n->list_lock);
bb192ed9 2136 __add_partial(n, slab, tail);
1e4dd946 2137}
c65c1877 2138
1e4dd946 2139static inline void remove_partial(struct kmem_cache_node *n,
bb192ed9 2140 struct slab *slab)
1e4dd946
SR
2141{
2142 lockdep_assert_held(&n->list_lock);
bb192ed9 2143 list_del(&slab->slab_list);
52b4b950 2144 n->nr_partial--;
1e4dd946
SR
2145}
2146
c7323a5a
VB
2147/*
2148 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2149 * slab from the n->partial list. Remove only a single object from the slab, do
2150 * the alloc_debug_processing() checks and leave the slab on the list, or move
2151 * it to full list if it was the last free object.
2152 */
2153static void *alloc_single_from_partial(struct kmem_cache *s,
6edf2576 2154 struct kmem_cache_node *n, struct slab *slab, int orig_size)
c7323a5a
VB
2155{
2156 void *object;
2157
2158 lockdep_assert_held(&n->list_lock);
2159
2160 object = slab->freelist;
2161 slab->freelist = get_freepointer(s, object);
2162 slab->inuse++;
2163
6edf2576 2164 if (!alloc_debug_processing(s, slab, object, orig_size)) {
c7323a5a
VB
2165 remove_partial(n, slab);
2166 return NULL;
2167 }
2168
2169 if (slab->inuse == slab->objects) {
2170 remove_partial(n, slab);
2171 add_full(s, n, slab);
2172 }
2173
2174 return object;
2175}
2176
2177/*
2178 * Called only for kmem_cache_debug() caches to allocate from a freshly
2179 * allocated slab. Allocate a single object instead of whole freelist
2180 * and put the slab to the partial (or full) list.
2181 */
2182static void *alloc_single_from_new_slab(struct kmem_cache *s,
6edf2576 2183 struct slab *slab, int orig_size)
c7323a5a
VB
2184{
2185 int nid = slab_nid(slab);
2186 struct kmem_cache_node *n = get_node(s, nid);
2187 unsigned long flags;
2188 void *object;
2189
2190
2191 object = slab->freelist;
2192 slab->freelist = get_freepointer(s, object);
2193 slab->inuse = 1;
2194
6edf2576 2195 if (!alloc_debug_processing(s, slab, object, orig_size))
c7323a5a
VB
2196 /*
2197 * It's not really expected that this would fail on a
2198 * freshly allocated slab, but a concurrent memory
2199 * corruption in theory could cause that.
2200 */
2201 return NULL;
2202
2203 spin_lock_irqsave(&n->list_lock, flags);
2204
2205 if (slab->inuse == slab->objects)
2206 add_full(s, n, slab);
2207 else
2208 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2209
2210 inc_slabs_node(s, nid, slab->objects);
2211 spin_unlock_irqrestore(&n->list_lock, flags);
2212
2213 return object;
2214}
2215
81819f0f 2216/*
7ced3719
CL
2217 * Remove slab from the partial list, freeze it and
2218 * return the pointer to the freelist.
81819f0f 2219 *
497b66f2 2220 * Returns a list of objects or NULL if it fails.
81819f0f 2221 */
497b66f2 2222static inline void *acquire_slab(struct kmem_cache *s,
bb192ed9 2223 struct kmem_cache_node *n, struct slab *slab,
b47291ef 2224 int mode)
81819f0f 2225{
2cfb7455
CL
2226 void *freelist;
2227 unsigned long counters;
bb192ed9 2228 struct slab new;
2cfb7455 2229
c65c1877
PZ
2230 lockdep_assert_held(&n->list_lock);
2231
2cfb7455
CL
2232 /*
2233 * Zap the freelist and set the frozen bit.
2234 * The old freelist is the list of objects for the
2235 * per cpu allocation list.
2236 */
bb192ed9
VB
2237 freelist = slab->freelist;
2238 counters = slab->counters;
7ced3719 2239 new.counters = counters;
23910c50 2240 if (mode) {
bb192ed9 2241 new.inuse = slab->objects;
23910c50
PE
2242 new.freelist = NULL;
2243 } else {
2244 new.freelist = freelist;
2245 }
2cfb7455 2246
a0132ac0 2247 VM_BUG_ON(new.frozen);
7ced3719 2248 new.frozen = 1;
2cfb7455 2249
6801be4f 2250 if (!__slab_update_freelist(s, slab,
2cfb7455 2251 freelist, counters,
02d7633f 2252 new.freelist, new.counters,
7ced3719 2253 "acquire_slab"))
7ced3719 2254 return NULL;
2cfb7455 2255
bb192ed9 2256 remove_partial(n, slab);
7ced3719 2257 WARN_ON(!freelist);
49e22585 2258 return freelist;
81819f0f
CL
2259}
2260
e0a043aa 2261#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2262static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
e0a043aa 2263#else
bb192ed9 2264static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
e0a043aa
VB
2265 int drain) { }
2266#endif
01b34d16 2267static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
49e22585 2268
81819f0f 2269/*
672bba3a 2270 * Try to allocate a partial slab from a specific node.
81819f0f 2271 */
8ba00bb6 2272static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
6edf2576 2273 struct partial_context *pc)
81819f0f 2274{
bb192ed9 2275 struct slab *slab, *slab2;
49e22585 2276 void *object = NULL;
4b1f449d 2277 unsigned long flags;
bb192ed9 2278 unsigned int partial_slabs = 0;
81819f0f
CL
2279
2280 /*
2281 * Racy check. If we mistakenly see no partial slabs then we
2282 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2283 * partial slab and there is none available then get_partial()
672bba3a 2284 * will return NULL.
81819f0f
CL
2285 */
2286 if (!n || !n->nr_partial)
2287 return NULL;
2288
4b1f449d 2289 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 2290 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
8ba00bb6 2291 void *t;
49e22585 2292
6edf2576 2293 if (!pfmemalloc_match(slab, pc->flags))
8ba00bb6
JK
2294 continue;
2295
0af8489b 2296 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
6edf2576
FT
2297 object = alloc_single_from_partial(s, n, slab,
2298 pc->orig_size);
c7323a5a
VB
2299 if (object)
2300 break;
2301 continue;
2302 }
2303
bb192ed9 2304 t = acquire_slab(s, n, slab, object == NULL);
49e22585 2305 if (!t)
9b1ea29b 2306 break;
49e22585 2307
12d79634 2308 if (!object) {
6edf2576 2309 *pc->slab = slab;
49e22585 2310 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2311 object = t;
49e22585 2312 } else {
bb192ed9 2313 put_cpu_partial(s, slab, 0);
8028dcea 2314 stat(s, CPU_PARTIAL_NODE);
bb192ed9 2315 partial_slabs++;
49e22585 2316 }
b47291ef 2317#ifdef CONFIG_SLUB_CPU_PARTIAL
345c905d 2318 if (!kmem_cache_has_cpu_partial(s)
bb192ed9 2319 || partial_slabs > s->cpu_partial_slabs / 2)
49e22585 2320 break;
b47291ef
VB
2321#else
2322 break;
2323#endif
49e22585 2324
497b66f2 2325 }
4b1f449d 2326 spin_unlock_irqrestore(&n->list_lock, flags);
497b66f2 2327 return object;
81819f0f
CL
2328}
2329
2330/*
c2092c12 2331 * Get a slab from somewhere. Search in increasing NUMA distances.
81819f0f 2332 */
6edf2576 2333static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
81819f0f
CL
2334{
2335#ifdef CONFIG_NUMA
2336 struct zonelist *zonelist;
dd1a239f 2337 struct zoneref *z;
54a6eb5c 2338 struct zone *zone;
6edf2576 2339 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
497b66f2 2340 void *object;
cc9a6c87 2341 unsigned int cpuset_mems_cookie;
81819f0f
CL
2342
2343 /*
672bba3a
CL
2344 * The defrag ratio allows a configuration of the tradeoffs between
2345 * inter node defragmentation and node local allocations. A lower
2346 * defrag_ratio increases the tendency to do local allocations
2347 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2348 *
672bba3a
CL
2349 * If the defrag_ratio is set to 0 then kmalloc() always
2350 * returns node local objects. If the ratio is higher then kmalloc()
2351 * may return off node objects because partial slabs are obtained
2352 * from other nodes and filled up.
81819f0f 2353 *
43efd3ea
LP
2354 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2355 * (which makes defrag_ratio = 1000) then every (well almost)
2356 * allocation will first attempt to defrag slab caches on other nodes.
2357 * This means scanning over all nodes to look for partial slabs which
2358 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2359 * with available objects.
81819f0f 2360 */
9824601e
CL
2361 if (!s->remote_node_defrag_ratio ||
2362 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2363 return NULL;
2364
cc9a6c87 2365 do {
d26914d1 2366 cpuset_mems_cookie = read_mems_allowed_begin();
6edf2576 2367 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
97a225e6 2368 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2369 struct kmem_cache_node *n;
2370
2371 n = get_node(s, zone_to_nid(zone));
2372
6edf2576 2373 if (n && cpuset_zone_allowed(zone, pc->flags) &&
cc9a6c87 2374 n->nr_partial > s->min_partial) {
6edf2576 2375 object = get_partial_node(s, n, pc);
cc9a6c87
MG
2376 if (object) {
2377 /*
d26914d1
MG
2378 * Don't check read_mems_allowed_retry()
2379 * here - if mems_allowed was updated in
2380 * parallel, that was a harmless race
2381 * between allocation and the cpuset
2382 * update
cc9a6c87 2383 */
cc9a6c87
MG
2384 return object;
2385 }
c0ff7453 2386 }
81819f0f 2387 }
d26914d1 2388 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2389#endif /* CONFIG_NUMA */
81819f0f
CL
2390 return NULL;
2391}
2392
2393/*
c2092c12 2394 * Get a partial slab, lock it and return it.
81819f0f 2395 */
6edf2576 2396static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
81819f0f 2397{
497b66f2 2398 void *object;
a561ce00
JK
2399 int searchnode = node;
2400
2401 if (node == NUMA_NO_NODE)
2402 searchnode = numa_mem_id();
81819f0f 2403
6edf2576 2404 object = get_partial_node(s, get_node(s, searchnode), pc);
497b66f2
CL
2405 if (object || node != NUMA_NO_NODE)
2406 return object;
81819f0f 2407
6edf2576 2408 return get_any_partial(s, pc);
81819f0f
CL
2409}
2410
0af8489b
VB
2411#ifndef CONFIG_SLUB_TINY
2412
923717cb 2413#ifdef CONFIG_PREEMPTION
8a5ec0ba 2414/*
0d645ed1 2415 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2416 * during cmpxchg. The transactions start with the cpu number and are then
2417 * incremented by CONFIG_NR_CPUS.
2418 */
2419#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2420#else
2421/*
2422 * No preemption supported therefore also no need to check for
2423 * different cpus.
2424 */
2425#define TID_STEP 1
0af8489b 2426#endif /* CONFIG_PREEMPTION */
8a5ec0ba
CL
2427
2428static inline unsigned long next_tid(unsigned long tid)
2429{
2430 return tid + TID_STEP;
2431}
2432
9d5f0be0 2433#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2434static inline unsigned int tid_to_cpu(unsigned long tid)
2435{
2436 return tid % TID_STEP;
2437}
2438
2439static inline unsigned long tid_to_event(unsigned long tid)
2440{
2441 return tid / TID_STEP;
2442}
9d5f0be0 2443#endif
8a5ec0ba
CL
2444
2445static inline unsigned int init_tid(int cpu)
2446{
2447 return cpu;
2448}
2449
2450static inline void note_cmpxchg_failure(const char *n,
2451 const struct kmem_cache *s, unsigned long tid)
2452{
2453#ifdef SLUB_DEBUG_CMPXCHG
2454 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2455
f9f58285 2456 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2457
923717cb 2458#ifdef CONFIG_PREEMPTION
8a5ec0ba 2459 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2460 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2461 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2462 else
2463#endif
2464 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2465 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2466 tid_to_event(tid), tid_to_event(actual_tid));
2467 else
f9f58285 2468 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2469 actual_tid, tid, next_tid(tid));
2470#endif
4fdccdfb 2471 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2472}
2473
788e1aad 2474static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2475{
8a5ec0ba 2476 int cpu;
bd0e7491 2477 struct kmem_cache_cpu *c;
8a5ec0ba 2478
bd0e7491
VB
2479 for_each_possible_cpu(cpu) {
2480 c = per_cpu_ptr(s->cpu_slab, cpu);
2481 local_lock_init(&c->lock);
2482 c->tid = init_tid(cpu);
2483 }
8a5ec0ba 2484}
2cfb7455 2485
81819f0f 2486/*
c2092c12 2487 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
a019d201
VB
2488 * unfreezes the slabs and puts it on the proper list.
2489 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2490 * by the caller.
81819f0f 2491 */
bb192ed9 2492static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
a019d201 2493 void *freelist)
81819f0f 2494{
a8e53869 2495 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
bb192ed9 2496 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
6d3a16d0
HY
2497 int free_delta = 0;
2498 enum slab_modes mode = M_NONE;
d930ff03 2499 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2500 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2501 unsigned long flags = 0;
bb192ed9
VB
2502 struct slab new;
2503 struct slab old;
2cfb7455 2504
bb192ed9 2505 if (slab->freelist) {
84e554e6 2506 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2507 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2508 }
2509
894b8788 2510 /*
d930ff03
VB
2511 * Stage one: Count the objects on cpu's freelist as free_delta and
2512 * remember the last object in freelist_tail for later splicing.
2cfb7455 2513 */
d930ff03
VB
2514 freelist_tail = NULL;
2515 freelist_iter = freelist;
2516 while (freelist_iter) {
2517 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2518
52f23478
DZ
2519 /*
2520 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2521 * 'freelist_iter' is already corrupted. So isolate all objects
2522 * starting at 'freelist_iter' by skipping them.
52f23478 2523 */
bb192ed9 2524 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
52f23478
DZ
2525 break;
2526
d930ff03
VB
2527 freelist_tail = freelist_iter;
2528 free_delta++;
2cfb7455 2529
d930ff03 2530 freelist_iter = nextfree;
2cfb7455
CL
2531 }
2532
894b8788 2533 /*
c2092c12
VB
2534 * Stage two: Unfreeze the slab while splicing the per-cpu
2535 * freelist to the head of slab's freelist.
d930ff03 2536 *
c2092c12 2537 * Ensure that the slab is unfrozen while the list presence
d930ff03 2538 * reflects the actual number of objects during unfreeze.
2cfb7455 2539 *
6d3a16d0
HY
2540 * We first perform cmpxchg holding lock and insert to list
2541 * when it succeed. If there is mismatch then the slab is not
2542 * unfrozen and number of objects in the slab may have changed.
2543 * Then release lock and retry cmpxchg again.
894b8788 2544 */
2cfb7455 2545redo:
894b8788 2546
bb192ed9
VB
2547 old.freelist = READ_ONCE(slab->freelist);
2548 old.counters = READ_ONCE(slab->counters);
a0132ac0 2549 VM_BUG_ON(!old.frozen);
7c2e132c 2550
2cfb7455
CL
2551 /* Determine target state of the slab */
2552 new.counters = old.counters;
d930ff03
VB
2553 if (freelist_tail) {
2554 new.inuse -= free_delta;
2555 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2556 new.freelist = freelist;
2557 } else
2558 new.freelist = old.freelist;
2559
2560 new.frozen = 0;
2561
6d3a16d0
HY
2562 if (!new.inuse && n->nr_partial >= s->min_partial) {
2563 mode = M_FREE;
2564 } else if (new.freelist) {
2565 mode = M_PARTIAL;
2566 /*
2567 * Taking the spinlock removes the possibility that
2568 * acquire_slab() will see a slab that is frozen
2569 */
2570 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455 2571 } else {
6d3a16d0 2572 mode = M_FULL_NOLIST;
2cfb7455
CL
2573 }
2574
2cfb7455 2575
6801be4f 2576 if (!slab_update_freelist(s, slab,
2cfb7455
CL
2577 old.freelist, old.counters,
2578 new.freelist, new.counters,
6d3a16d0 2579 "unfreezing slab")) {
a8e53869 2580 if (mode == M_PARTIAL)
6d3a16d0 2581 spin_unlock_irqrestore(&n->list_lock, flags);
2cfb7455 2582 goto redo;
6d3a16d0 2583 }
2cfb7455 2584
2cfb7455 2585
6d3a16d0
HY
2586 if (mode == M_PARTIAL) {
2587 add_partial(n, slab, tail);
2588 spin_unlock_irqrestore(&n->list_lock, flags);
88349a28 2589 stat(s, tail);
6d3a16d0 2590 } else if (mode == M_FREE) {
2cfb7455 2591 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2592 discard_slab(s, slab);
2cfb7455 2593 stat(s, FREE_SLAB);
6d3a16d0
HY
2594 } else if (mode == M_FULL_NOLIST) {
2595 stat(s, DEACTIVATE_FULL);
894b8788 2596 }
81819f0f
CL
2597}
2598
345c905d 2599#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2600static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
fc1455f4 2601{
43d77867 2602 struct kmem_cache_node *n = NULL, *n2 = NULL;
bb192ed9 2603 struct slab *slab, *slab_to_discard = NULL;
7cf9f3ba 2604 unsigned long flags = 0;
49e22585 2605
bb192ed9
VB
2606 while (partial_slab) {
2607 struct slab new;
2608 struct slab old;
49e22585 2609
bb192ed9
VB
2610 slab = partial_slab;
2611 partial_slab = slab->next;
43d77867 2612
bb192ed9 2613 n2 = get_node(s, slab_nid(slab));
43d77867
JK
2614 if (n != n2) {
2615 if (n)
7cf9f3ba 2616 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
2617
2618 n = n2;
7cf9f3ba 2619 spin_lock_irqsave(&n->list_lock, flags);
43d77867 2620 }
49e22585
CL
2621
2622 do {
2623
bb192ed9
VB
2624 old.freelist = slab->freelist;
2625 old.counters = slab->counters;
a0132ac0 2626 VM_BUG_ON(!old.frozen);
49e22585
CL
2627
2628 new.counters = old.counters;
2629 new.freelist = old.freelist;
2630
2631 new.frozen = 0;
2632
6801be4f 2633 } while (!__slab_update_freelist(s, slab,
49e22585
CL
2634 old.freelist, old.counters,
2635 new.freelist, new.counters,
2636 "unfreezing slab"));
2637
8a5b20ae 2638 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
bb192ed9
VB
2639 slab->next = slab_to_discard;
2640 slab_to_discard = slab;
43d77867 2641 } else {
bb192ed9 2642 add_partial(n, slab, DEACTIVATE_TO_TAIL);
43d77867 2643 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2644 }
2645 }
2646
2647 if (n)
7cf9f3ba 2648 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 2649
bb192ed9
VB
2650 while (slab_to_discard) {
2651 slab = slab_to_discard;
2652 slab_to_discard = slab_to_discard->next;
9ada1934
SL
2653
2654 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2655 discard_slab(s, slab);
9ada1934
SL
2656 stat(s, FREE_SLAB);
2657 }
fc1455f4 2658}
f3ab8b6b 2659
fc1455f4
VB
2660/*
2661 * Unfreeze all the cpu partial slabs.
2662 */
2663static void unfreeze_partials(struct kmem_cache *s)
2664{
bb192ed9 2665 struct slab *partial_slab;
fc1455f4
VB
2666 unsigned long flags;
2667
bd0e7491 2668 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2669 partial_slab = this_cpu_read(s->cpu_slab->partial);
fc1455f4 2670 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 2671 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4 2672
bb192ed9
VB
2673 if (partial_slab)
2674 __unfreeze_partials(s, partial_slab);
fc1455f4
VB
2675}
2676
2677static void unfreeze_partials_cpu(struct kmem_cache *s,
2678 struct kmem_cache_cpu *c)
2679{
bb192ed9 2680 struct slab *partial_slab;
fc1455f4 2681
bb192ed9 2682 partial_slab = slub_percpu_partial(c);
fc1455f4
VB
2683 c->partial = NULL;
2684
bb192ed9
VB
2685 if (partial_slab)
2686 __unfreeze_partials(s, partial_slab);
49e22585
CL
2687}
2688
2689/*
c2092c12
VB
2690 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2691 * partial slab slot if available.
49e22585
CL
2692 *
2693 * If we did not find a slot then simply move all the partials to the
2694 * per node partial list.
2695 */
bb192ed9 2696static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
49e22585 2697{
bb192ed9
VB
2698 struct slab *oldslab;
2699 struct slab *slab_to_unfreeze = NULL;
e0a043aa 2700 unsigned long flags;
bb192ed9 2701 int slabs = 0;
49e22585 2702
bd0e7491 2703 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 2704
bb192ed9 2705 oldslab = this_cpu_read(s->cpu_slab->partial);
e0a043aa 2706
bb192ed9
VB
2707 if (oldslab) {
2708 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
e0a043aa
VB
2709 /*
2710 * Partial array is full. Move the existing set to the
2711 * per node partial list. Postpone the actual unfreezing
2712 * outside of the critical section.
2713 */
bb192ed9
VB
2714 slab_to_unfreeze = oldslab;
2715 oldslab = NULL;
e0a043aa 2716 } else {
bb192ed9 2717 slabs = oldslab->slabs;
49e22585 2718 }
e0a043aa 2719 }
49e22585 2720
bb192ed9 2721 slabs++;
49e22585 2722
bb192ed9
VB
2723 slab->slabs = slabs;
2724 slab->next = oldslab;
49e22585 2725
bb192ed9 2726 this_cpu_write(s->cpu_slab->partial, slab);
e0a043aa 2727
bd0e7491 2728 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa 2729
bb192ed9
VB
2730 if (slab_to_unfreeze) {
2731 __unfreeze_partials(s, slab_to_unfreeze);
e0a043aa
VB
2732 stat(s, CPU_PARTIAL_DRAIN);
2733 }
49e22585
CL
2734}
2735
e0a043aa
VB
2736#else /* CONFIG_SLUB_CPU_PARTIAL */
2737
2738static inline void unfreeze_partials(struct kmem_cache *s) { }
2739static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2740 struct kmem_cache_cpu *c) { }
2741
2742#endif /* CONFIG_SLUB_CPU_PARTIAL */
2743
dfb4f096 2744static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2745{
5a836bf6 2746 unsigned long flags;
bb192ed9 2747 struct slab *slab;
5a836bf6
SAS
2748 void *freelist;
2749
bd0e7491 2750 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6 2751
bb192ed9 2752 slab = c->slab;
5a836bf6 2753 freelist = c->freelist;
c17dda40 2754
bb192ed9 2755 c->slab = NULL;
a019d201 2756 c->freelist = NULL;
c17dda40 2757 c->tid = next_tid(c->tid);
a019d201 2758
bd0e7491 2759 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 2760
bb192ed9
VB
2761 if (slab) {
2762 deactivate_slab(s, slab, freelist);
5a836bf6
SAS
2763 stat(s, CPUSLAB_FLUSH);
2764 }
81819f0f
CL
2765}
2766
0c710013 2767static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2768{
9dfc6e68 2769 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547 2770 void *freelist = c->freelist;
bb192ed9 2771 struct slab *slab = c->slab;
81819f0f 2772
bb192ed9 2773 c->slab = NULL;
08beb547
VB
2774 c->freelist = NULL;
2775 c->tid = next_tid(c->tid);
2776
bb192ed9
VB
2777 if (slab) {
2778 deactivate_slab(s, slab, freelist);
08beb547
VB
2779 stat(s, CPUSLAB_FLUSH);
2780 }
49e22585 2781
fc1455f4 2782 unfreeze_partials_cpu(s, c);
81819f0f
CL
2783}
2784
5a836bf6
SAS
2785struct slub_flush_work {
2786 struct work_struct work;
2787 struct kmem_cache *s;
2788 bool skip;
2789};
2790
fc1455f4
VB
2791/*
2792 * Flush cpu slab.
2793 *
5a836bf6 2794 * Called from CPU work handler with migration disabled.
fc1455f4 2795 */
5a836bf6 2796static void flush_cpu_slab(struct work_struct *w)
81819f0f 2797{
5a836bf6
SAS
2798 struct kmem_cache *s;
2799 struct kmem_cache_cpu *c;
2800 struct slub_flush_work *sfw;
2801
2802 sfw = container_of(w, struct slub_flush_work, work);
2803
2804 s = sfw->s;
2805 c = this_cpu_ptr(s->cpu_slab);
fc1455f4 2806
bb192ed9 2807 if (c->slab)
fc1455f4 2808 flush_slab(s, c);
81819f0f 2809
fc1455f4 2810 unfreeze_partials(s);
81819f0f
CL
2811}
2812
5a836bf6 2813static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 2814{
a8364d55
GBY
2815 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2816
bb192ed9 2817 return c->slab || slub_percpu_partial(c);
a8364d55
GBY
2818}
2819
5a836bf6
SAS
2820static DEFINE_MUTEX(flush_lock);
2821static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2822
2823static void flush_all_cpus_locked(struct kmem_cache *s)
2824{
2825 struct slub_flush_work *sfw;
2826 unsigned int cpu;
2827
2828 lockdep_assert_cpus_held();
2829 mutex_lock(&flush_lock);
2830
2831 for_each_online_cpu(cpu) {
2832 sfw = &per_cpu(slub_flush, cpu);
2833 if (!has_cpu_slab(cpu, s)) {
2834 sfw->skip = true;
2835 continue;
2836 }
2837 INIT_WORK(&sfw->work, flush_cpu_slab);
2838 sfw->skip = false;
2839 sfw->s = s;
e45cc288 2840 queue_work_on(cpu, flushwq, &sfw->work);
5a836bf6
SAS
2841 }
2842
2843 for_each_online_cpu(cpu) {
2844 sfw = &per_cpu(slub_flush, cpu);
2845 if (sfw->skip)
2846 continue;
2847 flush_work(&sfw->work);
2848 }
2849
2850 mutex_unlock(&flush_lock);
2851}
2852
81819f0f
CL
2853static void flush_all(struct kmem_cache *s)
2854{
5a836bf6
SAS
2855 cpus_read_lock();
2856 flush_all_cpus_locked(s);
2857 cpus_read_unlock();
81819f0f
CL
2858}
2859
a96a87bf
SAS
2860/*
2861 * Use the cpu notifier to insure that the cpu slabs are flushed when
2862 * necessary.
2863 */
2864static int slub_cpu_dead(unsigned int cpu)
2865{
2866 struct kmem_cache *s;
a96a87bf
SAS
2867
2868 mutex_lock(&slab_mutex);
0e7ac738 2869 list_for_each_entry(s, &slab_caches, list)
a96a87bf 2870 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
2871 mutex_unlock(&slab_mutex);
2872 return 0;
2873}
2874
0af8489b
VB
2875#else /* CONFIG_SLUB_TINY */
2876static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2877static inline void flush_all(struct kmem_cache *s) { }
2878static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2879static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2880#endif /* CONFIG_SLUB_TINY */
2881
dfb4f096
CL
2882/*
2883 * Check if the objects in a per cpu structure fit numa
2884 * locality expectations.
2885 */
bb192ed9 2886static inline int node_match(struct slab *slab, int node)
dfb4f096
CL
2887{
2888#ifdef CONFIG_NUMA
bb192ed9 2889 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
dfb4f096
CL
2890 return 0;
2891#endif
2892 return 1;
2893}
2894
9a02d699 2895#ifdef CONFIG_SLUB_DEBUG
bb192ed9 2896static int count_free(struct slab *slab)
781b2ba6 2897{
bb192ed9 2898 return slab->objects - slab->inuse;
781b2ba6
PE
2899}
2900
9a02d699
DR
2901static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2902{
2903 return atomic_long_read(&n->total_objects);
2904}
a579b056
VB
2905
2906/* Supports checking bulk free of a constructed freelist */
fa9b88e4
VB
2907static inline bool free_debug_processing(struct kmem_cache *s,
2908 struct slab *slab, void *head, void *tail, int *bulk_cnt,
2909 unsigned long addr, depot_stack_handle_t handle)
a579b056 2910{
fa9b88e4 2911 bool checks_ok = false;
a579b056
VB
2912 void *object = head;
2913 int cnt = 0;
a579b056
VB
2914
2915 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2916 if (!check_slab(s, slab))
2917 goto out;
2918 }
2919
fa9b88e4 2920 if (slab->inuse < *bulk_cnt) {
c7323a5a 2921 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
fa9b88e4 2922 slab->inuse, *bulk_cnt);
c7323a5a
VB
2923 goto out;
2924 }
2925
a579b056 2926next_object:
c7323a5a 2927
fa9b88e4 2928 if (++cnt > *bulk_cnt)
c7323a5a 2929 goto out_cnt;
a579b056
VB
2930
2931 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2932 if (!free_consistency_checks(s, slab, object, addr))
2933 goto out;
2934 }
2935
2936 if (s->flags & SLAB_STORE_USER)
2937 set_track_update(s, object, TRACK_FREE, addr, handle);
2938 trace(s, slab, object, 0);
2939 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2940 init_object(s, object, SLUB_RED_INACTIVE);
2941
2942 /* Reached end of constructed freelist yet? */
2943 if (object != tail) {
2944 object = get_freepointer(s, object);
2945 goto next_object;
2946 }
c7323a5a 2947 checks_ok = true;
a579b056 2948
c7323a5a 2949out_cnt:
fa9b88e4 2950 if (cnt != *bulk_cnt) {
c7323a5a 2951 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
fa9b88e4
VB
2952 *bulk_cnt, cnt);
2953 *bulk_cnt = cnt;
c7323a5a
VB
2954 }
2955
fa9b88e4 2956out:
c7323a5a
VB
2957
2958 if (!checks_ok)
a579b056 2959 slab_fix(s, "Object at 0x%p not freed", object);
c7323a5a 2960
fa9b88e4 2961 return checks_ok;
a579b056 2962}
9a02d699
DR
2963#endif /* CONFIG_SLUB_DEBUG */
2964
b1a413a3 2965#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
781b2ba6 2966static unsigned long count_partial(struct kmem_cache_node *n,
bb192ed9 2967 int (*get_count)(struct slab *))
781b2ba6
PE
2968{
2969 unsigned long flags;
2970 unsigned long x = 0;
bb192ed9 2971 struct slab *slab;
781b2ba6
PE
2972
2973 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
2974 list_for_each_entry(slab, &n->partial, slab_list)
2975 x += get_count(slab);
781b2ba6
PE
2976 spin_unlock_irqrestore(&n->list_lock, flags);
2977 return x;
2978}
b1a413a3 2979#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
26c02cf0 2980
56d5a2b9 2981#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2982static noinline void
2983slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2984{
9a02d699
DR
2985 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2986 DEFAULT_RATELIMIT_BURST);
781b2ba6 2987 int node;
fa45dc25 2988 struct kmem_cache_node *n;
781b2ba6 2989
9a02d699
DR
2990 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2991 return;
2992
5b3810e5
VB
2993 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2994 nid, gfpflags, &gfpflags);
19af27af 2995 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2996 s->name, s->object_size, s->size, oo_order(s->oo),
2997 oo_order(s->min));
781b2ba6 2998
3b0efdfa 2999 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
3000 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
3001 s->name);
fa5ec8a1 3002
fa45dc25 3003 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
3004 unsigned long nr_slabs;
3005 unsigned long nr_objs;
3006 unsigned long nr_free;
3007
26c02cf0
AB
3008 nr_free = count_partial(n, count_free);
3009 nr_slabs = node_nr_slabs(n);
3010 nr_objs = node_nr_objs(n);
781b2ba6 3011
f9f58285 3012 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
3013 node, nr_slabs, nr_objs, nr_free);
3014 }
3015}
56d5a2b9
VB
3016#else /* CONFIG_SLUB_DEBUG */
3017static inline void
3018slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3019#endif
781b2ba6 3020
01b34d16 3021static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
072bb0aa 3022{
01b34d16 3023 if (unlikely(slab_test_pfmemalloc(slab)))
0b303fb4
VB
3024 return gfp_pfmemalloc_allowed(gfpflags);
3025
3026 return true;
3027}
3028
0af8489b 3029#ifndef CONFIG_SLUB_TINY
6801be4f
PZ
3030static inline bool
3031__update_cpu_freelist_fast(struct kmem_cache *s,
3032 void *freelist_old, void *freelist_new,
3033 unsigned long tid)
3034{
3035 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3036 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3037
3038 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3039 &old.full, new.full);
3040}
3041
213eeb9f 3042/*
c2092c12
VB
3043 * Check the slab->freelist and either transfer the freelist to the
3044 * per cpu freelist or deactivate the slab.
213eeb9f 3045 *
c2092c12 3046 * The slab is still frozen if the return value is not NULL.
213eeb9f 3047 *
c2092c12 3048 * If this function returns NULL then the slab has been unfrozen.
213eeb9f 3049 */
bb192ed9 3050static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
213eeb9f 3051{
bb192ed9 3052 struct slab new;
213eeb9f
CL
3053 unsigned long counters;
3054 void *freelist;
3055
bd0e7491
VB
3056 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3057
213eeb9f 3058 do {
bb192ed9
VB
3059 freelist = slab->freelist;
3060 counters = slab->counters;
6faa6833 3061
213eeb9f 3062 new.counters = counters;
a0132ac0 3063 VM_BUG_ON(!new.frozen);
213eeb9f 3064
bb192ed9 3065 new.inuse = slab->objects;
213eeb9f
CL
3066 new.frozen = freelist != NULL;
3067
6801be4f 3068 } while (!__slab_update_freelist(s, slab,
213eeb9f
CL
3069 freelist, counters,
3070 NULL, new.counters,
3071 "get_freelist"));
3072
3073 return freelist;
3074}
3075
81819f0f 3076/*
894b8788
CL
3077 * Slow path. The lockless freelist is empty or we need to perform
3078 * debugging duties.
3079 *
894b8788
CL
3080 * Processing is still very fast if new objects have been freed to the
3081 * regular freelist. In that case we simply take over the regular freelist
3082 * as the lockless freelist and zap the regular freelist.
81819f0f 3083 *
894b8788
CL
3084 * If that is not working then we fall back to the partial lists. We take the
3085 * first element of the freelist as the object to allocate now and move the
3086 * rest of the freelist to the lockless freelist.
81819f0f 3087 *
894b8788 3088 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
3089 * we need to allocate a new slab. This is the slowest path since it involves
3090 * a call to the page allocator and the setup of a new slab.
a380a3c7 3091 *
e500059b 3092 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 3093 * already disabled (which is the case for bulk allocation).
81819f0f 3094 */
a380a3c7 3095static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3096 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
81819f0f 3097{
6faa6833 3098 void *freelist;
bb192ed9 3099 struct slab *slab;
e500059b 3100 unsigned long flags;
6edf2576 3101 struct partial_context pc;
81819f0f 3102
9f986d99
AW
3103 stat(s, ALLOC_SLOWPATH);
3104
c2092c12 3105reread_slab:
0b303fb4 3106
bb192ed9
VB
3107 slab = READ_ONCE(c->slab);
3108 if (!slab) {
0715e6c5
VB
3109 /*
3110 * if the node is not online or has no normal memory, just
3111 * ignore the node constraint
3112 */
3113 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 3114 !node_isset(node, slab_nodes)))
0715e6c5 3115 node = NUMA_NO_NODE;
81819f0f 3116 goto new_slab;
0715e6c5 3117 }
49e22585 3118redo:
6faa6833 3119
bb192ed9 3120 if (unlikely(!node_match(slab, node))) {
0715e6c5
VB
3121 /*
3122 * same as above but node_match() being false already
3123 * implies node != NUMA_NO_NODE
3124 */
7e1fa93d 3125 if (!node_isset(node, slab_nodes)) {
0715e6c5 3126 node = NUMA_NO_NODE;
0715e6c5 3127 } else {
a561ce00 3128 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 3129 goto deactivate_slab;
a561ce00 3130 }
fc59c053 3131 }
6446faa2 3132
072bb0aa
MG
3133 /*
3134 * By rights, we should be searching for a slab page that was
3135 * PFMEMALLOC but right now, we are losing the pfmemalloc
3136 * information when the page leaves the per-cpu allocator
3137 */
bb192ed9 3138 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
0b303fb4 3139 goto deactivate_slab;
072bb0aa 3140
c2092c12 3141 /* must check again c->slab in case we got preempted and it changed */
bd0e7491 3142 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3143 if (unlikely(slab != c->slab)) {
bd0e7491 3144 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3145 goto reread_slab;
0b303fb4 3146 }
6faa6833
CL
3147 freelist = c->freelist;
3148 if (freelist)
73736e03 3149 goto load_freelist;
03e404af 3150
bb192ed9 3151 freelist = get_freelist(s, slab);
6446faa2 3152
6faa6833 3153 if (!freelist) {
bb192ed9 3154 c->slab = NULL;
eeaa345e 3155 c->tid = next_tid(c->tid);
bd0e7491 3156 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 3157 stat(s, DEACTIVATE_BYPASS);
fc59c053 3158 goto new_slab;
03e404af 3159 }
6446faa2 3160
84e554e6 3161 stat(s, ALLOC_REFILL);
6446faa2 3162
894b8788 3163load_freelist:
0b303fb4 3164
bd0e7491 3165 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 3166
507effea
CL
3167 /*
3168 * freelist is pointing to the list of objects to be used.
c2092c12
VB
3169 * slab is pointing to the slab from which the objects are obtained.
3170 * That slab must be frozen for per cpu allocations to work.
507effea 3171 */
bb192ed9 3172 VM_BUG_ON(!c->slab->frozen);
6faa6833 3173 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 3174 c->tid = next_tid(c->tid);
bd0e7491 3175 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 3176 return freelist;
81819f0f 3177
0b303fb4
VB
3178deactivate_slab:
3179
bd0e7491 3180 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3181 if (slab != c->slab) {
bd0e7491 3182 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3183 goto reread_slab;
0b303fb4 3184 }
a019d201 3185 freelist = c->freelist;
bb192ed9 3186 c->slab = NULL;
a019d201 3187 c->freelist = NULL;
eeaa345e 3188 c->tid = next_tid(c->tid);
bd0e7491 3189 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
bb192ed9 3190 deactivate_slab(s, slab, freelist);
0b303fb4 3191
81819f0f 3192new_slab:
2cfb7455 3193
a93cf07b 3194 if (slub_percpu_partial(c)) {
bd0e7491 3195 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3196 if (unlikely(c->slab)) {
bd0e7491 3197 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3198 goto reread_slab;
fa417ab7 3199 }
4b1f449d 3200 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 3201 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
3202 /* we were preempted and partial list got empty */
3203 goto new_objects;
4b1f449d 3204 }
fa417ab7 3205
bb192ed9
VB
3206 slab = c->slab = slub_percpu_partial(c);
3207 slub_set_percpu_partial(c, slab);
bd0e7491 3208 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
49e22585 3209 stat(s, CPU_PARTIAL_ALLOC);
49e22585 3210 goto redo;
81819f0f
CL
3211 }
3212
fa417ab7
VB
3213new_objects:
3214
6edf2576
FT
3215 pc.flags = gfpflags;
3216 pc.slab = &slab;
3217 pc.orig_size = orig_size;
3218 freelist = get_partial(s, node, &pc);
3f2b77e3 3219 if (freelist)
c2092c12 3220 goto check_new_slab;
2a904905 3221
25c00c50 3222 slub_put_cpu_ptr(s->cpu_slab);
bb192ed9 3223 slab = new_slab(s, gfpflags, node);
25c00c50 3224 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 3225
bb192ed9 3226 if (unlikely(!slab)) {
9a02d699 3227 slab_out_of_memory(s, gfpflags, node);
f4697436 3228 return NULL;
81819f0f 3229 }
2cfb7455 3230
c7323a5a
VB
3231 stat(s, ALLOC_SLAB);
3232
3233 if (kmem_cache_debug(s)) {
6edf2576 3234 freelist = alloc_single_from_new_slab(s, slab, orig_size);
c7323a5a
VB
3235
3236 if (unlikely(!freelist))
3237 goto new_objects;
3238
3239 if (s->flags & SLAB_STORE_USER)
3240 set_track(s, freelist, TRACK_ALLOC, addr);
3241
3242 return freelist;
3243 }
3244
53a0de06 3245 /*
c2092c12 3246 * No other reference to the slab yet so we can
53a0de06
VB
3247 * muck around with it freely without cmpxchg
3248 */
bb192ed9
VB
3249 freelist = slab->freelist;
3250 slab->freelist = NULL;
c7323a5a
VB
3251 slab->inuse = slab->objects;
3252 slab->frozen = 1;
53a0de06 3253
c7323a5a 3254 inc_slabs_node(s, slab_nid(slab), slab->objects);
53a0de06 3255
c2092c12 3256check_new_slab:
2cfb7455 3257
1572df7c 3258 if (kmem_cache_debug(s)) {
c7323a5a
VB
3259 /*
3260 * For debug caches here we had to go through
3261 * alloc_single_from_partial() so just store the tracking info
3262 * and return the object
3263 */
3264 if (s->flags & SLAB_STORE_USER)
3265 set_track(s, freelist, TRACK_ALLOC, addr);
6edf2576 3266
c7323a5a 3267 return freelist;
1572df7c
VB
3268 }
3269
c7323a5a 3270 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
1572df7c
VB
3271 /*
3272 * For !pfmemalloc_match() case we don't load freelist so that
3273 * we don't make further mismatched allocations easier.
3274 */
c7323a5a
VB
3275 deactivate_slab(s, slab, get_freepointer(s, freelist));
3276 return freelist;
3277 }
1572df7c 3278
c2092c12 3279retry_load_slab:
cfdf836e 3280
bd0e7491 3281 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3282 if (unlikely(c->slab)) {
cfdf836e 3283 void *flush_freelist = c->freelist;
bb192ed9 3284 struct slab *flush_slab = c->slab;
cfdf836e 3285
bb192ed9 3286 c->slab = NULL;
cfdf836e
VB
3287 c->freelist = NULL;
3288 c->tid = next_tid(c->tid);
3289
bd0e7491 3290 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 3291
bb192ed9 3292 deactivate_slab(s, flush_slab, flush_freelist);
cfdf836e
VB
3293
3294 stat(s, CPUSLAB_FLUSH);
3295
c2092c12 3296 goto retry_load_slab;
cfdf836e 3297 }
bb192ed9 3298 c->slab = slab;
3f2b77e3 3299
1572df7c 3300 goto load_freelist;
894b8788
CL
3301}
3302
a380a3c7 3303/*
e500059b
VB
3304 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3305 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3306 * pointer.
a380a3c7
CL
3307 */
3308static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3309 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
a380a3c7
CL
3310{
3311 void *p;
a380a3c7 3312
e500059b 3313#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3314 /*
3315 * We may have been preempted and rescheduled on a different
e500059b 3316 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3317 * pointer.
3318 */
25c00c50 3319 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3320#endif
3321
6edf2576 3322 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
e500059b 3323#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3324 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3325#endif
a380a3c7
CL
3326 return p;
3327}
3328
56d5a2b9 3329static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
b89fb5ef 3330 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3331{
dfb4f096 3332 struct kmem_cache_cpu *c;
bb192ed9 3333 struct slab *slab;
8a5ec0ba 3334 unsigned long tid;
56d5a2b9 3335 void *object;
b89fb5ef 3336
8a5ec0ba 3337redo:
8a5ec0ba
CL
3338 /*
3339 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3340 * enabled. We may switch back and forth between cpus while
3341 * reading from one cpu area. That does not matter as long
3342 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3343 *
9b4bc85a
VB
3344 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3345 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3346 * the tid. If we are preempted and switched to another cpu between the
3347 * two reads, it's OK as the two are still associated with the same cpu
3348 * and cmpxchg later will validate the cpu.
8a5ec0ba 3349 */
9b4bc85a
VB
3350 c = raw_cpu_ptr(s->cpu_slab);
3351 tid = READ_ONCE(c->tid);
9aabf810
JK
3352
3353 /*
3354 * Irqless object alloc/free algorithm used here depends on sequence
3355 * of fetching cpu_slab's data. tid should be fetched before anything
c2092c12 3356 * on c to guarantee that object and slab associated with previous tid
9aabf810 3357 * won't be used with current tid. If we fetch tid first, object and
c2092c12 3358 * slab could be one associated with next tid and our alloc/free
9aabf810
JK
3359 * request will be failed. In this case, we will retry. So, no problem.
3360 */
3361 barrier();
8a5ec0ba 3362
8a5ec0ba
CL
3363 /*
3364 * The transaction ids are globally unique per cpu and per operation on
3365 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3366 * occurs on the right processor and that there was no operation on the
3367 * linked list in between.
3368 */
8a5ec0ba 3369
9dfc6e68 3370 object = c->freelist;
bb192ed9 3371 slab = c->slab;
1f04b07d
TG
3372
3373 if (!USE_LOCKLESS_FAST_PATH() ||
bb192ed9 3374 unlikely(!object || !slab || !node_match(slab, node))) {
6edf2576 3375 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
8eae1492 3376 } else {
0ad9500e
ED
3377 void *next_object = get_freepointer_safe(s, object);
3378
8a5ec0ba 3379 /*
25985edc 3380 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3381 * operation and if we are on the right processor.
3382 *
d0e0ac97
CG
3383 * The cmpxchg does the following atomically (without lock
3384 * semantics!)
8a5ec0ba
CL
3385 * 1. Relocate first pointer to the current per cpu area.
3386 * 2. Verify that tid and freelist have not been changed
3387 * 3. If they were not changed replace tid and freelist
3388 *
d0e0ac97
CG
3389 * Since this is without lock semantics the protection is only
3390 * against code executing on this cpu *not* from access by
3391 * other cpus.
8a5ec0ba 3392 */
6801be4f 3393 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
8a5ec0ba
CL
3394 note_cmpxchg_failure("slab_alloc", s, tid);
3395 goto redo;
3396 }
0ad9500e 3397 prefetch_freepointer(s, next_object);
84e554e6 3398 stat(s, ALLOC_FASTPATH);
894b8788 3399 }
0f181f9f 3400
56d5a2b9
VB
3401 return object;
3402}
0af8489b
VB
3403#else /* CONFIG_SLUB_TINY */
3404static void *__slab_alloc_node(struct kmem_cache *s,
3405 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3406{
3407 struct partial_context pc;
3408 struct slab *slab;
3409 void *object;
3410
3411 pc.flags = gfpflags;
3412 pc.slab = &slab;
3413 pc.orig_size = orig_size;
3414 object = get_partial(s, node, &pc);
3415
3416 if (object)
3417 return object;
3418
3419 slab = new_slab(s, gfpflags, node);
3420 if (unlikely(!slab)) {
3421 slab_out_of_memory(s, gfpflags, node);
3422 return NULL;
3423 }
3424
3425 object = alloc_single_from_new_slab(s, slab, orig_size);
3426
3427 return object;
3428}
3429#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
3430
3431/*
3432 * If the object has been wiped upon free, make sure it's fully initialized by
3433 * zeroing out freelist pointer.
3434 */
3435static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3436 void *obj)
3437{
3438 if (unlikely(slab_want_init_on_free(s)) && obj)
3439 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3440 0, sizeof(void *));
3441}
3442
3443/*
3444 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3445 * have the fastpath folded into their functions. So no function call
3446 * overhead for requests that can be satisfied on the fastpath.
3447 *
3448 * The fastpath works by first checking if the lockless freelist can be used.
3449 * If not then __slab_alloc is called for slow processing.
3450 *
3451 * Otherwise we can simply pick the next object from the lockless free list.
3452 */
be784ba8 3453static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
56d5a2b9
VB
3454 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3455{
3456 void *object;
3457 struct obj_cgroup *objcg = NULL;
3458 bool init = false;
3459
3460 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3461 if (!s)
3462 return NULL;
3463
3464 object = kfence_alloc(s, orig_size, gfpflags);
3465 if (unlikely(object))
3466 goto out;
3467
3468 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3469
ce5716c6 3470 maybe_wipe_obj_freeptr(s, object);
da844b78 3471 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 3472
b89fb5ef 3473out:
9ce67395
FT
3474 /*
3475 * When init equals 'true', like for kzalloc() family, only
3476 * @orig_size bytes might be zeroed instead of s->object_size
3477 */
3478 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
5a896d9e 3479
894b8788 3480 return object;
81819f0f
CL
3481}
3482
be784ba8 3483static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
b89fb5ef 3484 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 3485{
88f2ef73 3486 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
3487}
3488
be784ba8 3489static __fastpath_inline
88f2ef73
MS
3490void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3491 gfp_t gfpflags)
81819f0f 3492{
88f2ef73 3493 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
5b882be4 3494
2c1d697f 3495 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5b882be4
EGM
3496
3497 return ret;
81819f0f 3498}
88f2ef73
MS
3499
3500void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3501{
3502 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3503}
81819f0f
CL
3504EXPORT_SYMBOL(kmem_cache_alloc);
3505
88f2ef73
MS
3506void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3507 gfp_t gfpflags)
3508{
3509 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3510}
3511EXPORT_SYMBOL(kmem_cache_alloc_lru);
3512
ed4cd17e
HY
3513void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3514 int node, size_t orig_size,
3515 unsigned long caller)
4a92379b 3516{
ed4cd17e
HY
3517 return slab_alloc_node(s, NULL, gfpflags, node,
3518 caller, orig_size);
4a92379b 3519}
5b882be4 3520
81819f0f
CL
3521void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3522{
88f2ef73 3523 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 3524
2c1d697f 3525 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5b882be4
EGM
3526
3527 return ret;
81819f0f
CL
3528}
3529EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3530
fa9b88e4
VB
3531static noinline void free_to_partial_list(
3532 struct kmem_cache *s, struct slab *slab,
3533 void *head, void *tail, int bulk_cnt,
3534 unsigned long addr)
3535{
3536 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3537 struct slab *slab_free = NULL;
3538 int cnt = bulk_cnt;
3539 unsigned long flags;
3540 depot_stack_handle_t handle = 0;
3541
3542 if (s->flags & SLAB_STORE_USER)
3543 handle = set_track_prepare();
3544
3545 spin_lock_irqsave(&n->list_lock, flags);
3546
3547 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3548 void *prior = slab->freelist;
3549
3550 /* Perform the actual freeing while we still hold the locks */
3551 slab->inuse -= cnt;
3552 set_freepointer(s, tail, prior);
3553 slab->freelist = head;
3554
3555 /*
3556 * If the slab is empty, and node's partial list is full,
3557 * it should be discarded anyway no matter it's on full or
3558 * partial list.
3559 */
3560 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3561 slab_free = slab;
3562
3563 if (!prior) {
3564 /* was on full list */
3565 remove_full(s, n, slab);
3566 if (!slab_free) {
3567 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3568 stat(s, FREE_ADD_PARTIAL);
3569 }
3570 } else if (slab_free) {
3571 remove_partial(n, slab);
3572 stat(s, FREE_REMOVE_PARTIAL);
3573 }
3574 }
3575
3576 if (slab_free) {
3577 /*
3578 * Update the counters while still holding n->list_lock to
3579 * prevent spurious validation warnings
3580 */
3581 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3582 }
3583
3584 spin_unlock_irqrestore(&n->list_lock, flags);
3585
3586 if (slab_free) {
3587 stat(s, FREE_SLAB);
3588 free_slab(s, slab_free);
3589 }
3590}
3591
81819f0f 3592/*
94e4d712 3593 * Slow path handling. This may still be called frequently since objects
894b8788 3594 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3595 *
894b8788 3596 * So we still attempt to reduce cache line usage. Just take the slab
c2092c12 3597 * lock and free the item. If there is no additional partial slab
894b8788 3598 * handling required then we can return immediately.
81819f0f 3599 */
bb192ed9 3600static void __slab_free(struct kmem_cache *s, struct slab *slab,
81084651
JDB
3601 void *head, void *tail, int cnt,
3602 unsigned long addr)
3603
81819f0f
CL
3604{
3605 void *prior;
2cfb7455 3606 int was_frozen;
bb192ed9 3607 struct slab new;
2cfb7455
CL
3608 unsigned long counters;
3609 struct kmem_cache_node *n = NULL;
3f649ab7 3610 unsigned long flags;
81819f0f 3611
8a5ec0ba 3612 stat(s, FREE_SLOWPATH);
81819f0f 3613
b89fb5ef
AP
3614 if (kfence_free(head))
3615 return;
3616
0af8489b 3617 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
fa9b88e4 3618 free_to_partial_list(s, slab, head, tail, cnt, addr);
80f08c19 3619 return;
c7323a5a 3620 }
6446faa2 3621
2cfb7455 3622 do {
837d678d
JK
3623 if (unlikely(n)) {
3624 spin_unlock_irqrestore(&n->list_lock, flags);
3625 n = NULL;
3626 }
bb192ed9
VB
3627 prior = slab->freelist;
3628 counters = slab->counters;
81084651 3629 set_freepointer(s, tail, prior);
2cfb7455
CL
3630 new.counters = counters;
3631 was_frozen = new.frozen;
81084651 3632 new.inuse -= cnt;
837d678d 3633 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3634
c65c1877 3635 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3636
3637 /*
d0e0ac97
CG
3638 * Slab was on no list before and will be
3639 * partially empty
3640 * We can defer the list move and instead
3641 * freeze it.
49e22585
CL
3642 */
3643 new.frozen = 1;
3644
c65c1877 3645 } else { /* Needs to be taken off a list */
49e22585 3646
bb192ed9 3647 n = get_node(s, slab_nid(slab));
49e22585
CL
3648 /*
3649 * Speculatively acquire the list_lock.
3650 * If the cmpxchg does not succeed then we may
3651 * drop the list_lock without any processing.
3652 *
3653 * Otherwise the list_lock will synchronize with
3654 * other processors updating the list of slabs.
3655 */
3656 spin_lock_irqsave(&n->list_lock, flags);
3657
3658 }
2cfb7455 3659 }
81819f0f 3660
6801be4f 3661 } while (!slab_update_freelist(s, slab,
2cfb7455 3662 prior, counters,
81084651 3663 head, new.counters,
2cfb7455 3664 "__slab_free"));
81819f0f 3665
2cfb7455 3666 if (likely(!n)) {
49e22585 3667
c270cf30
AW
3668 if (likely(was_frozen)) {
3669 /*
3670 * The list lock was not taken therefore no list
3671 * activity can be necessary.
3672 */
3673 stat(s, FREE_FROZEN);
3674 } else if (new.frozen) {
3675 /*
c2092c12 3676 * If we just froze the slab then put it onto the
c270cf30
AW
3677 * per cpu partial list.
3678 */
bb192ed9 3679 put_cpu_partial(s, slab, 1);
8028dcea
AS
3680 stat(s, CPU_PARTIAL_FREE);
3681 }
c270cf30 3682
b455def2
L
3683 return;
3684 }
81819f0f 3685
8a5b20ae 3686 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3687 goto slab_empty;
3688
81819f0f 3689 /*
837d678d
JK
3690 * Objects left in the slab. If it was not on the partial list before
3691 * then add it.
81819f0f 3692 */
345c905d 3693 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
bb192ed9
VB
3694 remove_full(s, n, slab);
3695 add_partial(n, slab, DEACTIVATE_TO_TAIL);
837d678d 3696 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3697 }
80f08c19 3698 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3699 return;
3700
3701slab_empty:
a973e9dd 3702 if (prior) {
81819f0f 3703 /*
6fbabb20 3704 * Slab on the partial list.
81819f0f 3705 */
bb192ed9 3706 remove_partial(n, slab);
84e554e6 3707 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3708 } else {
6fbabb20 3709 /* Slab must be on the full list */
bb192ed9 3710 remove_full(s, n, slab);
c65c1877 3711 }
2cfb7455 3712
80f08c19 3713 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3714 stat(s, FREE_SLAB);
bb192ed9 3715 discard_slab(s, slab);
81819f0f
CL
3716}
3717
0af8489b 3718#ifndef CONFIG_SLUB_TINY
894b8788
CL
3719/*
3720 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3721 * can perform fastpath freeing without additional function calls.
3722 *
3723 * The fastpath is only possible if we are freeing to the current cpu slab
3724 * of this processor. This typically the case if we have just allocated
3725 * the item before.
3726 *
3727 * If fastpath is not possible then fall back to __slab_free where we deal
3728 * with all sorts of special processing.
81084651
JDB
3729 *
3730 * Bulk free of a freelist with several objects (all pointing to the
c2092c12 3731 * same slab) possible by specifying head and tail ptr, plus objects
81084651 3732 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3733 */
80a9201a 3734static __always_inline void do_slab_free(struct kmem_cache *s,
bb192ed9 3735 struct slab *slab, void *head, void *tail,
80a9201a 3736 int cnt, unsigned long addr)
894b8788 3737{
81084651 3738 void *tail_obj = tail ? : head;
dfb4f096 3739 struct kmem_cache_cpu *c;
8a5ec0ba 3740 unsigned long tid;
1f04b07d 3741 void **freelist;
964d4bd3 3742
8a5ec0ba
CL
3743redo:
3744 /*
3745 * Determine the currently cpus per cpu slab.
3746 * The cpu may change afterward. However that does not matter since
3747 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3748 * during the cmpxchg then the free will succeed.
8a5ec0ba 3749 */
9b4bc85a
VB
3750 c = raw_cpu_ptr(s->cpu_slab);
3751 tid = READ_ONCE(c->tid);
c016b0bd 3752
9aabf810
JK
3753 /* Same with comment on barrier() in slab_alloc_node() */
3754 barrier();
c016b0bd 3755
1f04b07d
TG
3756 if (unlikely(slab != c->slab)) {
3757 __slab_free(s, slab, head, tail_obj, cnt, addr);
3758 return;
3759 }
3760
3761 if (USE_LOCKLESS_FAST_PATH()) {
3762 freelist = READ_ONCE(c->freelist);
5076190d
LT
3763
3764 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3765
6801be4f 3766 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
8a5ec0ba
CL
3767 note_cmpxchg_failure("slab_free", s, tid);
3768 goto redo;
3769 }
1f04b07d
TG
3770 } else {
3771 /* Update the free list under the local lock */
bd0e7491
VB
3772 local_lock(&s->cpu_slab->lock);
3773 c = this_cpu_ptr(s->cpu_slab);
bb192ed9 3774 if (unlikely(slab != c->slab)) {
bd0e7491
VB
3775 local_unlock(&s->cpu_slab->lock);
3776 goto redo;
3777 }
3778 tid = c->tid;
3779 freelist = c->freelist;
3780
3781 set_freepointer(s, tail_obj, freelist);
3782 c->freelist = head;
3783 c->tid = next_tid(tid);
3784
3785 local_unlock(&s->cpu_slab->lock);
1f04b07d
TG
3786 }
3787 stat(s, FREE_FASTPATH);
894b8788 3788}
0af8489b
VB
3789#else /* CONFIG_SLUB_TINY */
3790static void do_slab_free(struct kmem_cache *s,
3791 struct slab *slab, void *head, void *tail,
3792 int cnt, unsigned long addr)
3793{
3794 void *tail_obj = tail ? : head;
894b8788 3795
0af8489b
VB
3796 __slab_free(s, slab, head, tail_obj, cnt, addr);
3797}
3798#endif /* CONFIG_SLUB_TINY */
894b8788 3799
be784ba8 3800static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
b77d5b1b 3801 void *head, void *tail, void **p, int cnt,
80a9201a
AP
3802 unsigned long addr)
3803{
b77d5b1b 3804 memcg_slab_free_hook(s, slab, p, cnt);
80a9201a 3805 /*
c3895391
AK
3806 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3807 * to remove objects, whose reuse must be delayed.
80a9201a 3808 */
899447f6 3809 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
bb192ed9 3810 do_slab_free(s, slab, head, tail, cnt, addr);
80a9201a
AP
3811}
3812
2bd926b4 3813#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3814void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3815{
bb192ed9 3816 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
80a9201a
AP
3817}
3818#endif
3819
ed4cd17e
HY
3820void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3821{
3822 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3823}
3824
81819f0f
CL
3825void kmem_cache_free(struct kmem_cache *s, void *x)
3826{
b9ce5ef4
GC
3827 s = cache_from_obj(s, x);
3828 if (!s)
79576102 3829 return;
2c1d697f 3830 trace_kmem_cache_free(_RET_IP_, x, s);
b77d5b1b 3831 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
81819f0f
CL
3832}
3833EXPORT_SYMBOL(kmem_cache_free);
3834
d0ecd894 3835struct detached_freelist {
cc465c3b 3836 struct slab *slab;
d0ecd894
JDB
3837 void *tail;
3838 void *freelist;
3839 int cnt;
376bf125 3840 struct kmem_cache *s;
d0ecd894 3841};
fbd02630 3842
d0ecd894
JDB
3843/*
3844 * This function progressively scans the array with free objects (with
3845 * a limited look ahead) and extract objects belonging to the same
cc465c3b
MWO
3846 * slab. It builds a detached freelist directly within the given
3847 * slab/objects. This can happen without any need for
d0ecd894
JDB
3848 * synchronization, because the objects are owned by running process.
3849 * The freelist is build up as a single linked list in the objects.
3850 * The idea is, that this detached freelist can then be bulk
3851 * transferred to the real freelist(s), but only requiring a single
3852 * synchronization primitive. Look ahead in the array is limited due
3853 * to performance reasons.
3854 */
376bf125
JDB
3855static inline
3856int build_detached_freelist(struct kmem_cache *s, size_t size,
3857 void **p, struct detached_freelist *df)
d0ecd894 3858{
d0ecd894
JDB
3859 int lookahead = 3;
3860 void *object;
cc465c3b 3861 struct folio *folio;
b77d5b1b 3862 size_t same;
fbd02630 3863
b77d5b1b 3864 object = p[--size];
cc465c3b 3865 folio = virt_to_folio(object);
ca257195
JDB
3866 if (!s) {
3867 /* Handle kalloc'ed objects */
cc465c3b 3868 if (unlikely(!folio_test_slab(folio))) {
d835eef4 3869 free_large_kmalloc(folio, object);
b77d5b1b 3870 df->slab = NULL;
ca257195
JDB
3871 return size;
3872 }
3873 /* Derive kmem_cache from object */
b77d5b1b
MS
3874 df->slab = folio_slab(folio);
3875 df->s = df->slab->slab_cache;
ca257195 3876 } else {
b77d5b1b 3877 df->slab = folio_slab(folio);
ca257195
JDB
3878 df->s = cache_from_obj(s, object); /* Support for memcg */
3879 }
376bf125 3880
d0ecd894 3881 /* Start new detached freelist */
d0ecd894
JDB
3882 df->tail = object;
3883 df->freelist = object;
d0ecd894
JDB
3884 df->cnt = 1;
3885
b77d5b1b
MS
3886 if (is_kfence_address(object))
3887 return size;
3888
3889 set_freepointer(df->s, object, NULL);
3890
3891 same = size;
d0ecd894
JDB
3892 while (size) {
3893 object = p[--size];
cc465c3b
MWO
3894 /* df->slab is always set at this point */
3895 if (df->slab == virt_to_slab(object)) {
d0ecd894 3896 /* Opportunity build freelist */
376bf125 3897 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3898 df->freelist = object;
3899 df->cnt++;
b77d5b1b
MS
3900 same--;
3901 if (size != same)
3902 swap(p[size], p[same]);
d0ecd894 3903 continue;
fbd02630 3904 }
d0ecd894
JDB
3905
3906 /* Limit look ahead search */
3907 if (!--lookahead)
3908 break;
fbd02630 3909 }
d0ecd894 3910
b77d5b1b 3911 return same;
d0ecd894
JDB
3912}
3913
d0ecd894 3914/* Note that interrupts must be enabled when calling this function. */
376bf125 3915void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894 3916{
2055e67b 3917 if (!size)
d0ecd894
JDB
3918 return;
3919
3920 do {
3921 struct detached_freelist df;
3922
3923 size = build_detached_freelist(s, size, p, &df);
cc465c3b 3924 if (!df.slab)
d0ecd894
JDB
3925 continue;
3926
b77d5b1b
MS
3927 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3928 _RET_IP_);
d0ecd894 3929 } while (likely(size));
484748f0
CL
3930}
3931EXPORT_SYMBOL(kmem_cache_free_bulk);
3932
0af8489b 3933#ifndef CONFIG_SLUB_TINY
56d5a2b9
VB
3934static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3935 size_t size, void **p, struct obj_cgroup *objcg)
484748f0 3936{
994eb764 3937 struct kmem_cache_cpu *c;
f5451547 3938 unsigned long irqflags;
994eb764
JDB
3939 int i;
3940
994eb764
JDB
3941 /*
3942 * Drain objects in the per cpu slab, while disabling local
3943 * IRQs, which protects against PREEMPT and interrupts
3944 * handlers invoking normal fastpath.
3945 */
25c00c50 3946 c = slub_get_cpu_ptr(s->cpu_slab);
f5451547 3947 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
994eb764
JDB
3948
3949 for (i = 0; i < size; i++) {
b89fb5ef 3950 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3951
b89fb5ef
AP
3952 if (unlikely(object)) {
3953 p[i] = object;
3954 continue;
3955 }
3956
3957 object = c->freelist;
ebe909e0 3958 if (unlikely(!object)) {
fd4d9c7d
JH
3959 /*
3960 * We may have removed an object from c->freelist using
3961 * the fastpath in the previous iteration; in that case,
3962 * c->tid has not been bumped yet.
3963 * Since ___slab_alloc() may reenable interrupts while
3964 * allocating memory, we should bump c->tid now.
3965 */
3966 c->tid = next_tid(c->tid);
3967
f5451547 3968 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
e500059b 3969
ebe909e0
JDB
3970 /*
3971 * Invoking slow path likely have side-effect
3972 * of re-populating per CPU c->freelist
3973 */
87098373 3974 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
6edf2576 3975 _RET_IP_, c, s->object_size);
87098373
CL
3976 if (unlikely(!p[i]))
3977 goto error;
3978
ebe909e0 3979 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3980 maybe_wipe_obj_freeptr(s, p[i]);
3981
f5451547 3982 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
e500059b 3983
ebe909e0
JDB
3984 continue; /* goto for-loop */
3985 }
994eb764
JDB
3986 c->freelist = get_freepointer(s, object);
3987 p[i] = object;
0f181f9f 3988 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3989 }
3990 c->tid = next_tid(c->tid);
f5451547 3991 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
25c00c50 3992 slub_put_cpu_ptr(s->cpu_slab);
994eb764 3993
865762a8 3994 return i;
56d5a2b9 3995
87098373 3996error:
25c00c50 3997 slub_put_cpu_ptr(s->cpu_slab);
9ce67395 3998 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
2055e67b 3999 kmem_cache_free_bulk(s, i, p);
865762a8 4000 return 0;
56d5a2b9
VB
4001
4002}
0af8489b
VB
4003#else /* CONFIG_SLUB_TINY */
4004static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4005 size_t size, void **p, struct obj_cgroup *objcg)
4006{
4007 int i;
4008
4009 for (i = 0; i < size; i++) {
4010 void *object = kfence_alloc(s, s->object_size, flags);
4011
4012 if (unlikely(object)) {
4013 p[i] = object;
4014 continue;
4015 }
4016
4017 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4018 _RET_IP_, s->object_size);
4019 if (unlikely(!p[i]))
4020 goto error;
4021
4022 maybe_wipe_obj_freeptr(s, p[i]);
4023 }
4024
4025 return i;
4026
4027error:
dc19745a 4028 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
0af8489b
VB
4029 kmem_cache_free_bulk(s, i, p);
4030 return 0;
4031}
4032#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
4033
4034/* Note that interrupts must be enabled when calling this function. */
4035int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4036 void **p)
4037{
4038 int i;
4039 struct obj_cgroup *objcg = NULL;
4040
4041 if (!size)
4042 return 0;
4043
4044 /* memcg and kmem_cache debug support */
4045 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4046 if (unlikely(!s))
4047 return 0;
4048
4049 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4050
4051 /*
4052 * memcg and kmem_cache debug support and memory initialization.
4053 * Done outside of the IRQ disabled fastpath loop.
4054 */
4055 if (i != 0)
4056 slab_post_alloc_hook(s, objcg, flags, size, p,
dc19745a 4057 slab_want_init_on_alloc(flags, s), s->object_size);
56d5a2b9 4058 return i;
484748f0
CL
4059}
4060EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4061
4062
81819f0f 4063/*
672bba3a
CL
4064 * Object placement in a slab is made very easy because we always start at
4065 * offset 0. If we tune the size of the object to the alignment then we can
4066 * get the required alignment by putting one properly sized object after
4067 * another.
81819f0f
CL
4068 *
4069 * Notice that the allocation order determines the sizes of the per cpu
4070 * caches. Each processor has always one slab available for allocations.
4071 * Increasing the allocation order reduces the number of times that slabs
672bba3a 4072 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 4073 * locking overhead.
81819f0f
CL
4074 */
4075
4076/*
f0953a1b 4077 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
4078 * and slab fragmentation. A higher order reduces the number of partial slabs
4079 * and increases the number of allocations possible without having to
4080 * take the list_lock.
4081 */
19af27af 4082static unsigned int slub_min_order;
90ce872c
VB
4083static unsigned int slub_max_order =
4084 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
19af27af 4085static unsigned int slub_min_objects;
81819f0f 4086
81819f0f
CL
4087/*
4088 * Calculate the order of allocation given an slab object size.
4089 *
672bba3a
CL
4090 * The order of allocation has significant impact on performance and other
4091 * system components. Generally order 0 allocations should be preferred since
4092 * order 0 does not cause fragmentation in the page allocator. Larger objects
4093 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 4094 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
4095 * would be wasted.
4096 *
4097 * In order to reach satisfactory performance we must ensure that a minimum
4098 * number of objects is in one slab. Otherwise we may generate too much
4099 * activity on the partial lists which requires taking the list_lock. This is
4100 * less a concern for large slabs though which are rarely used.
81819f0f 4101 *
672bba3a
CL
4102 * slub_max_order specifies the order where we begin to stop considering the
4103 * number of objects in a slab as critical. If we reach slub_max_order then
4104 * we try to keep the page order as low as possible. So we accept more waste
4105 * of space in favor of a small page order.
81819f0f 4106 *
672bba3a
CL
4107 * Higher order allocations also allow the placement of more objects in a
4108 * slab and thereby reduce object handling overhead. If the user has
dc84207d 4109 * requested a higher minimum order then we start with that one instead of
672bba3a 4110 * the smallest order which will fit the object.
81819f0f 4111 */
d122019b 4112static inline unsigned int calc_slab_order(unsigned int size,
19af27af 4113 unsigned int min_objects, unsigned int max_order,
9736d2a9 4114 unsigned int fract_leftover)
81819f0f 4115{
19af27af
AD
4116 unsigned int min_order = slub_min_order;
4117 unsigned int order;
81819f0f 4118
9736d2a9 4119 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 4120 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 4121
9736d2a9 4122 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 4123 order <= max_order; order++) {
81819f0f 4124
19af27af
AD
4125 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4126 unsigned int rem;
81819f0f 4127
9736d2a9 4128 rem = slab_size % size;
81819f0f 4129
5e6d444e 4130 if (rem <= slab_size / fract_leftover)
81819f0f 4131 break;
81819f0f 4132 }
672bba3a 4133
81819f0f
CL
4134 return order;
4135}
4136
9736d2a9 4137static inline int calculate_order(unsigned int size)
5e6d444e 4138{
19af27af
AD
4139 unsigned int order;
4140 unsigned int min_objects;
4141 unsigned int max_objects;
3286222f 4142 unsigned int nr_cpus;
5e6d444e
CL
4143
4144 /*
4145 * Attempt to find best configuration for a slab. This
4146 * works by first attempting to generate a layout with
4147 * the best configuration and backing off gradually.
4148 *
422ff4d7 4149 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
4150 * we reduce the minimum objects required in a slab.
4151 */
4152 min_objects = slub_min_objects;
3286222f
VB
4153 if (!min_objects) {
4154 /*
4155 * Some architectures will only update present cpus when
4156 * onlining them, so don't trust the number if it's just 1. But
4157 * we also don't want to use nr_cpu_ids always, as on some other
4158 * architectures, there can be many possible cpus, but never
4159 * onlined. Here we compromise between trying to avoid too high
4160 * order on systems that appear larger than they are, and too
4161 * low order on systems that appear smaller than they are.
4162 */
4163 nr_cpus = num_present_cpus();
4164 if (nr_cpus <= 1)
4165 nr_cpus = nr_cpu_ids;
4166 min_objects = 4 * (fls(nr_cpus) + 1);
4167 }
9736d2a9 4168 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
4169 min_objects = min(min_objects, max_objects);
4170
5e6d444e 4171 while (min_objects > 1) {
19af27af
AD
4172 unsigned int fraction;
4173
c124f5b5 4174 fraction = 16;
5e6d444e 4175 while (fraction >= 4) {
d122019b 4176 order = calc_slab_order(size, min_objects,
9736d2a9 4177 slub_max_order, fraction);
5e6d444e
CL
4178 if (order <= slub_max_order)
4179 return order;
4180 fraction /= 2;
4181 }
5086c389 4182 min_objects--;
5e6d444e
CL
4183 }
4184
4185 /*
4186 * We were unable to place multiple objects in a slab. Now
4187 * lets see if we can place a single object there.
4188 */
d122019b 4189 order = calc_slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
4190 if (order <= slub_max_order)
4191 return order;
4192
4193 /*
4194 * Doh this slab cannot be placed using slub_max_order.
4195 */
d122019b 4196 order = calc_slab_order(size, 1, MAX_ORDER, 1);
23baf831 4197 if (order <= MAX_ORDER)
5e6d444e
CL
4198 return order;
4199 return -ENOSYS;
4200}
4201
5595cffc 4202static void
4053497d 4203init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
4204{
4205 n->nr_partial = 0;
81819f0f
CL
4206 spin_lock_init(&n->list_lock);
4207 INIT_LIST_HEAD(&n->partial);
8ab1372f 4208#ifdef CONFIG_SLUB_DEBUG
0f389ec6 4209 atomic_long_set(&n->nr_slabs, 0);
02b71b70 4210 atomic_long_set(&n->total_objects, 0);
643b1138 4211 INIT_LIST_HEAD(&n->full);
8ab1372f 4212#endif
81819f0f
CL
4213}
4214
0af8489b 4215#ifndef CONFIG_SLUB_TINY
55136592 4216static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 4217{
6c182dc0 4218 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
a0dc161a
BH
4219 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4220 sizeof(struct kmem_cache_cpu));
4c93c355 4221
8a5ec0ba 4222 /*
d4d84fef
CM
4223 * Must align to double word boundary for the double cmpxchg
4224 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 4225 */
d4d84fef
CM
4226 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4227 2 * sizeof(void *));
8a5ec0ba
CL
4228
4229 if (!s->cpu_slab)
4230 return 0;
4231
4232 init_kmem_cache_cpus(s);
4c93c355 4233
8a5ec0ba 4234 return 1;
4c93c355 4235}
0af8489b
VB
4236#else
4237static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4238{
4239 return 1;
4240}
4241#endif /* CONFIG_SLUB_TINY */
4c93c355 4242
51df1142
CL
4243static struct kmem_cache *kmem_cache_node;
4244
81819f0f
CL
4245/*
4246 * No kmalloc_node yet so do it by hand. We know that this is the first
4247 * slab on the node for this slabcache. There are no concurrent accesses
4248 * possible.
4249 *
721ae22a
ZYW
4250 * Note that this function only works on the kmem_cache_node
4251 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 4252 * memory on a fresh node that has no slab structures yet.
81819f0f 4253 */
55136592 4254static void early_kmem_cache_node_alloc(int node)
81819f0f 4255{
bb192ed9 4256 struct slab *slab;
81819f0f
CL
4257 struct kmem_cache_node *n;
4258
51df1142 4259 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 4260
bb192ed9 4261 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f 4262
bb192ed9 4263 BUG_ON(!slab);
c7323a5a 4264 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
bb192ed9 4265 if (slab_nid(slab) != node) {
f9f58285
FF
4266 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4267 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
4268 }
4269
bb192ed9 4270 n = slab->freelist;
81819f0f 4271 BUG_ON(!n);
8ab1372f 4272#ifdef CONFIG_SLUB_DEBUG
f7cb1933 4273 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 4274 init_tracking(kmem_cache_node, n);
8ab1372f 4275#endif
da844b78 4276 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
bb192ed9
VB
4277 slab->freelist = get_freepointer(kmem_cache_node, n);
4278 slab->inuse = 1;
12b22386 4279 kmem_cache_node->node[node] = n;
4053497d 4280 init_kmem_cache_node(n);
bb192ed9 4281 inc_slabs_node(kmem_cache_node, node, slab->objects);
6446faa2 4282
67b6c900 4283 /*
1e4dd946
SR
4284 * No locks need to be taken here as it has just been
4285 * initialized and there is no concurrent access.
67b6c900 4286 */
bb192ed9 4287 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
81819f0f
CL
4288}
4289
4290static void free_kmem_cache_nodes(struct kmem_cache *s)
4291{
4292 int node;
fa45dc25 4293 struct kmem_cache_node *n;
81819f0f 4294
fa45dc25 4295 for_each_kmem_cache_node(s, node, n) {
81819f0f 4296 s->node[node] = NULL;
ea37df54 4297 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
4298 }
4299}
4300
52b4b950
DS
4301void __kmem_cache_release(struct kmem_cache *s)
4302{
210e7a43 4303 cache_random_seq_destroy(s);
0af8489b 4304#ifndef CONFIG_SLUB_TINY
52b4b950 4305 free_percpu(s->cpu_slab);
0af8489b 4306#endif
52b4b950
DS
4307 free_kmem_cache_nodes(s);
4308}
4309
55136592 4310static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
4311{
4312 int node;
81819f0f 4313
7e1fa93d 4314 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
4315 struct kmem_cache_node *n;
4316
73367bd8 4317 if (slab_state == DOWN) {
55136592 4318 early_kmem_cache_node_alloc(node);
73367bd8
AD
4319 continue;
4320 }
51df1142 4321 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 4322 GFP_KERNEL, node);
81819f0f 4323
73367bd8
AD
4324 if (!n) {
4325 free_kmem_cache_nodes(s);
4326 return 0;
81819f0f 4327 }
73367bd8 4328
4053497d 4329 init_kmem_cache_node(n);
ea37df54 4330 s->node[node] = n;
81819f0f
CL
4331 }
4332 return 1;
4333}
81819f0f 4334
e6d0e1dc
WY
4335static void set_cpu_partial(struct kmem_cache *s)
4336{
4337#ifdef CONFIG_SLUB_CPU_PARTIAL
b47291ef
VB
4338 unsigned int nr_objects;
4339
e6d0e1dc
WY
4340 /*
4341 * cpu_partial determined the maximum number of objects kept in the
4342 * per cpu partial lists of a processor.
4343 *
4344 * Per cpu partial lists mainly contain slabs that just have one
4345 * object freed. If they are used for allocation then they can be
4346 * filled up again with minimal effort. The slab will never hit the
4347 * per node partial lists and therefore no locking will be required.
4348 *
b47291ef
VB
4349 * For backwards compatibility reasons, this is determined as number
4350 * of objects, even though we now limit maximum number of pages, see
4351 * slub_set_cpu_partial()
e6d0e1dc
WY
4352 */
4353 if (!kmem_cache_has_cpu_partial(s))
b47291ef 4354 nr_objects = 0;
e6d0e1dc 4355 else if (s->size >= PAGE_SIZE)
b47291ef 4356 nr_objects = 6;
e6d0e1dc 4357 else if (s->size >= 1024)
23e98ad1 4358 nr_objects = 24;
e6d0e1dc 4359 else if (s->size >= 256)
23e98ad1 4360 nr_objects = 52;
e6d0e1dc 4361 else
23e98ad1 4362 nr_objects = 120;
b47291ef
VB
4363
4364 slub_set_cpu_partial(s, nr_objects);
e6d0e1dc
WY
4365#endif
4366}
4367
81819f0f
CL
4368/*
4369 * calculate_sizes() determines the order and the distribution of data within
4370 * a slab object.
4371 */
ae44d81d 4372static int calculate_sizes(struct kmem_cache *s)
81819f0f 4373{
d50112ed 4374 slab_flags_t flags = s->flags;
be4a7988 4375 unsigned int size = s->object_size;
19af27af 4376 unsigned int order;
81819f0f 4377
d8b42bf5
CL
4378 /*
4379 * Round up object size to the next word boundary. We can only
4380 * place the free pointer at word boundaries and this determines
4381 * the possible location of the free pointer.
4382 */
4383 size = ALIGN(size, sizeof(void *));
4384
4385#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4386 /*
4387 * Determine if we can poison the object itself. If the user of
4388 * the slab may touch the object after free or before allocation
4389 * then we should never poison the object itself.
4390 */
5f0d5a3a 4391 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 4392 !s->ctor)
81819f0f
CL
4393 s->flags |= __OBJECT_POISON;
4394 else
4395 s->flags &= ~__OBJECT_POISON;
4396
81819f0f
CL
4397
4398 /*
672bba3a 4399 * If we are Redzoning then check if there is some space between the
81819f0f 4400 * end of the object and the free pointer. If not then add an
672bba3a 4401 * additional word to have some bytes to store Redzone information.
81819f0f 4402 */
3b0efdfa 4403 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 4404 size += sizeof(void *);
41ecc55b 4405#endif
81819f0f
CL
4406
4407 /*
672bba3a 4408 * With that we have determined the number of bytes in actual use
e41a49fa 4409 * by the object and redzoning.
81819f0f
CL
4410 */
4411 s->inuse = size;
4412
946fa0db
FT
4413 if (slub_debug_orig_size(s) ||
4414 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
74c1d3e0
KC
4415 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4416 s->ctor) {
81819f0f
CL
4417 /*
4418 * Relocate free pointer after the object if it is not
4419 * permitted to overwrite the first word of the object on
4420 * kmem_cache_free.
4421 *
4422 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
4423 * destructor, are poisoning the objects, or are
4424 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
4425 *
4426 * The assumption that s->offset >= s->inuse means free
4427 * pointer is outside of the object is used in the
4428 * freeptr_outside_object() function. If that is no
4429 * longer true, the function needs to be modified.
81819f0f
CL
4430 */
4431 s->offset = size;
4432 size += sizeof(void *);
e41a49fa 4433 } else {
3202fa62
KC
4434 /*
4435 * Store freelist pointer near middle of object to keep
4436 * it away from the edges of the object to avoid small
4437 * sized over/underflows from neighboring allocations.
4438 */
e41a49fa 4439 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
4440 }
4441
c12b3c62 4442#ifdef CONFIG_SLUB_DEBUG
6edf2576 4443 if (flags & SLAB_STORE_USER) {
81819f0f
CL
4444 /*
4445 * Need to store information about allocs and frees after
4446 * the object.
4447 */
4448 size += 2 * sizeof(struct track);
6edf2576
FT
4449
4450 /* Save the original kmalloc request size */
4451 if (flags & SLAB_KMALLOC)
4452 size += sizeof(unsigned int);
4453 }
80a9201a 4454#endif
81819f0f 4455
80a9201a
AP
4456 kasan_cache_create(s, &size, &s->flags);
4457#ifdef CONFIG_SLUB_DEBUG
d86bd1be 4458 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
4459 /*
4460 * Add some empty padding so that we can catch
4461 * overwrites from earlier objects rather than let
4462 * tracking information or the free pointer be
0211a9c8 4463 * corrupted if a user writes before the start
81819f0f
CL
4464 * of the object.
4465 */
4466 size += sizeof(void *);
d86bd1be
JK
4467
4468 s->red_left_pad = sizeof(void *);
4469 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4470 size += s->red_left_pad;
4471 }
41ecc55b 4472#endif
672bba3a 4473
81819f0f
CL
4474 /*
4475 * SLUB stores one object immediately after another beginning from
4476 * offset 0. In order to align the objects we have to simply size
4477 * each object to conform to the alignment.
4478 */
45906855 4479 size = ALIGN(size, s->align);
81819f0f 4480 s->size = size;
4138fdfc 4481 s->reciprocal_size = reciprocal_value(size);
ae44d81d 4482 order = calculate_order(size);
81819f0f 4483
19af27af 4484 if ((int)order < 0)
81819f0f
CL
4485 return 0;
4486
b7a49f0d 4487 s->allocflags = 0;
834f3d11 4488 if (order)
b7a49f0d
CL
4489 s->allocflags |= __GFP_COMP;
4490
4491 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 4492 s->allocflags |= GFP_DMA;
b7a49f0d 4493
6d6ea1e9
NB
4494 if (s->flags & SLAB_CACHE_DMA32)
4495 s->allocflags |= GFP_DMA32;
4496
b7a49f0d
CL
4497 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4498 s->allocflags |= __GFP_RECLAIMABLE;
4499
81819f0f
CL
4500 /*
4501 * Determine the number of objects per slab
4502 */
9736d2a9
MW
4503 s->oo = oo_make(order, size);
4504 s->min = oo_make(get_order(size), size);
81819f0f 4505
834f3d11 4506 return !!oo_objects(s->oo);
81819f0f
CL
4507}
4508
d50112ed 4509static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 4510{
37540008 4511 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
4512#ifdef CONFIG_SLAB_FREELIST_HARDENED
4513 s->random = get_random_long();
4514#endif
81819f0f 4515
ae44d81d 4516 if (!calculate_sizes(s))
81819f0f 4517 goto error;
3de47213
DR
4518 if (disable_higher_order_debug) {
4519 /*
4520 * Disable debugging flags that store metadata if the min slab
4521 * order increased.
4522 */
3b0efdfa 4523 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
4524 s->flags &= ~DEBUG_METADATA_FLAGS;
4525 s->offset = 0;
ae44d81d 4526 if (!calculate_sizes(s))
3de47213
DR
4527 goto error;
4528 }
4529 }
81819f0f 4530
6801be4f
PZ
4531#ifdef system_has_freelist_aba
4532 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
b789ef51
CL
4533 /* Enable fast mode */
4534 s->flags |= __CMPXCHG_DOUBLE;
6801be4f 4535 }
b789ef51
CL
4536#endif
4537
3b89d7d8 4538 /*
c2092c12 4539 * The larger the object size is, the more slabs we want on the partial
3b89d7d8
DR
4540 * list to avoid pounding the page allocator excessively.
4541 */
5182f3c9
HY
4542 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4543 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
49e22585 4544
e6d0e1dc 4545 set_cpu_partial(s);
49e22585 4546
81819f0f 4547#ifdef CONFIG_NUMA
e2cb96b7 4548 s->remote_node_defrag_ratio = 1000;
81819f0f 4549#endif
210e7a43
TG
4550
4551 /* Initialize the pre-computed randomized freelist if slab is up */
4552 if (slab_state >= UP) {
4553 if (init_cache_random_seq(s))
4554 goto error;
4555 }
4556
55136592 4557 if (!init_kmem_cache_nodes(s))
dfb4f096 4558 goto error;
81819f0f 4559
55136592 4560 if (alloc_kmem_cache_cpus(s))
278b1bb1 4561 return 0;
ff12059e 4562
81819f0f 4563error:
9037c576 4564 __kmem_cache_release(s);
278b1bb1 4565 return -EINVAL;
81819f0f 4566}
81819f0f 4567
bb192ed9 4568static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
55860d96 4569 const char *text)
33b12c38
CL
4570{
4571#ifdef CONFIG_SLUB_DEBUG
bb192ed9 4572 void *addr = slab_address(slab);
33b12c38 4573 void *p;
aa456c7a 4574
bb192ed9 4575 slab_err(s, slab, text, s->name);
33b12c38 4576
4ef3f5a3
VB
4577 spin_lock(&object_map_lock);
4578 __fill_map(object_map, s, slab);
4579
bb192ed9 4580 for_each_object(p, s, addr, slab->objects) {
33b12c38 4581
4ef3f5a3 4582 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
96b94abc 4583 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
4584 print_tracking(s, p);
4585 }
4586 }
4ef3f5a3 4587 spin_unlock(&object_map_lock);
33b12c38
CL
4588#endif
4589}
4590
81819f0f 4591/*
599870b1 4592 * Attempt to free all partial slabs on a node.
52b4b950
DS
4593 * This is called from __kmem_cache_shutdown(). We must take list_lock
4594 * because sysfs file might still access partial list after the shutdowning.
81819f0f 4595 */
599870b1 4596static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 4597{
60398923 4598 LIST_HEAD(discard);
bb192ed9 4599 struct slab *slab, *h;
81819f0f 4600
52b4b950
DS
4601 BUG_ON(irqs_disabled());
4602 spin_lock_irq(&n->list_lock);
bb192ed9
VB
4603 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4604 if (!slab->inuse) {
4605 remove_partial(n, slab);
4606 list_add(&slab->slab_list, &discard);
33b12c38 4607 } else {
bb192ed9 4608 list_slab_objects(s, slab,
55860d96 4609 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 4610 }
33b12c38 4611 }
52b4b950 4612 spin_unlock_irq(&n->list_lock);
60398923 4613
bb192ed9
VB
4614 list_for_each_entry_safe(slab, h, &discard, slab_list)
4615 discard_slab(s, slab);
81819f0f
CL
4616}
4617
f9e13c0a
SB
4618bool __kmem_cache_empty(struct kmem_cache *s)
4619{
4620 int node;
4621 struct kmem_cache_node *n;
4622
4623 for_each_kmem_cache_node(s, node, n)
4f174a8b 4624 if (n->nr_partial || node_nr_slabs(n))
f9e13c0a
SB
4625 return false;
4626 return true;
4627}
4628
81819f0f 4629/*
672bba3a 4630 * Release all resources used by a slab cache.
81819f0f 4631 */
52b4b950 4632int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
4633{
4634 int node;
fa45dc25 4635 struct kmem_cache_node *n;
81819f0f 4636
5a836bf6 4637 flush_all_cpus_locked(s);
81819f0f 4638 /* Attempt to free all objects */
fa45dc25 4639 for_each_kmem_cache_node(s, node, n) {
599870b1 4640 free_partial(s, n);
4f174a8b 4641 if (n->nr_partial || node_nr_slabs(n))
81819f0f
CL
4642 return 1;
4643 }
81819f0f
CL
4644 return 0;
4645}
4646
5bb1bb35 4647#ifdef CONFIG_PRINTK
2dfe63e6 4648void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8e7f37f2
PM
4649{
4650 void *base;
4651 int __maybe_unused i;
4652 unsigned int objnr;
4653 void *objp;
4654 void *objp0;
7213230a 4655 struct kmem_cache *s = slab->slab_cache;
8e7f37f2
PM
4656 struct track __maybe_unused *trackp;
4657
4658 kpp->kp_ptr = object;
7213230a 4659 kpp->kp_slab = slab;
8e7f37f2 4660 kpp->kp_slab_cache = s;
7213230a 4661 base = slab_address(slab);
8e7f37f2
PM
4662 objp0 = kasan_reset_tag(object);
4663#ifdef CONFIG_SLUB_DEBUG
4664 objp = restore_red_left(s, objp0);
4665#else
4666 objp = objp0;
4667#endif
40f3bf0c 4668 objnr = obj_to_index(s, slab, objp);
8e7f37f2
PM
4669 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4670 objp = base + s->size * objnr;
4671 kpp->kp_objp = objp;
7213230a
MWO
4672 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4673 || (objp - base) % s->size) ||
8e7f37f2
PM
4674 !(s->flags & SLAB_STORE_USER))
4675 return;
4676#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4677 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4678 trackp = get_track(s, objp, TRACK_ALLOC);
4679 kpp->kp_ret = (void *)trackp->addr;
5cf909c5
OG
4680#ifdef CONFIG_STACKDEPOT
4681 {
4682 depot_stack_handle_t handle;
4683 unsigned long *entries;
4684 unsigned int nr_entries;
78869146 4685
5cf909c5
OG
4686 handle = READ_ONCE(trackp->handle);
4687 if (handle) {
4688 nr_entries = stack_depot_fetch(handle, &entries);
4689 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4690 kpp->kp_stack[i] = (void *)entries[i];
4691 }
78869146 4692
5cf909c5
OG
4693 trackp = get_track(s, objp, TRACK_FREE);
4694 handle = READ_ONCE(trackp->handle);
4695 if (handle) {
4696 nr_entries = stack_depot_fetch(handle, &entries);
4697 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4698 kpp->kp_free_stack[i] = (void *)entries[i];
4699 }
e548eaa1 4700 }
8e7f37f2
PM
4701#endif
4702#endif
4703}
5bb1bb35 4704#endif
8e7f37f2 4705
81819f0f
CL
4706/********************************************************************
4707 * Kmalloc subsystem
4708 *******************************************************************/
4709
81819f0f
CL
4710static int __init setup_slub_min_order(char *str)
4711{
19af27af 4712 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4713
4714 return 1;
4715}
4716
4717__setup("slub_min_order=", setup_slub_min_order);
4718
4719static int __init setup_slub_max_order(char *str)
4720{
19af27af 4721 get_option(&str, (int *)&slub_max_order);
23baf831 4722 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
81819f0f
CL
4723
4724 return 1;
4725}
4726
4727__setup("slub_max_order=", setup_slub_max_order);
4728
4729static int __init setup_slub_min_objects(char *str)
4730{
19af27af 4731 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4732
4733 return 1;
4734}
4735
4736__setup("slub_min_objects=", setup_slub_min_objects);
4737
ed18adc1
KC
4738#ifdef CONFIG_HARDENED_USERCOPY
4739/*
afcc90f8
KC
4740 * Rejects incorrectly sized objects and objects that are to be copied
4741 * to/from userspace but do not fall entirely within the containing slab
4742 * cache's usercopy region.
ed18adc1
KC
4743 *
4744 * Returns NULL if check passes, otherwise const char * to name of cache
4745 * to indicate an error.
4746 */
0b3eb091
MWO
4747void __check_heap_object(const void *ptr, unsigned long n,
4748 const struct slab *slab, bool to_user)
ed18adc1
KC
4749{
4750 struct kmem_cache *s;
44065b2e 4751 unsigned int offset;
b89fb5ef 4752 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4753
96fedce2
AK
4754 ptr = kasan_reset_tag(ptr);
4755
ed18adc1 4756 /* Find object and usable object size. */
0b3eb091 4757 s = slab->slab_cache;
ed18adc1
KC
4758
4759 /* Reject impossible pointers. */
0b3eb091 4760 if (ptr < slab_address(slab))
f4e6e289
KC
4761 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4762 to_user, 0, n);
ed18adc1
KC
4763
4764 /* Find offset within object. */
b89fb5ef
AP
4765 if (is_kfence)
4766 offset = ptr - kfence_object_start(ptr);
4767 else
0b3eb091 4768 offset = (ptr - slab_address(slab)) % s->size;
ed18adc1
KC
4769
4770 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4771 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4772 if (offset < s->red_left_pad)
f4e6e289
KC
4773 usercopy_abort("SLUB object in left red zone",
4774 s->name, to_user, offset, n);
ed18adc1
KC
4775 offset -= s->red_left_pad;
4776 }
4777
afcc90f8
KC
4778 /* Allow address range falling entirely within usercopy region. */
4779 if (offset >= s->useroffset &&
4780 offset - s->useroffset <= s->usersize &&
4781 n <= s->useroffset - offset + s->usersize)
f4e6e289 4782 return;
ed18adc1 4783
f4e6e289 4784 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4785}
4786#endif /* CONFIG_HARDENED_USERCOPY */
4787
832f37f5
VD
4788#define SHRINK_PROMOTE_MAX 32
4789
2086d26a 4790/*
832f37f5
VD
4791 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4792 * up most to the head of the partial lists. New allocations will then
4793 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4794 *
4795 * The slabs with the least items are placed last. This results in them
4796 * being allocated from last increasing the chance that the last objects
4797 * are freed in them.
2086d26a 4798 */
5a836bf6 4799static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
4800{
4801 int node;
4802 int i;
4803 struct kmem_cache_node *n;
bb192ed9
VB
4804 struct slab *slab;
4805 struct slab *t;
832f37f5
VD
4806 struct list_head discard;
4807 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4808 unsigned long flags;
ce3712d7 4809 int ret = 0;
2086d26a 4810
fa45dc25 4811 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4812 INIT_LIST_HEAD(&discard);
4813 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4814 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4815
4816 spin_lock_irqsave(&n->list_lock, flags);
4817
4818 /*
832f37f5 4819 * Build lists of slabs to discard or promote.
2086d26a 4820 *
672bba3a 4821 * Note that concurrent frees may occur while we hold the
c2092c12 4822 * list_lock. slab->inuse here is the upper limit.
2086d26a 4823 */
bb192ed9
VB
4824 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4825 int free = slab->objects - slab->inuse;
832f37f5 4826
c2092c12 4827 /* Do not reread slab->inuse */
832f37f5
VD
4828 barrier();
4829
4830 /* We do not keep full slabs on the list */
4831 BUG_ON(free <= 0);
4832
bb192ed9
VB
4833 if (free == slab->objects) {
4834 list_move(&slab->slab_list, &discard);
69cb8e6b 4835 n->nr_partial--;
c7323a5a 4836 dec_slabs_node(s, node, slab->objects);
832f37f5 4837 } else if (free <= SHRINK_PROMOTE_MAX)
bb192ed9 4838 list_move(&slab->slab_list, promote + free - 1);
2086d26a
CL
4839 }
4840
2086d26a 4841 /*
832f37f5
VD
4842 * Promote the slabs filled up most to the head of the
4843 * partial list.
2086d26a 4844 */
832f37f5
VD
4845 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4846 list_splice(promote + i, &n->partial);
2086d26a 4847
2086d26a 4848 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4849
4850 /* Release empty slabs */
bb192ed9 4851 list_for_each_entry_safe(slab, t, &discard, slab_list)
c7323a5a 4852 free_slab(s, slab);
ce3712d7 4853
4f174a8b 4854 if (node_nr_slabs(n))
ce3712d7 4855 ret = 1;
2086d26a
CL
4856 }
4857
ce3712d7 4858 return ret;
2086d26a 4859}
2086d26a 4860
5a836bf6
SAS
4861int __kmem_cache_shrink(struct kmem_cache *s)
4862{
4863 flush_all(s);
4864 return __kmem_cache_do_shrink(s);
4865}
4866
b9049e23
YG
4867static int slab_mem_going_offline_callback(void *arg)
4868{
4869 struct kmem_cache *s;
4870
18004c5d 4871 mutex_lock(&slab_mutex);
5a836bf6
SAS
4872 list_for_each_entry(s, &slab_caches, list) {
4873 flush_all_cpus_locked(s);
4874 __kmem_cache_do_shrink(s);
4875 }
18004c5d 4876 mutex_unlock(&slab_mutex);
b9049e23
YG
4877
4878 return 0;
4879}
4880
4881static void slab_mem_offline_callback(void *arg)
4882{
b9049e23
YG
4883 struct memory_notify *marg = arg;
4884 int offline_node;
4885
b9d5ab25 4886 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4887
4888 /*
4889 * If the node still has available memory. we need kmem_cache_node
4890 * for it yet.
4891 */
4892 if (offline_node < 0)
4893 return;
4894
18004c5d 4895 mutex_lock(&slab_mutex);
7e1fa93d 4896 node_clear(offline_node, slab_nodes);
666716fd
VB
4897 /*
4898 * We no longer free kmem_cache_node structures here, as it would be
4899 * racy with all get_node() users, and infeasible to protect them with
4900 * slab_mutex.
4901 */
18004c5d 4902 mutex_unlock(&slab_mutex);
b9049e23
YG
4903}
4904
4905static int slab_mem_going_online_callback(void *arg)
4906{
4907 struct kmem_cache_node *n;
4908 struct kmem_cache *s;
4909 struct memory_notify *marg = arg;
b9d5ab25 4910 int nid = marg->status_change_nid_normal;
b9049e23
YG
4911 int ret = 0;
4912
4913 /*
4914 * If the node's memory is already available, then kmem_cache_node is
4915 * already created. Nothing to do.
4916 */
4917 if (nid < 0)
4918 return 0;
4919
4920 /*
0121c619 4921 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4922 * allocate a kmem_cache_node structure in order to bring the node
4923 * online.
4924 */
18004c5d 4925 mutex_lock(&slab_mutex);
b9049e23 4926 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4927 /*
4928 * The structure may already exist if the node was previously
4929 * onlined and offlined.
4930 */
4931 if (get_node(s, nid))
4932 continue;
b9049e23
YG
4933 /*
4934 * XXX: kmem_cache_alloc_node will fallback to other nodes
4935 * since memory is not yet available from the node that
4936 * is brought up.
4937 */
8de66a0c 4938 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4939 if (!n) {
4940 ret = -ENOMEM;
4941 goto out;
4942 }
4053497d 4943 init_kmem_cache_node(n);
b9049e23
YG
4944 s->node[nid] = n;
4945 }
7e1fa93d
VB
4946 /*
4947 * Any cache created after this point will also have kmem_cache_node
4948 * initialized for the new node.
4949 */
4950 node_set(nid, slab_nodes);
b9049e23 4951out:
18004c5d 4952 mutex_unlock(&slab_mutex);
b9049e23
YG
4953 return ret;
4954}
4955
4956static int slab_memory_callback(struct notifier_block *self,
4957 unsigned long action, void *arg)
4958{
4959 int ret = 0;
4960
4961 switch (action) {
4962 case MEM_GOING_ONLINE:
4963 ret = slab_mem_going_online_callback(arg);
4964 break;
4965 case MEM_GOING_OFFLINE:
4966 ret = slab_mem_going_offline_callback(arg);
4967 break;
4968 case MEM_OFFLINE:
4969 case MEM_CANCEL_ONLINE:
4970 slab_mem_offline_callback(arg);
4971 break;
4972 case MEM_ONLINE:
4973 case MEM_CANCEL_OFFLINE:
4974 break;
4975 }
dc19f9db
KH
4976 if (ret)
4977 ret = notifier_from_errno(ret);
4978 else
4979 ret = NOTIFY_OK;
b9049e23
YG
4980 return ret;
4981}
4982
81819f0f
CL
4983/********************************************************************
4984 * Basic setup of slabs
4985 *******************************************************************/
4986
51df1142
CL
4987/*
4988 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4989 * the page allocator. Allocate them properly then fix up the pointers
4990 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4991 */
4992
dffb4d60 4993static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4994{
4995 int node;
dffb4d60 4996 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4997 struct kmem_cache_node *n;
51df1142 4998
dffb4d60 4999 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 5000
7d557b3c
GC
5001 /*
5002 * This runs very early, and only the boot processor is supposed to be
5003 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5004 * IPIs around.
5005 */
5006 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 5007 for_each_kmem_cache_node(s, node, n) {
bb192ed9 5008 struct slab *p;
51df1142 5009
916ac052 5010 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 5011 p->slab_cache = s;
51df1142 5012
607bf324 5013#ifdef CONFIG_SLUB_DEBUG
916ac052 5014 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 5015 p->slab_cache = s;
51df1142 5016#endif
51df1142 5017 }
dffb4d60
CL
5018 list_add(&s->list, &slab_caches);
5019 return s;
51df1142
CL
5020}
5021
81819f0f
CL
5022void __init kmem_cache_init(void)
5023{
dffb4d60
CL
5024 static __initdata struct kmem_cache boot_kmem_cache,
5025 boot_kmem_cache_node;
7e1fa93d 5026 int node;
51df1142 5027
fc8d8620
SG
5028 if (debug_guardpage_minorder())
5029 slub_max_order = 0;
5030
79270291
SB
5031 /* Print slub debugging pointers without hashing */
5032 if (__slub_debug_enabled())
5033 no_hash_pointers_enable(NULL);
5034
dffb4d60
CL
5035 kmem_cache_node = &boot_kmem_cache_node;
5036 kmem_cache = &boot_kmem_cache;
51df1142 5037
7e1fa93d
VB
5038 /*
5039 * Initialize the nodemask for which we will allocate per node
5040 * structures. Here we don't need taking slab_mutex yet.
5041 */
5042 for_each_node_state(node, N_NORMAL_MEMORY)
5043 node_set(node, slab_nodes);
5044
dffb4d60 5045 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 5046 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 5047
946d5f9c 5048 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
5049
5050 /* Able to allocate the per node structures */
5051 slab_state = PARTIAL;
5052
dffb4d60
CL
5053 create_boot_cache(kmem_cache, "kmem_cache",
5054 offsetof(struct kmem_cache, node) +
5055 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 5056 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 5057
dffb4d60 5058 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 5059 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
5060
5061 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 5062 setup_kmalloc_cache_index_table();
f97d5f63 5063 create_kmalloc_caches(0);
81819f0f 5064
210e7a43
TG
5065 /* Setup random freelists for each cache */
5066 init_freelist_randomization();
5067
a96a87bf
SAS
5068 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5069 slub_cpu_dead);
81819f0f 5070
b9726c26 5071 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 5072 cache_line_size(),
81819f0f
CL
5073 slub_min_order, slub_max_order, slub_min_objects,
5074 nr_cpu_ids, nr_node_ids);
5075}
5076
7e85ee0c
PE
5077void __init kmem_cache_init_late(void)
5078{
0af8489b 5079#ifndef CONFIG_SLUB_TINY
e45cc288
ML
5080 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5081 WARN_ON(!flushwq);
0af8489b 5082#endif
7e85ee0c
PE
5083}
5084
2633d7a0 5085struct kmem_cache *
f4957d5b 5086__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 5087 slab_flags_t flags, void (*ctor)(void *))
81819f0f 5088{
10befea9 5089 struct kmem_cache *s;
81819f0f 5090
a44cb944 5091 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 5092 if (s) {
efb93527
XS
5093 if (sysfs_slab_alias(s, name))
5094 return NULL;
5095
81819f0f 5096 s->refcount++;
84d0ddd6 5097
81819f0f
CL
5098 /*
5099 * Adjust the object sizes so that we clear
5100 * the complete object on kzalloc.
5101 */
1b473f29 5102 s->object_size = max(s->object_size, size);
52ee6d74 5103 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 5104 }
6446faa2 5105
cbb79694
CL
5106 return s;
5107}
84c1cf62 5108
d50112ed 5109int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 5110{
aac3a166
PE
5111 int err;
5112
5113 err = kmem_cache_open(s, flags);
5114 if (err)
5115 return err;
20cea968 5116
45530c44
CL
5117 /* Mutex is not taken during early boot */
5118 if (slab_state <= UP)
5119 return 0;
5120
aac3a166 5121 err = sysfs_slab_add(s);
67823a54 5122 if (err) {
52b4b950 5123 __kmem_cache_release(s);
67823a54
ML
5124 return err;
5125 }
20cea968 5126
64dd6849
FM
5127 if (s->flags & SLAB_STORE_USER)
5128 debugfs_slab_add(s);
5129
67823a54 5130 return 0;
81819f0f 5131}
81819f0f 5132
b1a413a3 5133#ifdef SLAB_SUPPORTS_SYSFS
bb192ed9 5134static int count_inuse(struct slab *slab)
205ab99d 5135{
bb192ed9 5136 return slab->inuse;
205ab99d
CL
5137}
5138
bb192ed9 5139static int count_total(struct slab *slab)
205ab99d 5140{
bb192ed9 5141 return slab->objects;
205ab99d 5142}
ab4d5ed5 5143#endif
205ab99d 5144
ab4d5ed5 5145#ifdef CONFIG_SLUB_DEBUG
bb192ed9 5146static void validate_slab(struct kmem_cache *s, struct slab *slab,
0a19e7dd 5147 unsigned long *obj_map)
53e15af0
CL
5148{
5149 void *p;
bb192ed9 5150 void *addr = slab_address(slab);
53e15af0 5151
bb192ed9 5152 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
41bec7c3 5153 return;
53e15af0
CL
5154
5155 /* Now we know that a valid freelist exists */
bb192ed9
VB
5156 __fill_map(obj_map, s, slab);
5157 for_each_object(p, s, addr, slab->objects) {
0a19e7dd 5158 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 5159 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 5160
bb192ed9 5161 if (!check_object(s, slab, p, val))
dd98afd4
YZ
5162 break;
5163 }
53e15af0
CL
5164}
5165
434e245d 5166static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 5167 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
5168{
5169 unsigned long count = 0;
bb192ed9 5170 struct slab *slab;
53e15af0
CL
5171 unsigned long flags;
5172
5173 spin_lock_irqsave(&n->list_lock, flags);
5174
bb192ed9
VB
5175 list_for_each_entry(slab, &n->partial, slab_list) {
5176 validate_slab(s, slab, obj_map);
53e15af0
CL
5177 count++;
5178 }
1f9f78b1 5179 if (count != n->nr_partial) {
f9f58285
FF
5180 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5181 s->name, count, n->nr_partial);
1f9f78b1
OG
5182 slab_add_kunit_errors();
5183 }
53e15af0
CL
5184
5185 if (!(s->flags & SLAB_STORE_USER))
5186 goto out;
5187
bb192ed9
VB
5188 list_for_each_entry(slab, &n->full, slab_list) {
5189 validate_slab(s, slab, obj_map);
53e15af0
CL
5190 count++;
5191 }
8040cbf5 5192 if (count != node_nr_slabs(n)) {
f9f58285 5193 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8040cbf5 5194 s->name, count, node_nr_slabs(n));
1f9f78b1
OG
5195 slab_add_kunit_errors();
5196 }
53e15af0
CL
5197
5198out:
5199 spin_unlock_irqrestore(&n->list_lock, flags);
5200 return count;
5201}
5202
1f9f78b1 5203long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
5204{
5205 int node;
5206 unsigned long count = 0;
fa45dc25 5207 struct kmem_cache_node *n;
0a19e7dd
VB
5208 unsigned long *obj_map;
5209
5210 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5211 if (!obj_map)
5212 return -ENOMEM;
53e15af0
CL
5213
5214 flush_all(s);
fa45dc25 5215 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
5216 count += validate_slab_node(s, n, obj_map);
5217
5218 bitmap_free(obj_map);
90e9f6a6 5219
53e15af0
CL
5220 return count;
5221}
1f9f78b1
OG
5222EXPORT_SYMBOL(validate_slab_cache);
5223
64dd6849 5224#ifdef CONFIG_DEBUG_FS
88a420e4 5225/*
672bba3a 5226 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
5227 * and freed.
5228 */
5229
5230struct location {
8ea9fb92 5231 depot_stack_handle_t handle;
88a420e4 5232 unsigned long count;
ce71e27c 5233 unsigned long addr;
6edf2576 5234 unsigned long waste;
45edfa58
CL
5235 long long sum_time;
5236 long min_time;
5237 long max_time;
5238 long min_pid;
5239 long max_pid;
174596a0 5240 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 5241 nodemask_t nodes;
88a420e4
CL
5242};
5243
5244struct loc_track {
5245 unsigned long max;
5246 unsigned long count;
5247 struct location *loc;
005a79e5 5248 loff_t idx;
88a420e4
CL
5249};
5250
64dd6849
FM
5251static struct dentry *slab_debugfs_root;
5252
88a420e4
CL
5253static void free_loc_track(struct loc_track *t)
5254{
5255 if (t->max)
5256 free_pages((unsigned long)t->loc,
5257 get_order(sizeof(struct location) * t->max));
5258}
5259
68dff6a9 5260static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
5261{
5262 struct location *l;
5263 int order;
5264
88a420e4
CL
5265 order = get_order(sizeof(struct location) * max);
5266
68dff6a9 5267 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
5268 if (!l)
5269 return 0;
5270
5271 if (t->count) {
5272 memcpy(l, t->loc, sizeof(struct location) * t->count);
5273 free_loc_track(t);
5274 }
5275 t->max = max;
5276 t->loc = l;
5277 return 1;
5278}
5279
5280static int add_location(struct loc_track *t, struct kmem_cache *s,
6edf2576
FT
5281 const struct track *track,
5282 unsigned int orig_size)
88a420e4
CL
5283{
5284 long start, end, pos;
5285 struct location *l;
6edf2576 5286 unsigned long caddr, chandle, cwaste;
45edfa58 5287 unsigned long age = jiffies - track->when;
8ea9fb92 5288 depot_stack_handle_t handle = 0;
6edf2576 5289 unsigned int waste = s->object_size - orig_size;
88a420e4 5290
8ea9fb92
OG
5291#ifdef CONFIG_STACKDEPOT
5292 handle = READ_ONCE(track->handle);
5293#endif
88a420e4
CL
5294 start = -1;
5295 end = t->count;
5296
5297 for ( ; ; ) {
5298 pos = start + (end - start + 1) / 2;
5299
5300 /*
5301 * There is nothing at "end". If we end up there
5302 * we need to add something to before end.
5303 */
5304 if (pos == end)
5305 break;
5306
6edf2576
FT
5307 l = &t->loc[pos];
5308 caddr = l->addr;
5309 chandle = l->handle;
5310 cwaste = l->waste;
5311 if ((track->addr == caddr) && (handle == chandle) &&
5312 (waste == cwaste)) {
45edfa58 5313
45edfa58
CL
5314 l->count++;
5315 if (track->when) {
5316 l->sum_time += age;
5317 if (age < l->min_time)
5318 l->min_time = age;
5319 if (age > l->max_time)
5320 l->max_time = age;
5321
5322 if (track->pid < l->min_pid)
5323 l->min_pid = track->pid;
5324 if (track->pid > l->max_pid)
5325 l->max_pid = track->pid;
5326
174596a0
RR
5327 cpumask_set_cpu(track->cpu,
5328 to_cpumask(l->cpus));
45edfa58
CL
5329 }
5330 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5331 return 1;
5332 }
5333
45edfa58 5334 if (track->addr < caddr)
88a420e4 5335 end = pos;
8ea9fb92
OG
5336 else if (track->addr == caddr && handle < chandle)
5337 end = pos;
6edf2576
FT
5338 else if (track->addr == caddr && handle == chandle &&
5339 waste < cwaste)
5340 end = pos;
88a420e4
CL
5341 else
5342 start = pos;
5343 }
5344
5345 /*
672bba3a 5346 * Not found. Insert new tracking element.
88a420e4 5347 */
68dff6a9 5348 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
5349 return 0;
5350
5351 l = t->loc + pos;
5352 if (pos < t->count)
5353 memmove(l + 1, l,
5354 (t->count - pos) * sizeof(struct location));
5355 t->count++;
5356 l->count = 1;
45edfa58
CL
5357 l->addr = track->addr;
5358 l->sum_time = age;
5359 l->min_time = age;
5360 l->max_time = age;
5361 l->min_pid = track->pid;
5362 l->max_pid = track->pid;
8ea9fb92 5363 l->handle = handle;
6edf2576 5364 l->waste = waste;
174596a0
RR
5365 cpumask_clear(to_cpumask(l->cpus));
5366 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
5367 nodes_clear(l->nodes);
5368 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5369 return 1;
5370}
5371
5372static void process_slab(struct loc_track *t, struct kmem_cache *s,
bb192ed9 5373 struct slab *slab, enum track_item alloc,
b3fd64e1 5374 unsigned long *obj_map)
88a420e4 5375{
bb192ed9 5376 void *addr = slab_address(slab);
6edf2576 5377 bool is_alloc = (alloc == TRACK_ALLOC);
88a420e4
CL
5378 void *p;
5379
bb192ed9 5380 __fill_map(obj_map, s, slab);
b3fd64e1 5381
bb192ed9 5382 for_each_object(p, s, addr, slab->objects)
b3fd64e1 5383 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6edf2576
FT
5384 add_location(t, s, get_track(s, p, alloc),
5385 is_alloc ? get_orig_size(s, p) :
5386 s->object_size);
88a420e4 5387}
64dd6849 5388#endif /* CONFIG_DEBUG_FS */
6dfd1b65 5389#endif /* CONFIG_SLUB_DEBUG */
88a420e4 5390
b1a413a3 5391#ifdef SLAB_SUPPORTS_SYSFS
81819f0f 5392enum slab_stat_type {
205ab99d
CL
5393 SL_ALL, /* All slabs */
5394 SL_PARTIAL, /* Only partially allocated slabs */
5395 SL_CPU, /* Only slabs used for cpu caches */
5396 SL_OBJECTS, /* Determine allocated objects not slabs */
5397 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
5398};
5399
205ab99d 5400#define SO_ALL (1 << SL_ALL)
81819f0f
CL
5401#define SO_PARTIAL (1 << SL_PARTIAL)
5402#define SO_CPU (1 << SL_CPU)
5403#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 5404#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 5405
62e5c4b4 5406static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 5407 char *buf, unsigned long flags)
81819f0f
CL
5408{
5409 unsigned long total = 0;
81819f0f
CL
5410 int node;
5411 int x;
5412 unsigned long *nodes;
bf16d19a 5413 int len = 0;
81819f0f 5414
6396bb22 5415 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
5416 if (!nodes)
5417 return -ENOMEM;
81819f0f 5418
205ab99d
CL
5419 if (flags & SO_CPU) {
5420 int cpu;
81819f0f 5421
205ab99d 5422 for_each_possible_cpu(cpu) {
d0e0ac97
CG
5423 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5424 cpu);
ec3ab083 5425 int node;
bb192ed9 5426 struct slab *slab;
dfb4f096 5427
bb192ed9
VB
5428 slab = READ_ONCE(c->slab);
5429 if (!slab)
ec3ab083 5430 continue;
205ab99d 5431
bb192ed9 5432 node = slab_nid(slab);
ec3ab083 5433 if (flags & SO_TOTAL)
bb192ed9 5434 x = slab->objects;
ec3ab083 5435 else if (flags & SO_OBJECTS)
bb192ed9 5436 x = slab->inuse;
ec3ab083
CL
5437 else
5438 x = 1;
49e22585 5439
ec3ab083
CL
5440 total += x;
5441 nodes[node] += x;
5442
9c01e9af 5443#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9
VB
5444 slab = slub_percpu_partial_read_once(c);
5445 if (slab) {
5446 node = slab_nid(slab);
8afb1474
LZ
5447 if (flags & SO_TOTAL)
5448 WARN_ON_ONCE(1);
5449 else if (flags & SO_OBJECTS)
5450 WARN_ON_ONCE(1);
5451 else
bb192ed9 5452 x = slab->slabs;
bc6697d8
ED
5453 total += x;
5454 nodes[node] += x;
49e22585 5455 }
9c01e9af 5456#endif
81819f0f
CL
5457 }
5458 }
5459
e4f8e513
QC
5460 /*
5461 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5462 * already held which will conflict with an existing lock order:
5463 *
5464 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5465 *
5466 * We don't really need mem_hotplug_lock (to hold off
5467 * slab_mem_going_offline_callback) here because slab's memory hot
5468 * unplug code doesn't destroy the kmem_cache->node[] data.
5469 */
5470
ab4d5ed5 5471#ifdef CONFIG_SLUB_DEBUG
205ab99d 5472 if (flags & SO_ALL) {
fa45dc25
CL
5473 struct kmem_cache_node *n;
5474
5475 for_each_kmem_cache_node(s, node, n) {
205ab99d 5476
d0e0ac97 5477 if (flags & SO_TOTAL)
8040cbf5 5478 x = node_nr_objs(n);
d0e0ac97 5479 else if (flags & SO_OBJECTS)
8040cbf5 5480 x = node_nr_objs(n) - count_partial(n, count_free);
81819f0f 5481 else
8040cbf5 5482 x = node_nr_slabs(n);
81819f0f
CL
5483 total += x;
5484 nodes[node] += x;
5485 }
5486
ab4d5ed5
CL
5487 } else
5488#endif
5489 if (flags & SO_PARTIAL) {
fa45dc25 5490 struct kmem_cache_node *n;
81819f0f 5491
fa45dc25 5492 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5493 if (flags & SO_TOTAL)
5494 x = count_partial(n, count_total);
5495 else if (flags & SO_OBJECTS)
5496 x = count_partial(n, count_inuse);
81819f0f 5497 else
205ab99d 5498 x = n->nr_partial;
81819f0f
CL
5499 total += x;
5500 nodes[node] += x;
5501 }
5502 }
bf16d19a
JP
5503
5504 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5505#ifdef CONFIG_NUMA
bf16d19a 5506 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5507 if (nodes[node])
bf16d19a
JP
5508 len += sysfs_emit_at(buf, len, " N%d=%lu",
5509 node, nodes[node]);
5510 }
81819f0f 5511#endif
bf16d19a 5512 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5513 kfree(nodes);
bf16d19a
JP
5514
5515 return len;
81819f0f
CL
5516}
5517
81819f0f 5518#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5519#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5520
5521struct slab_attribute {
5522 struct attribute attr;
5523 ssize_t (*show)(struct kmem_cache *s, char *buf);
5524 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5525};
5526
5527#define SLAB_ATTR_RO(_name) \
d1d28bd9 5528 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
81819f0f
CL
5529
5530#define SLAB_ATTR(_name) \
d1d28bd9 5531 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
81819f0f 5532
81819f0f
CL
5533static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5534{
bf16d19a 5535 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5536}
5537SLAB_ATTR_RO(slab_size);
5538
5539static ssize_t align_show(struct kmem_cache *s, char *buf)
5540{
bf16d19a 5541 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5542}
5543SLAB_ATTR_RO(align);
5544
5545static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5546{
bf16d19a 5547 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5548}
5549SLAB_ATTR_RO(object_size);
5550
5551static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5552{
bf16d19a 5553 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5554}
5555SLAB_ATTR_RO(objs_per_slab);
5556
5557static ssize_t order_show(struct kmem_cache *s, char *buf)
5558{
bf16d19a 5559 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5560}
32a6f409 5561SLAB_ATTR_RO(order);
81819f0f 5562
73d342b1
DR
5563static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5564{
bf16d19a 5565 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5566}
5567
5568static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5569 size_t length)
5570{
5571 unsigned long min;
5572 int err;
5573
3dbb95f7 5574 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5575 if (err)
5576 return err;
5577
5182f3c9 5578 s->min_partial = min;
73d342b1
DR
5579 return length;
5580}
5581SLAB_ATTR(min_partial);
5582
49e22585
CL
5583static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5584{
b47291ef
VB
5585 unsigned int nr_partial = 0;
5586#ifdef CONFIG_SLUB_CPU_PARTIAL
5587 nr_partial = s->cpu_partial;
5588#endif
5589
5590 return sysfs_emit(buf, "%u\n", nr_partial);
49e22585
CL
5591}
5592
5593static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5594 size_t length)
5595{
e5d9998f 5596 unsigned int objects;
49e22585
CL
5597 int err;
5598
e5d9998f 5599 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5600 if (err)
5601 return err;
345c905d 5602 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5603 return -EINVAL;
49e22585 5604
e6d0e1dc 5605 slub_set_cpu_partial(s, objects);
49e22585
CL
5606 flush_all(s);
5607 return length;
5608}
5609SLAB_ATTR(cpu_partial);
5610
81819f0f
CL
5611static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5612{
62c70bce
JP
5613 if (!s->ctor)
5614 return 0;
bf16d19a 5615 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5616}
5617SLAB_ATTR_RO(ctor);
5618
81819f0f
CL
5619static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5620{
bf16d19a 5621 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5622}
5623SLAB_ATTR_RO(aliases);
5624
81819f0f
CL
5625static ssize_t partial_show(struct kmem_cache *s, char *buf)
5626{
d9acf4b7 5627 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5628}
5629SLAB_ATTR_RO(partial);
5630
5631static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5632{
d9acf4b7 5633 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5634}
5635SLAB_ATTR_RO(cpu_slabs);
5636
205ab99d
CL
5637static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5638{
5639 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5640}
5641SLAB_ATTR_RO(objects_partial);
5642
49e22585
CL
5643static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5644{
5645 int objects = 0;
bb192ed9 5646 int slabs = 0;
9c01e9af 5647 int cpu __maybe_unused;
bf16d19a 5648 int len = 0;
49e22585 5649
9c01e9af 5650#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 5651 for_each_online_cpu(cpu) {
bb192ed9 5652 struct slab *slab;
a93cf07b 5653
bb192ed9 5654 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585 5655
bb192ed9
VB
5656 if (slab)
5657 slabs += slab->slabs;
49e22585 5658 }
9c01e9af 5659#endif
49e22585 5660
c2092c12 5661 /* Approximate half-full slabs, see slub_set_cpu_partial() */
bb192ed9
VB
5662 objects = (slabs * oo_objects(s->oo)) / 2;
5663 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
49e22585 5664
c6c17c4d 5665#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 5666 for_each_online_cpu(cpu) {
bb192ed9 5667 struct slab *slab;
a93cf07b 5668
bb192ed9
VB
5669 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5670 if (slab) {
5671 slabs = READ_ONCE(slab->slabs);
5672 objects = (slabs * oo_objects(s->oo)) / 2;
bf16d19a 5673 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
bb192ed9 5674 cpu, objects, slabs);
b47291ef 5675 }
49e22585
CL
5676 }
5677#endif
bf16d19a
JP
5678 len += sysfs_emit_at(buf, len, "\n");
5679
5680 return len;
49e22585
CL
5681}
5682SLAB_ATTR_RO(slabs_cpu_partial);
5683
a5a84755
CL
5684static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5685{
bf16d19a 5686 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5687}
8f58119a 5688SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5689
5690static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5691{
bf16d19a 5692 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5693}
5694SLAB_ATTR_RO(hwcache_align);
5695
5696#ifdef CONFIG_ZONE_DMA
5697static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5698{
bf16d19a 5699 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5700}
5701SLAB_ATTR_RO(cache_dma);
5702#endif
5703
346907ce 5704#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
5705static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5706{
bf16d19a 5707 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5708}
5709SLAB_ATTR_RO(usersize);
346907ce 5710#endif
8eb8284b 5711
a5a84755
CL
5712static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5713{
bf16d19a 5714 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5715}
5716SLAB_ATTR_RO(destroy_by_rcu);
5717
ab4d5ed5 5718#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5719static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5720{
5721 return show_slab_objects(s, buf, SO_ALL);
5722}
5723SLAB_ATTR_RO(slabs);
5724
205ab99d
CL
5725static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5726{
5727 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5728}
5729SLAB_ATTR_RO(total_objects);
5730
81bd3179
XS
5731static ssize_t objects_show(struct kmem_cache *s, char *buf)
5732{
5733 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5734}
5735SLAB_ATTR_RO(objects);
5736
81819f0f
CL
5737static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5738{
bf16d19a 5739 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5740}
060807f8 5741SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5742
5743static ssize_t trace_show(struct kmem_cache *s, char *buf)
5744{
bf16d19a 5745 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5746}
060807f8 5747SLAB_ATTR_RO(trace);
81819f0f 5748
81819f0f
CL
5749static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5750{
bf16d19a 5751 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5752}
5753
ad38b5b1 5754SLAB_ATTR_RO(red_zone);
81819f0f
CL
5755
5756static ssize_t poison_show(struct kmem_cache *s, char *buf)
5757{
bf16d19a 5758 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5759}
5760
ad38b5b1 5761SLAB_ATTR_RO(poison);
81819f0f
CL
5762
5763static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5764{
bf16d19a 5765 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5766}
5767
ad38b5b1 5768SLAB_ATTR_RO(store_user);
81819f0f 5769
53e15af0
CL
5770static ssize_t validate_show(struct kmem_cache *s, char *buf)
5771{
5772 return 0;
5773}
5774
5775static ssize_t validate_store(struct kmem_cache *s,
5776 const char *buf, size_t length)
5777{
434e245d
CL
5778 int ret = -EINVAL;
5779
c7323a5a 5780 if (buf[0] == '1' && kmem_cache_debug(s)) {
434e245d
CL
5781 ret = validate_slab_cache(s);
5782 if (ret >= 0)
5783 ret = length;
5784 }
5785 return ret;
53e15af0
CL
5786}
5787SLAB_ATTR(validate);
a5a84755 5788
a5a84755
CL
5789#endif /* CONFIG_SLUB_DEBUG */
5790
5791#ifdef CONFIG_FAILSLAB
5792static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5793{
bf16d19a 5794 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5795}
7c82b3b3
AA
5796
5797static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5798 size_t length)
5799{
5800 if (s->refcount > 1)
5801 return -EINVAL;
5802
5803 if (buf[0] == '1')
5804 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5805 else
5806 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5807
5808 return length;
5809}
5810SLAB_ATTR(failslab);
ab4d5ed5 5811#endif
53e15af0 5812
2086d26a
CL
5813static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5814{
5815 return 0;
5816}
5817
5818static ssize_t shrink_store(struct kmem_cache *s,
5819 const char *buf, size_t length)
5820{
832f37f5 5821 if (buf[0] == '1')
10befea9 5822 kmem_cache_shrink(s);
832f37f5 5823 else
2086d26a
CL
5824 return -EINVAL;
5825 return length;
5826}
5827SLAB_ATTR(shrink);
5828
81819f0f 5829#ifdef CONFIG_NUMA
9824601e 5830static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5831{
bf16d19a 5832 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5833}
5834
9824601e 5835static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5836 const char *buf, size_t length)
5837{
eb7235eb 5838 unsigned int ratio;
0121c619
CL
5839 int err;
5840
eb7235eb 5841 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5842 if (err)
5843 return err;
eb7235eb
AD
5844 if (ratio > 100)
5845 return -ERANGE;
0121c619 5846
eb7235eb 5847 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5848
81819f0f
CL
5849 return length;
5850}
9824601e 5851SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5852#endif
5853
8ff12cfc 5854#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5855static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5856{
5857 unsigned long sum = 0;
5858 int cpu;
bf16d19a 5859 int len = 0;
6da2ec56 5860 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5861
5862 if (!data)
5863 return -ENOMEM;
5864
5865 for_each_online_cpu(cpu) {
9dfc6e68 5866 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5867
5868 data[cpu] = x;
5869 sum += x;
5870 }
5871
bf16d19a 5872 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5873
50ef37b9 5874#ifdef CONFIG_SMP
8ff12cfc 5875 for_each_online_cpu(cpu) {
bf16d19a
JP
5876 if (data[cpu])
5877 len += sysfs_emit_at(buf, len, " C%d=%u",
5878 cpu, data[cpu]);
8ff12cfc 5879 }
50ef37b9 5880#endif
8ff12cfc 5881 kfree(data);
bf16d19a
JP
5882 len += sysfs_emit_at(buf, len, "\n");
5883
5884 return len;
8ff12cfc
CL
5885}
5886
78eb00cc
DR
5887static void clear_stat(struct kmem_cache *s, enum stat_item si)
5888{
5889 int cpu;
5890
5891 for_each_online_cpu(cpu)
9dfc6e68 5892 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5893}
5894
8ff12cfc
CL
5895#define STAT_ATTR(si, text) \
5896static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5897{ \
5898 return show_stat(s, buf, si); \
5899} \
78eb00cc
DR
5900static ssize_t text##_store(struct kmem_cache *s, \
5901 const char *buf, size_t length) \
5902{ \
5903 if (buf[0] != '0') \
5904 return -EINVAL; \
5905 clear_stat(s, si); \
5906 return length; \
5907} \
5908SLAB_ATTR(text); \
8ff12cfc
CL
5909
5910STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5911STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5912STAT_ATTR(FREE_FASTPATH, free_fastpath);
5913STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5914STAT_ATTR(FREE_FROZEN, free_frozen);
5915STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5916STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5917STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5918STAT_ATTR(ALLOC_SLAB, alloc_slab);
5919STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5920STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5921STAT_ATTR(FREE_SLAB, free_slab);
5922STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5923STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5924STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5925STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5926STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5927STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5928STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5929STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5930STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5931STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5932STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5933STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5934STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5935STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5936#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5937
b84e04f1
IK
5938#ifdef CONFIG_KFENCE
5939static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5940{
5941 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5942}
5943
5944static ssize_t skip_kfence_store(struct kmem_cache *s,
5945 const char *buf, size_t length)
5946{
5947 int ret = length;
5948
5949 if (buf[0] == '0')
5950 s->flags &= ~SLAB_SKIP_KFENCE;
5951 else if (buf[0] == '1')
5952 s->flags |= SLAB_SKIP_KFENCE;
5953 else
5954 ret = -EINVAL;
5955
5956 return ret;
5957}
5958SLAB_ATTR(skip_kfence);
5959#endif
5960
06428780 5961static struct attribute *slab_attrs[] = {
81819f0f
CL
5962 &slab_size_attr.attr,
5963 &object_size_attr.attr,
5964 &objs_per_slab_attr.attr,
5965 &order_attr.attr,
73d342b1 5966 &min_partial_attr.attr,
49e22585 5967 &cpu_partial_attr.attr,
205ab99d 5968 &objects_partial_attr.attr,
81819f0f
CL
5969 &partial_attr.attr,
5970 &cpu_slabs_attr.attr,
5971 &ctor_attr.attr,
81819f0f
CL
5972 &aliases_attr.attr,
5973 &align_attr.attr,
81819f0f
CL
5974 &hwcache_align_attr.attr,
5975 &reclaim_account_attr.attr,
5976 &destroy_by_rcu_attr.attr,
a5a84755 5977 &shrink_attr.attr,
49e22585 5978 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5979#ifdef CONFIG_SLUB_DEBUG
a5a84755 5980 &total_objects_attr.attr,
81bd3179 5981 &objects_attr.attr,
a5a84755
CL
5982 &slabs_attr.attr,
5983 &sanity_checks_attr.attr,
5984 &trace_attr.attr,
81819f0f
CL
5985 &red_zone_attr.attr,
5986 &poison_attr.attr,
5987 &store_user_attr.attr,
53e15af0 5988 &validate_attr.attr,
ab4d5ed5 5989#endif
81819f0f
CL
5990#ifdef CONFIG_ZONE_DMA
5991 &cache_dma_attr.attr,
5992#endif
5993#ifdef CONFIG_NUMA
9824601e 5994 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5995#endif
5996#ifdef CONFIG_SLUB_STATS
5997 &alloc_fastpath_attr.attr,
5998 &alloc_slowpath_attr.attr,
5999 &free_fastpath_attr.attr,
6000 &free_slowpath_attr.attr,
6001 &free_frozen_attr.attr,
6002 &free_add_partial_attr.attr,
6003 &free_remove_partial_attr.attr,
6004 &alloc_from_partial_attr.attr,
6005 &alloc_slab_attr.attr,
6006 &alloc_refill_attr.attr,
e36a2652 6007 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
6008 &free_slab_attr.attr,
6009 &cpuslab_flush_attr.attr,
6010 &deactivate_full_attr.attr,
6011 &deactivate_empty_attr.attr,
6012 &deactivate_to_head_attr.attr,
6013 &deactivate_to_tail_attr.attr,
6014 &deactivate_remote_frees_attr.attr,
03e404af 6015 &deactivate_bypass_attr.attr,
65c3376a 6016 &order_fallback_attr.attr,
b789ef51
CL
6017 &cmpxchg_double_fail_attr.attr,
6018 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
6019 &cpu_partial_alloc_attr.attr,
6020 &cpu_partial_free_attr.attr,
8028dcea
AS
6021 &cpu_partial_node_attr.attr,
6022 &cpu_partial_drain_attr.attr,
81819f0f 6023#endif
4c13dd3b
DM
6024#ifdef CONFIG_FAILSLAB
6025 &failslab_attr.attr,
6026#endif
346907ce 6027#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b 6028 &usersize_attr.attr,
346907ce 6029#endif
b84e04f1
IK
6030#ifdef CONFIG_KFENCE
6031 &skip_kfence_attr.attr,
6032#endif
4c13dd3b 6033
81819f0f
CL
6034 NULL
6035};
6036
1fdaaa23 6037static const struct attribute_group slab_attr_group = {
81819f0f
CL
6038 .attrs = slab_attrs,
6039};
6040
6041static ssize_t slab_attr_show(struct kobject *kobj,
6042 struct attribute *attr,
6043 char *buf)
6044{
6045 struct slab_attribute *attribute;
6046 struct kmem_cache *s;
81819f0f
CL
6047
6048 attribute = to_slab_attr(attr);
6049 s = to_slab(kobj);
6050
6051 if (!attribute->show)
6052 return -EIO;
6053
2bfbb027 6054 return attribute->show(s, buf);
81819f0f
CL
6055}
6056
6057static ssize_t slab_attr_store(struct kobject *kobj,
6058 struct attribute *attr,
6059 const char *buf, size_t len)
6060{
6061 struct slab_attribute *attribute;
6062 struct kmem_cache *s;
81819f0f
CL
6063
6064 attribute = to_slab_attr(attr);
6065 s = to_slab(kobj);
6066
6067 if (!attribute->store)
6068 return -EIO;
6069
2bfbb027 6070 return attribute->store(s, buf, len);
81819f0f
CL
6071}
6072
41a21285
CL
6073static void kmem_cache_release(struct kobject *k)
6074{
6075 slab_kmem_cache_release(to_slab(k));
6076}
6077
52cf25d0 6078static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
6079 .show = slab_attr_show,
6080 .store = slab_attr_store,
6081};
6082
9ebe720e 6083static const struct kobj_type slab_ktype = {
81819f0f 6084 .sysfs_ops = &slab_sysfs_ops,
41a21285 6085 .release = kmem_cache_release,
81819f0f
CL
6086};
6087
27c3a314 6088static struct kset *slab_kset;
81819f0f 6089
9a41707b
VD
6090static inline struct kset *cache_kset(struct kmem_cache *s)
6091{
9a41707b
VD
6092 return slab_kset;
6093}
6094
d65360f2 6095#define ID_STR_LENGTH 32
81819f0f
CL
6096
6097/* Create a unique string id for a slab cache:
6446faa2
CL
6098 *
6099 * Format :[flags-]size
81819f0f
CL
6100 */
6101static char *create_unique_id(struct kmem_cache *s)
6102{
6103 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6104 char *p = name;
6105
7e9c323c
CY
6106 if (!name)
6107 return ERR_PTR(-ENOMEM);
81819f0f
CL
6108
6109 *p++ = ':';
6110 /*
6111 * First flags affecting slabcache operations. We will only
6112 * get here for aliasable slabs so we do not need to support
6113 * too many flags. The flags here must cover all flags that
6114 * are matched during merging to guarantee that the id is
6115 * unique.
6116 */
6117 if (s->flags & SLAB_CACHE_DMA)
6118 *p++ = 'd';
6d6ea1e9
NB
6119 if (s->flags & SLAB_CACHE_DMA32)
6120 *p++ = 'D';
81819f0f
CL
6121 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6122 *p++ = 'a';
becfda68 6123 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 6124 *p++ = 'F';
230e9fc2
VD
6125 if (s->flags & SLAB_ACCOUNT)
6126 *p++ = 'A';
81819f0f
CL
6127 if (p != name + 1)
6128 *p++ = '-';
d65360f2 6129 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
2633d7a0 6130
d65360f2
CY
6131 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6132 kfree(name);
6133 return ERR_PTR(-EINVAL);
6134 }
68ef169a 6135 kmsan_unpoison_memory(name, p - name);
81819f0f
CL
6136 return name;
6137}
6138
6139static int sysfs_slab_add(struct kmem_cache *s)
6140{
6141 int err;
6142 const char *name;
1663f26d 6143 struct kset *kset = cache_kset(s);
45530c44 6144 int unmergeable = slab_unmergeable(s);
81819f0f 6145
11066386
MC
6146 if (!unmergeable && disable_higher_order_debug &&
6147 (slub_debug & DEBUG_METADATA_FLAGS))
6148 unmergeable = 1;
6149
81819f0f
CL
6150 if (unmergeable) {
6151 /*
6152 * Slabcache can never be merged so we can use the name proper.
6153 * This is typically the case for debug situations. In that
6154 * case we can catch duplicate names easily.
6155 */
27c3a314 6156 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
6157 name = s->name;
6158 } else {
6159 /*
6160 * Create a unique name for the slab as a target
6161 * for the symlinks.
6162 */
6163 name = create_unique_id(s);
7e9c323c
CY
6164 if (IS_ERR(name))
6165 return PTR_ERR(name);
81819f0f
CL
6166 }
6167
1663f26d 6168 s->kobj.kset = kset;
26e4f205 6169 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 6170 if (err)
80da026a 6171 goto out;
81819f0f
CL
6172
6173 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
6174 if (err)
6175 goto out_del_kobj;
9a41707b 6176
81819f0f
CL
6177 if (!unmergeable) {
6178 /* Setup first alias */
6179 sysfs_slab_alias(s, s->name);
81819f0f 6180 }
54b6a731
DJ
6181out:
6182 if (!unmergeable)
6183 kfree(name);
6184 return err;
6185out_del_kobj:
6186 kobject_del(&s->kobj);
54b6a731 6187 goto out;
81819f0f
CL
6188}
6189
d50d82fa
MP
6190void sysfs_slab_unlink(struct kmem_cache *s)
6191{
6192 if (slab_state >= FULL)
6193 kobject_del(&s->kobj);
6194}
6195
bf5eb3de
TH
6196void sysfs_slab_release(struct kmem_cache *s)
6197{
6198 if (slab_state >= FULL)
6199 kobject_put(&s->kobj);
81819f0f
CL
6200}
6201
6202/*
6203 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 6204 * available lest we lose that information.
81819f0f
CL
6205 */
6206struct saved_alias {
6207 struct kmem_cache *s;
6208 const char *name;
6209 struct saved_alias *next;
6210};
6211
5af328a5 6212static struct saved_alias *alias_list;
81819f0f
CL
6213
6214static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6215{
6216 struct saved_alias *al;
6217
97d06609 6218 if (slab_state == FULL) {
81819f0f
CL
6219 /*
6220 * If we have a leftover link then remove it.
6221 */
27c3a314
GKH
6222 sysfs_remove_link(&slab_kset->kobj, name);
6223 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
6224 }
6225
6226 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6227 if (!al)
6228 return -ENOMEM;
6229
6230 al->s = s;
6231 al->name = name;
6232 al->next = alias_list;
6233 alias_list = al;
68ef169a 6234 kmsan_unpoison_memory(al, sizeof(*al));
81819f0f
CL
6235 return 0;
6236}
6237
6238static int __init slab_sysfs_init(void)
6239{
5b95a4ac 6240 struct kmem_cache *s;
81819f0f
CL
6241 int err;
6242
18004c5d 6243 mutex_lock(&slab_mutex);
2bce6485 6244
d7660ce5 6245 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 6246 if (!slab_kset) {
18004c5d 6247 mutex_unlock(&slab_mutex);
f9f58285 6248 pr_err("Cannot register slab subsystem.\n");
35973232 6249 return -ENOMEM;
81819f0f
CL
6250 }
6251
97d06609 6252 slab_state = FULL;
26a7bd03 6253
5b95a4ac 6254 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 6255 err = sysfs_slab_add(s);
5d540fb7 6256 if (err)
f9f58285
FF
6257 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6258 s->name);
26a7bd03 6259 }
81819f0f
CL
6260
6261 while (alias_list) {
6262 struct saved_alias *al = alias_list;
6263
6264 alias_list = alias_list->next;
6265 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 6266 if (err)
f9f58285
FF
6267 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6268 al->name);
81819f0f
CL
6269 kfree(al);
6270 }
6271
18004c5d 6272 mutex_unlock(&slab_mutex);
81819f0f
CL
6273 return 0;
6274}
1a5ad30b 6275late_initcall(slab_sysfs_init);
b1a413a3 6276#endif /* SLAB_SUPPORTS_SYSFS */
57ed3eda 6277
64dd6849
FM
6278#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6279static int slab_debugfs_show(struct seq_file *seq, void *v)
6280{
64dd6849 6281 struct loc_track *t = seq->private;
005a79e5
GS
6282 struct location *l;
6283 unsigned long idx;
64dd6849 6284
005a79e5 6285 idx = (unsigned long) t->idx;
64dd6849
FM
6286 if (idx < t->count) {
6287 l = &t->loc[idx];
6288
6289 seq_printf(seq, "%7ld ", l->count);
6290
6291 if (l->addr)
6292 seq_printf(seq, "%pS", (void *)l->addr);
6293 else
6294 seq_puts(seq, "<not-available>");
6295
6edf2576
FT
6296 if (l->waste)
6297 seq_printf(seq, " waste=%lu/%lu",
6298 l->count * l->waste, l->waste);
6299
64dd6849
FM
6300 if (l->sum_time != l->min_time) {
6301 seq_printf(seq, " age=%ld/%llu/%ld",
6302 l->min_time, div_u64(l->sum_time, l->count),
6303 l->max_time);
6304 } else
6305 seq_printf(seq, " age=%ld", l->min_time);
6306
6307 if (l->min_pid != l->max_pid)
6308 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6309 else
6310 seq_printf(seq, " pid=%ld",
6311 l->min_pid);
6312
6313 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6314 seq_printf(seq, " cpus=%*pbl",
6315 cpumask_pr_args(to_cpumask(l->cpus)));
6316
6317 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6318 seq_printf(seq, " nodes=%*pbl",
6319 nodemask_pr_args(&l->nodes));
6320
8ea9fb92
OG
6321#ifdef CONFIG_STACKDEPOT
6322 {
6323 depot_stack_handle_t handle;
6324 unsigned long *entries;
6325 unsigned int nr_entries, j;
6326
6327 handle = READ_ONCE(l->handle);
6328 if (handle) {
6329 nr_entries = stack_depot_fetch(handle, &entries);
6330 seq_puts(seq, "\n");
6331 for (j = 0; j < nr_entries; j++)
6332 seq_printf(seq, " %pS\n", (void *)entries[j]);
6333 }
6334 }
6335#endif
64dd6849
FM
6336 seq_puts(seq, "\n");
6337 }
6338
6339 if (!idx && !t->count)
6340 seq_puts(seq, "No data\n");
6341
6342 return 0;
6343}
6344
6345static void slab_debugfs_stop(struct seq_file *seq, void *v)
6346{
6347}
6348
6349static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6350{
6351 struct loc_track *t = seq->private;
6352
005a79e5 6353 t->idx = ++(*ppos);
64dd6849 6354 if (*ppos <= t->count)
005a79e5 6355 return ppos;
64dd6849
FM
6356
6357 return NULL;
6358}
6359
553c0369
OG
6360static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6361{
6362 struct location *loc1 = (struct location *)a;
6363 struct location *loc2 = (struct location *)b;
6364
6365 if (loc1->count > loc2->count)
6366 return -1;
6367 else
6368 return 1;
6369}
6370
64dd6849
FM
6371static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6372{
005a79e5
GS
6373 struct loc_track *t = seq->private;
6374
6375 t->idx = *ppos;
64dd6849
FM
6376 return ppos;
6377}
6378
6379static const struct seq_operations slab_debugfs_sops = {
6380 .start = slab_debugfs_start,
6381 .next = slab_debugfs_next,
6382 .stop = slab_debugfs_stop,
6383 .show = slab_debugfs_show,
6384};
6385
6386static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6387{
6388
6389 struct kmem_cache_node *n;
6390 enum track_item alloc;
6391 int node;
6392 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6393 sizeof(struct loc_track));
6394 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
6395 unsigned long *obj_map;
6396
2127d225
ML
6397 if (!t)
6398 return -ENOMEM;
6399
b3fd64e1 6400 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
2127d225
ML
6401 if (!obj_map) {
6402 seq_release_private(inode, filep);
b3fd64e1 6403 return -ENOMEM;
2127d225 6404 }
64dd6849
FM
6405
6406 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6407 alloc = TRACK_ALLOC;
6408 else
6409 alloc = TRACK_FREE;
6410
b3fd64e1
VB
6411 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6412 bitmap_free(obj_map);
2127d225 6413 seq_release_private(inode, filep);
64dd6849 6414 return -ENOMEM;
b3fd64e1 6415 }
64dd6849 6416
64dd6849
FM
6417 for_each_kmem_cache_node(s, node, n) {
6418 unsigned long flags;
bb192ed9 6419 struct slab *slab;
64dd6849 6420
8040cbf5 6421 if (!node_nr_slabs(n))
64dd6849
FM
6422 continue;
6423
6424 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
6425 list_for_each_entry(slab, &n->partial, slab_list)
6426 process_slab(t, s, slab, alloc, obj_map);
6427 list_for_each_entry(slab, &n->full, slab_list)
6428 process_slab(t, s, slab, alloc, obj_map);
64dd6849
FM
6429 spin_unlock_irqrestore(&n->list_lock, flags);
6430 }
6431
553c0369
OG
6432 /* Sort locations by count */
6433 sort_r(t->loc, t->count, sizeof(struct location),
6434 cmp_loc_by_count, NULL, NULL);
6435
b3fd64e1 6436 bitmap_free(obj_map);
64dd6849
FM
6437 return 0;
6438}
6439
6440static int slab_debug_trace_release(struct inode *inode, struct file *file)
6441{
6442 struct seq_file *seq = file->private_data;
6443 struct loc_track *t = seq->private;
6444
6445 free_loc_track(t);
6446 return seq_release_private(inode, file);
6447}
6448
6449static const struct file_operations slab_debugfs_fops = {
6450 .open = slab_debug_trace_open,
6451 .read = seq_read,
6452 .llseek = seq_lseek,
6453 .release = slab_debug_trace_release,
6454};
6455
6456static void debugfs_slab_add(struct kmem_cache *s)
6457{
6458 struct dentry *slab_cache_dir;
6459
6460 if (unlikely(!slab_debugfs_root))
6461 return;
6462
6463 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6464
6465 debugfs_create_file("alloc_traces", 0400,
6466 slab_cache_dir, s, &slab_debugfs_fops);
6467
6468 debugfs_create_file("free_traces", 0400,
6469 slab_cache_dir, s, &slab_debugfs_fops);
6470}
6471
6472void debugfs_slab_release(struct kmem_cache *s)
6473{
aa4a8605 6474 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
64dd6849
FM
6475}
6476
6477static int __init slab_debugfs_init(void)
6478{
6479 struct kmem_cache *s;
6480
6481 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6482
6483 list_for_each_entry(s, &slab_caches, list)
6484 if (s->flags & SLAB_STORE_USER)
6485 debugfs_slab_add(s);
6486
6487 return 0;
6488
6489}
6490__initcall(slab_debugfs_init);
6491#endif
57ed3eda
PE
6492/*
6493 * The /proc/slabinfo ABI
6494 */
5b365771 6495#ifdef CONFIG_SLUB_DEBUG
0d7561c6 6496void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 6497{
57ed3eda 6498 unsigned long nr_slabs = 0;
205ab99d
CL
6499 unsigned long nr_objs = 0;
6500 unsigned long nr_free = 0;
57ed3eda 6501 int node;
fa45dc25 6502 struct kmem_cache_node *n;
57ed3eda 6503
fa45dc25 6504 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
6505 nr_slabs += node_nr_slabs(n);
6506 nr_objs += node_nr_objs(n);
205ab99d 6507 nr_free += count_partial(n, count_free);
57ed3eda
PE
6508 }
6509
0d7561c6
GC
6510 sinfo->active_objs = nr_objs - nr_free;
6511 sinfo->num_objs = nr_objs;
6512 sinfo->active_slabs = nr_slabs;
6513 sinfo->num_slabs = nr_slabs;
6514 sinfo->objects_per_slab = oo_objects(s->oo);
6515 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
6516}
6517
0d7561c6 6518void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 6519{
7b3c3a50
AD
6520}
6521
b7454ad3
GC
6522ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6523 size_t count, loff_t *ppos)
7b3c3a50 6524{
b7454ad3 6525 return -EIO;
7b3c3a50 6526}
5b365771 6527#endif /* CONFIG_SLUB_DEBUG */