]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmalloc.c
vmstat: allow_direct_reclaim should use zone_page_state_snapshot
[thirdparty/linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
5da96bdd 28#include <linux/io.h>
db64fe02 29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
4e5aa1f4 34#include <linux/memcontrol.h>
32fcfd40 35#include <linux/llist.h>
4c91c07c 36#include <linux/uio.h>
0f616be1 37#include <linux/bitops.h>
68ad4a33 38#include <linux/rbtree_augmented.h>
bdebd6a2 39#include <linux/overflow.h>
c0eb315a 40#include <linux/pgtable.h>
f7ee1f13 41#include <linux/hugetlb.h>
451769eb 42#include <linux/sched/mm.h>
1da177e4 43#include <asm/tlbflush.h>
2dca6999 44#include <asm/shmparam.h>
1da177e4 45
cf243da6
URS
46#define CREATE_TRACE_POINTS
47#include <trace/events/vmalloc.h>
48
dd56b046 49#include "internal.h"
2a681cfa 50#include "pgalloc-track.h"
dd56b046 51
82a70ce0
CH
52#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54
55static int __init set_nohugeiomap(char *str)
56{
57 ioremap_max_page_shift = PAGE_SHIFT;
58 return 0;
59}
60early_param("nohugeiomap", set_nohugeiomap);
61#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
64
121e6f32
NP
65#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66static bool __ro_after_init vmap_allow_huge = true;
67
68static int __init set_nohugevmalloc(char *str)
69{
70 vmap_allow_huge = false;
71 return 0;
72}
73early_param("nohugevmalloc", set_nohugevmalloc);
74#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75static const bool vmap_allow_huge = false;
76#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77
186525bd
IM
78bool is_vmalloc_addr(const void *x)
79{
4aff1dc4 80 unsigned long addr = (unsigned long)kasan_reset_tag(x);
186525bd
IM
81
82 return addr >= VMALLOC_START && addr < VMALLOC_END;
83}
84EXPORT_SYMBOL(is_vmalloc_addr);
85
32fcfd40
AV
86struct vfree_deferred {
87 struct llist_head list;
88 struct work_struct wq;
89};
90static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91
db64fe02 92/*** Page table manipulation functions ***/
5e9e3d77
NP
93static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 phys_addr_t phys_addr, pgprot_t prot,
f7ee1f13 95 unsigned int max_page_shift, pgtbl_mod_mask *mask)
5e9e3d77
NP
96{
97 pte_t *pte;
98 u64 pfn;
f7ee1f13 99 unsigned long size = PAGE_SIZE;
5e9e3d77
NP
100
101 pfn = phys_addr >> PAGE_SHIFT;
102 pte = pte_alloc_kernel_track(pmd, addr, mask);
103 if (!pte)
104 return -ENOMEM;
105 do {
106 BUG_ON(!pte_none(*pte));
f7ee1f13
CL
107
108#ifdef CONFIG_HUGETLB_PAGE
109 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 if (size != PAGE_SIZE) {
111 pte_t entry = pfn_pte(pfn, prot);
112
f7ee1f13
CL
113 entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 set_huge_pte_at(&init_mm, addr, pte, entry);
115 pfn += PFN_DOWN(size);
116 continue;
117 }
118#endif
5e9e3d77
NP
119 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 pfn++;
f7ee1f13 121 } while (pte += PFN_DOWN(size), addr += size, addr != end);
5e9e3d77
NP
122 *mask |= PGTBL_PTE_MODIFIED;
123 return 0;
124}
125
126static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 phys_addr_t phys_addr, pgprot_t prot,
128 unsigned int max_page_shift)
129{
130 if (max_page_shift < PMD_SHIFT)
131 return 0;
132
133 if (!arch_vmap_pmd_supported(prot))
134 return 0;
135
136 if ((end - addr) != PMD_SIZE)
137 return 0;
138
139 if (!IS_ALIGNED(addr, PMD_SIZE))
140 return 0;
141
142 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 return 0;
144
145 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 return 0;
147
148 return pmd_set_huge(pmd, phys_addr, prot);
149}
150
151static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 phys_addr_t phys_addr, pgprot_t prot,
153 unsigned int max_page_shift, pgtbl_mod_mask *mask)
154{
155 pmd_t *pmd;
156 unsigned long next;
157
158 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 if (!pmd)
160 return -ENOMEM;
161 do {
162 next = pmd_addr_end(addr, end);
163
164 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 max_page_shift)) {
166 *mask |= PGTBL_PMD_MODIFIED;
167 continue;
168 }
169
f7ee1f13 170 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
5e9e3d77
NP
171 return -ENOMEM;
172 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 return 0;
174}
175
176static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 phys_addr_t phys_addr, pgprot_t prot,
178 unsigned int max_page_shift)
179{
180 if (max_page_shift < PUD_SHIFT)
181 return 0;
182
183 if (!arch_vmap_pud_supported(prot))
184 return 0;
185
186 if ((end - addr) != PUD_SIZE)
187 return 0;
188
189 if (!IS_ALIGNED(addr, PUD_SIZE))
190 return 0;
191
192 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 return 0;
194
195 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 return 0;
197
198 return pud_set_huge(pud, phys_addr, prot);
199}
200
201static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 phys_addr_t phys_addr, pgprot_t prot,
203 unsigned int max_page_shift, pgtbl_mod_mask *mask)
204{
205 pud_t *pud;
206 unsigned long next;
207
208 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 if (!pud)
210 return -ENOMEM;
211 do {
212 next = pud_addr_end(addr, end);
213
214 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 max_page_shift)) {
216 *mask |= PGTBL_PUD_MODIFIED;
217 continue;
218 }
219
220 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 max_page_shift, mask))
222 return -ENOMEM;
223 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 return 0;
225}
226
227static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 phys_addr_t phys_addr, pgprot_t prot,
229 unsigned int max_page_shift)
230{
231 if (max_page_shift < P4D_SHIFT)
232 return 0;
233
234 if (!arch_vmap_p4d_supported(prot))
235 return 0;
236
237 if ((end - addr) != P4D_SIZE)
238 return 0;
239
240 if (!IS_ALIGNED(addr, P4D_SIZE))
241 return 0;
242
243 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 return 0;
245
246 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 return 0;
248
249 return p4d_set_huge(p4d, phys_addr, prot);
250}
251
252static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 phys_addr_t phys_addr, pgprot_t prot,
254 unsigned int max_page_shift, pgtbl_mod_mask *mask)
255{
256 p4d_t *p4d;
257 unsigned long next;
258
259 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 if (!p4d)
261 return -ENOMEM;
262 do {
263 next = p4d_addr_end(addr, end);
264
265 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 max_page_shift)) {
267 *mask |= PGTBL_P4D_MODIFIED;
268 continue;
269 }
270
271 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 max_page_shift, mask))
273 return -ENOMEM;
274 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 return 0;
276}
277
5d87510d 278static int vmap_range_noflush(unsigned long addr, unsigned long end,
5e9e3d77
NP
279 phys_addr_t phys_addr, pgprot_t prot,
280 unsigned int max_page_shift)
281{
282 pgd_t *pgd;
283 unsigned long start;
284 unsigned long next;
285 int err;
286 pgtbl_mod_mask mask = 0;
287
288 might_sleep();
289 BUG_ON(addr >= end);
290
291 start = addr;
292 pgd = pgd_offset_k(addr);
293 do {
294 next = pgd_addr_end(addr, end);
295 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 max_page_shift, &mask);
297 if (err)
298 break;
299 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300
5e9e3d77
NP
301 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 arch_sync_kernel_mappings(start, end);
303
304 return err;
305}
b221385b 306
82a70ce0
CH
307int ioremap_page_range(unsigned long addr, unsigned long end,
308 phys_addr_t phys_addr, pgprot_t prot)
5d87510d
NP
309{
310 int err;
311
8491502f 312 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
82a70ce0 313 ioremap_max_page_shift);
5d87510d 314 flush_cache_vmap(addr, end);
b073d7f8 315 if (!err)
fdea03e1
AP
316 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 ioremap_max_page_shift);
5d87510d
NP
318 return err;
319}
320
2ba3e694
JR
321static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
322 pgtbl_mod_mask *mask)
1da177e4
LT
323{
324 pte_t *pte;
325
326 pte = pte_offset_kernel(pmd, addr);
327 do {
328 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
329 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
330 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 331 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
332}
333
2ba3e694
JR
334static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
335 pgtbl_mod_mask *mask)
1da177e4
LT
336{
337 pmd_t *pmd;
338 unsigned long next;
2ba3e694 339 int cleared;
1da177e4
LT
340
341 pmd = pmd_offset(pud, addr);
342 do {
343 next = pmd_addr_end(addr, end);
2ba3e694
JR
344
345 cleared = pmd_clear_huge(pmd);
346 if (cleared || pmd_bad(*pmd))
347 *mask |= PGTBL_PMD_MODIFIED;
348
349 if (cleared)
b9820d8f 350 continue;
1da177e4
LT
351 if (pmd_none_or_clear_bad(pmd))
352 continue;
2ba3e694 353 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
354
355 cond_resched();
1da177e4
LT
356 } while (pmd++, addr = next, addr != end);
357}
358
2ba3e694
JR
359static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
360 pgtbl_mod_mask *mask)
1da177e4
LT
361{
362 pud_t *pud;
363 unsigned long next;
2ba3e694 364 int cleared;
1da177e4 365
c2febafc 366 pud = pud_offset(p4d, addr);
1da177e4
LT
367 do {
368 next = pud_addr_end(addr, end);
2ba3e694
JR
369
370 cleared = pud_clear_huge(pud);
371 if (cleared || pud_bad(*pud))
372 *mask |= PGTBL_PUD_MODIFIED;
373
374 if (cleared)
b9820d8f 375 continue;
1da177e4
LT
376 if (pud_none_or_clear_bad(pud))
377 continue;
2ba3e694 378 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
379 } while (pud++, addr = next, addr != end);
380}
381
2ba3e694
JR
382static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
383 pgtbl_mod_mask *mask)
c2febafc
KS
384{
385 p4d_t *p4d;
386 unsigned long next;
387
388 p4d = p4d_offset(pgd, addr);
389 do {
390 next = p4d_addr_end(addr, end);
2ba3e694 391
c8db8c26
L
392 p4d_clear_huge(p4d);
393 if (p4d_bad(*p4d))
2ba3e694
JR
394 *mask |= PGTBL_P4D_MODIFIED;
395
c2febafc
KS
396 if (p4d_none_or_clear_bad(p4d))
397 continue;
2ba3e694 398 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
399 } while (p4d++, addr = next, addr != end);
400}
401
4ad0ae8c
NP
402/*
403 * vunmap_range_noflush is similar to vunmap_range, but does not
404 * flush caches or TLBs.
b521c43f 405 *
4ad0ae8c
NP
406 * The caller is responsible for calling flush_cache_vmap() before calling
407 * this function, and flush_tlb_kernel_range after it has returned
408 * successfully (and before the addresses are expected to cause a page fault
409 * or be re-mapped for something else, if TLB flushes are being delayed or
410 * coalesced).
b521c43f 411 *
4ad0ae8c 412 * This is an internal function only. Do not use outside mm/.
b521c43f 413 */
b073d7f8 414void __vunmap_range_noflush(unsigned long start, unsigned long end)
1da177e4 415{
1da177e4 416 unsigned long next;
b521c43f 417 pgd_t *pgd;
2ba3e694
JR
418 unsigned long addr = start;
419 pgtbl_mod_mask mask = 0;
1da177e4
LT
420
421 BUG_ON(addr >= end);
422 pgd = pgd_offset_k(addr);
1da177e4
LT
423 do {
424 next = pgd_addr_end(addr, end);
2ba3e694
JR
425 if (pgd_bad(*pgd))
426 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
427 if (pgd_none_or_clear_bad(pgd))
428 continue;
2ba3e694 429 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 430 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
431
432 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
433 arch_sync_kernel_mappings(start, end);
1da177e4
LT
434}
435
b073d7f8
AP
436void vunmap_range_noflush(unsigned long start, unsigned long end)
437{
438 kmsan_vunmap_range_noflush(start, end);
439 __vunmap_range_noflush(start, end);
440}
441
4ad0ae8c
NP
442/**
443 * vunmap_range - unmap kernel virtual addresses
444 * @addr: start of the VM area to unmap
445 * @end: end of the VM area to unmap (non-inclusive)
446 *
447 * Clears any present PTEs in the virtual address range, flushes TLBs and
448 * caches. Any subsequent access to the address before it has been re-mapped
449 * is a kernel bug.
450 */
451void vunmap_range(unsigned long addr, unsigned long end)
452{
453 flush_cache_vunmap(addr, end);
454 vunmap_range_noflush(addr, end);
455 flush_tlb_kernel_range(addr, end);
456}
457
0a264884 458static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
459 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
460 pgtbl_mod_mask *mask)
1da177e4
LT
461{
462 pte_t *pte;
463
db64fe02
NP
464 /*
465 * nr is a running index into the array which helps higher level
466 * callers keep track of where we're up to.
467 */
468
2ba3e694 469 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
470 if (!pte)
471 return -ENOMEM;
472 do {
db64fe02
NP
473 struct page *page = pages[*nr];
474
475 if (WARN_ON(!pte_none(*pte)))
476 return -EBUSY;
477 if (WARN_ON(!page))
1da177e4 478 return -ENOMEM;
4fcdcc12
YN
479 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
480 return -EINVAL;
481
1da177e4 482 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 483 (*nr)++;
1da177e4 484 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 485 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
486 return 0;
487}
488
0a264884 489static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
490 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
491 pgtbl_mod_mask *mask)
1da177e4
LT
492{
493 pmd_t *pmd;
494 unsigned long next;
495
2ba3e694 496 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
497 if (!pmd)
498 return -ENOMEM;
499 do {
500 next = pmd_addr_end(addr, end);
0a264884 501 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
502 return -ENOMEM;
503 } while (pmd++, addr = next, addr != end);
504 return 0;
505}
506
0a264884 507static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
508 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
509 pgtbl_mod_mask *mask)
1da177e4
LT
510{
511 pud_t *pud;
512 unsigned long next;
513
2ba3e694 514 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
515 if (!pud)
516 return -ENOMEM;
517 do {
518 next = pud_addr_end(addr, end);
0a264884 519 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
520 return -ENOMEM;
521 } while (pud++, addr = next, addr != end);
522 return 0;
523}
524
0a264884 525static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
526 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
527 pgtbl_mod_mask *mask)
c2febafc
KS
528{
529 p4d_t *p4d;
530 unsigned long next;
531
2ba3e694 532 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
533 if (!p4d)
534 return -ENOMEM;
535 do {
536 next = p4d_addr_end(addr, end);
0a264884 537 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
538 return -ENOMEM;
539 } while (p4d++, addr = next, addr != end);
540 return 0;
541}
542
121e6f32
NP
543static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
544 pgprot_t prot, struct page **pages)
1da177e4 545{
2ba3e694 546 unsigned long start = addr;
b521c43f 547 pgd_t *pgd;
121e6f32 548 unsigned long next;
db64fe02
NP
549 int err = 0;
550 int nr = 0;
2ba3e694 551 pgtbl_mod_mask mask = 0;
1da177e4
LT
552
553 BUG_ON(addr >= end);
554 pgd = pgd_offset_k(addr);
1da177e4
LT
555 do {
556 next = pgd_addr_end(addr, end);
2ba3e694
JR
557 if (pgd_bad(*pgd))
558 mask |= PGTBL_PGD_MODIFIED;
0a264884 559 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 560 if (err)
bf88c8c8 561 return err;
1da177e4 562 } while (pgd++, addr = next, addr != end);
db64fe02 563
2ba3e694
JR
564 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
565 arch_sync_kernel_mappings(start, end);
566
60bb4465 567 return 0;
1da177e4
LT
568}
569
b67177ec
NP
570/*
571 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
572 * flush caches.
573 *
574 * The caller is responsible for calling flush_cache_vmap() after this
575 * function returns successfully and before the addresses are accessed.
576 *
577 * This is an internal function only. Do not use outside mm/.
578 */
b073d7f8 579int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
121e6f32
NP
580 pgprot_t prot, struct page **pages, unsigned int page_shift)
581{
582 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
583
584 WARN_ON(page_shift < PAGE_SHIFT);
585
586 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
587 page_shift == PAGE_SHIFT)
588 return vmap_small_pages_range_noflush(addr, end, prot, pages);
589
590 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
591 int err;
592
593 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
08262ac5 594 page_to_phys(pages[i]), prot,
121e6f32
NP
595 page_shift);
596 if (err)
597 return err;
598
599 addr += 1UL << page_shift;
600 }
601
602 return 0;
603}
b073d7f8
AP
604
605int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
606 pgprot_t prot, struct page **pages, unsigned int page_shift)
607{
47ebd031
AP
608 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
609 page_shift);
610
611 if (ret)
612 return ret;
b073d7f8
AP
613 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
614}
121e6f32 615
121e6f32 616/**
b67177ec 617 * vmap_pages_range - map pages to a kernel virtual address
121e6f32 618 * @addr: start of the VM area to map
b67177ec 619 * @end: end of the VM area to map (non-inclusive)
121e6f32 620 * @prot: page protection flags to use
b67177ec
NP
621 * @pages: pages to map (always PAGE_SIZE pages)
622 * @page_shift: maximum shift that the pages may be mapped with, @pages must
623 * be aligned and contiguous up to at least this shift.
121e6f32
NP
624 *
625 * RETURNS:
626 * 0 on success, -errno on failure.
627 */
b67177ec
NP
628static int vmap_pages_range(unsigned long addr, unsigned long end,
629 pgprot_t prot, struct page **pages, unsigned int page_shift)
8fc48985 630{
b67177ec 631 int err;
8fc48985 632
b67177ec
NP
633 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
634 flush_cache_vmap(addr, end);
635 return err;
8fc48985
TH
636}
637
81ac3ad9 638int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
639{
640 /*
ab4f2ee1 641 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
642 * and fall back on vmalloc() if that fails. Others
643 * just put it in the vmalloc space.
644 */
645#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
4aff1dc4 646 unsigned long addr = (unsigned long)kasan_reset_tag(x);
73bdf0a6
LT
647 if (addr >= MODULES_VADDR && addr < MODULES_END)
648 return 1;
649#endif
650 return is_vmalloc_addr(x);
651}
01858469 652EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
73bdf0a6 653
48667e7a 654/*
c0eb315a
NP
655 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
656 * return the tail page that corresponds to the base page address, which
657 * matches small vmap mappings.
48667e7a 658 */
add688fb 659struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
660{
661 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 662 struct page *page = NULL;
48667e7a 663 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
664 p4d_t *p4d;
665 pud_t *pud;
666 pmd_t *pmd;
667 pte_t *ptep, pte;
48667e7a 668
7aa413de
IM
669 /*
670 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
671 * architectures that do not vmalloc module space
672 */
73bdf0a6 673 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 674
c2febafc
KS
675 if (pgd_none(*pgd))
676 return NULL;
c0eb315a
NP
677 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
678 return NULL; /* XXX: no allowance for huge pgd */
679 if (WARN_ON_ONCE(pgd_bad(*pgd)))
680 return NULL;
681
c2febafc
KS
682 p4d = p4d_offset(pgd, addr);
683 if (p4d_none(*p4d))
684 return NULL;
c0eb315a
NP
685 if (p4d_leaf(*p4d))
686 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
687 if (WARN_ON_ONCE(p4d_bad(*p4d)))
688 return NULL;
029c54b0 689
c0eb315a
NP
690 pud = pud_offset(p4d, addr);
691 if (pud_none(*pud))
692 return NULL;
693 if (pud_leaf(*pud))
694 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
695 if (WARN_ON_ONCE(pud_bad(*pud)))
c2febafc 696 return NULL;
c0eb315a 697
c2febafc 698 pmd = pmd_offset(pud, addr);
c0eb315a
NP
699 if (pmd_none(*pmd))
700 return NULL;
701 if (pmd_leaf(*pmd))
702 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
703 if (WARN_ON_ONCE(pmd_bad(*pmd)))
c2febafc
KS
704 return NULL;
705
706 ptep = pte_offset_map(pmd, addr);
707 pte = *ptep;
708 if (pte_present(pte))
709 page = pte_page(pte);
710 pte_unmap(ptep);
c0eb315a 711
add688fb 712 return page;
48667e7a 713}
add688fb 714EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
715
716/*
add688fb 717 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 718 */
add688fb 719unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 720{
add688fb 721 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 722}
add688fb 723EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 724
db64fe02
NP
725
726/*** Global kva allocator ***/
727
bb850f4d 728#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 729#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 730
db64fe02 731
db64fe02 732static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 733static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
734/* Export for kexec only */
735LIST_HEAD(vmap_area_list);
89699605 736static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 737static bool vmap_initialized __read_mostly;
89699605 738
96e2db45
URS
739static struct rb_root purge_vmap_area_root = RB_ROOT;
740static LIST_HEAD(purge_vmap_area_list);
741static DEFINE_SPINLOCK(purge_vmap_area_lock);
742
68ad4a33
URS
743/*
744 * This kmem_cache is used for vmap_area objects. Instead of
745 * allocating from slab we reuse an object from this cache to
746 * make things faster. Especially in "no edge" splitting of
747 * free block.
748 */
749static struct kmem_cache *vmap_area_cachep;
750
751/*
752 * This linked list is used in pair with free_vmap_area_root.
753 * It gives O(1) access to prev/next to perform fast coalescing.
754 */
755static LIST_HEAD(free_vmap_area_list);
756
757/*
758 * This augment red-black tree represents the free vmap space.
759 * All vmap_area objects in this tree are sorted by va->va_start
760 * address. It is used for allocation and merging when a vmap
761 * object is released.
762 *
763 * Each vmap_area node contains a maximum available free block
764 * of its sub-tree, right or left. Therefore it is possible to
765 * find a lowest match of free area.
766 */
767static struct rb_root free_vmap_area_root = RB_ROOT;
768
82dd23e8
URS
769/*
770 * Preload a CPU with one object for "no edge" split case. The
771 * aim is to get rid of allocations from the atomic context, thus
772 * to use more permissive allocation masks.
773 */
774static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
775
68ad4a33
URS
776static __always_inline unsigned long
777va_size(struct vmap_area *va)
778{
779 return (va->va_end - va->va_start);
780}
781
782static __always_inline unsigned long
783get_subtree_max_size(struct rb_node *node)
784{
785 struct vmap_area *va;
786
787 va = rb_entry_safe(node, struct vmap_area, rb_node);
788 return va ? va->subtree_max_size : 0;
789}
89699605 790
315cc066
ML
791RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
792 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33 793
77e50af0 794static void reclaim_and_purge_vmap_areas(void);
68ad4a33 795static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
690467c8
URS
796static void drain_vmap_area_work(struct work_struct *work);
797static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
db64fe02 798
97105f0a
RG
799static atomic_long_t nr_vmalloc_pages;
800
801unsigned long vmalloc_nr_pages(void)
802{
803 return atomic_long_read(&nr_vmalloc_pages);
804}
805
153090f2 806/* Look up the first VA which satisfies addr < va_end, NULL if none. */
f181234a
CW
807static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
808{
809 struct vmap_area *va = NULL;
810 struct rb_node *n = vmap_area_root.rb_node;
811
4aff1dc4
AK
812 addr = (unsigned long)kasan_reset_tag((void *)addr);
813
f181234a
CW
814 while (n) {
815 struct vmap_area *tmp;
816
817 tmp = rb_entry(n, struct vmap_area, rb_node);
818 if (tmp->va_end > addr) {
819 va = tmp;
820 if (tmp->va_start <= addr)
821 break;
822
823 n = n->rb_left;
824 } else
825 n = n->rb_right;
826 }
827
828 return va;
829}
830
899c6efe 831static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1da177e4 832{
899c6efe 833 struct rb_node *n = root->rb_node;
db64fe02 834
4aff1dc4
AK
835 addr = (unsigned long)kasan_reset_tag((void *)addr);
836
db64fe02
NP
837 while (n) {
838 struct vmap_area *va;
839
840 va = rb_entry(n, struct vmap_area, rb_node);
841 if (addr < va->va_start)
842 n = n->rb_left;
cef2ac3f 843 else if (addr >= va->va_end)
db64fe02
NP
844 n = n->rb_right;
845 else
846 return va;
847 }
848
849 return NULL;
850}
851
68ad4a33
URS
852/*
853 * This function returns back addresses of parent node
854 * and its left or right link for further processing.
9c801f61
URS
855 *
856 * Otherwise NULL is returned. In that case all further
857 * steps regarding inserting of conflicting overlap range
858 * have to be declined and actually considered as a bug.
68ad4a33
URS
859 */
860static __always_inline struct rb_node **
861find_va_links(struct vmap_area *va,
862 struct rb_root *root, struct rb_node *from,
863 struct rb_node **parent)
864{
865 struct vmap_area *tmp_va;
866 struct rb_node **link;
867
868 if (root) {
869 link = &root->rb_node;
870 if (unlikely(!*link)) {
871 *parent = NULL;
872 return link;
873 }
874 } else {
875 link = &from;
876 }
db64fe02 877
68ad4a33
URS
878 /*
879 * Go to the bottom of the tree. When we hit the last point
880 * we end up with parent rb_node and correct direction, i name
881 * it link, where the new va->rb_node will be attached to.
882 */
883 do {
884 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 885
68ad4a33
URS
886 /*
887 * During the traversal we also do some sanity check.
888 * Trigger the BUG() if there are sides(left/right)
889 * or full overlaps.
890 */
753df96b 891 if (va->va_end <= tmp_va->va_start)
68ad4a33 892 link = &(*link)->rb_left;
753df96b 893 else if (va->va_start >= tmp_va->va_end)
68ad4a33 894 link = &(*link)->rb_right;
9c801f61
URS
895 else {
896 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
897 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
898
899 return NULL;
900 }
68ad4a33
URS
901 } while (*link);
902
903 *parent = &tmp_va->rb_node;
904 return link;
905}
906
907static __always_inline struct list_head *
908get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
909{
910 struct list_head *list;
911
912 if (unlikely(!parent))
913 /*
914 * The red-black tree where we try to find VA neighbors
915 * before merging or inserting is empty, i.e. it means
916 * there is no free vmap space. Normally it does not
917 * happen but we handle this case anyway.
918 */
919 return NULL;
920
921 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
922 return (&parent->rb_right == link ? list->next : list);
923}
924
925static __always_inline void
8eb510db
URS
926__link_va(struct vmap_area *va, struct rb_root *root,
927 struct rb_node *parent, struct rb_node **link,
928 struct list_head *head, bool augment)
68ad4a33
URS
929{
930 /*
931 * VA is still not in the list, but we can
932 * identify its future previous list_head node.
933 */
934 if (likely(parent)) {
935 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
936 if (&parent->rb_right != link)
937 head = head->prev;
db64fe02
NP
938 }
939
68ad4a33
URS
940 /* Insert to the rb-tree */
941 rb_link_node(&va->rb_node, parent, link);
8eb510db 942 if (augment) {
68ad4a33
URS
943 /*
944 * Some explanation here. Just perform simple insertion
945 * to the tree. We do not set va->subtree_max_size to
946 * its current size before calling rb_insert_augmented().
153090f2 947 * It is because we populate the tree from the bottom
68ad4a33
URS
948 * to parent levels when the node _is_ in the tree.
949 *
950 * Therefore we set subtree_max_size to zero after insertion,
951 * to let __augment_tree_propagate_from() puts everything to
952 * the correct order later on.
953 */
954 rb_insert_augmented(&va->rb_node,
955 root, &free_vmap_area_rb_augment_cb);
956 va->subtree_max_size = 0;
957 } else {
958 rb_insert_color(&va->rb_node, root);
959 }
db64fe02 960
68ad4a33
URS
961 /* Address-sort this list */
962 list_add(&va->list, head);
db64fe02
NP
963}
964
68ad4a33 965static __always_inline void
8eb510db
URS
966link_va(struct vmap_area *va, struct rb_root *root,
967 struct rb_node *parent, struct rb_node **link,
968 struct list_head *head)
969{
970 __link_va(va, root, parent, link, head, false);
971}
972
973static __always_inline void
974link_va_augment(struct vmap_area *va, struct rb_root *root,
975 struct rb_node *parent, struct rb_node **link,
976 struct list_head *head)
977{
978 __link_va(va, root, parent, link, head, true);
979}
980
981static __always_inline void
982__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
68ad4a33 983{
460e42d1
URS
984 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
985 return;
db64fe02 986
8eb510db 987 if (augment)
460e42d1
URS
988 rb_erase_augmented(&va->rb_node,
989 root, &free_vmap_area_rb_augment_cb);
990 else
991 rb_erase(&va->rb_node, root);
992
5d7a7c54 993 list_del_init(&va->list);
460e42d1 994 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
995}
996
8eb510db
URS
997static __always_inline void
998unlink_va(struct vmap_area *va, struct rb_root *root)
999{
1000 __unlink_va(va, root, false);
1001}
1002
1003static __always_inline void
1004unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1005{
1006 __unlink_va(va, root, true);
1007}
1008
bb850f4d 1009#if DEBUG_AUGMENT_PROPAGATE_CHECK
c3385e84
JC
1010/*
1011 * Gets called when remove the node and rotate.
1012 */
1013static __always_inline unsigned long
1014compute_subtree_max_size(struct vmap_area *va)
1015{
1016 return max3(va_size(va),
1017 get_subtree_max_size(va->rb_node.rb_left),
1018 get_subtree_max_size(va->rb_node.rb_right));
1019}
1020
bb850f4d 1021static void
da27c9ed 1022augment_tree_propagate_check(void)
bb850f4d
URS
1023{
1024 struct vmap_area *va;
da27c9ed 1025 unsigned long computed_size;
bb850f4d 1026
da27c9ed
URS
1027 list_for_each_entry(va, &free_vmap_area_list, list) {
1028 computed_size = compute_subtree_max_size(va);
1029 if (computed_size != va->subtree_max_size)
1030 pr_emerg("tree is corrupted: %lu, %lu\n",
1031 va_size(va), va->subtree_max_size);
bb850f4d 1032 }
bb850f4d
URS
1033}
1034#endif
1035
68ad4a33
URS
1036/*
1037 * This function populates subtree_max_size from bottom to upper
1038 * levels starting from VA point. The propagation must be done
1039 * when VA size is modified by changing its va_start/va_end. Or
1040 * in case of newly inserting of VA to the tree.
1041 *
1042 * It means that __augment_tree_propagate_from() must be called:
1043 * - After VA has been inserted to the tree(free path);
1044 * - After VA has been shrunk(allocation path);
1045 * - After VA has been increased(merging path).
1046 *
1047 * Please note that, it does not mean that upper parent nodes
1048 * and their subtree_max_size are recalculated all the time up
1049 * to the root node.
1050 *
1051 * 4--8
1052 * /\
1053 * / \
1054 * / \
1055 * 2--2 8--8
1056 *
1057 * For example if we modify the node 4, shrinking it to 2, then
1058 * no any modification is required. If we shrink the node 2 to 1
1059 * its subtree_max_size is updated only, and set to 1. If we shrink
1060 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1061 * node becomes 4--6.
1062 */
1063static __always_inline void
1064augment_tree_propagate_from(struct vmap_area *va)
1065{
15ae144f
URS
1066 /*
1067 * Populate the tree from bottom towards the root until
1068 * the calculated maximum available size of checked node
1069 * is equal to its current one.
1070 */
1071 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
1072
1073#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 1074 augment_tree_propagate_check();
bb850f4d 1075#endif
68ad4a33
URS
1076}
1077
1078static void
1079insert_vmap_area(struct vmap_area *va,
1080 struct rb_root *root, struct list_head *head)
1081{
1082 struct rb_node **link;
1083 struct rb_node *parent;
1084
1085 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1086 if (link)
1087 link_va(va, root, parent, link, head);
68ad4a33
URS
1088}
1089
1090static void
1091insert_vmap_area_augment(struct vmap_area *va,
1092 struct rb_node *from, struct rb_root *root,
1093 struct list_head *head)
1094{
1095 struct rb_node **link;
1096 struct rb_node *parent;
1097
1098 if (from)
1099 link = find_va_links(va, NULL, from, &parent);
1100 else
1101 link = find_va_links(va, root, NULL, &parent);
1102
9c801f61 1103 if (link) {
8eb510db 1104 link_va_augment(va, root, parent, link, head);
9c801f61
URS
1105 augment_tree_propagate_from(va);
1106 }
68ad4a33
URS
1107}
1108
1109/*
1110 * Merge de-allocated chunk of VA memory with previous
1111 * and next free blocks. If coalesce is not done a new
1112 * free area is inserted. If VA has been merged, it is
1113 * freed.
9c801f61
URS
1114 *
1115 * Please note, it can return NULL in case of overlap
1116 * ranges, followed by WARN() report. Despite it is a
1117 * buggy behaviour, a system can be alive and keep
1118 * ongoing.
68ad4a33 1119 */
3c5c3cfb 1120static __always_inline struct vmap_area *
8eb510db
URS
1121__merge_or_add_vmap_area(struct vmap_area *va,
1122 struct rb_root *root, struct list_head *head, bool augment)
68ad4a33
URS
1123{
1124 struct vmap_area *sibling;
1125 struct list_head *next;
1126 struct rb_node **link;
1127 struct rb_node *parent;
1128 bool merged = false;
1129
1130 /*
1131 * Find a place in the tree where VA potentially will be
1132 * inserted, unless it is merged with its sibling/siblings.
1133 */
1134 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1135 if (!link)
1136 return NULL;
68ad4a33
URS
1137
1138 /*
1139 * Get next node of VA to check if merging can be done.
1140 */
1141 next = get_va_next_sibling(parent, link);
1142 if (unlikely(next == NULL))
1143 goto insert;
1144
1145 /*
1146 * start end
1147 * | |
1148 * |<------VA------>|<-----Next----->|
1149 * | |
1150 * start end
1151 */
1152 if (next != head) {
1153 sibling = list_entry(next, struct vmap_area, list);
1154 if (sibling->va_start == va->va_end) {
1155 sibling->va_start = va->va_start;
1156
68ad4a33
URS
1157 /* Free vmap_area object. */
1158 kmem_cache_free(vmap_area_cachep, va);
1159
1160 /* Point to the new merged area. */
1161 va = sibling;
1162 merged = true;
1163 }
1164 }
1165
1166 /*
1167 * start end
1168 * | |
1169 * |<-----Prev----->|<------VA------>|
1170 * | |
1171 * start end
1172 */
1173 if (next->prev != head) {
1174 sibling = list_entry(next->prev, struct vmap_area, list);
1175 if (sibling->va_end == va->va_start) {
5dd78640
URS
1176 /*
1177 * If both neighbors are coalesced, it is important
1178 * to unlink the "next" node first, followed by merging
1179 * with "previous" one. Otherwise the tree might not be
1180 * fully populated if a sibling's augmented value is
1181 * "normalized" because of rotation operations.
1182 */
54f63d9d 1183 if (merged)
8eb510db 1184 __unlink_va(va, root, augment);
68ad4a33 1185
5dd78640
URS
1186 sibling->va_end = va->va_end;
1187
68ad4a33
URS
1188 /* Free vmap_area object. */
1189 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
1190
1191 /* Point to the new merged area. */
1192 va = sibling;
1193 merged = true;
68ad4a33
URS
1194 }
1195 }
1196
1197insert:
5dd78640 1198 if (!merged)
8eb510db 1199 __link_va(va, root, parent, link, head, augment);
3c5c3cfb 1200
96e2db45
URS
1201 return va;
1202}
1203
8eb510db
URS
1204static __always_inline struct vmap_area *
1205merge_or_add_vmap_area(struct vmap_area *va,
1206 struct rb_root *root, struct list_head *head)
1207{
1208 return __merge_or_add_vmap_area(va, root, head, false);
1209}
1210
96e2db45
URS
1211static __always_inline struct vmap_area *
1212merge_or_add_vmap_area_augment(struct vmap_area *va,
1213 struct rb_root *root, struct list_head *head)
1214{
8eb510db 1215 va = __merge_or_add_vmap_area(va, root, head, true);
96e2db45
URS
1216 if (va)
1217 augment_tree_propagate_from(va);
1218
3c5c3cfb 1219 return va;
68ad4a33
URS
1220}
1221
1222static __always_inline bool
1223is_within_this_va(struct vmap_area *va, unsigned long size,
1224 unsigned long align, unsigned long vstart)
1225{
1226 unsigned long nva_start_addr;
1227
1228 if (va->va_start > vstart)
1229 nva_start_addr = ALIGN(va->va_start, align);
1230 else
1231 nva_start_addr = ALIGN(vstart, align);
1232
1233 /* Can be overflowed due to big size or alignment. */
1234 if (nva_start_addr + size < nva_start_addr ||
1235 nva_start_addr < vstart)
1236 return false;
1237
1238 return (nva_start_addr + size <= va->va_end);
1239}
1240
1241/*
1242 * Find the first free block(lowest start address) in the tree,
1243 * that will accomplish the request corresponding to passing
9333fe98
UR
1244 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1245 * a search length is adjusted to account for worst case alignment
1246 * overhead.
68ad4a33
URS
1247 */
1248static __always_inline struct vmap_area *
f9863be4
URS
1249find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1250 unsigned long align, unsigned long vstart, bool adjust_search_size)
68ad4a33
URS
1251{
1252 struct vmap_area *va;
1253 struct rb_node *node;
9333fe98 1254 unsigned long length;
68ad4a33
URS
1255
1256 /* Start from the root. */
f9863be4 1257 node = root->rb_node;
68ad4a33 1258
9333fe98
UR
1259 /* Adjust the search size for alignment overhead. */
1260 length = adjust_search_size ? size + align - 1 : size;
1261
68ad4a33
URS
1262 while (node) {
1263 va = rb_entry(node, struct vmap_area, rb_node);
1264
9333fe98 1265 if (get_subtree_max_size(node->rb_left) >= length &&
68ad4a33
URS
1266 vstart < va->va_start) {
1267 node = node->rb_left;
1268 } else {
1269 if (is_within_this_va(va, size, align, vstart))
1270 return va;
1271
1272 /*
1273 * Does not make sense to go deeper towards the right
1274 * sub-tree if it does not have a free block that is
9333fe98 1275 * equal or bigger to the requested search length.
68ad4a33 1276 */
9333fe98 1277 if (get_subtree_max_size(node->rb_right) >= length) {
68ad4a33
URS
1278 node = node->rb_right;
1279 continue;
1280 }
1281
1282 /*
3806b041 1283 * OK. We roll back and find the first right sub-tree,
68ad4a33 1284 * that will satisfy the search criteria. It can happen
9f531973
URS
1285 * due to "vstart" restriction or an alignment overhead
1286 * that is bigger then PAGE_SIZE.
68ad4a33
URS
1287 */
1288 while ((node = rb_parent(node))) {
1289 va = rb_entry(node, struct vmap_area, rb_node);
1290 if (is_within_this_va(va, size, align, vstart))
1291 return va;
1292
9333fe98 1293 if (get_subtree_max_size(node->rb_right) >= length &&
68ad4a33 1294 vstart <= va->va_start) {
9f531973
URS
1295 /*
1296 * Shift the vstart forward. Please note, we update it with
1297 * parent's start address adding "1" because we do not want
1298 * to enter same sub-tree after it has already been checked
1299 * and no suitable free block found there.
1300 */
1301 vstart = va->va_start + 1;
68ad4a33
URS
1302 node = node->rb_right;
1303 break;
1304 }
1305 }
1306 }
1307 }
1308
1309 return NULL;
1310}
1311
a6cf4e0f
URS
1312#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1313#include <linux/random.h>
1314
1315static struct vmap_area *
bd1264c3 1316find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
a6cf4e0f
URS
1317 unsigned long align, unsigned long vstart)
1318{
1319 struct vmap_area *va;
1320
bd1264c3 1321 list_for_each_entry(va, head, list) {
a6cf4e0f
URS
1322 if (!is_within_this_va(va, size, align, vstart))
1323 continue;
1324
1325 return va;
1326 }
1327
1328 return NULL;
1329}
1330
1331static void
bd1264c3
SL
1332find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1333 unsigned long size, unsigned long align)
a6cf4e0f
URS
1334{
1335 struct vmap_area *va_1, *va_2;
1336 unsigned long vstart;
1337 unsigned int rnd;
1338
1339 get_random_bytes(&rnd, sizeof(rnd));
1340 vstart = VMALLOC_START + rnd;
1341
bd1264c3
SL
1342 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1343 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
a6cf4e0f
URS
1344
1345 if (va_1 != va_2)
1346 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1347 va_1, va_2, vstart);
1348}
1349#endif
1350
68ad4a33
URS
1351enum fit_type {
1352 NOTHING_FIT = 0,
1353 FL_FIT_TYPE = 1, /* full fit */
1354 LE_FIT_TYPE = 2, /* left edge fit */
1355 RE_FIT_TYPE = 3, /* right edge fit */
1356 NE_FIT_TYPE = 4 /* no edge fit */
1357};
1358
1359static __always_inline enum fit_type
1360classify_va_fit_type(struct vmap_area *va,
1361 unsigned long nva_start_addr, unsigned long size)
1362{
1363 enum fit_type type;
1364
1365 /* Check if it is within VA. */
1366 if (nva_start_addr < va->va_start ||
1367 nva_start_addr + size > va->va_end)
1368 return NOTHING_FIT;
1369
1370 /* Now classify. */
1371 if (va->va_start == nva_start_addr) {
1372 if (va->va_end == nva_start_addr + size)
1373 type = FL_FIT_TYPE;
1374 else
1375 type = LE_FIT_TYPE;
1376 } else if (va->va_end == nva_start_addr + size) {
1377 type = RE_FIT_TYPE;
1378 } else {
1379 type = NE_FIT_TYPE;
1380 }
1381
1382 return type;
1383}
1384
1385static __always_inline int
f9863be4
URS
1386adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1387 struct vmap_area *va, unsigned long nva_start_addr,
1388 unsigned long size)
68ad4a33 1389{
2c929233 1390 struct vmap_area *lva = NULL;
1b23ff80 1391 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
68ad4a33
URS
1392
1393 if (type == FL_FIT_TYPE) {
1394 /*
1395 * No need to split VA, it fully fits.
1396 *
1397 * | |
1398 * V NVA V
1399 * |---------------|
1400 */
f9863be4 1401 unlink_va_augment(va, root);
68ad4a33
URS
1402 kmem_cache_free(vmap_area_cachep, va);
1403 } else if (type == LE_FIT_TYPE) {
1404 /*
1405 * Split left edge of fit VA.
1406 *
1407 * | |
1408 * V NVA V R
1409 * |-------|-------|
1410 */
1411 va->va_start += size;
1412 } else if (type == RE_FIT_TYPE) {
1413 /*
1414 * Split right edge of fit VA.
1415 *
1416 * | |
1417 * L V NVA V
1418 * |-------|-------|
1419 */
1420 va->va_end = nva_start_addr;
1421 } else if (type == NE_FIT_TYPE) {
1422 /*
1423 * Split no edge of fit VA.
1424 *
1425 * | |
1426 * L V NVA V R
1427 * |---|-------|---|
1428 */
82dd23e8
URS
1429 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1430 if (unlikely(!lva)) {
1431 /*
1432 * For percpu allocator we do not do any pre-allocation
1433 * and leave it as it is. The reason is it most likely
1434 * never ends up with NE_FIT_TYPE splitting. In case of
1435 * percpu allocations offsets and sizes are aligned to
1436 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1437 * are its main fitting cases.
1438 *
1439 * There are a few exceptions though, as an example it is
1440 * a first allocation (early boot up) when we have "one"
1441 * big free space that has to be split.
060650a2
URS
1442 *
1443 * Also we can hit this path in case of regular "vmap"
1444 * allocations, if "this" current CPU was not preloaded.
1445 * See the comment in alloc_vmap_area() why. If so, then
1446 * GFP_NOWAIT is used instead to get an extra object for
1447 * split purpose. That is rare and most time does not
1448 * occur.
1449 *
1450 * What happens if an allocation gets failed. Basically,
1451 * an "overflow" path is triggered to purge lazily freed
1452 * areas to free some memory, then, the "retry" path is
1453 * triggered to repeat one more time. See more details
1454 * in alloc_vmap_area() function.
82dd23e8
URS
1455 */
1456 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1457 if (!lva)
1458 return -1;
1459 }
68ad4a33
URS
1460
1461 /*
1462 * Build the remainder.
1463 */
1464 lva->va_start = va->va_start;
1465 lva->va_end = nva_start_addr;
1466
1467 /*
1468 * Shrink this VA to remaining size.
1469 */
1470 va->va_start = nva_start_addr + size;
1471 } else {
1472 return -1;
1473 }
1474
1475 if (type != FL_FIT_TYPE) {
1476 augment_tree_propagate_from(va);
1477
2c929233 1478 if (lva) /* type == NE_FIT_TYPE */
f9863be4 1479 insert_vmap_area_augment(lva, &va->rb_node, root, head);
68ad4a33
URS
1480 }
1481
1482 return 0;
1483}
1484
1485/*
1486 * Returns a start address of the newly allocated area, if success.
1487 * Otherwise a vend is returned that indicates failure.
1488 */
1489static __always_inline unsigned long
f9863be4
URS
1490__alloc_vmap_area(struct rb_root *root, struct list_head *head,
1491 unsigned long size, unsigned long align,
cacca6ba 1492 unsigned long vstart, unsigned long vend)
68ad4a33 1493{
9333fe98 1494 bool adjust_search_size = true;
68ad4a33
URS
1495 unsigned long nva_start_addr;
1496 struct vmap_area *va;
68ad4a33
URS
1497 int ret;
1498
9333fe98
UR
1499 /*
1500 * Do not adjust when:
1501 * a) align <= PAGE_SIZE, because it does not make any sense.
1502 * All blocks(their start addresses) are at least PAGE_SIZE
1503 * aligned anyway;
1504 * b) a short range where a requested size corresponds to exactly
1505 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1506 * With adjusted search length an allocation would not succeed.
1507 */
1508 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1509 adjust_search_size = false;
1510
f9863be4 1511 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
68ad4a33
URS
1512 if (unlikely(!va))
1513 return vend;
1514
1515 if (va->va_start > vstart)
1516 nva_start_addr = ALIGN(va->va_start, align);
1517 else
1518 nva_start_addr = ALIGN(vstart, align);
1519
1520 /* Check the "vend" restriction. */
1521 if (nva_start_addr + size > vend)
1522 return vend;
1523
68ad4a33 1524 /* Update the free vmap_area. */
f9863be4 1525 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1b23ff80 1526 if (WARN_ON_ONCE(ret))
68ad4a33
URS
1527 return vend;
1528
a6cf4e0f 1529#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
bd1264c3 1530 find_vmap_lowest_match_check(root, head, size, align);
a6cf4e0f
URS
1531#endif
1532
68ad4a33
URS
1533 return nva_start_addr;
1534}
4da56b99 1535
d98c9e83
AR
1536/*
1537 * Free a region of KVA allocated by alloc_vmap_area
1538 */
1539static void free_vmap_area(struct vmap_area *va)
1540{
1541 /*
1542 * Remove from the busy tree/list.
1543 */
1544 spin_lock(&vmap_area_lock);
1545 unlink_va(va, &vmap_area_root);
1546 spin_unlock(&vmap_area_lock);
1547
1548 /*
1549 * Insert/Merge it back to the free tree/list.
1550 */
1551 spin_lock(&free_vmap_area_lock);
96e2db45 1552 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1553 spin_unlock(&free_vmap_area_lock);
1554}
1555
187f8cc4
URS
1556static inline void
1557preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1558{
1559 struct vmap_area *va = NULL;
1560
1561 /*
1562 * Preload this CPU with one extra vmap_area object. It is used
1563 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1564 * a CPU that does an allocation is preloaded.
1565 *
1566 * We do it in non-atomic context, thus it allows us to use more
1567 * permissive allocation masks to be more stable under low memory
1568 * condition and high memory pressure.
1569 */
1570 if (!this_cpu_read(ne_fit_preload_node))
1571 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1572
1573 spin_lock(lock);
1574
1575 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1576 kmem_cache_free(vmap_area_cachep, va);
1577}
1578
db64fe02
NP
1579/*
1580 * Allocate a region of KVA of the specified size and alignment, within the
1581 * vstart and vend.
1582 */
1583static struct vmap_area *alloc_vmap_area(unsigned long size,
1584 unsigned long align,
1585 unsigned long vstart, unsigned long vend,
869176a0
BH
1586 int node, gfp_t gfp_mask,
1587 unsigned long va_flags)
db64fe02 1588{
187f8cc4 1589 struct vmap_area *va;
12e376a6 1590 unsigned long freed;
1da177e4 1591 unsigned long addr;
db64fe02 1592 int purged = 0;
d98c9e83 1593 int ret;
db64fe02 1594
7e4a32c0
HL
1595 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1596 return ERR_PTR(-EINVAL);
db64fe02 1597
68ad4a33
URS
1598 if (unlikely(!vmap_initialized))
1599 return ERR_PTR(-EBUSY);
1600
5803ed29 1601 might_sleep();
f07116d7 1602 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1603
f07116d7 1604 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1605 if (unlikely(!va))
1606 return ERR_PTR(-ENOMEM);
1607
7f88f88f
CM
1608 /*
1609 * Only scan the relevant parts containing pointers to other objects
1610 * to avoid false negatives.
1611 */
f07116d7 1612 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1613
db64fe02 1614retry:
187f8cc4 1615 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
f9863be4
URS
1616 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1617 size, align, vstart, vend);
187f8cc4 1618 spin_unlock(&free_vmap_area_lock);
89699605 1619
cf243da6
URS
1620 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1621
afd07389 1622 /*
68ad4a33
URS
1623 * If an allocation fails, the "vend" address is
1624 * returned. Therefore trigger the overflow path.
afd07389 1625 */
68ad4a33 1626 if (unlikely(addr == vend))
89699605 1627 goto overflow;
db64fe02
NP
1628
1629 va->va_start = addr;
1630 va->va_end = addr + size;
688fcbfc 1631 va->vm = NULL;
869176a0 1632 va->flags = va_flags;
68ad4a33 1633
e36176be
URS
1634 spin_lock(&vmap_area_lock);
1635 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1636 spin_unlock(&vmap_area_lock);
1637
61e16557 1638 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1639 BUG_ON(va->va_start < vstart);
1640 BUG_ON(va->va_end > vend);
1641
d98c9e83
AR
1642 ret = kasan_populate_vmalloc(addr, size);
1643 if (ret) {
1644 free_vmap_area(va);
1645 return ERR_PTR(ret);
1646 }
1647
db64fe02 1648 return va;
89699605
NP
1649
1650overflow:
89699605 1651 if (!purged) {
77e50af0 1652 reclaim_and_purge_vmap_areas();
89699605
NP
1653 purged = 1;
1654 goto retry;
1655 }
4da56b99 1656
12e376a6
URS
1657 freed = 0;
1658 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1659
1660 if (freed > 0) {
1661 purged = 0;
1662 goto retry;
4da56b99
CW
1663 }
1664
03497d76 1665 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1666 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1667 size);
68ad4a33
URS
1668
1669 kmem_cache_free(vmap_area_cachep, va);
89699605 1670 return ERR_PTR(-EBUSY);
db64fe02
NP
1671}
1672
4da56b99
CW
1673int register_vmap_purge_notifier(struct notifier_block *nb)
1674{
1675 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1676}
1677EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1678
1679int unregister_vmap_purge_notifier(struct notifier_block *nb)
1680{
1681 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1682}
1683EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1684
db64fe02
NP
1685/*
1686 * lazy_max_pages is the maximum amount of virtual address space we gather up
1687 * before attempting to purge with a TLB flush.
1688 *
1689 * There is a tradeoff here: a larger number will cover more kernel page tables
1690 * and take slightly longer to purge, but it will linearly reduce the number of
1691 * global TLB flushes that must be performed. It would seem natural to scale
1692 * this number up linearly with the number of CPUs (because vmapping activity
1693 * could also scale linearly with the number of CPUs), however it is likely
1694 * that in practice, workloads might be constrained in other ways that mean
1695 * vmap activity will not scale linearly with CPUs. Also, I want to be
1696 * conservative and not introduce a big latency on huge systems, so go with
1697 * a less aggressive log scale. It will still be an improvement over the old
1698 * code, and it will be simple to change the scale factor if we find that it
1699 * becomes a problem on bigger systems.
1700 */
1701static unsigned long lazy_max_pages(void)
1702{
1703 unsigned int log;
1704
1705 log = fls(num_online_cpus());
1706
1707 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1708}
1709
4d36e6f8 1710static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1711
0574ecd1 1712/*
f0953a1b 1713 * Serialize vmap purging. There is no actual critical section protected
153090f2 1714 * by this lock, but we want to avoid concurrent calls for performance
0574ecd1
CH
1715 * reasons and to make the pcpu_get_vm_areas more deterministic.
1716 */
f9e09977 1717static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1718
02b709df
NP
1719/* for per-CPU blocks */
1720static void purge_fragmented_blocks_allcpus(void);
1721
db64fe02
NP
1722/*
1723 * Purges all lazily-freed vmap areas.
db64fe02 1724 */
0574ecd1 1725static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1726{
4d36e6f8 1727 unsigned long resched_threshold;
6030fd5f 1728 unsigned int num_purged_areas = 0;
baa468a6 1729 struct list_head local_purge_list;
96e2db45 1730 struct vmap_area *va, *n_va;
db64fe02 1731
0574ecd1 1732 lockdep_assert_held(&vmap_purge_lock);
02b709df 1733
96e2db45
URS
1734 spin_lock(&purge_vmap_area_lock);
1735 purge_vmap_area_root = RB_ROOT;
baa468a6 1736 list_replace_init(&purge_vmap_area_list, &local_purge_list);
96e2db45
URS
1737 spin_unlock(&purge_vmap_area_lock);
1738
baa468a6 1739 if (unlikely(list_empty(&local_purge_list)))
6030fd5f 1740 goto out;
68571be9 1741
96e2db45 1742 start = min(start,
baa468a6 1743 list_first_entry(&local_purge_list,
96e2db45
URS
1744 struct vmap_area, list)->va_start);
1745
1746 end = max(end,
baa468a6 1747 list_last_entry(&local_purge_list,
96e2db45 1748 struct vmap_area, list)->va_end);
db64fe02 1749
0574ecd1 1750 flush_tlb_kernel_range(start, end);
4d36e6f8 1751 resched_threshold = lazy_max_pages() << 1;
db64fe02 1752
e36176be 1753 spin_lock(&free_vmap_area_lock);
baa468a6 1754 list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
4d36e6f8 1755 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1756 unsigned long orig_start = va->va_start;
1757 unsigned long orig_end = va->va_end;
763b218d 1758
dd3b8353
URS
1759 /*
1760 * Finally insert or merge lazily-freed area. It is
1761 * detached and there is no need to "unlink" it from
1762 * anything.
1763 */
96e2db45
URS
1764 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1765 &free_vmap_area_list);
3c5c3cfb 1766
9c801f61
URS
1767 if (!va)
1768 continue;
1769
3c5c3cfb
DA
1770 if (is_vmalloc_or_module_addr((void *)orig_start))
1771 kasan_release_vmalloc(orig_start, orig_end,
1772 va->va_start, va->va_end);
dd3b8353 1773
4d36e6f8 1774 atomic_long_sub(nr, &vmap_lazy_nr);
6030fd5f 1775 num_purged_areas++;
68571be9 1776
4d36e6f8 1777 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1778 cond_resched_lock(&free_vmap_area_lock);
763b218d 1779 }
e36176be 1780 spin_unlock(&free_vmap_area_lock);
6030fd5f
URS
1781
1782out:
1783 trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1784 return num_purged_areas > 0;
db64fe02
NP
1785}
1786
1787/*
77e50af0 1788 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
db64fe02 1789 */
77e50af0
TG
1790static void reclaim_and_purge_vmap_areas(void)
1791
db64fe02 1792{
f9e09977 1793 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1794 purge_fragmented_blocks_allcpus();
1795 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1796 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1797}
1798
690467c8
URS
1799static void drain_vmap_area_work(struct work_struct *work)
1800{
1801 unsigned long nr_lazy;
1802
1803 do {
1804 mutex_lock(&vmap_purge_lock);
1805 __purge_vmap_area_lazy(ULONG_MAX, 0);
1806 mutex_unlock(&vmap_purge_lock);
1807
1808 /* Recheck if further work is required. */
1809 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1810 } while (nr_lazy > lazy_max_pages());
1811}
1812
db64fe02 1813/*
edd89818
URS
1814 * Free a vmap area, caller ensuring that the area has been unmapped,
1815 * unlinked and flush_cache_vunmap had been called for the correct
1816 * range previously.
db64fe02 1817 */
64141da5 1818static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1819{
8c4196fe
URS
1820 unsigned long nr_lazy_max = lazy_max_pages();
1821 unsigned long va_start = va->va_start;
4d36e6f8 1822 unsigned long nr_lazy;
80c4bd7a 1823
edd89818
URS
1824 if (WARN_ON_ONCE(!list_empty(&va->list)))
1825 return;
dd3b8353 1826
4d36e6f8
URS
1827 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1828 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 1829
96e2db45
URS
1830 /*
1831 * Merge or place it to the purge tree/list.
1832 */
1833 spin_lock(&purge_vmap_area_lock);
1834 merge_or_add_vmap_area(va,
1835 &purge_vmap_area_root, &purge_vmap_area_list);
1836 spin_unlock(&purge_vmap_area_lock);
80c4bd7a 1837
8c4196fe
URS
1838 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1839
96e2db45 1840 /* After this point, we may free va at any time */
8c4196fe 1841 if (unlikely(nr_lazy > nr_lazy_max))
690467c8 1842 schedule_work(&drain_vmap_work);
db64fe02
NP
1843}
1844
b29acbdc
NP
1845/*
1846 * Free and unmap a vmap area
1847 */
1848static void free_unmap_vmap_area(struct vmap_area *va)
1849{
1850 flush_cache_vunmap(va->va_start, va->va_end);
4ad0ae8c 1851 vunmap_range_noflush(va->va_start, va->va_end);
8e57f8ac 1852 if (debug_pagealloc_enabled_static())
82a2e924
CP
1853 flush_tlb_kernel_range(va->va_start, va->va_end);
1854
c8eef01e 1855 free_vmap_area_noflush(va);
b29acbdc
NP
1856}
1857
993d0b28 1858struct vmap_area *find_vmap_area(unsigned long addr)
db64fe02
NP
1859{
1860 struct vmap_area *va;
1861
1862 spin_lock(&vmap_area_lock);
899c6efe 1863 va = __find_vmap_area(addr, &vmap_area_root);
db64fe02
NP
1864 spin_unlock(&vmap_area_lock);
1865
1866 return va;
1867}
1868
edd89818
URS
1869static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1870{
1871 struct vmap_area *va;
1872
1873 spin_lock(&vmap_area_lock);
1874 va = __find_vmap_area(addr, &vmap_area_root);
1875 if (va)
1876 unlink_va(va, &vmap_area_root);
1877 spin_unlock(&vmap_area_lock);
1878
1879 return va;
1880}
1881
db64fe02
NP
1882/*** Per cpu kva allocator ***/
1883
1884/*
1885 * vmap space is limited especially on 32 bit architectures. Ensure there is
1886 * room for at least 16 percpu vmap blocks per CPU.
1887 */
1888/*
1889 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1890 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1891 * instead (we just need a rough idea)
1892 */
1893#if BITS_PER_LONG == 32
1894#define VMALLOC_SPACE (128UL*1024*1024)
1895#else
1896#define VMALLOC_SPACE (128UL*1024*1024*1024)
1897#endif
1898
1899#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1900#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1901#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1902#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1903#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1904#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1905#define VMAP_BBMAP_BITS \
1906 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1907 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1908 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1909
1910#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1911
77e50af0
TG
1912/*
1913 * Purge threshold to prevent overeager purging of fragmented blocks for
1914 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
1915 */
1916#define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4)
1917
869176a0
BH
1918#define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
1919#define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
1920#define VMAP_FLAGS_MASK 0x3
1921
db64fe02
NP
1922struct vmap_block_queue {
1923 spinlock_t lock;
1924 struct list_head free;
062eacf5
URS
1925
1926 /*
1927 * An xarray requires an extra memory dynamically to
1928 * be allocated. If it is an issue, we can use rb-tree
1929 * instead.
1930 */
1931 struct xarray vmap_blocks;
db64fe02
NP
1932};
1933
1934struct vmap_block {
1935 spinlock_t lock;
1936 struct vmap_area *va;
db64fe02 1937 unsigned long free, dirty;
d76f9954 1938 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
7d61bfe8 1939 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1940 struct list_head free_list;
1941 struct rcu_head rcu_head;
02b709df 1942 struct list_head purge;
db64fe02
NP
1943};
1944
1945/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1946static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1947
1948/*
062eacf5
URS
1949 * In order to fast access to any "vmap_block" associated with a
1950 * specific address, we use a hash.
1951 *
1952 * A per-cpu vmap_block_queue is used in both ways, to serialize
1953 * an access to free block chains among CPUs(alloc path) and it
1954 * also acts as a vmap_block hash(alloc/free paths). It means we
1955 * overload it, since we already have the per-cpu array which is
1956 * used as a hash table. When used as a hash a 'cpu' passed to
1957 * per_cpu() is not actually a CPU but rather a hash index.
1958 *
fa1c77c1 1959 * A hash function is addr_to_vb_xa() which hashes any address
062eacf5
URS
1960 * to a specific index(in a hash) it belongs to. This then uses a
1961 * per_cpu() macro to access an array with generated index.
1962 *
1963 * An example:
1964 *
1965 * CPU_1 CPU_2 CPU_0
1966 * | | |
1967 * V V V
1968 * 0 10 20 30 40 50 60
1969 * |------|------|------|------|------|------|...<vmap address space>
1970 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
1971 *
1972 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
1973 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
1974 *
1975 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
1976 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
1977 *
1978 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
1979 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
1980 *
1981 * This technique almost always avoids lock contention on insert/remove,
1982 * however xarray spinlocks protect against any contention that remains.
db64fe02 1983 */
062eacf5 1984static struct xarray *
fa1c77c1 1985addr_to_vb_xa(unsigned long addr)
062eacf5
URS
1986{
1987 int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
1988
1989 return &per_cpu(vmap_block_queue, index).vmap_blocks;
1990}
db64fe02
NP
1991
1992/*
1993 * We should probably have a fallback mechanism to allocate virtual memory
1994 * out of partially filled vmap blocks. However vmap block sizing should be
1995 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1996 * big problem.
1997 */
1998
1999static unsigned long addr_to_vb_idx(unsigned long addr)
2000{
2001 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2002 addr /= VMAP_BLOCK_SIZE;
2003 return addr;
2004}
2005
cf725ce2
RP
2006static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2007{
2008 unsigned long addr;
2009
2010 addr = va_start + (pages_off << PAGE_SHIFT);
2011 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2012 return (void *)addr;
2013}
2014
2015/**
2016 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2017 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2018 * @order: how many 2^order pages should be occupied in newly allocated block
2019 * @gfp_mask: flags for the page level allocator
2020 *
a862f68a 2021 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
2022 */
2023static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
2024{
2025 struct vmap_block_queue *vbq;
2026 struct vmap_block *vb;
2027 struct vmap_area *va;
062eacf5 2028 struct xarray *xa;
db64fe02
NP
2029 unsigned long vb_idx;
2030 int node, err;
cf725ce2 2031 void *vaddr;
db64fe02
NP
2032
2033 node = numa_node_id();
2034
2035 vb = kmalloc_node(sizeof(struct vmap_block),
2036 gfp_mask & GFP_RECLAIM_MASK, node);
2037 if (unlikely(!vb))
2038 return ERR_PTR(-ENOMEM);
2039
2040 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2041 VMALLOC_START, VMALLOC_END,
869176a0
BH
2042 node, gfp_mask,
2043 VMAP_RAM|VMAP_BLOCK);
ddf9c6d4 2044 if (IS_ERR(va)) {
db64fe02 2045 kfree(vb);
e7d86340 2046 return ERR_CAST(va);
db64fe02
NP
2047 }
2048
cf725ce2 2049 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
2050 spin_lock_init(&vb->lock);
2051 vb->va = va;
cf725ce2
RP
2052 /* At least something should be left free */
2053 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
d76f9954 2054 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
cf725ce2 2055 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 2056 vb->dirty = 0;
7d61bfe8
RP
2057 vb->dirty_min = VMAP_BBMAP_BITS;
2058 vb->dirty_max = 0;
d76f9954 2059 bitmap_set(vb->used_map, 0, (1UL << order));
db64fe02 2060 INIT_LIST_HEAD(&vb->free_list);
db64fe02 2061
fa1c77c1 2062 xa = addr_to_vb_xa(va->va_start);
db64fe02 2063 vb_idx = addr_to_vb_idx(va->va_start);
062eacf5 2064 err = xa_insert(xa, vb_idx, vb, gfp_mask);
0f14599c
MWO
2065 if (err) {
2066 kfree(vb);
2067 free_vmap_area(va);
2068 return ERR_PTR(err);
2069 }
db64fe02 2070
3f804920 2071 vbq = raw_cpu_ptr(&vmap_block_queue);
db64fe02 2072 spin_lock(&vbq->lock);
68ac546f 2073 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 2074 spin_unlock(&vbq->lock);
db64fe02 2075
cf725ce2 2076 return vaddr;
db64fe02
NP
2077}
2078
db64fe02
NP
2079static void free_vmap_block(struct vmap_block *vb)
2080{
2081 struct vmap_block *tmp;
062eacf5 2082 struct xarray *xa;
db64fe02 2083
fa1c77c1 2084 xa = addr_to_vb_xa(vb->va->va_start);
062eacf5 2085 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
2086 BUG_ON(tmp != vb);
2087
edd89818
URS
2088 spin_lock(&vmap_area_lock);
2089 unlink_va(vb->va, &vmap_area_root);
2090 spin_unlock(&vmap_area_lock);
2091
64141da5 2092 free_vmap_area_noflush(vb->va);
22a3c7d1 2093 kfree_rcu(vb, rcu_head);
db64fe02
NP
2094}
2095
ca5e46c3 2096static bool purge_fragmented_block(struct vmap_block *vb,
77e50af0
TG
2097 struct vmap_block_queue *vbq, struct list_head *purge_list,
2098 bool force_purge)
ca5e46c3
TG
2099{
2100 if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2101 vb->dirty == VMAP_BBMAP_BITS)
2102 return false;
2103
77e50af0
TG
2104 /* Don't overeagerly purge usable blocks unless requested */
2105 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2106 return false;
2107
ca5e46c3 2108 /* prevent further allocs after releasing lock */
7f48121e 2109 WRITE_ONCE(vb->free, 0);
ca5e46c3 2110 /* prevent purging it again */
7f48121e 2111 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
ca5e46c3
TG
2112 vb->dirty_min = 0;
2113 vb->dirty_max = VMAP_BBMAP_BITS;
2114 spin_lock(&vbq->lock);
2115 list_del_rcu(&vb->free_list);
2116 spin_unlock(&vbq->lock);
2117 list_add_tail(&vb->purge, purge_list);
2118 return true;
2119}
2120
2121static void free_purged_blocks(struct list_head *purge_list)
2122{
2123 struct vmap_block *vb, *n_vb;
2124
2125 list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2126 list_del(&vb->purge);
2127 free_vmap_block(vb);
2128 }
2129}
2130
02b709df
NP
2131static void purge_fragmented_blocks(int cpu)
2132{
2133 LIST_HEAD(purge);
2134 struct vmap_block *vb;
02b709df
NP
2135 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2136
2137 rcu_read_lock();
2138 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
7f48121e
TG
2139 unsigned long free = READ_ONCE(vb->free);
2140 unsigned long dirty = READ_ONCE(vb->dirty);
2141
2142 if (free + dirty != VMAP_BBMAP_BITS ||
2143 dirty == VMAP_BBMAP_BITS)
02b709df
NP
2144 continue;
2145
2146 spin_lock(&vb->lock);
77e50af0 2147 purge_fragmented_block(vb, vbq, &purge, true);
ca5e46c3 2148 spin_unlock(&vb->lock);
02b709df
NP
2149 }
2150 rcu_read_unlock();
ca5e46c3 2151 free_purged_blocks(&purge);
02b709df
NP
2152}
2153
02b709df
NP
2154static void purge_fragmented_blocks_allcpus(void)
2155{
2156 int cpu;
2157
2158 for_each_possible_cpu(cpu)
2159 purge_fragmented_blocks(cpu);
2160}
2161
db64fe02
NP
2162static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2163{
2164 struct vmap_block_queue *vbq;
2165 struct vmap_block *vb;
cf725ce2 2166 void *vaddr = NULL;
db64fe02
NP
2167 unsigned int order;
2168
891c49ab 2169 BUG_ON(offset_in_page(size));
db64fe02 2170 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
2171 if (WARN_ON(size == 0)) {
2172 /*
2173 * Allocating 0 bytes isn't what caller wants since
2174 * get_order(0) returns funny result. Just warn and terminate
2175 * early.
2176 */
2177 return NULL;
2178 }
db64fe02
NP
2179 order = get_order(size);
2180
db64fe02 2181 rcu_read_lock();
3f804920 2182 vbq = raw_cpu_ptr(&vmap_block_queue);
db64fe02 2183 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 2184 unsigned long pages_off;
db64fe02 2185
43d76502
TG
2186 if (READ_ONCE(vb->free) < (1UL << order))
2187 continue;
2188
db64fe02 2189 spin_lock(&vb->lock);
cf725ce2
RP
2190 if (vb->free < (1UL << order)) {
2191 spin_unlock(&vb->lock);
2192 continue;
2193 }
02b709df 2194
cf725ce2
RP
2195 pages_off = VMAP_BBMAP_BITS - vb->free;
2196 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
43d76502 2197 WRITE_ONCE(vb->free, vb->free - (1UL << order));
d76f9954 2198 bitmap_set(vb->used_map, pages_off, (1UL << order));
02b709df
NP
2199 if (vb->free == 0) {
2200 spin_lock(&vbq->lock);
2201 list_del_rcu(&vb->free_list);
2202 spin_unlock(&vbq->lock);
2203 }
cf725ce2 2204
02b709df
NP
2205 spin_unlock(&vb->lock);
2206 break;
db64fe02 2207 }
02b709df 2208
db64fe02
NP
2209 rcu_read_unlock();
2210
cf725ce2
RP
2211 /* Allocate new block if nothing was found */
2212 if (!vaddr)
2213 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 2214
cf725ce2 2215 return vaddr;
db64fe02
NP
2216}
2217
78a0e8c4 2218static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
2219{
2220 unsigned long offset;
db64fe02
NP
2221 unsigned int order;
2222 struct vmap_block *vb;
062eacf5 2223 struct xarray *xa;
db64fe02 2224
891c49ab 2225 BUG_ON(offset_in_page(size));
db64fe02 2226 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 2227
78a0e8c4 2228 flush_cache_vunmap(addr, addr + size);
b29acbdc 2229
db64fe02 2230 order = get_order(size);
78a0e8c4 2231 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
062eacf5 2232
fa1c77c1 2233 xa = addr_to_vb_xa(addr);
062eacf5
URS
2234 vb = xa_load(xa, addr_to_vb_idx(addr));
2235
d76f9954
BH
2236 spin_lock(&vb->lock);
2237 bitmap_clear(vb->used_map, offset, (1UL << order));
2238 spin_unlock(&vb->lock);
db64fe02 2239
4ad0ae8c 2240 vunmap_range_noflush(addr, addr + size);
64141da5 2241
8e57f8ac 2242 if (debug_pagealloc_enabled_static())
78a0e8c4 2243 flush_tlb_kernel_range(addr, addr + size);
82a2e924 2244
db64fe02 2245 spin_lock(&vb->lock);
7d61bfe8 2246
a09fad96 2247 /* Expand the not yet TLB flushed dirty range */
7d61bfe8
RP
2248 vb->dirty_min = min(vb->dirty_min, offset);
2249 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 2250
7f48121e 2251 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
db64fe02 2252 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 2253 BUG_ON(vb->free);
db64fe02
NP
2254 spin_unlock(&vb->lock);
2255 free_vmap_block(vb);
2256 } else
2257 spin_unlock(&vb->lock);
2258}
2259
868b104d 2260static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 2261{
ca5e46c3 2262 LIST_HEAD(purge_list);
db64fe02 2263 int cpu;
db64fe02 2264
9b463334
JF
2265 if (unlikely(!vmap_initialized))
2266 return;
2267
ca5e46c3 2268 mutex_lock(&vmap_purge_lock);
5803ed29 2269
db64fe02
NP
2270 for_each_possible_cpu(cpu) {
2271 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2272 struct vmap_block *vb;
fc1e0d98 2273 unsigned long idx;
db64fe02
NP
2274
2275 rcu_read_lock();
fc1e0d98 2276 xa_for_each(&vbq->vmap_blocks, idx, vb) {
db64fe02 2277 spin_lock(&vb->lock);
ca5e46c3
TG
2278
2279 /*
2280 * Try to purge a fragmented block first. If it's
2281 * not purgeable, check whether there is dirty
2282 * space to be flushed.
2283 */
77e50af0 2284 if (!purge_fragmented_block(vb, vbq, &purge_list, false) &&
a09fad96 2285 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
7d61bfe8 2286 unsigned long va_start = vb->va->va_start;
db64fe02 2287 unsigned long s, e;
b136be5e 2288
7d61bfe8
RP
2289 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2290 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 2291
7d61bfe8
RP
2292 start = min(s, start);
2293 end = max(e, end);
db64fe02 2294
a09fad96
TG
2295 /* Prevent that this is flushed again */
2296 vb->dirty_min = VMAP_BBMAP_BITS;
2297 vb->dirty_max = 0;
2298
7d61bfe8 2299 flush = 1;
db64fe02
NP
2300 }
2301 spin_unlock(&vb->lock);
2302 }
2303 rcu_read_unlock();
2304 }
ca5e46c3 2305 free_purged_blocks(&purge_list);
db64fe02 2306
0574ecd1
CH
2307 if (!__purge_vmap_area_lazy(start, end) && flush)
2308 flush_tlb_kernel_range(start, end);
f9e09977 2309 mutex_unlock(&vmap_purge_lock);
db64fe02 2310}
868b104d
RE
2311
2312/**
2313 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2314 *
2315 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2316 * to amortize TLB flushing overheads. What this means is that any page you
2317 * have now, may, in a former life, have been mapped into kernel virtual
2318 * address by the vmap layer and so there might be some CPUs with TLB entries
2319 * still referencing that page (additional to the regular 1:1 kernel mapping).
2320 *
2321 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2322 * be sure that none of the pages we have control over will have any aliases
2323 * from the vmap layer.
2324 */
2325void vm_unmap_aliases(void)
2326{
2327 unsigned long start = ULONG_MAX, end = 0;
2328 int flush = 0;
2329
2330 _vm_unmap_aliases(start, end, flush);
2331}
db64fe02
NP
2332EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2333
2334/**
2335 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2336 * @mem: the pointer returned by vm_map_ram
2337 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2338 */
2339void vm_unmap_ram(const void *mem, unsigned int count)
2340{
65ee03c4 2341 unsigned long size = (unsigned long)count << PAGE_SHIFT;
4aff1dc4 2342 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
9c3acf60 2343 struct vmap_area *va;
db64fe02 2344
5803ed29 2345 might_sleep();
db64fe02
NP
2346 BUG_ON(!addr);
2347 BUG_ON(addr < VMALLOC_START);
2348 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 2349 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 2350
d98c9e83
AR
2351 kasan_poison_vmalloc(mem, size);
2352
9c3acf60 2353 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 2354 debug_check_no_locks_freed(mem, size);
78a0e8c4 2355 vb_free(addr, size);
9c3acf60
CH
2356 return;
2357 }
2358
edd89818 2359 va = find_unlink_vmap_area(addr);
14687619
URS
2360 if (WARN_ON_ONCE(!va))
2361 return;
2362
05e3ff95
CP
2363 debug_check_no_locks_freed((void *)va->va_start,
2364 (va->va_end - va->va_start));
9c3acf60 2365 free_unmap_vmap_area(va);
db64fe02
NP
2366}
2367EXPORT_SYMBOL(vm_unmap_ram);
2368
2369/**
2370 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2371 * @pages: an array of pointers to the pages to be mapped
2372 * @count: number of pages
2373 * @node: prefer to allocate data structures on this node
e99c97ad 2374 *
36437638
GK
2375 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2376 * faster than vmap so it's good. But if you mix long-life and short-life
2377 * objects with vm_map_ram(), it could consume lots of address space through
2378 * fragmentation (especially on a 32bit machine). You could see failures in
2379 * the end. Please use this function for short-lived objects.
2380 *
e99c97ad 2381 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 2382 */
d4efd79a 2383void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 2384{
65ee03c4 2385 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
2386 unsigned long addr;
2387 void *mem;
2388
2389 if (likely(count <= VMAP_MAX_ALLOC)) {
2390 mem = vb_alloc(size, GFP_KERNEL);
2391 if (IS_ERR(mem))
2392 return NULL;
2393 addr = (unsigned long)mem;
2394 } else {
2395 struct vmap_area *va;
2396 va = alloc_vmap_area(size, PAGE_SIZE,
869176a0
BH
2397 VMALLOC_START, VMALLOC_END,
2398 node, GFP_KERNEL, VMAP_RAM);
db64fe02
NP
2399 if (IS_ERR(va))
2400 return NULL;
2401
2402 addr = va->va_start;
2403 mem = (void *)addr;
2404 }
d98c9e83 2405
b67177ec
NP
2406 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2407 pages, PAGE_SHIFT) < 0) {
db64fe02
NP
2408 vm_unmap_ram(mem, count);
2409 return NULL;
2410 }
b67177ec 2411
23689e91
AK
2412 /*
2413 * Mark the pages as accessible, now that they are mapped.
2414 * With hardware tag-based KASAN, marking is skipped for
2415 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2416 */
f6e39794 2417 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
19f1c3ac 2418
db64fe02
NP
2419 return mem;
2420}
2421EXPORT_SYMBOL(vm_map_ram);
2422
4341fa45 2423static struct vm_struct *vmlist __initdata;
92eac168 2424
121e6f32
NP
2425static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2426{
2427#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2428 return vm->page_order;
2429#else
2430 return 0;
2431#endif
2432}
2433
2434static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2435{
2436#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2437 vm->page_order = order;
2438#else
2439 BUG_ON(order != 0);
2440#endif
2441}
2442
be9b7335
NP
2443/**
2444 * vm_area_add_early - add vmap area early during boot
2445 * @vm: vm_struct to add
2446 *
2447 * This function is used to add fixed kernel vm area to vmlist before
2448 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2449 * should contain proper values and the other fields should be zero.
2450 *
2451 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2452 */
2453void __init vm_area_add_early(struct vm_struct *vm)
2454{
2455 struct vm_struct *tmp, **p;
2456
2457 BUG_ON(vmap_initialized);
2458 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2459 if (tmp->addr >= vm->addr) {
2460 BUG_ON(tmp->addr < vm->addr + vm->size);
2461 break;
2462 } else
2463 BUG_ON(tmp->addr + tmp->size > vm->addr);
2464 }
2465 vm->next = *p;
2466 *p = vm;
2467}
2468
f0aa6617
TH
2469/**
2470 * vm_area_register_early - register vmap area early during boot
2471 * @vm: vm_struct to register
c0c0a293 2472 * @align: requested alignment
f0aa6617
TH
2473 *
2474 * This function is used to register kernel vm area before
2475 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2476 * proper values on entry and other fields should be zero. On return,
2477 * vm->addr contains the allocated address.
2478 *
2479 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2480 */
c0c0a293 2481void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617 2482{
0eb68437
KW
2483 unsigned long addr = ALIGN(VMALLOC_START, align);
2484 struct vm_struct *cur, **p;
c0c0a293 2485
0eb68437 2486 BUG_ON(vmap_initialized);
f0aa6617 2487
0eb68437
KW
2488 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2489 if ((unsigned long)cur->addr - addr >= vm->size)
2490 break;
2491 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2492 }
f0aa6617 2493
0eb68437
KW
2494 BUG_ON(addr > VMALLOC_END - vm->size);
2495 vm->addr = (void *)addr;
2496 vm->next = *p;
2497 *p = vm;
3252b1d8 2498 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
f0aa6617
TH
2499}
2500
68ad4a33
URS
2501static void vmap_init_free_space(void)
2502{
2503 unsigned long vmap_start = 1;
2504 const unsigned long vmap_end = ULONG_MAX;
2505 struct vmap_area *busy, *free;
2506
2507 /*
2508 * B F B B B F
2509 * -|-----|.....|-----|-----|-----|.....|-
2510 * | The KVA space |
2511 * |<--------------------------------->|
2512 */
2513 list_for_each_entry(busy, &vmap_area_list, list) {
2514 if (busy->va_start - vmap_start > 0) {
2515 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2516 if (!WARN_ON_ONCE(!free)) {
2517 free->va_start = vmap_start;
2518 free->va_end = busy->va_start;
2519
2520 insert_vmap_area_augment(free, NULL,
2521 &free_vmap_area_root,
2522 &free_vmap_area_list);
2523 }
2524 }
2525
2526 vmap_start = busy->va_end;
2527 }
2528
2529 if (vmap_end - vmap_start > 0) {
2530 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2531 if (!WARN_ON_ONCE(!free)) {
2532 free->va_start = vmap_start;
2533 free->va_end = vmap_end;
2534
2535 insert_vmap_area_augment(free, NULL,
2536 &free_vmap_area_root,
2537 &free_vmap_area_list);
2538 }
2539 }
2540}
2541
e36176be
URS
2542static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2543 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2544{
cf88c790
TH
2545 vm->flags = flags;
2546 vm->addr = (void *)va->va_start;
2547 vm->size = va->va_end - va->va_start;
2548 vm->caller = caller;
db1aecaf 2549 va->vm = vm;
e36176be
URS
2550}
2551
2552static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2553 unsigned long flags, const void *caller)
2554{
2555 spin_lock(&vmap_area_lock);
2556 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2557 spin_unlock(&vmap_area_lock);
f5252e00 2558}
cf88c790 2559
20fc02b4 2560static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2561{
d4033afd 2562 /*
20fc02b4 2563 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2564 * we should make sure that vm has proper values.
2565 * Pair with smp_rmb() in show_numa_info().
2566 */
2567 smp_wmb();
20fc02b4 2568 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2569}
2570
db64fe02 2571static struct vm_struct *__get_vm_area_node(unsigned long size,
7ca3027b
DA
2572 unsigned long align, unsigned long shift, unsigned long flags,
2573 unsigned long start, unsigned long end, int node,
2574 gfp_t gfp_mask, const void *caller)
db64fe02 2575{
0006526d 2576 struct vmap_area *va;
db64fe02 2577 struct vm_struct *area;
d98c9e83 2578 unsigned long requested_size = size;
1da177e4 2579
52fd24ca 2580 BUG_ON(in_interrupt());
7ca3027b 2581 size = ALIGN(size, 1ul << shift);
31be8309
OH
2582 if (unlikely(!size))
2583 return NULL;
1da177e4 2584
252e5c6e 2585 if (flags & VM_IOREMAP)
2586 align = 1ul << clamp_t(int, get_count_order_long(size),
2587 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2588
cf88c790 2589 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2590 if (unlikely(!area))
2591 return NULL;
2592
71394fe5
AR
2593 if (!(flags & VM_NO_GUARD))
2594 size += PAGE_SIZE;
1da177e4 2595
869176a0 2596 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
db64fe02
NP
2597 if (IS_ERR(va)) {
2598 kfree(area);
2599 return NULL;
1da177e4 2600 }
1da177e4 2601
d98c9e83 2602 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2603
19f1c3ac
AK
2604 /*
2605 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2606 * best-effort approach, as they can be mapped outside of vmalloc code.
2607 * For VM_ALLOC mappings, the pages are marked as accessible after
2608 * getting mapped in __vmalloc_node_range().
23689e91
AK
2609 * With hardware tag-based KASAN, marking is skipped for
2610 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
19f1c3ac
AK
2611 */
2612 if (!(flags & VM_ALLOC))
23689e91 2613 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
f6e39794 2614 KASAN_VMALLOC_PROT_NORMAL);
1d96320f 2615
1da177e4 2616 return area;
1da177e4
LT
2617}
2618
c2968612
BH
2619struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2620 unsigned long start, unsigned long end,
5e6cafc8 2621 const void *caller)
c2968612 2622{
7ca3027b
DA
2623 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2624 NUMA_NO_NODE, GFP_KERNEL, caller);
c2968612
BH
2625}
2626
1da177e4 2627/**
92eac168
MR
2628 * get_vm_area - reserve a contiguous kernel virtual area
2629 * @size: size of the area
2630 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2631 *
92eac168
MR
2632 * Search an area of @size in the kernel virtual mapping area,
2633 * and reserved it for out purposes. Returns the area descriptor
2634 * on success or %NULL on failure.
a862f68a
MR
2635 *
2636 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2637 */
2638struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2639{
7ca3027b
DA
2640 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2641 VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2642 NUMA_NO_NODE, GFP_KERNEL,
2643 __builtin_return_address(0));
23016969
CL
2644}
2645
2646struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2647 const void *caller)
23016969 2648{
7ca3027b
DA
2649 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2650 VMALLOC_START, VMALLOC_END,
00ef2d2f 2651 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2652}
2653
e9da6e99 2654/**
92eac168
MR
2655 * find_vm_area - find a continuous kernel virtual area
2656 * @addr: base address
e9da6e99 2657 *
92eac168
MR
2658 * Search for the kernel VM area starting at @addr, and return it.
2659 * It is up to the caller to do all required locking to keep the returned
2660 * pointer valid.
a862f68a 2661 *
74640617 2662 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2663 */
2664struct vm_struct *find_vm_area(const void *addr)
83342314 2665{
db64fe02 2666 struct vmap_area *va;
83342314 2667
db64fe02 2668 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2669 if (!va)
2670 return NULL;
1da177e4 2671
688fcbfc 2672 return va->vm;
1da177e4
LT
2673}
2674
7856dfeb 2675/**
92eac168
MR
2676 * remove_vm_area - find and remove a continuous kernel virtual area
2677 * @addr: base address
7856dfeb 2678 *
92eac168
MR
2679 * Search for the kernel VM area starting at @addr, and remove it.
2680 * This function returns the found VM area, but using it is NOT safe
2681 * on SMP machines, except for its size or flags.
a862f68a 2682 *
74640617 2683 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2684 */
b3bdda02 2685struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2686{
db64fe02 2687 struct vmap_area *va;
75c59ce7 2688 struct vm_struct *vm;
db64fe02 2689
5803ed29
CH
2690 might_sleep();
2691
17d3ef43
CH
2692 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2693 addr))
2694 return NULL;
c69480ad 2695
75c59ce7
CH
2696 va = find_unlink_vmap_area((unsigned long)addr);
2697 if (!va || !va->vm)
2698 return NULL;
2699 vm = va->vm;
dd32c279 2700
17d3ef43
CH
2701 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2702 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
75c59ce7 2703 kasan_free_module_shadow(vm);
17d3ef43 2704 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
dd3b8353 2705
75c59ce7
CH
2706 free_unmap_vmap_area(va);
2707 return vm;
7856dfeb
AK
2708}
2709
868b104d
RE
2710static inline void set_area_direct_map(const struct vm_struct *area,
2711 int (*set_direct_map)(struct page *page))
2712{
2713 int i;
2714
121e6f32 2715 /* HUGE_VMALLOC passes small pages to set_direct_map */
868b104d
RE
2716 for (i = 0; i < area->nr_pages; i++)
2717 if (page_address(area->pages[i]))
2718 set_direct_map(area->pages[i]);
2719}
2720
9e5fa0ae
CH
2721/*
2722 * Flush the vm mapping and reset the direct map.
2723 */
2724static void vm_reset_perms(struct vm_struct *area)
868b104d 2725{
868b104d 2726 unsigned long start = ULONG_MAX, end = 0;
121e6f32 2727 unsigned int page_order = vm_area_page_order(area);
31e67340 2728 int flush_dmap = 0;
868b104d
RE
2729 int i;
2730
868b104d 2731 /*
9e5fa0ae 2732 * Find the start and end range of the direct mappings to make sure that
868b104d
RE
2733 * the vm_unmap_aliases() flush includes the direct map.
2734 */
121e6f32 2735 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
8e41f872 2736 unsigned long addr = (unsigned long)page_address(area->pages[i]);
9e5fa0ae 2737
8e41f872 2738 if (addr) {
121e6f32
NP
2739 unsigned long page_size;
2740
2741 page_size = PAGE_SIZE << page_order;
868b104d 2742 start = min(addr, start);
121e6f32 2743 end = max(addr + page_size, end);
31e67340 2744 flush_dmap = 1;
868b104d
RE
2745 }
2746 }
2747
2748 /*
2749 * Set direct map to something invalid so that it won't be cached if
2750 * there are any accesses after the TLB flush, then flush the TLB and
2751 * reset the direct map permissions to the default.
2752 */
2753 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2754 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2755 set_area_direct_map(area, set_direct_map_default_noflush);
2756}
2757
208162f4 2758static void delayed_vfree_work(struct work_struct *w)
1da177e4 2759{
208162f4
CH
2760 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2761 struct llist_node *t, *llnode;
bf22e37a 2762
208162f4 2763 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
5d3d31d6 2764 vfree(llnode);
bf22e37a
AR
2765}
2766
2767/**
92eac168
MR
2768 * vfree_atomic - release memory allocated by vmalloc()
2769 * @addr: memory base address
bf22e37a 2770 *
92eac168
MR
2771 * This one is just like vfree() but can be called in any atomic context
2772 * except NMIs.
bf22e37a
AR
2773 */
2774void vfree_atomic(const void *addr)
2775{
01e2e839 2776 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
bf22e37a 2777
01e2e839 2778 BUG_ON(in_nmi());
bf22e37a
AR
2779 kmemleak_free(addr);
2780
01e2e839
CH
2781 /*
2782 * Use raw_cpu_ptr() because this can be called from preemptible
2783 * context. Preemption is absolutely fine here, because the llist_add()
2784 * implementation is lockless, so it works even if we are adding to
2785 * another cpu's list. schedule_work() should be fine with this too.
2786 */
2787 if (addr && llist_add((struct llist_node *)addr, &p->list))
2788 schedule_work(&p->wq);
c67dc624
RP
2789}
2790
1da177e4 2791/**
fa307474
MWO
2792 * vfree - Release memory allocated by vmalloc()
2793 * @addr: Memory base address
1da177e4 2794 *
fa307474
MWO
2795 * Free the virtually continuous memory area starting at @addr, as obtained
2796 * from one of the vmalloc() family of APIs. This will usually also free the
2797 * physical memory underlying the virtual allocation, but that memory is
2798 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2799 *
fa307474 2800 * If @addr is NULL, no operation is performed.
c9fcee51 2801 *
fa307474 2802 * Context:
92eac168 2803 * May sleep if called *not* from interrupt context.
fa307474
MWO
2804 * Must not be called in NMI context (strictly speaking, it could be
2805 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
f0953a1b 2806 * conventions for vfree() arch-dependent would be a really bad idea).
1da177e4 2807 */
b3bdda02 2808void vfree(const void *addr)
1da177e4 2809{
79311c1f
CH
2810 struct vm_struct *vm;
2811 int i;
89219d37 2812
01e2e839
CH
2813 if (unlikely(in_interrupt())) {
2814 vfree_atomic(addr);
2815 return;
2816 }
89219d37 2817
01e2e839 2818 BUG_ON(in_nmi());
89219d37 2819 kmemleak_free(addr);
01e2e839 2820 might_sleep();
a8dda165 2821
32fcfd40
AV
2822 if (!addr)
2823 return;
c67dc624 2824
79311c1f
CH
2825 vm = remove_vm_area(addr);
2826 if (unlikely(!vm)) {
2827 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2828 addr);
2829 return;
2830 }
2831
9e5fa0ae
CH
2832 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2833 vm_reset_perms(vm);
79311c1f
CH
2834 for (i = 0; i < vm->nr_pages; i++) {
2835 struct page *page = vm->pages[i];
2836
2837 BUG_ON(!page);
2838 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2839 /*
2840 * High-order allocs for huge vmallocs are split, so
2841 * can be freed as an array of order-0 allocations
2842 */
dcc1be11 2843 __free_page(page);
79311c1f
CH
2844 cond_resched();
2845 }
2846 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2847 kvfree(vm->pages);
2848 kfree(vm);
1da177e4 2849}
1da177e4
LT
2850EXPORT_SYMBOL(vfree);
2851
2852/**
92eac168
MR
2853 * vunmap - release virtual mapping obtained by vmap()
2854 * @addr: memory base address
1da177e4 2855 *
92eac168
MR
2856 * Free the virtually contiguous memory area starting at @addr,
2857 * which was created from the page array passed to vmap().
1da177e4 2858 *
92eac168 2859 * Must not be called in interrupt context.
1da177e4 2860 */
b3bdda02 2861void vunmap(const void *addr)
1da177e4 2862{
79311c1f
CH
2863 struct vm_struct *vm;
2864
1da177e4 2865 BUG_ON(in_interrupt());
34754b69 2866 might_sleep();
79311c1f
CH
2867
2868 if (!addr)
2869 return;
2870 vm = remove_vm_area(addr);
2871 if (unlikely(!vm)) {
2872 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2873 addr);
2874 return;
2875 }
2876 kfree(vm);
1da177e4 2877}
1da177e4
LT
2878EXPORT_SYMBOL(vunmap);
2879
2880/**
92eac168
MR
2881 * vmap - map an array of pages into virtually contiguous space
2882 * @pages: array of page pointers
2883 * @count: number of pages to map
2884 * @flags: vm_area->flags
2885 * @prot: page protection for the mapping
2886 *
b944afc9
CH
2887 * Maps @count pages from @pages into contiguous kernel virtual space.
2888 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2889 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2890 * are transferred from the caller to vmap(), and will be freed / dropped when
2891 * vfree() is called on the return value.
a862f68a
MR
2892 *
2893 * Return: the address of the area or %NULL on failure
1da177e4
LT
2894 */
2895void *vmap(struct page **pages, unsigned int count,
92eac168 2896 unsigned long flags, pgprot_t prot)
1da177e4
LT
2897{
2898 struct vm_struct *area;
b67177ec 2899 unsigned long addr;
65ee03c4 2900 unsigned long size; /* In bytes */
1da177e4 2901
34754b69
PZ
2902 might_sleep();
2903
37f3605e
CH
2904 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2905 return NULL;
2906
bd1a8fb2
PZ
2907 /*
2908 * Your top guard is someone else's bottom guard. Not having a top
2909 * guard compromises someone else's mappings too.
2910 */
2911 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2912 flags &= ~VM_NO_GUARD;
2913
ca79b0c2 2914 if (count > totalram_pages())
1da177e4
LT
2915 return NULL;
2916
65ee03c4
GJM
2917 size = (unsigned long)count << PAGE_SHIFT;
2918 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2919 if (!area)
2920 return NULL;
23016969 2921
b67177ec
NP
2922 addr = (unsigned long)area->addr;
2923 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2924 pages, PAGE_SHIFT) < 0) {
1da177e4
LT
2925 vunmap(area->addr);
2926 return NULL;
2927 }
2928
c22ee528 2929 if (flags & VM_MAP_PUT_PAGES) {
b944afc9 2930 area->pages = pages;
c22ee528
ML
2931 area->nr_pages = count;
2932 }
1da177e4
LT
2933 return area->addr;
2934}
1da177e4
LT
2935EXPORT_SYMBOL(vmap);
2936
3e9a9e25
CH
2937#ifdef CONFIG_VMAP_PFN
2938struct vmap_pfn_data {
2939 unsigned long *pfns;
2940 pgprot_t prot;
2941 unsigned int idx;
2942};
2943
2944static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2945{
2946 struct vmap_pfn_data *data = private;
2947
2948 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2949 return -EINVAL;
2950 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2951 return 0;
2952}
2953
2954/**
2955 * vmap_pfn - map an array of PFNs into virtually contiguous space
2956 * @pfns: array of PFNs
2957 * @count: number of pages to map
2958 * @prot: page protection for the mapping
2959 *
2960 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2961 * the start address of the mapping.
2962 */
2963void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2964{
2965 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2966 struct vm_struct *area;
2967
2968 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2969 __builtin_return_address(0));
2970 if (!area)
2971 return NULL;
2972 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2973 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2974 free_vm_area(area);
2975 return NULL;
2976 }
2977 return area->addr;
2978}
2979EXPORT_SYMBOL_GPL(vmap_pfn);
2980#endif /* CONFIG_VMAP_PFN */
2981
12b9f873
UR
2982static inline unsigned int
2983vm_area_alloc_pages(gfp_t gfp, int nid,
343ab817 2984 unsigned int order, unsigned int nr_pages, struct page **pages)
12b9f873
UR
2985{
2986 unsigned int nr_allocated = 0;
e9c3cda4
MH
2987 gfp_t alloc_gfp = gfp;
2988 bool nofail = false;
ffb29b1c
CW
2989 struct page *page;
2990 int i;
12b9f873
UR
2991
2992 /*
2993 * For order-0 pages we make use of bulk allocator, if
2994 * the page array is partly or not at all populated due
2995 * to fails, fallback to a single page allocator that is
2996 * more permissive.
2997 */
c00b6b96 2998 if (!order) {
e9c3cda4 2999 /* bulk allocator doesn't support nofail req. officially */
9376130c
MH
3000 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3001
343ab817
URS
3002 while (nr_allocated < nr_pages) {
3003 unsigned int nr, nr_pages_request;
3004
3005 /*
3006 * A maximum allowed request is hard-coded and is 100
3007 * pages per call. That is done in order to prevent a
3008 * long preemption off scenario in the bulk-allocator
3009 * so the range is [1:100].
3010 */
3011 nr_pages_request = min(100U, nr_pages - nr_allocated);
3012
c00b6b96
CW
3013 /* memory allocation should consider mempolicy, we can't
3014 * wrongly use nearest node when nid == NUMA_NO_NODE,
3015 * otherwise memory may be allocated in only one node,
98af39d5 3016 * but mempolicy wants to alloc memory by interleaving.
c00b6b96
CW
3017 */
3018 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
9376130c 3019 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
c00b6b96
CW
3020 nr_pages_request,
3021 pages + nr_allocated);
3022
3023 else
9376130c 3024 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
c00b6b96
CW
3025 nr_pages_request,
3026 pages + nr_allocated);
343ab817
URS
3027
3028 nr_allocated += nr;
3029 cond_resched();
3030
3031 /*
3032 * If zero or pages were obtained partly,
3033 * fallback to a single page allocator.
3034 */
3035 if (nr != nr_pages_request)
3036 break;
3037 }
e9c3cda4
MH
3038 } else if (gfp & __GFP_NOFAIL) {
3039 /*
3040 * Higher order nofail allocations are really expensive and
3041 * potentially dangerous (pre-mature OOM, disruptive reclaim
3042 * and compaction etc.
3043 */
3044 alloc_gfp &= ~__GFP_NOFAIL;
3045 nofail = true;
3b8000ae 3046 }
12b9f873
UR
3047
3048 /* High-order pages or fallback path if "bulk" fails. */
ffb29b1c 3049 while (nr_allocated < nr_pages) {
dd544141
VA
3050 if (fatal_signal_pending(current))
3051 break;
3052
ffb29b1c 3053 if (nid == NUMA_NO_NODE)
e9c3cda4 3054 page = alloc_pages(alloc_gfp, order);
ffb29b1c 3055 else
e9c3cda4
MH
3056 page = alloc_pages_node(nid, alloc_gfp, order);
3057 if (unlikely(!page)) {
3058 if (!nofail)
3059 break;
3060
3061 /* fall back to the zero order allocations */
3062 alloc_gfp |= __GFP_NOFAIL;
3063 order = 0;
3064 continue;
3065 }
3066
3b8000ae
NP
3067 /*
3068 * Higher order allocations must be able to be treated as
3069 * indepdenent small pages by callers (as they can with
3070 * small-page vmallocs). Some drivers do their own refcounting
3071 * on vmalloc_to_page() pages, some use page->mapping,
3072 * page->lru, etc.
3073 */
3074 if (order)
3075 split_page(page, order);
12b9f873
UR
3076
3077 /*
3078 * Careful, we allocate and map page-order pages, but
3079 * tracking is done per PAGE_SIZE page so as to keep the
3080 * vm_struct APIs independent of the physical/mapped size.
3081 */
3082 for (i = 0; i < (1U << order); i++)
3083 pages[nr_allocated + i] = page + i;
3084
12e376a6 3085 cond_resched();
12b9f873
UR
3086 nr_allocated += 1U << order;
3087 }
3088
3089 return nr_allocated;
3090}
3091
e31d9eb5 3092static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
121e6f32
NP
3093 pgprot_t prot, unsigned int page_shift,
3094 int node)
1da177e4 3095{
930f036b 3096 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
9376130c 3097 bool nofail = gfp_mask & __GFP_NOFAIL;
121e6f32
NP
3098 unsigned long addr = (unsigned long)area->addr;
3099 unsigned long size = get_vm_area_size(area);
34fe6537 3100 unsigned long array_size;
121e6f32
NP
3101 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3102 unsigned int page_order;
451769eb
MH
3103 unsigned int flags;
3104 int ret;
1da177e4 3105
121e6f32 3106 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
80b1d8fd 3107
f255935b
CH
3108 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3109 gfp_mask |= __GFP_HIGHMEM;
1da177e4 3110
1da177e4 3111 /* Please note that the recursion is strictly bounded. */
8757d5fa 3112 if (array_size > PAGE_SIZE) {
5c1f4e69 3113 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
f255935b 3114 area->caller);
286e1ea3 3115 } else {
5c1f4e69 3116 area->pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 3117 }
7ea36242 3118
5c1f4e69 3119 if (!area->pages) {
c3d77172 3120 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3121 "vmalloc error: size %lu, failed to allocated page array size %lu",
3122 nr_small_pages * PAGE_SIZE, array_size);
cd61413b 3123 free_vm_area(area);
1da177e4
LT
3124 return NULL;
3125 }
1da177e4 3126
121e6f32 3127 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
121e6f32 3128 page_order = vm_area_page_order(area);
bf53d6f8 3129
c3d77172
URS
3130 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3131 node, page_order, nr_small_pages, area->pages);
5c1f4e69 3132
97105f0a 3133 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
4e5aa1f4 3134 if (gfp_mask & __GFP_ACCOUNT) {
3b8000ae 3135 int i;
4e5aa1f4 3136
3b8000ae
NP
3137 for (i = 0; i < area->nr_pages; i++)
3138 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
4e5aa1f4 3139 }
1da177e4 3140
5c1f4e69
URS
3141 /*
3142 * If not enough pages were obtained to accomplish an
f41f036b 3143 * allocation request, free them via vfree() if any.
5c1f4e69
URS
3144 */
3145 if (area->nr_pages != nr_small_pages) {
f349b15e
YS
3146 /* vm_area_alloc_pages() can also fail due to a fatal signal */
3147 if (!fatal_signal_pending(current))
3148 warn_alloc(gfp_mask, NULL,
3149 "vmalloc error: size %lu, page order %u, failed to allocate pages",
3150 area->nr_pages * PAGE_SIZE, page_order);
5c1f4e69
URS
3151 goto fail;
3152 }
3153
451769eb
MH
3154 /*
3155 * page tables allocations ignore external gfp mask, enforce it
3156 * by the scope API
3157 */
3158 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3159 flags = memalloc_nofs_save();
3160 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3161 flags = memalloc_noio_save();
3162
9376130c
MH
3163 do {
3164 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
451769eb 3165 page_shift);
9376130c
MH
3166 if (nofail && (ret < 0))
3167 schedule_timeout_uninterruptible(1);
3168 } while (nofail && (ret < 0));
451769eb
MH
3169
3170 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3171 memalloc_nofs_restore(flags);
3172 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3173 memalloc_noio_restore(flags);
3174
3175 if (ret < 0) {
c3d77172 3176 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3177 "vmalloc error: size %lu, failed to map pages",
3178 area->nr_pages * PAGE_SIZE);
1da177e4 3179 goto fail;
d70bec8c 3180 }
ed1f324c 3181
1da177e4
LT
3182 return area->addr;
3183
3184fail:
f41f036b 3185 vfree(area->addr);
1da177e4
LT
3186 return NULL;
3187}
3188
3189/**
92eac168
MR
3190 * __vmalloc_node_range - allocate virtually contiguous memory
3191 * @size: allocation size
3192 * @align: desired alignment
3193 * @start: vm area range start
3194 * @end: vm area range end
3195 * @gfp_mask: flags for the page level allocator
3196 * @prot: protection mask for the allocated pages
3197 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3198 * @node: node to use for allocation or NUMA_NO_NODE
3199 * @caller: caller's return address
3200 *
3201 * Allocate enough pages to cover @size from the page level
b7d90e7a 3202 * allocator with @gfp_mask flags. Please note that the full set of gfp
30d3f011
MH
3203 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3204 * supported.
3205 * Zone modifiers are not supported. From the reclaim modifiers
3206 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3207 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3208 * __GFP_RETRY_MAYFAIL are not supported).
3209 *
3210 * __GFP_NOWARN can be used to suppress failures messages.
b7d90e7a
MH
3211 *
3212 * Map them into contiguous kernel virtual space, using a pagetable
3213 * protection of @prot.
a862f68a
MR
3214 *
3215 * Return: the address of the area or %NULL on failure
1da177e4 3216 */
d0a21265
DR
3217void *__vmalloc_node_range(unsigned long size, unsigned long align,
3218 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
3219 pgprot_t prot, unsigned long vm_flags, int node,
3220 const void *caller)
1da177e4
LT
3221{
3222 struct vm_struct *area;
19f1c3ac 3223 void *ret;
f6e39794 3224 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
89219d37 3225 unsigned long real_size = size;
121e6f32
NP
3226 unsigned long real_align = align;
3227 unsigned int shift = PAGE_SHIFT;
1da177e4 3228
d70bec8c
NP
3229 if (WARN_ON_ONCE(!size))
3230 return NULL;
3231
3232 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3233 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3234 "vmalloc error: size %lu, exceeds total pages",
3235 real_size);
d70bec8c 3236 return NULL;
121e6f32
NP
3237 }
3238
559089e0 3239 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
121e6f32 3240 unsigned long size_per_node;
1da177e4 3241
121e6f32
NP
3242 /*
3243 * Try huge pages. Only try for PAGE_KERNEL allocations,
3244 * others like modules don't yet expect huge pages in
3245 * their allocations due to apply_to_page_range not
3246 * supporting them.
3247 */
3248
3249 size_per_node = size;
3250 if (node == NUMA_NO_NODE)
3251 size_per_node /= num_online_nodes();
3382bbee 3252 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
121e6f32 3253 shift = PMD_SHIFT;
3382bbee
CL
3254 else
3255 shift = arch_vmap_pte_supported_shift(size_per_node);
3256
3257 align = max(real_align, 1UL << shift);
3258 size = ALIGN(real_size, 1UL << shift);
121e6f32
NP
3259 }
3260
3261again:
7ca3027b
DA
3262 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3263 VM_UNINITIALIZED | vm_flags, start, end, node,
3264 gfp_mask, caller);
d70bec8c 3265 if (!area) {
9376130c 3266 bool nofail = gfp_mask & __GFP_NOFAIL;
d70bec8c 3267 warn_alloc(gfp_mask, NULL,
9376130c
MH
3268 "vmalloc error: size %lu, vm_struct allocation failed%s",
3269 real_size, (nofail) ? ". Retrying." : "");
3270 if (nofail) {
3271 schedule_timeout_uninterruptible(1);
3272 goto again;
3273 }
de7d2b56 3274 goto fail;
d70bec8c 3275 }
1da177e4 3276
f6e39794
AK
3277 /*
3278 * Prepare arguments for __vmalloc_area_node() and
3279 * kasan_unpoison_vmalloc().
3280 */
3281 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3282 if (kasan_hw_tags_enabled()) {
3283 /*
3284 * Modify protection bits to allow tagging.
3285 * This must be done before mapping.
3286 */
3287 prot = arch_vmap_pgprot_tagged(prot);
01d92c7f 3288
f6e39794
AK
3289 /*
3290 * Skip page_alloc poisoning and zeroing for physical
3291 * pages backing VM_ALLOC mapping. Memory is instead
3292 * poisoned and zeroed by kasan_unpoison_vmalloc().
3293 */
0a54864f 3294 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
f6e39794
AK
3295 }
3296
3297 /* Take note that the mapping is PAGE_KERNEL. */
3298 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
23689e91
AK
3299 }
3300
01d92c7f 3301 /* Allocate physical pages and map them into vmalloc space. */
19f1c3ac
AK
3302 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3303 if (!ret)
121e6f32 3304 goto fail;
89219d37 3305
23689e91
AK
3306 /*
3307 * Mark the pages as accessible, now that they are mapped.
6c2f761d
AK
3308 * The condition for setting KASAN_VMALLOC_INIT should complement the
3309 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3310 * to make sure that memory is initialized under the same conditions.
f6e39794
AK
3311 * Tag-based KASAN modes only assign tags to normal non-executable
3312 * allocations, see __kasan_unpoison_vmalloc().
23689e91 3313 */
f6e39794 3314 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
6c2f761d
AK
3315 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3316 (gfp_mask & __GFP_SKIP_ZERO))
23689e91 3317 kasan_flags |= KASAN_VMALLOC_INIT;
f6e39794 3318 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
23689e91 3319 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
19f1c3ac 3320
f5252e00 3321 /*
20fc02b4
ZY
3322 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3323 * flag. It means that vm_struct is not fully initialized.
4341fa45 3324 * Now, it is fully initialized, so remove this flag here.
f5252e00 3325 */
20fc02b4 3326 clear_vm_uninitialized_flag(area);
f5252e00 3327
7ca3027b 3328 size = PAGE_ALIGN(size);
60115fa5
KW
3329 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3330 kmemleak_vmalloc(area, size, gfp_mask);
89219d37 3331
19f1c3ac 3332 return area->addr;
de7d2b56
JP
3333
3334fail:
121e6f32
NP
3335 if (shift > PAGE_SHIFT) {
3336 shift = PAGE_SHIFT;
3337 align = real_align;
3338 size = real_size;
3339 goto again;
3340 }
3341
de7d2b56 3342 return NULL;
1da177e4
LT
3343}
3344
d0a21265 3345/**
92eac168
MR
3346 * __vmalloc_node - allocate virtually contiguous memory
3347 * @size: allocation size
3348 * @align: desired alignment
3349 * @gfp_mask: flags for the page level allocator
92eac168
MR
3350 * @node: node to use for allocation or NUMA_NO_NODE
3351 * @caller: caller's return address
a7c3e901 3352 *
f38fcb9c
CH
3353 * Allocate enough pages to cover @size from the page level allocator with
3354 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 3355 *
92eac168
MR
3356 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3357 * and __GFP_NOFAIL are not supported
a7c3e901 3358 *
92eac168
MR
3359 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3360 * with mm people.
a862f68a
MR
3361 *
3362 * Return: pointer to the allocated memory or %NULL on error
d0a21265 3363 */
2b905948 3364void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 3365 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
3366{
3367 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 3368 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 3369}
c3f896dc
CH
3370/*
3371 * This is only for performance analysis of vmalloc and stress purpose.
3372 * It is required by vmalloc test module, therefore do not use it other
3373 * than that.
3374 */
3375#ifdef CONFIG_TEST_VMALLOC_MODULE
3376EXPORT_SYMBOL_GPL(__vmalloc_node);
3377#endif
d0a21265 3378
88dca4ca 3379void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 3380{
f38fcb9c 3381 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 3382 __builtin_return_address(0));
930fc45a 3383}
1da177e4
LT
3384EXPORT_SYMBOL(__vmalloc);
3385
3386/**
92eac168
MR
3387 * vmalloc - allocate virtually contiguous memory
3388 * @size: allocation size
3389 *
3390 * Allocate enough pages to cover @size from the page level
3391 * allocator and map them into contiguous kernel virtual space.
1da177e4 3392 *
92eac168
MR
3393 * For tight control over page level allocator and protection flags
3394 * use __vmalloc() instead.
a862f68a
MR
3395 *
3396 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3397 */
3398void *vmalloc(unsigned long size)
3399{
4d39d728
CH
3400 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3401 __builtin_return_address(0));
1da177e4 3402}
1da177e4
LT
3403EXPORT_SYMBOL(vmalloc);
3404
15a64f5a 3405/**
559089e0
SL
3406 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3407 * @size: allocation size
3408 * @gfp_mask: flags for the page level allocator
15a64f5a 3409 *
559089e0 3410 * Allocate enough pages to cover @size from the page level
15a64f5a 3411 * allocator and map them into contiguous kernel virtual space.
559089e0
SL
3412 * If @size is greater than or equal to PMD_SIZE, allow using
3413 * huge pages for the memory
15a64f5a
CI
3414 *
3415 * Return: pointer to the allocated memory or %NULL on error
3416 */
559089e0 3417void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
15a64f5a
CI
3418{
3419 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
559089e0 3420 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
15a64f5a
CI
3421 NUMA_NO_NODE, __builtin_return_address(0));
3422}
559089e0 3423EXPORT_SYMBOL_GPL(vmalloc_huge);
15a64f5a 3424
e1ca7788 3425/**
92eac168
MR
3426 * vzalloc - allocate virtually contiguous memory with zero fill
3427 * @size: allocation size
3428 *
3429 * Allocate enough pages to cover @size from the page level
3430 * allocator and map them into contiguous kernel virtual space.
3431 * The memory allocated is set to zero.
3432 *
3433 * For tight control over page level allocator and protection flags
3434 * use __vmalloc() instead.
a862f68a
MR
3435 *
3436 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3437 */
3438void *vzalloc(unsigned long size)
3439{
4d39d728
CH
3440 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3441 __builtin_return_address(0));
e1ca7788
DY
3442}
3443EXPORT_SYMBOL(vzalloc);
3444
83342314 3445/**
ead04089
REB
3446 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3447 * @size: allocation size
83342314 3448 *
ead04089
REB
3449 * The resulting memory area is zeroed so it can be mapped to userspace
3450 * without leaking data.
a862f68a
MR
3451 *
3452 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3453 */
3454void *vmalloc_user(unsigned long size)
3455{
bc84c535
RP
3456 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3457 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3458 VM_USERMAP, NUMA_NO_NODE,
3459 __builtin_return_address(0));
83342314
NP
3460}
3461EXPORT_SYMBOL(vmalloc_user);
3462
930fc45a 3463/**
92eac168
MR
3464 * vmalloc_node - allocate memory on a specific node
3465 * @size: allocation size
3466 * @node: numa node
930fc45a 3467 *
92eac168
MR
3468 * Allocate enough pages to cover @size from the page level
3469 * allocator and map them into contiguous kernel virtual space.
930fc45a 3470 *
92eac168
MR
3471 * For tight control over page level allocator and protection flags
3472 * use __vmalloc() instead.
a862f68a
MR
3473 *
3474 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
3475 */
3476void *vmalloc_node(unsigned long size, int node)
3477{
f38fcb9c
CH
3478 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3479 __builtin_return_address(0));
930fc45a
CL
3480}
3481EXPORT_SYMBOL(vmalloc_node);
3482
e1ca7788
DY
3483/**
3484 * vzalloc_node - allocate memory on a specific node with zero fill
3485 * @size: allocation size
3486 * @node: numa node
3487 *
3488 * Allocate enough pages to cover @size from the page level
3489 * allocator and map them into contiguous kernel virtual space.
3490 * The memory allocated is set to zero.
3491 *
a862f68a 3492 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3493 */
3494void *vzalloc_node(unsigned long size, int node)
3495{
4d39d728
CH
3496 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3497 __builtin_return_address(0));
e1ca7788
DY
3498}
3499EXPORT_SYMBOL(vzalloc_node);
3500
0d08e0d3 3501#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 3502#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 3503#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 3504#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 3505#else
698d0831
MH
3506/*
3507 * 64b systems should always have either DMA or DMA32 zones. For others
3508 * GFP_DMA32 should do the right thing and use the normal zone.
3509 */
68d68ff6 3510#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3
AK
3511#endif
3512
1da177e4 3513/**
92eac168
MR
3514 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3515 * @size: allocation size
1da177e4 3516 *
92eac168
MR
3517 * Allocate enough 32bit PA addressable pages to cover @size from the
3518 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
3519 *
3520 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3521 */
3522void *vmalloc_32(unsigned long size)
3523{
f38fcb9c
CH
3524 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3525 __builtin_return_address(0));
1da177e4 3526}
1da177e4
LT
3527EXPORT_SYMBOL(vmalloc_32);
3528
83342314 3529/**
ead04089 3530 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 3531 * @size: allocation size
ead04089
REB
3532 *
3533 * The resulting memory area is 32bit addressable and zeroed so it can be
3534 * mapped to userspace without leaking data.
a862f68a
MR
3535 *
3536 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3537 */
3538void *vmalloc_32_user(unsigned long size)
3539{
bc84c535
RP
3540 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3541 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3542 VM_USERMAP, NUMA_NO_NODE,
3543 __builtin_return_address(0));
83342314
NP
3544}
3545EXPORT_SYMBOL(vmalloc_32_user);
3546
d0107eb0 3547/*
4c91c07c
LS
3548 * Atomically zero bytes in the iterator.
3549 *
3550 * Returns the number of zeroed bytes.
d0107eb0 3551 */
4c91c07c
LS
3552static size_t zero_iter(struct iov_iter *iter, size_t count)
3553{
3554 size_t remains = count;
3555
3556 while (remains > 0) {
3557 size_t num, copied;
3558
3559 num = remains < PAGE_SIZE ? remains : PAGE_SIZE;
3560 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3561 remains -= copied;
3562
3563 if (copied < num)
3564 break;
3565 }
d0107eb0 3566
4c91c07c
LS
3567 return count - remains;
3568}
3569
3570/*
3571 * small helper routine, copy contents to iter from addr.
3572 * If the page is not present, fill zero.
3573 *
3574 * Returns the number of copied bytes.
3575 */
3576static size_t aligned_vread_iter(struct iov_iter *iter,
3577 const char *addr, size_t count)
d0107eb0 3578{
4c91c07c
LS
3579 size_t remains = count;
3580 struct page *page;
d0107eb0 3581
4c91c07c 3582 while (remains > 0) {
d0107eb0 3583 unsigned long offset, length;
4c91c07c 3584 size_t copied = 0;
d0107eb0 3585
891c49ab 3586 offset = offset_in_page(addr);
d0107eb0 3587 length = PAGE_SIZE - offset;
4c91c07c
LS
3588 if (length > remains)
3589 length = remains;
3590 page = vmalloc_to_page(addr);
d0107eb0 3591 /*
4c91c07c
LS
3592 * To do safe access to this _mapped_ area, we need lock. But
3593 * adding lock here means that we need to add overhead of
3594 * vmalloc()/vfree() calls for this _debug_ interface, rarely
3595 * used. Instead of that, we'll use an local mapping via
3596 * copy_page_to_iter_nofault() and accept a small overhead in
3597 * this access function.
d0107eb0 3598 */
4c91c07c
LS
3599 if (page)
3600 copied = copy_page_to_iter_nofault(page, offset,
3601 length, iter);
3602 else
3603 copied = zero_iter(iter, length);
d0107eb0 3604
4c91c07c
LS
3605 addr += copied;
3606 remains -= copied;
3607
3608 if (copied != length)
3609 break;
d0107eb0 3610 }
4c91c07c
LS
3611
3612 return count - remains;
d0107eb0
KH
3613}
3614
4c91c07c
LS
3615/*
3616 * Read from a vm_map_ram region of memory.
3617 *
3618 * Returns the number of copied bytes.
3619 */
3620static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3621 size_t count, unsigned long flags)
06c89946
BH
3622{
3623 char *start;
3624 struct vmap_block *vb;
062eacf5 3625 struct xarray *xa;
06c89946 3626 unsigned long offset;
4c91c07c
LS
3627 unsigned int rs, re;
3628 size_t remains, n;
06c89946
BH
3629
3630 /*
3631 * If it's area created by vm_map_ram() interface directly, but
3632 * not further subdividing and delegating management to vmap_block,
3633 * handle it here.
3634 */
4c91c07c
LS
3635 if (!(flags & VMAP_BLOCK))
3636 return aligned_vread_iter(iter, addr, count);
3637
3638 remains = count;
06c89946
BH
3639
3640 /*
3641 * Area is split into regions and tracked with vmap_block, read out
3642 * each region and zero fill the hole between regions.
3643 */
fa1c77c1 3644 xa = addr_to_vb_xa((unsigned long) addr);
062eacf5 3645 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
06c89946 3646 if (!vb)
4c91c07c 3647 goto finished_zero;
06c89946
BH
3648
3649 spin_lock(&vb->lock);
3650 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3651 spin_unlock(&vb->lock);
4c91c07c 3652 goto finished_zero;
06c89946 3653 }
4c91c07c 3654
06c89946 3655 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4c91c07c
LS
3656 size_t copied;
3657
3658 if (remains == 0)
3659 goto finished;
3660
06c89946 3661 start = vmap_block_vaddr(vb->va->va_start, rs);
4c91c07c
LS
3662
3663 if (addr < start) {
3664 size_t to_zero = min_t(size_t, start - addr, remains);
3665 size_t zeroed = zero_iter(iter, to_zero);
3666
3667 addr += zeroed;
3668 remains -= zeroed;
3669
3670 if (remains == 0 || zeroed != to_zero)
3671 goto finished;
06c89946 3672 }
4c91c07c 3673
06c89946
BH
3674 /*it could start reading from the middle of used region*/
3675 offset = offset_in_page(addr);
3676 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4c91c07c
LS
3677 if (n > remains)
3678 n = remains;
3679
3680 copied = aligned_vread_iter(iter, start + offset, n);
06c89946 3681
4c91c07c
LS
3682 addr += copied;
3683 remains -= copied;
3684
3685 if (copied != n)
3686 goto finished;
06c89946 3687 }
4c91c07c 3688
06c89946
BH
3689 spin_unlock(&vb->lock);
3690
4c91c07c 3691finished_zero:
06c89946 3692 /* zero-fill the left dirty or free regions */
4c91c07c
LS
3693 return count - remains + zero_iter(iter, remains);
3694finished:
3695 /* We couldn't copy/zero everything */
3696 spin_unlock(&vb->lock);
3697 return count - remains;
06c89946
BH
3698}
3699
d0107eb0 3700/**
4c91c07c
LS
3701 * vread_iter() - read vmalloc area in a safe way to an iterator.
3702 * @iter: the iterator to which data should be written.
3703 * @addr: vm address.
3704 * @count: number of bytes to be read.
92eac168 3705 *
92eac168
MR
3706 * This function checks that addr is a valid vmalloc'ed area, and
3707 * copy data from that area to a given buffer. If the given memory range
3708 * of [addr...addr+count) includes some valid address, data is copied to
3709 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3710 * IOREMAP area is treated as memory hole and no copy is done.
3711 *
3712 * If [addr...addr+count) doesn't includes any intersects with alive
3713 * vm_struct area, returns 0. @buf should be kernel's buffer.
3714 *
3715 * Note: In usual ops, vread() is never necessary because the caller
3716 * should know vmalloc() area is valid and can use memcpy().
3717 * This is for routines which have to access vmalloc area without
bbcd53c9 3718 * any information, as /proc/kcore.
a862f68a
MR
3719 *
3720 * Return: number of bytes for which addr and buf should be increased
3721 * (same number as @count) or %0 if [addr...addr+count) doesn't
3722 * include any intersection with valid vmalloc area
d0107eb0 3723 */
4c91c07c 3724long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
1da177e4 3725{
e81ce85f
JK
3726 struct vmap_area *va;
3727 struct vm_struct *vm;
4c91c07c
LS
3728 char *vaddr;
3729 size_t n, size, flags, remains;
1da177e4 3730
4aff1dc4
AK
3731 addr = kasan_reset_tag(addr);
3732
1da177e4
LT
3733 /* Don't allow overflow */
3734 if ((unsigned long) addr + count < count)
3735 count = -(unsigned long) addr;
3736
4c91c07c
LS
3737 remains = count;
3738
e81ce85f 3739 spin_lock(&vmap_area_lock);
f181234a 3740 va = find_vmap_area_exceed_addr((unsigned long)addr);
f608788c 3741 if (!va)
4c91c07c 3742 goto finished_zero;
f181234a
CW
3743
3744 /* no intersects with alive vmap_area */
4c91c07c
LS
3745 if ((unsigned long)addr + remains <= va->va_start)
3746 goto finished_zero;
f181234a 3747
f608788c 3748 list_for_each_entry_from(va, &vmap_area_list, list) {
4c91c07c
LS
3749 size_t copied;
3750
3751 if (remains == 0)
3752 goto finished;
e81ce85f 3753
06c89946
BH
3754 vm = va->vm;
3755 flags = va->flags & VMAP_FLAGS_MASK;
3756 /*
3757 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3758 * be set together with VMAP_RAM.
3759 */
3760 WARN_ON(flags == VMAP_BLOCK);
3761
3762 if (!vm && !flags)
e81ce85f
JK
3763 continue;
3764
30a7a9b1
BH
3765 if (vm && (vm->flags & VM_UNINITIALIZED))
3766 continue;
4c91c07c 3767
30a7a9b1
BH
3768 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3769 smp_rmb();
3770
06c89946
BH
3771 vaddr = (char *) va->va_start;
3772 size = vm ? get_vm_area_size(vm) : va_size(va);
3773
3774 if (addr >= vaddr + size)
1da177e4 3775 continue;
4c91c07c
LS
3776
3777 if (addr < vaddr) {
3778 size_t to_zero = min_t(size_t, vaddr - addr, remains);
3779 size_t zeroed = zero_iter(iter, to_zero);
3780
3781 addr += zeroed;
3782 remains -= zeroed;
3783
3784 if (remains == 0 || zeroed != to_zero)
1da177e4 3785 goto finished;
1da177e4 3786 }
4c91c07c 3787
06c89946 3788 n = vaddr + size - addr;
4c91c07c
LS
3789 if (n > remains)
3790 n = remains;
06c89946
BH
3791
3792 if (flags & VMAP_RAM)
4c91c07c 3793 copied = vmap_ram_vread_iter(iter, addr, n, flags);
06c89946 3794 else if (!(vm->flags & VM_IOREMAP))
4c91c07c 3795 copied = aligned_vread_iter(iter, addr, n);
d0107eb0 3796 else /* IOREMAP area is treated as memory hole */
4c91c07c
LS
3797 copied = zero_iter(iter, n);
3798
3799 addr += copied;
3800 remains -= copied;
3801
3802 if (copied != n)
3803 goto finished;
1da177e4 3804 }
d0107eb0 3805
4c91c07c
LS
3806finished_zero:
3807 spin_unlock(&vmap_area_lock);
d0107eb0 3808 /* zero-fill memory holes */
4c91c07c
LS
3809 return count - remains + zero_iter(iter, remains);
3810finished:
3811 /* Nothing remains, or We couldn't copy/zero everything. */
3812 spin_unlock(&vmap_area_lock);
d0107eb0 3813
4c91c07c 3814 return count - remains;
1da177e4
LT
3815}
3816
83342314 3817/**
92eac168
MR
3818 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3819 * @vma: vma to cover
3820 * @uaddr: target user address to start at
3821 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3822 * @pgoff: offset from @kaddr to start at
92eac168 3823 * @size: size of map area
7682486b 3824 *
92eac168 3825 * Returns: 0 for success, -Exxx on failure
83342314 3826 *
92eac168
MR
3827 * This function checks that @kaddr is a valid vmalloc'ed area,
3828 * and that it is big enough to cover the range starting at
3829 * @uaddr in @vma. Will return failure if that criteria isn't
3830 * met.
83342314 3831 *
92eac168 3832 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3833 */
e69e9d4a 3834int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3835 void *kaddr, unsigned long pgoff,
3836 unsigned long size)
83342314
NP
3837{
3838 struct vm_struct *area;
bdebd6a2
JH
3839 unsigned long off;
3840 unsigned long end_index;
3841
3842 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3843 return -EINVAL;
83342314 3844
e69e9d4a
HD
3845 size = PAGE_ALIGN(size);
3846
3847 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3848 return -EINVAL;
3849
e69e9d4a 3850 area = find_vm_area(kaddr);
83342314 3851 if (!area)
db64fe02 3852 return -EINVAL;
83342314 3853
fe9041c2 3854 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3855 return -EINVAL;
83342314 3856
bdebd6a2
JH
3857 if (check_add_overflow(size, off, &end_index) ||
3858 end_index > get_vm_area_size(area))
db64fe02 3859 return -EINVAL;
bdebd6a2 3860 kaddr += off;
83342314 3861
83342314 3862 do {
e69e9d4a 3863 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3864 int ret;
3865
83342314
NP
3866 ret = vm_insert_page(vma, uaddr, page);
3867 if (ret)
3868 return ret;
3869
3870 uaddr += PAGE_SIZE;
e69e9d4a
HD
3871 kaddr += PAGE_SIZE;
3872 size -= PAGE_SIZE;
3873 } while (size > 0);
83342314 3874
1c71222e 3875 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
83342314 3876
db64fe02 3877 return 0;
83342314 3878}
e69e9d4a
HD
3879
3880/**
92eac168
MR
3881 * remap_vmalloc_range - map vmalloc pages to userspace
3882 * @vma: vma to cover (map full range of vma)
3883 * @addr: vmalloc memory
3884 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3885 *
92eac168 3886 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3887 *
92eac168
MR
3888 * This function checks that addr is a valid vmalloc'ed area, and
3889 * that it is big enough to cover the vma. Will return failure if
3890 * that criteria isn't met.
e69e9d4a 3891 *
92eac168 3892 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3893 */
3894int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3895 unsigned long pgoff)
3896{
3897 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3898 addr, pgoff,
e69e9d4a
HD
3899 vma->vm_end - vma->vm_start);
3900}
83342314
NP
3901EXPORT_SYMBOL(remap_vmalloc_range);
3902
5f4352fb
JF
3903void free_vm_area(struct vm_struct *area)
3904{
3905 struct vm_struct *ret;
3906 ret = remove_vm_area(area->addr);
3907 BUG_ON(ret != area);
3908 kfree(area);
3909}
3910EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3911
4f8b02b4 3912#ifdef CONFIG_SMP
ca23e405
TH
3913static struct vmap_area *node_to_va(struct rb_node *n)
3914{
4583e773 3915 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3916}
3917
3918/**
68ad4a33
URS
3919 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3920 * @addr: target address
ca23e405 3921 *
68ad4a33
URS
3922 * Returns: vmap_area if it is found. If there is no such area
3923 * the first highest(reverse order) vmap_area is returned
3924 * i.e. va->va_start < addr && va->va_end < addr or NULL
3925 * if there are no any areas before @addr.
ca23e405 3926 */
68ad4a33
URS
3927static struct vmap_area *
3928pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3929{
68ad4a33
URS
3930 struct vmap_area *va, *tmp;
3931 struct rb_node *n;
3932
3933 n = free_vmap_area_root.rb_node;
3934 va = NULL;
ca23e405
TH
3935
3936 while (n) {
68ad4a33
URS
3937 tmp = rb_entry(n, struct vmap_area, rb_node);
3938 if (tmp->va_start <= addr) {
3939 va = tmp;
3940 if (tmp->va_end >= addr)
3941 break;
3942
ca23e405 3943 n = n->rb_right;
68ad4a33
URS
3944 } else {
3945 n = n->rb_left;
3946 }
ca23e405
TH
3947 }
3948
68ad4a33 3949 return va;
ca23e405
TH
3950}
3951
3952/**
68ad4a33
URS
3953 * pvm_determine_end_from_reverse - find the highest aligned address
3954 * of free block below VMALLOC_END
3955 * @va:
3956 * in - the VA we start the search(reverse order);
3957 * out - the VA with the highest aligned end address.
799fa85d 3958 * @align: alignment for required highest address
ca23e405 3959 *
68ad4a33 3960 * Returns: determined end address within vmap_area
ca23e405 3961 */
68ad4a33
URS
3962static unsigned long
3963pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3964{
68ad4a33 3965 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3966 unsigned long addr;
3967
68ad4a33
URS
3968 if (likely(*va)) {
3969 list_for_each_entry_from_reverse((*va),
3970 &free_vmap_area_list, list) {
3971 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3972 if ((*va)->va_start < addr)
3973 return addr;
3974 }
ca23e405
TH
3975 }
3976
68ad4a33 3977 return 0;
ca23e405
TH
3978}
3979
3980/**
3981 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3982 * @offsets: array containing offset of each area
3983 * @sizes: array containing size of each area
3984 * @nr_vms: the number of areas to allocate
3985 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3986 *
3987 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3988 * vm_structs on success, %NULL on failure
3989 *
3990 * Percpu allocator wants to use congruent vm areas so that it can
3991 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3992 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3993 * be scattered pretty far, distance between two areas easily going up
3994 * to gigabytes. To avoid interacting with regular vmallocs, these
3995 * areas are allocated from top.
ca23e405 3996 *
68ad4a33
URS
3997 * Despite its complicated look, this allocator is rather simple. It
3998 * does everything top-down and scans free blocks from the end looking
3999 * for matching base. While scanning, if any of the areas do not fit the
4000 * base address is pulled down to fit the area. Scanning is repeated till
4001 * all the areas fit and then all necessary data structures are inserted
4002 * and the result is returned.
ca23e405
TH
4003 */
4004struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4005 const size_t *sizes, int nr_vms,
ec3f64fc 4006 size_t align)
ca23e405
TH
4007{
4008 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4009 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 4010 struct vmap_area **vas, *va;
ca23e405
TH
4011 struct vm_struct **vms;
4012 int area, area2, last_area, term_area;
253a496d 4013 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405
TH
4014 bool purged = false;
4015
ca23e405 4016 /* verify parameters and allocate data structures */
891c49ab 4017 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
4018 for (last_area = 0, area = 0; area < nr_vms; area++) {
4019 start = offsets[area];
4020 end = start + sizes[area];
4021
4022 /* is everything aligned properly? */
4023 BUG_ON(!IS_ALIGNED(offsets[area], align));
4024 BUG_ON(!IS_ALIGNED(sizes[area], align));
4025
4026 /* detect the area with the highest address */
4027 if (start > offsets[last_area])
4028 last_area = area;
4029
c568da28 4030 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
4031 unsigned long start2 = offsets[area2];
4032 unsigned long end2 = start2 + sizes[area2];
4033
c568da28 4034 BUG_ON(start2 < end && start < end2);
ca23e405
TH
4035 }
4036 }
4037 last_end = offsets[last_area] + sizes[last_area];
4038
4039 if (vmalloc_end - vmalloc_start < last_end) {
4040 WARN_ON(true);
4041 return NULL;
4042 }
4043
4d67d860
TM
4044 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4045 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 4046 if (!vas || !vms)
f1db7afd 4047 goto err_free2;
ca23e405
TH
4048
4049 for (area = 0; area < nr_vms; area++) {
68ad4a33 4050 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 4051 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
4052 if (!vas[area] || !vms[area])
4053 goto err_free;
4054 }
4055retry:
e36176be 4056 spin_lock(&free_vmap_area_lock);
ca23e405
TH
4057
4058 /* start scanning - we scan from the top, begin with the last area */
4059 area = term_area = last_area;
4060 start = offsets[area];
4061 end = start + sizes[area];
4062
68ad4a33
URS
4063 va = pvm_find_va_enclose_addr(vmalloc_end);
4064 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
4065
4066 while (true) {
ca23e405
TH
4067 /*
4068 * base might have underflowed, add last_end before
4069 * comparing.
4070 */
68ad4a33
URS
4071 if (base + last_end < vmalloc_start + last_end)
4072 goto overflow;
ca23e405
TH
4073
4074 /*
68ad4a33 4075 * Fitting base has not been found.
ca23e405 4076 */
68ad4a33
URS
4077 if (va == NULL)
4078 goto overflow;
ca23e405 4079
5336e52c 4080 /*
d8cc323d 4081 * If required width exceeds current VA block, move
5336e52c
KS
4082 * base downwards and then recheck.
4083 */
4084 if (base + end > va->va_end) {
4085 base = pvm_determine_end_from_reverse(&va, align) - end;
4086 term_area = area;
4087 continue;
4088 }
4089
ca23e405 4090 /*
68ad4a33 4091 * If this VA does not fit, move base downwards and recheck.
ca23e405 4092 */
5336e52c 4093 if (base + start < va->va_start) {
68ad4a33
URS
4094 va = node_to_va(rb_prev(&va->rb_node));
4095 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
4096 term_area = area;
4097 continue;
4098 }
4099
4100 /*
4101 * This area fits, move on to the previous one. If
4102 * the previous one is the terminal one, we're done.
4103 */
4104 area = (area + nr_vms - 1) % nr_vms;
4105 if (area == term_area)
4106 break;
68ad4a33 4107
ca23e405
TH
4108 start = offsets[area];
4109 end = start + sizes[area];
68ad4a33 4110 va = pvm_find_va_enclose_addr(base + end);
ca23e405 4111 }
68ad4a33 4112
ca23e405
TH
4113 /* we've found a fitting base, insert all va's */
4114 for (area = 0; area < nr_vms; area++) {
68ad4a33 4115 int ret;
ca23e405 4116
68ad4a33
URS
4117 start = base + offsets[area];
4118 size = sizes[area];
ca23e405 4119
68ad4a33
URS
4120 va = pvm_find_va_enclose_addr(start);
4121 if (WARN_ON_ONCE(va == NULL))
4122 /* It is a BUG(), but trigger recovery instead. */
4123 goto recovery;
4124
f9863be4
URS
4125 ret = adjust_va_to_fit_type(&free_vmap_area_root,
4126 &free_vmap_area_list,
4127 va, start, size);
1b23ff80 4128 if (WARN_ON_ONCE(unlikely(ret)))
68ad4a33
URS
4129 /* It is a BUG(), but trigger recovery instead. */
4130 goto recovery;
4131
68ad4a33
URS
4132 /* Allocated area. */
4133 va = vas[area];
4134 va->va_start = start;
4135 va->va_end = start + size;
68ad4a33 4136 }
ca23e405 4137
e36176be 4138 spin_unlock(&free_vmap_area_lock);
ca23e405 4139
253a496d
DA
4140 /* populate the kasan shadow space */
4141 for (area = 0; area < nr_vms; area++) {
4142 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4143 goto err_free_shadow;
253a496d
DA
4144 }
4145
ca23e405 4146 /* insert all vm's */
e36176be
URS
4147 spin_lock(&vmap_area_lock);
4148 for (area = 0; area < nr_vms; area++) {
4149 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4150
4151 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 4152 pcpu_get_vm_areas);
e36176be
URS
4153 }
4154 spin_unlock(&vmap_area_lock);
ca23e405 4155
19f1c3ac
AK
4156 /*
4157 * Mark allocated areas as accessible. Do it now as a best-effort
4158 * approach, as they can be mapped outside of vmalloc code.
23689e91
AK
4159 * With hardware tag-based KASAN, marking is skipped for
4160 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
19f1c3ac 4161 */
1d96320f
AK
4162 for (area = 0; area < nr_vms; area++)
4163 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
f6e39794 4164 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
1d96320f 4165
ca23e405
TH
4166 kfree(vas);
4167 return vms;
4168
68ad4a33 4169recovery:
e36176be
URS
4170 /*
4171 * Remove previously allocated areas. There is no
4172 * need in removing these areas from the busy tree,
4173 * because they are inserted only on the final step
4174 * and when pcpu_get_vm_areas() is success.
4175 */
68ad4a33 4176 while (area--) {
253a496d
DA
4177 orig_start = vas[area]->va_start;
4178 orig_end = vas[area]->va_end;
96e2db45
URS
4179 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4180 &free_vmap_area_list);
9c801f61
URS
4181 if (va)
4182 kasan_release_vmalloc(orig_start, orig_end,
4183 va->va_start, va->va_end);
68ad4a33
URS
4184 vas[area] = NULL;
4185 }
4186
4187overflow:
e36176be 4188 spin_unlock(&free_vmap_area_lock);
68ad4a33 4189 if (!purged) {
77e50af0 4190 reclaim_and_purge_vmap_areas();
68ad4a33
URS
4191 purged = true;
4192
4193 /* Before "retry", check if we recover. */
4194 for (area = 0; area < nr_vms; area++) {
4195 if (vas[area])
4196 continue;
4197
4198 vas[area] = kmem_cache_zalloc(
4199 vmap_area_cachep, GFP_KERNEL);
4200 if (!vas[area])
4201 goto err_free;
4202 }
4203
4204 goto retry;
4205 }
4206
ca23e405
TH
4207err_free:
4208 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
4209 if (vas[area])
4210 kmem_cache_free(vmap_area_cachep, vas[area]);
4211
f1db7afd 4212 kfree(vms[area]);
ca23e405 4213 }
f1db7afd 4214err_free2:
ca23e405
TH
4215 kfree(vas);
4216 kfree(vms);
4217 return NULL;
253a496d
DA
4218
4219err_free_shadow:
4220 spin_lock(&free_vmap_area_lock);
4221 /*
4222 * We release all the vmalloc shadows, even the ones for regions that
4223 * hadn't been successfully added. This relies on kasan_release_vmalloc
4224 * being able to tolerate this case.
4225 */
4226 for (area = 0; area < nr_vms; area++) {
4227 orig_start = vas[area]->va_start;
4228 orig_end = vas[area]->va_end;
96e2db45
URS
4229 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4230 &free_vmap_area_list);
9c801f61
URS
4231 if (va)
4232 kasan_release_vmalloc(orig_start, orig_end,
4233 va->va_start, va->va_end);
253a496d
DA
4234 vas[area] = NULL;
4235 kfree(vms[area]);
4236 }
4237 spin_unlock(&free_vmap_area_lock);
4238 kfree(vas);
4239 kfree(vms);
4240 return NULL;
ca23e405
TH
4241}
4242
4243/**
4244 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4245 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4246 * @nr_vms: the number of allocated areas
4247 *
4248 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4249 */
4250void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4251{
4252 int i;
4253
4254 for (i = 0; i < nr_vms; i++)
4255 free_vm_area(vms[i]);
4256 kfree(vms);
4257}
4f8b02b4 4258#endif /* CONFIG_SMP */
a10aa579 4259
5bb1bb35 4260#ifdef CONFIG_PRINTK
98f18083
PM
4261bool vmalloc_dump_obj(void *object)
4262{
4263 struct vm_struct *vm;
4264 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4265
4266 vm = find_vm_area(objp);
4267 if (!vm)
4268 return false;
bd34dcd4
PM
4269 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4270 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
98f18083
PM
4271 return true;
4272}
5bb1bb35 4273#endif
98f18083 4274
a10aa579
CL
4275#ifdef CONFIG_PROC_FS
4276static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 4277 __acquires(&vmap_purge_lock)
d4033afd 4278 __acquires(&vmap_area_lock)
a10aa579 4279{
e36176be 4280 mutex_lock(&vmap_purge_lock);
d4033afd 4281 spin_lock(&vmap_area_lock);
e36176be 4282
3f500069 4283 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
4284}
4285
4286static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4287{
3f500069 4288 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
4289}
4290
4291static void s_stop(struct seq_file *m, void *p)
d4033afd 4292 __releases(&vmap_area_lock)
0a7dd4e9 4293 __releases(&vmap_purge_lock)
a10aa579 4294{
d4033afd 4295 spin_unlock(&vmap_area_lock);
0a7dd4e9 4296 mutex_unlock(&vmap_purge_lock);
a10aa579
CL
4297}
4298
a47a126a
ED
4299static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4300{
e5adfffc 4301 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a 4302 unsigned int nr, *counters = m->private;
51e50b3a 4303 unsigned int step = 1U << vm_area_page_order(v);
a47a126a
ED
4304
4305 if (!counters)
4306 return;
4307
af12346c
WL
4308 if (v->flags & VM_UNINITIALIZED)
4309 return;
7e5b528b
DV
4310 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4311 smp_rmb();
af12346c 4312
a47a126a
ED
4313 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4314
51e50b3a
ED
4315 for (nr = 0; nr < v->nr_pages; nr += step)
4316 counters[page_to_nid(v->pages[nr])] += step;
a47a126a
ED
4317 for_each_node_state(nr, N_HIGH_MEMORY)
4318 if (counters[nr])
4319 seq_printf(m, " N%u=%u", nr, counters[nr]);
4320 }
4321}
4322
dd3b8353
URS
4323static void show_purge_info(struct seq_file *m)
4324{
dd3b8353
URS
4325 struct vmap_area *va;
4326
96e2db45
URS
4327 spin_lock(&purge_vmap_area_lock);
4328 list_for_each_entry(va, &purge_vmap_area_list, list) {
dd3b8353
URS
4329 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4330 (void *)va->va_start, (void *)va->va_end,
4331 va->va_end - va->va_start);
4332 }
96e2db45 4333 spin_unlock(&purge_vmap_area_lock);
dd3b8353
URS
4334}
4335
a10aa579
CL
4336static int s_show(struct seq_file *m, void *p)
4337{
3f500069 4338 struct vmap_area *va;
d4033afd
JK
4339 struct vm_struct *v;
4340
3f500069 4341 va = list_entry(p, struct vmap_area, list);
4342
688fcbfc 4343 if (!va->vm) {
bba9697b
BH
4344 if (va->flags & VMAP_RAM)
4345 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4346 (void *)va->va_start, (void *)va->va_end,
4347 va->va_end - va->va_start);
78c72746 4348
7cc7913e 4349 goto final;
78c72746 4350 }
d4033afd
JK
4351
4352 v = va->vm;
a10aa579 4353
45ec1690 4354 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
4355 v->addr, v->addr + v->size, v->size);
4356
62c70bce
JP
4357 if (v->caller)
4358 seq_printf(m, " %pS", v->caller);
23016969 4359
a10aa579
CL
4360 if (v->nr_pages)
4361 seq_printf(m, " pages=%d", v->nr_pages);
4362
4363 if (v->phys_addr)
199eaa05 4364 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
4365
4366 if (v->flags & VM_IOREMAP)
f4527c90 4367 seq_puts(m, " ioremap");
a10aa579
CL
4368
4369 if (v->flags & VM_ALLOC)
f4527c90 4370 seq_puts(m, " vmalloc");
a10aa579
CL
4371
4372 if (v->flags & VM_MAP)
f4527c90 4373 seq_puts(m, " vmap");
a10aa579
CL
4374
4375 if (v->flags & VM_USERMAP)
f4527c90 4376 seq_puts(m, " user");
a10aa579 4377
fe9041c2
CH
4378 if (v->flags & VM_DMA_COHERENT)
4379 seq_puts(m, " dma-coherent");
4380
244d63ee 4381 if (is_vmalloc_addr(v->pages))
f4527c90 4382 seq_puts(m, " vpages");
a10aa579 4383
a47a126a 4384 show_numa_info(m, v);
a10aa579 4385 seq_putc(m, '\n');
dd3b8353
URS
4386
4387 /*
96e2db45 4388 * As a final step, dump "unpurged" areas.
dd3b8353 4389 */
7cc7913e 4390final:
dd3b8353
URS
4391 if (list_is_last(&va->list, &vmap_area_list))
4392 show_purge_info(m);
4393
a10aa579
CL
4394 return 0;
4395}
4396
5f6a6a9c 4397static const struct seq_operations vmalloc_op = {
a10aa579
CL
4398 .start = s_start,
4399 .next = s_next,
4400 .stop = s_stop,
4401 .show = s_show,
4402};
5f6a6a9c 4403
5f6a6a9c
AD
4404static int __init proc_vmalloc_init(void)
4405{
fddda2b7 4406 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 4407 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
4408 &vmalloc_op,
4409 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 4410 else
0825a6f9 4411 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
4412 return 0;
4413}
4414module_init(proc_vmalloc_init);
db3808c1 4415
a10aa579 4416#endif
208162f4
CH
4417
4418void __init vmalloc_init(void)
4419{
4420 struct vmap_area *va;
4421 struct vm_struct *tmp;
4422 int i;
4423
4424 /*
4425 * Create the cache for vmap_area objects.
4426 */
4427 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4428
4429 for_each_possible_cpu(i) {
4430 struct vmap_block_queue *vbq;
4431 struct vfree_deferred *p;
4432
4433 vbq = &per_cpu(vmap_block_queue, i);
4434 spin_lock_init(&vbq->lock);
4435 INIT_LIST_HEAD(&vbq->free);
4436 p = &per_cpu(vfree_deferred, i);
4437 init_llist_head(&p->list);
4438 INIT_WORK(&p->wq, delayed_vfree_work);
062eacf5 4439 xa_init(&vbq->vmap_blocks);
208162f4
CH
4440 }
4441
4442 /* Import existing vmlist entries. */
4443 for (tmp = vmlist; tmp; tmp = tmp->next) {
4444 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4445 if (WARN_ON_ONCE(!va))
4446 continue;
4447
4448 va->va_start = (unsigned long)tmp->addr;
4449 va->va_end = va->va_start + tmp->size;
4450 va->vm = tmp;
4451 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4452 }
4453
4454 /*
4455 * Now we can initialize a free vmap space.
4456 */
4457 vmap_init_free_space();
4458 vmap_initialized = true;
4459}